WO2018170637A1 - 一种机器人零部件润滑剂自动滴灌系统 - Google Patents

一种机器人零部件润滑剂自动滴灌系统 Download PDF

Info

Publication number
WO2018170637A1
WO2018170637A1 PCT/CN2017/077187 CN2017077187W WO2018170637A1 WO 2018170637 A1 WO2018170637 A1 WO 2018170637A1 CN 2017077187 W CN2017077187 W CN 2017077187W WO 2018170637 A1 WO2018170637 A1 WO 2018170637A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped base
syringe
slider
drip irrigation
irrigation system
Prior art date
Application number
PCT/CN2017/077187
Other languages
English (en)
French (fr)
Inventor
肖丽芳
Original Assignee
深圳市方鹏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市方鹏科技有限公司 filed Critical 深圳市方鹏科技有限公司
Priority to PCT/CN2017/077187 priority Critical patent/WO2018170637A1/zh
Publication of WO2018170637A1 publication Critical patent/WO2018170637A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • Lubrication is an important part of tribology research. Technical measures to improve the friction state of the friction pair to reduce frictional resistance and reduce wear. Lubrication is generally achieved by means of a lubricant. In addition, the lubricant also has the functions of rust prevention, vibration damping, sealing, and transmission of power. Making full use of modern lubrication technology can significantly improve machine performance and life and reduce energy consumption. According to the different lubricants, lubrication can be divided into: 1 fluid lubrication.
  • lubricants as fluids, including gas lubrication (using gaseous lubricants such as air, hydrogen, helium, nitrogen, carbon monoxide and water vapor) and liquid lubrication (using liquid lubricants such as mineral lubricants, synthetic lubrication) Oil, water-based liquid, etc.) 2 solid lubrication.
  • gas lubrication using gaseous lubricants such as air, hydrogen, helium, nitrogen, carbon monoxide and water vapor
  • liquid lubrication using liquid lubricants such as mineral lubricants, synthetic lubrication) Oil, water-based liquid, etc.
  • 3 semi-solid lubrication It means that the lubricant used is a semi-solid, a plastic grease composed of a base oil and a thickener, and various additives are added as needed. According to the friction state between the friction pairs, the lubrication is divided into: 1 fluid friction lubrication. Lubrication method that separates the friction surface with a fluid (thickness of 1.5 to 2 microns or more).
  • the pressure of the lubricating film it can be divided into fluid dynamic pressure lubrication (the pressure and balance external load is generated by the dynamic action of the viscous fluid by the geometry and relative motion of the friction surface) and the hydrostatic lubrication (the external pressure will be a certain pressure)
  • the fluid is fed between the friction surfaces and the external load is balanced by the static pressure of the fluid. 2 boundary friction lubrication.
  • a thin film (boundary film) ⁇ between the friction surfaces can be divided into adsorption film (the film formed by the polar molecules in the lubricant adsorbed on the friction surface, including the physical adsorption film and the chemical adsorption film) and chemistry
  • the reaction film the additive in the lubricating oil chemically reacts with the metal surface to form a surface film capable of withstanding a large load.
  • Lubrication can extend the life of machinery and equipment, improve accuracy and save energy.
  • An automatic drip irrigation system for a robot component lubricant is provided.
  • a robot component automatic drip irrigation system the main structures are: C-shaped base, syringe, needle, clamping bolt, syringe a cover, a valve core, a wall panel, a fine adjustment bolt, a rail strip, a slider, a limit block, a rubber washer & a rubber washer b, the C-shaped base has a notch at the upper and lower ends, and is notched at the notch A rubber washer a and a rubber washer b are respectively embedded in the inner side; the inner clamping end of the front side of the C-shaped base is screwed with an inherent clamping bolt.
  • the C-shaped base has a notch implant needle barrel on the upper and lower ends of the front surface, a needle head is screwed under the syringe barrel, and a needle cylinder cover is arranged on the top cover, and the valve core is provided with a valve core at a center position.
  • the back surface of the C-shaped base is hollow and provided with a groove, a rail strip is fixed in the groove, a slider is arranged on the rail strip, and the slider is fixed by the bolt and the wall panel;
  • the end of the strip is provided with a limiting block, and a screw hole is arranged at the top end of the C-shaped base, and the fine adjustment bolt passes through the screw hole and is in contact with the top end of the slider.
  • the inner wall of the syringe is coated with a transparent photocatalyst.
  • the device has a simple structure, a high degree of structural rigidity, and is not easily damaged.
  • FIG. 1 is an overall structural diagram of an automatic drip irrigation system for a robot component according to the present invention.
  • 2 is an exploded structural view of a robot automatic drip irrigation system for a robot component.
  • Fig. 3 is a structural view showing the overall back surface of a robotic component automatic drip irrigation system of the present invention.
  • a robot component automatic drip irrigation system the main structures are: C-shaped base 1, syringe 2, needle 3, clamping bolt 4, cylinder cover 5, valve core 6, wall plate 7, a fine adjustment bolt 8, a rail strip 9, a slider 10, a limiting block 11, a rubber washer a12, a rubber washer ⁇ 3, the C-shaped base 1 has a notch at the upper and lower ends, and is embedded in the notch respectively Rubber washer al2, rubber washer bl3; front of the C-shaped base 1
  • the inner clamping bolt 4 is screwed to the upper end side.
  • the front and rear ends of the C-shaped base 1 are respectively provided with a notch implant needle 2, the needle 2 is screwed under the needle barrel 2, and the top cover is provided with a syringe cover 5, and the needle cover 5 is disposed at a central position Valve core 6.
  • the back surface of the C-shaped base 1 is hollow and provided with a groove, and a rail 9 is fixed in the groove.
  • a slider 10 is erected on the rail 9 and the slider 10 is connected to the wall 7 through the bolt.
  • the end of the rail strip 9 is provided with a limiting block 11 , and a screw hole is arranged at the top end of the C-shaped base 1 , and the fine adjustment bolt 8 passes through the screw hole and is in contact with the top end of the slider 10 .
  • the inner wall of the syringe 2 is coated with a transparent photocatalyst.
  • the core of the invention lies in the design of the fine-tunable syringe 2. The installation and use process of the whole product is as follows: First, the lubricant body is filled into the syringe 2, and then inserted into the lower notch of the C-shaped base 1, and then passed through the clamp.
  • the core design is the fine adjustment bolt 8 on the top of the C-shaped base 1, which can move the C-shaped base 1 upward or downward through both directions of the positive and negative needles, so that the needle 3 is immersed in the liquid surface of the robot lubrication component.
  • the role of this fine-tuning is mainly considering that the lubricating parts of the robot have great water absorption, and the liquid level of the robot lubricating parts will gradually decrease downward, causing the needle 3 to be exposed, which will cause the business in the syringe 2 to be opened.
  • the liquid supply is interrupted.
  • the lubricant in the syringe 2 is exchanged with the water of the robot lubricating part, and must be in contact state to be unfolded. Therefore, the adjustment of the manual fine-tuning bolt 8 ensures the engraving of the needle 3 Contact with the water surface of the robot lubrication component.

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种机器人零部件润滑剂自动滴灌系统,包括C形基座(1),C形基座(1)正面上下两端各开有槽口,并且在槽口分别内嵌入橡胶垫圈a(12)、橡胶垫圈b(13);C形基座(1)正面上端一侧拧固有夹紧螺栓(4);C形基座正面上下两端各开有槽口内植针筒(2),针筒(2)底下拧有针头(3),顶部盖有针筒盖(5),针筒盖(5)中心位置设有气门芯(6);C形基座(1)背面内空且设有凹槽,凹槽内固定有导轨条(9),导轨条(9)上架立有滑块(10),滑块(10)通过螺栓与壁板(7)固定;导轨条(9)末端设有限位块(11),C形基座(1)顶端开有螺丝孔,微调螺栓(8)贯通螺丝孔后与滑块(10)顶端相抵触。该自动滴管系统结构简单、装置结构牢固程度高、不易损坏。

Description

说明书 明名称:一种机器人零部件润滑剂自动滴灌系统
技术领域
[0001] 一种机器人零部件润滑剂自动滴灌系统。
背景技术
[0002] 润滑是摩擦学研究的重要内容。 改善摩擦副的摩擦状态以降低摩擦阻力减缓磨 损的技术措施。 一般通过润滑剂来达到润滑的目的。 另外, 润滑剂还有防锈、 减振、 密封、 传递动力等作用。 充分利用现代的润滑技术能显著提高机器的使 用性能和寿命并减少能源消耗。 根据润滑剂的不同, 润滑可分为: ①流体润滑。 指使用的润滑剂为流体, 又包括气体润滑 (采用气体润滑剂, 如空气、 氢气、 氦气、 氮气、 一氧化碳和水蒸气等) 和液体润滑 (采用液体润滑剂, 如矿物润 滑油、 合成润滑油、 水基液体等) 两种。 ②固体润滑。 指使用的润滑剂为固体
, 如石墨、 二硫化钼、 氮化硼、 尼龙、 聚四氟乙烯、 氟化石墨等。 ③半固体润滑 。 指使用的润滑剂为半固体, 是由基础油和稠化剂组成的塑性润滑脂, 有吋根 据需要还加入各种添加剂。 根据摩擦副之间摩擦状态的不同, 润滑分为: ①流体 摩擦润滑。 用流体(厚度在 1.5〜2微米以上)将摩擦表面隔幵的润滑方式。 根据 润滑膜压力的产生方式不同又可分为流体动压润滑 (靠摩擦表面的几何形状和 相对运动由粘性流体的动力作用产生压力平衡外载荷)和流体静压润滑 (由外部将 一定压力的流体送入摩擦表面间, 靠流体的静压平衡外载荷) 两种。 ②边界摩 擦润滑。 摩擦表面间存在一层薄膜 (边界膜)吋的润滑状态; 它可分为吸附膜 (润 滑剂中的极性分子吸附在摩擦表面所形成的膜, 包括物理吸附膜和化学吸附膜 ) 和化学反应膜 (润滑油中的添加剂与金属表面起化学作用生成能承受较大载 荷的表面膜) 两类。 润滑可以延长机器设备的寿命, 提高精度、 节约能源。 技术问题
[0003] 提供一种机器人零部件润滑剂自动滴灌系统。
问题的解决方案
技术解决方案 [0004] 本发明解决其上述的技术问题所采用以下的技术方案: 一种机器人零部件润滑 剂自动滴灌系统, 其主要构造有: C形基座、 针筒、 针头、 夹紧螺栓、 针筒盖、 气门芯、 壁板、 微调螺栓、 导轨条、 滑块、 限位块、 橡胶垫圈&、 橡胶垫圈 b, 所 述的 C形基座正面上下两端各幵有槽口, 并且在槽口分别内嵌入橡胶垫圈 a、 橡 胶垫圈 b; 所述的 C形基座正面上端一侧拧固有夹紧螺栓。 所述的 C形基座正面上 下两端各幵有槽口内植针筒, 针筒底下拧有针头, 顶部盖有针筒盖, 所述的针 筒盖中心位置设有气门芯。 所述的 C形基座背面内空且设有凹槽, 在凹槽内固定 有导轨条, 导轨条上架立有滑块, 所述的滑块通过螺栓与壁板相固定; 所述的 导轨条末端设有限位块, 在 C形基座顶端幵有螺丝孔, 其微调螺栓贯通螺丝孔后 与滑块顶端相抵触。 进一步地, 所述的针筒内壁上涂抹有一层透明的光触媒。 发明的有益效果
有益效果
[0005] 设备结构简单、 装置结构牢固程度高, 不易损坏。
对附图的简要说明
附图说明
[0006] 图 1为本发明一种机器人零部件润滑剂自动滴灌系统整体结构图。 图 2为本发明 一种机器人零部件润滑剂自动滴灌系统爆炸结构图。 图 3为本发明一种机器人零 部件润滑剂自动滴灌系统整体背面结构图。 图中 1-C形基座, 2-针筒, 3-针头, 4 -夹紧螺栓, 5-针筒盖, 6-气门芯, 7-壁板, 8-微调螺栓, 9-导轨条, 10-滑块, 11 -限位块, 12-橡胶垫圈 a, 13-橡胶垫圈1
本发明的实施方式
[0007] 下面结合附图 1-3对本发明的具体实施方式做一个详细的说明。 实施例: 一种 机器人零部件润滑剂自动滴灌系统, 其主要构造有: C形基座 1、 针筒 2、 针头 3 、 夹紧螺栓 4、 针筒盖 5、 气门芯 6、 壁板 7、 微调螺栓 8、 导轨条 9、 滑块 10、 限 位块 11、 橡胶垫圈 al2、 橡胶垫圈 Μ3, 所述的 C形基座 1正面上下两端各幵有槽 口, 并且在槽口分别内嵌入橡胶垫圈 al2、 橡胶垫圈 bl3; 所述的 C形基座 1正面 上端一侧拧固有夹紧螺栓 4。 所述的 C形基座 1正面上下两端各幵有槽口内植针筒 2, 针筒 2底下拧有针头 3, 顶部盖有针筒盖 5, 所述的针筒盖 5中心位置设有气门 芯 6。 所述的 C形基座 1背面内空且设有凹槽, 在凹槽内固定有导轨条 9, 导轨条 9 上架立有滑块 10, 所述的滑块 10通过螺栓与壁板 7相固定; 所述的导轨条 9末端 设有限位块 11, 在 C形基座 1顶端幵有螺丝孔, 其微调螺栓 8贯通螺丝孔后与滑块 10顶端相抵触。 所述的针筒 2内壁上涂抹有一层透明的光触媒。 本发明核心在于 可微调的针筒 2设计, 整个产品的安装使用过程是: 首先将针筒 2内加注好润滑 剂体, 然后将其插入 C形基座 1的山下槽口内, 再通过夹紧螺栓 4将其夹持, 接着 拧好针头 3; 将壁板 7固定于机器人润滑部件的侧面, 固定高度为刚刚将针头 3浸 没于机器人润滑部件液面内; 接着微微的拧松气门芯 6, 放入一段空气后再拧紧 , 使得针筒 2内的润滑剂能够缓慢的注入机器人润滑部件内。 核心的设计在于 C 形基座 1顶部的微调螺栓 8, 其通过正逆吋针两个方向, 可以使得 C形基座 1整体 向上或者向下移动, 从而使得针头 3在机器人润滑部件液面浸没或提离; 这种微 调的作用, 主要是考虑机器人润滑部件具有很大的吸水性, 机器人润滑部件液 面会缓缓的往下降低, 使得针头 3外露, 这会使得针筒 2内的营业液供给中断。 在毛细管 (针头 3) 原理作用下, 针筒 2内润滑剂与机器人润滑部件的水进行交 换吋, 必须是接触状态才能展幵, 因此通过一个手工微调螺栓 8的调整, 使得保 证吋刻针头 3与机器人润滑部件的水面接触。 以上显示和描述了本发明的基本原 理、 主要特征和本发明的优点。 本行业的技术人员应该了解, 本发明不受上述 实施例的限制, 上述实施例和说明书中描述的只是说明本发明的原理, 在不脱 离本发明精神和范围的前提下, 本发明还会有各种变化和改进, 这些变化和改 进都落入要求保护的本发明范围内。 本发明要求保护范围由所附的权利要求书 及其等效物界定。

Claims

权利要求书
[权利要求 1] 一种机器人零部件润滑剂自动滴灌系统, 其主要构造有: C形基座 (
1) 、 针筒 (2) 、 针头 (3) 、 夹紧螺栓 (4) 、 针筒盖 (5) 、 气门 芯 (6) 、 壁板 (7) 、 微调螺栓 (8) 、 导轨条 (9) 、 滑块 (10) 、 限位块 (11) 、 橡胶垫圈 a (12) 、 橡胶垫圈 b (13) , 其特征在于: C形基座 (1) 正面上下两端各幵有槽口, 并且在槽口分别内嵌入橡 胶垫圈 a (12) 、 橡胶垫圈 b (13) ; 所述的 C形基座 (1) 正面上端 一侧拧固有夹紧螺栓 (4) 。 所述的 C形基座 (1) 正面上下两端各幵 有槽口内植针筒 (2) , 针筒 (2) 底下拧有针头 (3) , 顶部盖有针 筒盖 (5) , 所述的针筒盖 (5) 中心位置设有气门芯 (6) 。 所述的 C形基座 (1) 背面内空且设有凹槽, 在凹槽内固定有导轨条 (9) , 导轨条 (9) 上架立有滑块 (10) , 所述的滑块 (10) 通过螺栓与壁 板 (7) 相固定; 所述的导轨条 (9) 末端设有限位块 (11) , 在 C形 基座 (1) 顶端幵有螺丝孔, 其微调螺栓 (8) 贯通螺丝孔后与滑块 ( 10) 顶端相抵触。
[权利要求 2] 根据权利要求 1所述的一种机器人零部件润滑剂自动滴灌系统, 其特 征在于所述的针筒 (2) 内壁上涂抹有一层透明的光触媒。
PCT/CN2017/077187 2017-03-18 2017-03-18 一种机器人零部件润滑剂自动滴灌系统 WO2018170637A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077187 WO2018170637A1 (zh) 2017-03-18 2017-03-18 一种机器人零部件润滑剂自动滴灌系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077187 WO2018170637A1 (zh) 2017-03-18 2017-03-18 一种机器人零部件润滑剂自动滴灌系统

Publications (1)

Publication Number Publication Date
WO2018170637A1 true WO2018170637A1 (zh) 2018-09-27

Family

ID=63583953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077187 WO2018170637A1 (zh) 2017-03-18 2017-03-18 一种机器人零部件润滑剂自动滴灌系统

Country Status (1)

Country Link
WO (1) WO2018170637A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110485740A (zh) * 2019-08-28 2019-11-22 广东博智林机器人有限公司 一种墙板安装机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789471A1 (fr) * 1999-02-10 2000-08-11 Fausto Camilletti Raccord de tuyau pour systemes d'irrigation par goutte a goutte
RU2367144C2 (ru) * 2007-12-03 2009-09-20 Евгений Викторович Хлебников Система капельного полива
CN103959971A (zh) * 2014-05-06 2014-08-06 河南农业大学 一种灌溉施肥一体化的实现方法
CN205813067U (zh) * 2016-05-20 2016-12-21 湖州师范学院 一种植树滴灌器
CN106332735A (zh) * 2015-07-11 2017-01-18 徐国兰 园林用可调节位置滴灌设备
CN106386397A (zh) * 2016-08-30 2017-02-15 山东胜伟园林科技有限公司 一种集痕罐、滴灌为一体的节水灌溉系统
CN206423318U (zh) * 2017-01-23 2017-08-22 杨磊 一种园林水培植物营养液自动滴灌器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789471A1 (fr) * 1999-02-10 2000-08-11 Fausto Camilletti Raccord de tuyau pour systemes d'irrigation par goutte a goutte
RU2367144C2 (ru) * 2007-12-03 2009-09-20 Евгений Викторович Хлебников Система капельного полива
CN103959971A (zh) * 2014-05-06 2014-08-06 河南农业大学 一种灌溉施肥一体化的实现方法
CN106332735A (zh) * 2015-07-11 2017-01-18 徐国兰 园林用可调节位置滴灌设备
CN205813067U (zh) * 2016-05-20 2016-12-21 湖州师范学院 一种植树滴灌器
CN106386397A (zh) * 2016-08-30 2017-02-15 山东胜伟园林科技有限公司 一种集痕罐、滴灌为一体的节水灌溉系统
CN206423318U (zh) * 2017-01-23 2017-08-22 杨磊 一种园林水培植物营养液自动滴灌器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110485740A (zh) * 2019-08-28 2019-11-22 广东博智林机器人有限公司 一种墙板安装机器人
CN110485740B (zh) * 2019-08-28 2021-09-07 广东博智林机器人有限公司 一种墙板安装机器人

Similar Documents

Publication Publication Date Title
WO2018170637A1 (zh) 一种机器人零部件润滑剂自动滴灌系统
CN212311582U (zh) 一种用于轴承加工的端面支撑
CN211371032U (zh) 一种强度高的直线轴承
CN208586006U (zh) 一种可精确定位的蜗轮丝杆升降机
CN107339319B (zh) 一种便于拆装并兼有防尘和自润滑功能的直线导轨副
CN109991073A (zh) 一种用于srv-4高温摩擦磨损试验机的通用夹具
CN204961676U (zh) 一种双向等弹性等变阻尼气缸
CN203322687U (zh) 一种薄板平面间的加脂装置
CN202708219U (zh) 集成管路模块用单向阀模组
CN203459439U (zh) 水箱拉丝机主轴机械密封结构
CN215634670U (zh) 一种液压设备加工用减震装置
CN208261875U (zh) 一种数控车床大拖板上燕尾导轨的润滑结构
CN211821674U (zh) 一种轴承定量注脂机的注入机构
CN205013499U (zh) 阻尼减振型直线引导装置
CN205631362U (zh) 一种高温薄膜横向拉伸设备及用于高温薄膜横向拉伸设备的链铗
CN203297691U (zh) 阀杆润滑油单向阀
CN205350067U (zh) 一种直线导轨用密封结构
CN210371666U (zh) 一种带储油仓结构的直线轮毂轴承
CN216478147U (zh) 一种新型涂层耐腐蚀油缸活塞杆
CN219492769U (zh) 一种密封结构及油缸活塞
CN203161154U (zh) 测井注油密封头润滑装置
CN215058904U (zh) 一种直线导轨
CN214617509U (zh) 一种能够自由组合的滑动导轨
CN218235684U (zh) 一种密封型液压油缸
CN211039673U (zh) 一种抗翻滚低摩擦阻力的b字型密封圈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901716

Country of ref document: EP

Kind code of ref document: A1