WO2018170627A1 - 一种采用计算机控制的高精准测量仪器 - Google Patents

一种采用计算机控制的高精准测量仪器 Download PDF

Info

Publication number
WO2018170627A1
WO2018170627A1 PCT/CN2017/077177 CN2017077177W WO2018170627A1 WO 2018170627 A1 WO2018170627 A1 WO 2018170627A1 CN 2017077177 W CN2017077177 W CN 2017077177W WO 2018170627 A1 WO2018170627 A1 WO 2018170627A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring instrument
fixed
pump body
hydraulic pump
shaped
Prior art date
Application number
PCT/CN2017/077177
Other languages
English (en)
French (fr)
Inventor
肖丽芳
Original Assignee
深圳市方鹏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市方鹏科技有限公司 filed Critical 深圳市方鹏科技有限公司
Priority to PCT/CN2017/077177 priority Critical patent/WO2018170627A1/zh
Publication of WO2018170627A1 publication Critical patent/WO2018170627A1/zh

Links

Definitions

  • the present invention relates to a highly accurate measuring instrument using a computer control. .
  • Measuring instruments are third-party standards required to measure certain attribute values of a target. Measuring instruments generally have units of scale, volume, and the like.
  • Scholars and voyagers are well aware that seafarers can know their latitude more definitely if they can accurately measure the position of the celestial body on the surface of the sea. To do this, you need a sophisticated measuring instrument. Ptolemy once described the star disk (also known as the star instrument).
  • the larger astrolabe is used in the observatory, and the smaller is used on board. The use of the astrolabe requires three people to collaborate to grab the thumb ring on the chart, one to aim, and the other to read the result on the dial. When the ship sways more vigorously, the results are naturally not very accurate.
  • the observer observes the first back to the sun, then slides the crossbar until it casts a shadow in the small disk in front. In this way, the observer can observe the horizon.
  • John Davis also invented the quadrant with the help of a mathematician from Edward, Edward Wright.
  • the hydrograph geographer Pierre Buchhold object limiter has been further improved. The improved quadrant allows the observer to see the sun on the horizon through the eyepiece.
  • a computer-controlled high-precision measuring instrument which mainly comprises: an H-shaped bracket, a right-angle workpiece, a telescopic rod, a slider, a Z-shaped connecting member, a hydraulic pump body, a hydraulic rod member, a rubber sleeve, a laser clamping member, an electronic measuring macrometer, and a probe, wherein the H-shaped bracket is provided with a slider, and the upper rail of the sliding block is connected with a Z-shaped connecting member; the Z-shaped connecting member is provided with a rubber sleeve on one side of the side a laser clamping member is fixed on the outer side of the rubber sleeve; the other end of the Z-shaped connecting member is fixed with a telescopic rod, and the end of the telescopic rod is in contact with one side of the right-angle workpiece.
  • the H-shaped bracket is fixed on one side.
  • the bottom of the back surface of the H-shaped bracket is hinged with a right angle workpiece; the top of the H-shaped bracket is clamped with an electronic distance measuring instrument, and the probe end of the electronic measuring macrometer is in conflict with the other side of the right angle workpiece.
  • the telescopic rod is provided with a length scale.
  • the laser holder is clamped with a laser range finder.
  • a right angle workpiece as a connecting workpiece between the laser range finder and the electronic distance measuring instrument can measure the change between the horizontal displacement and the longitudinal macro, and facilitate the measurement of the height difference of the workpiece welding seam;
  • the hydraulic pump body is effectively controlled, and the laser clamping member can be flexibly controlled at the framed position to perform the round-tripping, so that the electronic measuring macrometer can effectively record the high difference of each point.
  • FIG. 1 is an overall structural diagram of a high precision measuring instrument using a computer control according to the present invention.
  • a computer-controlled high-precision measuring instrument whose main structures are: H-shaped bracket 1, right-angle workpiece 2, telescopic Ruler 3, slider 4, Z-shaped connector 5, hydraulic pump body 6, hydraulic rod member 7, rubber sleeve 8, laser holder 9, electronic distance measuring device 10, probe 11, said H
  • the bracket 1 is provided with a slider 4, and the slider 4 is connected with a Z-shaped connecting member 5;
  • the Z-shaped connecting member 5 is provided with a rubber sleeve 8 at the end side thereof, and a rubber clip is fixed on the rubber sleeve 8 Holding member 9;
  • a telescopic rod 3 is fixed, and the end of the telescopic rod 3 is in contact with the right-angle workpiece 2 - edge.
  • a hydraulic pump body 6 is fixed to one side of the H-shaped bracket 1, and the end of the hydraulic rod member 7 of the hydraulic pump body 6 is fixed to one end of the Z-shaped connecting member 5.
  • the bottom of the back surface of the H-shaped bracket 1 is hinged with a right angle workpiece 2 by a hinge; the top of the H-shaped bracket 1 is clamped with an electronic distance measuring instrument 10, and the end of the probe 11 of the electronic measuring macrometer 10 and the right angle workpiece 2
  • the other side is in conflict.
  • the telescopic rod 3 is provided with a length scale.
  • the laser clamping member 9 is clamped with a laser range finder.
  • the core of the invention lies in: the organic combination between the electronic distance measuring instrument 10 and the laser range finder, and the principle of right angle magnification can be used to accurately measure the deformation direction of a welded joint of the workpiece welded joint and the entire pier.
  • the laser range finder is responsible for striking different workpiece piers to measure the position of different positions.
  • the measurement implementation process is as follows: First, the H-bracket 1 is placed in a position where the laser spot can be struck and the placement is stabilized. The hydraulic pump body 6 is actuated so that the laser range finder of the laser holder 9 is in a retracted state, and the distance measurement at each point during the telescoping process is recorded by the electronic distance measuring instrument 10.
  • the telescopic rod 3 is used to calibrate the zero position of the right-angled workpiece 2 before taking the position to measure the height difference of the workpiece weld seam, ensuring that the measurement of each point is accurate.

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种采用计算机控制的高精准测量仪器,包括设有滑块(4)的H形支架(1),滑块上轨接有Z形连接件(5);所述Z形连接件的一端侧面设有橡胶套筒(8),橡胶套筒外固定有激光夹持件(9);所述Z形连接件的另一端末固定有伸缩尺杆(3),伸缩尺杆末端与直角工件(2)的一边相抵触;所述H形支架的一侧固定有液压泵体(6),液压泵体的液压杆件(7)末端固定于Z形连接件的一端上。上述测量仪器以直角工件为激光测距仪与电子测微距仪之间的衔接工件,可以水平位移与纵向微距之间变化的测量,便于工件焊接缝高差放大性的数据测量;采用液压泵体实时有效的控制,可以灵活的控制激光夹持件在框定的位置上,进行来回的打点,以便电子测微距仪能够有效的记录每个点位的高差值。

Description

发明名称:一种釆用计算机控制的高精准测量仪器 技术领域
[0001] 本发明涉及一种采用计算机控制的高精准测量仪器。 。
背景技术
[0002] 测量仪器是为了取得目标物某些属性值而进行衡量所需要的第三方标准, 测量 仪器一般都具有刻度, 容积等单位。 学者和航海者都十分清楚, 如果能在海面 上准确测量出天体的位置, 那么海员们便可以比较肯定地知道他们所在的纬度 。 要做到这一点, 需要的是精密的测量仪器。 托勒密曾经描绘过星盘 (又叫测星 仪)。 体积大些的星盘用在天文台里, 体积小的用在船上。 星盘的使用需要三个 人合作个人抓住星盘上的拇指环, 一个人瞄准, 另外一个人读出表盘上的结果 。 当船晃动得比较剧烈吋, 得出的结果自然也就不是很准确。 只要可能, 海员 们就会上岸测量。 古代的天文学家使用十字标尺来测量星星的纬度, 后来水手 们也把它应用于航海中。 这件仪器由一根标尺和一个十字形尺组成, 十字形尺 较低的一端置于水平位置。 沿着标尺观察天体的同吋, 滑动十字形尺直到它在 你的视野里接触到观察物 (太阳或星星), 然后读出标尺上的度数。 这种仪器只需 一个人便可以操作。 星盘和十字标尺都需要观察者直接观察太阳。 晴天, 过强 的光线会使观测无法进行。 为了解决这个问题, 英格兰船长、 航海家约翰 ·戴维 斯发明了背标尺。 它由一根标尺和一根可以滑动的横木制成。 观察者观测吋先 背朝太阳, 然后滑动横木直到它在前方的小盘里投下阴影。 通过这种方法, 观 察者可以观测地平线。 约翰 ·戴维斯还在一位来自剑桥的数学家爱德华 *莱特的帮 助下发明了象限仪。 这件仪器的横木上有一只目镜, 通过目镜, 观察者可以观 测地平线和被反射的太阳。 克洛伊希克的水文地理学家皮埃尔 *布哥尔对象限仪 做了进一步改进, 改进后的象限仪使观察者通过目镜能看到太阳落在地平线上 技术问题
[0003] 提供一种采用计算机控制的高精准测量仪器。 问题的解决方案
技术解决方案
[0004] 一种采用计算机控制的高精准测量仪器, 其主要构造有: H形支架、 直角工件 、 伸缩尺杆、 滑块、 Z形连接件、 液压泵体、 液压杆件、 橡胶套筒、 激光夹持件 、 电子测微距仪、 探针, 所述的 H形支架上设有滑块, 滑块上轨接有 Z形连接件 ; 所述的 Z形连接件一端侧面设有橡胶套筒, 橡胶套筒外固定有激光夹持件; 所 述的 Z形连接件另一端末固定有伸缩尺杆, 伸缩尺杆末端与直角工件一边相抵触. 所述的 H形支架上一侧固定有液压泵体, 液压泵体的液压杆件末端固定于 Z形连 接件的一端末上。 所述的 H形支架背面底部通过铰链铰接有直角工件; 所述的 H 形支架顶部夹持有电子测微距仪, 电子测微距仪的探针末端与直角工件另一边 相抵触。 进一步地, 所述的伸缩尺杆设有长度刻度。 进一步地, 所述的激光夹 持件夹持有激光测距仪。
发明的有益效果
有益效果
[0005] 采用以直角工件为激光测距仪与电子测微距仪之间的衔接工件, 可以水平位移 与纵向微距之间变化的测量, 便于工件焊接缝高差放大性的数据测量; 采用液 压泵体实吋有效的控制, 可以灵活的控制激光夹持件在框定的位置上, 进行来 回的打点, 以便电子测微距仪能够有效的记录每个点位的高差值。
对附图的简要说明
附图说明
[0006] 图 1为本发明一种采用计算机控制的高精准测量仪器整体结构图。 图中 1-H形 支架, 2-直角工件, 3-伸缩尺杆, 4-滑块, 5-Z形连接件, 6-液压泵体, 7-液压杆 件, 8-橡胶套筒, 9-激光夹持件, 10-电子测微距仪, 11-探针
本发明的实施方式
[0007] 下面结合附图 1对本发明的具体实施方式做一个详细的说明。 实施例: 一种采 用计算机控制的高精准测量仪器, 其主要构造有: H形支架 1、 直角工件 2、 伸缩 尺杆 3、 滑块 4、 Z形连接件 5、 液压泵体 6、 液压杆件 7、 橡胶套筒 8、 激光夹持件 9、 电子测微距仪 10、 探针 11, 所述的 H形支架 1上设有滑块 4, 滑块 4上轨接有 Z 形连接件 5; 所述的 Z形连接件 5—端侧面设有橡胶套筒 8, 橡胶套筒 8外固定有激 光夹持件 9; 所述的 Z形连接件 5另一端末固定有伸缩尺杆 3, 伸缩尺杆 3末端与直 角工件 2—边相抵触。 所述的 H形支架 1上一侧固定有液压泵体 6, 液压泵体 6的液 压杆件 7末端固定于 Z形连接件 5的一端末上。 所述的 H形支架 1背面底部通过铰链 铰接有直角工件 2; 所述的 H形支架 1顶部夹持有电子测微距仪 10, 电子测微距仪 10的探针 11末端与直角工件 2另一边相抵触。 所述的伸缩尺杆 3设有长度刻度。 所述的激光夹持件 9夹持有激光测距仪。 本发明的核心在于: 电子测微距仪 10与 激光测距仪之间的有机结合, 通过直角放大的原理, 可以高精度的测量工件焊 接缝及其桥墩整体的一个焊接缝变形的走向问题。 在工作上激光测距仪负责在 不同的工件墩子上打点, 测量不同位置的点位。 测量实施过程是: 首先将 H形支 架 1放置于一个可以将激光点位打点位置上, 并保证安置稳定。 启动液压泵体 6 使得激光夹持件 9的激光测距仪处于回来的伸缩状态, 在伸缩的过程中的每个点 位的测距, 都将被电子测微距仪 10记录。 在取点位测量工件焊接缝高差之前, 伸缩尺杆 3是用于校准直角工件 2的归零位置的, 确保每次取点位测量都准确。 以上显示和描述了本发明的基本原理、 主要特征和本发明的优点。 本行业的技 术人员应该了解, 本发明不受上述实施例的限制, 上述实施例和说明书中描述 的只是说明本发明的原理, 在不脱离本发明精神和范围的前提下, 本发明还会 有各种变化和改进, 这些变化和改进都落入要求保护的本发明范围内。 本发明 要求保护范围由所附的权利要求书及其等效物界定。

Claims

权利要求书
[权利要求 1] 一种采用计算机控制的高精准测量仪器, 其主要构造有: H形支架 (
1) 、 直角工件 (2) 、 伸缩尺杆 (3) 、 滑块 (4) 、 Z形连接件 (5 ) 、 液压泵体 (6) 、 液压杆件 (7) 、 橡胶套筒 (8) 、 激光夹持件 (9) 、 电子测微距仪 (10) 、 探针 (11) , 其特征在于: H形支架 (1) 上设有滑块 (4) , 滑块 (4) 上轨接有 Z形连接件 (5) ; 所述 的 Z形连接件 (5) —端侧面设有橡胶套筒 (8) , 橡胶套筒 (8) 外 固定有激光夹持件 (9) ; 所述的 Z形连接件 (5) 另一端末固定有伸 缩尺杆 (3) , 伸缩尺杆 (3) 末端与直角工件 (2) —边相抵触。 所 述的 H形支架 (1) 上一侧固定有液压泵体 (6) , 液压泵体 (6) 的 液压杆件 (7) 末端固定于 Z形连接件 (5) 的一端末上。 所述的 H形 支架 (1) 背面底部通过铰链铰接有直角工件 (2) ; 所述的 H形支架
(I) 顶部夹持有电子测微距仪 (10) , 电子测微距仪 (10) 的探针
(I I) 末端与直角工件 (2) 另一边相抵触。
[权利要求 2] 根据权利要求 1所述的一种采用计算机控制的高精准测量仪器, 其特 征在于所述的伸缩尺杆 (3) 设有长度刻度。
[权利要求 3] 根据权利要求 1所述的一种采用计算机控制的高精准测量仪器, 其特 征在于所述的激光夹持件 (9) 夹持有激光测距仪。
PCT/CN2017/077177 2017-03-18 2017-03-18 一种采用计算机控制的高精准测量仪器 WO2018170627A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077177 WO2018170627A1 (zh) 2017-03-18 2017-03-18 一种采用计算机控制的高精准测量仪器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077177 WO2018170627A1 (zh) 2017-03-18 2017-03-18 一种采用计算机控制的高精准测量仪器

Publications (1)

Publication Number Publication Date
WO2018170627A1 true WO2018170627A1 (zh) 2018-09-27

Family

ID=63583983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077177 WO2018170627A1 (zh) 2017-03-18 2017-03-18 一种采用计算机控制的高精准测量仪器

Country Status (1)

Country Link
WO (1) WO2018170627A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023323A1 (en) * 1992-05-19 1993-11-25 Boral Johns Perry Industries Pty. Ltd. Guide rail deviation measurement device
CN2376616Y (zh) * 1999-04-03 2000-05-03 张惠中 激光水平尺
JP2001349708A (ja) * 2000-06-09 2001-12-21 Kiyouhei Endo 軌道用距離測定装置
CN203550940U (zh) * 2013-08-30 2014-04-16 上海电气核电设备有限公司 一种用于激光测量行车轨道跨度及标高差的装置
CN105136111A (zh) * 2015-08-25 2015-12-09 孙立民 一种建筑施工用水平差和高差测量仪
CN105157672A (zh) * 2015-08-24 2015-12-16 国家电网公司 一种用于杆塔间的高差测量仪
CN206387401U (zh) * 2016-12-29 2017-08-08 林小雄 一种基于激光打点的桥梁伸缩缝高差基准设备架

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023323A1 (en) * 1992-05-19 1993-11-25 Boral Johns Perry Industries Pty. Ltd. Guide rail deviation measurement device
CN2376616Y (zh) * 1999-04-03 2000-05-03 张惠中 激光水平尺
JP2001349708A (ja) * 2000-06-09 2001-12-21 Kiyouhei Endo 軌道用距離測定装置
CN203550940U (zh) * 2013-08-30 2014-04-16 上海电气核电设备有限公司 一种用于激光测量行车轨道跨度及标高差的装置
CN105157672A (zh) * 2015-08-24 2015-12-16 国家电网公司 一种用于杆塔间的高差测量仪
CN105136111A (zh) * 2015-08-25 2015-12-09 孙立民 一种建筑施工用水平差和高差测量仪
CN206387401U (zh) * 2016-12-29 2017-08-08 林小雄 一种基于激光打点的桥梁伸缩缝高差基准设备架

Similar Documents

Publication Publication Date Title
CN105300304B (zh) 一种非接触式多点高频动态桥梁挠度检测方法
CN106482646B (zh) 基于单反相机测量目标物宽度的方法
WO2018170627A1 (zh) 一种采用计算机控制的高精准测量仪器
CN109239901A (zh) 一种显微成像系统对焦面快速标定、对焦定位方法及装置
JP2002344963A (ja) 撮影情報付加装置
US2360911A (en) Navigational plotter
Jensen et al. Determination of line tensions from the capillary rise in a conical tube
TWM579715U (zh) Marine sextant with code table
CN204705283U (zh) 手握便捷式高精度角度测量仪
GB591691A (en) Improvements in or relating to adjustable and fixed set squares
US69844A (en) Williams rutherford
US1594602A (en) Course finder and radio position plotter
US1161625A (en) Compass-protractor.
CN203224214U (zh) 一种快速测量房型的装置
US1345289A (en) Navigator's instrument
US55396A (en) Improvement in transit-instruments
US2453276A (en) Manual pocket square
CN207798080U (zh) 多向角度测量仪
Cotter A brief history of the method of fixing by horizontal angles
US903915A (en) Range-finder.
US1381520A (en) Instrument for measuring angles
SU22279A1 (ru) Угломерна мензула дл горизонтальной, вертикальной и мензульной съемок
TWM598241U (zh) 航海製圖用具
US15602A (en) Instrument for measuring distances from a single station
US1428028A (en) Surveying instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901750

Country of ref document: EP

Kind code of ref document: A1