WO2018171439A1 - 量子点发光二极管及其制备方法、阵列基板、显示装置 - Google Patents

量子点发光二极管及其制备方法、阵列基板、显示装置 Download PDF

Info

Publication number
WO2018171439A1
WO2018171439A1 PCT/CN2018/078496 CN2018078496W WO2018171439A1 WO 2018171439 A1 WO2018171439 A1 WO 2018171439A1 CN 2018078496 W CN2018078496 W CN 2018078496W WO 2018171439 A1 WO2018171439 A1 WO 2018171439A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
dot light
light emitting
electron transport
Prior art date
Application number
PCT/CN2018/078496
Other languages
English (en)
French (fr)
Inventor
何月娣
鲍里斯克里斯塔尔
陈卓
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/305,052 priority Critical patent/US10998519B2/en
Publication of WO2018171439A1 publication Critical patent/WO2018171439A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof

Definitions

  • the present disclosure relates to the field of optoelectronic technologies, and in particular, to a quantum dot light emitting diode, a method for fabricating the same, an array substrate, and a display device.
  • Quantum dots also known as semiconductor nanocrystals, are a new type of nano-fluorescent material. Compared with traditional organic fluorescent materials, it has many advantages, such as wide excitation spectrum, narrow emission spectrum, high fluorescence intensity, adjustable wavelength of light, good light and heat, and good chemical stability, making it suitable in the field of optoelectronic technology. Broad application prospects.
  • the quantum dot organic light-emitting device prepared by the quantum dot material is an optoelectronic device with great academic value and good commercial prospect, and has the following advantages: low power consumption, high efficiency, fast response speed and light weight; Area film formation; and, more importantly, the physical properties of the inorganic material itself can overcome the thermal decay, photochemical decay and the like of the organic light-emitting material in the OLED (Organic Light-Emitting Diode), greatly extending the device Service life.
  • a quantum dot light-emitting layer is sandwiched between an organic hole transport layer and an inorganic electron transport layer, and has a sandwich structure.
  • electron hole injection imbalance occurs, and the charge transfer efficiency is inconsistent, resulting in a relatively low efficiency of the quantum dot light emitting diode.
  • a quantum dot light emitting diode includes: a first electrode layer, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a second electrode layer which are sequentially formed on a base substrate; a buffer layer between the quantum dot light-emitting layer and the electron transport layer, the buffer layer and the electron transport layer being disposed such that a difference between an electron injection rate and a hole transport rate of the quantum dot light-emitting layer is smaller than Preset threshold.
  • the thickness of the buffer layer and the electron transport layer are set such that a difference between an electron injection rate and a hole transport rate of the quantum dot light-emitting layer is less than a preset threshold.
  • the preset threshold is less than 1/10 of a hole transmission rate of the quantum dot luminescent layer.
  • the material for preparing the buffer layer satisfies the following conditions: particle size ⁇ 3 nm; electron mobility is on the order of 10 4 - 10 6 cm 2 /V ⁇ s.
  • the material for preparing the buffer layer is graphene.
  • the thickness of the buffer layer is from 1% to 20% of the thickness of the electron transport layer.
  • the material for preparing the electron transport layer comprises at least one of an organic electron transport material and zinc oxide
  • the material for preparing the electron transport layer comprises: 2,9-dimethyl-4,7-biphenyl -1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 1,3,5-tris(4-pyridin-3-ylphenyl)benzene, 8-hydroxyl Quinoline aluminum (Alq3), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole and bis[2- At least one of (2-pyridyl)phenol]anthracene.
  • an array substrate including a support substrate and the above-described quantum dot light emitting diode disposed on the support substrate.
  • a display device including the above-described quantum dot light emitting diode is provided.
  • a method of fabricating a quantum dot light emitting diode comprising:
  • a buffer layer over the quantum dot light emitting layer, the buffer layer and the electron transport layer being disposed such that a difference between an electron injection rate and a hole transport rate of the quantum dot light emitting layer is less than a preset threshold;
  • a second electrode layer is formed over the electron transport layer.
  • the thickness of the buffer layer and the electron transport layer are set such that a difference between an electron injection rate and a hole transport rate of the quantum dot light-emitting layer is less than a preset threshold.
  • the preset threshold is less than 1/10 of a hole transmission rate of the quantum dot luminescent layer.
  • the material for preparing the buffer layer satisfies the following conditions: particle size ⁇ 3 nm; electron mobility is on the order of 10 4 - 10 6 cm 2 /V ⁇ s.
  • the thickness of the buffer layer is from 1% to 20% of the thickness of the electron transport layer.
  • forming a buffer layer over the quantum dot layer comprises using a graphene to prepare a buffer layer on the quantum dot light emitting layer by a spin coating process.
  • forming the electron transport layer over the buffer layer comprises preparing an electron transport layer on the buffer layer by a spin coating process, an evaporation process, or a magnetron sputtering process.
  • FIG. 1 is a schematic structural view of a quantum dot light emitting diode in an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing the structure of a quantum dot light-emitting layer and an electron transport layer in the related art
  • FIG. 3 is a schematic structural view of an electron point light-emitting layer, a buffer layer, and an electron transport layer in an embodiment of the present disclosure
  • FIG. 4 is a schematic view showing the structure of a buffer layer in an embodiment of the present disclosure.
  • the HOMO of the organic hole transporting material (the orbit that has the highest energy level of electrons is called the highest occupied orbit, expressed by HOMO) has an energy level in the range of -5.0eV-6.0eV, and the quantum dot valence band is located. -6.0eV-7.0eV range, there is a large hole injection barrier; Further, the mobility of the majority of the organic hole transporting material ⁇ 10- 4 cm 2 V- 1 S -1, is not conducive to the hole injection devices And transport; and the inorganic electron transport material has a high electron mobility (10 - 3 cm2V - 1 S -1 ).
  • the embodiment provides a quantum dot light emitting diode, comprising: a first electrode layer 1 , a hole transport layer 3 , a quantum dot light emitting layer 4 , an electron transport layer 6 , and a layer formed on a substrate substrate. a second electrode layer 7; and a buffer layer 5 between the quantum dot light-emitting layer 4 and the electron transport layer 6, the buffer layer and the electron transport layer 6 being disposed such that electron injection of the quantum dot light-emitting layer 4 The difference between the rate and the hole transmission rate is less than a preset threshold.
  • a hole injection layer 2 is further provided between the first electrode layer 1 and the hole transport layer 3.
  • the first electrode layer 1 is a transparent first electrode.
  • the second electrode layer 7 is a metal second electrode.
  • the buffer layer 5 is disposed such that the difference between the electron injection rate and the hole transport rate of the quantum dot light-emitting layer 4 is less than a preset threshold, thereby promoting the transport balance of holes and electrons in the quantum dot light-emitting layer 4.
  • the thickness of the buffer layer and the electron transport layer are set such that a difference between an electron injection rate and a hole transport rate of the quantum dot light-emitting layer is less than a preset threshold.
  • the preset threshold is less than 1/10 of a hole transmission rate of the quantum dot luminescent layer.
  • the material for preparing the buffer layer 5 satisfies the following conditions: particle size ⁇ 3 nm; electron mobility is on the order of 10 4 - 10 6 cm 2 /V ⁇ s.
  • the material for preparing the buffer layer 5 is graphene.
  • graphene can play the following roles:
  • Graphene has extremely high conductivity, which facilitates enhanced electron coupling, enabling electrons to be rapidly transferred from the electron transport layer 6 to the quantum dot light-emitting layer 4, thereby increasing the selection range of the electron transport layer 6 material without having to It is limited to the selection of the ZnO nanoparticle film generally used in the prior art, and for example, an organic electron transport material or a sputtered ZnO film may be selected.
  • the thickness of the buffer layer 5 can be increased, thereby increasing electron emission from the electron transport layer 6 to the quantum dot.
  • the transmission path of layer 4 thereby reducing the amount of electrons entering the quantum dot light-emitting layer 4 per unit time, thereby balancing the hole transport and electron transport in the quantum dot light-emitting layer 4, that is, the difference between the electron transport rate and the hole transport rate.
  • the value is within the preset threshold range.
  • the graphene When the electron transport rate of the electron transport layer 6 is low, the graphene has extremely high conductivity, which is advantageous for enhancing the characteristics of electron coupling, so that electrons can be rapidly transferred from the electron transport layer 6 to the quantum dot light-emitting layer 4, and The balance of hole transport and electron transport in the quantum dot light-emitting layer 4 is adjusted by adjusting the thickness of the graphene.
  • the thickness of the buffer layer 5 is 1%-20% of the thickness of the electron transport layer 6.
  • the buffer layer 5 has a thickness of 0.5 nm to 50 nm.
  • the buffer layer 5 has a thickness of 40 nm.
  • the thickness of the first electrode layer 1 may be 70 nm to 200 nm; the thickness of the hole transport layer 3 may be 50 nm to 100 nm; the thickness of the quantum dot light emitting layer 4 may be 10 nm to 60 nm; electron transport The thickness of the layer 6 may be 40 nm to 150 nm; the thickness of the second electrode layer 7 may be 80 nm to 150 nm.
  • the material for preparing the electron transport layer 6 may be at least one of an organic electron transporting material and zinc oxide, and the organic electron transporting material for preparing the electron transporting layer comprises: 2,9-dimethyl-4. 7-biphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), 1,3,5-tris(4-pyridine-3 -phenylphenyl)benzene, 8-hydroxyquinoline aluminum (Alq3), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2 At least one of 4-triazole (TAZ) and bis[2-(2-pyridyl)phenol]anthracene (Be(PP) 2 ).
  • BCP 2,9-dimethyl-4. 7-biphenyl-1,10-phenanthroline
  • Bphen 4,7-diphenyl-1,10-phenanthroline
  • the present disclosure also provides an array substrate including a support substrate and the above-described quantum dot light emitting diode disposed on the support substrate.
  • the present disclosure also provides a display device including the above quantum dot light emitting diode.
  • the present disclosure also provides a method of preparing a quantum dot light emitting diode, comprising:
  • a buffer layer 5 over the quantum dot light-emitting layer 4 Forming a buffer layer 5 over the quantum dot light-emitting layer 4, the buffer layer 5 and the electron transport layer being disposed such that a difference between an electron injection rate and a hole transport rate of the quantum dot light-emitting layer is less than a pre- Set a threshold;
  • a second electrode layer 7 is formed over the electron transport layer 6.
  • forming the first electrode layer 1 on the base substrate specifically includes:
  • the patterned transparent conductive film substrate is washed with acetone, ethanol, deionized water, or isopropyl alcohol, and subjected to plasma or ultraviolet light UV irradiation treatment to obtain the first electrode layer 1.
  • forming the hole injection layer 2 on the first electrode layer 1 specifically includes:
  • the hole injection layer 2 is prepared on the first electrode layer 1 by a spin coating process.
  • forming the hole transport layer 3 on the hole injection layer 2 specifically includes:
  • the hole transport layer 3 was prepared on the hole injection layer 2 by a spin coating process.
  • forming the quantum dot luminescent layer 4 on the hole transport layer 3 specifically includes:
  • a quantum dot film is formed on the hole transport layer 3 by a spin coating process, and the quantum dot film is a quantum dot light emitting layer 4.
  • forming the buffer layer 5 on the quantum dot layer specifically includes:
  • the buffer layer 5 is prepared by using a graphene on the quantum dot light-emitting layer 4 by a spin coating process.
  • forming the electron transport layer 6 on the buffer layer 5 specifically includes:
  • the electron transport layer 6 is prepared on the buffer layer 5 by a spin coating process, an evaporation process, or a magnetron sputtering process.
  • forming the second electrode layer 7 on the electron transport layer 6 specifically includes: preparing a metal second electrode layer 7 on the electron transport layer 6 by a vacuum evaporation process, wherein the degree of vacuum is ⁇ 10 -6 Torr, plating rate of 1-5 angstroms per second, was annealed in a nitrogen atmosphere at a temperature of 140 ° C - 150 ° C for 30 minutes.
  • the patterned transparent conductive film substrate is washed with acetone, ethanol, deionized water, or isopropyl alcohol, and subjected to plasma or ultraviolet light UV irradiation treatment to obtain a transparent first electrode layer 1.
  • PEDOT:PSS solution an aqueous solution of a polymer in which PEDOT is poly(3,4-ethylenedioxythiophene) and PSS is a polystyrene sulfonate
  • a spin coating process Annealing at 120 ° C for 20 minutes forms a dense PEDOT:PSS film, that is, hole injection layer 2.
  • the hole transport layer 3 was formed: a PVK (polyvinylcarbazole) solution was applied onto the PEDOT:PSS layer by a spin coating process, and annealed at 130 ° C for 20 minutes to form a PVK film, that is, a hole transport layer 3.
  • PVK polyvinylcarbazole
  • the upper quantum dot solution was coated on the hole transport layer 3 by a spin coating process, and annealed at 120 ° C for 20 minutes to form a quantum dot light-emitting layer 4.
  • the graphene solution was applied onto the quantum dot light-emitting layer 4 by a spin coating process, and annealed at 100 ° C for 10 minutes to form a buffer layer 5.
  • Bphen is vacuum-deposited on the buffer layer 5 by an evaporation process to form an electron transport layer 6.
  • An Al cathode is vacuum-deposited on the electron transport layer 6 by an evaporation process to form a second electrode layer 7.
  • the quantum dot light emitting diode is fabricated as follows:
  • the patterned transparent conductive film substrate is washed with acetone, ethanol, deionized water, or isopropyl alcohol, and subjected to plasma or ultraviolet light UV irradiation treatment to obtain a transparent first electrode layer 1.
  • the PEDOT:PSS solution was coated on the treated substrate by a spin coating process and annealed at 120 ° C for 20 minutes to form a dense PEDOT:PSS film, that is, the hole injection layer 2.
  • the PVK solution was coated on the PEDOT:PSS layer by a spin coating process and annealed at 130 ° C for 20 minutes to form a PVK film, that is, a hole transport layer 3.
  • the upper quantum dot solution was coated on the PVK layer by a spin coating process, and annealed at 120 ° C for 20 minutes to form a quantum dot light-emitting layer 4.
  • the graphene solution was applied onto the quantum dot light-emitting layer 4 by a spin coating process, and annealed at 100 ° C for 10 minutes to form a buffer layer 5.
  • ZnO is sputtered on the buffer layer 5 by a magnetron sputtering process to form an electron transport layer 6.
  • An Al cathode is vacuum-deposited on the electron transport layer 6 by an evaporation process to form a second electrode layer 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子点发光二极管及其制作方法以及包含该量子点发光二极管的阵列基板和显示装置,该量子点发光二极管包括:在衬底基板上依次形成的第一电极层(1)、空穴传输层(3)、量子点发光层(4)、电子传输层(6)、第二电极层(7);以及在量子点发光层(4)和所述电子传输层(6)之间的缓冲层(5),所述缓冲层(5)被设置为使得所述量子点发光层(4)的电子注入速率和空穴传输速率之间的差值小于预设阈值。

Description

量子点发光二极管及其制备方法、阵列基板、显示装置
相关申请的交叉参考
本申请主张在2017年3月23日在中国提交的中国专利申请号No.201710180462.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及光电子技术领域,尤其涉及一种量子点发光二极管及其制备方法、阵列基板、显示装置。
背景技术
量子点(quantum dots),又称半导体纳米晶,是一种新型的纳米荧光材料。与传统的有机荧光原料相比有着很多的优点,例如,具有宽激发光谱、窄发射谱、高荧光强度、发光波长可调、光和热及化学稳定性好,使得其在光电子学技术领域具有广阔的应用前景。由量子点材料制备的量子点有机发光器件是一种具有巨大的学术价值和良好的商业前景的光电子器件,具有如下以下优点:低功耗、高效率、响应速度快和重量轻等;可以大面积成膜;以及,更主要的是由于无机材料本身的物理性质可以克服OLED(有机发光二极管,Organic Light-Emitting Diode)中的有机发光材料的热衰变、光化学衰变等问题,极大的延长器件使用寿命。
目前,传统的有机-无机杂化QLED(量子点发光二极管,Quantum dot light-emitting diode)器件中,量子点发光层夹在有机空穴传输层和无机电子传输层中间,呈三明治结构。然而现有器件中会出现电子空穴注入不平衡,电荷传输效率不一致的现象,导致量子点发光二极管效率也相对较低。
发明内容
根据本公开的一个方面,提供一种量子点发光二极管,包括:在衬底基板上依次形成的第一电极层、空穴传输层、量子点发光层、电子传输层和第二电极层;以及在量子点发光层和所述电子传输层之间的缓冲层,所述缓冲 层与电子传输层被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值小于预设阈值。
可选地,所述缓冲层和电子传输层的厚度被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值小于预设阈值。
可选地,所述预设阈值小于所述量子点发光层的空穴传输速率的1/10。
可选地,制备所述缓冲层的材料满足以下条件:颗粒大小≤3nm;电子迁移率为10 4-10 6cm 2/V·s的量级。
可选地,制备所述缓冲层的材料为石墨烯。
可选地,所述缓冲层的厚度是所述电子传输层的厚度的1%-20%。
可选地,制备所述电子传输层的材料包括有机电子传输材料和氧化锌中的至少一种,制备所述电子传输层的材料包括:2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、4,7-二苯基-1,10-菲罗啉、1,3,5-三(4-吡啶-3-基苯基)苯、8-羟基喹啉铝(Alq3)、3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑和双[2-(2-吡啶基)苯酚]铍中的至少一种。
根据本公开的另一方面,提供一种阵列基板,包括支撑基板以及设置于所述支撑基板上的上述量子点发光二极管。
根据本公开的再一方面,提供一种显示装置,包括上述的量子点发光二极管。
根据本公开的再一方面,提供一种制备量子点发光二极管的方法,包括:
在衬底基板上形成第一电极层;
在所述第一电极层之上形成空穴注入层;
在所述空穴注入层之上形成空穴传输层;
在所述空穴传输层之上形成量子点发光层;
在所述量子点发光层之上形成缓冲层,所述缓冲层与电子传输层被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值小于预设阈值;
在所述缓冲层之上形成电子传输层;以及
在所述电子传输层之上形成第二电极层。
可选地,所述缓冲层和电子传输层的厚度被设置为使得所述量子点发光 层的电子注入速率和空穴传输速率之间的差值小于预设阈值。
可选地,所述预设阈值小于所述量子点发光层的空穴传输速率的1/10。
可选地,制备所述缓冲层的材料满足以下条件:颗粒大小≤3nm;电子迁移率为10 4-10 6cm 2/V·s的量级。
可选地,所述缓冲层的厚度是所述电子传输层的厚度的1%-20%。
可选地,在所述量子点层之上形成缓冲层包括利用旋涂工艺在所述量子点发光层上采用石墨烯制备缓冲层。
可选地,在所述缓冲层之上形成电子传输层包括利用旋涂工艺、蒸镀工艺或磁控溅射工艺在所述缓冲层上制备电子传输层。
附图说明
图1表示本公开实施例中量子点发光二极管结构示意图;
图2表示相关技术中量子点发光层与电子传输层结构示意图;
图3表示本公开实施例中电子点发光层、缓冲层、电子传输层结构示意图;
图4表示本公开实施例中缓冲层结构示意图。
具体实施方式
以下结合附图对本公开的特征和原理进行详细说明,所举实施例仅用于解释本公开,并不是限制本公开的保护范围。
申请人发现,有机空穴传输材料的HOMO(已占有电子的能级最高的轨道称为最高已占轨道,用HOMO表示)能级位于-5.0eV-6.0eV范围,量子点价带能级位于-6.0eV-7.0eV范围,存在较大的空穴注入势垒;另外,多数有机空穴传输材料的迁移率<10- 4cm 2V- 1S -1,不利于器件中的空穴注入和传输;而无机电子传输材料具有较高的电子迁移率(10- 3cm2V- 1S -1)。
如图1所示,本实施例提供一种量子点发光二极管,包括:在衬底基板上依次形成的第一电极层1、空穴传输层3、量子点发光层4、电子传输层6和第二电极层7;以及在量子点发光层4和所述电子传输层6之间的缓冲层5,所述缓冲层和电子传输层6被设置为使得所述量子点发光层4的电子注入速 率和空穴传输速率之间的差值小于预设阈值。
在本实施例中,所述第一电极层1和所述空穴传输层3之间还设有空穴注入层2。
可选地,所述第一电极层1为透明第一电极。
可选地,所述第二电极层7为金属第二电极。
缓冲层5被设置为使得所述量子点发光层4的电子注入速率和空穴传输速率之间的差值小于预设阈值,从而促进量子点发光层4中空穴和电子的输送平衡。
可选地,所述缓冲层和电子传输层的厚度被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值小于预设阈值。
可选地,所述预设阈值小于所述量子点发光层的空穴传输速率的1/10。
本实施例中,制备所述缓冲层5的材料满足以下条件:颗粒大小≤3nm;电子迁移率为10 4-10 6cm 2/V·s的量级。
可选地,制备所述缓冲层5的材料为石墨烯。
石墨烯作为缓冲层5,能起到以下作用:
1、由于石墨烯非常致密,能够填补量子点间的孔隙,同时形成致密的石墨烯膜,从而改善成膜性,如图3所示。通过相关技术的附图2与图3比较,并结合附图4,可以看出:由于石墨烯10颗粒较小,填补了量子点8间的孔隙;并且石墨烯膜非常致密,其利于电子的传输。
2、石墨烯具有极高的导电性,利于增强电子耦合,使得电子能够快速地从电子传输层6转移到量子点发光层4,从而使电子传输层6材料的选择范围增大,而不必仅限于选择现有技术中通常所用的ZnO纳米粒子薄膜,例如可以选择有机电子传输材料或者溅射ZnO膜。
3、通过调节石墨烯层与相邻的电子传输层6的综合迁移率,使其与空穴传输层3的迁移率相匹配,从而促进量子点发光层4中空穴和电子的输送平衡。
当电子传输层6的电子传输速率较高,即电子传输速率与空穴传输速率相差超出预设阈值范围时,可以增加缓冲层5的厚度,从而增加了电子从电子传输层6到量子点发光层4的传输路程,进而减少了单位时间内进入量子 点发光层4的电子的数量,因此使得量子点发光层4中空穴传输和电子传输实现平衡,即电子传输速率与空穴传输速率的差值位于预设阈值范围内。
当电子传输层6的电子传输速率较低时,通过石墨烯具有极高的导电性,利于增强电子耦合的特性,使得电子能够快速地从电子传输层6转移到量子点发光层4,并且可通过调整石墨烯的厚度以使得量子点发光层4中空穴传输和电子传输的平衡。
可选地,所述缓冲层5的厚度是所述电子传输层6的厚度的1%-20%。
可选地,所述缓冲层5的厚度为0.5nm-50nm。
可选地,所述缓冲层5的厚度为40nm。
关于其他各层的厚度,例如,第一电极层1的厚度可以为70nm-200nm;空穴传输层3的厚度可以为50nm-100nm;量子点发光层4的厚度可以为10nm-60nm;电子传输层6的厚度可以为40nm-150nm;第二电极层7的厚度可以为80nm-150nm。
本实施例中,制备所述电子传输层6的材料可以是有机电子传输材料和氧化锌中的至少一种,制备电子传输层的有机电子传输材料包括:2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP)、4,7-二苯基-1,10-菲罗啉(Bphen)、1,3,5-三(4-吡啶-3-基苯基)苯、8-羟基喹啉铝(Alq3)、3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑(TAZ)和双[2-(2-吡啶基)苯酚]铍(Be(PP) 2)中的至少一种。
本公开还提供一种阵列基板,包括支撑基板以及设置于所述支撑基板上的上述的量子点发光二极管。
本公开还提供一种显示装置,包括上述的量子点发光二极管。
本公开还提供一种制备量子点发光二极管的方法,包括:
在衬底基板上形成第一电极层1;
在所述第一电极层1之上形成空穴注入层2;
在所述空穴注入层2之上形成空穴传输层3;
在所述空穴传输层3之上形成量子点发光层4;
在所述量子点发光层4之上形成缓冲层5,所述缓冲层5与电子传输层被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值 小于预设阈值;
在所述缓冲层5之上形成电子传输层6;以及
在所述电子传输层6之上形成第二电极层7。
可选地,在衬底基板上形成第一电极层1具体包括:
利用丙酮、乙醇、去离子水、异丙醇对已经图案化的透明导电膜基板清洗,并采用等离子体或紫外光线UV照射处理,得到所述第一电极层1。
可选地,在所述第一电极层1之上形成空穴注入层2具体包括:
利用旋涂工艺在所述第一电极层1上制备空穴注入层2。
可选地,在所述空穴注入层2之上形成空穴传输层3具体包括:
利用旋涂工艺在所述空穴注入层2上制备空穴传输层3。
可选地,在所述空穴传输层3之上形成量子点发光层4具体包括:
利用旋涂工艺在所述空穴传输层3上制备一层量子点薄膜,该量子点薄膜为量子点发光层4。
可选地,在所述量子点层之上形成缓冲层5具体包括:
利用旋涂工艺在所述量子点发光层4上采用石墨烯制备缓冲层5。
可选地,在所述缓冲层5之上形成电子传输层6具体包括:
利用旋涂工艺、蒸镀工艺或磁控溅射工艺在所述缓冲层5上制备电子传输层6。
可选地,在所述电子传输层6之上形成第二电极层7具体包括:利用真空蒸镀工艺在所述电子传输层6上制备金属第二电极层7,其中真空度<10 -6torr,镀率为1-5埃每秒,在140℃-150℃手套箱内氮气环境下退火30分钟。
以下具体介绍量子点发光二极管的制作方法:
利用丙酮、乙醇、去离子水、异丙醇对已经图案化的透明导电膜基板清洗,并采用等离子体或紫外光线UV照射处理,得到透明第一电极层1。
在处理好的基板上利用旋涂工艺涂布上PEDOT:PSS溶液(高分子聚合物的水溶液,其中PEDOT是聚(3,4-乙烯二氧噻吩),PSS是聚苯乙烯磺酸盐),在120℃下退火20分钟,形成致密的PEDOT:PSS薄膜,即空穴注入层2。
制作空穴传输层3:在PEDOT:PSS层上利用旋涂工艺涂布上PVK(聚乙烯咔唑)溶液,在130℃下退火20分钟,形成PVK薄膜,即空穴传输层3。
在空穴传输层3上利用旋涂工艺涂布上量子点溶液,在120℃下退火20分钟,形成量子点发光层4。
在量子点发光层4上利用旋涂工艺涂布上石墨烯溶液,在100℃下退火10分钟,形成缓冲层5。
在缓冲层5上利用蒸镀工艺真空蒸镀上Bphen,形成电子传输层6。
在电子传输层6上利用蒸镀工艺真空蒸镀上Al阴极,形成第二电极层7。
本实施例另一实施方式中,量子点发光二极管的制作方法如下:
利用丙酮、乙醇、去离子水、异丙醇对已经图案化的透明导电膜基板清洗,并采用等离子体或紫外光线UV照射处理,得到透明第一电极层1。
在处理好的基板上利用旋涂工艺涂布上PEDOT:PSS溶液,在120℃下退火20分钟,形成致密的PEDOT:PSS薄膜,即空穴注入层2。
在PEDOT:PSS层上利用旋涂工艺涂布上PVK溶液,在130℃下退火20分钟,形成PVK薄膜,即空穴传输层3。
在PVK层上利用旋涂工艺涂布上量子点溶液,在120℃下退火20分钟,形成量子点发光层4。
在量子点发光层4上利用旋涂工艺涂布上石墨烯溶液,在100℃下退火10分钟,形成缓冲层5。
在缓冲层5上利用磁控溅射工艺溅射上ZnO,形成电子传输层6。
在电子传输层6上利用蒸镀工艺真空蒸镀上Al阴极,形成第二电极层7。
以上所述为本公开可选实施例,需要说明的是,对于本领域普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开保护范围。

Claims (16)

  1. 一种量子点发光二极管,包括:在衬底基板上依次形成的第一电极层、空穴传输层、量子点发光层、电子传输层和第二电极层;以及,在量子点发光层和所述电子传输层之间的缓冲层,所述缓冲层与电子传输层被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值小于预设阈值。
  2. 根据权利要求1所述的量子点发光二极管,其特征在于,所述缓冲层和电子传输层的厚度被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值小于预设阈值。
  3. 根据权利要求1或2所述的量子点发光二极管,其特征在于,所述预设阈值小于所述量子点发光层的空穴传输速率的1/10。
  4. 根据权利要求1-3中任一项所述的量子点发光二极管,其特征在于,制备所述缓冲层的材料满足以下条件:颗粒大小≤3nm;电子迁移率为10 4cm 2/V·s-10 6cm 2/V·s的量级。
  5. 根据权利要求4所述的量子点发光二极管,其特征在于,制备所述缓冲层的材料为石墨烯。
  6. 根据权利要求5所述的量子点发光二极管,其特征在于,所述缓冲层的厚度是所述电子传输层的厚度的1%-20%。
  7. 根据权利要求1-6中任一项所述的量子点发光二极管,其特征在于,构成所述电子传输层的材料包括有机电子传输材料和氧化锌中的至少一种,构成所述电子传输层的材料包括:2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、4,7-二苯基-1,10-菲罗啉、1,3,5-三(4-吡啶-3-基苯基)苯、8-羟基喹啉铝、3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑和双[2-(2-吡啶基)苯酚]铍中的至少一种。
  8. 一种阵列基板,包括支撑基板以及设置于所述支撑基板上的权利要求1-7任一项所述的量子点发光二极管。
  9. 一种显示装置,包括权利要求8所述的阵列基板。
  10. 一种制备量子点发光二极管的方法,包括:
    在衬底基板上形成第一电极层;
    在所述第一电极层之上形成空穴注入层;
    在所述空穴注入层之上形成空穴传输层;
    在所述空穴传输层之上形成量子点发光层;
    在所述量子点发光层之上形成缓冲层,所述缓冲层与电子传输层被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值小于预设阈值;
    在所述缓冲层之上形成电子传输层;以及
    在所述电子传输层之上形成第二电极层。
  11. 根据权利要求10所述的方法,其特征在于,所述缓冲层和电子传输层的厚度被设置为使得所述量子点发光层的电子注入速率和空穴传输速率之间的差值小于预设阈值。
  12. 根据权利要求10或11所述的方法,其特征在于,所述预设阈值小于所述量子点发光层的空穴传输速率的1/10。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,制备所述缓冲层的材料满足以下条件:颗粒大小≤3nm;电子迁移率为10 4cm 2/V·s-10 6cm 2/V·s的量级。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,所述缓冲层的厚度是所述电子传输层的厚度的1%-20%。
  15. 根据权利要求10-14中任一项所述的方法,其特征在于,在所述量子点层之上形成缓冲层包括:
    利用旋涂工艺在所述量子点发光层上采用石墨烯制备缓冲层。
  16. 根据权利要求10-14中任一项所述的方法,其特征在于,在所述缓冲层之上形成电子传输层包括:
    利用旋涂工艺、蒸镀工艺或磁控溅射工艺在所述缓冲层上制备电子传输层。
PCT/CN2018/078496 2017-03-23 2018-03-09 量子点发光二极管及其制备方法、阵列基板、显示装置 WO2018171439A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/305,052 US10998519B2 (en) 2017-03-23 2018-03-09 Quantum dot light-emitting diode, method for preparing the same, array substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710180462.X 2017-03-23
CN201710180462.XA CN106816545B (zh) 2017-03-23 2017-03-23 量子点发光二极管及其制作方法、阵列基板、显示装置

Publications (1)

Publication Number Publication Date
WO2018171439A1 true WO2018171439A1 (zh) 2018-09-27

Family

ID=59115373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078496 WO2018171439A1 (zh) 2017-03-23 2018-03-09 量子点发光二极管及其制备方法、阵列基板、显示装置

Country Status (3)

Country Link
US (1) US10998519B2 (zh)
CN (1) CN106816545B (zh)
WO (1) WO2018171439A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816545B (zh) * 2017-03-23 2021-03-02 京东方科技集团股份有限公司 量子点发光二极管及其制作方法、阵列基板、显示装置
CN110277421B (zh) * 2018-03-16 2021-10-29 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN108447998A (zh) * 2018-03-19 2018-08-24 京东方科技集团股份有限公司 量子点发光器件及制备方法、量子点发光显示装置
CN110970567B (zh) * 2018-09-29 2021-08-10 Tcl科技集团股份有限公司 一种量子点发光二极管
US20210013437A1 (en) * 2018-09-29 2021-01-14 Tcl Technology Group Corporation Quantum dot light-emitting diode
CN110970568B (zh) * 2018-09-29 2021-08-10 Tcl科技集团股份有限公司 一种量子点发光二极管
US20220013744A1 (en) * 2018-10-30 2022-01-13 Sharp Kabushiki Kaisha Light-emitting element, method for manufacturing light-emitting element
CN111384298B (zh) * 2018-12-28 2021-07-06 Tcl科技集团股份有限公司 复合材料、薄膜及其制备方法、量子点发光二极管
WO2021044634A1 (ja) * 2019-09-06 2021-03-11 シャープ株式会社 表示装置、およびその製造方法
CN111029475A (zh) * 2019-11-25 2020-04-17 深圳市华星光电半导体显示技术有限公司 显示器及其制备方法
KR20220003356A (ko) * 2020-07-01 2022-01-10 삼성전자주식회사 발광 소자 및 이를 포함하는 표시 장치
CN114531924A (zh) * 2020-09-23 2022-05-24 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示装置
CN114566598A (zh) * 2020-11-27 2022-05-31 京东方科技集团股份有限公司 一种发光器件、显示装置和制作方法
CN113193130A (zh) * 2021-04-02 2021-07-30 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044391A1 (en) * 2009-10-07 2011-04-14 Qd Vision, Inc. Device including quantum dots
CN103000813A (zh) * 2012-10-23 2013-03-27 京东方科技集团股份有限公司 发光二极管及其制备方法
CN105514290A (zh) * 2015-12-28 2016-04-20 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN106410055A (zh) * 2016-11-07 2017-02-15 Tcl集团股份有限公司 一种量子点发光二极管及制备方法
CN106816545A (zh) * 2017-03-23 2017-06-09 京东方科技集团股份有限公司 量子点发光二极管及其制作方法、阵列基板、显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096004A1 (en) * 2006-10-25 2010-04-22 Unidym, Inc. Solar cell with nanostructure electrode(s)
KR100879477B1 (ko) * 2007-10-11 2009-01-20 삼성모바일디스플레이주식회사 유기 발광 소자
KR101105842B1 (ko) 2008-10-29 2012-01-18 한국기초과학지원연구원 환상형 타겟 마그네트론 스퍼터링 장치
FR2957718B1 (fr) * 2010-03-16 2012-04-20 Commissariat Energie Atomique Diode electroluminescente hybride a rendement eleve
KR101794645B1 (ko) * 2010-11-04 2017-11-07 엘지디스플레이 주식회사 양자 발광 소자
CN102903855A (zh) * 2012-10-22 2013-01-30 东南大学 一种量子点电致发光器件及其制备方法
CN103904178B (zh) * 2014-04-11 2016-08-17 浙江大学 量子点发光器件
CN105261707B (zh) * 2015-09-08 2017-06-06 河南大学 一种新型量子点发光器件
KR102292768B1 (ko) * 2015-10-13 2021-08-25 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN105576139B (zh) * 2016-01-06 2017-11-07 京东方科技集团股份有限公司 一种量子点电致发光二极管及其制备方法、显示器
CN105449112B (zh) * 2016-01-12 2018-04-20 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置与照明装置
CN108699054B (zh) * 2016-03-15 2022-06-28 陶氏环球技术有限责任公司 有机电致发光化合物和其有机电致发光器件
CN106374051A (zh) * 2016-11-15 2017-02-01 Tcl集团股份有限公司 一种qled、制备方法及发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044391A1 (en) * 2009-10-07 2011-04-14 Qd Vision, Inc. Device including quantum dots
CN103000813A (zh) * 2012-10-23 2013-03-27 京东方科技集团股份有限公司 发光二极管及其制备方法
CN105514290A (zh) * 2015-12-28 2016-04-20 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN106410055A (zh) * 2016-11-07 2017-02-15 Tcl集团股份有限公司 一种量子点发光二极管及制备方法
CN106816545A (zh) * 2017-03-23 2017-06-09 京东方科技集团股份有限公司 量子点发光二极管及其制作方法、阵列基板、显示装置

Also Published As

Publication number Publication date
US20200321546A1 (en) 2020-10-08
CN106816545B (zh) 2021-03-02
CN106816545A (zh) 2017-06-09
US10998519B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2018171439A1 (zh) 量子点发光二极管及其制备方法、阵列基板、显示装置
JP6930016B2 (ja) エンハンスメント層を有するoledデバイス
WO2019105431A1 (zh) 量子点电致发光器件及显示器
Ahn et al. Impact of Interface Mixing on the Performance of Solution Processed Organic Light Emitting Diodes Impedance and Ultraviolet Photoelectron Spectroscopy Study
Triana et al. Bright inverted quantum-dot light-emitting diodes by all-solution processing
CN111200075A (zh) 光提取结构件、有机发光器件及其制备方法
CN109742253A (zh) 一种基于银纳米粒子的蓝光有机发光二极管
CN104659277A (zh) 有机电致发光器件及其制备方法
CN111200077A (zh) 一种内部光提取结构及包括其的有机发光器件及其制造方法
CN104659250A (zh) 有机电致发光器件及其制备方法
CN104466012A (zh) 有机电致发光器件及其制备方法
Oner et al. White Light Electroluminescence by Organic‐Inorganic Heterostructures with CdSe Quantum Dots as Red Light Emitters
CN104466002A (zh) 有机电致发光器件及其制备方法
CN104659273A (zh) 有机电致发光器件及其制备方法
CN104659225A (zh) 一种有机电致发光器件及其制备方法
CN111200078A (zh) 用于有机发光器件的光提取结构及包括其的有机发光器件
CN103682129A (zh) 顶发射有机电致发光器件及其制备方法
CN104466000A (zh) 有机电致发光器件及其制备方法
CN104638145A (zh) 有机电致发光器件及其制备方法
CN104466003A (zh) 有机电致发光器件及其制备方法
CN104659218A (zh) 有机电致发光器件及其制备方法
CN104465997A (zh) 有机电致发光器件及其制备方法
CN104466011A (zh) 有机电致发光器件及其制备方法
CN104659243A (zh) 有机电致发光器件及其制备方法
CN104659216A (zh) 有机电致发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771139

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23-03-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18771139

Country of ref document: EP

Kind code of ref document: A1