WO2018171455A1 - 发送反馈信息的方法和设备 - Google Patents

发送反馈信息的方法和设备 Download PDF

Info

Publication number
WO2018171455A1
WO2018171455A1 PCT/CN2018/078715 CN2018078715W WO2018171455A1 WO 2018171455 A1 WO2018171455 A1 WO 2018171455A1 CN 2018078715 W CN2018078715 W CN 2018078715W WO 2018171455 A1 WO2018171455 A1 WO 2018171455A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbg
feedback information
time unit
unit
transmission process
Prior art date
Application number
PCT/CN2018/078715
Other languages
English (en)
French (fr)
Inventor
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES18771451T priority Critical patent/ES2929934T3/es
Priority to JP2019552054A priority patent/JP7008721B2/ja
Priority to CN201880019313.8A priority patent/CN110431783B/zh
Priority to EP18771451.4A priority patent/EP3605908B1/en
Priority to CA3057390A priority patent/CA3057390C/en
Priority to BR112019019785A priority patent/BR112019019785A2/pt
Publication of WO2018171455A1 publication Critical patent/WO2018171455A1/zh
Priority to US16/579,441 priority patent/US11303396B2/en
Priority to US17/715,291 priority patent/US20220231794A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • H04L1/1851Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a method and device for transmitting feedback information.
  • a transport block In a wireless communication system, in order to reduce the complexity of the coding code, a transport block (TB) is divided into a plurality of code blocks (CBs), and each CB has an independent check function. Each TB also has an independent check function. After each CB in a TB is successfully verified, the receiving device also needs to check the TB to facilitate timely detection of false alarms (ie, some CB decoding). The error is passed through the verification), reducing the delay of retransmission.
  • CBs code blocks
  • the fifth-generation (5th-generation, 5G) communication system requires the support of ultra-reliable and ultra-low latency (URLLC) services.
  • URLLC ultra-reliable and ultra-low latency
  • the transmission delay of the wireless air interface is generally required. Within 1ms and achieves 99.999% transmission reliability, and imposes stringent requirements on the delay of data transmission.
  • the sending device preferentially sends higher priority data, for example, puncturing the TB that has started to transmit (ie, overwriting the already generated data), or sending the higher priority at the same time.
  • higher priority data for example, puncturing the TB that has started to transmit (ie, overwriting the already generated data), or sending the higher priority at the same time.
  • the present application provides a method and apparatus for transmitting feedback information, and a method and apparatus for receiving feedback information, which can determine a CB that fails decoding in a TB and improve retransmission efficiency.
  • a method of transmitting feedback information including:
  • the second device receives the first transport block TB from the first device, the first TB includes a plurality of coded block groups CBG, and the plurality of CBGs include the first CBG received by the second device in the first time unit And the second CBG, the first CBG received in the first time unit is a successfully decoded CBG, and the second CBG received in the first time unit is a CBG that is not successfully decoded;
  • the second device generates a first feedback information set, where the first feedback information set includes first feedback information and second feedback information, where the first feedback information is used to feed back the first CBG in the first a decoding state between a time unit and a second time unit, the second feedback information being used to feed back a decoding state of the second CBG after the second time unit, the second time unit being the
  • the second device receives the time unit of the second CBG after the first time unit, and the second device does not receive the first CBG in the second time unit;
  • the method for sending feedback information provided by the application can enable the device transmitting the TB to recognize the false alarm and the non-false alarm, thereby improving the efficiency of the retransmission.
  • the first feedback information includes at least one negative acknowledgement NACK, where the first feedback information is used to feed back the first TB check failure and the multiple CBGs respectively verify success.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the at least one NACK is in one-to-one correspondence with the first CBG.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information includes a positive response ACK corresponding to the first CBG, wherein the second CBG fails to decode between the second time unit and the third time unit Or, the second CBG successfully decodes between the second time unit and the third time unit and the first TB check succeeds.
  • the first feedback information set includes a plurality of ACKs that are in one-to-one correspondence with the multiple CBGs, where the first TB corresponds to a first transmission process, and the method further includes:
  • the second device receives the collection information from the first device, where the collection information is used to indicate that the second device reports feedback information of the CBG corresponding to the at least one transmission process, where the at least one transmission process includes the first Transmission process
  • the second device sends a second feedback information set corresponding to the first transmission process to the first device in a fourth time unit, where the second feedback information set includes one by one with the multiple CBGs Corresponding multiple NACKs, the second device does not receive the CBG corresponding to the first transmission process between the third time unit and the fourth time unit.
  • the receiving end when receiving the CBG corresponding to the first transmission process but receiving the collection information requesting feedback of the first transmission process, the receiving end may feed back multiple NACKs, thereby avoiding data transmission.
  • the error, and the loss of the physical layer data packet caused by the receiving end reporting the ACK due to the missed detection of the control channel of the first transmission process is avoided.
  • a method for transmitting feedback information including: a second device receiving a first transport block TB from a first device, the first TB comprising a plurality of coded block groups CBG;
  • the second device separately decodes the multiple CBGs
  • the second device sends a third feedback information set to the first device, where the third feedback information set includes a plurality of negative acknowledgement NACKs corresponding to the multiple CBGs, and the third feedback information
  • the set is used to indicate that the multiple CBG checks are successful and the first TB check fails.
  • the method for sending feedback information provided by the application can enable the device transmitting the TB to recognize the false alarm and the non-false alarm, thereby improving the efficiency of the retransmission.
  • the method further includes:
  • the plurality of CBGs from the first device in a first time unit, where the plurality of CBGs comprise a first CBG and a second CBG, received in the first time unit
  • the first CBG is a successfully decoded CBG
  • the second CBG received in the first time unit is a CBG that fails to decode
  • the second device receives the second CBG from the first device in a second time unit, and the second device does not receive the first CBG in the second time unit;
  • the second device generates a first feedback information set, where the first feedback information set includes first feedback information and second feedback information, where the first feedback information is used to feed back the first CBG in the first a decoding state between a time unit and the second time unit, the second feedback information being used to feed back a decoding state of the second CBG after the second time unit;
  • the device transmitting the TB can identify false alarms and non-false alarms, and can improve the efficiency of retransmission.
  • the first feedback information includes at least one NACK, where the first feedback information is used to feed back the first TB check failure and the multiple CBGs respectively verify success.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the at least one NACK is in one-to-one correspondence with the first CBG.
  • the first feedback information includes a positive response ACK corresponding to the first CBG, wherein the second CBG fails to decode between the second time unit and the third time unit Or, the second CBG successfully decodes between the second time unit and the third time unit and the first TB check succeeds.
  • the first feedback information set includes a plurality of ACKs that are in one-to-one correspondence with the multiple CBGs, where the first TB corresponds to a first transmission process, and the method further includes:
  • the second device receives the collection information from the first device, where the collection information is used to indicate that the second device reports feedback information of the CBG corresponding to the at least one transmission process, where the at least one transmission process includes the first Transmission process
  • the second device sends a second feedback information set corresponding to the first transmission process to the first device in a fourth time unit, where the second feedback information set includes one by one with the multiple CBGs Corresponding multiple NACKs, the second device does not receive the CBG corresponding to the first transmission process between the third time unit and the fourth time unit.
  • the receiving end when receiving the CBG corresponding to the first transmission process but receiving the collection information requesting feedback of the first transmission process, the receiving end may feed back multiple NACKs, thereby avoiding data transmission.
  • the error, and the loss of the physical layer data packet caused by the receiving end reporting the ACK due to the missed detection of the control channel of the first transmission process is avoided.
  • a method of receiving feedback information including:
  • the first device Transmitting, by the first device, a first transport block TB to the second device, where the first TB includes a plurality of coded block groups CBG, the plurality of CBGs including the first device in the sixth time unit a second CBG sent by the second device, where the multiple CBGs further include a first CBG that is not sent by the first device in the sixth time unit, where the first CBG is based on the first device Determining, by the feedback information received by the fifth time unit to the sixth time unit, that the second device successfully decodes the CBG, and the second CBG is the first device according to the fifth time a second device that fails to decode the CBG determined by the feedback information received between the unit and the sixth time unit, the sixth time unit being after the fifth time unit;
  • the first device Receiving, by the first device, the first feedback information set from the second device in the seventh time unit, where the first feedback information set includes first feedback information and second feedback information, the first feedback information And a method for feeding back a decoding status of the first CBG between the fifth time unit and the sixth time unit, where the second feedback information is used to feed back the second CBG after the sixth time unit Decoding state, the seventh time unit is after the sixth time unit;
  • the method for sending feedback information provided by the application can enable the device transmitting the TB to recognize false alarms and non-false alarms, thereby improving the efficiency of retransmission.
  • the first feedback information includes at least one negative acknowledgement NACK, where the first feedback information is used to indicate that the first TB check fails and the multiple CBGs respectively verify success.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the at least one NACK is in one-to-one correspondence with the first CBG.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information includes a positive response ACK corresponding to the first CBG, wherein the second CBG fails to decode between the second time unit and the third time unit Or, the second CBG successfully decodes between the second time unit and the third time unit and the first TB check succeeds.
  • the first feedback information set includes a plurality of ACKs that are in one-to-one correspondence with the multiple CBGs, where the first TB corresponds to a first transmission process, and the method further includes:
  • the first device sends a second TB to the second device, the second TB includes at least one CBG, and the second TB corresponds to a second transmission process;
  • the first device sends the collection information to the second device, where the collection information is used to indicate that the second device reports feedback information of the CBG corresponding to the at least two transmission processes, where the at least two transmission processes include the a first transmission process and the second transmission process;
  • the first device receives, by the first device, a second feedback information set corresponding to the first transmission process from the second device in an eighth time unit, where the second feedback information set includes one with the multiple CBGs a corresponding multiple NACK, the first device does not schedule a CBG corresponding to the first transmission process to the second device between the seventh time unit and the eighth time unit.
  • the receiving end when receiving the CBG corresponding to the first transmission process but receiving the request information for requesting feedback of the first transmission process, the receiving end may feed back multiple NACKs, thereby avoiding data transmission.
  • the error, and the loss of the physical layer data packet caused by the receiving end reporting the ACK due to the missed detection of the control channel of the first transmission process is avoided.
  • a method of receiving feedback information including:
  • the first device sends a first transport block TB to the second device, where the first TB includes a plurality of coded block groups CBG;
  • the first device receives a third feedback information set from the second device, where the third feedback information set includes a plurality of negative acknowledgement NACKs that are in one-to-one correspondence with the multiple CBGs;
  • the method for sending feedback information provided by the application can enable the device that transmits the TB to identify the false alarm and the non-false alarm, thereby improving the efficiency of the retransmission.
  • the method further includes:
  • the first device Transmitting, by the first device, a second CBG to the second device in a sixth time unit, where the second CBG belongs to the multiple CBGs, and the second CBG is the first device according to the Determining, by the feedback information received by the fifth time unit to the sixth time unit, the CBG that the second device fails to decode, the multiple CBGs further including a first CBG, where the first CBG is the first a CBG that is successfully decoded by the second device according to the feedback information received between the fifth time unit and the sixth time unit, the first device is not in the sixth time unit Sending the first CBG;
  • the first device Receiving, by the first device, the first feedback information set from the second device in the seventh time unit, where the first feedback information set includes first feedback information and second feedback information, the first feedback information And a method for feeding back a decoding status of the first CBG between the fifth time unit and the sixth time unit, where the second feedback information is used to feed back the second CBG to the sixth time unit to a decoding state between the seventh time units.
  • the device transmitting the TB can identify false alarms and non-false alarms, and can improve the efficiency of retransmission.
  • the first feedback information includes at least one NACK, where the first feedback information is used to feed back the first TB check failure and the multiple CBGs respectively verify success.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the at least one NACK is in one-to-one correspondence with the first CBG.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information includes an ACK corresponding to the first CBG, wherein the second CBG fails to decode between the second time unit and the third time unit, or The second CBG successfully decodes between the second time unit and the third time unit and the first TB check succeeds.
  • the first feedback information set includes multiple acknowledgement ACKs that are in one-to-one correspondence with the multiple CBGs, where the first TB corresponds to the first transmission process, and the method further includes:
  • the first device sends a second TB to the second device, the second TB includes at least one CBG, and the second TB corresponds to a second transmission process;
  • the first device sends the collection information to the second device, where the collection information is used to indicate that the second device reports feedback information of the CBG corresponding to the at least two transmission processes, where the at least two transmission processes include the a first transmission process and the second transmission process;
  • the first device receives, by the first device, a second feedback information set corresponding to the first transmission process from the second device in an eighth time unit, where the second feedback information set includes one with the multiple CBGs a corresponding multiple NACK, the first device does not schedule a CBG corresponding to the first transmission process to the second device between the seventh time unit and the eighth time unit.
  • the receiving end when receiving the CBG corresponding to the first transmission process but receiving the request information for requesting feedback of the first transmission process, the receiving end may feed back multiple NACKs, thereby avoiding data transmission.
  • the error, and the loss of the physical layer data packet caused by the receiving end reporting the ACK due to the missed detection of the control channel of the first transmission process is avoided.
  • the present application provides an apparatus for transmitting feedback information, where the apparatus can implement the functions performed by the second device in the method related to the foregoing aspects, where the functions can be implemented by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more corresponding units or modules of the above functions.
  • the structure of the device includes a processor and a transceiver configured to support the device to perform the corresponding functions of the above methods.
  • the transceiver is used to support communication between the device and other network elements.
  • the device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the device.
  • the present application provides a device for configuring a resource, where the device can implement the function performed by the first device in the method related to the foregoing aspect, and the function can be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more corresponding units or modules of the above functions.
  • the structure of the device includes a processor and a transceiver configured to support the device to perform the corresponding functions of the above methods.
  • the transceiver is used to support communication between the device and other network elements.
  • the device can also include a memory for coupling with the processor that retains the program instructions and data necessary for the device.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor, such that the second The device performs the methods in the above implementations.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a terminal device, or a processor, such that The device performs the methods in the above implementations.
  • the present application provides a computer storage medium for storing computer software instructions for use in the second device described above, including a program designed to perform the above aspects.
  • the present application provides a computer storage medium for storing computer software instructions for use in the first device described above, including a program designed to perform the above aspects.
  • FIG. 1 is a schematic architectural diagram of a communication system to which the present application is applied;
  • FIG. 2 is a schematic diagram of a method for dividing a coding block group provided by the present application
  • FIG. 3 is a schematic flowchart of a method for sending feedback information provided by the present application.
  • FIG. 5 is a schematic flowchart of a method for receiving feedback information provided by the present application.
  • FIG. 6 is a schematic flowchart of another method for receiving feedback information provided by the present application.
  • FIG. 7 is a schematic structural diagram of a possible terminal device provided by the present application.
  • FIG. 8 is a schematic structural diagram of another possible terminal device provided by the present application.
  • FIG. 9 is a schematic structural diagram of still another possible terminal device provided by the present application.
  • FIG. 10 is a schematic structural diagram of still another possible terminal device provided by the present application.
  • FIG. 11 is a schematic structural diagram of a possible access network device provided by the present application.
  • FIG. 12 is a schematic structural diagram of another possible access network device provided by the present application.
  • FIG. 13 is a schematic structural diagram of still another possible access network device provided by the present application.
  • FIG. 14 is a schematic structural diagram of still another possible access network device provided by the present application.
  • FIG. 1 illustrates a communication system 100 to which the present application is applied.
  • the communication system 100 includes an access network device 110 and a terminal device 120.
  • the access network device 110 communicates with the terminal device 120 over a wireless network.
  • the wireless communication module can encode the information for transmission. Specifically, the wireless communication module can acquire a certain number of data bits to be transmitted to the access network device 110 through a channel, such as data bits generated by the processing module, received from other devices, or saved in the storage module. .
  • These data bits may be included in one or more transport blocks (which may also be referred to as information blocks or data blocks) that may be segmented to produce a plurality of coded blocks.
  • a terminal device may be referred to as an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal can be a cellular telephone, a handheld device with wireless communication capabilities, a computing device or other processing device connected to the wireless modem, an in-vehicle device, a wearable device, and a user device in a 5G communication system.
  • the access network device may be a base transceiver station (BTS) in a code division multiple access (CDMA) system, or may be a wideband code division multiple access (WCDMA) system.
  • the base station (node B, NB) may also be an evolved base station (eNB) in a long term evolution (LTE) system, or may be a base station (gNB) in a 5G communication system.
  • the access network device may also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the communication system to which the present application is applied is merely an example.
  • the communication system to which the present application is applied is not limited thereto.
  • the number of access network devices and terminal devices included in the communication system may be other numbers.
  • one TB may be divided into one or more CBGs, and each CBG includes at least one CB.
  • the number of CBGs into which a TB is divided may be determined according to the number of bits of the TB, or may be determined according to the time domain and/or frequency domain resources occupied by the TB, and may also be through higher layer signaling. Direct configuration.
  • the CB in the TB may be mapped to the time-frequency resource according to a predetermined mapping rule.
  • the predetermined mapping rule is: mapping according to the CB index and sequentially in the order of the time domain after the first frequency domain; or the predetermined mapping rule is:
  • the frequency domain to be mapped is divided into a plurality of sub-frequency domains, and then mapped in each sub-frequency domain.
  • a division manner in which a TB is divided into CBGs may be divided according to time-frequency resources mapped by the TB, such as a time dimension, a frequency dimension, or a time-frequency two-dimensional division manner.
  • the same CB may exist in multiple CBGs, or the same CB may not exist. Whether the same CB exists in multiple CBGs divided depends on the final resource mapping result described above;
  • the CB in the TB may also be divided into multiple CBGs by other rules (such as the division manner irrespective of the time-frequency resources to which the TB is mapped and related to the number of bits of the transport block) or signaling to divide the CB into multiple CBGs.
  • the same CB does not generally exist in a plurality of CBGs divided into.
  • This application does not limit the manner in which the TB is divided. Two examples are given below. The two examples should not be construed as limiting the manner in which the TB of the present application is divided.
  • the first TB includes four CBs, which are respectively CB1, CB2, CB3, and CB4.
  • the first TB may be divided into two CBGs, that is, CBG1 and CBG2 according to the foregoing other rules or high-level signaling indications, where CBG1 includes CB1.
  • CB2, CBG2 includes CB3 and CB4;
  • the first TB includes eight CBs, which are CB1, CB2, CB3, CB4, CB5, CB6, CB7, and CB8, and may divide the first TB into two CBGs according to the foregoing mapping rule or high-level signaling indication, that is, CBG1 and CBG2, wherein CBG1 comprises CB1, CB2, CB3 and CB4, and CBG2 comprises CB5, CB6, CB7 and CB8;
  • the first TB includes eight CBs, which are CB1, CB2, CB3, CB4, CB5, CB6, CB7, and CB8, and can be divided into four CBGs according to the foregoing mapping rule or high-level signaling indication, that is, CBG1.
  • FIG. 2 is a schematic diagram showing a manner of dividing a TB provided by the present application.
  • the first TB is composed of 42 CBs, and is mapped to 12 time domain symbols according to the order of the time domain of the pre-frequency domain, and the first TB is divided into 12 CBGs according to the dimension of the time domain symbol. Since the frequency domain resources corresponding to a single time domain symbol are limited, some CBs are not all mapped to the same time domain symbol.
  • CBG1 includes CB1 to CB4
  • CBG2 includes CB4 to CB7
  • CB4 is a common CB of CBG1 and CBG2.
  • the receiving end may send feedback information to the sending end according to the decoding status of each CBG.
  • the transmitting end only needs to retransmit the CBG that fails to be decoded. Retransmit the entire TB, improving resource utilization and data transfer efficiency.
  • the transmitting end may send a new TB to the receiving end.
  • the base station may indicate, by using a hybrid automatic repeat request (HARQ) process number field and a new data indicator (NDI) field in the scheduling information, whether the currently transmitted data is an initial transmission or a retransmission.
  • HARQ hybrid automatic repeat request
  • NDI new data indicator
  • the terminal device may determine the HARQ of the next scheduling information scheduling.
  • the process corresponds to the transmission of the new data; if the HARQ process number field carried by the two scheduling information is the same, and the NDI field status of the two scheduling information is the same, the terminal device can determine the HARQ process corresponding to the scheduling information of the latter scheduling information.
  • the retransmission of old data When the retransmitted data is part of the CBG of the TB, the partial retransmission may be indicated by adding a new indication field to the scheduling information, or the field may be re-interpreted by multiplexing the existing fields in the scheduling information, for example, reinterpreting A modulation coding scheme (MCS) field in the scheduling information.
  • MCS modulation coding scheme
  • the receiving end receives the CBG sent by the sending end and performs decoding.
  • the decoding succeeds in that the receiving end obtains all valid information bits included in the CBG and the verification succeeds.
  • the CBG verification method is not limited in this application, and is optional.
  • the CBG can be verified by a cyclic redundancy check (CRC) or by a preset check matrix corresponding to the CBG.
  • CRC cyclic redundancy check
  • the decoding failure means that the UE does not acquire all valid information bits included in the CBG, or the UE acquires all valid information bits included in the CBG but the CBG check fails.
  • the TB decoding cannot be considered successful. Therefore, after each CBG included in the TB is successfully decoded, the TB needs to be verified. After the TB overall verification is successful (for example, by TB CRC), it can be determined that the TB decoding is successful.
  • each CBG feedback information may be one bit, and the codebook size of all feedback information (ie, the feedback information set) sent by the receiving end in one time unit is related to the number of received CBGs, but does not mean the feedback information set.
  • the codebook size is equal to the number of received CBGs, and the codebook of the feedback information set may further include information on whether the TB passes the checksum and/or characterize redundant information that can be correctly decoded from the TB, and the like.
  • FIG. 3 is a schematic flowchart of a method for sending feedback information provided by the present application.
  • Method 300 includes:
  • the second device receives the first TB from the first device, where the first TB includes multiple CBGs, where the multiple CBGs include the first CBG and the second received by the second device in the first time unit.
  • the CBG, the first CBG received in the first time unit is a successfully decoded CBG, and the second CBG received in the first time unit is a CBG that is not successfully decoded.
  • the second device generates a first feedback information set, where the first feedback information set includes first feedback information and second feedback information, where the first feedback information is used to feed back the first CBG in the a decoding state between the first time unit and the second time unit, where the second feedback information is used to feed back a decoding status of the second CBG after the second time unit, where the second time unit is
  • the second device receives the time unit of the second CBG after the first time unit, and the second device does not receive the first CBG in the second time unit.
  • the second device sends the first feedback information set to the first device in a third time unit.
  • the second device may be a terminal device or an access network device.
  • the first device is an access network device
  • the first device is an access network device
  • the second device is a terminal device.
  • the technical solution of the present application is described below by taking the first device as the base station and the second device as the UE.
  • the first TB is any one TB that the first device sends to the second device, and the first TB may be divided into multiple CBGs according to a predefined rule, and each CBG includes at least one CB.
  • the first TB sent by the base station to the UE may be sent in one time unit, or may be sent in multiple time units, which is not limited in this application.
  • the first CBG and the second CBG received by the UE in the first time unit may be all CBGs included in the first TB, or may be partial CBGs included in the first TB.
  • the length of a time unit can be arbitrarily set, which is not limited in this application.
  • one time unit may include one or more subframes.
  • one time unit may include one or more slots or mini-slots.
  • one time unit may include one or more time domain symbols.
  • one time unit may include one or more transmission time intervals (TTIs) or short transmission time intervals (sTTIs).
  • TTIs transmission time intervals
  • sTTIs short transmission time intervals
  • the length of one time unit is 1 millisecond (ms).
  • the length of one time unit is less than 1 ms.
  • the present application does not limit the transmission mode of the first TB and the resources used to transmit the first TB.
  • the first TB may be transmitted in a grant-based manner or in a grant-free manner, and the spectrum resource used for transmitting the first TB may be an authorized spectrum or an unlicensed spectrum. Or other shared spectrum.
  • the UE After the UE receives the CBG included in the first TB in the first time unit, the UE decodes the CBG included in the first TB, where the first CBG is a successfully decoded CBG, and the second CBG is a CBG that fails to be decoded. It should be understood that the first CBG may be one CBG or multiple CBGs, and the second CBG may be one CBG or multiple CBGs.
  • the first feedback information is used to feed back a decoding status of the first CBG received in the first time unit; in still another optional embodiment, the The second feedback information is used to feed back a decoding status of the second CBG received in the second time unit.
  • the base station may continuously transmit K times CBG without waiting for feedback from the UE, and the first time unit should be understood as the time unit used by the UE to receive the K transmissions.
  • the CBG received by the UE in the first time unit is the CBG transmitted by the base station three times
  • the first CBG may be the CBG that is successfully decoded and decoded by the UE after the CBG transmitted by the base station three times is decoded
  • the second CBG may refer to a CBG that is determined by the UE to perform decoding decoding after the CBG transmitted by the base station three times is combined and decoded.
  • the UE may only feed back the decoding status once, or may feed back the multiple decoding status.
  • the base station After receiving the feedback information sent by the UE for the first CBG and the second CBG, the base station determines to retransmit the second CBG and does not retransmit the first CBG, and the UE receives the second CBG in the second time unit and then the second CBG. Decoding is performed, then second feedback information is generated, and a first feedback information set including the second feedback information is transmitted to the base station in the third time unit.
  • the second feedback information is NACK, in order to ensure that the base station can identify the false alarm, that is, to ensure that the base station can identify the second feedback information is to indicate the second If the CBG decoding fails or indicates that the first TB check fails, the UE needs to simultaneously indicate the decoding status of the first CBG between the first time unit and the second time unit, that is, the first feedback information set needs to include the first feedback information and Second feedback information.
  • the first feedback information includes two cases: ACK and NACK. among them,
  • the first CBG is in the first time unit to The decoding state between the second time units is that the decoding is successful, that is, the first feedback information is ACK;
  • the second CBG decodes successfully between the second time unit to the third time unit and the first TB fails to verify between the second time unit to the third time unit, indicating that the first CBG is before the second time unit
  • the state of successful decoding is actually incorrect or the state in which the second CBG successfully decodes between the second time unit and the third time unit is actually incorrect or both are actually incorrect, that is, the first CBG at this time.
  • a decoding check false alarm occurs in at least one of the second CBG, and the decoding state of the first CBG between the first time unit and the second time unit should be a decoding failure, that is, the first feedback information is a NACK;
  • the UE When the decoding of the second CBG fails between the second time unit and the third time unit, the UE does not check the first TB or the decoding of the second CBG may result in the verification of the first TB being substantially impossible.
  • the UE temporarily considers that the decoding status of the first CBG between the first time unit and the second time unit is successful, that is, the first feedback information is ACK.
  • the base station determines that the second CBG decoding fails, and the base station may retransmit only the second CBG after the third time unit, without retransmitting the entire first TB, thereby Improve the efficiency of retransmission.
  • the base station determines that the second CBG decoding is successful and the first TB decoding is successful.
  • the base station determines that the first TB check fails, and the base station may retransmit the first TB after the third time unit.
  • the base station may retransmit the first CBG (referred to as “retransmit the first CBG”), when the UE is in the first
  • the UE may directly determine that the decoding status of the first CBG is ACK.
  • the first feedback information is still used to feed back the first CBG in the first time unit to the second time. The decoding status between units.
  • the present application does not limit the specific manner in which the UE sends the first feedback information set.
  • the first feedback information set may be sent by the UE, or may be sent by the UE according to the trigger information (for example, the collection information) sent by the base station.
  • the method for sending feedback information provided by the present application can enable the device transmitting the TB to recognize false alarms and non-false alarms, thereby improving the efficiency of retransmission.
  • the first feedback information includes at least one NACK, where the first feedback information is used to feed back the first TB check failure and the multiple CBGs respectively verify success.
  • the first CBG includes 3 CBGs.
  • the first feedback information is 3 ACKs; when a false alarm occurs, the first feedback information may be 1 NACK and 2 ACKs.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the at least one NACK is in one-to-one correspondence with the first CBG.
  • the first CBG includes 3 CBGs.
  • the first feedback information is 3 ACKs; when a false alarm occurs, the first feedback information may be 3 NACKs.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information includes an ACK corresponding to the first CBG, wherein the second CBG fails to decode between the second time unit and the third time unit, or The second CBG successfully decodes between the second time unit and the third time unit and the first TB check succeeds.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information set includes a plurality of ACKs that are in one-to-one correspondence with the multiple CBGs, where the first TB corresponds to a first transmission process, and the method 300 further includes:
  • the second device receives the collection information from the first device, where the collection information is used to indicate that the second device reports feedback information of the CBG corresponding to the at least one transmission process, where the at least one transmission process includes the The first transmission process.
  • the second device sends, to the first device, a second feedback information set corresponding to the first transmission process in a fourth time unit, where the second feedback information set includes the multiple CBGs
  • the first device does not receive the CBG corresponding to the first transmission process between the third time unit and the fourth time unit.
  • the base station may send a new TB to the UE, the new TB corresponds to the first transmission process and/or the second transmission process, and the second transmission process is different from the first transmission process. Subsequently, the base station collects feedback information of the first transmission process and the second transmission process from the UE.
  • the UE may not receive the TB corresponding to the first transmission process (for example, the base station does not schedule the first transmission process, or the base station schedules the first transmission process but the UE does not receive the scheduling information), when the base station sends the collection to the UE
  • the UE may mistakenly believe that the base station collects the feedback information of the first TB, and sends an ACK to the base station.
  • the UE does not receive the new TB corresponding to the first transmission process. Therefore, data transmission errors may occur, causing subsequent high-level retransmissions and reducing retransmission efficiency.
  • the UE after the UE sends the first feedback information set that does not include the NACK, when the UE receives the collection information, if the UE receives the CBG corresponding to the first transmission process, the UE performs feedback according to the decoding status; The UE does not receive the CBG corresponding to the first transmission process, and feeds back multiple NACKs corresponding to the multiple CBGs corresponding to the first TB, the multiple NACKs belong to the second feedback information set, and the second feedback information set may also Includes the process number of the first transfer process.
  • the receiving end when receiving the CBG corresponding to the first transmission process but receiving the request information for requesting feedback of the first transmission process, the receiving end may feed back multiple NACKs, thereby avoiding The data transmission is incorrect, and the loss of the physical layer data packet caused by the receiving end reporting the ACK due to the missed detection of the control channel of the first transmission process is avoided.
  • FIG. 4 is a schematic flowchart of another method for sending feedback information provided by the present application.
  • Method 400 includes:
  • the second device receives the first TB from the first device, where the first TB includes multiple CBGs.
  • the second device separately decodes the multiple CBGs.
  • the second device sends a third feedback information set to the first device, where the third feedback information set includes multiple NACKs corresponding to the multiple CBGs, the third feedback information.
  • the set is used to indicate that the multiple CBG checks are successful and the first TB check fails.
  • the first device is, for example, a base station
  • the second device is, for example, a UE.
  • the multiple CBGs may be the CBGs received by the UE in one time unit, or may be the CBGs received by the UE in multiple time units.
  • the transmission manner of the multiple CBGs is not limited in this application.
  • the multiple CBG decoding results include the following four cases.
  • Case 1 The multiple CBGs are successfully verified and the first TB check is successful, and the UE sends multiple ACKs corresponding to the multiple CBGs one by one.
  • Case 2 The multiple CBG partial verification success partial verification fails, and the UE sends corresponding ACK and NACK.
  • Case 3 The multiple CBGs all fail to check, and the UE sends a NACK.
  • Case 4 The multiple CBGs respectively verify the success but the first TB check fails (ie, the false alarm), and the UE sends multiple NACKs corresponding to the multiple CBGs one by one.
  • the third feedback information set may further include other information.
  • the second device may automatically send the third information set, or may send the third information set according to the trigger information sent by the first device.
  • the method for sending feedback information provided by the present application can enable the device transmitting the TB to recognize false alarms and non-false alarms, thereby improving the efficiency of retransmission.
  • the method 400 further includes:
  • the second device receives the multiple CBGs from the first device in a first time unit, where the multiple CBGs include a first CBG and a second CBG, and the first time unit receives The first CBG is a successfully decoded CBG, and the second CBG received in the first time unit is a CBG that fails to be decoded.
  • the second device receives the second CBG from the first device in a second time unit, and the second device does not receive the first CBG in the second time unit.
  • the second device generates a first feedback information set, where the first feedback information set includes first feedback information and second feedback information, where the first feedback information is used to feed back the first CBG in the Decoding state between the first time unit and the second time unit, the second feedback information is used to feed back a decoding status of the second CBG after the second time unit.
  • the second device sends the first feedback information set to the first device in a third time unit.
  • the base station may retransmit the first TB according to the third information set.
  • the base station may retransmit the first TB according to the third information set.
  • the process in the method 300 refers to the process in the method 300.
  • the UE in the method 400 may be the same as the UE in the method 300. For brevity, details are not described herein again.
  • the device transmitting the TB can identify false alarms and non-false alarms, and can improve the efficiency of retransmission.
  • the first feedback information includes at least one NACK, where the first feedback information is used to feed back the first TB check failure and the multiple CBGs respectively verify success.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the at least one NACK is in one-to-one correspondence with the first CBG.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information includes an ACK corresponding to the first CBG, wherein the second CBG fails to decode between the second time unit and the third time unit, or The second CBG successfully decodes between the second time unit and the third time unit and the first TB check succeeds.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information set includes a plurality of ACKs that are in one-to-one correspondence with the multiple CBGs, where the first TB corresponds to the first transmission process, and the method 400 further includes:
  • the second device receives the collection information from the first device, where the collection information is used to indicate that the second device reports feedback information of the CBG corresponding to the at least one transmission process, where the at least one transmission process includes the The first transmission process.
  • the second device sends a second feedback information set corresponding to the first transmission process to the first device in a fourth time unit, where the second feedback information set includes the multiple CBGs
  • the first device does not receive the CBG corresponding to the first transmission process between the third time unit and the fourth time unit.
  • the receiving end when receiving the CBG corresponding to the first transmission process but receiving the request information for requesting feedback of the first transmission process, the receiving end may feed back multiple NACKs, thereby avoiding The data transmission is incorrect, and the loss of the physical layer data packet caused by the receiving end reporting the ACK due to the missed detection of the control channel of the first transmission process is avoided.
  • FIG. 5 is a schematic flowchart of a method for receiving feedback information provided by the present application.
  • the method 500 includes:
  • the first device sends a first TB to the second device in the fifth time unit, where the first TB includes multiple CBGs, where the multiple CBGs are sent by the first device to the second device in the sixth time unit.
  • a second CBG the plurality of CBGs further including a first CBG that is not sent by the first device in the sixth time unit, where the first CBG is the first device according to the fifth time unit to the sixth time unit.
  • the CBG that is successfully decoded by the second device determined by the feedback information received indirectly, and the second CBG is determined by the first device according to the feedback information received between the fifth time unit and the sixth time unit.
  • the second device decodes the failed CBG, and the sixth time unit is after the fifth time unit.
  • the first device receives a first feedback information set from the second device in a seventh time unit, where the first feedback information set includes first feedback information and second feedback information, where the first The feedback information is used to feed back a decoding status of the first CBG between the fifth time unit and the sixth time unit, and the second feedback information is used to feed back the second CBG at the sixth time a decoding state after the unit, the seventh time unit being after the sixth time unit.
  • the first device determines, according to the first feedback information set, whether to retransmit the first TB.
  • the first device is, for example, a base station
  • the second device is, for example, a UE.
  • the base station sends the first TB to the UE in the fifth time unit.
  • the fifth time unit is equal to the length of one TTI, when the first TB is in multiple TTIs.
  • the fifth time unit is equal to the length of time of multiple TTIs.
  • the base station may continuously transmit K times the first TB. At this time, the fifth time unit should be understood as used for K times of transmission. time. This application does not limit the manner in which the base station sends the first TB in the fifth time unit.
  • the base station receives the feedback information of the first TB between the fifth time unit and the sixth time unit, and determines, according to the feedback information, that the partial CBG (ie, the first CBG) in the first TB is successfully decoded, and the part is CBG (ie, the first Two CBG) decoding failed.
  • the base station transmits the second CBG to the UE in the sixth time unit, and the first CBG is no longer transmitted.
  • the base station receives the first feedback information set sent by the UE in the seventh time unit, where the first feedback information set includes the first feedback information and the second feedback information, and the first feedback information set in the method 500 may be related to the method 300.
  • the first set of feedback information is the same, and the base station in the method 500 can also be the same as the base station in the method 300. For brevity, it will not be repeated here.
  • the method for sending feedback information provided by the present application can enable the device transmitting the TB to recognize false alarms and non-false alarms, thereby improving the efficiency of retransmission.
  • the first feedback information includes at least one NACK, where the first feedback information is used to indicate that the first TB check fails and the multiple CBGs respectively verify success.
  • the first CBG includes 3 CBGs.
  • the first feedback information is 3 ACKs; when a false alarm occurs, the first feedback information may be 1 NACK and 2 ACKs.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the at least one NACK is in one-to-one correspondence with the first CBG.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information includes an ACK corresponding to the first CBG, wherein the second CBG fails to decode between the second time unit and the third time unit, or The second CBG successfully decodes between the second time unit and the third time unit and the first TB check succeeds.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information set includes a plurality of ACKs that are in one-to-one correspondence with the multiple CBGs, where the first TB corresponds to a first transmission process, and the method 500 further includes:
  • S540 The first device sends a second TB to the second device, where the second TB includes at least one CBG, and the second TB corresponds to a second transmission process.
  • the first device sends the collection information to the second device, where the collection information is used to indicate that the second device reports feedback information of the CBG corresponding to the at least two transmission processes, where the at least two transmission processes include The first transmission process.
  • the first device receives, in an eighth time unit, a second feedback information set corresponding to the first transmission process from the second device, where the second feedback information set includes the multiple A plurality of NACKs corresponding to the CBGs, the first device not scheduling, to the second device, a CBG corresponding to the first transmission process between the seventh time unit and the eighth time unit.
  • the base station may send a new TB to the UE, the new TB is, for example, a second TB, and the second TB corresponds to the second transmission process, and the second transmission process is different from the first transmission process. Subsequently, the base station collects feedback information from the UE.
  • the base station When the base station collects the feedback information, the feedback information of all the transmission processes may be collected. Since the base station does not schedule the first transmission process, the base station receives multiple NACKs corresponding to the first transmission process, and the multiple NACKs and the first TB The plurality of CBGs included are one-to-one correspondence. For the specific process, reference may be made to the embodiments corresponding to S330 and S340, and details are not described herein again.
  • the receiving end when receiving the CBG corresponding to the first transmission process but receiving the request information for requesting feedback of the first transmission process, the receiving end may feed back multiple NACKs, thereby avoiding The data transmission is incorrect, and the loss of the physical layer data packet caused by the receiving end reporting the ACK due to the missed detection of the control channel of the first transmission process is avoided.
  • FIG. 6 is a schematic flowchart of another method for receiving feedback information provided by the present application.
  • the method 600 includes:
  • the first device sends a first TB to the second device, where the first TB includes multiple CBGs.
  • the first device receives a third feedback information set from the second device, where the third feedback information set includes multiple NACKs that are in one-to-one correspondence with the multiple CBGs.
  • the first device determines, according to the third feedback information set, that the multiple CBG checksums are successful and the first TB check fails.
  • the first device is, for example, a base station
  • the second device is, for example, a UE.
  • the multiple CBG decoding results include the following four cases.
  • Case 1 The plurality of CBGs are successfully verified and the first TB check is successful, and the third feedback information set includes a plurality of ACKs corresponding to the plurality of CBGs.
  • Case 2 The plurality of CBG partial verification success partial verification fails, and the third feedback information set includes corresponding ACK and NACK.
  • Case 3 The multiple CBGs all fail to verify, and the third feedback information set includes a NACK.
  • Case 4 The plurality of CBGs respectively verify the success but the first TB check fails (ie, the false alarm), and the third feedback information set includes a plurality of NACKs corresponding to the plurality of CBGs.
  • the third feedback information set may further include other information.
  • the second device may automatically send the third information set, or may send the third information set according to the trigger information sent by the first device.
  • the method for sending feedback information provided by the application can enable the device that transmits the TB to identify the false alarm and the non-false alarm, thereby improving the efficiency of the retransmission.
  • the method 600 further includes:
  • the first device sends the multiple CBGs to the second device in a fifth time unit.
  • the first device sends a second CBG to the second device in a sixth time unit, where the second CBG belongs to the multiple CBGs, and the second CBG is based on the first device
  • the CBG of the second device decoding failure determined by the feedback information received between the fifth time unit and the sixth time unit, the plurality of CBGs further including a first CBG, where the first CBG is Determining, by the first device, the CBG that is successfully decoded by the second device according to the feedback information received between the fifth time unit and the sixth time unit, where the first device is in the sixth time unit
  • the first CBG is not sent within.
  • the first device receives a first feedback information set from the second device in a seventh time unit, where the first feedback information set includes first feedback information and second feedback information, where the first The feedback information is used to feed back a decoding status of the first CBG between the fifth time unit and the sixth time unit, and the second feedback information is used to feed back the second CBG at the sixth time The decoding state between the unit and the seventh time unit.
  • the base station may retransmit the first TB according to the third information set.
  • the process in the method 300 may be the same as the base station in the method 300.
  • details are not described herein again.
  • the device transmitting the TB can identify false alarms and non-false alarms, and can improve the efficiency of retransmission.
  • the first feedback information includes at least one NACK, where the first feedback information is used to feed back the first TB check failure and the multiple CBGs respectively verify success.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the at least one NACK is in one-to-one correspondence with the first CBG.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information includes an ACK corresponding to the first CBG, wherein the second CBG fails to decode between the second time unit and the third time unit, or The second CBG successfully decodes between the second time unit and the third time unit and the first TB check succeeds.
  • the device transmitting the TB can recognize the false alarm and the non-false alarm, and can improve the efficiency of the retransmission.
  • the first feedback information set includes a plurality of ACKs that are in one-to-one correspondence with the multiple CBGs, where the first TB corresponds to a first transmission process, and the method 600 further includes:
  • the first device sends a second TB to the second device, where the second TB includes at least one CBG, and the second TB corresponds to a second transmission process.
  • the first device sends the collection information to the second device, where the collection information is used to indicate that the second device reports feedback information of the CBG corresponding to the at least two transmission processes, where the at least two transmission processes include The first transmission process.
  • the first device receives, in the eighth time unit, a second feedback information set corresponding to the first transmission process from the second device, where the second feedback information set includes the multiple A plurality of NACKs corresponding to the CBGs, the first device not scheduling, to the second device, a CBG corresponding to the first transmission process between the seventh time unit and the eighth time unit.
  • the base station may send a new TB to the UE, the new TB is, for example, a second TB, and the second TB corresponds to the second transmission process, and the second transmission process is different from the first transmission process. Subsequently, the base station collects feedback information from the UE.
  • the base station When the base station collects the feedback information, the feedback information of all the transmission processes may be collected. Since the base station does not schedule the first transmission process, the base station receives multiple NACKs corresponding to the first transmission process, and the multiple NACKs and the first TB The plurality of CBGs included are one-to-one correspondence. For the specific process, reference may be made to the embodiments corresponding to S330 and S340, and details are not described herein again.
  • the receiving end when receiving the CBG corresponding to the first transmission process but receiving the request information for requesting feedback of the first transmission process, the receiving end may feed back multiple NACKs, thereby avoiding The data transmission is incorrect, and the loss of the physical layer data packet caused by the receiving end reporting the ACK due to the missed detection of the control channel of the first transmission process is avoided.
  • the terminal device and the access network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the present application may divide a functional unit into a terminal device or the like according to the above method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 700 includes a processing unit 702 and a communication unit 703.
  • the processing unit 702 is configured to control and manage the actions of the terminal device 700.
  • the processing unit 702 is configured to support the terminal device 700 to perform S320 and/or other processes for performing the techniques described herein.
  • Communication unit 703 is used to support communication of terminal device 700 with other network entities, such as with access network devices.
  • the terminal device 700 may further include a storage unit 701 for storing program codes and data of the terminal device 700.
  • the processing unit 702 may be a processor or a controller, and may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific). Integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 703 can be a transceiver, a transceiver circuit, or the like.
  • the storage unit 701 can be a memory.
  • the terminal device 700 provided by the present application can enable the device transmitting the TB to recognize the false alarm and the non-false alarm, thereby improving the efficiency of the retransmission.
  • the terminal device involved in the present application may be the terminal device shown in FIG. 8.
  • the terminal device 800 includes a processor 802, a transceiver 803, and a memory 801.
  • the transceiver 803, the processor 802, and the memory 801 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the terminal device 800 provided by the present application can enable the device transmitting the TB to recognize the false alarm and the non-false alarm, thereby improving the efficiency of the retransmission.
  • FIG. 9 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 900 includes a processing unit 902 and a communication unit 903.
  • the processing unit 902 is configured to control and manage the actions of the terminal device 900.
  • the processing unit 902 is configured to support the terminal device 900 to perform S420 and/or other processes for performing the techniques described herein.
  • the communication unit 903 is for supporting communication between the terminal device 900 and other network entities, such as communication with the access network device.
  • the terminal device 900 may further include a storage unit 901 for storing program codes and data of the terminal device 900.
  • the processing unit 902 can be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 903 can be a transceiver, a transceiver circuit, or the like.
  • the storage unit 901 can be a memory.
  • the terminal device 900 provided by the present application can enable the device transmitting the TB to recognize the false alarm and the non-false alarm, thereby improving the efficiency of the retransmission.
  • the terminal device involved in the present application may be the terminal device shown in FIG.
  • the terminal device 1000 includes a processor 1002, a transceiver 1003, and a memory 1001.
  • the transceiver 1003, the processor 1002, and the memory 1001 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the terminal device 1000 provided by the present application can enable the device transmitting the TB to recognize the false alarm and the non-false alarm, thereby improving the efficiency of the retransmission.
  • FIG. 11 shows a possible structural diagram of the access network device involved in the above embodiment.
  • the access network device 1100 includes a processing unit 1102 and a communication unit 1103.
  • the processing unit 1102 is configured to control and manage the actions of the access network device 1100.
  • the processing unit 1102 is configured to support the access network device 1100 to perform S530 and/or other processes for the techniques described herein.
  • the communication unit 1103 is configured to support communication between the access network device 1100 and other network entities, for example, communication with the terminal device, and perform steps S510 and the like.
  • the access network device 1100 may further include a storage unit 1101 for storing program codes and data of the access network device 1100.
  • the processing unit 1102 can be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1103 can be a transceiver, a transceiver circuit, or the like.
  • the storage unit 1101 may be a memory.
  • the access network device 1100 for data transmission provided by the present application can enable the device transmitting the TB to recognize false alarms and non-false alarms, thereby improving the efficiency of retransmission.
  • the access network device involved in the present application may be the access network device shown in FIG.
  • the access network device 1200 includes a processor 1202, a transceiver 1203, and a memory 1201.
  • the transceiver 1203, the processor 1202, and the memory 1201 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the access network device 1200 for data transmission provided by the present application can enable the device transmitting the TB to recognize false alarms and non-false alarms, thereby improving the efficiency of retransmission.
  • FIG. 13 shows a possible structural diagram of the access network device involved in the above embodiment.
  • the access network device 1300 includes a processing unit 1302 and a communication unit 1303.
  • the processing unit 1302 is configured to control and manage the actions of the access network device 1300.
  • the processing unit 1302 is configured to support the access network device 1300 to perform S630 and/or other processes for the techniques described herein.
  • the communication unit 1303 is configured to support communication between the access network device 1300 and other network entities, for example, communication with the terminal device, and perform steps S610 and the like.
  • the access network device 1300 may further include a storage unit 1301 for storing program codes and data of the access network device 1300.
  • the processing unit 1302 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1303 may be a transceiver, a transceiver circuit, or the like.
  • the storage unit 1301 may be a memory.
  • the access network device 1300 for data transmission provided by the present application can enable the device transmitting the TB to recognize false alarms and non-false alarms, thereby improving the efficiency of retransmission.
  • the access network device involved in the present application may be the access network device shown in FIG.
  • the access network device 1400 includes a processor 1402, a transceiver 1403, and a memory 1401.
  • the transceiver 1403, the processor 1402, and the memory 1401 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the access network device 1400 for data transmission provided by the present application can enable the device transmitting the TB to recognize false alarms and non-false alarms, thereby improving the efficiency of retransmission.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the present application.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the terminal device.
  • the processor and the storage medium may also exist as discrete components in the terminal device and the access network device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions can be from a website site, computer, server or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Transfer from a computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

一种发送反馈信息的方法和设备,该方法包括:第二设备生成第一反馈信息集合,其中,第一反馈信息集合包括第一反馈信息和第二反馈信息,第一反馈信息用于反馈第一CBG在第一时间单元至第二时间单元之间的解码状态,第二反馈信息用于反馈第二CBG在第二时间单元之后的解码状态,第二时间单元是第二设备在第一时间单元之后接收到第二CBG的时间单元,第二设备在第二时间单元内未接收到第一CBG;第二设备在第三时间单元内向第一设备发送第一反馈信息集合。根据该方法,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。

Description

发送反馈信息的方法和设备
本申请要求于2017年03月23日提交中国专利局、申请号为201710179901.5、申请名称为“发送反馈信息的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种发送反馈信息的方法和设备。
背景技术
在无线通信系统中,为了减小编译码的复杂度,一个传输块(transport block,TB)被划分为多个编码块(code block,CB),每个CB都具有独立的校验功能,此外,每个TB也具有独立的校验功能,当一个TB中的每个CB都校验成功后,接收设备还需要对该TB进行校验,以便于及时发现虚警(即,某些CB解码错误却通过校验的情况),减小重传的时延。
第五代(5th-Generation,5G)通信系统提出了支持超高可靠性与超低时延(ultra reliable&low latency communication,URLLC)业务的要求,在URLLC场景中,一般要求无线空口的传输时延在1ms以内且达到99.999%的传输可靠性,并且对数据传输的时延提出了苛刻的要求。
为了满足URLLC场景对数据传输的要求,发送设备会优先发送优先级较高的数据,例如,对已经开始传输的TB进行打孔(即,覆盖已经生成的数据),或者同时发送优先级较高的数据和已经生成的TB,从而这些TB中部分CB或者全部CB极有可能解码失败,发送端需要重传解码失败的CB。
因此,如何确定TB中解码失败的CB以提高重传效率是当前亟需解决的问题。
发明内容
有鉴于此,本申请提供了一种发送反馈信息的方法和设备,以及一种接收反馈信息的方法和设备,可以确定TB中解码失败的CB并提高重传效率。
一方面,提供了一种发送反馈信息的方法,包括:
第二设备从第一设备接收第一传输块TB,所述第一TB包括多个编码块组CBG,所述多个CBG包括所述第二设备在第一时间单元内接收到的第一CBG和第二CBG,所述第一时间单元内接收到的所述第一CBG为解码成功的CBG,所述第一时间单元内接收到的所述第二CBG为未解码成功的CBG;
所述第二设备生成第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第一时间单元至第二时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第二时间 单元之后的解码状态,所述第二时间单元是所述第二设备在所述第一时间单元之后接收到所述第二CBG的时间单元,所述第二设备在所述第二时间单元内未接收到所述第一CBG;
所述第二设备在第三时间单元内向所述第一设备发送所述第一反馈信息集合。
本申请提供的发送反馈信息的方法,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
可选地,所述第一反馈信息包括至少一个否定应答NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述至少一个NACK与所述第一CBG一一对应。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
可选地,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,所述方法还包括:
所述第二设备从所述第一设备接收征集信息,所述征集信息用于指示所述第二设备上报至少一个传输进程对应的CBG的反馈信息,所述至少一个传输进程包括所述第一传输进程;
所述第二设备在第四时间单元内向所述第一设备发送与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第二设备在所述第三时间单元至所述第四时间单元之间未接收到与所述第一传输进程对应的CBG。
根据本申请提供的发送反馈信息的方法,接收端在未接收到与第一传输进程对应的CBG却收到要求反馈第一传输进程的征集信息时,可以反馈多个NACK,从而避免了数据传输错误,以及避免了接收端由于漏检了第一传输进程的控制信道却上报ACK而导致的物理层数据包的丢失。
另一方面,提供了一种发送反馈信息的方法,包括:第二设备从第一设备接收第一传输块TB,所述第一TB包括多个编码块组CBG;
所述第二设备对所述多个CBG分别进行解码;
所述第二设备向所述第一设备发送第三反馈信息集合,其中,所述第三反馈信息集合包括与所述多个CBG一一对应的多个否定应答NACK,所述第三反馈信息集合用于指示所述多个CBG校验成功且所述第一TB校验失败。
本申请提供的发送反馈信息的方法,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
可选地,所述方法还包括:
所述第二设备在第一时间单元内从所述第一设备接收所述多个CBG,其中,所述多个CBG包括第一CBG和第二CBG,所述第一时间单元内接收到的所述第一CBG为解码成功的CBG,所述第一时间单元内接收到的所述第二CBG为解码失败的CBG;
所述第二设备在第二时间单元内从所述第一设备接收所述第二CBG,所述第二设备 在所述第二时间单元内未接收到所述第一CBG;
所述第二设备生成第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第一时间单元至所述第二时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第二时间单元之后的解码状态;
所述第二设备在第三时间单元内向所述第一设备发送所述第一反馈信息集合。
根据本申请提供的发送反馈信息的方法,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述至少一个NACK与所述第一CBG一一对应。
可选地,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
可选地,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,所述方法还包括:
所述第二设备从所述第一设备接收征集信息,所述征集信息用于指示所述第二设备上报至少一个传输进程对应的CBG的反馈信息,所述至少一个传输进程包括所述第一传输进程;
所述第二设备在第四时间单元内向所述第一设备发送与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第二设备在所述第三时间单元至所述第四时间单元之间未接收到与所述第一传输进程对应的CBG。
根据本申请提供的发送反馈信息的方法,接收端在未接收到与第一传输进程对应的CBG却收到要求反馈第一传输进程的征集信息时,可以反馈多个NACK,从而避免了数据传输错误,以及避免了接收端由于漏检了第一传输进程的控制信道却上报ACK而导致的物理层数据包的丢失。
再一方面,提供了一种接收反馈信息的方法,包括:
第一设备在第五时间单元内向第二设备发送第一传输块TB,所述第一TB包括多个编码块组CBG,所述多个CBG包括所述第一设备在第六时间单元内向所述第二设备发送的第二CBG,所述多个CBG还包括所述第一设备在所述第六时间单元内不发送的第一CBG,所述第一CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码成功的CBG,所述第二CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码失败的CBG,所述第六时间单元在所述第五时间单元之后;
所述第一设备在第七时间单元内从所述第二设备接收第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第五时间单元至所述第六时间单元之间的解码状态,所述第二反馈信息用 于反馈所述第二CBG在所述第六时间单元之后的解码状态,所述第七时间单元在所述第六时间单元之后;
所述第一设备根据所述第一反馈信息集合确定是否重传所述第一TB。
本申请提供的发送反馈信息的方法,能够使得传输TB的设备识别出虚警与非虚警,提高了重传的效率。
可选地,所述第一反馈信息包括至少一个否定应答NACK,其中,所述第一反馈信息用于指示所述第一TB校验失败且所述多个CBG分别校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述至少一个NACK与所述第一CBG一一对应。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
可选地,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,所述方法还包括:
所述第一设备向所述第二设备发送第二TB,所述第二TB包括至少一个CBG,所述第二TB对应第二传输进程;
所述第一设备向所述第二设备发送征集信息,所述征集信息用于指示所述第二设备上报至少两个传输进程对应的CBG的反馈信息,所述至少两个传输进程包括所述第一传输进程和所述第二传输进程;
所述第一设备在第八时间单元内从所述第二设备接收与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第一设备在所述第七时间单元至所述第八时间单元之间未向所述第二设备调度与所述第一传输进程对应的CBG。
根据本申请提供的接收反馈信息的方法,接收端在未接收到与第一传输进程对应的CBG却收到要求反馈第一传输进程的征集信息时,可以反馈多个NACK,从而避免了数据传输错误,以及避免了接收端由于漏检了第一传输进程的控制信道却上报ACK而导致的物理层数据包的丢失。
再一方面,提供了一种接收反馈信息的方法,包括:
第一设备向第二设备发送第一传输块TB,所述第一TB包括多个编码块组CBG;
所述第一设备从所述第二设备接收第三反馈信息集合,所述第三反馈信息集合包括与所述多个CBG一一对应的多个否定应答NACK;
所述第一设备根据所述第三反馈信息集合确定所述多个CBG校验成功且所述第一TB校验失败。
本申请提供的发送反馈信息的方法,能够使得发送TB的设备传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
可选地,所述方法还包括:
所述第一设备在第五时间单元内向所述第二设备发送所述多个CBG;
所述第一设备在第六时间单元内向所述第二设备发送第二CBG,其中,所述第二CBG 属于所述多个CBG,所述第二CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码失败的CBG,所述多个CBG还包括第一CBG,所述第一CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码成功的CBG,所述第一设备在所述第六时间单元内不发送所述第一CBG;
所述第一设备在第七时间单元内从所述第二设备接收第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第五时间单元至所述第六时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第六时间单元至所述第七时间单元之间的解码状态。
根据本申请提供的发送反馈信息的方法,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述至少一个NACK与所述第一CBG一一对应。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括与所述第一CBG一一对应的ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
可选地,所述第一反馈信息集合包括与所述多个CBG一一对应的多个肯定应答ACK,所述第一TB对应第一传输进程,所述方法还包括:
所述第一设备向所述第二设备发送第二TB,所述第二TB包括至少一个CBG,所述第二TB对应第二传输进程;
所述第一设备向所述第二设备发送征集信息,所述征集信息用于指示所述第二设备上报至少两个传输进程对应的CBG的反馈信息,所述至少两个传输进程包括所述第一传输进程和所述第二传输进程;
所述第一设备在第八时间单元内从所述第二设备接收与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第一设备在所述第七时间单元至所述第八时间单元之间未向所述第二设备调度与所述第一传输进程对应的CBG。
根据本申请提供的接收反馈信息的方法,接收端在未接收到与第一传输进程对应的CBG却收到要求反馈第一传输进程的征集信息时,可以反馈多个NACK,从而避免了数据传输错误,以及避免了接收端由于漏检了第一传输进程的控制信道却上报ACK而导致的物理层数据包的丢失。
再一方面,本申请提供了一种发送反馈信息的设备,该设备可以实现上述方面所涉及方法中第二设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元或模块。
在一种可能的设计中,该设备的结构中包括处理器和收发器,该处理器被配置为支持该设备执行上述方法中相应的功能。该收发器用于支持该设备与其它网元之间的通信。该 设备还可以包括存储器,该存储器用于与处理器耦合,其保存该设备必要的程序指令和数据。
再一方面,本申请提供了一种配置资源的设备,该设备可以实现上述方面所涉及方法中第一设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元或模块。
在一种可能的设计中,该设备的结构中包括处理器和收发器,该处理器被配置为支持该设备执行上述方法中相应的功能。该收发器用于支持该设备与其它网元之间的通信。该设备还可以包括存储器,该存储器用于与处理器耦合,其保存该设备必要的程序指令和数据。
再一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得第二设备执行上述实现方式中的方法。
再一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得第一设备执行上述实现方式中的方法。
再一方面,本申请提供了一种计算机存储介质,用于储存为上述第二设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请提供了一种计算机存储介质,用于储存为上述第一设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
附图说明
图1是适用本申请的通信系统的示意性架构图;
图2是本申请提供的一种编码块组的划分方法的示意图;
图3是本申请提供的一种发送反馈信息的方法的示意性流程图;
图4是本申请提供的另一种发送反馈信息的方法的示意性流程图;
图5是本申请提供的一种接收反馈信息的方法的示意性流程图;
图6是本申请提供的另一种接收反馈信息的方法的示意性流程图;
图7是本申请提供的一种可能的终端设备的结构示意图;
图8是本申请提供的另一种可能的终端设备的结构示意图;
图9是本申请提供的再一种可能的终端设备的结构示意图;
图10是本申请提供的再一种可能的终端设备的结构示意图;
图11是本申请提供的一种可能的接入网设备的结构示意图;
图12是本申请提供的另一种可能的接入网设备的结构示意图;
图13是本申请提供的再一种可能的接入网设备的结构示意图;
图14是本申请提供的再一种可能的接入网设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了一种适用本申请的通信系统100。该通信系统100包括接入网设备110和 终端设备120,接入网设备110与终端设备120通过无线网络进行通信,当终端设备120发送数据时,无线通信模块可对信息进行编码以用于传输,具体地,无线通信模块可获取要通过信道发送至接入网设备110的一定数目的数据比特,这些数据比特例如是处理模块生成的、从其它设备接收的或者在存储模块中保存的数据比特。这些数据比特可包含在一个或多个传输块(也可称为信息块或数据块)中,传输块可被分段以产生多个编码块。
在本申请中,终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G通信系统中的用户设备。
接入网设备可以是码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(node B,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB),还可以是5G通信系统中的基站(gNB),上述基站仅是举例说明,接入网设备还可以为中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的接入网设备和终端设备的数量还可以是其它的数量。
为了便于理解本申请,在介绍本申请提供的发送反馈信息的方法前,首先对本申请涉及的概念做简要介绍。
在本申请中,一个TB可以被划分为一个或多个CBG,每个CBG包括至少一个CB。例如,一个TB被划分成的CBG的数量,可以根据该TB的比特数多少来确定,也可以根据该TB所占的时域和/或频域资源的多少来确定,还可以通过高层信令直接配置。
TB中的CB可以按照预定的映射规则映射到时频资源上,例如,该预定的映射规则为:按照CB索引且按照先频域后时域的顺序依次映射;或者该预定的映射规则为:把要映射的频域划分为多个子频域,然后在每个子频域内分别进行映射。
基于上述映射规则,一个TB被划分成CBG的划分方式可以为基于该TB所映射到的时频资源来划分,比如时间维度、频率维度或时频两维划分方式,此种方式下,被划分成的多个CBG中可能会存在相同的某个CB,也可能不存在相同的CB,被划分成的多个CBG中是否存在相同的CB取决于上述最终的资源映射结果;
TB中的CB还可以通过其它规则(比如划分方式与TB映射到的时频资源无关,且与传输块的比特数量有关)或信令通知将CB划分为多个CBG,此种方式下,被划分成的多个CBG中一般不存在相同的CB。
本申请对TB的划分方式不做限定,下面举出两个例子,该两个例子不应理解为对本申请的TB的划分方式的限定。
TB的划分方式1:
第一TB包括4个CB,分别为CB1、CB2、CB3和CB4,可以根据上述其它规则或者高层信令的指示将该第一TB划分为2个CBG,即CBG1和CBG2,其中,CBG1包括CB1和CB2,CBG2包括CB3和CB4;
第一TB包括8个CB,分别为CB1、CB2、CB3、CB4、CB5、CB6、CB7和CB8,可以根据上述映射规则或者高层信令的指示将第一TB划分为2个CBG,即CBG1和CBG2,其中,CBG1包括CB1、CB2、CB3和CB4,CBG2包括CB5、CB6、CB7和CB8;
第一TB包括8个CB,分别为CB1、CB2、CB3、CB4、CB5、CB6、CB7和CB8,可以根据上述映射规则或者高层信令的指示将该第一TB划分为4个CBG,即CBG1、CBG2、CBG3和CBG4,其中,CBG1包括CB1和CB2,CBG2包括CB3和CB4,CBG3包括CB5和CB6,CBG4包括CB7和CB8。
TB的划分方式2:
图2示出了本申请提供的一种TB的划分方式的示意图。如图2所示,第一TB由42个CB组成,按照先频域后时域的顺序映射到12个时域符号上,并按照时域符号的维度将第一TB划分为12个CBG,由于单个时域符号对应的频域资源有限,部分CB未能全部映射至同一个时域符号上,例如,CBG1包括CB1至CB4,CBG2包括CB4至CB7,CB4为CBG1和CBG2的公共CB。
当通信系统中传输的TB划分为多个CBG时,接收端可以根据每个CBG的解码状态向发送端发送反馈信息,当少量CBG解码失败时,发送端仅需重传解码失败的CBG,无需重传整个TB,提高了资源利用率以及数据传输的效率。
发送端根据接收到的反馈信息确定TB传输成功后,可以向接收端发送新的TB。例如,基站可以通过调度信息中的混合自动重传请求(hybrid automatic repeat request,HARQ)进程号字段和新数据指示(new data indicator,NDI)字段指示当前传输的数据是初传还是重传。终端设备先后接收到两个调度信息后,如果该两个调度信息携带的HARQ进程号字段相同,且该两个调度信息携带的NDI字段状态不同,则终端设备可确定后一个调度信息调度的HARQ进程对应的是新数据的传输;如果该两个调度信息携带的HARQ进程号字段相同,且该两个调度信息携带的NDI字段状态相同,则终端设备可确定后一个调度信息调度的HARQ进程对应的是旧数据的重传。当重传的数据是TB的部分CBG时,可以通过在调度信息中加入新的指示字段指示部分重传,也可以通过复用调度信息中现有的字段进行字段的重新解读,例如,重新解读调度信息中的调制编码方式(modulation coding scheme,MCS)字段。上述方法仅是举例说明,本申请不限于此。
接收端接收到发送端发送的CBG后进行解码,其中,解码成功是指接收端获取CBG包括的全部有效信息比特并且校验成功,本申请对CBG的校验方法不做限定,作为一个可选的示例,CBG可以通过循环冗余校验(cyclic redundancy check,CRC)进行校验,或者通过CBG相对应的预设校验矩阵来校验。解码失败是指UE未获取CBG包括的全部有效信息比特,或者UE获取了CBG包括的全部有效信息比特但是该CBG校验失败。
需要指出的是,对于一个TB来说,即使该TB的每一个CBG都解码成功,也不能认为该TB解码成功,因此,在TB包括的每一个CBG都解码成功后,还需要对TB进行校验,当该TB整体校验成功后(比如通过TB CRC进行校验),才能确定该TB解码成功,。
接收端对接收到的CBG进行解码处理后需要向发送端反馈各个CBG的解码状态,接收端可以通过肯定应答(acknowledge,ACK)反馈CBG解码成功的状态或TB解码成功的状态,接收端还可以通过否定应答(negative acknowledgement,NACK)反馈CBG解码失败或TB解码失败的状态。每个CBG反馈信息可以为一个比特,接收端在一个时间 单元内发送的全部反馈信息(即,反馈信息集合)的码本大小与接收到的CBG的数量相关,但是并不意味着反馈信息集合的码本大小就等于接收到的CBG的数量,反馈信息集合的码本还可以包括TB是否通过校验的信息和/或表征距离该TB可以被正确解码的冗余信息等。
下面,将详细描述本申请提供的发送反馈信息的方法。
图3是本申请提供的一种发送反馈信息的方法的示意性流程图。方法300包括:
S310,第二设备从第一设备接收第一TB,所述第一TB包括多个CBG,所述多个CBG包括所述第二设备在第一时间单元内接收到的第一CBG和第二CBG,所述第一时间单元内接收到的所述第一CBG为解码成功的CBG,所述第一时间单元内接收到的所述第二CBG为未解码成功的CBG。
S320,所述第二设备生成第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第一时间单元至第二时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第二时间单元之后的解码状态,所述第二时间单元是所述第二设备在所述第一时间单元之后接收到所述第二CBG的时间单元,所述第二设备在所述第二时间单元内未接收到所述第一CBG。
S330,所述第二设备在第三时间单元内向所述第一设备发送所述第一反馈信息集合。
方法300中,第二设备可以是终端设备,也可以是接入网设备,当第二设备为终端设备时,第一设备为接入网设备,当第一设备为接入网设备时,第二设备为终端设备。为方便理解,以下,以第一设备是基站、第二设备是UE为例对本申请的技术方案进行说明。
第一TB为第一设备向第二设备发送的任意一个TB,第一TB可以按照预定义的规则划分为多个CBG,每个CBG包括至少一个CB。基站向UE发送的第一TB可以在一个时间单元内完成发送,也可以在多个时间单元内完成发送,本申请对此不做限定。相应地,UE在第一时间单元内接收到的第一CBG和第二CBG可以是第一TB包括的全部CBG,也可以是第一TB包括的部分CBG。
应理解,在本申请中,一个时间单元的长度可以任意设定,本申请对此不做限定。
例如,1个时间单元可以包括一个或多个子帧。
或者,1个时间单元可以包括一个或多个时隙(slot)或微时隙(mini-slot)。
或者,1个时间单元可以包括一个或多个时域符号。
或者,1个时间单元可以包括一个或多个传输时间间隔(transmission time interval,TTI)或短传输时间间隔(short transmission time interval,sTTI)。
或者,1个时间单元的长度为1毫秒(ms)。
或者,1个时间单元的长度小于1ms。
此外,本申请对于第一TB的传输方式和传输第一TB使用的资源均不做限定。例如,第一TB可以通过基于调度(grant-based)的方式传输,也可以通过免调度(grant-free)的方式传输,传输第一TB使用的频谱资源可以是授权频谱,也可以是非授权频谱或者其它共享频谱。
当UE在第一时间单元接收到第一TB包括的CBG后,UE对第一TB包括的CBG进行解码,第一CBG为解码成功的CBG,第二CBG为解码失败的CBG。应理解,第一CBG 可以是一个CBG,也可以是多个CBG,第二CBG可以是一个CBG,也可以是多个CBG。
在一个可选的实施例中,所述第一反馈信息用于反馈在所述第一时间单元内接收到的所述第一CBG的解码状态;在又一个可选的实施例中,所述第二反馈信息用于反馈在所述第二时间单元内接收到的所述第二CBG的解码状态。
此外,在URLLC场景中,基站可能无需等待UE的反馈连续传输K次CBG,则第一时间单元应被理解为UE接收到该K次传输所用的时间单元。
例如,当K=3时,UE在第一时间单元内接收到的CBG为基站三次传输的CBG,则第一CBG可以指UE将基站三次传输的CBG进行合并解码后确定的解码成功的CBG,第二CBG可以指UE将基站三次传输的CBG进行合并解码后确定的解码失败的CBG。
针对第一CBG和第二CBG,UE可以仅反馈一次解码状态,也可以反馈多次解码状态。
基站收到UE针对第一CBG和第二CBG发送的反馈信息后,确定重传第二CBG以及不再重传第一CBG,UE在第二时间单元内接收到第二CBG后对第二CBG进行解码,随后生成第二反馈信息,并在第三时间单元内向基站发送包括该第二反馈信息的第一反馈信息集合。
当UE在第二时间单元内接收到的第二CBG仍然解码失败时,第二反馈信息为NACK,为了保证基站能够识别虚警,即,为了保证基站能够识别该第二反馈信息是指示第二CBG解码失败还是指示第一TB校验失败,UE需要同时指示第一CBG在第一时间单元至第二时间单元之间的解码状态,即,第一反馈信息集合需要同时包括第一反馈信息和第二反馈信息。
在本申请中,第一反馈信息包括两种情况:ACK和NACK。其中,
当第二CBG在第二时间单元至第三时间单元之间解码成功且第一TB在第二时间单元至第三时间单元之间校验成功时,第一CBG在所述第一时间单元至第二时间单元之间的解码状态为解码成功,即,第一反馈信息为ACK;
当第二CBG在第二时间单元至第三时间单元之间解码成功且第一TB在第二时间单元至第三时间单元之间校验失败时,说明第一CBG在第二时间单元之前的解码成功的状态实际是不正确的或者第二CBG在第二时间单元至第三时间单元之间解码成功的状态实际是不正确的或者两者实际都是不正确的,即此时第一CBG和第二CBG中至少一个出现了解码校验虚警,第一CBG在第一时间单元至第二时间单元之间的解码状态应为解码失败,即,第一反馈信息为NACK;
当第二CBG在第二时间单元至第三时间单元之间解码失败时,UE不会对第一TB进行校验或者由于第二CBG的解码失败会导致第一TB的校验基本上是无法通过的,UE暂且认为第一CBG在第一时间单元至第二时间单元之间的解码状态为解码成功,即,第一反馈信息为ACK。
例如,当第一反馈信息为ACK且第二反馈信息为NACK时,基站确定第二CBG解码失败,基站可以在第三时间单元之后仅重传第二CBG,无需重传整个第一TB,从而提高了重传效率。
又例如,当第一反馈信息为ACK且第二反馈信息为ACK时,基站确定第二CBG解码成功且第一TB解码成功。
再例如,当第一反馈信息为NACK且第二反馈信息为NACK时,基站确定第一TB校验失败,基站可以在第三时间单元之后重传第一TB。
应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有该判断的动作,也不意味着存在其它限定。
上述实施例仅是举例说明,本申请不限于此。
例如,当基站未接收到UE在第一时间单元至第二时间单元之间发送的反馈信息时,基站可能会重传第一CBG(简称为“重传第一CBG”),当UE在第二时间单元前接收到该重传第一CBG时,UE可以直接确定第一CBG的解码状态为ACK,此时,第一反馈信息仍然用于反馈第一CBG在第一时间单元至第二时间单元之间的解码状态。
此外,本申请对UE发送第一反馈信息集合的具体方式不做限定,第一反馈信息集合可以是UE主动发送的,也可以是UE根据基站发送的触发信息(例如,征集信息)发送的。
综上,本申请提供的发送反馈信息的方法,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
可选地,所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
例如,第一CBG包括3个CBG。当没有出现虚警时,第一反馈信息为3个ACK;当出现虚警时,第一反馈信息可以为1个NACK和2个ACK。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述至少一个NACK与所述第一CBG一一对应。
例如,第一CBG包括3个CBG。当没有出现虚警时,第一反馈信息为3个ACK;当出现虚警时,第一反馈信息可以为3个NACK。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括与所述第一CBG一一对应的ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,方法300还包括:
S340,所述第二设备从所述第一设备接收征集信息,所述征集信息用于指示所述第二设备上报至少一个传输进程对应的CBG的反馈信息,所述至少一个传输进程包括所述第一传输进程。
S350,所述第二设备在第四时间单元内向所述第一设备发送与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第二设备在所述第三时间单元至所述第四时间单元之间未接收到与所述第一传输进程对应的CBG。
当第一反馈信息集合包括与属于第一TB的多个CBG一一对应的ACK时,说明该多个CBG分别解码成功且第一TB校验成功。随后,基站可以向UE发送新的TB,新TB 对应第一传输进程和/或第二传输进程,第二传输进程与第一传输进程不同。随后,基站向UE征集第一传输进程和第二传输进程的反馈信息。
由于UE可能没有接收到与第一传输进程对应的TB(例如,基站没有调度第一传输进程,或者基站调度了第一传输进程但UE没有接收到调度信息),因此,当基站向UE发送征集信息征集第一传输进程对应的CBG的反馈信息时,UE会误认为基站征集第一TB的反馈信息,并向基站发送ACK,实际上,UE并未接收到与第一传输进程对应的新TB,从而会导致数据传输错误,引发后续的高层重传,降低了重传效率。
为了避免出现上述情况,UE在发送了不包括NACK的第一反馈信息集合后,当UE接收到征集信息时,如果UE接收到了与第一传输进程对应的CBG,则根据解码状态进行反馈;如果UE没有接收到与第一传输进程对应的CBG,则反馈与第一TB对应的多个CBG一一对应的多个NACK,该多个NACK属于第二反馈信息集合,第二反馈信息集合还可以包括第一传输进程的进程号。
因此,根据本申请提供的发送反馈信息的方法,接收端在未接收到与第一传输进程对应的CBG却收到要求反馈第一传输进程的征集信息时,可以反馈多个NACK,从而避免了数据传输错误,以及避免了接收端由于漏检了第一传输进程的控制信道却上报ACK而导致的物理层数据包的丢失。
图4是本申请提供的另一种发送反馈信息的方法的示意性流程图。方法400包括:
S410,第二设备从第一设备接收第一TB,所述第一TB包括多个CBG。
S420,所述第二设备对所述多个CBG分别进行解码。
S430,所述第二设备向所述第一设备发送第三反馈信息集合,其中,所述第三反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第三反馈信息集合用于指示所述多个CBG校验成功且所述第一TB校验失败。
方法400中,第一设备例如是基站,第二设备例如是UE。
S410中,所述多个CBG可以是UE在一个时间单元内接收到的CBG,也可以是UE在多个时间单元内接收到的CBG,本申请对该多个CBG的传输方式不做限定。该多个CBG解码结果包括以下四种情况。
情况1:该多个CBG分别校验成功且第一TB校验成功,UE发送与该多个CBG一一对应的多个ACK。
情况2:该多个CBG部分校验成功部分校验失败,UE发送相应的ACK和NACK。
情况3:该多个CBG全部校验失败,UE发送一个NACK。
情况4:该多个CBG分别校验成功但是第一TB校验失败(即,虚警),UE发送与该多个CBG一一对应的多个NACK。
S430中,第三反馈信息集合还可以包括其它信息。此外,第二设备可以自动发送第三信息集合,也可以根据第一设备发送的触发信息发送第三信息集合。
综上,本申请提供的发送反馈信息的方法,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
可选地,方法400还包括:
S440,所述第二设备在第一时间单元内从所述第一设备接收所述多个CBG,其中,所述多个CBG包括第一CBG和第二CBG,所述第一时间单元内接收到的所述第一CBG 为解码成功的CBG,所述第一时间单元内接收到的所述第二CBG为解码失败的CBG。
S450,所述第二设备在第二时间单元内从所述第一设备接收所述第二CBG,所述第二设备在所述第二时间单元内未接收到所述第一CBG。
S460,所述第二设备生成第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第一时间单元至所述第二时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第二时间单元之后的解码状态。
S470,所述第二设备在第三时间单元内向所述第一设备发送所述第一反馈信息集合。
当第三信息集合包括与多个CBG一一对应的多个NACK时,基站可以根据该第三信息集合重传第一TB。具体的过程可以参考方法300中的过程,方法400中的UE可以与方法300中的UE相同,为了简洁,在此不再赘述。
根据本申请提供的发送反馈信息的方法,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述至少一个NACK与所述第一CBG一一对应。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括与所述第一CBG一一对应的ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,方法400还包括:
S480,所述第二设备从所述第一设备接收征集信息,所述征集信息用于指示所述第二设备上报至少一个传输进程对应的CBG的反馈信息,所述至少一个传输进程包括所述第一传输进程。
S490,所述第二设备在第四时间单元内向所述第一设备发送与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第二设备在所述第三时间单元至所述第四时间单元之间未接收到与所述第一传输进程对应的CBG。
因此,根据本申请提供的发送反馈信息的方法,接收端在未接收到与第一传输进程对应的CBG却收到要求反馈第一传输进程的征集信息时,可以反馈多个NACK,从而避免了数据传输错误,以及避免了接收端由于漏检了第一传输进程的控制信道却上报ACK而导致的物理层数据包的丢失。
上文介绍了本申请提供的发送反馈信息的方法,下面将结合附图,详细介绍本申请提供的接收反馈信息的方法。
图5是本申请提供的一种接收反馈信息的方法的示意性流程图。该方法500包括:
S510,第一设备在第五时间单元内向第二设备发送第一TB,该第一TB包括多个CBG, 该多个CBG包括该第一设备在第六时间单元内向该第二设备发送的第二CBG,该多个CBG还包括该第一设备在该第六时间单元内不发送的第一CBG,该第一CBG为该第一设备根据在该第五时间单元至该第六时间单元之间接收到的反馈信息确定的该第二设备解码成功的CBG,所述第二CBG为该第一设备根据在该第五时间单元至该第六时间单元之间接收到的反馈信息确定的该第二设备解码失败的CBG,该第六时间单元在该第五时间单元之后。
S520,所述第一设备在第七时间单元内从所述第二设备接收第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第五时间单元至所述第六时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第六时间单元之后的解码状态,所述第七时间单元在所述第六时间单元之后。
S530,所述第一设备根据所述第一反馈信息集合确定是否重传所述第一TB。
方法500中,第一设备例如是基站,第二设备例如是UE。
基站在第五时间单元内向UE发送第一TB,作为一个可选的示例,当第一TB在一个TTI内发送时,第五时间单元等于一个TTI的时间长度,当第一TB在多个TTI内发送时,第五时间单元等于多个TTI的时间长度,作为另一个可选地示例,基站可以连续发送K次第一TB,此时,第五时间单元应被理解为K次发送所用的时间。本申请对基站在第五时间单元内发送第一TB的方式不做限定。
基站在第五时间单元至第六时间单元之间接收到第一TB的反馈信息,并根据该反馈信息确定第一TB中部分CBG(即,第一CBG)解码成功,部分CBG(即,第二CBG)解码失败。
基站在第六时间单元内向UE发送第二CBG,并且不再发送第一CBG。
随后,基站在第七时间单元内接收到UE发送的第一反馈信息集合,该第一反馈信息集合包括第一反馈信息以及第二反馈信息,方法500中的第一反馈信息集合可以与方法300中的第一反馈信息集合相同,方法500中的基站也可以与方法300中的基站相同,为了简洁,在次不再赘述。
从而,本申请提供的发送反馈信息的方法,能够使得传输TB的设备识别出虚警与非虚警,提高了重传的效率。
可选地,所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于指示所述第一TB校验失败且所述多个CBG分别校验成功。
例如,第一CBG包括3个CBG。当没有出现虚警时,第一反馈信息为3个ACK;当出现虚警时,第一反馈信息可以为1个NACK和2个ACK。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述至少一个NACK与所述第一CBG一一对应。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括与所述第一CBG一一对应的ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,方法500还包括:
S540,所述第一设备向所述第二设备发送第二TB,所述第二TB包括至少一个CBG,所述第二TB对应第二传输进程。
S550,所述第一设备向所述第二设备发送征集信息,所述征集信息用于指示所述第二设备上报至少两个传输进程对应的CBG的反馈信息,所述至少两个传输进程包括所述第一传输进程。
S560,所述第一设备在第八时间单元内从所述第二设备接收与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第一设备在所述第七时间单元至所述第八时间单元之间未向所述第二设备调度与所述第一传输进程对应的CBG。
当第一反馈信息集合包括与属于第一TB的多个CBG一一对应的ACK时,说明该多个CBG分别解码成功且第一TB校验成功。随后,基站可以向UE发送新的TB,新TB例如为第二TB,第二TB对应第二传输进程,第二传输进程与第一传输进程不同。随后,基站向UE征集反馈信息。
基站征集反馈信息时可能会征集全部传输进程的反馈信息,由于基站没有调度第一传输进程,因此,基站会接收到与第一传输进程对应的多个NACK,且该多个NACK与第一TB所包括的多个CBG是一一对应的。具体过程可参考S330和S340对应的实施例,在此不再赘述。
因此,根据本申请提供的接收反馈信息的方法,接收端在未接收到与第一传输进程对应的CBG却收到要求反馈第一传输进程的征集信息时,可以反馈多个NACK,从而避免了数据传输错误,以及避免了接收端由于漏检了第一传输进程的控制信道却上报ACK而导致的物理层数据包的丢失。
图6是本申请提供的另一种接收反馈信息的方法的示意性流程图。该方法600包括:
S610,第一设备向第二设备发送第一TB,所述第一TB包括多个CBG。
S620,所述第一设备从所述第二设备接收第三反馈信息集合,所述第三反馈信息集合包括与所述多个CBG一一对应的多个NACK。
S630,所述第一设备根据所述第三反馈信息集合确定所述多个CBG校验成功且所述第一TB校验失败。
方法600中,第一设备例如是基站,第二设备例如是UE。
S620中,该多个CBG解码结果包括以下四种情况。
情况1:该多个CBG分别校验成功且第一TB校验成功,第三反馈信息集合包括与该多个CBG一一对应的多个ACK。
情况2:该多个CBG部分校验成功部分校验失败,第三反馈信息集合包括相应的ACK和NACK。
情况3:该多个CBG全部校验失败,第三反馈信息集合包括一个NACK。
情况4:该多个CBG分别校验成功但是第一TB校验失败(即,虚警),第三反馈信息集合包括与该多个CBG一一对应的多个NACK。
S630中,第三反馈信息集合还可以包括其它信息。此外,第二设备可以自动发送第三信息集合,也可以根据第一设备发送的触发信息发送第三信息集合。
综上,本申请提供的发送反馈信息的方法,能够使得发送TB的设备传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
可选地,方法600还包括:
S640,所述第一设备在第五时间单元内向所述第二设备发送所述多个CBG。
S650,所述第一设备在第六时间单元内向所述第二设备发送第二CBG,其中,所述第二CBG属于所述多个CBG,所述第二CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码失败的CBG,所述多个CBG还包括第一CBG,所述第一CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码成功的CBG,所述第一设备在所述第六时间单元内不发送所述第一CBG。
S660,所述第一设备在第七时间单元内从所述第二设备接收第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第五时间单元至所述第六时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第六时间单元至所述第七时间单元之间的解码状态。
当第三信息集合包括与所述多个CBG一一对应的多个NACK时,基站可以根据该第三信息集合重传第一TB。具体的过程可以参考方法300中的过程,方法600中的基站可以与方法300中的基站相同,为了简洁,在此不再赘述。
根据本申请提供的发送反馈信息的方法,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述至少一个NACK与所述第一CBG一一对应。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息包括与所述第一CBG一一对应的ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
从而,传输TB的设备可以识别出虚警和非虚警,能够提高重传的效率。
可选地,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,方法600还包括:
S670,所述第一设备向所述第二设备发送第二TB,所述第二TB包括至少一个CBG,所述第二TB对应第二传输进程。
S680,所述第一设备向所述第二设备发送征集信息,所述征集信息用于指示所述第二设备上报至少两个传输进程对应的CBG的反馈信息,所述至少两个传输进程包括所述第一传输进程。
S690,所述第一设备在第八时间单元内从所述第二设备接收与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多 个NACK,所述第一设备在所述第七时间单元至所述第八时间单元之间未向所述第二设备调度与所述第一传输进程对应的CBG。
当第一反馈信息集合包括与属于第一TB的多个CBG一一对应的ACK时,说明该多个CBG分别解码成功且第一TB校验成功。随后,基站可以向UE发送新的TB,新TB例如为第二TB,第二TB对应第二传输进程,第二传输进程与第一传输进程不同。随后,基站向UE征集反馈信息。
基站征集反馈信息时可能会征集全部传输进程的反馈信息,由于基站没有调度第一传输进程,因此,基站会接收到与第一传输进程对应的多个NACK,且该多个NACK与第一TB所包括的多个CBG是一一对应的。具体过程可参考S330和S340对应的实施例,在此不再赘述。
因此,根据本申请提供的接收反馈信息的方法,接收端在未接收到与第一传输进程对应的CBG却收到要求反馈第一传输进程的征集信息时,可以反馈多个NACK,从而避免了数据传输错误,以及避免了接收端由于漏检了第一传输进程的控制信道却上报ACK而导致的物理层数据包的丢失。
上文详细介绍了本申请提供的发送反馈信息和接收反馈信息的方法示例。可以理解的是,终端设备和接入网设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对终端设备等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备700包括:处理单元702和通信单元703。处理单元702用于对终端设备700的动作进行控制管理,例如,处理单元702用于支持终端设备700执行S320和/或用于执行本文所描述的技术的其它过程。通信单元703用于支持终端设备700与其它网络实体的通信,例如与接入网设备之间的通信。终端设备700还可以包括存储单元701,用于存储终端设备700的程序代码和数据。
其中,处理单元702可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元703可以是收发器、收发电路等。存储单元701可以是存储 器。
本申请提供的终端设备700,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
当处理单元702为处理器,通信单元703为收发器,存储单元701为存储器时,本申请所涉及的终端设备可以为图8所示的终端设备。
参阅图8所示,该终端设备800包括:处理器802、收发器803、存储器801。其中,收发器803、处理器802以及存储器801可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的终端设备800,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
在采用集成的单元的情况下,图9示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备900包括:处理单元902和通信单元903。处理单元902用于对终端设备900的动作进行控制管理,例如,处理单元902用于支持终端设备900执行S420和/或用于执行本文所描述的技术的其它过程。通信单元903用于支持终端设备900与其它网络实体的通信,例如与接入网设备之间的通信。终端设备900还可以包括存储单元901,用于存储终端设备900的程序代码和数据。
其中,处理单元902可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元903可以是收发器、收发电路等。存储单元901可以是存储器。
本申请提供的终端设备900,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
当处理单元902为处理器,通信单元903为收发器,存储单元901为存储器时,本申请所涉及的终端设备可以为图10所示的终端设备。
参阅图10所示,该终端设备1000包括:处理器1002、收发器1003、存储器1001。其中,收发器1003、处理器1002以及存储器1001可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的终端设备1000,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
在采用集成的单元的情况下,图11示出了上述实施例中所涉及的接入网设备的一种可能的结构示意图。接入网设备1100包括:处理单元1102和通信单元1103。处理单元1102用于对接入网设备1100的动作进行控制管理,例如,处理单元1102用于支持接入网设备1100执行S530和/或用于本文所描述的技术的其它过程。通信单元1103用于支持接入网设备1100与其它网络实体的通信,例如与终端设备之间的通信,执行S510等步骤。 接入网设备1100还可以包括存储单元1101,用于存储接入网设备1100的程序代码和数据。
其中,处理单元1102可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1103可以是收发器、收发电路等。存储单元1101可以是存储器。
本申请提供的数据传输的接入网设备1100,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
当处理单元1102为处理器,通信单元1103为收发器,存储单元1101为存储器时,本申请所涉及的接入网设备可以为图12所示的接入网设备。
参阅图12所示,该接入网设备1200包括:处理器1202、收发器1203、存储器1201。其中,收发器1203、处理器1202以及存储器1201可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的数据传输的接入网设备1200,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的接入网设备的一种可能的结构示意图。接入网设备1300包括:处理单元1302和通信单元1303。处理单元1302用于对接入网设备1300的动作进行控制管理,例如,处理单元1302用于支持接入网设备1300执行S630和/或用于本文所描述的技术的其它过程。通信单元1303用于支持接入网设备1300与其它网络实体的通信,例如与终端设备之间的通信,执行S610等步骤。接入网设备1300还可以包括存储单元1301,用于存储接入网设备1300的程序代码和数据。
其中,处理单元1302可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1303可以是收发器、收发电路等。存储单元1301可以是存储器。
本申请提供的数据传输的接入网设备1300,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
当处理单元1302为处理器,通信单元1303为收发器,存储单元1301为存储器时,本申请所涉及的接入网设备可以为图14所示的接入网设备。
参阅图14所示,该接入网设备1400包括:处理器1402、收发器1403、存储器1401。其中,收发器1403、处理器1402以及存储器1401可以通过内部连接通路相互通信,传递控制和/或数据信号。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的设备和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
本申请提供的数据传输的接入网设备1400,能够使得传输TB的设备识别出虚警与非虚警,从而提高了重传的效率。
在本申请各个实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备和接入网设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (44)

  1. 一种发送反馈信息的方法,其特征在于,包括:
    第二设备从第一设备接收第一传输块TB,所述第一TB包括多个编码块组CBG,所述多个CBG包括所述第二设备在第一时间单元内接收到的第一CBG和第二CBG,所述第一时间单元内接收到的所述第一CBG为解码成功的CBG,所述第一时间单元内接收到的所述第二CBG为未解码成功的CBG;
    所述第二设备生成第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第一时间单元至第二时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第二时间单元之后的解码状态,所述第二时间单元是所述第二设备在所述第一时间单元之后接收到所述第二CBG的时间单元,所述第二设备在所述第二时间单元内未接收到所述第一CBG;
    所述第二设备在第三时间单元内向所述第一设备发送所述第一反馈信息集合。
  2. 根据权利要求1所述的方法,其特征在于,所述第一反馈信息包括至少一个否定应答NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个NACK与所述第一CBG一一对应。
  4. 根据权利要求1所述的方法,其特征在于,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
  5. 根据权利要求1或4所述的方法,其特征在于,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,所述方法还包括:
    所述第二设备从所述第一设备接收征集信息,所述征集信息用于指示所述第二设备上报至少一个传输进程对应的CBG的反馈信息,所述至少一个传输进程包括所述第一传输进程;
    所述第二设备在第四时间单元内向所述第一设备发送与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第二设备在所述第三时间单元至所述第四时间单元之间未接收到与所述第一传输进程对应的CBG。
  6. 一种发送反馈信息的方法,其特征在于,包括:
    第二设备从第一设备接收第一传输块TB,所述第一TB包括多个编码块组CBG;
    所述第二设备对所述多个CBG分别进行解码;
    所述第二设备向所述第一设备发送第三反馈信息集合,其中,所述第三反馈信息集合包括与所述多个CBG一一对应的多个否定应答NACK,所述第三反馈信息集合用于指示所述多个CBG校验成功且所述第一TB校验失败。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第二设备在第一时间单元内从所述第一设备接收所述多个CBG,其中,所述多个CBG包括第一CBG和第二CBG,所述第一时间单元内接收到的所述第一CBG为解码成功的CBG,所述第一时间单元内接收到的所述第二CBG为解码失败的CBG;
    所述第二设备在第二时间单元内从所述第一设备接收所述第二CBG,所述第二设备在所述第二时间单元内未接收到所述第一CBG;
    所述第二设备生成第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第一时间单元至所述第二时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第二时间单元之后的解码状态;
    所述第二设备在第三时间单元内向所述第一设备发送所述第一反馈信息集合。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
  9. 根据权利要求8所述的方法,其特征在于,所述至少一个NACK与所述第一CBG一一对应。
  10. 根据权利要求7所述的方法,其特征在于,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
  11. 根据权利要求7或10所述的方法,其特征在于,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,所述方法还包括:
    所述第二设备从所述第一设备接收征集信息,所述征集信息用于指示所述第二设备上报至少一个传输进程对应的CBG的反馈信息,所述至少一个传输进程包括所述第一传输进程;
    所述第二设备在第四时间单元内向所述第一设备发送与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第二设备在所述第三时间单元至所述第四时间单元之间未接收到与所述第一传输进程对应的CBG。
  12. 一种接收反馈信息的方法,其特征在于,包括:
    第一设备在第五时间单元内向第二设备发送第一传输块TB,所述第一TB包括多个编码块组CBG,所述多个CBG包括所述第一设备在第六时间单元内向所述第二设备发送的第二CBG,所述多个CBG还包括所述第一设备在所述第六时间单元内不发送的第一CBG,所述第一CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码成功的CBG,所述第二CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码失败的CBG,所述第六时间单元在所述第五时间单元之后;
    所述第一设备在第七时间单元内从所述第二设备接收第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第五时间单元至所述第六时间单元之间的解码状态,所述第二反馈信息用 于反馈所述第二CBG在所述第六时间单元之后的解码状态,所述第七时间单元在所述第六时间单元之后。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一反馈信息包括至少一个否定应答NACK,其中,所述第一反馈信息用于指示所述第一TB校验失败且所述多个CBG分别校验成功。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个NACK与所述第一CBG一一对应。
  15. 根据权利要求12所述的方法,其特征在于,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
  16. 根据权利要求12或15所述的方法,其特征在于,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,所述方法还包括:
    所述第一设备向所述第二设备发送第二TB,所述第二TB包括至少一个CBG,所述第二TB对应第二传输进程;
    所述第一设备向所述第二设备发送征集信息,所述征集信息用于指示所述第二设备上报至少两个传输进程对应的CBG的反馈信息,所述至少两个传输进程包括所述第一传输进程和所述第二传输进程;
    所述第一设备在第八时间单元内从所述第二设备接收与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第一设备在所述第七时间单元至所述第八时间单元之间未向所述第二设备调度与所述第一传输进程对应的CBG。
  17. 一种接收反馈信息的方法,其特征在于,包括:
    第一设备向第二设备发送第一传输块TB,所述第一TB包括多个编码块组CBG;
    所述第一设备从所述第二设备接收第三反馈信息集合,所述第三反馈信息集合包括与所述多个CBG一一对应的多个否定应答NACK;
    所述第一设备根据所述第三反馈信息集合确定所述多个CBG校验成功且所述第一TB校验失败。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第一设备在第五时间单元内向所述第二设备发送所述多个CBG;
    所述第一设备在第六时间单元内向所述第二设备发送第二CBG,其中,所述第二CBG属于所述多个CBG,所述第二CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码失败的CBG,所述多个CBG还包括第一CBG,所述第一CBG为所述第一设备根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码成功的CBG,所述第一设备在所述第六时间单元内不发送所述第一CBG;
    所述第一设备在第七时间单元内从所述第二设备接收第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第五时间单元至所述第六时间单元之间的解码状态,所述第二反馈信息用 于反馈所述第二CBG在所述第六时间单元至所述第七时间单元之间的解码状态。
  19. 根据权利要求18所述的方法,其特征在于,
    所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
  20. 根据权利要求19所述的方法,其特征在于,所述至少一个NACK与所述第一CBG一一对应。
  21. 根据权利要求18所述的方法,其特征在于,所述第一反馈信息包括与所述第一CBG一一对应的ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
  22. 根据权利要求18或21所述的方法,其特征在于,所述第一反馈信息集合包括与所述多个CBG一一对应的多个肯定应答ACK,所述第一TB对应第一传输进程,所述方法还包括:
    所述第一设备向所述第二设备发送第二TB,所述第二TB包括至少一个CBG,所述第二TB对应第二传输进程;
    所述第一设备向所述第二设备发送征集信息,所述征集信息用于指示所述第二设备上报至少两个传输进程对应的CBG的反馈信息,所述至少两个传输进程包括所述第一传输进程和所述第二传输进程;
    所述第一设备在第八时间单元内从所述第二设备接收与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述第一设备在所述第七时间单元至所述第八时间单元之间未向所述第二设备调度与所述第一传输进程对应的CBG。
  23. 一种发送反馈信息的设备,包括处理单元和通信单元,所述处理单元和所述通信单元通信连接,其特征在于,
    所述通信单元用于从第一设备接收第一传输块TB,所述第一TB包括多个编码块组CBG,所述多个CBG包括所述通信单元在第一时间单元内接收到的第一CBG和第二CBG,所述第一时间单元内接收到的所述第一CBG为解码成功的CBG,所述第一时间单元内接收到的所述第二CBG为未解码成功的CBG;
    所述处理单元用于生成第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第一时间单元至第二时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第二时间单元之后的解码状态,所述第二时间单元是所述通信单元在所述第一时间单元之后接收到所述第二CBG的时间单元,所述通信单元在所述第二时间单元内未接收到所述第一CBG;
    所述通信单元还用于在第三时间单元内向所述第一设备发送所述处理单元生成的所述第一反馈信息集合。
  24. 根据权利要求23所述的设备,其特征在于,所述第一反馈信息包括至少一个否定应答NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
  25. 根据权利要求24所述的设备,其特征在于,所述至少一个NACK与所述第一CBG一一对应。
  26. 根据权利要求23所述的设备,其特征在于,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
  27. 根据权利要求23或26所述的设备,其特征在于,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,
    所述通信单元还用于从所述第一设备接收征集信息,所述征集信息用于指示所述设备上报至少一个传输进程对应的CBG的反馈信息,所述至少一个传输进程包括所述第一传输进程;
    所述通信单元还用于在第四时间单元内向所述第一设备发送与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述通信单元在所述第三时间单元至所述第四时间单元之间未接收到与所述第一传输进程对应的CBG。
  28. 一种发送反馈信息的设备,包括处理单元和通信单元,所述处理单元和所述通信单元通信连接,其特征在于,
    所述通信单元用于从第一设备接收第一传输块TB,所述第一TB包括多个编码块组CBG;
    所述处理单元用于对所述通信单元接收的所述多个CBG分别进行解码;
    所述通信单元还用于向所述第一设备发送所述处理单元生成的第三反馈信息集合,其中,所述第三反馈信息集合包括与所述多个CBG一一对应的多个否定应答NACK,所述第三反馈信息集合用于指示所述多个CBG校验成功且所述第一TB校验失败。
  29. 根据权利要求28所述的设备,其特征在于,
    所述通信单元还用于在第一时间单元内从所述第一设备接收所述多个CBG,其中,所述多个CBG包括第一CBG和第二CBG,所述第一时间单元内接收到的所述第一CBG为解码成功的CBG,所述第一时间单元内接收到的所述第二CBG为解码失败的CBG;
    所述通信单元还用于在第二时间单元内从所述第一设备接收所述第二CBG,所述通信单元在所述第二时间单元内未接收到所述第一CBG;
    所述处理单元还用于生成第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第一时间单元至所述第二时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第二时间单元之后的解码状态;
    所述通信单元还用于在第三时间单元内向所述第一设备发送所述第一反馈信息集合。
  30. 根据权利要求29所述的设备,其特征在于,
    所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
  31. 根据权利要求30所述的设备,其特征在于,所述至少一个NACK与所述第一CBG一一对应。
  32. 根据权利要求29所述的设备,其特征在于,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
  33. 根据权利要求29或32所述的设备,其特征在于,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,
    所述通信单元还用于从所述第一设备接收征集信息,所述征集信息用于指示所述设备上报至少一个传输进程对应的CBG的反馈信息,所述至少一个传输进程包括所述第一传输进程;
    所述通信单元还用于在第四时间单元内向所述第一设备发送与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述通信单元在所述第三时间单元至所述第四时间单元之间未接收到与所述第一传输进程对应的CBG。
  34. 一种接收反馈信息的设备,包括处理单元和通信单元,所述处理单元和所述通信单元通信连接,其特征在于,
    所述通信单元用于在第五时间单元内向第二设备发送第一传输块TB,所述第一TB包括多个编码块组CBG,所述多个CBG包括所述通信单元在第六时间单元内向所述第二设备发送的第二CBG,所述多个CBG还包括所述通信单元在所述第六时间单元内不发送的第一CBG,所述第一CBG为所述处理单元根据所述通信单元在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码成功的CBG,所述第二CBG为所述处理单元根据所述通信单元在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码失败的CBG,所述第六时间单元在所述第五时间单元之后;
    所述通信单元还用于在第七时间单元内从所述第二设备接收第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第五时间单元至所述第六时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第六时间单元之后的解码状态,所述第七时间单元在所述第六时间单元之后。
  35. 根据权利要求34所述的设备,其特征在于,
    所述第一反馈信息包括至少一个否定应答NACK,其中,所述第一反馈信息用于指示所述第一TB校验失败且所述多个CBG分别校验成功。
  36. 根据权利要求35所述的设备,其特征在于,所述至少一个NACK与所述第一CBG一一对应。
  37. 根据权利要求34所述的设备,其特征在于,所述第一反馈信息包括与所述第一CBG一一对应的肯定应答ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
  38. 根据权利要求34或37所述的设备,其特征在于,所述第一反馈信息集合包括与所述多个CBG一一对应的多个ACK,所述第一TB对应第一传输进程,
    所述通信单元用于向所述第二设备发送第二TB,所述第二TB包括至少一个CBG,所述第二TB对应第二传输进程;
    所述通信单元还用于向所述第二设备发送征集信息,所述征集信息用于指示所述第二设备上报至少两个传输进程对应的CBG的反馈信息,所述至少两个传输进程包括所述第一传输进程和所述第二传输进程;
    所述通信单元还用于在第八时间单元内从所述第二设备接收与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述通信单元在所述第七时间单元至所述第八时间单元之间未向所述第二设备调度与所述第一传输进程对应的CBG。
  39. 一种接收反馈信息的设备,包括处理单元和通信单元,所述处理单元和所述通信单元通信连接,其特征在于,
    所述通信单元用于向第二设备发送第一传输块TB,所述第一TB包括多个编码块组CBG;
    所述通信单元还用于从所述第二设备接收第三反馈信息集合,所述第三反馈信息集合包括与所述多个CBG一一对应的多个否定应答NACK;
    所述处理单元用于根据所述通信单元接收的所述第三反馈信息集合确定所述多个CBG校验成功且所述第一TB校验失败。
  40. 根据权利要求39所述的设备,其特征在于,
    所述通信单元还用于在第五时间单元内向所述第二设备发送所述多个CBG;
    所述通信单元还用于在第六时间单元内向所述第二设备发送第二CBG,其中,所述第二CBG属于所述多个CBG,所述第二CBG为所述处理单元根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码失败的CBG,所述多个CBG还包括第一CBG,所述第一CBG为所述处理单元根据在所述第五时间单元至所述第六时间单元之间接收到的反馈信息确定的所述第二设备解码成功的CBG,所述通信单元在所述第六时间单元内不发送所述第一CBG;
    所述通信单元还用于在第七时间单元内从所述第二设备接收第一反馈信息集合,其中,所述第一反馈信息集合包括第一反馈信息和第二反馈信息,所述第一反馈信息用于反馈所述第一CBG在所述第五时间单元至所述第六时间单元之间的解码状态,所述第二反馈信息用于反馈所述第二CBG在所述第六时间单元至所述第七时间单元之间的解码状态。
  41. 根据权利要求40所述的设备,其特征在于,
    所述第一反馈信息包括至少一个NACK,其中,所述第一反馈信息用于反馈所述第一TB校验失败且所述多个CBG分别校验成功。
  42. 根据权利要求41所述的设备,其特征在于,所述至少一个NACK与所述第一CBG一一对应。
  43. 根据权利要求40所述的设备,其特征在于,所述第一反馈信息包括与所述第一CBG一一对应的ACK,其中,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码失败,或者,所述第二CBG在所述第二时间单元至所述第三时间单元之间解码成功且所述第一TB校验成功。
  44. 根据权利要求40或43所述的设备,其特征在于,所述第一反馈信息集合包括与所述多个CBG一一对应的多个肯定应答ACK,所述第一TB对应第一传输进程,
    所述通信单元还用于向所述第二设备发送第二TB,所述第二TB包括至少一个CBG,所述第二TB对应第二传输进程;
    所述通信单元还用于向所述第二设备发送征集信息,所述征集信息用于指示所述第二设备上报至少两个传输进程对应的CBG的反馈信息,所述至少两个传输进程包括所述第一传输进程和所述第二传输进程;
    所述通信单元还用于在第八时间单元内从所述第二设备接收与所述第一传输进程对应的第二反馈信息集合,其中,所述第二反馈信息集合包括与所述多个CBG一一对应的多个NACK,所述通信单元在所述第七时间单元至所述第八时间单元之间未向所述第二设备调度与所述第一传输进程对应的CBG。
PCT/CN2018/078715 2017-03-23 2018-03-12 发送反馈信息的方法和设备 WO2018171455A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES18771451T ES2929934T3 (es) 2017-03-23 2018-03-12 Método y dispositivo para enviar información de retroalimentación
JP2019552054A JP7008721B2 (ja) 2017-03-23 2018-03-12 フィードバック情報送信方法およびデバイス
CN201880019313.8A CN110431783B (zh) 2017-03-23 2018-03-12 发送反馈信息的方法和设备
EP18771451.4A EP3605908B1 (en) 2017-03-23 2018-03-12 Method and device for sending feedback information
CA3057390A CA3057390C (en) 2017-03-23 2018-03-12 Feedback information sending method and device
BR112019019785A BR112019019785A2 (pt) 2017-03-23 2018-03-12 método e dispositivo de envio de informações de retorno, recebimento de informações de retorno e meio de armazenamento de computador
US16/579,441 US11303396B2 (en) 2017-03-23 2019-09-23 Feedback information sending method and device
US17/715,291 US20220231794A1 (en) 2017-03-23 2022-04-07 Feedback Information Sending Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710179901.5 2017-03-23
CN201710179901.5A CN108631950B (zh) 2017-03-23 2017-03-23 发送反馈信息的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/579,441 Continuation US11303396B2 (en) 2017-03-23 2019-09-23 Feedback information sending method and device

Publications (1)

Publication Number Publication Date
WO2018171455A1 true WO2018171455A1 (zh) 2018-09-27

Family

ID=63585023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078715 WO2018171455A1 (zh) 2017-03-23 2018-03-12 发送反馈信息的方法和设备

Country Status (8)

Country Link
US (2) US11303396B2 (zh)
EP (1) EP3605908B1 (zh)
JP (1) JP7008721B2 (zh)
CN (2) CN108631950B (zh)
BR (1) BR112019019785A2 (zh)
CA (1) CA3057390C (zh)
ES (1) ES2929934T3 (zh)
WO (1) WO2018171455A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631950B (zh) * 2017-03-23 2023-11-07 华为技术有限公司 发送反馈信息的方法和设备
US11038630B2 (en) * 2017-04-01 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Method performed by a wireless device for handling transport block for error correction
BR112019023046A2 (pt) 2017-05-03 2020-06-09 Idac Holdings Inc método para uso em uma unidade de transmissão/ recepção sem fio, e, unidade de transmissão/recepção sem fio.
US11171748B2 (en) * 2017-05-05 2021-11-09 Motorola Mobility Llc Indicating resources for transmitting modulation symbols
WO2020032768A1 (ko) * 2018-08-10 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 수신하는 방법 및 단말
EP3797520A1 (en) * 2018-10-31 2021-03-31 Huawei Technologies Co., Ltd. Transmitting and receiving devices for reliable reception of control messages
CN109699040B (zh) * 2019-03-05 2020-03-03 深圳大学 基于启发式算法的重传机制的urllc系统的资源优化方法
WO2022082675A1 (zh) * 2020-10-22 2022-04-28 华为技术有限公司 通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615986A (zh) * 2008-06-27 2009-12-30 华为技术有限公司 一种数据传输方法、装置及通信系统
CN104301077A (zh) * 2013-07-16 2015-01-21 普天信息技术研究院有限公司 一种混合重传的方法
CN105515733A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 一种反馈方法及装置
WO2016126330A1 (en) * 2015-02-03 2016-08-11 Qualcomm Incorporated Code block cluster level harq
CN107645369A (zh) * 2017-09-08 2018-01-30 深圳市金立通信设备有限公司 一种重传反馈方法、网络设备、终端设备及计算机可读介质

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20065520A0 (fi) * 2006-08-17 2006-08-17 Nokia Corp Nopea datapakettien siirtomenetelmä
CN101222304B (zh) * 2007-01-09 2013-02-06 北京三星通信技术研究有限公司 传输harq ack/nack的设备和方法
US8386878B2 (en) 2007-07-12 2013-02-26 Samsung Electronics Co., Ltd. Methods and apparatus to compute CRC for multiple code blocks
CN101978743B (zh) * 2008-03-17 2013-10-02 Lg电子株式会社 在分层小区结构中的基于小区质量的小区选择方法
WO2010005712A1 (en) 2008-06-16 2010-01-14 Interdigital Patent Holdings, Inc. Enhanced hybrid automatic repeat request for long term evolution
CN101667900B (zh) * 2008-09-02 2014-11-05 中兴通讯股份有限公司 Harq反馈方法
JP2010147755A (ja) 2008-12-18 2010-07-01 Sharp Corp 送信装置、受信装置および通信システム
WO2010109521A1 (ja) * 2009-03-25 2010-09-30 富士通株式会社 無線通信システム、移動局装置、基地局装置、及び無線通信システムにおける無線通信方法
CN101685986A (zh) * 2009-05-21 2010-03-31 复旦大学 使用超级电容的风光互补发电系统
US8942166B2 (en) * 2010-02-12 2015-01-27 Google Technology Holdings LLC Method for providing a contention based uplink channel
CN102571266B (zh) * 2011-01-04 2015-11-25 华为技术有限公司 一种传输块循环冗余校验的方法及装置
CN102255712B (zh) * 2011-07-18 2013-07-10 东南大学 长期演进系统混合自动要求重传过程软量存储分配方法
CN103095432A (zh) * 2011-11-07 2013-05-08 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
EP2685775B1 (en) * 2012-07-12 2020-05-13 Alcatel Lucent Common Resource Acquisition
US9794043B2 (en) * 2013-04-09 2017-10-17 Lg Electronics Inc. Method and device for transmitting channel status information in wireless access system
CN110266430B (zh) * 2014-04-30 2021-07-30 中兴通讯股份有限公司 一种反馈信息的处理方法、装置及系统
US10541780B2 (en) 2015-03-15 2020-01-21 Qualcomm Incorporated Code block level error correction and media access control (MAC) level hybrid automatic repeat requests to mitigate bursty puncturing and interference in a multi-layer protocol wireless system
US10091117B2 (en) * 2015-07-24 2018-10-02 Qualcomm Incorporated Code block segmentation and rate matching for multiple transport block transmissions
US10348466B2 (en) * 2015-11-03 2019-07-09 Qualcomm Incorporated Transport block segmentation and signaling
CN109155704B (zh) * 2016-05-13 2021-12-10 松下电器(美国)知识产权公司 一种用于上行链路数据分组传输的用户设备、基站和方法
US11070315B2 (en) * 2016-09-26 2021-07-20 Nokia Technologies Oy Error detection and channel coding of transport blocks
KR102561715B1 (ko) * 2016-11-24 2023-08-02 삼성전자주식회사 무선 셀룰라 통신 시스템에서 부분 재전송 방법 및 장치
GB2558564B (en) * 2017-01-05 2021-11-24 Tcl Communication Ltd Methods and devices for downlink resource sharing between URLLC and eMBB transmissions in wireless communication systems
CN108289011B (zh) * 2017-01-07 2023-11-21 华为技术有限公司 一种数据传输的方法和装置
KR102355817B1 (ko) * 2017-01-17 2022-01-26 삼성전자 주식회사 이동 통신 시스템에서의 반영속적 채널 상태 보고 방법 및 장치
CN108347311B (zh) * 2017-01-25 2021-05-11 华为技术有限公司 发送和接收反馈信息的方法、接入网设备和终端设备
CN113411892B (zh) * 2017-03-08 2023-09-29 Lg 电子株式会社 在无线通信系统中发送和接收无线电信号的方法和装置
US10454625B2 (en) * 2017-03-10 2019-10-22 Huawei Technologies Co., Ltd. System and method for employing outer codes with non-equal length codeblocks field
US10555210B2 (en) * 2017-03-15 2020-02-04 Qualcomm Incorporated Group indicator for code block group based retransmission in wireless communication
CN108631950B (zh) * 2017-03-23 2023-11-07 华为技术有限公司 发送反馈信息的方法和设备
CN110679176A (zh) * 2017-04-05 2020-01-10 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114866204B (zh) * 2017-05-05 2024-04-09 大唐移动通信设备有限公司 一种传输方法、终端设备及基站
JP2019004362A (ja) * 2017-06-16 2019-01-10 シャープ株式会社 端末装置、基地局装置、および、通信方法
US10644842B2 (en) * 2017-09-06 2020-05-05 Qualcomm Incorporated Multiplexing code block group level and transport block level transmission and new data indications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615986A (zh) * 2008-06-27 2009-12-30 华为技术有限公司 一种数据传输方法、装置及通信系统
CN104301077A (zh) * 2013-07-16 2015-01-21 普天信息技术研究院有限公司 一种混合重传的方法
CN105515733A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 一种反馈方法及装置
WO2016126330A1 (en) * 2015-02-03 2016-08-11 Qualcomm Incorporated Code block cluster level harq
CN107645369A (zh) * 2017-09-08 2018-01-30 深圳市金立通信设备有限公司 一种重传反馈方法、网络设备、终端设备及计算机可读介质

Also Published As

Publication number Publication date
CN108631950B (zh) 2023-11-07
US20220231794A1 (en) 2022-07-21
CA3057390C (en) 2023-03-21
US11303396B2 (en) 2022-04-12
BR112019019785A2 (pt) 2020-04-22
CN110431783B (zh) 2020-11-10
EP3605908A4 (en) 2021-01-20
CN108631950A (zh) 2018-10-09
EP3605908A1 (en) 2020-02-05
US20200021401A1 (en) 2020-01-16
JP2020515175A (ja) 2020-05-21
EP3605908B1 (en) 2022-09-28
ES2929934T3 (es) 2022-12-05
CA3057390A1 (en) 2018-09-27
JP7008721B2 (ja) 2022-01-25
CN110431783A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2018171455A1 (zh) 发送反馈信息的方法和设备
CN108886437B (zh) 下行数据的混合式自动重传请求反馈方法以及装置
JP7305726B2 (ja) 通信方法、ネットワークデバイス、および端末
US9622147B2 (en) System and method for performing hybrid automatic repeat request (HARQ) in a WLAN system
EP3595220B1 (en) Method and apparatus for sending and receiving feedback information
CN115720371A (zh) 上行链路控制信息重传
WO2018141281A1 (zh) 数据传输的方法和装置
WO2020164503A1 (zh) 信息传输方法、终端设备及网络设备
JP2017508408A (ja) データ送信及びフィードバック処理方法並びに装置
WO2018202029A1 (zh) 发送编码块组的方法和装置
WO2018137526A1 (zh) 控制信息的发送及接收方法、网络设备及终端设备
WO2018059169A1 (zh) 数据传输方法和装置
WO2023284460A1 (zh) 数据传输方法、数据接收方法、装置、电子设备和存储介质
WO2021062731A1 (zh) 反馈信息处理方法及相关装置
WO2018028695A1 (zh) 混合自动重传请求信息的发送、接收方法及装置
CN102868506A (zh) 一种终端调度方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3057390

Country of ref document: CA

Ref document number: 2019552054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019785

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018771451

Country of ref document: EP

Effective date: 20191023

ENP Entry into the national phase

Ref document number: 112019019785

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190923