WO2018168948A1 - Voltage compensation device - Google Patents
Voltage compensation device Download PDFInfo
- Publication number
- WO2018168948A1 WO2018168948A1 PCT/JP2018/010024 JP2018010024W WO2018168948A1 WO 2018168948 A1 WO2018168948 A1 WO 2018168948A1 JP 2018010024 W JP2018010024 W JP 2018010024W WO 2018168948 A1 WO2018168948 A1 WO 2018168948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- terminal
- potential
- potential side
- power converter
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
- H02J3/144—Demand-response operation of the power transmission or distribution network
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M3/00—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
- B60M3/02—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/50—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
- H02J2310/56—The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
- H02J2310/58—The condition being electrical
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Definitions
- Embodiments described herein relate generally to a voltage compensation device.
- the power line impedance increases according to the distance from the substation. Therefore, at the end of the power system, the received voltage may decrease due to a voltage drop.
- a voltage compensator inserted in series in the electric power system has been proposed.
- Such a voltage compensation device incorporates an inverter circuit that performs high-frequency switching operation, thereby enabling voltage compensation of the power system at high speed and continuously.
- the voltage compensator When it is detected that the voltage of the power system has deviated from a preset target value, the voltage compensator operates to match the voltage of the power system with the target voltage value. Since the voltage compensator performs a high-frequency switching operation, a switching loss and a conduction loss accompanying the switching operation occur during operation. The voltage of the power system constantly fluctuates, so that the voltage compensator is always operating and generates a constant operating loss.
- Yuji Sasaki Takahiko Yoshida, Nagataka Seki, Toshiyuki Watanabe, Yuji Saito, “TVR and High-speed Response Enablement Test”, IEEJ Transactions B, Vol. 123 (2003) Fukatsu Naoaki, Sumitani Ichiro, Sato Tatsunori, Maekawa Hidehiro, Kai Takaaki, "Development of Series Voltage Compensator for High-Speed Voltage Control of Distribution System", IEEJ Transaction B, Vol. 120, No. 12, 2000
- the embodiment provides a high-efficiency voltage compensator with little operation loss over the entire operation period.
- the voltage compensator includes a power converter that supplies a compensation voltage for compensating a phase voltage of the power system to a transformer connected in series to each phase of the power system, and the phase voltage is set in advance. And a control unit that outputs a control signal for controlling the power converter based on the target voltage of the power system.
- the control unit includes a first arithmetic unit that generates a command value for generating the compensation voltage based on the phase voltage and the target voltage, and between the command value and the target voltage.
- a determination circuit that outputs a stop signal for stopping at least a part of the control signal when the deviation is smaller than the minimum compensation voltage value.
- FIG. 1 is a block diagram illustrating a voltage compensation device according to a first embodiment.
- FIG. 2A and FIG. 2B are block diagrams illustrating a part of the voltage compensator of the first embodiment.
- FIG. 3A to FIG. 3C are schematic diagrams for explaining the operation of the voltage compensator according to the first embodiment. It is a block diagram which illustrates the voltage compensation apparatus concerning a 2nd embodiment. It is a block diagram which illustrates some voltage compensation apparatuses of a 2nd embodiment. It is a block diagram which illustrates the voltage compensating device concerning a 3rd embodiment. It is a block diagram which illustrates the voltage compensating device concerning a 4th embodiment. It is a block diagram which illustrates a part of voltage compensation apparatus of 4th Embodiment. It is a block diagram which illustrates the voltage compensating device concerning a 5th embodiment.
- FIG. 1 is a block diagram illustrating a voltage compensator according to this embodiment. A configuration of the voltage compensator 1 of the present embodiment will be described. As shown in FIG. 1, the voltage compensation device 1 according to this embodiment includes a voltage compensation unit 10 and a control unit 80.
- the voltage compensator 10 includes series transformers 11, 13, 15, a first power converter 20, a second power converter 30, parallel transformers 41, 42, inductors 51, 52, and a current detector 61. , 62, AC voltage detectors 63, 64, and a DC voltage detector 65.
- the voltage compensator 1 is connected in series to the power system by the voltage compensator 10.
- the power system is a three-phase AC distribution system composed of a U phase, a V phase, and a W phase.
- the voltage compensation unit 10 includes terminals 2a to 2c and 3a to 3c.
- the voltage compensator 10 is connected to the upstream sides 6a to 6c of the power system via the terminals 2a to 2c.
- the voltage compensator 10 is connected to the downstream sides 7a to 7c of the power system via the terminals 3a to 3c.
- the upstream side of the power system is the substation side
- the downstream side is the consumer side.
- the phases of the power system on the upstream side 6a to 6c are referred to as U phase, V phase, and W phase
- the phases of the power system on the downstream side 7a to 7c are referred to as u phase, v phase, and w phase.
- the terminal 2a is connected to the U phase, and the terminal 3a is connected to the u phase.
- the terminal 2b is connected to the V phase, and the terminal 3b is connected to the v phase.
- Terminal 2c is connected to the W phase, and terminal 3c is connected to the w phase.
- the voltage compensator 1 detects a decrease or an increase in the voltage on the upstream side 6a to 6c of the power system with respect to the target value, and outputs a compensation voltage so that the voltages on the downstream side 7a to 7c coincide with the target voltage.
- the compensation voltage is added to the voltage on the upstream side 6a to 6c or subtracted from the voltage on the upstream side 6a to 6c.
- a compensation voltage having a phase different from the phase of the power system by 180 ° is added to the voltages on the upstream sides 6a to 6c.
- the voltage compensator 1 of the present embodiment has a voltage range in which fluctuations are allowed in both positive and negative directions with the detected upstream side voltages 6a to 6c as the center value.
- the voltage compensator 1 performs a compensation operation when the target voltage deviates from the detected allowable range of the upstream side voltages 6a to 6c.
- the compensation operation is stopped.
- Series transformers 11, 13, and 15 include primary windings 11p, 13p, and 15p, and secondary windings 11s, 13s, and 15s, respectively.
- the primary winding 11p of the series transformer 11 is connected between the terminal 2a and the terminal 3a, and is connected in series to the power system.
- the primary winding 13p of the series transformer 13 is connected between the terminal 2b and the terminal 3b, and is connected in series to the power system.
- the primary winding 15p of the series transformer 15 is connected between the terminal 2c and the terminal 3c, and is connected in series to the power system. That is, the primary windings 11p, 13p, 15p of the three series transformers 11, 13, 15 are connected in series to each phase of the power system.
- the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 are delta-connected. That is, one terminal 12a of the secondary winding 11s is connected to the other terminal 14b of the secondary winding 13s. One terminal 14a of the secondary winding 13s is connected to the other terminal 16b of the secondary winding 15s. One terminal 16a of the secondary winding 15s is connected to the other terminal 12b of the secondary winding 11s.
- a connection node of the terminals 12 a and 14 b is connected to the AC terminal 22 b of the first power converter 20.
- a connection node of the terminals 14 a and 16 b is connected to the AC terminal 22 c of the first power converter 20.
- a connection node of the terminals 16 a and 12 b is connected to the AC terminal 22 a of the first power converter 20.
- the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 are delta-connected and connected to the AC output of the first power converter 20. Therefore, it is possible to flow a return current in the secondary winding, and the voltage compensation device 1 is less likely to cause voltage distortion and can link high-quality power to the power system.
- the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 are not limited to delta connections, and may be star connections. By making the secondary winding a star connection, since the return current cannot flow, the voltage distortion tends to increase, but there is an advantage that the connection work becomes easy.
- the first power converter 20 is connected between the high voltage DC terminal 21a and the low voltage DC terminal 21b.
- a DC voltage is supplied to the high-voltage DC terminal 21 a and the low-voltage DC terminal 21 b via a DC link capacitor 24.
- the first power converter 20 includes AC terminals 22a, 22b, and 22c that output a three-phase AC voltage.
- the AC terminals 22a, 22b, and 22c are connected to the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 through the filter 26.
- the first power converter 20 is an inverter device that converts a DC voltage applied between the high-voltage DC terminal 21a and the low-voltage DC terminal 21b into a three-phase AC voltage.
- the first power converter 20 includes, for example, six switching elements 23a to 23f.
- the switching elements 23a to 23f are self-extinguishing type switching elements, such as MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) and IGBT (Insulated-Gate Bipolar-Transistor).
- MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
- IGBT Insulated-Gate Bipolar-Transistor
- the switching elements are connected in series as a high side switch and a low side switch. Three legs having arms connected in series are connected in parallel to form a three-phase inverter circuit.
- the inverter circuit of the first power converter 20 is not limited to this circuit configuration as long as it can convert a DC voltage into an AC voltage having a frequency higher than the frequency of the power system.
- the inverter circuit may be, for example, a multilevel inverter circuit or a modification thereof.
- a filter 26 is connected between the first power converter 20 and the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15.
- the filter 26 is a low-pass filter including an inductor connected in series to each phase and a capacitor connected between the lines.
- the filter 26 removes harmonics of a high-frequency switching waveform of about several kHz to several hundred kHz output from the first power converter 20, and outputs a voltage at the frequency of the power system.
- an appropriate circuit can be used according to the frequency of the output of the first power converter 20, the modulation method, or the like.
- the DC link capacitor 24 supplies DC power to the first power converter 20.
- the capacitor 24 supplies active power supplied from the second power converter 30 to the first power converter 20.
- the second power converter 30 includes a high voltage DC terminal 31a and a low voltage DC terminal 31b.
- the high-voltage DC terminal 31a and the low-voltage DC terminal 31b are connected to both ends of the capacitor 24, respectively.
- the 2nd power converter 30 has a terminal which supplies alternating current power, and one end of inductor 51 is connected to one of them. One end of the inductor 52 is connected to the other terminal.
- the second power converter 30 is a converter device that converts AC power into DC and supplies it to the capacitor 24 of the DC link.
- the second power converter 30 operates as an active smoothing filter and supplies active power to the first power converter 20 via the capacitor 24.
- the second power converter 30 may be an inverter device having the same circuit configuration as that of the first power converter 20. Similar to the first power converter 20, the second power converter 30 includes six self-extinguishing switching elements. The switching elements are connected in series as a high side switch and a low side switch. Three legs having arms connected in series are connected in parallel to form an inverter circuit.
- the inverter circuit of the second power converter 30 is not limited to this configuration as long as it can mutually convert a DC voltage and an AC voltage having a frequency higher than the frequency of the power system.
- the configuration of the inverter circuit of the second power converter 30 is the same as the configuration of the inverter circuit of the first power converter 20, but may be a different configuration.
- the second power converter 30 may have another configuration as long as it can supply a DC voltage and active power to the first power converter 20.
- the primary winding 41p of the parallel transformer 41 is connected between the u-phase and v-phase lines on the downstream side 7a to 7c of the series transformer.
- the primary winding 42p of the parallel transformer 42 is connected between the v-phase and w-phase lines on the downstream sides 7a to 7c of the series transformers 11, 13, and 15.
- One of the secondary windings 41 s of the parallel transformer 41 is connected to the other end of the inductor 51, and the other is connected to a terminal of the second power converter 30.
- the secondary winding 42 s of the parallel transformer 42 is connected to the other end of the inductor 52, and the other is connected to a terminal of the second power converter 30.
- the secondary windings 41 s and 42 s of the parallel transformers 41 and 42 are V-connected to the terminals of the second power converter 30 via the inductors 51 and 52.
- the current detector 61 is connected in series between the AC terminal of the second power converter 30 and the secondary winding 41 s of the parallel transformer 41.
- the current detector 62 is connected in series between the other AC terminal of the second power converter 30 and the secondary winding 42 s of the parallel transformer 42. That is, the current detectors 61 and 62 detect the respective alternating currents flowing through the inductors 51 and 52, and output current data IL1 and IL2.
- AC voltage detectors 63 and 64 are connected to upstream sides 6a to 6c of series transformers 11, 13, and 15.
- the AC voltage detector 63 is connected between the U-phase and V-phase lines, and detects the line voltage between UV.
- the AC voltage detector 64 is connected between the lines of the V phase and the W phase, and detects the line voltage between the VWs.
- the AC voltage detectors 63 and 64 include, for example, an instrument transformer and a transducer that converts the output of the instrument transformer to an appropriate voltage level.
- the AC voltage detectors 63 and 64 detect the line voltages on the upstream sides 6a to 6c, step down the voltage with an instrument transformer, and generate AC voltage data VAC1 and VAC2 that are signals that can be input to the control unit 80 by the transducer. Convert and output.
- the DC voltage detector 65 detects the DC voltage across the capacitor 24, outputs DC voltage data VDC, and supplies it to the control unit 80.
- the controller 80 receives the AC voltage data VAC1, VAC2, the current data IL1, IL2, and the DC voltage data VDC, generates gate signals (control signals) Vg1, Vg2 based on these, and generates the first power converter 20 and The switching element of the second power converter 30 is driven.
- the control unit 80 includes a first control circuit 81 and a second control circuit 82.
- the first control circuit 81 supplies a gate signal Vg ⁇ b> 1 for controlling the operation of the first power converter 20 to the first power converter 20.
- the second control circuit 82 supplies a gate drive signal Vg ⁇ b> 2 for controlling the operation of the second power converter 30 to the second power converter 30.
- the first control circuit 81 includes an arithmetic unit 91 that calculates a compensation value Vc * of the series voltage, an operation determination circuit 92, and a gate signal generation circuit 93.
- the value calculator (first calculator) 91 detects the respective phase voltages on the upstream sides 6a to 6c based on the AC voltage data VAC1 and VAC2.
- the calculator 91 outputs a command value Vc * for series voltage compensation generated based on the deviation between each phase voltage and the target value VL of the load voltage.
- the command value Vc * is a command value corresponding to the compensation voltage of each phase.
- the output of the calculator 91 is connected to the gate signal generation circuit 93.
- the gate signal generation circuit 93 generates the gate signal Vg1 of the switching element based on the command value Vc * output from the calculator 91.
- the operation determination circuit (determination circuit) 92 is connected to the output of the arithmetic unit 91.
- the operation determination circuit 92 receives the minimum compensation voltage value Vc (min).
- the minimum compensation voltage value Vc (min) is set in advance according to the allowable voltage range of the upstream sides 6a to 6c. For example, the minimum compensation voltage value Vc (min) is set to 1% or the like with respect to the target value VL. When the target value VL is 6600V, the minimum compensation voltage value Vc (min) is 66V.
- the output of the operation determination circuit 92 is connected to the gate signal generation circuit 93.
- the operation determination circuit 92 supplies the gate block signal GB to the gate signal generation circuit 93 so as to stop the gate signal Vg1 when the magnitude of the command value Vc * is smaller than the minimum compensation voltage value Vc (min). .
- the gate signal generation circuit 93 stops outputting. Therefore, the first power converter 20 stops the switching operation.
- the operation determination circuit 92 supplies the gate block signal GB to the gate signal generation circuit 93 so that the gate signal Vg1 is continuously output when the magnitude of the command value Vc * is equal to or greater than the minimum compensation voltage value Vc (min). To do. For example, when the gate block signal GB is at a low level, the gate signal generation circuit 93 outputs the gate signal Vg1 corresponding to the command value Vc *, and the first power converter 20 performs a switching operation.
- FIG. 2A and FIG. 2B are block diagrams illustrating a part of the voltage compensator of this embodiment.
- 2A and 2B show specific configuration examples of the operation determination circuit 92 of the first control circuit 81.
- the operation determination circuit 92 includes determination units 92a to 92c and an AND circuit 92d.
- the determination units 92a to 92c receive the command values Vc1 * to Vc3 * of the respective phases of the calculator 91.
- the determination units 92a to 92c receive the minimum compensation voltage value Vc (min).
- the outputs of the determination units 92a to 92c are input to the AND circuit 92d.
- the AND circuit 92 d supplies the gate block signal GB to the gate signal generation circuit 93.
- the determination units 92a to 92c have the same configuration. Hereinafter, one determination unit 92a will be described.
- the determination unit 92a includes an arithmetic unit 101 that calculates an absolute value, comparators 102 and 103, a coefficient unit 104, and an RS flip-flop 105.
- the computing unit 101 is connected to the output of the computing unit 91.
- the arithmetic unit 101 receives the command value Vc * 1 output from the arithmetic unit 91, calculates the absolute value
- the output of the computing unit 101 is connected to one input of the comparators 102 and 103, respectively.
- the minimum compensation voltage value Vc (min) is input to the other input of the comparator 102.
- the comparator 102 compares the absolute value
- the minimum compensation voltage value Vc (min) is input to the other input of the comparator 103 via the coefficient unit 104.
- the coefficient unit 104 multiplies the amplitude of the input signal by a preset coefficient value and outputs the result.
- the coefficient k of the coefficient unit 104 is a positive number larger than 1.
- the coefficient k is, for example, 1.2.
- the minimum compensation voltage value Vc (min) is multiplied by, for example, 1.2 and input to the comparator 103.
- the comparator 103 compares the absolute value
- the comparator 103 outputs a high level signal when the absolute value
- the comparator 103 outputs a low-level signal when the absolute value
- the output signal GB1 transitions to a high level.
- the output signal GB1 transitions to a low level.
- the operation determination circuit 92 outputs a high level signal GB1.
- the operation determination circuit 92 When the absolute value
- the coefficient unit 104 is provided for setting hysteresis to the threshold value.
- becomes close to the minimum compensation voltage value Vc (min) by providing hysteresis to the minimum compensation voltage value Vc (min), which is the threshold value, the outputs of the comparators 102 and 103 It is possible to prevent the operation determination circuit 92 from malfunctioning due to oscillation.
- determination units 92b and 92c operate in the same manner. Signals GB1 to GB3 output from determination units 92a to 92c are input to AND circuit 92d.
- the AND circuit 92d supplies a high level signal to the gate signal generation circuit 93 as the gate block signal GB when all the signals GB1 to GB3 are at the high level.
- the gate signal generation circuit 93 stops the switching operation of the switching element by the high level gate block signal GB.
- the low level gate block signal GB is supplied to the gate signal generation circuit 93.
- the gate signal generation circuit 93 generates a gate signal according to the command values Vc1 * to Vc3 * without being affected by the low-level gate block signal GB, and supplies it to the switching element.
- the configuration of the operation determination circuit 92 is not limited to the above. In the above description, the description is mainly based on the positive logic, but the operation determination circuit 92 may be configured with negative logic. Further, the operation determination circuit 92 may be constituted by other logic circuits.
- the second control circuit 82 includes a controller 95 for DC voltage control, a controller 96 for AC current control, and a gate signal generation circuit 97.
- the second control circuit 82 receives current data IL1 and IL2 from the current detectors 61 and 62 and DC voltage data VDC from the DC voltage detector 65.
- the second control circuit 82 generates a gate signal Vg2 based on the current data IL1 and IL2 and the DC voltage data VDC and supplies it to the second power converter 30.
- the controller 95 generates an active current command value based on the input DC voltage data VDC and the DC voltage command value set internally.
- the controller 96 calculates the effective current that the second power converter 30 supplies to the first power converter 20 via the capacitor 24 based on the current data IL1 and IL2 and the effective current command value, and the command value for that purpose. Is generated.
- the gate signal generation circuit 97 generates the gate signal Vg2 based on the active current command value supplied from the controller 96.
- FIG. 3A to FIG. 3C are schematic diagrams for explaining the operation of the voltage compensator according to the first embodiment.
- FIG. 3A shows a simplified configuration of the voltage compensator 1 of the present embodiment.
- the voltage compensation apparatus 1 is inserted in series in an electric power system (three-phase power distribution system).
- the voltage compensator 1 detects the upstream voltage (the installation point voltage Vs of the voltage compensator 1) and compensates so that the downstream voltage (load voltage) becomes the target value VL.
- the first power converter 20 receives a supply of active power from the second power converter 30 connected via the capacitor 24 and performs a compensation operation.
- the second power converter 30 operates by inputting AC power from the three-phase power distribution system via the parallel transformers 41 and 42.
- FIG. 3B shows the change over time of the voltage Vs at the installation point of the voltage compensator 1 of FIG. 3A together with the target value VL.
- the voltage Vs at the installation point has a range.
- This range is set by the minimum compensation voltage value Vc (min).
- a range of Vc (min) is provided in the positive direction and a range of ⁇ Vc (min) is provided in the negative direction with respect to the voltage Vs at the installation point detected by the voltage compensator 1.
- ⁇ Vc (min) (
- represents the range in which the variation of the voltage Vs at the installation point is allowed.
- the target value VL is within the allowable range of the voltage Vs at the installation point that changes over time.
- the voltage compensator 1 does not perform the compensation operation, and during the period when the compensation operation is not performed, the first power converter 20 of the voltage compensator 1 stops the switching operation, and thus accompanies the switching operation. Loss can be reduced.
- the voltage compensation device 1 performs a compensation operation when the target value VL exceeds the allowable range of fluctuation of the installation point voltage Vs.
- the voltage compensator 1 stops operating.
- the voltage compensation device 1 performs a compensation operation for outputting a positive compensation voltage so that the load voltage becomes equal to the target value VL.
- the voltage compensator 1 stops operating.
- the voltage compensation device 1 performs a compensation operation for outputting a negative compensation voltage so that the load voltage becomes equal to the target value VL.
- Whether or not the power system voltage compensation operation is to be performed is determined by the control unit 80.
- the calculator 91 of the first control circuit 81 generates a command value Vc * based on the deviation between the installation point voltage Vs and the target value VL.
- Command value Vc * corresponds to the compensation voltage output by first power converter 20.
- the operation determination circuit 92 determines whether or not the compensation voltage is within a range of ⁇ Vc (min). More specifically, the operation determination circuit 92 compares the absolute value
- FIG. 3C shows an operation when the first control circuit 81 does not have the operation determination circuit 92.
- the voltage compensator calculates the difference between the installation point voltage Vs and the target value VL when the installation point voltage Vs does not match the target value VL. Output compensation voltage to compensate for the difference.
- a compensation voltage is output.
- the voltage compensator in the case of FIG. 3C performs the compensation operation over almost all periods. Therefore, the first power converter 20 performs a switching operation over almost all the period, and a loss due to the switching operation occurs.
- the voltage compensation device 1 of the present embodiment includes the operation determination circuit 92. Therefore, the target value VL is within the voltage range of the installation point (minimum compensation voltage value Vc (min)). ), The compensation operation can be stopped.
- the voltage compensator 1 since the voltage compensator 1 according to the present embodiment includes the first power converter 20 that performs a high-frequency switching operation, the voltage of the power system can be compensated at high speed almost continuously.
- the first power converter 20 when the first power converter 20 performs a high-frequency switching operation, a switching loss or a conduction loss occurs in the switching element or the like. In particular, since the switching loss occurs depending on the switching frequency of the switching element, a certain loss occurs even when the value of the passing power is small.
- the voltage compensator of the present embodiment if the voltage fluctuation range at the point where the voltage compensator is installed is within a predetermined range, the voltage compensator stops operating, and thus the loss caused by the voltage compensator. Hardly occurs. Therefore, a large number of voltage compensation devices can be introduced into the power system, which can contribute to the stabilization of the power system.
- FIG. 4 is a block diagram illustrating a voltage compensator according to this embodiment. As shown in FIG. 4, the voltage compensation device 1a of the present embodiment is partially different from that of the first embodiment in the configuration of the control unit 80a.
- the control unit 80a includes a first control circuit 81a.
- the first control circuit 81a includes a selection unit 94.
- Other points are the same as those of the first embodiment, and the same components are denoted by the same reference numerals and detailed description thereof is omitted as appropriate.
- FIG. 5 is a block diagram illustrating a part of the voltage compensator of this embodiment.
- FIG. 5 is a block diagram illustrating the first control circuit 81a of the voltage compensation device 1a.
- the first control circuit 81a includes a selection unit 94, and the selection unit 94 includes a high side selection unit 94H and a low side selection unit 94L.
- the high side selector 94H is connected to the outputs for the switching elements 23a to 23c of the first power converter 20 among the outputs of the gate signal generation circuit 93.
- the output of the high side selector 94H is connected to the gate terminals of the switching elements 23a to 23c and supplies the gate signal Vg1H.
- the output of the operation determination circuit 92 is connected to the high side selection unit 94H.
- the high side selection unit 94H inputs from the operation determination circuit 92 a signal HLT indicating that the absolute value
- the low side selection unit 94L is connected to the outputs for the switching elements 23d to 23f of the first power converter 20 among the outputs of the gate signal generation circuit 93.
- the output of the low side selector 94L is connected to the gate terminals of the switching elements 23d to 23f and supplies the gate signal Vg1L.
- the output of the operation determination circuit 92 is connected to the low side selection unit 94L.
- the low-side selection unit 94L inputs a signal HLT indicating that the absolute value
- the high side selection unit 94H turns on the switching elements 23a to 23c, and at the same time, the low side selection unit 94L sets the switching elements 23d to 23d to 23f is turned off.
- the operation determination circuit 92 compares the deviation (command value Vc *) between the target value VL and the upstream side voltages 6a to 6c with the minimum compensation voltage value Vc (min). To do.
- the operation determination circuit 92 operates the high side selection unit 94H and the low side selection unit 94L.
- the high side selection unit 94H turns on the switching elements 23a to 23c, and the low side selection unit 94L turns off the switching elements 23d to 23f.
- the current flowing through the power system is upstream through the primary windings 11p, 13p, and 15p of the series transformers 11, 13, and 15. Flow from the sides 6a to 6c to the downstream sides 7a to 7c (solid arrows). At this time, a current is induced in the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15. Since diodes are connected in antiparallel to the switching elements 23a to 23f of the first power converter 20, a current path is formed together with the secondary windings 11s, 13s, and 15s. How the current flows is determined by the impedance of the wiring or the like, and depending on the path and magnitude of the flowing current, there is a possibility that a problem may occur in the components of the first power converter 20.
- the switching element on the high side of the first power converter 20 is turned on and the switching element on the low side is turned off when the switching operation is stopped. Therefore, the path of the current flowing through the secondary windings 11s, 13s, and 15s is determined as indicated by the broken-line arrows in FIG. Therefore, even when the operation of the voltage compensator 1a is stopped, it is possible to prevent a current that causes a problem in the components of the first power converter 20 from flowing, and to stably maintain the stopped state. .
- FIG. 6 is a block diagram illustrating a voltage compensator according to this embodiment.
- the voltage compensation device 1b of the present embodiment includes a voltage compensation unit 10b and a control unit 80b, which are different from those in the other embodiments described above.
- the other components are the same as those in the first embodiment described above, and the same components are denoted by the same reference numerals and detailed description thereof is omitted as appropriate. To do.
- the voltage compensation unit 10b includes a bypass circuit 70.
- the bypass circuit 70 includes thyristor switches 71 and 72.
- the thyristor switches 71 and 72 each have two SCRs (Silicon Controlled Rectifiers), and the two SCRs are connected in antiparallel to each other. Therefore, the thyristor switches 71 and 72 can pass an alternating current.
- the thyristor switch 71 is connected between the terminal 12b of the secondary winding 11s and the secondary winding 13s terminal 14b.
- the thyristor switch 72 is connected between the terminal 14b of the secondary winding 13s and the terminal 16b of the secondary winding 15s.
- the control unit 80b includes a first control circuit 81b.
- the first control circuit 81b outputs a bypass signal Vb1 that triggers the bypass circuit 70.
- the bypass signal Vb1 is supplied to the bypass circuit 70 and turns on the two thyristor switches 71 and 72.
- the gate block signal GB output from the operation determination circuit 92 is supplied to the gate signal generation circuit 93 and also supplied to the bypass circuit 70 as the bypass signal Vb1.
- the bypass signal Vb1 is generated and output with the same logic as the gate block signal GB. Therefore, the operation determination circuit 92 stops the switching operation of the first power converter 20 and outputs the bypass signal Vb1 at the same time when the target value VL is within the upstream voltage range, and the thyristor switches 71 and 72 are output. Turn on.
- the bypass circuit 70 can also be used to protect the first power converter 20 when a part of the power system is grounded and an abnormal current flows through the power system.
- the voltage compensator 10 b further includes current detectors 66 and 67, and the controller 80 b has an abnormal current detection circuit 83.
- the abnormal current detection circuit 83 compares the current data IL3 and IL4 supplied from the current detectors 66 and 67 with a preset threshold value, and when the current data IL3 and IL4 exceed the threshold value, Outputs a bypass signal.
- the control unit 80b has an OR circuit 111 for taking the logical sum of the output of the operation determination circuit 92 and the output of the abnormal current detection circuit 83 and outputting the bypass signal Vb1.
- the voltage compensation unit 10b has a bypass circuit 70, and the control unit 80b outputs a bypass signal Vb1 that triggers the bypass circuit 70. Therefore, even if the first power converter 20 stops the switching operation by the gate block signal GB, the induced current flowing in the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 is bypass circuit 70. Can be shed. Therefore, the voltage compensation device 1b can operate safely over all periods during the switching operation and the stop of the first power converter 20.
- bypass circuit 70 can also be used for protection when an abnormal current occurs due to a power system accident or the like, the voltage compensator 1b can operate more safely.
- FIG. 7 is a block diagram illustrating a voltage compensator according to this embodiment.
- the third embodiment further includes a second bypass circuit 120, and the control unit 80c outputs a signal for controlling the second bypass circuit 120.
- the voltage compensation device of this embodiment is otherwise the same as that of the third embodiment, and the same components are denoted by the same reference numerals and detailed description thereof is omitted as appropriate.
- the voltage compensation device 1c of the present embodiment includes a voltage compensation unit 10c and a control unit 80c.
- the voltage compensation unit 10 c includes a second bypass circuit 120.
- the second bypass circuit 120 is connected between the terminals 12b, 14b, 16b of the secondary windings 11s, 13s, 15s and the capacitor 24.
- the second bypass circuit 120 includes a diode bridge 121, a short-circuit switch 122, and a backflow prevention diode 123.
- the diode bridge 121 includes diodes 122a to 122f.
- the diodes 122a to 122f are connected to flow current from the terminals 12b, 14b, and 16b of the secondary windings 11s, 13s, and 15s toward the high-voltage DC input terminal 21a of the first power converter 20.
- the diodes 122a to 122f are connected so that a current flows from the low-voltage DC input terminal 21b toward the terminals 12b, 14b, and 16b.
- the diodes 122a to 122f are, for example, semiconductor rectifier elements.
- the diode bridge 121 provides a path through which a current induced in the secondary windings 11s, 13s, and 15s flows in the event of an accident such as a ground fault in the power system.
- the short-circuit switch 122 is connected to both ends of the DC voltage output terminal of the diode bridge 121.
- a control terminal of the short-circuit switch 122 is connected to a terminal that outputs a gate block signal GB output from the first control circuit 81c.
- the short-circuit switch 122 is turned on when the gate block signal GB becomes high level to short-circuit both ends of the DC voltage output terminal of the diode bridge 121.
- the short-circuit switch 122 is, for example, an IGBT.
- the backflow prevention diode 123 is connected in a direction in which a current for charging the capacitor 24 flows from the diode bridge 121.
- the backflow prevention diode 123 is provided so that current does not flow back from the capacitor 24 to the diode bridge 121 when the short-circuit switch 122 is turned on.
- FIG. 8 is a block diagram illustrating a part of the voltage compensator of this embodiment.
- the first control circuit 81c outputs the gate block signal GB generated by the operation determination circuit 92 as a bypass signal Vb2.
- the bypass signal Vb2 is supplied to the control terminal of the short-circuit switch 122.
- a drive circuit may be provided so that the control terminal of the short-circuit switch 123 can be driven by the bypass signal Vb2.
- the gate block signal GB is supplied to the control terminal of the short-circuit switch 122.
- the short-circuit switch 122 is turned on to form a path of current induced in the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 (broken arrows in FIG. 7).
- the abnormal current is detected by the current detectors 66 and 67, and the abnormal current detection circuit 83 generates the bypass signal Vb1.
- the bypass signal Vb1 turns on the thyristor switches 71 and 72 of the bypass circuit 70.
- the SCR of the thyristor switches 71 and 72 has a turn-on time of several ⁇ s to several tens of ⁇ s, an abnormal current is induced in the secondary windings 11 s, 13 s, and 15 s until the SCR is turned on. Therefore, the diode bridge 121 forms a path through which an abnormal current flows. At the time of detecting an abnormal current, the short-circuit switch 122 may be on or off.
- the bypass path when the abnormal current is induced in the secondary windings 11s, 13s, and 15s is divided into the two bypass circuits 70 and 120. Formed by. Then, by using the bypass circuits 70 and 120 provided in the event of an accident, a path for the induced current of the secondary windings 11s, 13s, and 15s in which the first power converter 20 stops the switching operation is used. Can be formed.
- FIG. 9 is a block diagram illustrating a voltage compensator according to this embodiment.
- the voltage compensation device 1d of the present embodiment includes a voltage compensation unit 10d.
- the voltage compensator 1d includes the same components as those of the third embodiment, except for the configuration of the voltage compensator 10d. Omitted.
- the voltage compensation unit 10d includes a bypass circuit 70d.
- the bypass circuit 70 d includes thyristor switches 71 and 72 and electromagnetic contactors 73 and 74.
- the electromagnetic contactor 73 is connected between the terminals 12b and 14b. That is, the electromagnetic contactor 73 is connected in parallel with the thyristor switch 71.
- the magnetic contactor 74 is connected between the terminals 14b and 16b. That is, the electromagnetic contactor 74 is connected in parallel with the thyristor switch 72.
- the electromagnetic contactors 73 and 74 are turned on by a drive signal supplied from a drive circuit (not shown) that receives the bypass signal Vb1 and generates a conduction signal.
- the electromagnetic contactors 73 and 74 have a longer delay time until they are turned on than the thyristor switches 71 and 72, but the DC resistance value when turned on is lower than the resistance value when the thyristor switches 71 and 72 are turned on. Therefore, the magnetic contactors 73 and 74 can pass a larger current than the thyristor switches 71 and 72 over a long period of time. The magnetic contactors 73 and 74 bypass the current flowing through the thyristor switches 71 and 72 after being turned on behind the thyristor switches 71 and 72.
- the stop period of the first power converter 20 is long and the entire operation is performed. It can also be assumed that it occupies most of the period.
- the switch elements forming the path include It is preferable to use one having a small conduction loss.
- the voltage compensator 1d of the present embodiment since the electromagnetic contactors 73 and 74 are arranged in the path of the induced current when the first power converter 20 is stopped, the voltage compensator 1d is inserted into the power system. This makes it possible to further reduce the loss that occurs, and to realize a highly efficient power transmission / distribution system.
- bypass circuit 120 in the case of the fourth embodiment may be combined. Further, the bypass circuit may be realized by an electromagnetic contactor by removing the thyristor switch, and a second bypass circuit by a diode bridge may be added thereto.
- control units 80, 80a, 80b, and 80c may include devices that sequentially execute programs such as a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit).
- a CPU Central Processing Unit
- MPU Micro-Processing Unit
- Each part, each arithmetic unit, etc. which comprise control part 80, 80a, 80b, 80c may be implement
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
A voltage compensation device according to one embodiment of the present invention is provided with: a power converter that supplies a compensation voltage for compensating for a phase voltage of a power system to a transformer connected in series to phases of the power system; and a control unit that outputs a control signal for controlling the power converter on the basis of the phase voltage and a preset target voltage of the power system. The control unit includes: a first computing unit that generates a command value for generating the compensation voltage on the basis of the phase voltage and the target voltage; and a determination circuit that compares the deviation between the command value and the target voltage with a preset minimum compensation voltage value, and outputs a stop signal for stopping at least a part of the control signal when the deviation is less than the minimum compensation voltage value.
Description
本発明の実施形態は、電圧補償装置に関する。
Embodiments described herein relate generally to a voltage compensation device.
電力系統では、変電所からの距離に応じて電力線インピーダンスが増加することから、電力系統の末端では、電圧降下により受電電圧が低下する場合がある。電力系統では、変電所からの距離によらず一定の許容範囲の電圧を需要家に供給する必要がある。
In the power system, the power line impedance increases according to the distance from the substation. Therefore, at the end of the power system, the received voltage may decrease due to a voltage drop. In the electric power system, it is necessary to supply a voltage within a certain allowable range to consumers regardless of the distance from the substation.
電力系統の電圧を補償するために、電力系統に直列に挿入する電圧補償装置が提案されている。このような電圧補償装置は、高周波スイッチング動作するインバータ回路を内蔵することによって、高速かつ連続的に電力系統の電圧補償を行うことを可能にする。
In order to compensate the voltage of the electric power system, a voltage compensator inserted in series in the electric power system has been proposed. Such a voltage compensation device incorporates an inverter circuit that performs high-frequency switching operation, thereby enabling voltage compensation of the power system at high speed and continuously.
電力系統の電圧があらかじめ設定された目標値からずれたことを検出した場合には、電圧補償装置は、電力系統の電圧を目標の電圧値に一致させるように動作する。電圧補償装置は、高周波スイッチング動作するので、動作時にはスイッチング動作にともなうスイッチング損失や導通損失を発生する。電力系統の電圧は常時変動しており、そのため電圧補償装置は、常時動作しており、常時運転損失を発生していることとなる。
When it is detected that the voltage of the power system has deviated from a preset target value, the voltage compensator operates to match the voltage of the power system with the target voltage value. Since the voltage compensator performs a high-frequency switching operation, a switching loss and a conduction loss accompanying the switching operation occur during operation. The voltage of the power system constantly fluctuates, so that the voltage compensator is always operating and generates a constant operating loss.
実施形態は、全動作期間にわたって運転損失の少ない高効率な電圧補償装置を提供する。
The embodiment provides a high-efficiency voltage compensator with little operation loss over the entire operation period.
実施形態に係る電圧補償装置は、電力系統の各相に直列に接続される変圧器に、前記電力系統の相電圧を補償する補償電圧を供給する電力変換器と、前記相電圧とあらかじめ設定された前記電力系統の目標電圧とにもとづいて前記電力変換器を制御する制御信号を出力する制御部と、を備える。前記制御部は、前記相電圧と、前記目標電圧と、にもとづいて、前記補償電圧を生成するための指令値を生成する第1演算器と、前記指令値と、前記目標電圧と、の間の偏差を、あらかじめ設定された最小補償電圧値と比較して、前記偏差が前記最小補償電圧値よりも小さいときには、前記制御信号の少なくとも一部を停止する停止信号を出力する判定回路と、を含む。
The voltage compensator according to the embodiment includes a power converter that supplies a compensation voltage for compensating a phase voltage of the power system to a transformer connected in series to each phase of the power system, and the phase voltage is set in advance. And a control unit that outputs a control signal for controlling the power converter based on the target voltage of the power system. The control unit includes a first arithmetic unit that generates a command value for generating the compensation voltage based on the phase voltage and the target voltage, and between the command value and the target voltage. And a determination circuit that outputs a stop signal for stopping at least a part of the control signal when the deviation is smaller than the minimum compensation voltage value. Including.
以下、図面を参照しつつ、本発明の実施形態について説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
In the present specification and drawings, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して詳細な説明を適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
In the present specification and drawings, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
(第1の実施形態)
図1は、本実施形態に係る電圧補償装置を例示するブロック図である。
本実施形態の電圧補償装置1の構成について説明する。
図1に示すように、本実施形態の電圧補償装置1は、電圧補償部10と、制御部80と、を備える。 (First embodiment)
FIG. 1 is a block diagram illustrating a voltage compensator according to this embodiment.
A configuration of thevoltage compensator 1 of the present embodiment will be described.
As shown in FIG. 1, thevoltage compensation device 1 according to this embodiment includes a voltage compensation unit 10 and a control unit 80.
図1は、本実施形態に係る電圧補償装置を例示するブロック図である。
本実施形態の電圧補償装置1の構成について説明する。
図1に示すように、本実施形態の電圧補償装置1は、電圧補償部10と、制御部80と、を備える。 (First embodiment)
FIG. 1 is a block diagram illustrating a voltage compensator according to this embodiment.
A configuration of the
As shown in FIG. 1, the
電圧補償部10は、直列変圧器11,13,15と、第1電力変換器20と、第2電力変換器30と、並列変圧器41,42と、インダクタ51,52と、電流検出器61,62と、交流電圧検出器63,64と、直流電圧検出器65と、を含む。電圧補償装置1は、電圧補償部10によって電力系統に直列に接続される。電力系統は、U相、V相およびW相からなる三相交流の配電系統である。
The voltage compensator 10 includes series transformers 11, 13, 15, a first power converter 20, a second power converter 30, parallel transformers 41, 42, inductors 51, 52, and a current detector 61. , 62, AC voltage detectors 63, 64, and a DC voltage detector 65. The voltage compensator 1 is connected in series to the power system by the voltage compensator 10. The power system is a three-phase AC distribution system composed of a U phase, a V phase, and a W phase.
電圧補償部10は、端子2a~2c,3a~3cを含む。電圧補償部10は、端子2a~2cを介して、電力系統の上流側6a~6cに接続される。電圧補償部10は、端子3a~3cを介して、電力系統の下流側7a~7cに接続される。たとえば、電力系統の上流側とは変電所の側であり、下流側とは需要者の側である。以下では、上流側6a~6cの電力系統の相をU相、V相およびW相と呼び、下流側7a~7cの電力系統の相をu相、v相およびw相と呼ぶこととする。したがって、端子2aは、U相に接続され、端子3aは、u相に接続される。端子2bは、V相に接続され、端子3bは、v相に接続される。端子2cは、W相に接続され、端子3cは、w相に接続される。
The voltage compensation unit 10 includes terminals 2a to 2c and 3a to 3c. The voltage compensator 10 is connected to the upstream sides 6a to 6c of the power system via the terminals 2a to 2c. The voltage compensator 10 is connected to the downstream sides 7a to 7c of the power system via the terminals 3a to 3c. For example, the upstream side of the power system is the substation side, and the downstream side is the consumer side. Hereinafter, the phases of the power system on the upstream side 6a to 6c are referred to as U phase, V phase, and W phase, and the phases of the power system on the downstream side 7a to 7c are referred to as u phase, v phase, and w phase. Therefore, the terminal 2a is connected to the U phase, and the terminal 3a is connected to the u phase. The terminal 2b is connected to the V phase, and the terminal 3b is connected to the v phase. Terminal 2c is connected to the W phase, and terminal 3c is connected to the w phase.
電圧補償装置1は、電力系統の上流側6a~6cの電圧の目標値に対する低下または上昇を検出して、下流側の7a~7cの電圧が目標電圧に一致するように補償電圧を出力する。補償電圧は、上流側6a~6cの電圧に加算され、または上流側6a~6cの電圧から減算される。上流側6a~6cの電圧から減算される場合には、電力系統の位相と180°異なる位相の補償電圧を上流側6a~6cの電圧に加算する。
The voltage compensator 1 detects a decrease or an increase in the voltage on the upstream side 6a to 6c of the power system with respect to the target value, and outputs a compensation voltage so that the voltages on the downstream side 7a to 7c coincide with the target voltage. The compensation voltage is added to the voltage on the upstream side 6a to 6c or subtracted from the voltage on the upstream side 6a to 6c. When subtracted from the voltages on the upstream sides 6a to 6c, a compensation voltage having a phase different from the phase of the power system by 180 ° is added to the voltages on the upstream sides 6a to 6c.
より詳細には後述するが、本実施形態の電圧補償装置1は、検出する上流側6a~6cの電圧を中心値として、正負両方向に変動が許容される電圧範囲が設定されている。電圧補償装置1では、目標電圧が、検出された上流側6a~6cの電圧の許容範囲を逸脱した場合に、補償動作を行う。目標電圧が、検出された上流側6a~6cの電圧の許容範囲内の場合には、補償動作を停止する。
As will be described in more detail later, the voltage compensator 1 of the present embodiment has a voltage range in which fluctuations are allowed in both positive and negative directions with the detected upstream side voltages 6a to 6c as the center value. The voltage compensator 1 performs a compensation operation when the target voltage deviates from the detected allowable range of the upstream side voltages 6a to 6c. When the target voltage is within the allowable range of the detected voltages on the upstream sides 6a to 6c, the compensation operation is stopped.
まず、電圧補償部10の構成について詳細に説明する。
直列変圧器11,13,15は、一次巻線11p,13p,15pと、二次巻線11s,13s,15sと、をそれぞれ含む。直列変圧器11の一次巻線11pは、端子2aと端子3aとの間に接続されており、電力系統に直列に接続されている。直列変圧器13の一次巻線13pは、端子2bと端子3bとの間に接続されており、電力系統に直列に接続されている。直列変圧器15の一次巻線15pは、端子2cと端子3cとの間に接続されており、電力系統に直列に接続されている。つまり、3つの直列変圧器11,13,15の一次巻線11p,13p,15pは、電力系統の各相に直列に接続されている。 First, the configuration of thevoltage compensation unit 10 will be described in detail.
Series transformers 11, 13, and 15 include primary windings 11p, 13p, and 15p, and secondary windings 11s, 13s, and 15s, respectively. The primary winding 11p of the series transformer 11 is connected between the terminal 2a and the terminal 3a, and is connected in series to the power system. The primary winding 13p of the series transformer 13 is connected between the terminal 2b and the terminal 3b, and is connected in series to the power system. The primary winding 15p of the series transformer 15 is connected between the terminal 2c and the terminal 3c, and is connected in series to the power system. That is, the primary windings 11p, 13p, 15p of the three series transformers 11, 13, 15 are connected in series to each phase of the power system.
直列変圧器11,13,15は、一次巻線11p,13p,15pと、二次巻線11s,13s,15sと、をそれぞれ含む。直列変圧器11の一次巻線11pは、端子2aと端子3aとの間に接続されており、電力系統に直列に接続されている。直列変圧器13の一次巻線13pは、端子2bと端子3bとの間に接続されており、電力系統に直列に接続されている。直列変圧器15の一次巻線15pは、端子2cと端子3cとの間に接続されており、電力系統に直列に接続されている。つまり、3つの直列変圧器11,13,15の一次巻線11p,13p,15pは、電力系統の各相に直列に接続されている。 First, the configuration of the
直列変圧器11,13,15の二次巻線11s,13s,15sは、デルタ結線されている。すなわち、二次巻線11sの一方の端子12aは、二次巻線13sの他方の端子14bと接続されている。二次巻線13sの一方の端子14aは、二次巻線15sの他方の端子16bと接続されている。二次巻線15sの一方の端子16aは、二次巻線11sの他方の端子12bと接続されている。端子12a,14bの接続ノードは、第1電力変換器20の交流端子22bに接続されている。端子14a,16bの接続ノードは、第1電力変換器20の交流端子22cに接続されている。端子16a,12bの接続ノードは、第1電力変換器20の交流端子22aに接続されている。
The secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 are delta-connected. That is, one terminal 12a of the secondary winding 11s is connected to the other terminal 14b of the secondary winding 13s. One terminal 14a of the secondary winding 13s is connected to the other terminal 16b of the secondary winding 15s. One terminal 16a of the secondary winding 15s is connected to the other terminal 12b of the secondary winding 11s. A connection node of the terminals 12 a and 14 b is connected to the AC terminal 22 b of the first power converter 20. A connection node of the terminals 14 a and 16 b is connected to the AC terminal 22 c of the first power converter 20. A connection node of the terminals 16 a and 12 b is connected to the AC terminal 22 a of the first power converter 20.
本実施形態の電圧補償装置1では、直列変圧器11,13,15の二次巻線11s,13s,15sは、デルタ結線されて第1電力変換器20の交流出力に接続されている。そのため、二次巻線内に還流電流を流すことができ、電圧補償装置1は、電圧歪みを発生しにくく、高品質の電力を電力系統に対して連系することができる。
In the voltage compensation device 1 of the present embodiment, the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 are delta-connected and connected to the AC output of the first power converter 20. Therefore, it is possible to flow a return current in the secondary winding, and the voltage compensation device 1 is less likely to cause voltage distortion and can link high-quality power to the power system.
なお、直列変圧器11,13,15の二次巻線11s,13s,15sは、デルタ結線に限らず、スター結線としてもよい。二次巻線をスター結線とすることによって、還流電流を流すことができないので、電圧歪が大きくなる傾向にあるが、結線作業が容易になるとの利点がある。
Note that the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 are not limited to delta connections, and may be star connections. By making the secondary winding a star connection, since the return current cannot flow, the voltage distortion tends to increase, but there is an advantage that the connection work becomes easy.
第1電力変換器20は、高圧直流端子21aと低圧直流端子21bとの間に接続されている。高圧直流端子21aおよび低圧直流端子21bには、直流リンク用のコンデンサ24を介して直流電圧が供給される。第1電力変換器20は、三相交流電圧を出力する交流端子22a,22b,22cを含む。交流端子22a,22b,22cは、フィルタ26を介して直列変圧器11,13,15の二次巻線11s,13s,15sに接続されている。第1電力変換器20は、高圧直流端子21aと低圧直流端子21bとの間に印加された直流電圧を三相交流電圧に変換するインバータ装置である。
The first power converter 20 is connected between the high voltage DC terminal 21a and the low voltage DC terminal 21b. A DC voltage is supplied to the high-voltage DC terminal 21 a and the low-voltage DC terminal 21 b via a DC link capacitor 24. The first power converter 20 includes AC terminals 22a, 22b, and 22c that output a three-phase AC voltage. The AC terminals 22a, 22b, and 22c are connected to the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 through the filter 26. The first power converter 20 is an inverter device that converts a DC voltage applied between the high-voltage DC terminal 21a and the low-voltage DC terminal 21b into a three-phase AC voltage.
第1電力変換器20は、たとえば、6つのスイッチング素子23a~23fを含んでいる。スイッチング素子23a~23fは、自己消弧形のスイッチング素子であり、たとえばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)等である。スイッチング素子は、ハイサイドスイッチおよびローサイドスイッチとして直列に接続される。アームを直列に接続されたレグは、3つ並列に接続されて三相インバータ回路を構成する。第1電力変換器20のインバータ回路は、直流電圧を電力系統の周波数よりも高い周波数の交流電圧に変換することができれば、この回路構成に限定されない。インバータ回路は、たとえばマルチレベルインバータ回路やその変形等であってもよい。
The first power converter 20 includes, for example, six switching elements 23a to 23f. The switching elements 23a to 23f are self-extinguishing type switching elements, such as MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) and IGBT (Insulated-Gate Bipolar-Transistor). The switching elements are connected in series as a high side switch and a low side switch. Three legs having arms connected in series are connected in parallel to form a three-phase inverter circuit. The inverter circuit of the first power converter 20 is not limited to this circuit configuration as long as it can convert a DC voltage into an AC voltage having a frequency higher than the frequency of the power system. The inverter circuit may be, for example, a multilevel inverter circuit or a modification thereof.
第1電力変換器20と直列変圧器11,13,15の二次巻線11s,13s,15sとの間には、フィルタ26が接続されている。フィルタ26は、この例では、各相に直列に接続されたインダクタおよび各線間に接続されたコンデンサを含むローパスフィルタである。フィルタ26は、第1電力変換器20が出力する数kHz~数100kHz程度の高周波スイッチング波形の高調波を除去して電力系統の周波数の電圧を出力する。フィルタ26は、第1電力変換器20の出力の周波数や、変調方式等にしたがって適切な回路を用いることができる。
A filter 26 is connected between the first power converter 20 and the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15. In this example, the filter 26 is a low-pass filter including an inductor connected in series to each phase and a capacitor connected between the lines. The filter 26 removes harmonics of a high-frequency switching waveform of about several kHz to several hundred kHz output from the first power converter 20, and outputs a voltage at the frequency of the power system. As the filter 26, an appropriate circuit can be used according to the frequency of the output of the first power converter 20, the modulation method, or the like.
直流リンク用のコンデンサ24は、第1電力変換器20に直流電力を供給する。このコンデンサ24は、第2電力変換器30から供給される有効電力を第1電力変換器20に供給する。
The DC link capacitor 24 supplies DC power to the first power converter 20. The capacitor 24 supplies active power supplied from the second power converter 30 to the first power converter 20.
第2電力変換器30は、高圧直流端子31aと低圧直流端子31bとを含んでいる。高圧直流端子31aおよび低圧直流端子31bは、コンデンサ24の両端にそれぞれ接続されている。第2電力変換器30は、交流電力を供給する端子を有しており、そのうちの1つには、インダクタ51の一端が接続されている。他の端子には、インダクタ52の一端が接続されている。
The second power converter 30 includes a high voltage DC terminal 31a and a low voltage DC terminal 31b. The high-voltage DC terminal 31a and the low-voltage DC terminal 31b are connected to both ends of the capacitor 24, respectively. The 2nd power converter 30 has a terminal which supplies alternating current power, and one end of inductor 51 is connected to one of them. One end of the inductor 52 is connected to the other terminal.
第2電力変換器30は、交流電力を直流に変換して、直流リンクのコンデンサ24に供給するコンバータ装置である。第2電力変換器30は、アクティブ平滑フィルタとして動作し、コンデンサ24を介して第1電力変換器20に有効電力を供給する。
The second power converter 30 is a converter device that converts AC power into DC and supplies it to the capacitor 24 of the DC link. The second power converter 30 operates as an active smoothing filter and supplies active power to the first power converter 20 via the capacitor 24.
第2電力変換器30は、第1電力変換器20と同じ回路構成のインバータ装置であってもよい。第2電力変換器30は、第1電力変換器20と同様に、6つの自己消弧形のスイッチング素子を含んでいる。スイッチング素子は、ハイサイドスイッチおよびローサイドスイッチとして直列に接続される。アームが直列接続されたレグは、3つ並列に接続されてインバータ回路を構成する。第2電力変換器30のインバータ回路は、直流電圧と、電力系統の周波数よりも高い周波数の交流電圧とを相互に変換することができれば、この構成に限定されない。なお、この例では、第2電力変換器30のインバータ回路の構成は、第1電力変換器20のインバータ回路の構成と同一であるが、異なる構成であってもよい。
The second power converter 30 may be an inverter device having the same circuit configuration as that of the first power converter 20. Similar to the first power converter 20, the second power converter 30 includes six self-extinguishing switching elements. The switching elements are connected in series as a high side switch and a low side switch. Three legs having arms connected in series are connected in parallel to form an inverter circuit. The inverter circuit of the second power converter 30 is not limited to this configuration as long as it can mutually convert a DC voltage and an AC voltage having a frequency higher than the frequency of the power system. In this example, the configuration of the inverter circuit of the second power converter 30 is the same as the configuration of the inverter circuit of the first power converter 20, but may be a different configuration.
なお、本実施形態の電圧補償装置1では、第2電力変換器30は、第1電力変換器20に直流電圧および有効電力を供給することができれば、他の構成であってもかまわない。
In the voltage compensator 1 of the present embodiment, the second power converter 30 may have another configuration as long as it can supply a DC voltage and active power to the first power converter 20.
並列変圧器41の一次巻線41pは、直列変圧器の下流側7a~7cにおいて、u相およびv相の線間に接続されている。並列変圧器42の一次巻線42pは、直列変圧器11,13,15の下流側7a~7cにおいて、v相およびw相の線間に接続されている。並列変圧器41の二次巻線41sの一方は、インダクタ51の他端に接続され、他方は、第2電力変換器30の端子に接続されている。並列変圧器42の二次巻線42sは、インダクタ52の他端に接続され、他方は、第2電力変換器30の端子に接続されている。並列変圧器41,42の二次巻線41s,42sは、インダクタ51,52を介して第2電力変換器30の端子とV結線されている。
The primary winding 41p of the parallel transformer 41 is connected between the u-phase and v-phase lines on the downstream side 7a to 7c of the series transformer. The primary winding 42p of the parallel transformer 42 is connected between the v-phase and w-phase lines on the downstream sides 7a to 7c of the series transformers 11, 13, and 15. One of the secondary windings 41 s of the parallel transformer 41 is connected to the other end of the inductor 51, and the other is connected to a terminal of the second power converter 30. The secondary winding 42 s of the parallel transformer 42 is connected to the other end of the inductor 52, and the other is connected to a terminal of the second power converter 30. The secondary windings 41 s and 42 s of the parallel transformers 41 and 42 are V-connected to the terminals of the second power converter 30 via the inductors 51 and 52.
電流検出器61は、第2電力変換器30の交流端子と並列変圧器41の二次巻線41sとの間に直列に接続されている。電流検出器62は、第2電力変換器30の他の交流端子と並列変圧器42の二次巻線42sとの間に直列に接続されている。つまり、電流検出器61,62は、インダクタ51,52に流れるそれぞれの交流電流を検出して、電流データIL1,IL2を出力する。
The current detector 61 is connected in series between the AC terminal of the second power converter 30 and the secondary winding 41 s of the parallel transformer 41. The current detector 62 is connected in series between the other AC terminal of the second power converter 30 and the secondary winding 42 s of the parallel transformer 42. That is, the current detectors 61 and 62 detect the respective alternating currents flowing through the inductors 51 and 52, and output current data IL1 and IL2.
交流電圧検出器63,64は、直列変圧器11,13,15の上流側6a~6cに接続されている。交流電圧検出器63は、U相とV相との線間に接続され、UV間の線間電圧を検出する。交流電圧検出器64は、V相とW相との線間に接続され、VW間の線間電圧を検出する。交流電圧検出器63,64は、たとえば計器用変圧器と計器用変圧器の出力を適切な電圧レベルに変換するトランスデューサとを含んでいる。交流電圧検出器63,64は、上流側6a~6cの線間電圧を検出して、計器用変圧器で降圧し、トランスデューサによって制御部80に入力可能な信号である交流電圧データVAC1,VAC2に変換して出力する。
AC voltage detectors 63 and 64 are connected to upstream sides 6a to 6c of series transformers 11, 13, and 15. The AC voltage detector 63 is connected between the U-phase and V-phase lines, and detects the line voltage between UV. The AC voltage detector 64 is connected between the lines of the V phase and the W phase, and detects the line voltage between the VWs. The AC voltage detectors 63 and 64 include, for example, an instrument transformer and a transducer that converts the output of the instrument transformer to an appropriate voltage level. The AC voltage detectors 63 and 64 detect the line voltages on the upstream sides 6a to 6c, step down the voltage with an instrument transformer, and generate AC voltage data VAC1 and VAC2 that are signals that can be input to the control unit 80 by the transducer. Convert and output.
直流電圧検出器65は、コンデンサ24の両端の直流電圧を検出して、直流電圧データVDCを出力して、制御部80に供給する。
The DC voltage detector 65 detects the DC voltage across the capacitor 24, outputs DC voltage data VDC, and supplies it to the control unit 80.
制御部80は、交流電圧データVAC1,VAC2、電流データIL1,IL2および直流電圧データVDCを入力し、これらにもとづいてゲート信号(制御信号)Vg1,Vg2を生成し、第1電力変換器20および第2電力変換器30のスイッチング素子を駆動する。
The controller 80 receives the AC voltage data VAC1, VAC2, the current data IL1, IL2, and the DC voltage data VDC, generates gate signals (control signals) Vg1, Vg2 based on these, and generates the first power converter 20 and The switching element of the second power converter 30 is driven.
制御部80は、第1制御回路81と、第2制御回路82と、を含む。第1制御回路81は、第1電力変換器20の動作を制御するためのゲート信号Vg1を第1電力変換器20に供給する。第2制御回路82は、第2電力変換器30の動作を制御するためのゲート駆動信号Vg2を第2電力変換器30に供給する。
The control unit 80 includes a first control circuit 81 and a second control circuit 82. The first control circuit 81 supplies a gate signal Vg <b> 1 for controlling the operation of the first power converter 20 to the first power converter 20. The second control circuit 82 supplies a gate drive signal Vg <b> 2 for controlling the operation of the second power converter 30 to the second power converter 30.
第1制御回路81は、直列電圧の補償値Vc*を演算する演算器91と、動作判定回路92と、ゲート信号生成回路93を、を含む。
The first control circuit 81 includes an arithmetic unit 91 that calculates a compensation value Vc * of the series voltage, an operation determination circuit 92, and a gate signal generation circuit 93.
値演算器(第1演算器)91は、交流電圧データVAC1,VAC2にもとづいて、上流側6a~6cの各相電圧を検出する。演算器91は、各相電圧と負荷電圧の目標値VLとの偏差にもとづいて生成された直列電圧補償のための指令値Vc*を出力する。指令値Vc*は、各相の補償電圧に対応する指令値である。
The value calculator (first calculator) 91 detects the respective phase voltages on the upstream sides 6a to 6c based on the AC voltage data VAC1 and VAC2. The calculator 91 outputs a command value Vc * for series voltage compensation generated based on the deviation between each phase voltage and the target value VL of the load voltage. The command value Vc * is a command value corresponding to the compensation voltage of each phase.
演算器91の出力は、ゲート信号生成回路93に接続されている。ゲート信号生成回路93は、演算器91から出力された指令値Vc*にもとづいて、スイッチング素子のゲート信号Vg1を生成する。
The output of the calculator 91 is connected to the gate signal generation circuit 93. The gate signal generation circuit 93 generates the gate signal Vg1 of the switching element based on the command value Vc * output from the calculator 91.
動作判定回路(判定回路)92は、演算器91の出力に接続されている。動作判定回路92には、最小補償電圧値Vc(min)が入力されている。最小補償電圧値Vc(min)は、上流側6a~6cの電圧の許容範囲にしたがってあらかじめ設定されている。たとえば、最小補償電圧値Vc(min)は、目標値VLに対して1%等に設定される。目標値VLが6600Vの場合には、最小補償電圧値Vc(min)は66Vである。動作判定回路92の出力は、ゲート信号生成回路93に接続されている。
The operation determination circuit (determination circuit) 92 is connected to the output of the arithmetic unit 91. The operation determination circuit 92 receives the minimum compensation voltage value Vc (min). The minimum compensation voltage value Vc (min) is set in advance according to the allowable voltage range of the upstream sides 6a to 6c. For example, the minimum compensation voltage value Vc (min) is set to 1% or the like with respect to the target value VL. When the target value VL is 6600V, the minimum compensation voltage value Vc (min) is 66V. The output of the operation determination circuit 92 is connected to the gate signal generation circuit 93.
動作判定回路92は、指令値Vc*の大きさが、最小補償電圧値Vc(min)よりも小さい場合に、ゲート信号Vg1を停止するようにゲートブロック信号GBをゲート信号生成回路93に供給する。たとえば、ゲートブロック信号GBがハイレベルのときに、ゲート信号生成回路93は出力を停止する。そのため、第1電力変換器20は、スイッチング動作を停止する。
The operation determination circuit 92 supplies the gate block signal GB to the gate signal generation circuit 93 so as to stop the gate signal Vg1 when the magnitude of the command value Vc * is smaller than the minimum compensation voltage value Vc (min). . For example, when the gate block signal GB is at a high level, the gate signal generation circuit 93 stops outputting. Therefore, the first power converter 20 stops the switching operation.
動作判定回路92は、指令値Vc*の大きさが、最小補償電圧値Vc(min)以上の場合には、ゲート信号Vg1を出力し続けるようにゲートブロック信号GBをゲート信号生成回路93に供給する。たとえば、ゲートブロック信号GBがローレベルのときには、ゲート信号生成回路93は、指令値Vc*に応じたゲート信号Vg1を出力し、第1電力変換器20は、スイッチング動作をする。
The operation determination circuit 92 supplies the gate block signal GB to the gate signal generation circuit 93 so that the gate signal Vg1 is continuously output when the magnitude of the command value Vc * is equal to or greater than the minimum compensation voltage value Vc (min). To do. For example, when the gate block signal GB is at a low level, the gate signal generation circuit 93 outputs the gate signal Vg1 corresponding to the command value Vc *, and the first power converter 20 performs a switching operation.
図2(a)および図2(b)は、本実施形態の電圧補償装置の一部を例示するブロック図である。
図2(a)および図2(b)では、第1制御回路81の動作判定回路92の具体的な構成例が示されている。
図2(a)に示すように、動作判定回路92は、判定部92a~92cと、AND回路92dと、を含む。判定部92a~92cは、演算器91の各相の指令値Vc1*~Vc3*をそれぞれ入力する。判定部92a~92cは、最小補償電圧値Vc(min)を入力する。判定部92a~92cの出力は、AND回路92dに入力される。AND回路92dは、ゲート信号生成回路93にゲートブロック信号GBを供給する。 FIG. 2A and FIG. 2B are block diagrams illustrating a part of the voltage compensator of this embodiment.
2A and 2B show specific configuration examples of theoperation determination circuit 92 of the first control circuit 81. FIG.
As shown in FIG. 2A, theoperation determination circuit 92 includes determination units 92a to 92c and an AND circuit 92d. The determination units 92a to 92c receive the command values Vc1 * to Vc3 * of the respective phases of the calculator 91. The determination units 92a to 92c receive the minimum compensation voltage value Vc (min). The outputs of the determination units 92a to 92c are input to the AND circuit 92d. The AND circuit 92 d supplies the gate block signal GB to the gate signal generation circuit 93.
図2(a)および図2(b)では、第1制御回路81の動作判定回路92の具体的な構成例が示されている。
図2(a)に示すように、動作判定回路92は、判定部92a~92cと、AND回路92dと、を含む。判定部92a~92cは、演算器91の各相の指令値Vc1*~Vc3*をそれぞれ入力する。判定部92a~92cは、最小補償電圧値Vc(min)を入力する。判定部92a~92cの出力は、AND回路92dに入力される。AND回路92dは、ゲート信号生成回路93にゲートブロック信号GBを供給する。 FIG. 2A and FIG. 2B are block diagrams illustrating a part of the voltage compensator of this embodiment.
2A and 2B show specific configuration examples of the
As shown in FIG. 2A, the
図2(b)に示すように、判定部92a~92cは、同一の構成を有している。以下では1つの判定部92aについて説明する。
As shown in FIG. 2B, the determination units 92a to 92c have the same configuration. Hereinafter, one determination unit 92a will be described.
判定部92aは、絶対値を演算する演算器101と、比較器102,103と、係数器104と、RSフリップフロップ105と、を含む。
The determination unit 92a includes an arithmetic unit 101 that calculates an absolute value, comparators 102 and 103, a coefficient unit 104, and an RS flip-flop 105.
演算器101は、演算器91の出力に接続されている。演算器101は、演算器91から出力される指令値Vc*1を入力し、その絶対値|Vc1*|を計算して出力する。
The computing unit 101 is connected to the output of the computing unit 91. The arithmetic unit 101 receives the command value Vc * 1 output from the arithmetic unit 91, calculates the absolute value | Vc1 * |, and outputs it.
演算器101の出力は、比較器102,103の一方の入力にそれぞれ接続されている。比較器102の他方の入力には、最小補償電圧値Vc(min)が入力されている。比較器102は、指令値Vc1*の絶対値|Vc1*|と最小補償電圧値Vc(min)とを比較する。比較器102は、絶対値|Vc1*|が最小補償電圧値Vc(min)よりも小さい場合には、ハイレベルの信号(たとえば論理値“1”)を出力する。比較器102は、絶対値|Vc1*|が最小補償電圧値Vc(min)以上の場合には、ローレベルの信号(たとえば論理値“0”)を出力する。
The output of the computing unit 101 is connected to one input of the comparators 102 and 103, respectively. The minimum compensation voltage value Vc (min) is input to the other input of the comparator 102. The comparator 102 compares the absolute value | Vc1 * | of the command value Vc1 * with the minimum compensation voltage value Vc (min). When the absolute value | Vc1 * | is smaller than the minimum compensation voltage value Vc (min), the comparator 102 outputs a high-level signal (for example, a logical value “1”). When the absolute value | Vc1 * | is equal to or greater than the minimum compensation voltage value Vc (min), the comparator 102 outputs a low-level signal (for example, a logical value “0”).
比較器103の他方の入力には、係数器104を介して、最小補償電圧値Vc(min)が入力される。係数器104は、入力された信号の振幅に、あらかじめ設定された係数値を乗じて出力する。係数器104の係数kは、1よりも大きい正数である。係数kはたとえば1.2等である。最小補償電圧値Vc(min)は、たとえば1.2倍されて比較器103に入力される。
The minimum compensation voltage value Vc (min) is input to the other input of the comparator 103 via the coefficient unit 104. The coefficient unit 104 multiplies the amplitude of the input signal by a preset coefficient value and outputs the result. The coefficient k of the coefficient unit 104 is a positive number larger than 1. The coefficient k is, for example, 1.2. The minimum compensation voltage value Vc (min) is multiplied by, for example, 1.2 and input to the comparator 103.
比較器103は、絶対値|Vc1*|と係数器104の出力k×Vc(min)とを比較する。比較器103は、絶対値|Vc1*|が、k×Vc(min)以上の場合には、ハイレベルの信号を出力する。比較器103は、絶対値|Vc1*|がk×Vc(min)よりも小さい場合には、ローレベルの信号を出力する。
The comparator 103 compares the absolute value | Vc1 * | with the output k × Vc (min) of the coefficient unit 104. The comparator 103 outputs a high level signal when the absolute value | Vc1 * | is equal to or greater than k × Vc (min). The comparator 103 outputs a low-level signal when the absolute value | Vc1 * | is smaller than k × Vc (min).
RSフリップフロップ105は、リセット入力Rがローレベルのときに、セット入力Sがハイレベルに反転すると、出力する信号GB1がハイレベルに遷移する。
In the RS flip-flop 105, when the reset input R is at a low level and the set input S is inverted to a high level, the output signal GB1 transitions to a high level.
RSフリップフロップ105は、セット入力Sがローレベルのときに、リセット入力Rがハイレベルに反転すると、出力する信号GB1がローレベルに遷移する。
In the RS flip-flop 105, when the reset input R is inverted to a high level when the set input S is at a low level, the output signal GB1 transitions to a low level.
つまり、絶対値|Vc1*|が低下する場合に、比較器102によって、絶対値|Vc1*|が最小補償電圧値Vc(min)よりも小さくなったことが検出されたときに、動作判定回路92は、ハイレベルの信号GB1を出力する。
That is, when the absolute value | Vc1 * | decreases, when the comparator 102 detects that the absolute value | Vc1 * | is smaller than the minimum compensation voltage value Vc (min), the operation determination circuit 92 outputs a high level signal GB1.
絶対値|Vc1*|が上昇する場合に、比較器103によって、絶対値|Vc1*|がk×Vc(min)以上になったことが検出されたときには、動作判定回路92は、信号GB1をローレベルに反転させる。
When the absolute value | Vc1 * | increases, when the comparator 103 detects that the absolute value | Vc1 * | is equal to or greater than k × Vc (min), the operation determination circuit 92 outputs the signal GB1. Invert to low level.
係数器104は、しきい値にヒステリシスを設定するために設けられている。しきい値である最小補償電圧値Vc(min)にヒステリシスを設けたことによって、絶対値|Vc1*|が最小補償電圧値Vc(min)付近になったときに、比較器102,103の出力が発振して、動作判定回路92が誤動作することを防止することができる。
The coefficient unit 104 is provided for setting hysteresis to the threshold value. When the absolute value | Vc1 * | becomes close to the minimum compensation voltage value Vc (min) by providing hysteresis to the minimum compensation voltage value Vc (min), which is the threshold value, the outputs of the comparators 102 and 103 It is possible to prevent the operation determination circuit 92 from malfunctioning due to oscillation.
他の判定部92b,92cも同様に動作する。判定部92a~92cから出力される信号GB1~GB3は、AND回路92dに入力される。AND回路92dは、信号GB1~GB3がすべてハイレベルの場合に、ハイレベルの信号をゲートブロック信号GBとしてゲート信号生成回路93に供給する。ゲート信号生成回路93は、ハイレベルのゲートブロック信号GBによって、スイッチング素子のスイッチング動作を停止させる。
Other determination units 92b and 92c operate in the same manner. Signals GB1 to GB3 output from determination units 92a to 92c are input to AND circuit 92d. The AND circuit 92d supplies a high level signal to the gate signal generation circuit 93 as the gate block signal GB when all the signals GB1 to GB3 are at the high level. The gate signal generation circuit 93 stops the switching operation of the switching element by the high level gate block signal GB.
判定部92a~92cから出力される信号GB1~GB3のうち少なくとも1つがローレベルになると、ローレベルのゲートブロック信号GBがゲート信号生成回路93に供給される。ゲート信号生成回路93は、ローレベルのゲートブロック信号GBの影響を受けず、指令値Vc1*~Vc3*にしたがうゲート信号を生成して、スイッチング素子に供給する。
When at least one of the signals GB1 to GB3 output from the determination units 92a to 92c becomes low level, the low level gate block signal GB is supplied to the gate signal generation circuit 93. The gate signal generation circuit 93 generates a gate signal according to the command values Vc1 * to Vc3 * without being affected by the low-level gate block signal GB, and supplies it to the switching element.
動作判定回路92の構成は上述に限らない。上述の説明では主として正論理にしたがって説明したが、動作判定回路92を負論理で構成してもかまわない。また、動作判定回路92を他の論理回路で構成してもかまわない。
The configuration of the operation determination circuit 92 is not limited to the above. In the above description, the description is mainly based on the positive logic, but the operation determination circuit 92 may be configured with negative logic. Further, the operation determination circuit 92 may be constituted by other logic circuits.
図1に戻って説明を続ける。
第2制御回路82は、直流電圧制御のための制御器95と、交流電流制御のための制御器96と、ゲート信号生成回路97と、を含む。第2制御回路82には、電流検出器61,62から電流データIL1,IL2および直流電圧検出器65から直流電圧データVDCが入力される。第2制御回路82は、電流データIL1,IL2および直流電圧データVDCにもとづいて、ゲート信号Vg2を生成して第2電力変換器30に供給する。 Returning to FIG. 1, the description will be continued.
Thesecond control circuit 82 includes a controller 95 for DC voltage control, a controller 96 for AC current control, and a gate signal generation circuit 97. The second control circuit 82 receives current data IL1 and IL2 from the current detectors 61 and 62 and DC voltage data VDC from the DC voltage detector 65. The second control circuit 82 generates a gate signal Vg2 based on the current data IL1 and IL2 and the DC voltage data VDC and supplies it to the second power converter 30.
第2制御回路82は、直流電圧制御のための制御器95と、交流電流制御のための制御器96と、ゲート信号生成回路97と、を含む。第2制御回路82には、電流検出器61,62から電流データIL1,IL2および直流電圧検出器65から直流電圧データVDCが入力される。第2制御回路82は、電流データIL1,IL2および直流電圧データVDCにもとづいて、ゲート信号Vg2を生成して第2電力変換器30に供給する。 Returning to FIG. 1, the description will be continued.
The
制御器95は、入力された直流電圧データVDCおよび内部で設定された直流電圧指令値にもとづいて、有効電流指令値を生成する。
The controller 95 generates an active current command value based on the input DC voltage data VDC and the DC voltage command value set internally.
制御器96は、電流データIL1,IL2および有効電流指令値にもとづいて、第2電力変換器30がコンデンサ24を介して第1電力変換器20に供給する有効電流を計算し、そのための指令値を生成する。
The controller 96 calculates the effective current that the second power converter 30 supplies to the first power converter 20 via the capacitor 24 based on the current data IL1 and IL2 and the effective current command value, and the command value for that purpose. Is generated.
ゲート信号生成回路97は、制御器96から供給される有効電流指令値にもとづいて、ゲート信号Vg2を生成する。
The gate signal generation circuit 97 generates the gate signal Vg2 based on the active current command value supplied from the controller 96.
本実施形態の電圧補償装置1の動作について説明する。
図3(a)~図3(c)は、第1の実施形態の電圧補償装置の動作を説明するための模式図である。
図3(a)は、本実施形態の電圧補償装置1の構成を簡略化して示したものである。図3(a)に示すように、電圧補償装置1は、電力系統(三相配電系統)に直列に挿入される。電圧補償装置1は、上流側の電圧(電圧補償装置1の設置点電圧Vs)を検出して、下流側の電圧(負荷電圧)が目標値VLとなるように補償する。 The operation of thevoltage compensator 1 of this embodiment will be described.
FIG. 3A to FIG. 3C are schematic diagrams for explaining the operation of the voltage compensator according to the first embodiment.
FIG. 3A shows a simplified configuration of thevoltage compensator 1 of the present embodiment. As shown to Fig.3 (a), the voltage compensation apparatus 1 is inserted in series in an electric power system (three-phase power distribution system). The voltage compensator 1 detects the upstream voltage (the installation point voltage Vs of the voltage compensator 1) and compensates so that the downstream voltage (load voltage) becomes the target value VL.
図3(a)~図3(c)は、第1の実施形態の電圧補償装置の動作を説明するための模式図である。
図3(a)は、本実施形態の電圧補償装置1の構成を簡略化して示したものである。図3(a)に示すように、電圧補償装置1は、電力系統(三相配電系統)に直列に挿入される。電圧補償装置1は、上流側の電圧(電圧補償装置1の設置点電圧Vs)を検出して、下流側の電圧(負荷電圧)が目標値VLとなるように補償する。 The operation of the
FIG. 3A to FIG. 3C are schematic diagrams for explaining the operation of the voltage compensator according to the first embodiment.
FIG. 3A shows a simplified configuration of the
第1電力変換器20は、コンデンサ24を介して接続されている第2電力変換器30から有効電力の供給を受けて補償動作をする。第2電力変換器30は、三相配電系統から並列変圧器41,42を介して交流電力を入力して動作する。
The first power converter 20 receives a supply of active power from the second power converter 30 connected via the capacitor 24 and performs a compensation operation. The second power converter 30 operates by inputting AC power from the three-phase power distribution system via the parallel transformers 41 and 42.
図3(b)には、図3(a)の電圧補償装置1の設置点の電圧Vsの時間変化が目標値VLとともに示されている。
FIG. 3B shows the change over time of the voltage Vs at the installation point of the voltage compensator 1 of FIG. 3A together with the target value VL.
図3(b)に示すように、本実施形態の電圧補償装置1では、設置点の電圧Vsには範囲がある。この範囲は、最小補償電圧値Vc(min)によって設定される。電圧補償装置1によって検出される設置点の電圧Vsに対して、正方向にVc(min)の範囲を設け、負方向に-Vc(min)の範囲を設ける。±Vc(min)(=|Vc(min)|は、設置点の電圧Vsの変動が許容される範囲を表している。目標値VLが、時間変化する設置点の電圧Vsの許容範囲内にある場合には、電圧補償装置1は補償動作を行わない。補償動作を行わない期間では、電圧補償装置1の第1電力変換器20は、スイッチング動作を停止しているので、スイッチング動作にともなう損失を低減することができる。
As shown in FIG. 3B, in the voltage compensator 1 of this embodiment, the voltage Vs at the installation point has a range. This range is set by the minimum compensation voltage value Vc (min). A range of Vc (min) is provided in the positive direction and a range of −Vc (min) is provided in the negative direction with respect to the voltage Vs at the installation point detected by the voltage compensator 1. ± Vc (min) (= | Vc (min) | represents the range in which the variation of the voltage Vs at the installation point is allowed. The target value VL is within the allowable range of the voltage Vs at the installation point that changes over time. In some cases, the voltage compensator 1 does not perform the compensation operation, and during the period when the compensation operation is not performed, the first power converter 20 of the voltage compensator 1 stops the switching operation, and thus accompanies the switching operation. Loss can be reduced.
電圧補償装置1は、目標値VLが、設置点の電圧Vsの変動の許容範囲を超えている場合に、補償動作を行う。
The voltage compensation device 1 performs a compensation operation when the target value VL exceeds the allowable range of fluctuation of the installation point voltage Vs.
より具体的に説明すると、時刻t0~t1の期間では、目標値VLは、設置点の電圧Vsの許容範囲内である。そのため、電圧補償装置1は動作を停止している。
More specifically, during the period from time t0 to t1, the target value VL is within the allowable range of the installation point voltage Vs. Therefore, the voltage compensator 1 stops operating.
時刻t1~t2の期間では、目標値VLは、設置点の電圧Vsの許容範囲よりも高い。そのため、電圧補償装置1は、負荷電圧を目標値VLに等しくなるように、正の補償電圧を出力する補償動作を行う。
During the period from time t1 to t2, the target value VL is higher than the allowable range of the installation point voltage Vs. Therefore, the voltage compensation device 1 performs a compensation operation for outputting a positive compensation voltage so that the load voltage becomes equal to the target value VL.
時刻t2~t3の期間では、目標値VLは、設置点の電圧Vsの許容範囲内である。そのため、電圧補償装置1は動作を停止している。
During the period from time t2 to t3, the target value VL is within the allowable range of the installation point voltage Vs. Therefore, the voltage compensator 1 stops operating.
時刻t3~t4の期間では、目標値VLは、設置点の電圧Vsの許容範囲を超えている。そのため、電圧補償装置1は、負荷電圧を目標値VLに等しくなるように、負の補償電圧を出力する補償動作を行う。
During the period from time t3 to t4, the target value VL exceeds the allowable range of the installation point voltage Vs. Therefore, the voltage compensation device 1 performs a compensation operation for outputting a negative compensation voltage so that the load voltage becomes equal to the target value VL.
電力系統の電圧の補償動作を行うか否かの判定は、制御部80において行う。第1制御回路81の演算器91は、設置点の電圧Vsと目標値VLとの偏差にもとづいて、指令値Vc*を生成する。指令値Vc*は、第1電力変換器20が出力する補償電圧に対応する。
Whether or not the power system voltage compensation operation is to be performed is determined by the control unit 80. The calculator 91 of the first control circuit 81 generates a command value Vc * based on the deviation between the installation point voltage Vs and the target value VL. Command value Vc * corresponds to the compensation voltage output by first power converter 20.
動作判定回路92は、補償電圧が、±Vc(min)の範囲内であるか否かを判定する。より具体的には、動作判定回路92は、補償電圧に対応する指令値Vc*の絶対値|Vc*|と最小補償電圧値Vc(min)とを比較する。動作判定回路92は、絶対値|Vc*|が最小補償電圧値Vc(min)よりも低いときに、ゲートブロック信号GBによってゲート信号Vg1を停止する。そのため第1電力変換器20はスイッチング動作を停止することができる。したがって、電圧補償装置1は、第1電力変換器20のスイッチング動作にともなう損失を低減することができ、動作期間の全体にわたる効率を向上させることができる。
The operation determination circuit 92 determines whether or not the compensation voltage is within a range of ± Vc (min). More specifically, the operation determination circuit 92 compares the absolute value | Vc * | of the command value Vc * corresponding to the compensation voltage with the minimum compensation voltage value Vc (min). When the absolute value | Vc * | is lower than the minimum compensation voltage value Vc (min), the operation determination circuit 92 stops the gate signal Vg1 by the gate block signal GB. Therefore, the first power converter 20 can stop the switching operation. Therefore, the voltage compensation apparatus 1 can reduce the loss accompanying the switching operation of the first power converter 20, and can improve the efficiency over the entire operation period.
図3(c)には、第1制御回路81が動作判定回路92を有していない場合の動作が示されている。
図3(c)に示すように、動作判定回路92がない場合には、電圧補償装置は、設置点の電圧Vsが目標値VLに一致しないときには、設置点の電圧Vsと目標値VLとの差を補償する補償電圧を出力する。この図の例では、時刻t11,t12,t13以外では、設置点の電圧Vsは、目標値VLに一致しないので、補償電圧を出力する。図3(b)の場合と比較すれば明らかなように、図3(c)の場合の電圧補償装置は、ほぼすべての期間にわたって補償動作を行っている。したがって、ほぼすべての期間にわたって、第1電力変換器20はスイッチング動作し、スイッチング動作にともなう損失が発生する。 FIG. 3C shows an operation when thefirst control circuit 81 does not have the operation determination circuit 92.
As shown in FIG. 3C, when theoperation determination circuit 92 is not provided, the voltage compensator calculates the difference between the installation point voltage Vs and the target value VL when the installation point voltage Vs does not match the target value VL. Output compensation voltage to compensate for the difference. In the example of this figure, since the voltage Vs at the installation point does not coincide with the target value VL except for times t11, t12, and t13, a compensation voltage is output. As apparent from the comparison with the case of FIG. 3B, the voltage compensator in the case of FIG. 3C performs the compensation operation over almost all periods. Therefore, the first power converter 20 performs a switching operation over almost all the period, and a loss due to the switching operation occurs.
図3(c)に示すように、動作判定回路92がない場合には、電圧補償装置は、設置点の電圧Vsが目標値VLに一致しないときには、設置点の電圧Vsと目標値VLとの差を補償する補償電圧を出力する。この図の例では、時刻t11,t12,t13以外では、設置点の電圧Vsは、目標値VLに一致しないので、補償電圧を出力する。図3(b)の場合と比較すれば明らかなように、図3(c)の場合の電圧補償装置は、ほぼすべての期間にわたって補償動作を行っている。したがって、ほぼすべての期間にわたって、第1電力変換器20はスイッチング動作し、スイッチング動作にともなう損失が発生する。 FIG. 3C shows an operation when the
As shown in FIG. 3C, when the
本実施形態の電圧補償装置の効果について説明する。
上述の動作説明において説明したように、本実施形態の電圧補償装置1は、動作判定回路92を有しているので、目標値VLが設置点の電圧の範囲(最小補償電圧値Vc(min))内である場合には、補償動作を停止することができる。 The effect of the voltage compensator of this embodiment will be described.
As described in the above description of the operation, thevoltage compensation device 1 of the present embodiment includes the operation determination circuit 92. Therefore, the target value VL is within the voltage range of the installation point (minimum compensation voltage value Vc (min)). ), The compensation operation can be stopped.
上述の動作説明において説明したように、本実施形態の電圧補償装置1は、動作判定回路92を有しているので、目標値VLが設置点の電圧の範囲(最小補償電圧値Vc(min))内である場合には、補償動作を停止することができる。 The effect of the voltage compensator of this embodiment will be described.
As described in the above description of the operation, the
本実施形態の電圧補償装置1は、高周波スイッチング動作をする第1電力変換器20を有するので、高速かつほぼ無段階に電力系統の電圧を補償することができる。一方で、第1電力変換器20が高周波スイッチング動作をすることによって、スイッチング素子等にはスイッチング損失や導通損失が生じる。なかでも、スイッチング損失は、スイッチング素子のスイッチング周波数に依存して発生するため、通過する電力の値が小さい場合であっても、一定の損失が生じる。
Since the voltage compensator 1 according to the present embodiment includes the first power converter 20 that performs a high-frequency switching operation, the voltage of the power system can be compensated at high speed almost continuously. On the other hand, when the first power converter 20 performs a high-frequency switching operation, a switching loss or a conduction loss occurs in the switching element or the like. In particular, since the switching loss occurs depending on the switching frequency of the switching element, a certain loss occurs even when the value of the passing power is small.
さまざまな負荷や多様な逆潮流装置が連系された電力系統では、電圧値を目標値に保つことが困難となってきており、電圧補償装置を投入して、系統の安定化を実現しようとする要求は強い。一方で、電圧補償装置が系統に挿入されることによって、送電効率に影響を与えるようでは、多数の電圧補償装置を導入してきめ細かく系統の安定化をはかることが困難となる。
In power systems where various loads and various reverse power flow devices are interconnected, it has become difficult to maintain the voltage value at the target value. The demand to do is strong. On the other hand, if the voltage compensator is inserted into the system, it is difficult to finely stabilize the system by introducing a large number of voltage compensators so as to affect the power transmission efficiency.
本実施形態の電圧補償装置によれば、電圧補償装置が設置された地点の電圧の変動幅が所定の範囲内であれば、電圧補償装置は動作を停止しているので、電圧補償装置による損失はほとんど生じない。そのため、電力系統に電圧補償装置を多数投入することができ、電力システムの安定化に貢献することが可能になる。
According to the voltage compensator of the present embodiment, if the voltage fluctuation range at the point where the voltage compensator is installed is within a predetermined range, the voltage compensator stops operating, and thus the loss caused by the voltage compensator. Hardly occurs. Therefore, a large number of voltage compensation devices can be introduced into the power system, which can contribute to the stabilization of the power system.
(第2の実施形態)
図4は、本実施形態に係る電圧補償装置を例示するブロック図である。
図4に示すように、本実施形態の電圧補償装置1aは、制御部80aの構成が第1の実施形態の場合と一部相違する。制御部80aは、第1制御回路81aを含む。第1制御回路81aは、選択部94を含む。他の点では、第1の実施形態の場合と同じであり、同一の構成要素には同一の符号を付して詳細な説明を適宜省略する。 (Second Embodiment)
FIG. 4 is a block diagram illustrating a voltage compensator according to this embodiment.
As shown in FIG. 4, thevoltage compensation device 1a of the present embodiment is partially different from that of the first embodiment in the configuration of the control unit 80a. The control unit 80a includes a first control circuit 81a. The first control circuit 81a includes a selection unit 94. Other points are the same as those of the first embodiment, and the same components are denoted by the same reference numerals and detailed description thereof is omitted as appropriate.
図4は、本実施形態に係る電圧補償装置を例示するブロック図である。
図4に示すように、本実施形態の電圧補償装置1aは、制御部80aの構成が第1の実施形態の場合と一部相違する。制御部80aは、第1制御回路81aを含む。第1制御回路81aは、選択部94を含む。他の点では、第1の実施形態の場合と同じであり、同一の構成要素には同一の符号を付して詳細な説明を適宜省略する。 (Second Embodiment)
FIG. 4 is a block diagram illustrating a voltage compensator according to this embodiment.
As shown in FIG. 4, the
図5は、本実施形態の電圧補償装置の一部を例示するブロック図である。
図5には、電圧補償装置1aの第1制御回路81aを例示するブロック図が示されている。
図5に示すように、第1制御回路81aは選択部94を含み、選択部94は、ハイサイド選択部94Hと、ローサイド選択部94Lと、を含む。 FIG. 5 is a block diagram illustrating a part of the voltage compensator of this embodiment.
FIG. 5 is a block diagram illustrating thefirst control circuit 81a of the voltage compensation device 1a.
As shown in FIG. 5, thefirst control circuit 81a includes a selection unit 94, and the selection unit 94 includes a high side selection unit 94H and a low side selection unit 94L.
図5には、電圧補償装置1aの第1制御回路81aを例示するブロック図が示されている。
図5に示すように、第1制御回路81aは選択部94を含み、選択部94は、ハイサイド選択部94Hと、ローサイド選択部94Lと、を含む。 FIG. 5 is a block diagram illustrating a part of the voltage compensator of this embodiment.
FIG. 5 is a block diagram illustrating the
As shown in FIG. 5, the
ハイサイド選択部94Hは、ゲート信号生成回路93の出力のうち第1電力変換器20のスイッチング素子23a~23cのための出力に接続されている。ハイサイド選択部94Hの出力は、スイッチング素子23a~23cのゲート端子に接続され、ゲート信号Vg1Hを供給する。
The high side selector 94H is connected to the outputs for the switching elements 23a to 23c of the first power converter 20 among the outputs of the gate signal generation circuit 93. The output of the high side selector 94H is connected to the gate terminals of the switching elements 23a to 23c and supplies the gate signal Vg1H.
ハイサイド選択部94Hには、動作判定回路92の出力が接続されている。ハイサイド選択部94Hは、絶対値|Vc*|が最小補償電圧値Vc(min)よりも低いことを検出した旨の信号HLTを動作判定回路92から入力する。その場合には、ハイサイド選択部94Hは、第1電力変換器20のハイサイド側のスイッチング素子23a~23cをオンさせる。
The output of the operation determination circuit 92 is connected to the high side selection unit 94H. The high side selection unit 94H inputs from the operation determination circuit 92 a signal HLT indicating that the absolute value | Vc * | is detected to be lower than the minimum compensation voltage value Vc (min). In that case, the high side selection unit 94H turns on the switching elements 23a to 23c on the high side of the first power converter 20.
ローサイド選択部94Lは、ゲート信号生成回路93の出力のうち第1電力変換器20のスイッチング素子23d~23fのための出力に接続されている。ローサイド選択部94Lの出力は、スイッチング素子23d~23fのゲート端子に接続され、ゲート信号Vg1Lを供給する。
The low side selection unit 94L is connected to the outputs for the switching elements 23d to 23f of the first power converter 20 among the outputs of the gate signal generation circuit 93. The output of the low side selector 94L is connected to the gate terminals of the switching elements 23d to 23f and supplies the gate signal Vg1L.
ローサイド選択部94Lには、動作判定回路92の出力が接続されている。ローサイド選択部94Lは、絶対値|Vc*|が最小補償電圧値Vc(min)よりも低いことを検出した旨の信号HLTを、NOT回路94Nを介して動作判定回路92から入力する。その場合には、ローサイド選択部94Lは、第1電力変換器20のローサイド側のスイッチング素子23d~23eをオフさせる。
The output of the operation determination circuit 92 is connected to the low side selection unit 94L. The low-side selection unit 94L inputs a signal HLT indicating that the absolute value | Vc * | is lower than the minimum compensation voltage value Vc (min) from the operation determination circuit 92 via the NOT circuit 94N. In that case, the low side selector 94L turns off the switching elements 23d to 23e on the low side of the first power converter 20.
つまり、目標値VLが、上流側6a~6cの電圧の範囲内の場合には、ハイサイド選択部94Hは、スイッチング素子23a~23cをオンさせ、同時に、ローサイド選択部94Lは、スイッチング素子23d~23fをオフさせる。
That is, when the target value VL is within the voltage range of the upstream side 6a to 6c, the high side selection unit 94H turns on the switching elements 23a to 23c, and at the same time, the low side selection unit 94L sets the switching elements 23d to 23d to 23f is turned off.
本実施形態の電圧補償装置1aの動作について説明する。
本実施形態の電圧補償装置1aでは、動作判定回路92が、目標値VLと上流側6a~6cの電圧との偏差(指令値Vc*)と、最小補償電圧値Vc(min)と、を比較する。指令値Vc*の絶対値が、最小補償電圧値Vc(min)よりも小さい場合には、動作判定回路92は、ハイサイド選択部94Hおよびローサイド選択部94Lを動作させる。ハイサイド選択部94Hは、スイッチング素子23a~23cをオンさせ、ローサイド選択部94Lは、スイッチング素子23d~23fをオフさせる。 The operation of thevoltage compensator 1a of this embodiment will be described.
In thevoltage compensator 1a of the present embodiment, the operation determination circuit 92 compares the deviation (command value Vc *) between the target value VL and the upstream side voltages 6a to 6c with the minimum compensation voltage value Vc (min). To do. When the absolute value of the command value Vc * is smaller than the minimum compensation voltage value Vc (min), the operation determination circuit 92 operates the high side selection unit 94H and the low side selection unit 94L. The high side selection unit 94H turns on the switching elements 23a to 23c, and the low side selection unit 94L turns off the switching elements 23d to 23f.
本実施形態の電圧補償装置1aでは、動作判定回路92が、目標値VLと上流側6a~6cの電圧との偏差(指令値Vc*)と、最小補償電圧値Vc(min)と、を比較する。指令値Vc*の絶対値が、最小補償電圧値Vc(min)よりも小さい場合には、動作判定回路92は、ハイサイド選択部94Hおよびローサイド選択部94Lを動作させる。ハイサイド選択部94Hは、スイッチング素子23a~23cをオンさせ、ローサイド選択部94Lは、スイッチング素子23d~23fをオフさせる。 The operation of the
In the
動作判定回路92によって、第1電力変換器20のスイッチング動作を停止した場合には、電力系統を流れる電流は、直列変圧器11,13,15の一次巻線11p,13p,15pを介して上流側6a~6cから下流側7a~7cに流れる(実線の矢印)。このときに、直列変圧器11,13,15の二次巻線11s,13s,15sには、電流が誘導される。第1電力変換器20のスイッチング素子23a~23fには、逆並列にダイオードが接続されているので、二次巻線11s,13s,15sとともに、電流経路を形成する。どのように電流が流れるかは、配線のインピーダンス等によって決定され、流れる電流の経路や大きさによっては、第1電力変換器20の構成部品等に不具合を生じるおそれがある。
When the switching operation of the first power converter 20 is stopped by the operation determination circuit 92, the current flowing through the power system is upstream through the primary windings 11p, 13p, and 15p of the series transformers 11, 13, and 15. Flow from the sides 6a to 6c to the downstream sides 7a to 7c (solid arrows). At this time, a current is induced in the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15. Since diodes are connected in antiparallel to the switching elements 23a to 23f of the first power converter 20, a current path is formed together with the secondary windings 11s, 13s, and 15s. How the current flows is determined by the impedance of the wiring or the like, and depending on the path and magnitude of the flowing current, there is a possibility that a problem may occur in the components of the first power converter 20.
本実施形態の電圧補償装置1aでは、スイッチング動作停止時に第1電力変換器20のハイサイド側のスイッチング素子をオンさせ、ローサイド側のスイッチング素子をオフさせる。そのため、図4の破線の矢印のように、二次巻線11s,13s,15sに流れる電流の経路が決定される。したがって、電圧補償装置1aの動作停止時であっても、第1電力変換器20の構成部品等に不具合を生じるような電流が流れることを防止し、安定して停止状態を維持することができる。
In the voltage compensation device 1a of the present embodiment, the switching element on the high side of the first power converter 20 is turned on and the switching element on the low side is turned off when the switching operation is stopped. Therefore, the path of the current flowing through the secondary windings 11s, 13s, and 15s is determined as indicated by the broken-line arrows in FIG. Therefore, even when the operation of the voltage compensator 1a is stopped, it is possible to prevent a current that causes a problem in the components of the first power converter 20 from flowing, and to stably maintain the stopped state. .
(第3の実施形態)
図6は、本実施形態に係る電圧補償装置を例示するブロック図である。
本実施形態の電圧補償装置では、第1電力変換器20のスイッチング動作停止時に流れる他の誘導電流の経路が設定される。
図6に示すように、本実施形態の電圧補償装置1bは、上述の他の実施形態の場合と異なる電圧補償部10bと、制御部80bと、を備える。本実施形態の電圧補償装置1bでは、他の構成要素については、上述の第1の実施形態の場合と同じであり、同一の構成要素には同一の符号を付して詳細な説明を適宜省略する。 (Third embodiment)
FIG. 6 is a block diagram illustrating a voltage compensator according to this embodiment.
In the voltage compensator of this embodiment, another induced current path that flows when the switching operation of thefirst power converter 20 is stopped is set.
As shown in FIG. 6, thevoltage compensation device 1b of the present embodiment includes a voltage compensation unit 10b and a control unit 80b, which are different from those in the other embodiments described above. In the voltage compensation device 1b of the present embodiment, the other components are the same as those in the first embodiment described above, and the same components are denoted by the same reference numerals and detailed description thereof is omitted as appropriate. To do.
図6は、本実施形態に係る電圧補償装置を例示するブロック図である。
本実施形態の電圧補償装置では、第1電力変換器20のスイッチング動作停止時に流れる他の誘導電流の経路が設定される。
図6に示すように、本実施形態の電圧補償装置1bは、上述の他の実施形態の場合と異なる電圧補償部10bと、制御部80bと、を備える。本実施形態の電圧補償装置1bでは、他の構成要素については、上述の第1の実施形態の場合と同じであり、同一の構成要素には同一の符号を付して詳細な説明を適宜省略する。 (Third embodiment)
FIG. 6 is a block diagram illustrating a voltage compensator according to this embodiment.
In the voltage compensator of this embodiment, another induced current path that flows when the switching operation of the
As shown in FIG. 6, the
電圧補償部10bは、バイパス回路70を含む。バイパス回路70は、サイリスタスイッチ71,72を含む。サイリスタスイッチ71,72は、2つのSCR(Silicon Controlled Rectifier)をそれぞれ有し、2つのSCRは、互いに逆並列に接続されている。したがって、サイリスタスイッチ71,72は、交流電流を流すことができる。サイリスタスイッチ71は、二次巻線11sの端子12bと二次巻線13s端子14bとの間に接続されている。サイリスタスイッチ72は、二次巻線13sの端子14bと二次巻線15sの端子16bとの間に接続されている。
The voltage compensation unit 10b includes a bypass circuit 70. The bypass circuit 70 includes thyristor switches 71 and 72. The thyristor switches 71 and 72 each have two SCRs (Silicon Controlled Rectifiers), and the two SCRs are connected in antiparallel to each other. Therefore, the thyristor switches 71 and 72 can pass an alternating current. The thyristor switch 71 is connected between the terminal 12b of the secondary winding 11s and the secondary winding 13s terminal 14b. The thyristor switch 72 is connected between the terminal 14b of the secondary winding 13s and the terminal 16b of the secondary winding 15s.
制御部80bは、第1制御回路81bを含む。第1制御回路81bは、バイパス回路70をトリガするバイパス信号Vb1を出力する。バイパス信号Vb1は、バイパス回路70に供給され、2つのサイリスタスイッチ71,72をターンオンする。
The control unit 80b includes a first control circuit 81b. The first control circuit 81b outputs a bypass signal Vb1 that triggers the bypass circuit 70. The bypass signal Vb1 is supplied to the bypass circuit 70 and turns on the two thyristor switches 71 and 72.
第1制御回路81bでは、動作判定回路92から出力されるゲートブロック信号GBは、ゲート信号生成回路93に供給されるとともに、バイパス信号Vb1として、バイパス回路70に供給される。
In the first control circuit 81b, the gate block signal GB output from the operation determination circuit 92 is supplied to the gate signal generation circuit 93 and also supplied to the bypass circuit 70 as the bypass signal Vb1.
この例では、バイパス信号Vb1は、ゲートブロック信号GBと同じ論理で生成され、出力される。したがって、動作判定回路92は、目標値VLが上流側の電圧の範囲内にある場合に、第1電力変換器20のスイッチング動作を停止させ、同時にバイパス信号Vb1を出力してサイリスタスイッチ71,72をターンオンする。
In this example, the bypass signal Vb1 is generated and output with the same logic as the gate block signal GB. Therefore, the operation determination circuit 92 stops the switching operation of the first power converter 20 and outputs the bypass signal Vb1 at the same time when the target value VL is within the upstream voltage range, and the thyristor switches 71 and 72 are output. Turn on.
サイリスタスイッチ71,72がターンオンすることによって、図6の破線の矢印のように誘導電流が流れる経路が形成される。そのため、第1電力変換器20が停止中に、電力系統に流れる電流の二次巻線への誘導電流によって、第1電力変換器20の構成部品等に不具合を生じるおそれがなくなる。
When the thyristor switches 71 and 72 are turned on, a path through which an induced current flows is formed as indicated by a broken arrow in FIG. Therefore, there is no possibility of causing a problem in the components of the first power converter 20 or the like due to the induced current to the secondary winding of the current flowing through the power system while the first power converter 20 is stopped.
バイパス回路70は、電力系統の一部が地絡等して、電力系統に異常電流が流れる場合に、第1電力変換器20を保護することにも用いることができる。その場合には、電圧補償部10bは、電流検出器66,67をさらに含んでおり、制御部80bは、異常電流検知回路83を有している。
The bypass circuit 70 can also be used to protect the first power converter 20 when a part of the power system is grounded and an abnormal current flows through the power system. In that case, the voltage compensator 10 b further includes current detectors 66 and 67, and the controller 80 b has an abnormal current detection circuit 83.
異常電流検知回路83は、電流検出器66,67から供給される電流データIL3,IL4をあらかじめ設定されたしきい値と比較して、電流データIL3,IL4がしきい値を超えた場合に、バイパス信号を出力する。
The abnormal current detection circuit 83 compares the current data IL3 and IL4 supplied from the current detectors 66 and 67 with a preset threshold value, and when the current data IL3 and IL4 exceed the threshold value, Outputs a bypass signal.
制御部80bは、動作判定回路92の出力および異常電流検知回路83の出力の論理和をとってバイパス信号Vb1を出力するために、OR回路111を有している。
The control unit 80b has an OR circuit 111 for taking the logical sum of the output of the operation determination circuit 92 and the output of the abnormal current detection circuit 83 and outputting the bypass signal Vb1.
本実施形態の電圧補償装置1bの効果について説明する。
本実施形態の電圧補償装置1bでは、電圧補償部10bがバイパス回路70を有し、制御部80bはバイパス回路70をトリガするバイパス信号Vb1を出力する。そのため、第1電力変換器20がゲートブロック信号GBによってスイッチング動作を停止中であっても、直列変圧器11,13,15の二次巻線11s,13s,15sに流れる誘導電流をバイパス回路70に流すことができる。したがって、電圧補償装置1bは、第1電力変換器20のスイッチング動作中および停止中のすべての期間にわたって、安全に動作することができる。 The effect of thevoltage compensator 1b of this embodiment will be described.
In thevoltage compensation device 1b of the present embodiment, the voltage compensation unit 10b has a bypass circuit 70, and the control unit 80b outputs a bypass signal Vb1 that triggers the bypass circuit 70. Therefore, even if the first power converter 20 stops the switching operation by the gate block signal GB, the induced current flowing in the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 is bypass circuit 70. Can be shed. Therefore, the voltage compensation device 1b can operate safely over all periods during the switching operation and the stop of the first power converter 20.
本実施形態の電圧補償装置1bでは、電圧補償部10bがバイパス回路70を有し、制御部80bはバイパス回路70をトリガするバイパス信号Vb1を出力する。そのため、第1電力変換器20がゲートブロック信号GBによってスイッチング動作を停止中であっても、直列変圧器11,13,15の二次巻線11s,13s,15sに流れる誘導電流をバイパス回路70に流すことができる。したがって、電圧補償装置1bは、第1電力変換器20のスイッチング動作中および停止中のすべての期間にわたって、安全に動作することができる。 The effect of the
In the
また、バイパス回路70は、電力系統の事故等による異常電流発生時の保護にも用いることができるので、電圧補償装置1bは、より安全に動作することができる。
Further, since the bypass circuit 70 can also be used for protection when an abnormal current occurs due to a power system accident or the like, the voltage compensator 1b can operate more safely.
(第4の実施形態)
図7は、本実施形態に係る電圧補償装置を例示するブロック図である。
本実施形態の電圧補償装置では、第3の実施形態にさらに第2のバイパス回路120を含み、制御部80cが第2のバイパス回路120を制御する信号を出力する。本実施形態の電圧補償装置は、他の点では、第3の実施形態の場合と同じであり、同一の構成要素には同一の符号を付して詳細な説明を適宜省略する。 (Fourth embodiment)
FIG. 7 is a block diagram illustrating a voltage compensator according to this embodiment.
In the voltage compensator of this embodiment, the third embodiment further includes asecond bypass circuit 120, and the control unit 80c outputs a signal for controlling the second bypass circuit 120. The voltage compensation device of this embodiment is otherwise the same as that of the third embodiment, and the same components are denoted by the same reference numerals and detailed description thereof is omitted as appropriate.
図7は、本実施形態に係る電圧補償装置を例示するブロック図である。
本実施形態の電圧補償装置では、第3の実施形態にさらに第2のバイパス回路120を含み、制御部80cが第2のバイパス回路120を制御する信号を出力する。本実施形態の電圧補償装置は、他の点では、第3の実施形態の場合と同じであり、同一の構成要素には同一の符号を付して詳細な説明を適宜省略する。 (Fourth embodiment)
FIG. 7 is a block diagram illustrating a voltage compensator according to this embodiment.
In the voltage compensator of this embodiment, the third embodiment further includes a
図7に示すように、本実施形態の電圧補償装置1cは、電圧補償部10cと、制御部80cと、を備える。
As shown in FIG. 7, the voltage compensation device 1c of the present embodiment includes a voltage compensation unit 10c and a control unit 80c.
電圧補償部10cは、第2のバイパス回路120を含む。第2のバイパス回路120は、二次巻線11s,13s,15sの各端子12b,14b,16bと、コンデンサ24と、の間に接続されている。
The voltage compensation unit 10 c includes a second bypass circuit 120. The second bypass circuit 120 is connected between the terminals 12b, 14b, 16b of the secondary windings 11s, 13s, 15s and the capacitor 24.
第2のバイパス回路120は、ダイオードブリッジ121と、短絡スイッチ122と、逆流防止ダイオード123と、を含む。
The second bypass circuit 120 includes a diode bridge 121, a short-circuit switch 122, and a backflow prevention diode 123.
ダイオードブリッジ121は、ダイオード122a~122fを含む。ダイオード122a~122fは、二次巻線11s,13s,15sの端子12b,14b,16bから第1電力変換器20の高圧直流入力端子21aに向かって電流を流すように接続されている。ダイオード122a~122fは、低圧直流入力端子21bから端子12b,14b,16bに向かって電流を流すように接続されている。
The diode bridge 121 includes diodes 122a to 122f. The diodes 122a to 122f are connected to flow current from the terminals 12b, 14b, and 16b of the secondary windings 11s, 13s, and 15s toward the high-voltage DC input terminal 21a of the first power converter 20. The diodes 122a to 122f are connected so that a current flows from the low-voltage DC input terminal 21b toward the terminals 12b, 14b, and 16b.
ダイオード122a~122fは、たとえば半導体整流素子である。ダイオードブリッジ121は、電力系統の地絡等の事故時に二次巻線11s,13s,15sに誘導される電流を流す経路を提供する。
The diodes 122a to 122f are, for example, semiconductor rectifier elements. The diode bridge 121 provides a path through which a current induced in the secondary windings 11s, 13s, and 15s flows in the event of an accident such as a ground fault in the power system.
短絡スイッチ122は、ダイオードブリッジ121の直流電圧出力端子の両端に接続されている。短絡スイッチ122の制御端子は、第1制御回路81cから出力されるゲートブロック信号GBを出力する端子に接続されている。短絡スイッチ122は、ゲートブロック信号GBがハイレベルになったときにオンして、ダイオードブリッジ121の直流電圧出力端子の両端を短絡する。短絡スイッチ122は、たとえばIGBTである。
The short-circuit switch 122 is connected to both ends of the DC voltage output terminal of the diode bridge 121. A control terminal of the short-circuit switch 122 is connected to a terminal that outputs a gate block signal GB output from the first control circuit 81c. The short-circuit switch 122 is turned on when the gate block signal GB becomes high level to short-circuit both ends of the DC voltage output terminal of the diode bridge 121. The short-circuit switch 122 is, for example, an IGBT.
逆流防止ダイオード123は、ダイオードブリッジ121からコンデンサ24を充電する電流が流れる向きに接続されている。逆流防止ダイオード123は、短絡スイッチ122がオンしたときに、コンデンサ24からダイオードブリッジ121の側に電流が逆流しないように設けられている。
The backflow prevention diode 123 is connected in a direction in which a current for charging the capacitor 24 flows from the diode bridge 121. The backflow prevention diode 123 is provided so that current does not flow back from the capacitor 24 to the diode bridge 121 when the short-circuit switch 122 is turned on.
図8は、本実施形態の電圧補償装置の一部を例示するブロック図である。
図8に示すように、第1制御回路81cは、動作判定回路92によって生成されたゲートブロック信号GBをバイパス信号Vb2として出力する。バイパス信号Vb2は、短絡スイッチ122の制御端子に供給される。バイパス信号Vb2によって短絡スイッチ123の制御端子を駆動することができるように、駆動回路を設けてもよい。 FIG. 8 is a block diagram illustrating a part of the voltage compensator of this embodiment.
As shown in FIG. 8, thefirst control circuit 81c outputs the gate block signal GB generated by the operation determination circuit 92 as a bypass signal Vb2. The bypass signal Vb2 is supplied to the control terminal of the short-circuit switch 122. A drive circuit may be provided so that the control terminal of the short-circuit switch 123 can be driven by the bypass signal Vb2.
図8に示すように、第1制御回路81cは、動作判定回路92によって生成されたゲートブロック信号GBをバイパス信号Vb2として出力する。バイパス信号Vb2は、短絡スイッチ122の制御端子に供給される。バイパス信号Vb2によって短絡スイッチ123の制御端子を駆動することができるように、駆動回路を設けてもよい。 FIG. 8 is a block diagram illustrating a part of the voltage compensator of this embodiment.
As shown in FIG. 8, the
本実施形態の電圧補償装置1cでは、動作判定回路92によって、目標値VLが上流側の電圧の範囲内にあることを検出した場合に、ゲートブロック信号GBを短絡スイッチ122の制御端子に供給する。短絡スイッチ122はオンして、直列変圧器11,13,15の二次巻線11s,13s,15sに誘導される電流の経路を形成する(図7の破線の矢印)。
In the voltage compensator 1c of this embodiment, when the operation determination circuit 92 detects that the target value VL is within the upstream voltage range, the gate block signal GB is supplied to the control terminal of the short-circuit switch 122. . The short-circuit switch 122 is turned on to form a path of current induced in the secondary windings 11s, 13s, and 15s of the series transformers 11, 13, and 15 (broken arrows in FIG. 7).
電力系統の地絡等の事故の場合には、異常電流を電流検出器66,67によって検出し、異常電流検知回路83は、バイパス信号Vb1を生成する。バイパス信号Vb1は、バイパス回路70のサイリスタスイッチ71,72をターンオンさせる。
In the case of an accident such as a ground fault in the power system, the abnormal current is detected by the current detectors 66 and 67, and the abnormal current detection circuit 83 generates the bypass signal Vb1. The bypass signal Vb1 turns on the thyristor switches 71 and 72 of the bypass circuit 70.
ここで、サイリスタスイッチ71,72のSCRは、ターンオン時間が数μs~数10μsであるため、SCRがターンオンするまでの期間に、二次巻線11s,13s,15sに異常な電流が誘導されるので、ダイオードブリッジ121は、異常電流が流れる経路を形成する。なお、異常電流検知時には、短絡スイッチ122はオンであってもよいし、オフであってもよい。
Here, since the SCR of the thyristor switches 71 and 72 has a turn-on time of several μs to several tens of μs, an abnormal current is induced in the secondary windings 11 s, 13 s, and 15 s until the SCR is turned on. Therefore, the diode bridge 121 forms a path through which an abnormal current flows. At the time of detecting an abnormal current, the short-circuit switch 122 may be on or off.
本実施形態の電圧補償装置1cでは、電力系統の地絡等の事故の場合に、異常電流が二次巻線11s,13s,15sに誘導された場合のバイパス経路を2つのバイパス回路70,120によって形成する。そして、事故時のために設けられたバイパス回路70,120を利用して、第1電力変換器20がスイッチング動作を停止中の二次巻線11s,13s,15sの誘導電流のための経路を形成することができる。
In the voltage compensator 1c of the present embodiment, in the event of an accident such as a ground fault in the power system, the bypass path when the abnormal current is induced in the secondary windings 11s, 13s, and 15s is divided into the two bypass circuits 70 and 120. Formed by. Then, by using the bypass circuits 70 and 120 provided in the event of an accident, a path for the induced current of the secondary windings 11s, 13s, and 15s in which the first power converter 20 stops the switching operation is used. Can be formed.
(第5の実施形態)
図9は、本実施形態に係る電圧補償装置を例示するブロック図である。
図9に示すように、本実施形態の電圧補償装置1dは、電圧補償部10dを備える。電圧補償装置1dは、電圧補償部10dの構成のほかは、第3の実施形態の場合と同じ構成要素を備えており、同一の構成要素には同一の符号を付して詳細な説明を適宜省略する。 (Fifth embodiment)
FIG. 9 is a block diagram illustrating a voltage compensator according to this embodiment.
As shown in FIG. 9, thevoltage compensation device 1d of the present embodiment includes a voltage compensation unit 10d. The voltage compensator 1d includes the same components as those of the third embodiment, except for the configuration of the voltage compensator 10d. Omitted.
図9は、本実施形態に係る電圧補償装置を例示するブロック図である。
図9に示すように、本実施形態の電圧補償装置1dは、電圧補償部10dを備える。電圧補償装置1dは、電圧補償部10dの構成のほかは、第3の実施形態の場合と同じ構成要素を備えており、同一の構成要素には同一の符号を付して詳細な説明を適宜省略する。 (Fifth embodiment)
FIG. 9 is a block diagram illustrating a voltage compensator according to this embodiment.
As shown in FIG. 9, the
電圧補償部10dは、バイパス回路70dを含む。バイパス回路70dは、サイリスタスイッチ71,72と、電磁接触器73,74と、を含む。
The voltage compensation unit 10d includes a bypass circuit 70d. The bypass circuit 70 d includes thyristor switches 71 and 72 and electromagnetic contactors 73 and 74.
電磁接触器73は、端子12b,14b間に接続されている。つまり、電磁接触器73は、サイリスタスイッチ71と並列に接続されている。電磁接触器74は、端子14b,16b間に接続されている。つまり、電磁接触器74は、サイリスタスイッチ72と並列に接続されている。
The electromagnetic contactor 73 is connected between the terminals 12b and 14b. That is, the electromagnetic contactor 73 is connected in parallel with the thyristor switch 71. The magnetic contactor 74 is connected between the terminals 14b and 16b. That is, the electromagnetic contactor 74 is connected in parallel with the thyristor switch 72.
電磁接触器73,74は、バイパス信号Vb1を入力して導通信号を生成する駆動回路(図示せず)から供給される駆動信号によって導通する。
The electromagnetic contactors 73 and 74 are turned on by a drive signal supplied from a drive circuit (not shown) that receives the bypass signal Vb1 and generates a conduction signal.
電磁接触器73,74は、サイリスタスイッチ71,72に比べて、導通するまでの遅れ時間が長いが、導通時の直流抵抗値はサイリスタスイッチ71,72のオン時の抵抗値よりも低い。そのため、電磁接触器73,74は、サイリスタスイッチ71,72よりも大きな電流を長時間にわたって流すことができる。電磁接触器73,74は、サイリスタスイッチ71,72に遅れて導通した後には、サイリスタスイッチ71,72に流れている電流をバイパスする。
The electromagnetic contactors 73 and 74 have a longer delay time until they are turned on than the thyristor switches 71 and 72, but the DC resistance value when turned on is lower than the resistance value when the thyristor switches 71 and 72 are turned on. Therefore, the magnetic contactors 73 and 74 can pass a larger current than the thyristor switches 71 and 72 over a long period of time. The magnetic contactors 73 and 74 bypass the current flowing through the thyristor switches 71 and 72 after being turned on behind the thyristor switches 71 and 72.
動作判定回路92によって、ゲートブロック信号GBを生成し、第1電力変換器20のスイッチング動作を選択的に停止させる電圧補償装置では、第1電力変換器20の停止期間が長時間にわたり、全動作期間のほとんどの期間を占める場合も想定し得る。そのような場合も含めて、第1電力変換器20の停止中に二次巻線に誘導される電流の経路に流れる電流による損失を極力少なくするために、その経路を形成するスイッチ素子には、導通損失の小さいものを用いることが好ましい。
In the voltage compensator that generates the gate block signal GB by the operation determination circuit 92 and selectively stops the switching operation of the first power converter 20, the stop period of the first power converter 20 is long and the entire operation is performed. It can also be assumed that it occupies most of the period. In order to minimize loss due to the current flowing in the path of the current induced in the secondary winding while the first power converter 20 is stopped, including such a case, the switch elements forming the path include It is preferable to use one having a small conduction loss.
本実施形態の電圧補償装置1dでは、第1電力変換器20の停止中の誘導電流の経路には、電磁接触器73,74を配置しているので、電圧補償装置1dを電力系統に挿入したことによって発生する損失をさらに低減させることが可能になり、高効率の送配電システムを実現することができる。
In the voltage compensator 1d of the present embodiment, since the electromagnetic contactors 73 and 74 are arranged in the path of the induced current when the first power converter 20 is stopped, the voltage compensator 1d is inserted into the power system. This makes it possible to further reduce the loss that occurs, and to realize a highly efficient power transmission / distribution system.
上述した実施形態の場合には、第4の実施形態の場合のバイパス回路120を組み合わせて実施してもよい。また、バイパス回路は、サイリスタスイッチを除去して電磁接触器で実現してもよく、これにダイオードブリッジによる第2のバイパス回路を追加してもよい。
In the case of the above-described embodiment, the bypass circuit 120 in the case of the fourth embodiment may be combined. Further, the bypass circuit may be realized by an electromagnetic contactor by removing the thyristor switch, and a second bypass circuit by a diode bridge may be added thereto.
上述した各実施形態や各変形例において、制御部80,80a,80b,80cは、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等のプログラムを逐次実行するデバイスを含んでもよい。制御部80,80a,80b,80cを構成する各部、各演算器等は、プログラムを構成する1つあるいは複数のステップを実行することによって実現されていてもよい。
In each embodiment and each modification described above, the control units 80, 80a, 80b, and 80c may include devices that sequentially execute programs such as a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit). Each part, each arithmetic unit, etc. which comprise control part 80, 80a, 80b, 80c may be implement | achieved by performing the 1 or several step which comprises a program.
以上説明した実施形態によれば、全動作期間にわたって運転損失の少ない高効率な電圧補償装置を実現することができる。
According to the embodiment described above, it is possible to realize a high-efficiency voltage compensator with little operation loss over the entire operation period.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明およびその等価物の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and the equivalents thereof. Further, the above-described embodiments can be implemented in combination with each other.
Claims (12)
- 電力系統の各相に直列に接続される変圧器に、前記電力系統の相電圧を補償する補償電圧を供給する電力変換器と、
前記相電圧とあらかじめ設定された前記電力系統の目標電圧とにもとづいて前記電力変換器を制御する制御信号を出力する制御部と、
を備え、
前記制御部は、
前記相電圧と、前記目標電圧と、にもとづいて、前記補償電圧を生成するための指令値を生成する第1演算器と、
前記指令値と、前記目標電圧と、の間の偏差を、あらかじめ設定された最小補償電圧値と比較して、前記偏差が前記最小補償電圧値よりも小さいときには、前記制御信号の少なくとも一部を停止する停止信号を出力する判定回路と、
を含む電圧補償装置。 A power converter for supplying a compensation voltage for compensating a phase voltage of the power system to a transformer connected in series to each phase of the power system;
A control unit that outputs a control signal for controlling the power converter based on the phase voltage and a preset target voltage of the power system;
With
The controller is
A first computing unit that generates a command value for generating the compensation voltage based on the phase voltage and the target voltage;
When the deviation between the command value and the target voltage is compared with a preset minimum compensation voltage value and the deviation is smaller than the minimum compensation voltage value, at least a part of the control signal is obtained. A determination circuit that outputs a stop signal to stop;
A voltage compensation device including: - 前記電力変換器は、
直流電圧が入力される高電位直流端子と、
前記高電位直流端子よりも低電位を有する直流電圧が入力される低電位直流端子と、
前記高電位直流端子と前記低電位直流端子との間に接続された上アームと、
前記上アームと前記低電位直流端子との間に接続された下アームと、
を含み、
前記判定回路は、前記停止信号によって、前記上アームおよび前記下アームの導通を遮断する請求項1記載の電圧補償装置。 The power converter is
A high potential DC terminal to which a DC voltage is input;
A low potential DC terminal to which a DC voltage having a lower potential than the high potential DC terminal is input;
An upper arm connected between the high potential DC terminal and the low potential DC terminal;
A lower arm connected between the upper arm and the low potential DC terminal;
Including
The voltage compensator according to claim 1, wherein the determination circuit blocks conduction of the upper arm and the lower arm by the stop signal. - 前記変圧器のそれぞれの二次巻線の線間に接続されたバイパス回路をさらに備え、
前記動作判定回路は、前記停止信号によって、前記バイパス回路を導通させる請求項2記載の電圧補償装置。 Further comprising a bypass circuit connected between the lines of each secondary winding of the transformer;
The voltage compensation device according to claim 2, wherein the operation determination circuit makes the bypass circuit conductive by the stop signal. - 前記バイパス回路は、サイリスタを含み、
前記サイリスタは、前記停止信号によって点弧する請求項3記載の電圧補償装置。 The bypass circuit includes a thyristor,
The voltage compensation device according to claim 3, wherein the thyristor is ignited by the stop signal. - 前記バイパス回路は、電磁接触器を含み、
前記電磁接触器は、前記停止信号によって点弧する請求項3記載の電圧補償装置。 The bypass circuit includes an electromagnetic contactor;
The voltage compensator according to claim 3, wherein the electromagnetic contactor is ignited by the stop signal. - 前記バイパス回路は、電磁接触器を含み、
前記電磁接触器は、前記停止信号によって点弧する請求項4記載の電圧補償装置。 The bypass circuit includes an electromagnetic contactor;
The voltage compensator according to claim 4, wherein the electromagnetic contactor is ignited by the stop signal. - 第1電位側と前記第1電位側の電位よりも低電位の第2電位側との間に接続されたダイオードブリッジと、
前記第1電位側と前記第2電位側との間に直列に接続されたスイッチ素子と、
をさらに備え、
前記ダイオードブリッジの交流ノードは、
前記電力変換器の交流端子および前記変圧器の二次巻線が接続された接続ノードにそれぞれ接続され、
前記動作判定回路は、前記停止信号によって、前記スイッチ素子を導通させる請求項2記載の電圧補償装置。 A diode bridge connected between a first potential side and a second potential side lower than the potential on the first potential side;
A switch element connected in series between the first potential side and the second potential side;
Further comprising
The AC node of the diode bridge is
Connected to the connection node to which the AC terminal of the power converter and the secondary winding of the transformer are connected, respectively.
The voltage compensator according to claim 2, wherein the operation determination circuit makes the switch element conductive by the stop signal. - 第1電位側と前記第1電位側の電位よりも低電位の第2電位側との間に接続されたダイオードブリッジと、
前記第1電位側と前記第2電位側との間に直列に接続されたスイッチ素子と、
をさらに備え、
前記ダイオードブリッジの交流ノードは、
前記電力変換器の交流端子および前記変圧器の二次巻線が接続された接続ノードにそれぞれ接続され、
前記動作判定回路は、前記停止信号によって、前記スイッチ素子を導通させる請求項3記載の電圧補償装置。 A diode bridge connected between a first potential side and a second potential side lower than the potential on the first potential side;
A switch element connected in series between the first potential side and the second potential side;
Further comprising
The AC node of the diode bridge is
Connected to the connection node to which the AC terminal of the power converter and the secondary winding of the transformer are connected, respectively.
The voltage compensator according to claim 3, wherein the operation determination circuit makes the switch element conductive by the stop signal. - 第1電位側と前記第1電位側の電位よりも低電位の第2電位側との間に接続されたダイオードブリッジと、
前記第1電位側と前記第2電位側との間に直列に接続されたスイッチ素子と、
をさらに備え、
前記ダイオードブリッジの交流ノードは、
前記電力変換器の交流端子および前記変圧器の二次巻線が接続された接続ノードにそれぞれ接続され、
前記動作判定回路は、前記停止信号によって、前記スイッチ素子を導通させる請求項4記載の電圧補償装置。 A diode bridge connected between a first potential side and a second potential side lower than the potential on the first potential side;
A switch element connected in series between the first potential side and the second potential side;
Further comprising
The AC node of the diode bridge is
Connected to the connection node to which the AC terminal of the power converter and the secondary winding of the transformer are connected, respectively.
The voltage compensator according to claim 4, wherein the operation determination circuit makes the switch element conductive by the stop signal. - 第1電位側と前記第1電位側の電位よりも低電位の第2電位側との間に接続されたダイオードブリッジと、
前記第1電位側と前記第2電位側との間に直列に接続されたスイッチ素子と、
をさらに備え、
前記ダイオードブリッジの交流ノードは、
前記電力変換器の交流端子および前記変圧器の二次巻線が接続された接続ノードにそれぞれ接続され、
前記動作判定回路は、前記停止信号によって、前記スイッチ素子を導通させる請求項5記載の電圧補償装置。 A diode bridge connected between a first potential side and a second potential side lower than the potential on the first potential side;
A switch element connected in series between the first potential side and the second potential side;
Further comprising
The AC node of the diode bridge is
Connected to the connection node to which the AC terminal of the power converter and the secondary winding of the transformer are connected, respectively.
The voltage compensator according to claim 5, wherein the operation determination circuit makes the switch element conductive by the stop signal. - 第1電位側と前記第1電位側の電位よりも低電位の第2電位側との間に接続されたダイオードブリッジと、
前記第1電位側と前記第2電位側との間に直列に接続されたスイッチ素子と、
をさらに備え、
前記ダイオードブリッジの交流ノードは、
前記電力変換器の交流端子および前記変圧器の二次巻線が接続された接続ノードにそれぞれ接続され、
前記動作判定回路は、前記停止信号によって、前記スイッチ素子を導通させる請求項6記載の電圧補償装置。 A diode bridge connected between a first potential side and a second potential side lower than the potential on the first potential side;
A switch element connected in series between the first potential side and the second potential side;
Further comprising
The AC node of the diode bridge is
Connected to the connection node to which the AC terminal of the power converter and the secondary winding of the transformer are connected, respectively.
The voltage compensator according to claim 6, wherein the operation determination circuit makes the switch element conductive by the stop signal. - 前記電力変換器は、
直流電圧が入力される高電位直流端子と、
前記高電位直流端子よりも低電位を有する直流電圧が入力される低電位直流端子と、
前記高電位直流端子と前記低電位直流端子との間に接続された上アームと、
前記上アームと前記低電位直流端子との間に接続された下アームと、
を含み、
前記判定回路は、前記停止信号によって、前記上アームを導通させ、前記下アームの導通を遮断する請求項1記載の電圧補償装置。 The power converter is
A high potential DC terminal to which a DC voltage is input;
A low potential DC terminal to which a DC voltage having a lower potential than the high potential DC terminal is input;
An upper arm connected between the high potential DC terminal and the low potential DC terminal;
A lower arm connected between the upper arm and the low potential DC terminal;
Including
The voltage compensator according to claim 1, wherein the determination circuit makes the upper arm conductive and interrupts the lower arm conductive by the stop signal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017053527A JP2018157703A (en) | 2017-03-17 | 2017-03-17 | Voltage compensator |
JP2017-053527 | 2017-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018168948A1 true WO2018168948A1 (en) | 2018-09-20 |
Family
ID=63522240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010024 WO2018168948A1 (en) | 2017-03-17 | 2018-03-14 | Voltage compensation device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018157703A (en) |
WO (1) | WO2018168948A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110518701A (en) * | 2019-09-05 | 2019-11-29 | 杭州市电力设计院有限公司余杭分公司 | A kind of electrical grid transmission adjustment system and method |
WO2024057625A1 (en) * | 2022-09-13 | 2024-03-21 | 株式会社日立産機システム | Power conversion device and method for detecting electric system anomaly by power conversion device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001119859A (en) * | 1999-10-15 | 2001-04-27 | Tohoku Electric Power Co Inc | Output voltage control circuit for series system compensator |
JP2002374624A (en) * | 2001-06-15 | 2002-12-26 | Hitachi Ltd | Load voltage regulator |
JP2005094829A (en) * | 2003-09-12 | 2005-04-07 | Fuji Electric Systems Co Ltd | Uninterruptible power supply apparatus |
JP2005304171A (en) * | 2004-04-12 | 2005-10-27 | Fuji Electric Holdings Co Ltd | Control method of uninterruptible power supply apparatus |
JP2006067684A (en) * | 2004-08-26 | 2006-03-09 | Chugoku Electric Power Co Inc:The | Instantaneous voltage drop compensation device and instantaneous voltage drop compensation method |
JP2017005941A (en) * | 2015-06-15 | 2017-01-05 | 株式会社豊田中央研究所 | Control method of inverter and inverter apparatus |
-
2017
- 2017-03-17 JP JP2017053527A patent/JP2018157703A/en active Pending
-
2018
- 2018-03-14 WO PCT/JP2018/010024 patent/WO2018168948A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001119859A (en) * | 1999-10-15 | 2001-04-27 | Tohoku Electric Power Co Inc | Output voltage control circuit for series system compensator |
JP2002374624A (en) * | 2001-06-15 | 2002-12-26 | Hitachi Ltd | Load voltage regulator |
JP2005094829A (en) * | 2003-09-12 | 2005-04-07 | Fuji Electric Systems Co Ltd | Uninterruptible power supply apparatus |
JP2005304171A (en) * | 2004-04-12 | 2005-10-27 | Fuji Electric Holdings Co Ltd | Control method of uninterruptible power supply apparatus |
JP2006067684A (en) * | 2004-08-26 | 2006-03-09 | Chugoku Electric Power Co Inc:The | Instantaneous voltage drop compensation device and instantaneous voltage drop compensation method |
JP2017005941A (en) * | 2015-06-15 | 2017-01-05 | 株式会社豊田中央研究所 | Control method of inverter and inverter apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110518701A (en) * | 2019-09-05 | 2019-11-29 | 杭州市电力设计院有限公司余杭分公司 | A kind of electrical grid transmission adjustment system and method |
WO2024057625A1 (en) * | 2022-09-13 | 2024-03-21 | 株式会社日立産機システム | Power conversion device and method for detecting electric system anomaly by power conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP2018157703A (en) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100172166A1 (en) | Plug-in neutral regulator for 3-phase 4-wire inverter/converter system | |
US20080013352A1 (en) | Active rectifier system with power factor correction | |
CN101203820A (en) | Multi-level active filter | |
US9755551B2 (en) | Power conversion device | |
KR101862615B1 (en) | Voltage source converter including hybrid active filter | |
US11909305B2 (en) | AC-to-DC power converter which removed a common mode component form the output current | |
US9692310B2 (en) | Power converter | |
JP6494378B2 (en) | Power conversion system and method for controlling power conversion system | |
JP2010239736A (en) | Power conversion apparatus | |
JP2018129963A (en) | Controller of power converter | |
WO2018168948A1 (en) | Voltage compensation device | |
JP5147624B2 (en) | Inverter device | |
JP2010259328A (en) | Power converter | |
JP2015089213A (en) | Synchronizing device | |
US11722069B2 (en) | Power conversion system | |
JP6517676B2 (en) | Voltage compensator | |
US11211876B2 (en) | Voltage compensation device | |
JP2010220382A (en) | Power conversion apparatus | |
JP6628316B2 (en) | Test power supply | |
JP4320228B2 (en) | Control device for self-excited converter | |
JP6672420B2 (en) | Test power supply generation method | |
JP7043607B2 (en) | Power converter | |
JP2018157702A (en) | Voltage compensator | |
JP2016010240A (en) | Power conversion device | |
CN106921157B (en) | Alternating-current side single-phase earth fault control method of flexible ring network controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18767853 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18767853 Country of ref document: EP Kind code of ref document: A1 |