WO2018168935A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2018168935A1
WO2018168935A1 PCT/JP2018/009992 JP2018009992W WO2018168935A1 WO 2018168935 A1 WO2018168935 A1 WO 2018168935A1 JP 2018009992 W JP2018009992 W JP 2018009992W WO 2018168935 A1 WO2018168935 A1 WO 2018168935A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
region
mirror
layer
axis direction
Prior art date
Application number
PCT/JP2018/009992
Other languages
French (fr)
Japanese (ja)
Inventor
智史 鈴木
達哉 杉本
恭輔 港谷
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017048566A external-priority patent/JP6793066B2/en
Priority claimed from JP2017074492A external-priority patent/JP6716491B2/en
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201880017386.3A priority Critical patent/CN110418994B/en
Priority to DE112018001349.9T priority patent/DE112018001349T5/en
Priority to US16/492,691 priority patent/US11513339B2/en
Publication of WO2018168935A1 publication Critical patent/WO2018168935A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4532Devices of compact or symmetric construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/004Angular deflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry

Definitions

  • One aspect of the present disclosure relates to an optical module.
  • An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, Patent Document 1).
  • Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
  • the optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 ⁇ m at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
  • An object of one aspect of the present disclosure is to provide an optical module in which a movable mirror is reliably mounted on a device layer.
  • An optical module includes a support layer, a device layer provided on the support layer, and a movable mirror mounted on the device layer, and the device layer includes a mounting region through which the movable mirror passes.
  • a drive region connected to the mounting region, and a space corresponding to at least the mounting region and the drive region is formed between the support layer and the device layer, and a part of the movable mirror is a space Is located.
  • the movable mirror passes through the mounting area of the device layer, and a part of the movable mirror is located in a space formed between the support layer and the device layer. Thereby, the movable mirror can be stably and firmly fixed to the mounting region of the device layer. Therefore, according to this optical module, reliable mounting of the movable mirror to the device layer is realized.
  • the optical module according to one aspect of the present disclosure further includes an intermediate layer provided between the support layer and the device layer.
  • the intermediate layer includes a first opening
  • the support layer includes a recess or a second layer. Two openings are formed, and the space includes a region in the first opening and a region in the recess, or a region in the first opening and a region in the second opening, and a part of the movable mirror is in the recess. Or a region within the second opening.
  • the support layer is a first silicon layer of an SOI substrate
  • the device layer is a second silicon layer of the SOI substrate
  • the intermediate layer is an insulating layer of the SOI substrate. Also good. According to this, the configuration for surely mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
  • the support layer includes a recess or an opening
  • the space includes a region in the recess or a region in the opening
  • a part of the movable mirror is a region in the recess. Or you may be located in the area
  • the device layer may include a recess
  • the space may include a region in the recess
  • a part of the movable mirror may be located in the region in the recess.
  • the device layer includes a first recess
  • the support layer includes a second recess or an opening
  • the space includes a region in the first recess and The region in the second recess, or the region in the first recess and the region in the opening may be included, and a part of the movable mirror may be located in the region in the second recess or the region in the opening.
  • the mirror surface of the movable mirror may be located on the side opposite to the support layer with respect to the device layer. According to this, the configuration of the optical module can be simplified.
  • An optical module includes a fixed mirror mounted on at least one of a support layer, a device layer, and an intermediate layer provided between the support layer and the device layer, a support layer, a device layer, and A beam splitter mounted on at least one of the intermediate layers, and the movable mirror, the fixed mirror, and the beam splitter may be arranged to constitute an interference optical system. According to this, FTIR with improved sensitivity can be obtained.
  • An optical module includes a light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside, and a light emission portion arranged to emit the measurement light to the outside from the interference optical system And may be further provided. According to this, FTIR provided with a light incident part and a light emission part can be obtained.
  • an optical module in which the movable mirror is reliably mounted on the device layer.
  • FIG. 2 is a cross-sectional view taken along the line IIA-IIA shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line IIIA-IIIA shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line IVA-IVA shown in FIG.
  • FIG. 2 is a cross-sectional view taken along the line VA-VA shown in FIG.
  • It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror.
  • FIG. 17 is a cross-sectional view taken along the line IIB-IIB shown in FIG.
  • FIG. 17 is a cross-sectional view taken along line IIIB-IIIB shown in FIG.
  • FIG. 17 is a cross-sectional view taken along the line VIIB-VIIB shown in FIG.
  • FIG. 18 is a cross-sectional view taken along line VIIIB-VIIIB shown in FIG. It is sectional drawing which shows the modification of 1st opening.
  • FIG. 26 is a cross-sectional view taken along line XIB-XIB shown in FIG. 25. It is a top view of the optical module of one Embodiment.
  • FIG. 28 is a cross-sectional view taken along the line IIC-IIC shown in FIG. 27.
  • FIG. 28 is a sectional view taken along line IIIC-IIIC shown in FIG. 27.
  • (A) is a perspective view of the peripheral structure of the movable mirror shown in FIG. 27, and
  • (b) is a cross-sectional view taken along the line IVbC-IVbC shown in (a) of FIG.
  • FIG. 28 is a cross-sectional view taken along the line VC-VC shown in FIG. 27.
  • FIG. 28 is a cross-sectional view taken along the line VIC-VIC shown in FIG. 27. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is sectional drawing of the modification of the surrounding structure of a movable mirror. It is a partial schematic plan view of the optical module which concerns on a modification. FIG. 40 is a cross-sectional view taken along line IXVC-IXVC shown in FIG. 39. FIG.
  • FIG. 40 is a cross-sectional view taken along line XVC-XVC shown in FIG. 39. It is a front view which shows the modification of a movable mirror. It is sectional drawing of the modification shown by FIG. It is a front view which shows the modification of a movable mirror. It is a front view which shows the modification of a movable mirror. It is a front view which shows the modification of a movable mirror. It is a front view which shows the modification of a movable mirror. It is a front view which shows the modification of a movable mirror. It is a front view which shows the modification of a movable mirror. It is a front view which shows the modification of a movable mirror. It is a top view which shows the modification of opening. It is a top view which shows the modification of opening. It is sectional drawing which shows a movable mirror modification. It is a top view which shows the modification of opening.
  • an optical module 1A includes a support layer 2A, a device layer 3A provided on the support layer 2A, an intermediate layer 4A provided between the support layer 2A and the device layer 3A, I have.
  • the support layer 2A, the device layer 3A, and the intermediate layer 4A are configured by an SOI substrate.
  • the support layer 2A is the first silicon layer of the SOI substrate.
  • the device layer 3A is a second silicon layer of the SOI substrate.
  • the intermediate layer 4A is an insulating layer of the SOI substrate.
  • the support layer 2A, the device layer 3A, and the intermediate layer 4A have, for example, a rectangular shape with a side of about 10 mm when viewed from the ZA axis direction (a direction parallel to the ZA axis) that is the stacking direction thereof.
  • Each thickness of the support layer 2A and the device layer 3A is, for example, about several hundred ⁇ m.
  • the thickness of the intermediate layer 4A is, for example, about several ⁇ m.
  • the device layer 3A and the intermediate layer 4A are shown with one corner of the device layer 3A and one corner of the intermediate layer 4A cut out.
  • the device layer 3A has a mounting area 31A and a driving area 32A connected to the mounting area 31A.
  • the drive region 32A includes a pair of actuator regions 33A and a pair of elastic support regions 34A.
  • the mounting region 31A and the drive region 32A are integrally formed on a part of the device layer 3A by MEMS technology (patterning and etching). Yes.
  • the pair of actuator regions 33A are arranged on both sides of the mounting region 31A in the XA axis direction (the direction parallel to the XA axis orthogonal to the ZA axis). That is, the mounting area 31A is sandwiched between the pair of actuator areas 33A in the XA axis direction.
  • Each actuator region 33A is fixed to the support layer 2A via the intermediate layer 4A.
  • a first comb tooth portion 33aA is provided on a side surface of each actuator region 33A on the mounting region 31A side.
  • Each first comb tooth portion 33aA is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the first comb tooth portion 33aA.
  • Each actuator region 33A is provided with a first electrode 35A.
  • the pair of elastic support regions 34A are disposed on both sides of the mounting region 31A in the YA axis direction (a direction parallel to the YA axis orthogonal to the ZA axis and the XA axis). That is, the mounting region 31A is sandwiched between the pair of elastic support regions 34A in the YA axis direction. Both end portions 34aA of each elastic support region 34A are fixed to the support layer 2A via the intermediate layer 4A.
  • Each elastic support region 34A has an elastic deformation portion 34bA (a portion between both end portions 34aA) having a structure in which a plurality of leaf springs are connected.
  • each elastic support region 34A is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the elastic deformation portion 34bA.
  • a second electrode 36A is provided at each of both end portions 34aA.
  • each elastic support area 34A is connected to the mounting area 31A.
  • the mounting region 31A is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the mounting region 31A. That is, the mounting area 31A is supported by the pair of elastic support areas 34A.
  • a second comb tooth portion 31aA is provided on a side surface of each mounting region 31A on the side of each actuator region 33A.
  • Each second comb tooth portion 31aA is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below it.
  • the comb teeth of the first comb tooth portion 33aA are located between the comb teeth of the second comb tooth portion 31aA.
  • the pair of elastic support regions 34A sandwich the mounting region 31A from both sides when viewed from the direction AA parallel to the XA axis.
  • the mounting region 31A moves along the direction AA, the mounting region 31A returns to the initial position.
  • an elastic force is applied to the mounting region 31A.
  • a voltage is applied between the first electrode 35A and the second electrode 36A and an electrostatic attractive force acts between the first comb tooth portion 33aA and the second comb tooth portion 31aA facing each other, the electrostatic attractive force
  • the mounting region 31A is moved along the direction AA to a position where the elastic force of the pair of elastic support regions 34A is balanced.
  • the drive region 32A functions as an electrostatic actuator.
  • the optical module 1A further includes a movable mirror 5A, a fixed mirror 6A, a beam splitter 7A, a light incident part 8A, and a light emitting part 9A.
  • the movable mirror 5A, the fixed mirror 6A, and the beam splitter 7A are arranged on the device layer 3A so as to constitute an interference optical system 10A that is a Michelson interference optical system.
  • the movable mirror 5A is mounted on the mounting region 31A of the device layer 3A on one side of the beam splitter 7A in the XA axis direction.
  • the mirror surface 51aA of the mirror portion 51A included in the movable mirror 5A is located on the opposite side of the support layer 2A with respect to the device layer 3A.
  • the mirror surface 51aA is, for example, a surface perpendicular to the XA axis direction (that is, a surface perpendicular to the direction AA) and faces the beam splitter 7A side.
  • the fixed mirror 6A is mounted on the mounting region 37A of the device layer 3A on one side of the beam splitter 7A in the YA axis direction.
  • the mirror surface 61aA of the mirror portion 61A of the fixed mirror 6A is located on the opposite side of the support layer 2A with respect to the device layer 3A.
  • the mirror surface 61aA is, for example, a surface perpendicular to the YA axis direction and faces the beam splitter 7A side.
  • the light incident portion 8A is mounted on the device layer 3A on the other side of the beam splitter 7A in the YA axis direction.
  • the light incident part 8A is configured by, for example, an optical fiber and a collimating lens.
  • the light incident part 8A is arranged so that measurement light is incident on the interference optical system 10A from the outside.
  • the light emitting portion 9A is mounted on the device layer 3A on the other side of the beam splitter 7A in the XA axis direction.
  • the light emitting unit 9A is configured by, for example, an optical fiber and a collimating lens.
  • the light emitting portion 9A is arranged to emit measurement light (interference light) from the interference optical system 10A to the outside.
  • the beam splitter 7A is a cube type beam splitter having an optical functional surface 7aA.
  • the optical functional surface 7aA is located on the side opposite to the support layer 2A with respect to the device layer 3A.
  • the beam splitter 7A is positioned by bringing one corner on the bottom side of the beam splitter 7A into contact with one corner of the rectangular opening 3aA formed in the device layer 3A.
  • the beam splitter 7A is mounted on the support layer 2A by being fixed to the support layer 2A by adhesion or the like in a positioned state.
  • the optical module 1A configured as described above, when the measurement light L0A is incident on the interference optical system 10A from the outside via the light incident portion 8A, a part of the measurement light L0A is transmitted to the optical functional surface 7aA of the beam splitter 7A.
  • the reflected light travels toward the movable mirror 5A, and the remaining portion of the measurement light L0A passes through the optical function surface 7aA of the beam splitter 7A and travels toward the fixed mirror 6A.
  • a part of the measurement light L0A is reflected by the mirror surface 51aA of the movable mirror 5A, travels on the same optical path toward the beam splitter 7A, and passes through the optical functional surface 7aA of the beam splitter 7A.
  • the remaining part of the measurement light L0A is reflected by the mirror surface 61aA of the fixed mirror 6A, travels on the same optical path toward the beam splitter 7A, and is reflected by the optical function surface 7aA of the beam splitter 7A.
  • a part of the measurement light L0A transmitted through the optical functional surface 7aA of the beam splitter 7A and the remaining part of the measurement light L0A reflected by the optical functional surface 7aA of the beam splitter 7A become the measurement light L1A that is interference light, and the measurement light L1A is emitted to the outside from the interference optical system 10A via the light emitting portion 9A.
  • the movable mirror 5A can be reciprocated at high speed along the direction AA, so that a small and highly accurate FTIR can be provided.
  • the movable mirror 5A includes a mirror part 51A, an elastic part 52A, a connecting part 53A, a pair of leg parts 54A, and a pair of locking parts 55A.
  • the movable mirror 5A configured as follows is integrally formed by a MEMS technique (patterning and etching).
  • the mirror part 51A is formed in a plate shape (for example, a disk shape) having the mirror surface 51aA as a main surface.
  • the elastic part 52A is formed in an annular shape (for example, an annular shape) surrounding the mirror part 51A while being separated from the mirror part 51A when viewed from the XA axis direction (direction perpendicular to the mirror surface 51aA).
  • the connection portion 53A connects the mirror portion 51A and the elastic portion 52A to each other on one side in the YA axis direction with respect to the center of the mirror portion 51A when viewed from the XA axis direction.
  • the pair of leg portions 54A are connected to the outer surface of the elastic portion 52A on both sides in the YA axis direction with respect to the center of the mirror portion 51A when viewed from the XA axis direction. That is, the mirror part 51A and the elastic part 52A are sandwiched between the pair of leg parts 54A in the YA axis direction. Each leg 54A extends closer to the mounting region 31A than the mirror 51A and the elastic part 52A.
  • the pair of locking portions 55A are provided at the end portions on the mounting region 31A side in the respective leg portions 54A. Each locking portion 55A is formed so as to be bent in, for example, a V shape on the inner side (side closer to each other) when viewed from the XA axis direction.
  • the movable mirror 5A configured as described above is mounted in the mounting region 31A by arranging a pair of locking portions 55A in the opening 31bA formed in the mounting region 31A.
  • the openings 31bA are opened on both sides of the mounting region 31A in the ZA axis direction.
  • a part of each locking portion 55A protrudes from the surface on the intermediate layer 4A side in the mounting region 31A. That is, the movable mirror 5A penetrates the mounting area 31A.
  • a force acts on the outside (side away from each other) in the pair of locking portions 55A arranged in the opening 31bA of the mounting region 31A.
  • the movable mirror 5A is fixed to the mounting region 31A by the force.
  • the force is generated when the annular elastic portion 52A compressed when the movable mirror 5A is mounted on the mounting region 31A is restored to the initial state.
  • the opening 31bA is formed in a trapezoidal shape spreading toward the opposite side to the beam splitter 7A when viewed from the ZA axis direction.
  • the movable mirror 5A automatically moves in each of the XA axis direction, the YA axis direction, and the ZA axis direction by engaging the opening 31bA having such a shape with a pair of engaging portions 55A that are bent inward. Positioned (self-aligned).
  • an opening (first opening) 41A is formed in the intermediate layer 4A.
  • the openings 41A are opened on both sides of the intermediate layer 4A in the ZA axis direction.
  • An opening (second opening) 21A is formed in the support layer 2A.
  • the openings 21A are opened on both sides of the support layer 2A in the ZA axial direction.
  • a continuous space S1A is constituted by a region in the opening 41A of the intermediate layer 4A and a region in the opening 21A of the support layer 2A. That is, the space S1A includes a region in the opening 41A of the intermediate layer 4A and a region in the opening 21A of the support layer 2A.
  • the space S1A is formed between the support layer 2A and the device layer 3A, and corresponds to at least the mounting region 31A and the drive region 32A.
  • the region in the opening 41A of the intermediate layer 4A and the region in the opening 21A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction.
  • the region in the opening 41A of the intermediate layer 4A is a portion that should be separated from the support layer 2A in the mounting region 31A and the drive region 32A (that is, a portion that should be in a floating state with respect to the support layer 2A.
  • a gap for separating the entire mounting region 31A, the elastic deformation portion 34bA, the first comb tooth portion 33aA, and the second comb tooth portion 31aA) of each elastic support region 34A from the support layer 2A is formed. That is, the space S1A corresponding to at least the mounting region 31A and the drive region 32A is the support layer 2A and the device layer so that the entire mounting region 31A and at least a part of the drive region 32A are separated from the support layer 2A. It means the space formed between 3A.
  • each locking portion 55A of the movable mirror 5A is located in the space S1A. Specifically, a part of each locking portion 55A is located in a region in the opening 21A of the support layer 2A via a region in the opening 41A of the intermediate layer 4A. A part of each locking portion 55A protrudes from the surface on the intermediate layer 4A side in the device layer 3A into the space S1A, for example, by about 100 ⁇ m. As described above, the region in the opening 41A of the intermediate layer 4A and the region in the opening 21A of the support layer 2A include the range in which the mounting region 31A moves when viewed from the ZA axis direction. Is reciprocated along the direction AA, a part of each locking portion 55A of the movable mirror 5A located in the space S1A does not come into contact with the intermediate layer 4A and the support layer 2A. [Fixed mirror and its peripheral structure]
  • the fixed mirror 6A includes a mirror part 61A, an elastic part 62A, a connecting part 63A, a pair of leg parts 64A, and a pair of locking parts 65A.
  • the fixed mirror 6A configured as follows is integrally formed by a MEMS technique (patterning and etching).
  • the mirror part 61A is formed in a plate shape (for example, a disk shape) having the mirror surface 61aA as a main surface.
  • the elastic portion 62A is formed in an annular shape (for example, an annular shape) surrounding the mirror portion 61A while being separated from the mirror portion 61A when viewed from the YA axis direction (direction perpendicular to the mirror surface 61aA).
  • the connecting part 63A connects the mirror part 61A and the elastic part 62A to each other on one side in the XA axis direction with respect to the center of the mirror part 61A when viewed from the YA axis direction.
  • the pair of leg portions 64A are connected to the outer surface of the elastic portion 62A on both sides in the XA axis direction with respect to the center of the mirror portion 61A when viewed from the YA axis direction. That is, the mirror part 61A and the elastic part 62A are sandwiched between the pair of leg parts 64A in the XA axis direction. Each leg portion 64A extends to the mounting region 37A side with respect to the mirror portion 61A and the elastic portion 62A.
  • the pair of locking portions 65A are provided at the end portions on the mounting region 37A side in the respective leg portions 64A. Each locking portion 65A is formed so as to be bent in, for example, a V shape on the inner side (side closer to each other) when viewed from the YA axis direction.
  • the fixed mirror 6A configured as described above is mounted in the mounting region 37A by arranging the pair of locking portions 65A in the opening 37aA formed in the mounting region 37A.
  • the openings 37aA are opened on both sides of the mounting area 37A in the ZA axis direction.
  • a part of each locking portion 65A protrudes from the surface on the intermediate layer 4A side in the mounting region 37A. That is, the fixed mirror 6A penetrates the mounting area 37A.
  • a force acts on the outside (side away from each other) on the pair of locking portions 65A arranged in the opening 37aA of the mounting region 37A.
  • the fixed mirror 6A is fixed to the mounting region 37A by the force.
  • the force is generated when the annular elastic portion 62A compressed when the fixed mirror 6A is mounted on the mounting region 37A is restored to the initial state.
  • the opening 37aA is formed in a trapezoidal shape spreading toward the opposite side to the beam splitter 7A when viewed from the ZA axis direction.
  • the fixed mirror 6A is automatically operated in each of the XA axis direction, the YA axis direction, and the ZA axis direction by engaging the opening 37aA having such a shape with a pair of engaging portions 65A that are bent inward. Positioned (self-aligned).
  • an opening 42A is formed in the intermediate layer 4A.
  • the opening 42A includes the opening 37aA of the mounting region 37A when viewed from the ZA axis direction, and opens on both sides of the intermediate layer 4A in the ZA axis direction.
  • An opening 22A is formed in the support layer 2A.
  • the opening 22A includes the opening 37aA of the mounting region 37A when viewed from the ZA axis direction, and is open on both sides of the support layer 2A in the ZA axis direction.
  • a continuous space S2A is constituted by the region in the opening 42A of the intermediate layer 4A and the region in the opening 22A of the support layer 2A. That is, the space S2A includes a region in the opening 42A of the intermediate layer 4A and a region in the opening 22A of the support layer 2A.
  • each locking portion 65A of the fixed mirror 6A is located in the space S2A. Specifically, a part of each locking portion 65A is located in a region in the opening 22A of the support layer 2A via a region in the opening 42A of the intermediate layer 4A. A part of each locking portion 65A protrudes from the surface of the device layer 3A on the intermediate layer 4A side into the space S2A, for example, by about 100 ⁇ m.
  • the movable mirror 5A passes through the mounting region 31A of the device layer 3A, and a part of each locking portion 55A of the movable mirror 5A is formed between the support layer 2A and the device layer 3A. Located in S1A.
  • the size and the like of each locking portion 55A is not limited, so that the movable mirror 5A can be stably and firmly fixed to the mounting region 31A of the device layer 3A. Therefore, according to the optical module 1A, reliable mounting of the movable mirror 5A to the device layer 3A is realized.
  • each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the opening 41A of the intermediate layer 4A.
  • the support layer 2A is the first silicon layer of the SOI substrate
  • the device layer 3A is the second silicon layer of the SOI substrate
  • the intermediate layer 4A is the insulating layer of the SOI substrate.
  • the mirror surface 51aA of the movable mirror 5A is located on the opposite side of the support layer 2A with respect to the device layer 3A. Thereby, the configuration of the optical module 1A can be simplified.
  • the movable mirror 5A, the fixed mirror 6A, and the beam splitter 7A are arranged so as to constitute the interference optical system 10A. Thereby, FTIR with improved sensitivity can be obtained.
  • the light incident part 8A is arranged so that the measurement light is incident on the interference optical system 10A from the outside, and the light emitting part 9A emits the measurement light from the interference optical system 10A to the outside.
  • FTIR provided with 8 A of light-incidence parts and 9 A of light-projection parts can be obtained.
  • the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed.
  • the shapes of the mirror portion 51A and the mirror surface 51aA are not limited to a circular shape, and may be other shapes such as a rectangular shape.
  • space S1A is formed between the support layer 2A and the device layer 3A, and as long as it corresponds to at least the mounting region 31A and the drive region 32A, as shown in FIG. 6 and FIG. Aspects can be employed.
  • a recess 23A that opens to the device layer 3A side is formed in the support layer 2A, and the region in the opening 41A of the intermediate layer 4A and the recess 23A in the support layer 2A
  • a space S1A is configured by the regions.
  • the region in the recess 23A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction.
  • a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A through a region in the opening 41A of the intermediate layer 4A. Also with this configuration, a configuration for reliably mounting the movable mirror 5A on the device layer 3A can be suitably realized.
  • the region in the opening 21A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction.
  • the region in the recess 23A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction.
  • the region in the opening 41A of the intermediate layer 4A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and is separated from the support layer 2A in the mounting region 31A and the drive region 32A.
  • a gap for separating the power portion from the support layer 2A is formed.
  • the mounting region 31A reciprocates along the direction AA, a part of each locking portion 55A of the movable mirror 5A located in the space S1A comes into contact with the intermediate layer 4A and the support layer 2A. There is no.
  • the support layer 2A and the device layer 3A may be joined to each other without interposing the intermediate layer 4A.
  • the support layer 2A is formed of, for example, silicon, glass, ceramic, and the like
  • the device layer 3A is formed of, for example, silicon.
  • the support layer 2A and the device layer 3A are bonded to each other by, for example, direct bonding, surface activation bonding, plasma bonding, anodic bonding, metal bonding, resin bonding, or the like.
  • the space S1A is formed between the support layer 2A and the device layer 3A, and if it corresponds to at least the mounting region 31A and the drive region 32A, FIG. 8, FIG. 9, FIG. As shown in FIG. 11, various modes can be adopted. In any of the configurations, a configuration for surely mounting the movable mirror 5A on the device layer 3A can be suitably realized.
  • a space S1A is configured by the region in the opening 21A of the support layer 2A.
  • the region in the opening 21A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
  • a gap for separating the portion from the support layer 2A is formed.
  • a part of each locking portion 55A of the movable mirror 5A is located in a region within the opening 21A of the support layer 2A.
  • the space S1A is constituted by the region in the recess 23A of the support layer 2A.
  • the region in the recess 23A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
  • a gap for separating the portion from the support layer 2A is formed.
  • a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A.
  • a recess (first recess) 38A that opens to the support layer 2A side is formed in the device layer 3A, and the region in the recess 38A of the device layer 3A and the support layer 2A A space S1A is configured by the region in the opening 21A.
  • the region in the recess 38A of the device layer 3A and the region in the opening 21A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction.
  • the region in the recess 38A of the device layer 3A forms a gap for separating the portion to be separated from the support layer 2A in the mounting region 31A and the drive region 32A from the support layer 2A.
  • a part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the recess 38A of the device layer 3A.
  • the recess 38A is formed in the device layer 3A, and the space is defined by the region in the recess 38A of the device layer 3A and the region in the recess (second recess) 23A of the support layer 2A.
  • S1A is configured.
  • the region in the recess 38A of the device layer 3A and the region in the recess 23A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction.
  • the region in the recess 38A of the device layer 3A forms a gap for separating the portion to be separated from the support layer 2A in the mounting region 31A and the drive region 32A from the support layer 2A.
  • a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A via a region in the recess 38A of the device layer 3A.
  • the recess 38A is formed in the device layer 3A, and the space S1A is configured by the region in the recess 38A of the device layer 3A and the region in the opening 21A of the support layer 2A.
  • the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
  • a gap for separating the portion from the support layer 2A is formed.
  • the region in the opening 21A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction.
  • a part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the recess 38A of the device layer 3A.
  • the recess 38A is formed in the device layer 3A, and the space is defined by the region in the recess 38A of the device layer 3A and the region in the recess (second recess) 23A of the support layer 2A.
  • S1A is configured.
  • the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
  • a gap for separating the portion from the support layer 2A is formed.
  • the region in the recess 23A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction.
  • a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A via a region in the recess 38A of the device layer 3A.
  • the recess 38A is formed in the device layer 3A, and the space S1A is constituted by the region in the recess 38A of the device layer 3A.
  • the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A.
  • a gap for separating the portion from the support layer 2A is formed.
  • a part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 38A of the device layer 3A.
  • each leg 54A and a part of each locking part 55A of the movable mirror 5A are located in the space S1A, and the movable mirror 5A.
  • the mirror surface 51aA may be located on the opposite side of the support layer 2A from the device layer 3A.
  • the mirror surface 61aA of the fixed mirror 6A and the optical functional surface 7aA of the beam splitter 7A are also located on the opposite side of the support layer 2A from the device layer 3A.
  • the device layer 3A is integrally provided with a spacer 39A protruding to the side opposite to the support layer 2A.
  • the spacer 39A protrudes from a portion of each locking portion 55A of the movable mirror 5A that protrudes from the device layer 3A to the side opposite to the support layer 2A, and protects the portion.
  • the movable mirror 5A may penetrate the mounting region 31A in a state where the mirror surface 51aA intersects the mounting region 31A.
  • the pair of leg portions 54A is not provided, and the pair of locking portions 55A is in the YA axis direction with respect to the center of the mirror portion 51A when viewed from the XA axis direction.
  • it is connected to the outer surface of the elastic portion 52A. That is, the mirror part 51A and the elastic part 52A are sandwiched between the pair of locking parts 55A in the YA axis direction.
  • a portion of the mounting region 31A that defines the opening 31bA that is opposed to the mirror surface 51aA is notched in order to allow the measurement light L0A to pass therethrough.
  • the mirror surface 51aA intersects the mounting area 31A.
  • the connecting portion 53A may be provided closer to the mounting region 31A than the center of the mirror surface 51aA. According to this configuration, for example, the position of the center of gravity of the movable mirror 5A can be closer to the mounting region 31A than when the connecting portion 53A is provided on the opposite side of the mounting region 31A from the center of the mirror surface 51aA. Therefore, the mounting area 31A on which the movable mirror 5A is mounted can be moved more stably. Further, as shown in FIG. 14, each locking portion 55 ⁇ / b> A may have a folded portion 55 a ⁇ / i> A arranged in an opening 31 c ⁇ / i> A provided separately from the opening 31 b ⁇ / i> A.
  • the movable mirror 5A can be more reliably fixed to the mounting region 31A.
  • the elastic portion 52A may be provided with a handle 56A for elastically deforming the elastic portion 52A so that the distance between the pair of locking portions 55A changes.
  • the pair of locking portions with the distance between the pair of locking portions 55A changed.
  • Each locking portion 55A can be brought into contact with the inner surface of the opening 31bA by inserting the portion 55A into the opening 31bA and then releasing the operation of the handle 56A.
  • the movable mirror 5A is supported on the mounting region 31A by the reaction force applied to each locking portion 55A from the inner surface of the opening 31bA.
  • the movable mirror 5A can be supported by the mounting region 31A by the reaction force applied to each locking portion 55A from the inner surface of the opening 31bA, but the movable mirror 5A is more securely fixed to the mounting region 31A.
  • an adhesive may be disposed between each locking portion 55A and the mounting region 31A.
  • the fixed mirror 6A is mounted on the device layer 3A.
  • the fixed mirror 6A may be mounted on at least one of the support layer 2A, the device layer 3A, and the intermediate layer 4A.
  • the beam splitter 7A is mounted on the support layer 2A.
  • the beam splitter 7A may be mounted on at least one of the support layer 2A, the device layer 3A, and the intermediate layer 4A.
  • the beam splitter 7A is not limited to a cube type beam splitter, and may be a plate type beam splitter.
  • the optical module 1A may include a light emitting element that generates measurement light to be incident on the light incident portion 8A in addition to the light incident portion 8A.
  • the optical module 1A may include a light emitting element that generates measurement light incident on the interference optical system 10A, instead of the light incident portion 8A.
  • the optical module 1A may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9A in addition to the light emitting unit 9A.
  • the optical module 1A may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10A, instead of the light emitting unit 9A.
  • first through electrode electrically connected to each actuator region 33A and the second through electrode electrically connected to each of both end portions 34aA of each elastic support region 34A are the support layer 2A and the intermediate layer 4A. (Only the support layer 2A when the intermediate layer 4A does not exist) is provided, and a voltage may be applied between the first through electrode and the second through electrode.
  • the actuator that moves the mounting region 31A is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like.
  • the optical module 1A is not limited to the one constituting the FTIR, and may constitute another optical system.
  • an optical module including a base having a main surface in which a recess is formed, and an optical element mounted on the base in the recess (see, for example, US Patent Application Publication No. 2002/0186477). ).
  • an optical element is inserted into the recess, and the optical element is bonded to the base by reflow of a bond pad formed on the bottom surface of the recess.
  • the optical module as described above is required to be securely mounted on the basis of an optical element from the viewpoint of mounting on a portable device and securing resistance to impact applied during transfer.
  • the optical module as described above is not sufficiently resistant to impact, and when the impact is applied, the optical element may easily fall out of the recess.
  • another aspect of the present disclosure aims to provide an optical module capable of realizing reliable mounting of an optical element.
  • An optical module includes a base and an optical element mounted on the base.
  • the base has a first surface and a second surface that face each other.
  • a first opening that opens to the first surface and the second surface, and a second opening that opens to the second surface are provided
  • the optical element includes an optical unit having an optical surface, a support unit that supports the optical unit as a base,
  • the support portion has a protrusion protruding from the second surface through the first opening, a folded portion extending from the protrusion toward the second surface and entering the second opening from the second surface side, and including.
  • a first opening that opens to the first surface and the second surface and a second opening that opens to the second surface are provided in the base.
  • the support part that supports the optical part on the base protrudes from the second surface through the first opening, extends from the protruding part toward the second surface, and enters the second opening from the second surface side.
  • a folding part is provided.
  • a pair of second openings are provided so as to sandwich the first opening, a pair of protrusions are provided, and a folded part is provided in each of the pair of protrusions. It may enter into each of the second openings. According to this, dropping of the optical element can be more reliably suppressed.
  • the protruding portion may be in contact with at least the edge portion on the first surface side of the first opening. According to this, dropping of the optical element can be suppressed more reliably.
  • the folded portion may be in contact with an edge portion on the second surface side of the second opening. According to this, dropping of the optical element can be suppressed more reliably.
  • the optical element further includes an elastic part, the pair of protrusions is provided, and the pair of protrusions are given an elastic force according to elastic deformation of the elastic part.
  • the distance between each other is variable, and the elastic force is applied to the pair of protrusions from the inner surface of the first opening. It may be supported by the base by the reaction force.
  • the optical element can be mounted on the base using the elastic force of the elastic portion. In this case, the optical element is mounted on the base using elastic force, and the optical element is prevented from falling off by the folded portion, so that the amount of the adhesive used is reduced or the adhesive is unnecessary. It becomes possible. The following advantages are obtained by reducing the amount of adhesive used.
  • the optical module it is possible to suppress the occurrence of contamination or the like on the optical surface due to the protrusion of the adhesive material, or the destruction or malfunction of the optical module drive region. Further, the area for forming the adhesive (space between components) is reduced, so that the optical module can be reduced in size.
  • the pair of protrusions may be inserted into the first opening in a state where the elastic force of the elastic part is applied in a direction away from each other.
  • the optical element can be suitably mounted on the base using the elastic force.
  • the pair of inner surfaces of the first opening are inclined so that the distance from each other increases from one end to the other when viewed from a direction intersecting the first surface. And an opposing surface that faces the pair of inclined surfaces in a direction crossing a direction in which the pair of inclined surfaces face each other. According to this, when the protruding portion is inserted into the first opening and a part of the elastic deformation of the elastic portion is released, the protruding portion is slid on the inclined surface by the elastic force and hits the opposing surface.
  • the optical element can be positioned in a direction along the first surface.
  • the inclination angle may be 45 degrees or less. According to this, the reaction force of the elastic force applied to the projecting portion can be more dispersed in the direction intersecting the direction in which the pair of inclined surfaces oppose each other than in the direction in which the pair of inclined surfaces oppose each other. . For this reason, the tolerance with respect to the impact of the direction which cross
  • the base may include a support layer and a device layer provided on the support layer and including the first surface and the second surface. According to this, the structure for reliable mounting of the optical element can be suitably realized.
  • the base may include an intermediate layer provided between the support layer and the device layer. According to this, the structure for reliable mounting of the optical element can be realized more suitably.
  • the optical module according to another aspect of the present disclosure further includes a fixed mirror mounted on the support layer, the device layer, or the intermediate layer, and a beam splitter mounted on the support layer, the device layer, or the intermediate layer, and an optical element Is a movable mirror including an optical surface that is a mirror surface, and the device layer has a mounting region in which the optical element is mounted and a drive region connected to the mounting region, and the movable mirror, the fixed mirror, and the beam
  • the splitter may be arranged to constitute an interference optical system.
  • an FTIR Fastier Transform Infrared Spectrometer
  • SOI Silicon On Insulator
  • the size of the movable mirror is the achievement level of deep drilling on the SOI substrate.
  • the degree of achievement of deep processing for the SOI substrate is about 500 ⁇ m at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror.
  • this optical module since the movable mirror formed separately is mounted on the device layer, FTIR with improved sensitivity can be obtained.
  • the support layer is a first silicon layer of an SOI substrate
  • the device layer is a second silicon layer of the SOI substrate
  • the intermediate layer is an insulating layer of the SOI substrate.
  • An optical module includes a light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside, and light arranged to emit the measurement light from the interference optical system to the outside. And a light emitting part. According to this, FTIR provided with a light incident part and a light emission part can be obtained.
  • an optical module that can realize reliable mounting of an optical element.
  • the optical module 1B includes a base BB.
  • the base BB includes a support layer 2B, a device layer 3B provided on the support layer 2B, and an intermediate layer 4B provided between the support layer 2B and the device layer 3B.
  • the support layer 2B, the device layer 3B, and the intermediate layer 4B are configured by an SOI substrate.
  • the support layer 2B is the first silicon layer of the SOI substrate.
  • the device layer 3B is a second silicon layer of the SOI substrate.
  • the intermediate layer 4B is an insulating layer of the SOI substrate.
  • the support layer 2B, the device layer 3B, and the intermediate layer 4B have a rectangular shape with, for example, a side of about 10 mm when viewed from the ZB axis direction (a direction parallel to the ZB axis) that is the stacking direction thereof.
  • Each thickness of the support layer 2B and the device layer 3B is, for example, about several hundred ⁇ m.
  • the thickness of the intermediate layer 4B is, for example, about several ⁇ m.
  • the device layer 3B and the intermediate layer 4B are shown with one corner of the device layer 3B and one corner of the intermediate layer 4B cut out.
  • the device layer 3B has a mounting area 31B and a drive area 32B connected to the mounting area 31B.
  • the drive region 32B includes a pair of actuator regions 33B and a pair of elastic support regions 34B.
  • the mounting region 31B and the drive region 32B (that is, the mounting region 31B and the pair of actuator regions 33B and the pair of elastic support regions 34B) are integrally formed on a part of the device layer 3B by MEMS technology (patterning and etching). Yes.
  • the pair of actuator regions 33B are disposed on both sides of the mounting region 31B in the XB axis direction (a direction parallel to the XB axis perpendicular to the ZB axis). That is, the mounting region 31B is sandwiched between the pair of actuator regions 33B in the XB axis direction.
  • Each actuator region 33B is fixed to the support layer 2B via the intermediate layer 4B.
  • a first comb tooth portion 33aB is provided on the side surface of each actuator region 33B on the mounting region 31B side.
  • Each first comb tooth portion 33aB is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the first comb tooth portion 33aB.
  • a first electrode 35B is provided in each actuator region 33B.
  • the pair of elastic support regions 34B are disposed on both sides of the mounting region 31B in the YB axis direction (a direction parallel to the YB axis perpendicular to the ZB axis and the XB axis). That is, the mounting region 31B is sandwiched between the pair of elastic support regions 34B in the YB axis direction. Both end portions 34aB of each elastic support region 34B are fixed to the support layer 2B via the intermediate layer 4B.
  • Each elastic support region 34B has an elastic deformation portion 34bB (a portion between both end portions 34aB) having a structure in which a plurality of leaf springs are connected.
  • each elastic support region 34B is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below it.
  • a second electrode 36B is provided at each of both end portions 34aB.
  • each elastic support region 34B is connected to the mounting region 31B.
  • the mounting region 31B is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the mounting region 31B. That is, the mounting area 31B is supported by the pair of elastic support areas 34B.
  • a second comb tooth portion 31aB is provided on the side surface of each mounting region 31B on the side of each actuator region 33B.
  • Each second comb tooth portion 31aB is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the second comb tooth portion 31aB.
  • the comb teeth of the first comb tooth portion 33aB are located between the comb teeth of the second comb tooth portion 31aB.
  • the pair of elastic support regions 34B sandwich the mounting region 31B from both sides with respect to the direction AB parallel to the XB axis so that when the mounting region 31B moves along the direction AB, the mounting region 31B returns to the initial position.
  • An elastic force is applied to the mounting region 31B. Therefore, when a voltage is applied between the first electrode 35B and the second electrode 36B and an electrostatic attractive force acts between the first comb tooth portion 33aB and the second comb tooth portion 31aB facing each other, the electrostatic attractive force
  • the mounting region 31B is moved along the direction AB to a position where the elastic force of the pair of elastic support regions 34B is balanced.
  • the drive region 32B functions as an electrostatic actuator.
  • the optical module 1B further includes a movable mirror 5B, a fixed mirror 6B, a beam splitter 7B, a light incident part 8B, and a light emitting part 9B.
  • the movable mirror 5B, the fixed mirror 6B, and the beam splitter 7B are arranged on the device layer 3B so as to constitute an interference optical system 10B that is a Michelson interference optical system.
  • the movable mirror 5B is mounted on the mounting region 31B of the device layer 3B on one side of the beam splitter 7B in the XB axis direction.
  • the mirror surface 51aB of the mirror part 51B of the movable mirror 5B is located on the opposite side of the support layer 2B with respect to the device layer 3B.
  • the mirror surface 51aB is, for example, a surface perpendicular to the XB axis direction (that is, a surface perpendicular to the direction AB) and faces the beam splitter 7B side.
  • the fixed mirror 6B is mounted on the mounting region 37B of the device layer 3B on one side of the beam splitter 7B in the YB axis direction.
  • the mirror surface 61aB of the mirror part 61B of the fixed mirror 6B is located on the opposite side of the support layer 2B with respect to the device layer 3B.
  • the mirror surface 61aB is, for example, a surface perpendicular to the YB axis direction and faces the beam splitter 7B side.
  • the light incident part 8B is mounted on the device layer 3B on the other side of the beam splitter 7B in the YB axis direction.
  • the light incident portion 8B is configured by, for example, an optical fiber and a collimator lens.
  • the light incident portion 8B is arranged so that the measurement light is incident on the interference optical system 10B from the outside.
  • the light emitting portion 9B is mounted on the device layer 3B on the other side of the beam splitter 7B in the XB axis direction.
  • the light emitting portion 9B is configured by, for example, an optical fiber and a collimating lens.
  • the light emitting unit 9B is arranged to emit measurement light (interference light) to the outside from the interference optical system 10B.
  • the beam splitter 7B is a cube type beam splitter having an optical functional surface 7aB.
  • the optical functional surface 7aB is located on the side opposite to the support layer 2B with respect to the device layer 3B.
  • the beam splitter 7B is positioned by bringing one corner on the bottom side of the beam splitter 7B into contact with one corner of the rectangular opening 3aB formed in the device layer 3B.
  • the beam splitter 7B is mounted on the support layer 2B by being fixed to the support layer 2B by bonding or the like in a positioned state.
  • the optical module 1B configured as described above, when the measurement light L0B is incident on the interference optical system 10B from the outside via the light incident portion 8B, a part of the measurement light L0B is transmitted to the optical function surface 7aB of the beam splitter 7B.
  • the reflected light travels toward the movable mirror 5B, and the remaining portion of the measurement light L0B passes through the optical function surface 7aB of the beam splitter 7B and travels toward the fixed mirror 6B.
  • Part of the measurement light L0B is reflected by the mirror surface 51aB of the movable mirror 5B, travels on the same optical path toward the beam splitter 7B, and passes through the optical function surface 7aB of the beam splitter 7B.
  • the remaining part of the measurement light L0B is reflected by the mirror surface 61aB of the fixed mirror 6B, travels on the same optical path toward the beam splitter 7B, and is reflected by the optical function surface 7aB of the beam splitter 7B.
  • a part of the measurement light L0B that has passed through the optical functional surface 7aB of the beam splitter 7B and the remaining part of the measurement light L0B reflected by the optical functional surface 7aB of the beam splitter 7B become the measurement light L1B that is interference light.
  • L1B is emitted to the outside from the interference optical system 10B via the light emitting portion 9B.
  • the movable mirror 5B can be reciprocated at high speed along the direction AB, so that a small and highly accurate FTIR can be provided.
  • the base BB includes a first surface BaB and a second surface BbB facing each other.
  • the first surface BaB is the surface of the device layer 3B opposite to the support layer 2B
  • the second surface BbB is the surface of the device layer 3B on the support layer 2B side.
  • the movable mirror 5B is mounted on the base BB in a state where the mirror surface 51aB is positioned on a plane intersecting (for example, orthogonal to) the first surface BaB and the mirror surface 51aB is positioned on the first surface BaB side of the base BB. Has been.
  • the movable mirror (optical element) 5B has a mirror part (optical part) 51B, an elastic part 52B, a support part 53B, and a connecting part 54B.
  • the movable mirror 5B is integrally formed by MEMS technology (patterning and etching). For this reason, the thickness of the movable mirror 5B (the dimension in the XB axis direction orthogonal to the mirror surface 51aB) is constant in each part, and is, for example, about 10 ⁇ m or more and 20 ⁇ m or less.
  • the mirror part 51B, the elastic part 52B, the support part 53B, and the connecting part 54B are located on the same plane when viewed from the YB axis direction (direction along both the mirror surface 51aB and the first surface BaB). It is provided as follows.
  • the mirror part 51B is formed in a plate shape (for example, a disk shape) having a mirror surface (optical surface) 51aB as a main surface.
  • the diameter of the mirror surface 51aB is, for example, about 1 mm.
  • the elastic part 52B is formed in an arc shape (for example, a semicircular arc shape) surrounding the mirror part 51B while being separated from the mirror part 51B when viewed from the XB axis direction.
  • the support portion 53B has a pair of leg portions 55AB, 55BB, a pair of locking portions (projecting portions) 56B, and a pair of folded portions 57B.
  • the pair of leg portions 55AB and 55BB is provided so as to sandwich the mirror portion 51B in the YB axis direction, and is connected to both ends of the elastic portion 52B.
  • Each of the leg part 55AB and the leg part 55BB has a first part 58aB having one end connected to the elastic part 52B and a second part 58bB connected to the other end of the first part 58aB.
  • the first portion 58aB of the leg portion 55AB extends along the ZB axis direction (a direction orthogonal to the first surface BaB).
  • the first portion 58aB of the leg portion 55BB extends in an arc shape along the outer edge of the mirror portion 51B when viewed from the XB axis direction.
  • the second portions 58bB of the leg portions 55AB and the leg portions 55BB extend so as to be closer to each other as they move away from the elastic portion 52B (toward the negative direction of the ZB axis).
  • the pair of locking portions 56B are provided at the ends of the second portions 58bB opposite to the elastic portions 52B, respectively.
  • Each of the pair of locking portions 56B is formed to be bent in, for example, a V shape on the inner side (side closer to each other) when viewed from the XB axis direction.
  • Each locking portion 56B includes an inclined surface 56aB and an inclined surface 56bB.
  • the inclined surface 56aB and the inclined surface 56bB are surfaces opposite to the surfaces facing each other in the pair of locking portions 56B (outer surfaces).
  • the inclined surfaces 56aB are inclined so as to approach each other in the negative direction of the ZB axis.
  • the inclined surfaces 56bB are inclined so as to be separated from each other in the negative direction of the ZB axis.
  • the inclination angle ⁇ B of the inclined surface 56aB with respect to the ZB axis is equal to or slightly larger than the inclination angle ⁇ B of the inclined surface 56bB with respect to the ZB axis direction.
  • the inclination angle ⁇ B is about 45 degrees
  • the inclination angle ⁇ B is about 35 degrees.
  • the pair of locking portions 56B are connected to the elastic portion 52B via a pair of leg portions 55AB and 55BB, respectively. Accordingly, for example, by applying force to the pair of leg portions 55AB and 55BB so as to be sandwiched from both sides in the YB axis direction, the elastic portion 52B is elastically deformed so as to be compressed in the YB axis direction, and between the pair of locking portions 56B. The distance can be reduced. That is, the distance between the pair of locking portions 56B in the YB axis direction is variable according to the elastic deformation of the elastic portion 52B. Further, the elastic force of the elastic portion 52B can be applied to the pair of locking portions 56B.
  • the pair of folded portions 57B are provided at the end portions of the respective engaging portions 56B opposite to the elastic portions 52B. Each of the pair of folded portions 57B extends outward (side away from each other) and toward the ZB-axis positive direction when viewed from the XB-axis direction. Each folded portion 57B includes an inclined surface 57aB. The inclined surface 57aB is a surface facing the locking portion 56B in the folded portion 57B. Between the pair of folded portions 57B, the inclined surfaces 57aB are inclined so as to be separated from each other in the positive direction of the ZB axis.
  • the inclination angle ⁇ B of the inclined surface 57aB with respect to the ZB axis direction is slightly larger than the inclination angle ⁇ B.
  • the inclination angle ⁇ B is about 60 degrees, for example.
  • the connecting part 54B connects the mirror part 51B and the leg part 55BB to each other.
  • the connection part 54B is connected to the mirror part 51B on the opposite side of the elastic part 52B with respect to the center of the mirror part 51B in a predetermined direction when viewed from the XB axis direction.
  • This predetermined direction is a direction that intersects both the YB-axis direction and the ZB-axis direction.
  • the connecting portion 54B is connected to the leg portion 55BB at the connecting portion between the first portion 58aB and the second portion 58bB.
  • the center of the mirror part 51B is located on one side (the leg part 55BB side) in the YB axis direction with respect to the center line CL1B.
  • the center line CL1B is a virtual straight line that passes through the center of the first opening 31bB described later and extends in the ZB axis direction.
  • a first opening 31bB and a pair of second openings 31cB are formed in the mounting region 31B of the base BB.
  • the first opening 31bB and each second opening 31cB penetrate the device layer 3B in the ZB axis direction, and are open to both the first surface BaB and the second surface BbB.
  • the pair of second openings 31cB is provided so as to sandwich the first opening 31bB in the YB axis direction. Details of the first opening 31bB and the second opening 31cB will be described later.
  • the pair of locking portions 56B are inserted into the first opening 31bB in a state where the elastic force of the elastic portion 52B is applied in a direction away from each other.
  • Each locking portion 56B protrudes from the second surface BbB via the first opening 31bB.
  • Each locking portion 56B is in contact with the edge portion 31dB on the first surface BaB side of the first opening 31bB on the inclined surface 56aB.
  • Each folded portion 57B extends from each locking portion 56B toward the second surface BbB, and enters the second opening 31cB from the second surface BbB side.
  • Each folded portion 57B is in contact with the edge 31eB on the second surface BbB side of the second opening 31cB on the inclined surface 57aB.
  • the locking portion 56B contacts the edge 31dB on the first surface BaB side of the first opening 31bB, and the folded portion 57B contacts the edge 31eB on the second surface BbB side of the second opening 31cB.
  • the movable mirror 5B is prevented from coming off in the ZB-axis direction.
  • an opening 41B is formed in the intermediate layer 4B.
  • the openings 41B are opened on both sides of the intermediate layer 4B in the ZB axis direction.
  • An opening 21B is formed in the support layer 2B.
  • the openings 21B are opened on both sides of the support layer 2B in the ZB axis direction.
  • a continuous space S1B is configured by the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B. That is, the space S1B includes a region in the opening 41B of the intermediate layer 4B and a region in the opening 21B of the support layer 2B.
  • the space S1B is formed between the support layer 2B and the device layer 3B, and corresponds to at least the mounting region 31B and the drive region 32B.
  • the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B include a range in which the mounting region 31B moves when viewed from the ZB axis direction.
  • the region in the opening 41B of the intermediate layer 4B is a portion that should be separated from the support layer 2B in the mounting region 31B and the drive region 32B (that is, a portion that should be in a floating state with respect to the support layer 2B.
  • a gap for separating the entire mounting region 31B, the elastic deformation portion 34bB, the first comb tooth portion 33aB, and the second comb tooth portion 31aB) of each elastic support region 34B from the support layer 2B is formed.
  • each locking portion 56B of the movable mirror 5B is located in the space S1B. Specifically, a part of each locking portion 56B is located in a region in the opening 21B of the support layer 2B via a region in the opening 41B of the intermediate layer 4B. A part of each locking portion 56B protrudes from the second surface BbB into the space S1B by about 100 ⁇ m, for example. As described above, the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B include the range in which the mounting region 31B moves when viewed from the ZB axis direction. Is reciprocated along the direction AB, a part of each locking portion 56B of the movable mirror 5B located in the space S1B does not come into contact with the intermediate layer 4B and the support layer 2B.
  • the inner surface of the first opening 31bB has a pair of inclined surfaces SAB facing each other in the YB axis direction, a pair of inclined surfaces SBB facing each other in the YB axis direction, including.
  • Each inclined surface SAB includes one end SAaB and the other end SAbB
  • each inclined surface SBB includes one end SBaB and the other end SBbB.
  • the pair of inclined surfaces SAB are inclined so that the distance from each other increases from one end SAaB to the other end SAbB (for example, with respect to the XB axis direction).
  • the SBB is inclined to the opposite side of the pair of inclined surfaces SAB so that the mutual distance increases from one end SBaB to the other end SBbB (for example, with respect to the XB axial direction).
  • the inclined surface SAB and the inclined surface SBB are opposed to each other in the XB axis direction (a direction orthogonal to the YB axis direction where the pair of inclined surfaces SAB are opposed to each other).
  • connection surface SCB extending along the XB axis direction.
  • the inclined surface SAB, the inclined surface SBB, and the connecting surface SCB define one corner on each of both sides in the YB axis direction.
  • one end SAaB of the inclined surface SAB and one end SBaB of the inclined surface SBB are connected to each other via a connection surface SDB extending in the YB axis direction.
  • connection surface SDB When viewed from the ZB axis direction, the connection surface SDB has a shape that is widened in a V shape on the outer side (side away from each other) in the intermediate portion.
  • the first opening 31bB has a shape symmetrical with respect to a center line CL2B passing through the center of the first opening 31bB and parallel to the YB axis direction when viewed from the ZB axis direction.
  • the first opening 31bB here has a decagonal shape when viewed from the ZB-axis direction.
  • each second opening 31cB includes a pair of inclined surfaces SEB that face each other in the XB axis direction.
  • the pair of inclined surfaces SEB are inclined so as to be separated from each other as the distance from the first opening 31bB increases when viewed from the ZB axis direction.
  • one inclined surface SEB faces the inclined surface SAB
  • the other inclined surface SEB faces the inclined surface SBB.
  • the pair of inclined surfaces SEB have an axisymmetric shape with respect to the inclined surface SAB and the inclined surface SBB and the YB axis direction when viewed from the ZB axis direction.
  • Each second opening 31cB has a line-symmetric shape with respect to the center line CL2B when viewed from the ZB-axis direction.
  • the second opening 31cB here has a hexagonal shape when viewed from the ZB-axis direction.
  • the maximum value of the dimension of the first opening 31bB in the YB-axis direction (that is, the distance between the other ends SAbB of the pair of inclined surfaces SAB) is when the pair of locking portions 56B are disposed in the first opening 31bB. Only a part of the elastic deformation of the elastic part 52B can be released (that is, the elastic part 52B does not reach a natural length). Accordingly, when the pair of locking portions 56B are arranged in the first opening 31bB, the pair of locking portions 56B press the inner surface of the first opening 31bB by the elastic force of the elastic portion 52B, and the inner surface of the first opening 31bB A reaction force is applied to the pair of locking portions 56B.
  • the movable mirror 5B is supported on the base BB by the reaction force. More specifically, due to the elastic force of the elastic portion 52B, each locking portion 56B is inscribed in the corner defined by the inclined surface SAB and the inclined surface SBB of the first opening 31bB, and each folded portion 57B is inclined by the inclined surface SEB. It is in the state which contact
  • each locking portion 56B may first come into contact with one of the inclined surface SAB and the inclined surface SBB (hereinafter referred to as a contact surface). In this case, each locking portion 56B slides on the contact surface toward the outside in the YB axis direction (second opening 31cB side) by the elastic force of the elastic portion 52B, and is inclined while contacting the contact surface.
  • locking part 56B is inscribed in the corner
  • Each locking portion 56B slides on the edge 51dB toward the ZB-axis positive direction side by the elastic force of the elastic portion 52B.
  • returning part 57B enters into the 2nd opening 31cB from the 2nd surface BbB side.
  • Each folded portion 57B moves to a position (position in FIG. 19) where the inclined surface 57aB contacts the edge portion 51eB on the second surface BbB side of the second opening 31cB.
  • the pair of locking portions 56B are locked at the position, and the movable mirror 5B is positioned in the ZB axis direction (self-aligned by the elastic force). That is, in the movable mirror 5B, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52B.
  • the fixed mirror 6B and its peripheral structure are the same as the movable mirror 5B and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 22 and 23, the fixed mirror (optical element) 6B has a mirror part (optical part) 61B, an elastic part 62B, a support part 63B, and a connecting part 64B. .
  • the fixed mirror 6B is mounted on the base BB in a state where the mirror surface 61aB is positioned on a plane intersecting (for example, orthogonal to) the first surface BaB and the mirror surface 61aB is positioned on the first surface BaB side of the base BB.
  • the fixed mirror 6B is integrally formed by MEMS technology (patterning and etching).
  • the thickness of the fixed mirror 6B (the dimension in the YB axis direction orthogonal to the mirror surface 61aB) is constant in each part, and is, for example, about 10 ⁇ m to 20 ⁇ m.
  • the mirror part 61B, the elastic part 62B, the support part 63B, and the connecting part 64B are located on the same plane when viewed from the XB axis direction (direction along both the mirror surface 61aB and the first surface BaB). It is provided as follows.
  • the mirror part 61B is formed in a plate shape (for example, a disk shape) having a mirror surface (optical surface) 61aB as a main surface.
  • the diameter of the mirror surface 61aB is, for example, about 1 mm.
  • the elastic portion 62B is formed in an arc shape (for example, a semicircular arc shape) surrounding the mirror portion 61B while being separated from the mirror portion 61B when viewed from the YB axis direction.
  • the support portion 63B has a pair of leg portions 65AB, 65BB, a pair of locking portions (projections) 66B, and a pair of folded portions 67B.
  • the pair of leg portions 65AB and 65BB are provided so as to sandwich the mirror portion 61B in the XB axis direction, and are respectively connected to both end portions of the elastic portion 62B.
  • Each of the leg portion 65AB and the leg portion 65BB has a first portion 68aB having one end connected to the elastic portion 62B and a second portion 68bB connected to the other end of the first portion 68aB.
  • the first portion 68aB of the leg portion 65AB extends along the ZB axis direction (a direction orthogonal to the first surface BaB).
  • the first portion 68aB of the leg portion 65BB extends in an arc shape along the outer edge of the mirror portion 61B when viewed from the YB axis direction.
  • the second portions 68bB of the leg portion 65AB and the leg portion 65BB extend so as to be closer to each other as they move away from the elastic portion 62B (toward the negative direction of the ZB axis).
  • the pair of locking portions 66B are provided at the ends of the second portions 68bB opposite to the elastic portions 62B, respectively.
  • Each of the pair of locking portions 66B is formed to be bent in, for example, a V shape on the inner side (side approaching each other) when viewed from the YB axis direction.
  • Each locking portion 66B includes an inclined surface 66aB and an inclined surface 66bB.
  • the inclined surface 66aB and the inclined surface 66bB are surfaces (outer surfaces) opposite to the surfaces facing each other in the pair of locking portions 66B.
  • the inclined surfaces 66aB are inclined so as to approach each other in the negative direction of the ZB axis.
  • the inclined surfaces 66bB are inclined so as to be separated from each other in the negative direction of the ZB axis.
  • the inclination angles of the inclined surfaces 66aB and 66bB with respect to the ZB axis direction are the same as those of the inclined surfaces 56aB and 56bB in the movable mirror 5B.
  • the pair of locking portions 66B are connected to the elastic portion 62B through a pair of leg portions 65AB and 65BB, respectively.
  • the elastic portion 62B is elastically deformed so as to be compressed in the XB axis direction, and between the pair of locking portions 66B.
  • the distance can be reduced. That is, the distance between the pair of locking portions 66B in the XB axis direction is variable according to the elastic deformation of the elastic portion 62B. Further, the elastic force of the elastic portion 62B can be applied to the pair of locking portions 66B.
  • the pair of folded portions 67B are provided at the ends of the respective locking portions 66B opposite to the elastic portions 62B. Each folded portion 67B extends outward (side away from each other) and toward the ZB-axis positive direction when viewed from the YB-axis direction. Each folded portion 67B includes an inclined surface 67aB. The inclined surface 67aB is a surface facing the locking portion 66B in the folded portion 67B. Between the pair of folded portions 67B, the inclined surfaces 67aB are inclined so as to be separated from each other in the positive direction of the ZB axis. When viewed from the YB axis direction, the inclination angle of the inclined surface 67aB with respect to the ZB axis direction is the same as that of the inclined surface 57aB of the movable mirror 5B.
  • the connecting part 64B connects the mirror part 61B and the leg part 65BB to each other.
  • the connection portion 64B is connected to the mirror portion 61B on the side opposite to the elastic portion 62B in the predetermined direction with respect to the center of the mirror portion 61B when viewed from the YB axis direction.
  • This predetermined direction is a direction that intersects both the XB axis direction and the ZB axis direction.
  • the connecting portion 64B is connected to the leg portion 65BB at the connecting portion between the first portion 68aB and the second portion 68bB.
  • the center of the mirror part 61B is located on one side (the leg part 65BB side) in the XB axis direction with respect to the center line CL3B.
  • the center line CL3B is a virtual straight line that passes through the center of a first opening 37aB described later and extends in the ZB axis direction.
  • a first opening 37aB and a pair of second openings 37bB are formed in the mounting region 37B of the base BB.
  • the first opening 37aB and each second opening 37bB penetrate the device layer 3B in the ZB axis direction, and are open to both the first surface BaB and the second surface BbB.
  • the pair of second openings 37bB are provided so as to sandwich the first opening 37aB in the XB axis direction.
  • the pair of locking portions 66B are inserted into the first opening 37aB in a state where the elastic force of the elastic portion 62B is applied in a direction away from each other.
  • Each locking portion 66B protrudes from the second surface BbB via the first opening 37aB.
  • Each locking portion 66B is in contact with the edge of the first opening 37aB on the first surface BaB side on the inclined surface 66aB.
  • the pair of folded portions 67B extends from the respective locking portions 66B toward the second surface BbB, and enters the second opening 37bB from the second surface BbB side.
  • Each folded portion 67B is in contact with the edge of the second opening 37bB on the second surface BbB side on the inclined surface 67aB.
  • the locking portion 66B is in contact with the edge of the first opening 37aB on the first surface BaB side, and the folded portion 67B is in contact with the edge of the second opening 37bB on the second surface BbB side.
  • the fixed mirror 6B is prevented from coming off in the ZB axis direction.
  • an opening 42B is formed in the intermediate layer 4B.
  • the opening 42B includes the first opening 37aB of the mounting region 37B when viewed from the ZB axis direction, and opens on both sides of the intermediate layer 4B in the ZB axis direction.
  • An opening 22B is formed in the support layer 2B.
  • the opening 22B includes the first opening 37aB of the mounting region 37B when viewed from the ZB axis direction, and opens on both sides of the support layer 2B in the ZB axis direction.
  • a continuous space S2B is constituted by a region in the opening 42B of the intermediate layer 4B and a region in the opening 22B of the support layer 2B. That is, the space S2B includes a region in the opening 42B of the intermediate layer 4B and a region in the opening 22B of the support layer 2B.
  • each locking portion 66B of the fixed mirror 6B is located in the space S2B. Specifically, a part of each locking portion 66B is located in a region in the opening 22B of the support layer 2B via a region in the opening 42B of the intermediate layer 4B. A part of each locking portion 66B protrudes from the surface on the intermediate layer 4B side in the device layer 3B into the space S2B, for example, about 100 ⁇ m.
  • the inner surfaces of the first opening 37aB and the second opening 37bB are configured similarly to the inner surfaces of the first opening 31bB and the second opening 31cB in the mounting region 31B, respectively. Therefore, when the pair of locking portions 66B are disposed in the first opening 37aB, the pair of locking portions 66B press the inner surface of the first opening 37aB by the elastic force of the elastic portion 62B, and the inner surface of the first opening 37aB A reaction force is applied to the pair of locking portions 66B.
  • the fixed mirror 6B is supported by the base BB by the reaction force. In the fixed mirror 6B, as in the case of the movable mirror 5B, three-dimensional self-alignment using the inner surface of the first opening 37aB and the elastic force is performed. [Action and effect]
  • a first opening 31bB opening in the first surface BaB and the second surface BbB, and a second opening 31cB opening in the second surface BbB are provided in the base BB.
  • a support portion 53B that supports the optical portion on the base BB extends to the locking portion 56B protruding from the second surface BbB via the first opening 31bB, and extends from the locking portion 56B toward the second surface BbB. 2 and a folded portion 57B that enters the second opening 31cB from the surface BbB side.
  • the movable mirror 5B can be reliably mounted.
  • a pair of second openings 31cB are provided so as to sandwich the first opening 31bB, and a folded portion 57B is provided in each of the pair of locking portions 56B and enters the pair of second openings 31cB. It is out. Thereby, dropping of the movable mirror 5B can be more reliably suppressed.
  • the locking portion 56B is in contact with the edge 31dB on the first surface BaB side of the first opening 31bB. Thereby, dropping of the movable mirror 5B can be more reliably suppressed.
  • the folded portion 57B is in contact with the edge 31eB on the second surface BbB side of the second opening 31cB.
  • dropping of the movable mirror 5B can be more reliably suppressed.
  • the locking portion 56B is in contact with the edge 31dB on the first surface BaB side of the first opening 31bB
  • the folded portion 57B is in contact with the edge 31eB on the second surface BbB side of the second opening 31cB.
  • the base BB is sandwiched and supported between the two adjacent points by the locking portion 56B and the folded portion 57B, the resistance to impacts in the XB axis direction and the ZB axis direction can be further improved.
  • the pair of locking portions 56B is provided with an elastic force according to the elastic deformation of the elastic portion 52B, the distance between them is variable, and the elastic force of the elastic portion 52B is applied.
  • the movable mirror 5B is supported on the base BB by the reaction force of the elastic force applied to the pair of locking portions 56B from the inner surface of the first opening 31bB. Thereby, the movable mirror 5B can be mounted on the base BB using the elastic force of the elastic portion 52B.
  • the amount of adhesive used can be reduced, or the adhesive can be used. It becomes possible to make it unnecessary.
  • the following advantages are obtained by reducing the amount of adhesive used. That is, it is possible to suppress the occurrence of contamination or the like on the mirror surface 51aB or the destruction or malfunction of the drive region 32B of the optical module 1B due to the protrusion of the adhesive. Further, the area for forming the adhesive (the space between the components) is reduced, so that the optical module 1B can be downsized.
  • the pair of locking portions 56B are inserted into the first opening 31bB in a state where the elastic force of the elastic portion 52B is applied in a direction away from each other.
  • the movable mirror 5B can be suitably mounted on the base BB using the elastic force.
  • the optical module 1B when the inner surface of the first opening 31bB is viewed from the ZB axis direction, a pair of inclined surfaces SAB that are inclined so that the distance from one end SAaB to the other end SAbB increases.
  • the movable mirror 5B can be positioned in a direction along the first surface BaB.
  • the base BB has a support layer 2B and a device layer 3B provided on the support layer 2B and including the first surface BaB and the second surface BbB.
  • the structure for reliable mounting of the movable mirror 5B can be suitably realized.
  • the base BB has an intermediate layer 4B provided between the support layer 2B and the device layer 3B. Thereby, the structure for reliable mounting of the movable mirror 5B can be realized more suitably.
  • the movable mirror 5B, the fixed mirror 6B, and the beam splitter 7B are arranged so as to constitute the interference optical system 10B. Thereby, FTIR with improved sensitivity can be obtained.
  • the support layer 2B is the first silicon layer of the SOI substrate
  • the device layer 3B is the second silicon layer of the SOI substrate
  • the intermediate layer 4B is the insulating layer of the SOI substrate.
  • the light incident part 8B is arranged so that the measurement light is incident on the interference optical system 10B from the outside, and the light emitting part 9B emits the measurement light to the outside from the interference optical system 10B.
  • the light emitting part 9B emits the measurement light to the outside from the interference optical system 10B.
  • the movable mirror 5B passes through the mounting region 31B of the device layer 3B, and a part of each locking portion 56B of the movable mirror 5B is formed between the support layer 2B and the device layer 3B. Located in the space S1B.
  • the movable mirror 5B can be stably and firmly fixed to the mounting region 31B of the device layer 3B. That is, in the optical module 1B, by adopting the configuration having the space S1B, it is possible to adopt a shape including the folded portion 57B as the shape of the movable mirror 5B.
  • the shape of the fragile movable mirror 5B As a result, the optical module 1 ⁇ / b> B that can withstand mounting on portable devices and the like is realized by increasing the resistance to external forces and environmental changes by adopting the shape including the folded portion 57 ⁇ / b> B.
  • the 1st opening 31bB may be comprised like the 1st modification shown by FIG.
  • the other end SAbB of the inclined surface SAB and the other end SBbB of the inclined surface SBB are directly connected to each other on both sides in the YB axis direction.
  • the inclination angle ⁇ B of the pair of inclined surfaces SAB with respect to a straight line (here, the center line CL2B) passing through the other end SAbB of one inclined surface SAB and the other end SAbB of the other inclined surface SAB. Is 45 degrees or less.
  • the inclination angle ⁇ B is, for example, about 35 degrees.
  • the first opening 31bB has a line-symmetric shape with respect to the center line CL2B when viewed from the ZB axis direction.
  • the movable mirror 5B can be reliably mounted as in the above embodiment.
  • the reaction force of the elastic force applied to the locking portion 56B can be distributed more in the XB axis direction than in the YB axis direction. As a result, resistance to impact in the XB axis direction, which is important for improving the reliability of FTIR, can be improved.
  • the first opening 31bB includes the pair of inclined surfaces SAB and the pair of inclined surfaces SBB.
  • the first opening 31bB includes the pair of inclined surfaces SAB and the pair of inclined surfaces SAB.
  • a reference plane extending along a reference line (center line CL2B in FIG. 19) connecting the ends SAbB to each other.
  • the mirror surface 51aB is positioned on the first surface BaB side of the base BB.
  • part or all of the mirror surface 51aB protrudes on the second surface BbB side of the base BB.
  • it may be mounted on the base BB.
  • a portion of the mounting region 31B that defines the first opening 31bB that is opposed to the mirror surface 51aB is notched in order to allow the measurement light L0B to pass therethrough.
  • the elastic portion 52B may be formed in an annular shape (for example, an annular shape) so as to surround the mirror portion 51B while being separated from the mirror portion 51B when viewed from the XB axis direction.
  • locking part 56B contact
  • locking part 56B is an inclined surface.
  • the edge of the first opening 31 bB on the second surface BbB side may be contacted.
  • each second opening 31cB may not be opened on the first surface BaB, and may be, for example, a recess opened on the second surface BbB.
  • the first opening 31bB and the second opening 31cB may communicate with each other.
  • a recess opening in the second surface BbB may be provided between the first opening 31bB and the second opening 31cB, and the first opening 31bB and the second opening 31cB may communicate with each other via the recess.
  • the folded portion 57B only needs to enter the second opening 31cB, and may be separated from the edge 31eB on the second surface BbB side of the second opening 31cB.
  • the movable mirror 5AB may be configured as in the modification shown in FIGS.
  • the leg portion 55AB and the leg portion 55BB of the support portion 53B extend in parallel with each other along the ZB axis direction.
  • Each of the pair of locking portions 56B is formed to be bent in a V shape outward (side away from each other) when viewed from the XB axis direction.
  • the inclined surface 56aB and the inclined surface 56bB of each locking portion 56B are surfaces facing each other (inner surfaces) in the pair of locking portions 56B. Between the pair of locking portions 56B, the inclined surfaces 56aB are inclined so as to be separated from each other in the negative direction of the ZB axis.
  • the inclined surfaces 56bB are inclined so as to approach each other in the negative direction of the ZB axis.
  • Each of the pair of folded portions 57B extends toward the inside (the side closer to each other) and toward the ZB-axis positive direction when viewed from the XB-axis direction. Between the pair of folded portions 57B, the inclined surfaces 57aB are inclined so as to approach each other in the positive direction of the ZB axis.
  • the connecting portion 54B is connected to the mirror portion 51B and the elastic portion 52B on the center line CL1B. The center of the mirror part 51B is located on the center line CL1B.
  • the movable mirror 5AB further has a handle 59B.
  • the handle 59B has a pair of displacement portions 59aB connected to both ends of the elastic portion 52B.
  • the pair of displacement portions 59aB are provided so as to face each other in the YB axis direction, and extend from the end of the elastic portion 52B toward the positive direction of the ZB axis.
  • An intermediate portion of each displacement portion 59aB is bent in a V shape inward when viewed from the XB axis direction.
  • the pair of displacement parts 59aB are located on the ZB axis positive direction side with respect to the mirror part 51B, the elastic part 52B, and the support part 53B in a state where the movable mirror 5AB is mounted in the mounting region 37B.
  • one second opening 31cB is formed in the mounting region 31B, and a pair of first openings 31bB are formed so as to sandwich the second opening 31cB in the YB axis direction.
  • the pair of locking portions 56B are respectively inserted into the pair of first openings 31bB in a state where the elastic force of the elastic portion 52B is applied in a direction approaching each other.
  • the pair of locking portions 56B is paired with the pair of locking portions 56B in a state where the distance between the pair of locking portions 56B is increased by applying a force to the pair of displacement portions 59aB.
  • Each is inserted into the first opening 31bB.
  • a force is applied to the pair of displacement portions 59aB, whereby In a state where the other locking portion 56B is displaced so as to move away from the locking portion 56B, the other locking portion 56B is inserted into the first opening 31bB.
  • the pair of locking portions 56B are brought into contact with the inner surface of the first opening 31bB, and the movable mirror 5AB is fixed to the base BB.
  • the point of contact with the edge on the BbB side is the same as in the above embodiment.
  • one second opening 31cB is formed, but a pair of second openings 31cB may be formed so as to be sandwiched between the pair of first openings 31bB.
  • the fixed mirror 6B is mounted on the device layer 3B.
  • the fixed mirror 6B may be mounted on the support layer 2B or the intermediate layer 4B.
  • the beam splitter 7B is mounted on the support layer 2B.
  • the beam splitter 7B may be mounted on the device layer 3B or the intermediate layer 4B.
  • the beam splitter 7B is not limited to a cube type beam splitter, and may be a plate type beam splitter.
  • the optical module 1B may include a light emitting element that generates measurement light incident on the light incident portion 8B in addition to the light incident portion 8B.
  • the optical module 1B may include a light emitting element that generates measurement light incident on the interference optical system 10B, instead of the light incident portion 8B.
  • the optical module 1B may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9B in addition to the light emitting unit 9B.
  • the optical module 1B may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10B, instead of the light emitting unit 9B.
  • first through electrode electrically connected to each actuator region 33B and the second through electrode electrically connected to each of both end portions 34aB of each elastic support region 34B are the support layer 2B and the intermediate layer 4B. (Only the support layer 2B when the intermediate layer 4B is not present) is provided, and a voltage may be applied between the first through electrode and the second through electrode.
  • the actuator that moves the mounting region 31B is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like.
  • the optical module 1B is not limited to what constitutes FTIR, and may constitute another optical system.
  • the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BB.
  • the optical surface is a mirror surface.
  • the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter.
  • the above second embodiment will be additionally described below.
  • the optical element includes an optical unit having an optical surface, and a support unit that supports the optical unit on the base, The support portion protrudes from the second surface through the first opening, extends from the protrusion toward the second surface, and is turned back into the second opening from the second surface side. And an optical module.
  • a pair of the second openings are provided so as to sandwich the first opening, A pair of the protruding portions are provided, The optical module according to appendix 1, wherein the folded portion is provided in each of the pair of projecting portions and enters each of the pair of second openings.
  • Appendix 3 The optical module according to appendix 1 or 2, wherein the protrusion is in contact with at least an edge of the first opening on the first surface side.
  • the optical element further includes an elastic part, A pair of the protruding portions are provided, The pair of projecting portions are inserted into the first opening in a state where an elastic force is applied according to elastic deformation of the elastic portion and a distance between the pair of protruding portions is variable and the elastic force of the elastic portion is applied.
  • the device layer has a mounting area where the optical element is mounted, and a driving area connected to the mounting area,
  • the optical module according to appendix 10 wherein the movable mirror, the fixed mirror, and the beam splitter are arranged so as to constitute an interference optical system.
  • the support layer is a first silicon layer of an SOI substrate;
  • the device layer is a second silicon layer of the SOI substrate;
  • Appendix 13 A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
  • An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, JP 2012-524295 A).
  • MEMS Micro Electro Mechanical Systems
  • Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
  • US Patent Application Publication No. 2002/0186477 describes an optical system manufacturing process.
  • a template substrate and an optical bench are prepared.
  • An alignment slot is formed on the template substrate by etching.
  • Bond pads are arranged on the main surface of the optical bench.
  • the template substrate is attached to the main surface of the optical bench so that the alignment slot is disposed on the bond pad.
  • the optical element is inserted into the alignment slot while being positioned using the side wall of the alignment slot, and is positioned on the bond pad. Then, the optical element is bonded to the optical bench by reflowing the bond pad.
  • the optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 ⁇ m at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
  • Another object of the present disclosure is to provide an optical module capable of ensuring mounting strength while improving mounting accuracy of an optical element.
  • An optical module is an optical module including an optical element and a base on which the optical element is mounted.
  • the optical element includes an optical unit having an optical surface and a periphery of the optical unit.
  • An elastic portion provided, and a pair of support portions to which an elastic force is applied according to elastic deformation of the elastic portion and the distance between them is variable, and the base includes a main surface and a main surface.
  • a mounting area provided with a communicating opening, and the support part is a locking part inserted into the opening in a state where the elastic force of the elastic part is applied, and the locking part is inserted into the opening.
  • the optical element is supported by the mounting region by the reaction force of the elastic force applied to the locking portion from the inner surface of the opening in a state where the optical surface intersects the main surface.
  • the contact portion is bonded to the mounting region.
  • the optical element has an elastic part and a pair of support parts whose distances can be changed according to the elastic deformation of the elastic part.
  • an opening communicating with the main surface is formed in the mounting region of the base on which the optical element is mounted. Therefore, as an example, the support portion is inserted into the opening in a state in which the elastic portion is elastically deformed so that the distance between the support portions is reduced, and a part of the elastic deformation of the elastic portion is released, so that the support portion is opened in the opening. The distance between each other increases, and the support portion can be brought into contact with the inner surface of the opening.
  • the position of the optical element with respect to the mounting region is accurately defined on the inner surface of the opening by the reaction force of the elastic force applied to the support portion from the inner surface of the opening. Further, the optical element is bonded to the mounting region at the bonding portion of the support portion in a state where the optical element is supported by the reaction force of the elastic force. As a result, according to this optical module, it is possible to ensure the mounting strength while improving the mounting accuracy of the optical element.
  • the support part may include a protrusion part that protrudes toward the base side while branching from the locking part, and the contact part may include a tip part of the protrusion part.
  • the optical element can be bonded in a state where the tip of the protruding portion as the contact portion is abutted against the main surface of the base.
  • the main surface can be used for bonding of the optical element, it is possible to facilitate the processing such as placement (patterning) of the adhesive and welding.
  • the contact portion may include a side surface facing the inner surface of the opening in the locking portion.
  • the optical element can be bonded in a state where the side surface of the locking portion as the contact portion is in contact with the inner surface of the opening.
  • the bonding area can be increased and the mounting strength can be reliably improved.
  • the base includes a support layer, and a device layer provided on the support layer and including a main surface and a mounting region, and the opening is formed on the main surface.
  • the device layer may pass through the device layer in the intersecting direction, and the support portion may include a locking portion that is bent so as to contact a pair of edges of the opening in the direction intersecting the main surface.
  • the locking portion is locked to the mounting region at a position where the locking portion contacts the pair of edges of the opening. For this reason, the optical element can be reliably mounted on the base, and the optical element can be positioned in the direction intersecting the main surface of the base.
  • the inner surface of the opening is a pair of inclined surfaces that are inclined so that the distance from each other increases from one end to the other when viewed from the direction intersecting the main surface. And a reference plane extending along a reference line connecting the other end of the one inclined surface and the other end of the other inclined surface.
  • An optical module includes a fixed mirror mounted on at least one of a support layer, a device layer, and an intermediate layer provided between the support layer and the device layer, a support layer, And a beam splitter mounted on at least one of the intermediate layers, wherein the optical element is a movable mirror including an optical surface that is a mirror surface, and the device layer is connected to the mounting region.
  • the movable mirror, the fixed mirror, and the beam splitter may be arranged so as to constitute an interference optical system. In this case, an FTIR with improved sensitivity can be obtained.
  • the base includes an intermediate layer provided between the support layer and the device layer, and the support layer is the first silicon layer of the SOI substrate.
  • the device layer may be a second silicon layer of the SOI substrate, and the intermediate layer may be an insulating layer of the SOI substrate.
  • a configuration for reliably mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
  • An optical module is disposed so that the measurement light is incident on the interference optical system from the outside and the measurement light is emitted from the interference optical system to the outside.
  • a light emitting part In this case, an FTIR including a light incident part and a light emission part can be obtained.
  • an optical module that can ensure mounting strength while improving mounting accuracy of an optical element.
  • the optical module 1C includes a base BC.
  • the base BC has a main surface BsC.
  • the base BC includes a support layer 2C, a device layer 3C provided on the support layer 2C, and an intermediate layer 4C provided between the support layer 2C and the device layer 3C.
  • the main surface BsC is a surface of the device layer 3C opposite to the support layer 2C.
  • the support layer 2C, the device layer 3C, and the intermediate layer 4C are configured by an SOI substrate.
  • the support layer 2C is the first silicon layer of the SOI substrate.
  • the device layer 3C is a second silicon layer of the SOI substrate.
  • the intermediate layer 4C is an insulating layer of the SOI substrate.
  • the support layer 2C, the device layer 3C, and the intermediate layer 4C have a rectangular shape with, for example, a side of about 10 mm when viewed from the ZC axis direction (a direction parallel to the ZC axis) that is the stacking direction thereof.
  • Each thickness of the support layer 2C and the device layer 3C is, for example, about several hundred ⁇ m.
  • the thickness of the intermediate layer 4C is, for example, about several ⁇ m.
  • the device layer 3C and the intermediate layer 4C are shown with one corner of the device layer 3C and one corner of the intermediate layer 4C cut away.
  • the device layer 3C has a mounting area 31C and a drive area 32C connected to the mounting area 31C.
  • the drive region 32C includes a pair of actuator regions 33C and a pair of elastic support regions 34C.
  • the mounting region 31C and the drive region 32C (that is, the mounting region 31C and the pair of actuator regions 33C and the pair of elastic support regions 34C) are integrally formed on a part of the device layer 3C by MEMS technology (patterning and etching). Yes.
  • the pair of actuator regions 33C are disposed on both sides of the mounting region 31C in the XC axis direction (direction parallel to the XC axis orthogonal to the ZC axis). That is, the mounting region 31C is sandwiched between the pair of actuator regions 33C in the XC axis direction.
  • Each actuator region 33C is fixed to the support layer 2C via the intermediate layer 4C.
  • a first comb tooth portion 33aC is provided on the side surface of each actuator region 33C on the mounting region 31C side.
  • Each first comb tooth portion 33aC is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the first comb tooth portion 33aC.
  • Each actuator region 33C is provided with a first electrode 35C.
  • the pair of elastic support regions 34C are disposed on both sides of the mounting region 31C in the YC axis direction (a direction parallel to the YC axis perpendicular to the ZC axis and the XC axis). That is, the mounting region 31C is sandwiched between the pair of elastic support regions 34C in the YC axis direction. Both end portions 34aC of each elastic support region 34C are fixed to the support layer 2C via the intermediate layer 4C.
  • Each elastic support region 34C has an elastic deformation portion 34bC (a portion between both end portions 34aC) having a structure in which a plurality of leaf springs are connected.
  • each elastic support region 34C is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the elastic deformation portion 34bC.
  • a second electrode 36C is provided at each of both end portions 34aC.
  • each elastic support region 34C is connected to the mounting region 31C.
  • the mounting region 31C is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the mounting region 31C. That is, the mounting region 31C is supported by the pair of elastic support regions 34C.
  • a second comb tooth portion 31aC is provided on the side surface of each mounting region 31C on the side of each actuator region 33C.
  • Each second comb tooth portion 31aC is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the second comb tooth portion 31aC.
  • each comb tooth of the first comb tooth portion 33aC is located between each comb tooth of the second comb tooth portion 31aC.
  • the pair of elastic support regions 34C sandwich the mounting region 31C from both sides when viewed in the direction AC parallel to the XC axis, and the mounting region 31C is mounted so that the mounting region 31C returns to the initial position when the mounting region 31C moves along the direction AC.
  • An elastic force is applied to the region 31C. Therefore, when a voltage is applied between the first electrode 35C and the second electrode 36C and an electrostatic attractive force acts between the first comb tooth portion 33aC and the second comb tooth portion 31aC facing each other, the electrostatic attractive force
  • the mounting region 31C is moved along the direction AC to a position where the elastic force generated by the pair of elastic support regions 34C is balanced.
  • the drive region 32C functions as an electrostatic actuator.
  • the optical module 1C further includes a movable mirror 5C, a fixed mirror 6C, a beam splitter 7C, a light incident part 8C, and a light emitting part 9C.
  • the movable mirror 5C, the fixed mirror 6C, and the beam splitter 7C are arranged on the device layer 3C so as to constitute an interference optical system 10C that is a Michelson interference optical system.
  • the movable mirror 5C is mounted on the mounting region 31C of the device layer 3C on one side of the beam splitter 7C in the XC axis direction.
  • the mirror surface 51aC of the mirror part 51C included in the movable mirror 5C is located on the opposite side of the support layer 2C with respect to the device layer 3C.
  • the mirror surface 51aC is, for example, a surface perpendicular to the XC axis direction (that is, a surface perpendicular to the direction AC) and faces the beam splitter 7C side.
  • the fixed mirror 6C is mounted on the mounting region 37C of the device layer 3C on one side of the beam splitter 7C in the YC axis direction.
  • the mirror surface 61aC of the mirror portion 61C of the fixed mirror 6C is located on the opposite side of the support layer 2C with respect to the device layer 3C.
  • the mirror surface 61aC is, for example, a surface perpendicular to the YC axis direction and faces the beam splitter 7C side.
  • the light incident portion 8C is mounted on the device layer 3C on the other side of the beam splitter 7C in the YC axis direction.
  • the light incident part 8C is configured by, for example, an optical fiber and a collimating lens.
  • the light incident part 8C is arranged so that the measurement light is incident on the interference optical system 10C from the outside.
  • the light emitting portion 9C is mounted on the device layer 3C on the other side of the beam splitter 7C in the XC axis direction.
  • the light emitting portion 9C is configured by, for example, an optical fiber and a collimating lens.
  • the light emitting unit 9C is arranged to emit measurement light (interference light) from the interference optical system 10C to the outside.
  • the beam splitter 7C is a cube type beam splitter having an optical functional surface 7aC.
  • the optical functional surface 7aC is located on the side opposite to the support layer 2C with respect to the device layer 3C.
  • the beam splitter 7C is positioned by bringing one corner on the bottom side of the beam splitter 7C into contact with one corner of the rectangular opening 3aC formed in the device layer 3C.
  • the beam splitter 7C is mounted on the support layer 2C by being fixed to the support layer 2C by bonding or the like in a positioned state.
  • the optical module 1C configured as described above, when the measurement light L0C is incident on the interference optical system 10C from the outside via the light incident portion 8C, a part of the measurement light L0C is transmitted to the optical functional surface 7aC of the beam splitter 7C.
  • the reflected light travels toward the movable mirror 5C, and the remaining portion of the measurement light L0C passes through the optical function surface 7aC of the beam splitter 7C and travels toward the fixed mirror 6C.
  • a part of the measurement light L0C is reflected by the mirror surface 51aC of the movable mirror 5C, travels toward the beam splitter 7C on the same optical path, and passes through the optical function surface 7aC of the beam splitter 7C.
  • the remaining part of the measurement light L0C is reflected by the mirror surface 61aC of the fixed mirror 6C, travels on the same optical path toward the beam splitter 7C, and is reflected by the optical function surface 7aC of the beam splitter 7C.
  • a part of the measurement light L0C transmitted through the optical functional surface 7aC of the beam splitter 7C and the remaining part of the measurement light L0C reflected by the optical functional surface 7aC of the beam splitter 7C become the measurement light L1C that is interference light, and the measurement light L1C is emitted to the outside from the interference optical system 10C via the light emitting portion 9C.
  • the optical module 1C since the movable mirror 5C can be reciprocated at high speed along the direction AC, a small and highly accurate FTIR can be provided. [Movable mirror and surrounding structure]
  • the movable mirror (optical element) 5C includes a mirror part (optical part) 51C having a mirror surface (optical surface) 51aC, an annular elastic part 52C, and a mirror. It has the connection part 53C which mutually connects the part 51C and the elastic part 52C, a pair of support part 56C, and a pair of connection part 57C which mutually connects the support part 56C and the elastic part 52C.
  • the mirror part 51C is formed in a disk shape.
  • the mirror surface 51aC is a circular plate surface of the mirror part 51C.
  • the movable mirror 5C is mounted on the base BC in a state where the mirror surface 51aC intersects (for example, is orthogonal to) the main surface BsC.
  • the elastic part 52C is formed in an annular shape so as to surround the mirror part 51C while being separated from the mirror part 51C when viewed from the direction intersecting the mirror surface 51aC (XC axis direction).
  • the elastic part 52C is provided around the mirror part 51C and forms an annular region CAC.
  • the connecting portion 53C connects the mirror portion 51C and the elastic portion 52C to each other at the center of the mirror portion 51C in the direction along the main surface BsC (YC axis direction).
  • a single connecting portion 53C is provided.
  • the connecting portion 53C is provided on the center line DLC passing through the center of the mirror portion 51C in the YC-axis direction and at a position opposite to the main surface BsC of the base BC with respect to the center of the mirror portion 51C in the ZC-axis direction. It has been.
  • the center line DLC is an imaginary straight line extending along the ZC axis direction.
  • the elastic portion 52C is formed in an annular plate shape by a semicircular leaf spring 52aC and a semicircular leaf spring 52bC continuous to the leaf spring 52aC.
  • the leaf spring 52aC and the leaf spring 52bC are configured symmetrically with respect to the center line DLC.
  • the spring constant of the leaf spring 52aC and the spring constant of the leaf spring 52bC are equal to each other.
  • the elastic part 52C as a whole is line-symmetric with respect to the center line DLC and has the same spring constant.
  • the support portion 56C is a rod having a rectangular cross section, and is provided so as to sandwich the mirror portion 51C and the elastic portion 52C in the YC axis direction.
  • the support portion 56C is connected to the elastic portion 52C by a connecting portion 57C.
  • the connecting portion 57C is disposed on a center line CLC passing through the center of the mirror portion 51C in the ZC axis direction.
  • the center line CLC is a virtual straight line that intersects (orthogonally intersects) the center line DLC at the center of the mirror portion 51C and extends along the YC axis direction.
  • the elastic portion 52C is elastically deformed so as to be compressed in the YC axis direction. be able to. That is, the mutual distance between the support portions 56C along the YC axis direction is variable according to the elastic deformation of the elastic portion 52C. Further, the elastic force of the elastic portion 52C can be applied to the support portion 56C.
  • the support portion 56C includes a leg portion 54C.
  • the leg portion 54C extends linearly from the connecting portion 57C to the one side (here, the main surface BsC side) of the mirror surface 51aC along the ZC axis direction, beyond the mirror surface 51aC.
  • the tip of the leg portion 54C is a contact portion 58C that comes into contact with the main surface BsC (that is, the mounting region 31C).
  • the end surface of the contact portion 58C may be flat, for example, but is curved (hemispherical) here.
  • the support portion 56C further includes a locking portion 55C.
  • the locking portion 55C extends from a midway portion on the distal end side of the leg portion 54C. Therefore, the support part 56C includes a protrusion part (leg part 54C) that branches off from the locking part 55C and protrudes toward the base BC, and the contact part 58C includes a tip part of the protrusion part. Between the pair of support portions 56C, the locking portion 55C is bent in a V shape so as to protrude toward each other.
  • the locking portion 55C includes an inclined surface 55aC and an inclined surface 55bC.
  • the inclined surface 55aC and the inclined surface 55bC are surfaces on the opposite side of the surfaces facing each other in the pair of locking portions 55C (outer surfaces).
  • the inclined surfaces 55aC are inclined so as to approach each other in the direction away from the connecting portion 57C (ZC axis negative direction) between the pair of locking portions 55C.
  • the inclined surfaces 55bC are inclined so as to be separated from each other in the negative direction of the ZC axis.
  • the absolute value of the inclination angle ⁇ C of the inclined surface 55aC with respect to the ZC axis is less than 90 °.
  • the absolute value of the inclination angle ⁇ C of the inclined surface 55bC is less than 90 °.
  • the absolute value of the inclination angle ⁇ C and the absolute value of the inclination angle ⁇ C are equal to each other.
  • an opening 31bC is formed in the mounting region 31C.
  • the opening 31bC extends in the ZC axis direction and penetrates the device layer 3C. Therefore, the opening 31bC communicates with (is led to) the main surface BsC and the surface of the device layer 3C opposite to the main surface BsC.
  • the opening 31bC has a columnar shape that is trapezoidal when viewed from the ZC axis direction (see FIG. 30). Details of the opening 31bC will be described later.
  • the support portion 56C is inserted into the opening 31bC in a state where the elastic force of the elastic portion 52C is applied.
  • the support portion 56C that is, the movable mirror 5C
  • a part of the locking portion 55C of the support portion 56C is located in the opening 31bC.
  • the locking portion 55C is in contact with a pair of edges (the edge on the main surface BsC side and the edge on the opposite side of the main surface BsC) of the opening 31bC in the ZC axis direction.
  • the inclined surface 55aC is in contact with the edge of the opening 31bC on the main surface BsC side, and the inclined surface 55bC is in contact with the edge of the opening 31bC on the opposite side of the main surface BsC. Accordingly, the locking portion 55C is locked to the mounting region 31C so as to sandwich the mounting region 31C in the ZC axial direction. As a result, the movable mirror 5C is prevented from coming off the base BC in the ZC axis direction.
  • the contact portion 58C contacts the main surface BsC (that is, the mounting region 31C). That is, the contact portion 58C contacts the mounting region 31C (here, the main surface BsC) in a state where the locking portion 55C is locked so as to sandwich the mounting region 31C.
  • the contact portion 58C is bonded to the mounting region 31C.
  • the contact portion 58C is in contact with and bonded to the main surface BsC via, for example, a resin adhesive layer.
  • the adhesion of the contact portion 58C may be, for example, adhesion of a metal layer, glass adhesive, laser light irradiation, or the like.
  • an opening 41C is formed in the intermediate layer 4C.
  • the openings 41C are opened on both sides of the intermediate layer 4C in the ZC axis direction.
  • An opening 21C is formed in the support layer 2C.
  • the openings 21C are opened on both sides of the support layer 2C in the ZC axis direction.
  • a continuous space S1C is formed by the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C. That is, the space S1C includes a region in the opening 41C of the intermediate layer 4C and a region in the opening 21C of the support layer 2C.
  • the space S1C is formed between the support layer 2C and the device layer 3C, and corresponds to at least the mounting region 31C and the drive region 32C.
  • the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction.
  • the region in the opening 41C of the intermediate layer 4C is a portion that should be separated from the support layer 2C in the mounting region 31C and the drive region 32C (that is, a portion that should be in a floating state with respect to the support layer 2C.
  • a gap for separating the entire mounting region 31C, the elastic deformation portion 34bC, the first comb tooth portion 33aC, and the second comb tooth portion 31aC) of each elastic support region 34C from the support layer 2C is formed.
  • each locking portion 55C of the movable mirror 5C is located in the space S1C. Specifically, a part of each locking portion 55C is located in a region in the opening 21C of the support layer 2C via a region in the opening 41C of the intermediate layer 4C. A part of each locking portion 55C protrudes from the surface of the device layer 3C on the intermediate layer 4C side into the space S1C, for example, by about 100 ⁇ m. As described above, the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction. Is reciprocated along the direction AC, a part of each locking portion 55C of the movable mirror 5C located in the space S1C does not come into contact with the intermediate layer 4C and the support layer 2C.
  • the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a reference surface SRC.
  • the inclined surface SLC includes one end SLaC and the other end SLbC.
  • One end SLaC and the other end SLbC are both ends of the inclined surface SLC when viewed from the ZC axis direction.
  • the pair of inclined surfaces SLC are inclined (for example, with respect to the XC axis) such that the distance from one end SLaC to the other end SLbC increases.
  • the reference surface SRC extends along a reference line BLC that connects the other end SLbC of one inclined surface SLC and the other end SLbC of the other inclined surface SLC, as viewed from the ZC axis direction.
  • the reference surface SRC simply connects the other ends SLbC to each other.
  • the shape of the opening 31bC when viewed from the ZC axis direction is a trapezoid. Therefore, here, the inclined surface SLC corresponds to a trapezoidal leg, and the reference surface SRC corresponds to the lower base of the trapezoid.
  • the opening 31bC is a single space.
  • the minimum value of the dimension of the opening 31bC in the YC axis direction (that is, the distance between the one ends SLaC of the inclined surface SLC) is a pair of locking when the elastic portion 52C is elastically deformed along the YC axis direction. The value is such that the portion 55C can be placed in the opening 31bC in a lump.
  • the maximum value of the dimension of the opening 31bC in the YC-axis direction (that is, the interval between the other ends SLbC of the inclined surface SLC) is the elasticity of the elastic part 52C when the pair of locking parts 55C is disposed in the opening 31bC. Only a part of the deformation can be released (that is, the elastic portion 52C does not reach the natural length).
  • the locking portion 55C presses the inner surface of the opening 31bC by the elastic force of the elastic portion 52C, and the reaction force from the inner surface of the opening 31bC is increased by the locking portion 55C (
  • the support portion 56C) is provided. Accordingly, the movable mirror 5C is supported by the mounting region 31C by the reaction force of the elastic force applied from the inner surface of the opening 31bC to the support portion 56C in a state where the mirror surface 51aC intersects (for example, orthogonally) the main surface BsC. . In this state, as described above, the contact portion 58C is in contact with and bonded to the main surface BsC (mounting region 31C).
  • the movable mirror 5C is supported by the mounting region 31C by the reaction force of the elastic force applied to the locking portion 55C from the inner surface of the opening 31bC in a state where the mirror surface 51aC intersects the main surface BsC, and the contact portion At 58C, it is bonded to the mounting region 31C.
  • the locking portion 55C is brought into contact with the inclined surface SLC of the opening 31bC. For this reason, the locking portion 55C slides on the inclined surface SLC toward the reference surface SRC by the component in the XC axis direction of the reaction force from the inclined surface SLC, and pushes against the reference surface SRC while contacting the inclined surface SLC. Hit. Accordingly, the locking portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, and is positioned in both the XC axis direction and the YC axis direction (self-aligned by elastic force).
  • the cross-sectional shape of the locking portion 55C is a quadrangle, when viewed from the ZC axial direction, the inclined surface SLC contacts the locking portion 55C at a point, and the reference surface SRC is in contact with the locking portion 55C. Touch with a line. That is, here, the inner surface of the opening 31bC contacts the pair of locking portions 55C at two points and two lines when viewed from the ZC axial direction.
  • the locking portion 55C is locked at the position, and the movable mirror 5C is positioned in the ZC axial direction (self-aligned by the elastic force). That is, in the movable mirror 5C, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52C.
  • the inclined surface 55bC and the contact portion 58C are opposed to each other along the ZC axis direction. Therefore, the inclined surface 55aC may be configured not to contact the edge of the opening 31bC but to perform self-alignment so that the edge of the opening 31bC is sandwiched between the contact portion 58C and the inclined surface 55bC.
  • the movable mirror 5C as described above is integrally formed by, for example, MEMS technology (patterning and etching). Accordingly, the thickness of the movable mirror 5C (the dimension in the direction intersecting the mirror surface 51aC) is constant in each part, and is, for example, about 320 ⁇ m.
  • the diameter of the mirror surface 51aC is, for example, about 1 mm.
  • the distance between the surface (inner surface) of the elastic part 52C on the mirror part 51C side and the surface (outer surface) of the mirror part 51C on the elastic part 52C side is, for example, about 200 ⁇ m.
  • the thickness of the elastic portion 52C is, for example, about 10 ⁇ m to 20 ⁇ m.
  • the fixed mirror 6C and its peripheral structure are the same as the movable mirror 5C and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 31 and 32, the fixed mirror (optical element) 6C includes a mirror portion (optical portion) 61C having a mirror surface (optical surface) 61aC, an annular elastic portion 62C, and a mirror portion 61C. And the elastic portion 62C, a pair of support portions 66C, and a pair of connection portions 67C that connect the support portion 66C and the elastic portion 62C to each other.
  • the mirror part 61C is formed in a disk shape.
  • the mirror surface 61aC is a circular plate surface of the mirror portion 61C.
  • the fixed mirror 6C is mounted on the base BC in a state where the mirror surface 61aC intersects (for example, is orthogonal to) the main surface BsC of the base BC.
  • the elastic part 62C is formed in an annular shape so as to surround the mirror part 61C while being separated from the mirror part 61C when viewed from the direction intersecting the mirror surface 61aC (YC axis direction). Therefore, the elastic portion 62C is provided around the mirror portion 61C, and forms an annular region CAC.
  • the connecting portion 63C connects the mirror portion 61C and the elastic portion 62C to each other at the center of the mirror portion 61C in the direction along the main surface BsC (XC axis direction). Here, a single connecting portion 63C is provided.
  • the connecting portion 63C is provided on the center line DLC passing through the center of the mirror portion 61C in the XC axis direction and at a position opposite to the main surface BsC of the base BC with respect to the center of the mirror portion 61C in the ZC axis direction. It has been.
  • the center line DLC is an imaginary straight line extending along the ZC axis direction.
  • the elastic portion 62C is formed in an annular plate shape by a semicircular leaf spring 62aC and a semicircular leaf spring 62bC continuous to the leaf spring 62aC.
  • the leaf spring 62aC and the leaf spring 62bC are configured symmetrically with respect to the center line DLC.
  • the spring constant of the leaf spring 62aC and the spring constant of the leaf spring 62bC are equal to each other.
  • the elastic part 62C as a whole is line-symmetric with respect to the center line DLC and has the same spring constant.
  • the support portion 66C has a bar shape with a rectangular cross section, and is provided so as to sandwich the mirror portion 61C and the elastic portion 62C in the XC axis direction.
  • the support portion 66C is connected to the elastic portion 62C by a connecting portion 67C.
  • the connecting portion 67C is disposed on a center line CLC passing through the center of the mirror portion 61C in the ZC axis direction.
  • the center line CLC is a virtual straight line that intersects (orthogonally) the center line DLC at the center of the mirror portion 61C and extends along the XC axis direction.
  • the elastic portion 62C is elastically deformed so as to be compressed in the XC axis direction. be able to. That is, the distance between the support portions 66C along the XC axis direction is variable according to the elastic deformation of the elastic portion 62C. Further, the elastic force of the elastic portion 62C can be applied to the support portion 66C.
  • the support portion 66C includes a leg portion 64C.
  • the leg portion 64C extends linearly along the ZC axis direction from the connecting portion 67C beyond the mirror surface 61aC to one side of the mirror surface 61aC (here, the main surface BsC side).
  • the front end of the leg portion 64C is a contact portion 68C that comes into contact with the main surface BsC (that is, the mounting region 37C).
  • the end surface of the contact portion 68C may be flat, for example, but here is a curved surface (semispherical surface).
  • the support portion 66C further includes a locking portion 65C.
  • the locking part 65C extends from the middle part on the tip side of the leg part 64C. Therefore, the support portion 66C includes a protruding portion (leg portion 64C) that branches off from the locking portion 65C and protrudes toward the base BC, and the contact portion 68C includes a tip portion of the protruding portion. Between the pair of support portions 66C, the locking portion 65C is bent in a V shape so as to protrude toward each other.
  • the locking portion 65C includes an inclined surface 65aC and an inclined surface 65bC. It includes an inclined surface 65aC and an inclined surface 65bC.
  • the inclined surface 65aC and the inclined surface 65bC are surfaces opposite to the surfaces facing each other in the pair of locking portions 65C (outer surfaces).
  • the inclined surfaces 65aC are inclined so as to approach each other in the direction away from the connecting portion 67C (ZC axis negative direction) between the pair of locking portions 65C.
  • the inclined surfaces 65bC are inclined so as to be separated from each other in the ZC axis negative direction.
  • the inclination angles of the inclined surfaces 65aC and 65bC with respect to the ZC axis are the same as those of the inclined surfaces 55aC and 55bC in the movable mirror 5C.
  • an opening 37aC is formed in the mounting region 37C.
  • the opening 37aC penetrates the device layer 3C in the ZC axis direction. Therefore, the opening 37aC communicates with (is led to) the main surface BsC and the surface of the device layer 3C opposite to the main surface BsC. Similar to the opening 31bC in the mounting region 31C, the opening 37aC has a columnar shape with a trapezoidal shape when viewed from the ZC axis direction.
  • the support portion 66C is inserted into the opening 37aC in a state where the elastic force of the elastic portion 62C is applied.
  • the support portion 66C that is, the fixed mirror 6C
  • a part of the locking portion 65C of the support portion 66C is located in the opening 37aC.
  • the locking portion 65C is in contact with a pair of edges of the opening 37aC in the ZC axial direction (an edge on the main surface BsC side and an edge on the opposite side of the main surface BsC).
  • the inclined surface 65aC is in contact with the edge of the opening 37aC on the main surface BsC side, and the inclined surface 65bC is in contact with the edge of the opening 37aC on the opposite side of the main surface BsC. Accordingly, the locking portion 65C is locked to the mounting region 37C so as to sandwich the mounting region 37C in the ZC axial direction. As a result, the fixed mirror 6C is prevented from coming off the base BC in the ZC axis direction.
  • the contact portion 68C contacts the main surface BsC (that is, the mounting region 37C). That is, the contact portion 68C contacts the mounting region 37C (here, the main surface BsC) in a state where the locking portion 65C is locked so as to sandwich the mounting region 37C.
  • the contact portion 68C is bonded to the mounting region 37C.
  • the contact portion 68C is in contact with and bonded to the main surface BsC via a resin adhesive layer, for example.
  • the bonding of the contact portion 68C may be, for example, melting of a metal layer, glass adhesive, bonding by laser light irradiation, or the like.
  • an opening 42C is formed in the intermediate layer 4C.
  • the opening 42C includes the opening 37aC of the mounting region 37C when viewed from the ZC axis direction, and opens on both sides of the intermediate layer 4C in the ZC axis direction.
  • An opening 22C is formed in the support layer 2C.
  • the opening 22C includes the opening 37aC of the mounting region 37C when viewed from the ZC axis direction, and opens on both sides of the support layer 2C in the ZC axis direction.
  • a continuous space S2C is formed by the region in the opening 42C of the intermediate layer 4C and the region in the opening 22C of the support layer 2C. That is, the space S2C includes a region in the opening 42C of the intermediate layer 4C and a region in the opening 22C of the support layer 2C.
  • each locking portion 65C of the fixed mirror 6C is located in the space S2C. Specifically, a part of each locking portion 65C is located in a region in the opening 22C of the support layer 2C via a region in the opening 42C of the intermediate layer 4C. A part of each locking portion 65C protrudes from the surface of the device layer 3C on the intermediate layer 4C side into the space S2C, for example, by about 100 ⁇ m.
  • the inner surface of the opening 37aC is configured in the same manner as the inner surface of the opening 31bC in the mounting region 31C. Therefore, when the pair of locking portions 65C is disposed in the opening 37aC, the locking portion 65C presses the inner surface of the opening 37aC by the elastic force of the elastic portion 62C, and the reaction force from the inner surface of the opening 37aC is increased by the locking portion 65C ( The support portion 66C) is applied. Accordingly, the fixed mirror 6C is supported by the mounting region 37C by the reaction force of the elastic force applied to the support portion 66C from the inner surface of the opening 37aC in a state where the mirror surface 61aC intersects (for example, orthogonally) the main surface BsC. .
  • the contact portion 68C is in contact with and adhered to the main surface BsC (mounting region 37C). Therefore, the fixed mirror 6C is supported by the mounting region 37C by the reaction force of the elastic force applied to the locking portion 65C from the inner surface of the opening 37aC in a state where the mirror surface 61aC intersects the main surface BsC, and the contact portion At 68C, it is bonded to the mounting region 37C.
  • the fixed mirror 6C as in the case of the movable mirror 5C, three-dimensional self-alignment using the inner surface of the opening 37aC and the elastic force is performed.
  • the fixed mirror 6C as described above is also integrally formed by, for example, the MEMS technique (patterning and etching) similarly to the movable mirror 5C.
  • the dimension of each part of the fixed mirror 6C is the same as the above-described dimension of each part of the movable mirror 5C, for example.
  • the movable mirror 5C includes an elastic portion 52C and a pair of support portions 56C whose distances can be changed according to the elastic deformation of the elastic portion 52C.
  • an opening 31bC communicating with the main surface BsC is formed in the mounting region 31C of the base BC on which the movable mirror 5C is mounted.
  • the support portion 56C by inserting the support portion 56C into the opening 31bC in a state where the elastic portion 52C is elastically deformed so that the distance between the support portions 56C is reduced, and releasing a part of the elastic deformation of the elastic portion 52C, The mutual distance between the support portions 56C increases in the opening 31bC, and the support portion 56C can be brought into contact with the inner surface of the opening 31bC.
  • the position of the movable mirror 5C relative to the mounting region 31C is accurately defined on the inner surface of the opening 31bC by the reaction force of the elastic force applied to the support portion 56C from the inner surface of the opening 31bC. Further, the movable mirror 5C is bonded to the mounting region 31C at the contact portion 58C of the support portion 56C in a state where the movable mirror 5C is supported by the reaction force of the elastic force.
  • the optical module 1C it is possible to ensure the mounting strength while improving the mounting accuracy of the movable mirror 5C.
  • the action and effect have been described by taking the movable mirror 5C as an example, but the same action and effect are also obtained with respect to the fixed mirror 6C (the same applies hereinafter).
  • the support portion 56C includes a protruding portion (leg portion 54C) that branches off from the locking portion 55C and protrudes toward the base BC, and the contact portion 58C has a tip portion of the protruding portion. Contains. For this reason, the movable mirror 5C can be bonded in a state where the tip of the protruding portion as the contact portion 58C is abutted against the main surface BsC of the base BC. In particular, since the main surface BsC can be used for bonding the movable mirror 5C, it is possible to facilitate processing such as adhesive placement (patterning) and welding.
  • the elastic portion 52C is provided so as to form the annular region CAC.
  • the strength of the elastic portion 52C is improved as compared with a case where the elastic portion 52C is in a cantilever state (in this case, a closed region such as an annular shape is not formed by the elastic portion 52C). Therefore, for example, it is possible to suppress the breakage of the elastic portion 52C at the time of manufacturing or handling the movable mirror 5C.
  • the base BC has a support layer 2C and a device layer 3C provided on the support layer 2C and including the main surface BsC and the mounting region 31C.
  • the opening 31bC penetrates the device layer 3C in a direction intersecting the main surface BsC (ZC axis direction).
  • the support part 56C contains the latching
  • the inner surface of the opening 31bC has a pair of inclined surfaces SLC that are inclined so that the distance from one end SLaC to the other end SLbC increases as viewed from the ZC axis direction, and one inclined surface.
  • a reference plane SRC extending along a reference line BLC connecting the other end SLbC of the SLC and the other end SLbC of the other inclined surface SLC.
  • the elastic portion 52C is formed in an annular shape so as to surround the mirror portion 51C when viewed from the XC axis direction, thereby forming an annular region CAC. For this reason, since an edge part does not arise in 52 C of elastic parts, the intensity
  • the elastic part 52C has a symmetrical shape with respect to the center line DLC of the mirror surface 51aC, and the spring constant of the elastic part 52C is equal to each other on both sides of the center line DLC. For this reason, for example, when the elastic portion 52C is elastically deformed along the YC axis direction, the posture of the movable mirror 5C is unlikely to become unstable (for example, torsion is unlikely to occur). Further, when a part of the elastic deformation of the elastic portion 52C is released, the reaction force is prevented from being input non-uniformly from the inner surface of the opening 31bC to the pair of support portions 56C.
  • the movable mirror 5C penetrates the mounting region 31C of the device layer 3C, and a part of each locking portion 55C of the movable mirror 5C is formed between the support layer 2C and the device layer 3C. Is located in the space S1C.
  • the movable mirror 5C can be stably and firmly fixed to the mounting region 31C of the device layer 3C. Therefore, according to the optical module 1C, the mounting of the movable mirror 5C on the device layer 3C is realized.
  • each locking portion 55C of the movable mirror 5C is located in a region in the opening 21C of the support layer 2C via a region in the opening 41C of the intermediate layer 4C.
  • the support layer 2C is the first silicon layer of the SOI substrate
  • the device layer 3C is the second silicon layer of the SOI substrate
  • the intermediate layer 4C is the insulating layer of the SOI substrate.
  • the mirror surface 51aC of the movable mirror 5C is located on the opposite side of the support layer 2C with respect to the device layer 3C. Thereby, the configuration of the optical module 1C can be simplified.
  • the movable mirror 5C, the fixed mirror 6C, and the beam splitter 7C are arranged so as to constitute the interference optical system 10C. Thereby, FTIR with improved sensitivity can be obtained.
  • the light incident part 8C is arranged so that the measurement light is incident on the interference optical system 10C from the outside, and the light emitting part 9C emits the measurement light from the interference optical system 10C to the outside.
  • the light emitting part 9C emits the measurement light from the interference optical system 10C to the outside.
  • space S1C is formed between the support layer 2C and the device layer 3C, and as long as it corresponds to at least the mounting region 31C and the drive region 32C, various spaces can be obtained as shown in FIGS. Aspects can be employed.
  • a recess 23C that opens to the device layer 3C side is formed in the support layer 2C, and the region in the opening 41C of the intermediate layer 4C and the recess 23C in the support layer 2C
  • the space S1C is configured by the regions.
  • the region in the recess 23C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction.
  • a part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C through a region in the opening 41C of the intermediate layer 4C. Also with this configuration, a configuration for reliably mounting the movable mirror 5C on the device layer 3C can be suitably realized.
  • the region in the opening 21C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction.
  • the region in the recess 23C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction.
  • the region in the opening 41C of the intermediate layer 4C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and is separated from the support layer 2C in the mounting region 31C and the drive region 32C.
  • a gap for separating the power portion from the support layer 2C is formed.
  • the mounting region 31C reciprocates along the direction AC, a part of each locking portion 55C of the movable mirror 5C located in the space S1C comes into contact with the intermediate layer 4C and the support layer 2C. There is no.
  • the support layer 2C and the device layer 3C may be joined to each other without the intermediate layer 4C.
  • the support layer 2C is formed of, for example, silicon, borosilicate glass, quartz glass, or ceramic
  • the device layer 3C is formed of, for example, silicon.
  • the support layer 2C and the device layer 3C are bonded to each other by, for example, normal temperature bonding by surface activation, low temperature plasma bonding, direct bonding for performing high temperature treatment, insulating resin bonding, metal bonding, bonding by glass frit, or the like.
  • the space S1C is formed between the support layer 2C and the device layer 3C, and as long as it corresponds to at least the mounting region 31C and the drive region 32C, FIG. 35, FIG. 36, FIG. As shown at 38, various aspects can be employed. In any configuration, it is possible to suitably realize a configuration for surely mounting the movable mirror 5C on the device layer 3C.
  • a space S1C is configured by the region in the opening 21C of the support layer 2C.
  • the region in the opening 21C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C out of the mounting region 31C and the drive region 32C.
  • a gap for separating the portion from the support layer 2C is formed.
  • a part of each locking portion 55C of the movable mirror 5C is located in a region within the opening 21C of the support layer 2C.
  • a space S1C is configured by the region in the recess 23C of the support layer 2C.
  • the region in the recess 23C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C out of the mounting region 31C and the drive region 32C.
  • a gap for separating the portion from the support layer 2C is formed.
  • a part of each locking portion 55C of the movable mirror 5C is located in a region in the concave portion 23C of the support layer 2C.
  • a recess (first recess) 38C that opens to the support layer 2C side is formed in the device layer 3C, and the region in the recess 38C of the device layer 3C and the support layer 2C A space S1C is formed by the region in the opening 21C.
  • the region in the recess 38C of the device layer 3C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction.
  • a region in the recess 38C of the device layer 3C forms a gap for separating a portion to be separated from the support layer 2C from the support layer 2C in the mounting region 31C and the drive region 32C.
  • a part of each locking portion 55C of the movable mirror 5C is located in a region in the opening 21C of the support layer 2C via a region in the recess 38C of the device layer 3C.
  • the recess 38C is formed in the device layer 3C, and the space is defined by the region in the recess 38C of the device layer 3C and the region in the recess (second recess) 23C of the support layer 2C.
  • S1C is configured.
  • the region in the recess 38C of the device layer 3C and the region in the recess 23C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction.
  • a region in the recess 38C of the device layer 3C forms a gap for separating a portion to be separated from the support layer 2C from the support layer 2C in the mounting region 31C and the drive region 32C.
  • a part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C of the support layer 2C via a region in the recess 38C of the device layer 3C.
  • a recess 38C is formed in the device layer 3C, and a space S1C is formed by a region in the recess 38C of the device layer 3C and a region in the opening 21C of the support layer 2C.
  • the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C.
  • a gap for separating the portion from the support layer 2C is formed.
  • the region in the opening 21C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. A part of each locking portion 55C of the movable mirror 5C is located in a region in the opening 21C of the support layer 2C via a region in the recess 38C of the device layer 3C.
  • the recess 38C is formed in the device layer 3C, and the space is defined by the region in the recess 38C of the device layer 3C and the region in the recess (second recess) 23C of the support layer 2C.
  • S1C is configured.
  • the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed.
  • the region in the recess 23C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction.
  • a part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C of the support layer 2C via a region in the recess 38C of the device layer 3C.
  • the concave portion 38C is formed in the device layer 3C, and the space S1C is configured by the region in the concave portion 38C of the device layer 3C.
  • the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C.
  • a gap for separating the portion from the support layer 2C is formed.
  • a part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 38C of the device layer 3C.
  • the movable mirror 5C has been described with respect to the case where the entire mirror surface 51aC protrudes from the main surface BsC or the surface of the base BC opposite to the main surface BsC.
  • the mode of the movable mirror 5C is not limited to this case.
  • a part of the mirror surface 51aC of the movable mirror 5C may be disposed inside the base BC. This example will be described below.
  • the movable mirror 5AC is movable in that it has a support portion 56AC instead of the support portion 56C as compared to the movable mirror 5C shown in FIG. This is different from the mirror 5C.
  • the support portion 56AC has an intermediate portion 59C disposed between the elastic portion 52C and the locking portion 55C.
  • the intermediate part 59C extends linearly in the ZC axis direction in parallel to each other so as to sandwich the mirror part 51C along the YC axis direction.
  • the connecting portion 57C is included in the central portion of the intermediate portion 59C.
  • the locking portion 55C is provided at the center of the intermediate portion 59C. Accordingly, the locking portion 55C is disposed so as to sandwich the mirror portion 51C along the YC axis direction.
  • the relationship between the shape of the locking portion 55C and the mounting region 31C is the same as that of the movable mirror 5C.
  • the support portion 56AC supports the movable mirror 5AC in a state where the entire movable mirror 5AC penetrates the mounting region 31C through the opening 31bC.
  • the mirror surface 51aC intersects the mounting area 31C.
  • the movable mirror 5AC is locked to the device layer 3C at the locking portion 55C and supported by the mounting region 31C. Therefore, compared with the case where the movable mirror 5C is supported by the support portion 56C (leg portion 54C) extending relatively long on one side of the center line CLC, the deviation between the support point and the center of gravity is small, and stable mounting is achieved. It is feasible.
  • the support portion 56AC supports the movable mirror 5AC so that the center line CLC of the mirror surface 51aC in the ZC axis direction coincides with the center in the thickness direction of the device layer 3C. For this reason, the support point and the center of gravity substantially coincide with each other in the ZC axis direction, and more stable mounting is realized.
  • a part (here, half or more) of the mirror surface 51aC is located closer to the support layer 2C than the main surface BsC.
  • the opening 31bC is extended and opened so as to reach the end of the mounting region 31C on the side facing the mirror surface 51aC. Therefore, even in this case, by controlling the optical path of the measurement light L0C toward the mirror surface 51aC, the measurement light L0C can be prevented from interfering with the mounting region 31C, and the entire mirror surface 51aC can be used effectively. .
  • the support portion 56AC has a contact portion 58C extending along the direction away from the mirror portion 51C (YC axis direction) from the tip of the portion including the inclined surface 55aC in the locking portion 55C.
  • the contact portion 58C has an L shape in which the front end portion 58aC is bent toward the base side. Then, the contact portion 58C comes into contact with and adheres to the main surface BsC (mounting region 31C) at the distal end portion 58aC.
  • the support portion 56AC includes the contact portion 58C that contacts the mounting region 31C in a state where the locking portion 55C is inserted into the opening 31bC.
  • the movable mirror 5AC also has the mounting region 31C due to the reaction force of the elastic force applied to the locking portion 55C from the inner surface of the opening 31bC in a state where the mirror surface 51aC intersects the main surface BsC, similarly to the movable mirror 5C. And is bonded to the mounting region 31C at the contact portion 58C.
  • the fixed mirror 6C is mounted on the device layer 3C.
  • the fixed mirror 6C may be mounted on the support layer 2C or the intermediate layer 4C.
  • the beam splitter 7C is mounted on the support layer 2C.
  • the beam splitter 7C may be mounted on the device layer 3C or the intermediate layer 4C. That is, the fixed mirror 6C and the beam splitter 7C may be mounted on any one of the support layer 2C, the device layer 3C, and the intermediate layer 4C.
  • the beam splitter 7C is not limited to a cube type beam splitter, and may be a plate type beam splitter.
  • the optical module 1C may include a light emitting element that generates measurement light to be incident on the light incident portion 8C in addition to the light incident portion 8C.
  • the optical module 1C may include a light emitting element that generates measurement light incident on the interference optical system 10C, instead of the light incident portion 8C.
  • the optical module 1C may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9C in addition to the light emitting unit 9C.
  • the optical module 1C may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10C instead of the light emitting unit 9C.
  • first through electrode electrically connected to each actuator region 33C and the second through electrode electrically connected to each of the both end portions 34aC of each elastic support region 34C are the support layer 2C and the intermediate layer 4C. (If the intermediate layer 4C does not exist, only the support layer 2C is provided), and a voltage may be applied between the first through electrode and the second through electrode.
  • the actuator that moves the mounting region 31C is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like.
  • the optical module 1C is not limited to the one constituting the FTIR, and may constitute another optical system.
  • the locking portion 55C is connected to the tip of the leg portion 54C opposite to the connecting portion 57C. Therefore, the tip of the leg portion 54C is not provided with a protruding portion and is not a contact portion.
  • the locking portion 55C includes the contact portion 58C. This will be described more specifically.
  • the locking portion 55C when the locking portion 55C is inserted into the opening 31bC, the locking portion 55C slides on the inclined surface SLC toward the reference surface SRC by the component in the XC axis direction of the reaction force from the inclined surface SLC. It abuts against the reference surface SRC while contacting the SLC. That is, the locking portion 55C includes a side surface that faces the inner surface (reference surface SRC) of the opening 31bC. The side surface is bonded to the reference surface SRC. This bonding can also be performed in the same manner as the bonding on the main surface BsC described above.
  • the contact portion 58C that contacts the mounting region 31C in a state where the locking portion 55C is inserted into the opening 31bC includes a side surface that faces the reference surface SRC of the opening 31bC in the locking portion 55C (side surface). Is).
  • the movable mirror 5C can be bonded in a state where the side surface of the locking portion 55C as the contact portion 58C is in contact with the inner surface of the opening 31bC.
  • the bonding area can be increased and the mounting strength can be reliably improved.
  • the locking portion 55C is connected to the tip of the leg portion 54C.
  • the support portion 56C includes a protruding portion that protrudes toward the base BC while branching from the connecting portion between the leg portion 54C and the locking portion 55C to the locking portion 55C.
  • the protruding portions protrude in opposite directions (outside) between the pair of support portions 56C.
  • the contact portion 58C is the protruding portion. That is, here, the contact portion 58C extends from the connection portion between the leg portion 54C and the locking portion 55C so that the angle with respect to the main surface BsC decreases.
  • the front end 58aC of the contact portion 58C is substantially parallel to the main surface BsC (for example, elastically deformed so as to be substantially parallel) in the state where the locking portion 55C is inserted into the opening 31bC.
  • the region 31C) is contacted and adhered.
  • the movable mirror 5C has a pair of connecting portions 53C.
  • the pair of connecting portions 53C are arranged at positions different from the pair of connecting portions 57C.
  • the pair of connecting portions 53C are distributed and arranged on both sides of the center line CLC.
  • the pair of connecting portions 53C are disposed at positions symmetrical with respect to the center line CLC. Therefore, here, the entire elastic portion 52C and the movable mirror 5C are configured symmetrically with respect to a straight line connecting the pair of connecting portions 53C.
  • the movable mirror 5C has three connecting portions 53C.
  • the three connecting portions 53C are arranged at positions different from the pair of connecting portions 57C.
  • one connection part 53C and two connection parts 53C of the three connection parts 53C are distributed and arranged on both sides of the center line CLC.
  • the movable mirror 5C has four connecting portions 53C.
  • the four connecting portions 53C are arranged at positions different from the pair of connecting portions 57C.
  • the four connecting portions 53C are distributed and arranged on both sides of the center line CLC.
  • the movable mirror 5C can have a plurality of elastic portions 52C.
  • the movable mirror 5C has a pair of elastic portions 52C.
  • the pair of elastic portions 52C are each formed in an annular plate shape and are arranged concentrically with each other.
  • one elastic part 52C is provided so as to surround the mirror part 51C
  • another elastic part 52C is provided so as to surround the one elastic part 52C and the mirror part 51C.
  • Each of the elastic portions 52C forms an annular region CAC.
  • the elastic portion 52C is not limited to an annular plate shape, and may be an elliptical ring plate shape as shown in FIG. That is, the elastic portion 52C may be elliptical when viewed from the direction intersecting the mirror surface 51aC (XC axis direction).
  • the pair of connecting portions 53C is disposed at a position corresponding to the major axis of the ellipse of the elastic portion 52C.
  • the pair of connecting portions 57C is disposed at a position corresponding to the short axis of the ellipse of the elastic portion 52C.
  • the movable mirror 5C includes a pair of rectangular plate-like elastic portions 52C and a pair of plate-like connection portions 52sC that connect the elastic portions 52C to each other.
  • the elastic portions 52C are arranged on both sides of the mirror portion 51C so as to sandwich the mirror portion 51C in the YC axis direction.
  • the elastic portion 52C extends along the ZC axis direction substantially parallel to the support portion 56C.
  • the connection parts 52sC are provided at both ends of the elastic part 52C in the longitudinal direction, and connect the elastic parts 52C.
  • a rectangular annular region CAC is formed by the elastic portion 52C and the connecting portion 52sC.
  • a single connecting portion 53C connects the elastic portion 52C and the mirror portion 51C to each other via the connecting portion 52sC.
  • the movable mirror 5C has a pair of elastic portions 52C.
  • the elastic portions 52C are arranged on both sides of the mirror portion 51C so as to sandwich the mirror portion 51C in the ZC axis direction.
  • Each of the elastic portions 52C is formed in a corrugated plate shape. That is, when viewed from the XC axis direction, the elastic portion 52C has a wave shape (in this case, a rectangular wave shape).
  • Each of the elastic parts 52C is connected to the support part 56C at both ends thereof. Thereby, here, a substantially rectangular annular region CAC is formed by the elastic portion 52C and the support portion 56C.
  • the connecting portion 53C connects the support portion 56C and the mirror portion 51C to each other.
  • the mirror part 51C may be connected to the support part 56C.
  • the movable mirror 5C has a pair of elastic portions 52C.
  • the elastic portions 52C are arranged on both sides of the mirror portion 51C so as to sandwich the mirror portion 51C in the ZC axis direction.
  • Each of the elastic portions 52C is formed in a V-shaped plate shape. That is, the elastic part 52C is V-shaped when viewed from the XC axis direction.
  • Each of the elastic parts 52C is connected to the support part 56C at both ends thereof. Thereby, here, a substantially rectangular annular region CAC is formed by the elastic portion 52C and the support portion 56C.
  • the connecting portion 53C connects the support portion 56C and the mirror portion 51C to each other.
  • the elastic portion 52C includes a pair of semicircular portions disposed in opposite directions as viewed from the XC axis direction, and a pair of linear portions connecting the semicircular portions. And may be formed in an annular shape.
  • the elastic portion 52C includes a pair of semicircular portions arranged in the same direction as seen from the XC axis direction and a pair of linear portions connecting the semicircular portions. And may be formed in an annular shape.
  • the elastic portion 52C may be formed in a shape in which a part of the ring is notched as seen from the XC axis direction.
  • the elastic portion 52C has a shape in which a pair of cutout portions 52cC are provided on both sides of the center line CLC with respect to the ring. That is, here, the elastic portion 52C is composed of a pair of arcuate portions 52dC that are separated from each other in the cutout portion 52cC.
  • the connecting portion 53C connects the elastic portion 52C and the mirror portion 51C to each other at each end of the arc-shaped portion 52dC.
  • one circular region CAC is formed by one arcuate portion 52dC, a pair of connecting portions 53C connected to the one arcuate portion 52dC, and the mirror portion 51C.
  • the elastic portion 52C is configured as a single arc-shaped portion 52dC by a single notch portion 52cC.
  • the connecting portion 53C connects the elastic portion 52C and the mirror portion 51C to each other at the end of the elastic portion 52C.
  • the annular region CAC is formed by the elastic portion 52C, the pair of connecting portions 53C, and the mirror portion 51C.
  • the connecting portion 53C connects the support portion 56C and the mirror portion 51C via the notch portion 52cC. That is, the mirror part 51C may be directly connected to the support part 56C.
  • the shape of the opening 31bC when viewed from the ZC axis direction may be a triangle.
  • the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a reference surface SRC.
  • the one ends SLaC of the inclined surfaces SLC are connected to each other.
  • the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by inscribed the locking portion 55C at the corner defined by the inclined surface SLC and the reference surface SRC.
  • the shape of the opening 31bC when viewed from the ZC axis direction is a hexagon.
  • the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a pair of inclined surfaces SKC inclined to the opposite side of the inclined surface SLC.
  • the pair of inclined surfaces SKC are inclined so that the distance from one end SkaC to the other end SKbC increases.
  • the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other to form one corner.
  • the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
  • one locking portion 55C contacts the inner surface of the opening 31bC at two points.
  • the inclined surface SLC may be a curved surface.
  • the pair of inclined surfaces SLC are inclined and curved so that the distance increases from one end SLaC to the other end SLbC.
  • the inclined surface SLC is curved such that the inclination of the tangent to the inclined surface SLC with respect to the XC axis gradually increases from one end SLaC to the other end SLbC.
  • the inclined surface SLC is curved so as to be convex toward the inside of the opening 31bC. Even in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by inscribed in the corners defined by the inclined surface SLC and the reference surface SRC. is there.
  • both the inclined surface SLC and the inclined surface SKC are curved surfaces that are convex toward the inside of the opening 31bC.
  • the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other via a connection surface extending along the XC axis direction.
  • the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
  • the opening 31bC is divided into two portions 31pC as viewed from the ZC axis direction.
  • Each of the two portions 31pC has an inclined surface SLC and a reference surface SRC. That is, here, the reference plane SRC is also divided into two parts.
  • the reference surface SRC as a whole is connected to the other end SLbC of the inclined surface SLC of the one portion 31pC and the other end SLbC of the inclined surface SLC of the other portion 31pC. It extends along.
  • one locking portion 55C is inserted into one portion 31pC of the opening 31bC.
  • the engaging portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, so that the movable mirror 5C can be positioned in both the XC axis direction and the YC axis direction.
  • the opening 31bC is divided into two portions 31pC as viewed from the ZC axis direction.
  • Each of the two portions 31pC has an inclined surface SLC and an inclined surface SKC.
  • the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
  • the shape of the opening 31bC when viewed from the ZC axis direction is a rhombus.
  • the inner surface of the opening 31bC may be constituted by the inclined surface SLC and the inclined surface SKC. That is, here, in addition to the inclined surface SLC and the inclined surface SKC being connected to each other, the one ends SLaC of the inclined surfaces SLC are connected to each other, and the one ends SkaC of the inclined surfaces SKC are connected to each other.
  • the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
  • the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other via a connecting surface extending along the XC axis direction.
  • the one ends SLaC of the inclined surfaces SLC are connected to each other, and the one ends SkaC of the inclined surfaces SKC are connected to each other.
  • the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
  • the side surface of the locking portion 55C contacts the inner surface of the opening 31bC, such as the contact between the side surface of the locking portion 55C and the reference surface SRC of the opening 31bC, the side surface of the locking portion 55C. Can be used for bonding as the contact portion 58C.
  • the elastic part 52C is elastically deformed so as to compress it along the direction in which the support part 56C opposes, thereby reducing the interval between the support parts 56C, and then the locking part 55C into the opening 31bC.
  • the case of inserting was illustrated.
  • the support portion 56C includes a leg portion 54C, a locking portion 55C, and a contact portion 58C, but the bending direction of the locking portion 55C is different from the example of FIG.
  • the locking portion 55C is bent so as to protrude toward the opposite side in the opposing direction between the pair of support portions 56C.
  • the locking portion 55C includes an inclined surface 55aC and an inclined surface 55bC as surfaces (inner surfaces) facing each other between the pair of support portions 56C.
  • the inclined surfaces 55aC are inclined so as to be separated from each other in a direction away from the connecting portion 57C (ZC axis negative direction). Further, the inclined surfaces 55bC are inclined so as to approach each other in the negative direction of the ZC axis.
  • the absolute value of the tilt angle with respect to each ZC axis is the same as in the above example.
  • a handle portion 56hC is provided for each of the support portions 56C.
  • the handle portion 56hC is disposed so as to sandwich the mirror portion 51C and the elastic portion 52C in the YC axis direction.
  • the handle portion 56hC and the connecting portion 57C are arranged in a line on the center line CLC.
  • the handle portion 56hC is U-shaped, and a hole 56sC is formed between the handle portion 56C and the support portion 56C. Therefore, for example, by inserting an arm into the hole 56sC, a force can be applied to the handle portion 56hC so as to increase the interval between the support portions 56C.
  • the handle portion 56hC is formed in a straight line. Therefore, by picking the handle portion 56hC, it is possible to apply a force to the handle portion 56hC so as to increase the interval between the support portions 56C.
  • the elastic portion 52C is elastically deformed so as to be extended in the YC axis direction.
  • the opening 31bC can be deformed as shown in FIG.
  • the opening 31bC is divided into two triangular portions 31pC.
  • the movable mirror 5C shown in FIG. 53 when a part of the elastic deformation of the elastic portion 52C is released in a state where the locking portion 55C is inserted into the opening 31bC, the locking portions 55C are displaced so as to approach each other.
  • an inclined surface SLC is formed as a surface on the center side of the mounting region 31C in the YC axis direction.
  • the inclined surface SLC includes one end SLaC and the other end SLbC.
  • One end SLaC and the other end SLbC are both ends of the inclined surface SLC when viewed from the ZC axis direction.
  • the pair of inclined surfaces SLC are inclined (for example, with respect to the XC axis) such that the distance from one end SLaC to the other end SLbC decreases.
  • the reference surface SRC of each portion 31pC extends along a reference line BLC that connects the other end SLbC of one inclined surface SLC and the other end SLbC of the other inclined surface SLC, as viewed from the ZC axis direction. Yes.
  • the locking portions 55C slide on the inclined surface SLC toward the reference surface SRC by the XC-axis direction component of the reaction force from the inclined surface SLC.
  • the locking portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, and is positioned in both the XC axis direction and the YC axis direction (self-aligned by elastic force).
  • the opening 31bC is divided into two rhombus portions 31pC.
  • an inclined surface SLC and an inclined surface SKC are formed as a pair of surfaces on the center side of the mounting region 31C in the YC axis direction.
  • the inclined surface SLC and the inclined surface SKC are inclined to the opposite side.
  • the inclined surfaces SKC are inclined so that the mutual distance decreases from one end SkaC to the other end SKbC.
  • the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other to form one corner.
  • the engaging portion 55C is inscribed in the corner portion defined by the inclined surface SLC and the inclined surface SKC, so that it is positioned in both the XC axis direction and the YC axis direction (self-alignment is performed by elastic force). )
  • the contact portion 58C may include both a protruding portion branched from the locking portion 55C and a side surface facing the inner surface of the opening 31bC in the locking portion 55C.
  • the movable mirror 5C can be bonded to the mounting region 31C on both the protruding portion and the side surface of the locking portion 55C.
  • the movable mirrors 5C and 5AC and the opening 31bC may be another modified example configured by exchanging arbitrary portions of the above-described modified examples. The same applies to the fixed mirror 6C and the opening 37aC.
  • the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BC.
  • the optical surface is a mirror surface.
  • the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter.
  • the shapes of the mirror portions 51C and 61C and the mirror surfaces 51aC and 61aC are not limited to a circle, and may be a rectangle or other shapes. Further, the elastic portion 52C may not form the annular region CAC.
  • the above third embodiment will be additionally described below.
  • An optical module comprising an optical element and a base on which the optical element is mounted, The optical element has an optical part having an optical surface, an elastic part provided around the optical part, an elastic force is applied according to elastic deformation of the elastic part, and a mutual distance is variable.
  • the base has a main surface and a mounting region provided with an opening communicating with the main surface;
  • the support portion includes a locking portion that is inserted into the opening when the elastic force of the elastic portion is applied, and a contact portion that contacts the mounting region when the locking portion is inserted into the opening.
  • the optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the locking portion in a state where the optical surface intersects the main surface, and the contact portion In the mounting area, Optical module.
  • the support portion includes a protruding portion that protrudes toward the base side while branching from the locking portion, The contact portion includes a tip portion of the protruding portion, The optical module according to appendix 14.
  • the contact portion includes a side surface facing the inner surface of the opening in the locking portion.
  • the base includes a support layer, and a device layer provided on the support layer and including the main surface and the mounting region, The opening passes through the device layer in a direction intersecting the main surface, The locking portion is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
  • the optical module according to any one of appendices 14 to 16.
  • the inner surface of the opening has a pair of inclined surfaces inclined so that the distance from one end to the other end increases as viewed from the direction intersecting the main surface, and the other end and the other of the one inclined surface A reference surface extending along a reference line connecting the other end of the inclined surface, and The contact portion includes a side surface facing the reference surface in the locking portion, 18.
  • the optical module according to any one of appendices 14 to 17.
  • a fixed mirror mounted on at least one of the support layer, the device layer, and an intermediate layer provided between the support layer and the device layer;
  • a beam splitter mounted on at least one of the support layer, the device layer, and the intermediate layer, and
  • the optical element is a movable mirror including the optical surface which is a mirror surface;
  • the device layer has a drive region connected to the mounting region,
  • the movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system,
  • the optical module according to appendix 17.
  • the base has the intermediate layer provided between the support layer and the device layer,
  • the support layer is a first silicon layer of an SOI substrate;
  • the device layer is a second silicon layer of the SOI substrate;
  • the intermediate layer is an insulating layer of the SOI substrate.
  • a light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
  • a light emitting portion arranged to emit the measurement light to the outside from the interference optical system; Comprising The optical module according to appendix 19 or 20.
  • optical module according to the first embodiment, the optical module according to the second embodiment, and the optical module according to the third embodiment described above are configured to add and / or replace each arbitrary element. Can be changed.
  • An optical module in which a movable mirror is reliably mounted on the device layer can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

This optical module is provided with a support layer (2A), a device layer (3A) provided on the support layer (2A), and a movable mirror (5A) mounted in the device layer (3A). The device layer (3A) has a mounting region (31A) through which the movable mirror (5A) passes, and a drive region (32A) which is connected to the mounting region (31A). Between the support layer (2A) and the device layer (3A), a space (S1A) is formed that corresponds to at least the mounting region (31A) and the device region (32A), and part of the movable mirror (5A) is positioned in the space (S1A).

Description

光モジュールOptical module
 本開示の一側面は、光モジュールに関する。 One aspect of the present disclosure relates to an optical module.
 MEMS(Micro Electro Mechanical Systems)技術によってSOI(Silicon On Insulator)基板に干渉光学系が形成された光モジュールが知られている(例えば、特許文献1参照)。このような光モジュールは、高精度な光学配置が実現されたFTIR(フーリエ変換型赤外分光分析器)を提供し得るため、注目されている。 An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, Patent Document 1). Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
特表2012-524295号公報Special table 2012-524295 gazette
 しかし、上述したような光モジュールには、例えば可動ミラーのサイズがSOI基板に対する深堀加工の達成度に依存する点で、次のような課題がある。すなわち、SOI基板に対する深堀加工の達成度は最大でも500μm程度であるため、可動ミラーのサイズを大きくしてFTIRにおける感度を向上させるのには限界がある。そこで、別体で形成された可動ミラーをデバイス層(例えばSOI基板において駆動領域が形成される層)に実装する技術が考えられる。 However, the optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 μm at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
 本開示の一側面は、デバイス層に対する可動ミラーの確実な実装が実現された光モジュールを提供することを目的とする。 An object of one aspect of the present disclosure is to provide an optical module in which a movable mirror is reliably mounted on a device layer.
 本開示の一側面の光モジュールは、支持層と、支持層上に設けられたデバイス層と、デバイス層に実装された可動ミラーと、を備え、デバイス層は、可動ミラーが貫通する実装領域と、実装領域に接続された駆動領域と、を有し、支持層とデバイス層との間には、少なくとも実装領域及び駆動領域に対応する空間が形成されており、可動ミラーの一部は、空間に位置している。 An optical module according to one aspect of the present disclosure includes a support layer, a device layer provided on the support layer, and a movable mirror mounted on the device layer, and the device layer includes a mounting region through which the movable mirror passes. A drive region connected to the mounting region, and a space corresponding to at least the mounting region and the drive region is formed between the support layer and the device layer, and a part of the movable mirror is a space Is located.
 この光モジュールでは、可動ミラーがデバイス層の実装領域を貫通しており、可動ミラーの一部が支持層とデバイス層との間に形成された空間に位置している。これにより、デバイス層の実装領域に可動ミラーを安定的に且つ強固に固定することができる。よって、この光モジュールによれば、デバイス層に対する可動ミラーの確実な実装が実現される。 In this optical module, the movable mirror passes through the mounting area of the device layer, and a part of the movable mirror is located in a space formed between the support layer and the device layer. Thereby, the movable mirror can be stably and firmly fixed to the mounting region of the device layer. Therefore, according to this optical module, reliable mounting of the movable mirror to the device layer is realized.
 本開示の一側面の光モジュールは、支持層とデバイス層との間に設けられた中間層を更に備え、中間層には、第1開口が形成されており、支持層には、凹部又は第2開口が形成されており、空間は、第1開口内の領域及び凹部内の領域、又は、第1開口内の領域及び第2開口内の領域を含み、可動ミラーの一部は、凹部内の領域又は第2開口内の領域に位置していてもよい。これによれば、デバイス層に対する可動ミラーの確実な実装のための構成を好適に実現することができる。 The optical module according to one aspect of the present disclosure further includes an intermediate layer provided between the support layer and the device layer. The intermediate layer includes a first opening, and the support layer includes a recess or a second layer. Two openings are formed, and the space includes a region in the first opening and a region in the recess, or a region in the first opening and a region in the second opening, and a part of the movable mirror is in the recess. Or a region within the second opening. According to this, the structure for reliable mounting of the movable mirror with respect to a device layer is suitably realizable.
 本開示の一側面の光モジュールでは、支持層は、SOI基板の第1シリコン層であり、デバイス層は、SOI基板の第2シリコン層であり、中間層は、SOI基板の絶縁層であってもよい。これによれば、デバイス層に対する可動ミラーの確実な実装のための構成をSOI基板によって好適に実現することができる。 In the optical module according to one aspect of the present disclosure, the support layer is a first silicon layer of an SOI substrate, the device layer is a second silicon layer of the SOI substrate, and the intermediate layer is an insulating layer of the SOI substrate. Also good. According to this, the configuration for surely mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
 本開示の一側面の光モジュールでは、支持層には、凹部又は開口が形成されており、空間は、凹部内の領域又は開口内の領域を含み、可動ミラーの一部は、凹部内の領域又は開口内の領域に位置していてもよい。これによれば、デバイス層に対する可動ミラーの確実な実装のための構成を好適に実現することができる。 In the optical module according to one aspect of the present disclosure, the support layer includes a recess or an opening, the space includes a region in the recess or a region in the opening, and a part of the movable mirror is a region in the recess. Or you may be located in the area | region in opening. According to this, the structure for reliable mounting of the movable mirror with respect to a device layer is suitably realizable.
 本開示の一側面の光モジュールでは、デバイス層には、凹部が形成されており、空間は、凹部内の領域を含み、可動ミラーの一部は、凹部内の領域に位置していてもよい。これによれば、デバイス層に対する可動ミラーの確実な実装のための構成を好適に実現することができる。 In the optical module according to one aspect of the present disclosure, the device layer may include a recess, the space may include a region in the recess, and a part of the movable mirror may be located in the region in the recess. . According to this, the structure for reliable mounting of the movable mirror with respect to a device layer is suitably realizable.
 本開示の一側面の光モジュールでは、デバイス層には、第1凹部が形成されており、支持層には、第2凹部又は開口が形成されており、空間は、第1凹部内の領域及び第2凹部内の領域、又は、第1凹部内の領域及び開口内の領域を含み、可動ミラーの一部は、第2凹部内の領域又は開口内の領域に位置していてもよい。これによれば、デバイス層に対する可動ミラーの確実な実装のための構成を好適に実現することができる。 In the optical module according to one aspect of the present disclosure, the device layer includes a first recess, the support layer includes a second recess or an opening, and the space includes a region in the first recess and The region in the second recess, or the region in the first recess and the region in the opening may be included, and a part of the movable mirror may be located in the region in the second recess or the region in the opening. According to this, the structure for reliable mounting of the movable mirror with respect to a device layer is suitably realizable.
 本開示の一側面の光モジュールでは、可動ミラーのミラー面は、デバイス層に対して支持層とは反対側に位置していてもよい。これによれば、光モジュールの構成を簡易化することができる。 In the optical module according to one aspect of the present disclosure, the mirror surface of the movable mirror may be located on the side opposite to the support layer with respect to the device layer. According to this, the configuration of the optical module can be simplified.
 本開示の一側面の光モジュールは、支持層、デバイス層、及び支持層とデバイス層との間に設けられた中間層の少なくとも1つに実装された固定ミラーと、支持層、デバイス層、及び中間層の少なくとも1つに実装されたビームスプリッタと、を更に備え、可動ミラー、固定ミラー及びビームスプリッタは、干渉光学系を構成するように配置されていてもよい。これによれば、感度が向上されたFTIRを得ることができる。 An optical module according to one aspect of the present disclosure includes a fixed mirror mounted on at least one of a support layer, a device layer, and an intermediate layer provided between the support layer and the device layer, a support layer, a device layer, and A beam splitter mounted on at least one of the intermediate layers, and the movable mirror, the fixed mirror, and the beam splitter may be arranged to constitute an interference optical system. According to this, FTIR with improved sensitivity can be obtained.
 本開示の一側面の光モジュールは、外部から干渉光学系に測定光を入射させるように配置された光入射部と、干渉光学系から外部に測定光を出射させるように配置された光出射部と、を更に備えてもよい。これによれば、光入射部及び光出射部を備えるFTIRを得ることができる。 An optical module according to one aspect of the present disclosure includes a light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside, and a light emission portion arranged to emit the measurement light to the outside from the interference optical system And may be further provided. According to this, FTIR provided with a light incident part and a light emission part can be obtained.
 本開示の一側面によれば、デバイス層に対する可動ミラーの確実な実装が実現された光モジュールを提供することができる。 According to one aspect of the present disclosure, it is possible to provide an optical module in which the movable mirror is reliably mounted on the device layer.
一実施形態の光モジュールの平面図である。It is a top view of the optical module of one Embodiment. 図1に示されるIIA-IIA線に沿っての断面図である。FIG. 2 is a cross-sectional view taken along the line IIA-IIA shown in FIG. 図1に示されるIIIA-IIIA線に沿っての断面図である。FIG. 3 is a cross-sectional view taken along line IIIA-IIIA shown in FIG. 図1に示されるIVA-IVA線に沿っての断面図である。FIG. 4 is a cross-sectional view taken along the line IVA-IVA shown in FIG. 図1に示されるVA-VA線に沿っての断面図である。FIG. 2 is a cross-sectional view taken along the line VA-VA shown in FIG. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 一実施形態の光モジュールの平面図である。It is a top view of the optical module of one Embodiment. 図16に示されるIIB-IIB線に沿っての断面図である。FIG. 17 is a cross-sectional view taken along the line IIB-IIB shown in FIG. 図16に示されるIIIB-IIIB線に沿っての断面図である。FIG. 17 is a cross-sectional view taken along line IIIB-IIIB shown in FIG. (a)は図17の一部拡大図であり、(b)は図17に示されるIVbB-IVbB線に沿っての断面図である。(A) is a partially enlarged view of FIG. 17, and (b) is a cross-sectional view taken along line IVbB-IVbB shown in FIG. (a)は可動ミラーの実装過程を示す断面図であり、(b)は(a)に示されるVbB-VbB線に沿っての断面図である。(A) is sectional drawing which shows the mounting process of a movable mirror, (b) is sectional drawing along the VbB-VbB line | wire shown by (a). (a)は可動ミラーの実装過程を示す断面図であり、(b)は(a)に示されるVIbB-VIbB線に沿っての断面図である。(A) is sectional drawing which shows the mounting process of a movable mirror, (b) is sectional drawing along the VIbB-VIbB line | wire shown by (a). 図16に示されるVIIB-VIIB線に沿っての断面図である。FIG. 17 is a cross-sectional view taken along the line VIIB-VIIB shown in FIG. 図16に示されるVIIIB-VIIIB線に沿っての断面図である。FIG. 18 is a cross-sectional view taken along line VIIIB-VIIIB shown in FIG. 第1開口の変形例を示す断面図である。It is sectional drawing which shows the modification of 1st opening. 可動ミラーの変形例を示す断面図である。It is sectional drawing which shows the modification of a movable mirror. 図25に示されるXIB-XIB線に沿っての断面図である。FIG. 26 is a cross-sectional view taken along line XIB-XIB shown in FIG. 25. 一実施形態の光モジュールの平面図である。It is a top view of the optical module of one Embodiment. 図27に示されるIIC-IIC線に沿っての断面図である。FIG. 28 is a cross-sectional view taken along the line IIC-IIC shown in FIG. 27. 図27に示されるIIIC-IIIC線に沿っての断面図である。FIG. 28 is a sectional view taken along line IIIC-IIIC shown in FIG. 27. (a)は図27に示される可動ミラーの周辺構造の斜視図であり、(b)は図30の(a)に示されるIVbC-IVbC線に沿っての断面図である。(A) is a perspective view of the peripheral structure of the movable mirror shown in FIG. 27, and (b) is a cross-sectional view taken along the line IVbC-IVbC shown in (a) of FIG. 図27に示されるVC-VC線に沿っての断面図である。FIG. 28 is a cross-sectional view taken along the line VC-VC shown in FIG. 27. 図27に示されるVIC-VIC線に沿っての断面図である。FIG. 28 is a cross-sectional view taken along the line VIC-VIC shown in FIG. 27. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 可動ミラーの周辺構造の変形例の断面図である。It is sectional drawing of the modification of the surrounding structure of a movable mirror. 変形例に係る光モジュールの部分的な概略平面図である。It is a partial schematic plan view of the optical module which concerns on a modification. 図39に示されるIXVC-IXVC線に沿っての断面図である。FIG. 40 is a cross-sectional view taken along line IXVC-IXVC shown in FIG. 39. 図39に示されるXVC-XVC線に沿っての断面図である。FIG. 40 is a cross-sectional view taken along line XVC-XVC shown in FIG. 39. 可動ミラーの変形例を示す正面図である。It is a front view which shows the modification of a movable mirror. 図42に示される変形例の断面図である。It is sectional drawing of the modification shown by FIG. 可動ミラーの変形例を示す正面図である。It is a front view which shows the modification of a movable mirror. 可動ミラーの変形例を示す正面図である。It is a front view which shows the modification of a movable mirror. 可動ミラーの変形例を示す正面図である。It is a front view which shows the modification of a movable mirror. 可動ミラーの変形例を示す正面図である。It is a front view which shows the modification of a movable mirror. 可動ミラーの変形例を示す正面図である。It is a front view which shows the modification of a movable mirror. 可動ミラーの変形例を示す正面図である。It is a front view which shows the modification of a movable mirror. 開口の変形例を示す平面図である。It is a top view which shows the modification of opening. 開口の変形例を示す平面図である。It is a top view which shows the modification of opening. 開口の変形例を示す平面図である。It is a top view which shows the modification of opening. 可動ミラー変形例を示す断面図である。It is sectional drawing which shows a movable mirror modification. 開口の変形例を示す平面図である。It is a top view which shows the modification of opening.
[第1実施形態]
 以下、本開示の一側面の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光モジュールの構成]
[First Embodiment]
Hereinafter, an embodiment of one aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
 図1に示されるように、光モジュール1Aは、支持層2Aと、支持層2A上に設けられたデバイス層3Aと、支持層2Aとデバイス層3Aとの間に設けられた中間層4Aと、備えている。支持層2A、デバイス層3A及び中間層4Aは、SOI基板によって構成されている。具体的には、支持層2Aは、SOI基板の第1シリコン層である。デバイス層3Aは、SOI基板の第2シリコン層である。中間層4Aは、SOI基板の絶縁層である。支持層2A、デバイス層3A及び中間層4Aは、それらの積層方向であるZA軸方向(ZA軸に平行な方向)から見た場合に、例えば、一辺が10mm程度の矩形状を呈している。支持層2A及びデバイス層3Aのそれぞれの厚さは、例えば数百μm程度である。中間層4Aの厚さは、例えば数μm程度である。なお、図1では、デバイス層3Aの1つの角部及び中間層4Aの1つの角部が切り欠かれた状態で、デバイス層3A及び中間層4Aが示されている。 As shown in FIG. 1, an optical module 1A includes a support layer 2A, a device layer 3A provided on the support layer 2A, an intermediate layer 4A provided between the support layer 2A and the device layer 3A, I have. The support layer 2A, the device layer 3A, and the intermediate layer 4A are configured by an SOI substrate. Specifically, the support layer 2A is the first silicon layer of the SOI substrate. The device layer 3A is a second silicon layer of the SOI substrate. The intermediate layer 4A is an insulating layer of the SOI substrate. The support layer 2A, the device layer 3A, and the intermediate layer 4A have, for example, a rectangular shape with a side of about 10 mm when viewed from the ZA axis direction (a direction parallel to the ZA axis) that is the stacking direction thereof. Each thickness of the support layer 2A and the device layer 3A is, for example, about several hundred μm. The thickness of the intermediate layer 4A is, for example, about several μm. In FIG. 1, the device layer 3A and the intermediate layer 4A are shown with one corner of the device layer 3A and one corner of the intermediate layer 4A cut out.
 デバイス層3Aは、実装領域31Aと、実装領域31Aに接続された駆動領域32Aと、を有している。駆動領域32Aは、一対のアクチュエータ領域33Aと、一対の弾性支持領域34Aと、を含んでいる。実装領域31A及び駆動領域32A(すなわち、実装領域31A並びに一対のアクチュエータ領域33A及び一対の弾性支持領域34A)は、MEMS技術(パターニング及びエッチング)によってデバイス層3Aの一部に一体的に形成されている。 The device layer 3A has a mounting area 31A and a driving area 32A connected to the mounting area 31A. The drive region 32A includes a pair of actuator regions 33A and a pair of elastic support regions 34A. The mounting region 31A and the drive region 32A (that is, the mounting region 31A and the pair of actuator regions 33A and the pair of elastic support regions 34A) are integrally formed on a part of the device layer 3A by MEMS technology (patterning and etching). Yes.
 一対のアクチュエータ領域33Aは、XA軸方向(ZA軸に直交するXA軸に平行な方向)において実装領域31Aの両側に配置されている。つまり、実装領域31Aは、XA軸方向において一対のアクチュエータ領域33Aに挟まれている。各アクチュエータ領域33Aは、中間層4Aを介して支持層2Aに固定されている。各アクチュエータ領域33Aにおける実装領域31A側の側面には、第1櫛歯部33aAが設けられている。各第1櫛歯部33aAは、その直下の中間層4Aが除去されることで、支持層2Aに対して浮いた状態となっている。各アクチュエータ領域33Aには、第1電極35Aが設けられている。 The pair of actuator regions 33A are arranged on both sides of the mounting region 31A in the XA axis direction (the direction parallel to the XA axis orthogonal to the ZA axis). That is, the mounting area 31A is sandwiched between the pair of actuator areas 33A in the XA axis direction. Each actuator region 33A is fixed to the support layer 2A via the intermediate layer 4A. A first comb tooth portion 33aA is provided on a side surface of each actuator region 33A on the mounting region 31A side. Each first comb tooth portion 33aA is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the first comb tooth portion 33aA. Each actuator region 33A is provided with a first electrode 35A.
 一対の弾性支持領域34Aは、YA軸方向(ZA軸及びXA軸に直交するYA軸に平行な方向)において実装領域31Aの両側に配置されている。つまり、実装領域31Aは、YA軸方向において一対の弾性支持領域34Aに挟まれている。各弾性支持領域34Aの両端部34aAは、中間層4Aを介して支持層2Aに固定されている。各弾性支持領域34Aの弾性変形部34bA(両端部34aAの間の部分)は、複数の板バネが連結された構造を有している。各弾性支持領域34Aの弾性変形部34bAは、その直下の中間層4Aが除去されることで、支持層2Aに対して浮いた状態となっている。各弾性支持領域34Aにおいて両端部34aAのそれぞれには、第2電極36Aが設けられている。 The pair of elastic support regions 34A are disposed on both sides of the mounting region 31A in the YA axis direction (a direction parallel to the YA axis orthogonal to the ZA axis and the XA axis). That is, the mounting region 31A is sandwiched between the pair of elastic support regions 34A in the YA axis direction. Both end portions 34aA of each elastic support region 34A are fixed to the support layer 2A via the intermediate layer 4A. Each elastic support region 34A has an elastic deformation portion 34bA (a portion between both end portions 34aA) having a structure in which a plurality of leaf springs are connected. The elastic deformation portion 34bA of each elastic support region 34A is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the elastic deformation portion 34bA. In each elastic support region 34A, a second electrode 36A is provided at each of both end portions 34aA.
 実装領域31Aには、各弾性支持領域34Aの弾性変形部34bAが接続されている。実装領域31Aは、その直下の中間層4Aが除去されることで、支持層2Aに対して浮いた状態となっている。つまり、実装領域31Aは、一対の弾性支持領域34Aによって支持されている。実装領域31Aにおける各アクチュエータ領域33A側の側面には、第2櫛歯部31aAが設けられている。各第2櫛歯部31aAは、その直下の中間層4Aが除去されることで、支持層2Aに対して浮いた状態となっている。互いに対向する第1櫛歯部33aA及び第2櫛歯部31aAにおいては、第1櫛歯部33aAの各櫛歯が第2櫛歯部31aAの各櫛歯間に位置している。 The elastic deformation part 34bA of each elastic support area 34A is connected to the mounting area 31A. The mounting region 31A is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below the mounting region 31A. That is, the mounting area 31A is supported by the pair of elastic support areas 34A. A second comb tooth portion 31aA is provided on a side surface of each mounting region 31A on the side of each actuator region 33A. Each second comb tooth portion 31aA is in a state of floating with respect to the support layer 2A by removing the intermediate layer 4A immediately below it. In the first comb tooth portion 33aA and the second comb tooth portion 31aA facing each other, the comb teeth of the first comb tooth portion 33aA are located between the comb teeth of the second comb tooth portion 31aA.
 一対の弾性支持領域34Aは、XA軸に平行な方向AAから見た場合に両側から実装領域31Aを挟んでおり、実装領域31Aが方向AAに沿って移動すると、実装領域31Aが初期位置に戻るように実装領域31Aに弾性力を作用させる。したがって、第1電極35Aと第2電極36Aとの間に電圧が印加されて、互いに対向する第1櫛歯部33aA及び第2櫛歯部31aA間に静電引力が作用すると、当該静電引力と一対の弾性支持領域34Aによる弾性力とがつり合う位置まで、方向AAに沿って実装領域31Aが移動させられる。このように、駆動領域32Aは、静電アクチュエータとして機能する。 The pair of elastic support regions 34A sandwich the mounting region 31A from both sides when viewed from the direction AA parallel to the XA axis. When the mounting region 31A moves along the direction AA, the mounting region 31A returns to the initial position. Thus, an elastic force is applied to the mounting region 31A. Accordingly, when a voltage is applied between the first electrode 35A and the second electrode 36A and an electrostatic attractive force acts between the first comb tooth portion 33aA and the second comb tooth portion 31aA facing each other, the electrostatic attractive force The mounting region 31A is moved along the direction AA to a position where the elastic force of the pair of elastic support regions 34A is balanced. Thus, the drive region 32A functions as an electrostatic actuator.
 光モジュール1Aは、可動ミラー5Aと、固定ミラー6Aと、ビームスプリッタ7Aと、光入射部8Aと、光出射部9Aと、を更に備えている。可動ミラー5A、固定ミラー6A及びビームスプリッタ7Aは、マイケルソン干渉光学系である干渉光学系10Aを構成するように、デバイス層3A上に配置されている。 The optical module 1A further includes a movable mirror 5A, a fixed mirror 6A, a beam splitter 7A, a light incident part 8A, and a light emitting part 9A. The movable mirror 5A, the fixed mirror 6A, and the beam splitter 7A are arranged on the device layer 3A so as to constitute an interference optical system 10A that is a Michelson interference optical system.
 可動ミラー5Aは、XA軸方向におけるビームスプリッタ7Aの一方の側において、デバイス層3Aの実装領域31Aに実装されている。可動ミラー5Aが有するミラー部51Aのミラー面51aAは、デバイス層3Aに対して支持層2Aとは反対側に位置している。ミラー面51aAは、例えばXA軸方向に垂直な面(すなわち、方向AAに垂直な面)であり、ビームスプリッタ7A側に向いている。 The movable mirror 5A is mounted on the mounting region 31A of the device layer 3A on one side of the beam splitter 7A in the XA axis direction. The mirror surface 51aA of the mirror portion 51A included in the movable mirror 5A is located on the opposite side of the support layer 2A with respect to the device layer 3A. The mirror surface 51aA is, for example, a surface perpendicular to the XA axis direction (that is, a surface perpendicular to the direction AA) and faces the beam splitter 7A side.
 固定ミラー6Aは、YA軸方向におけるビームスプリッタ7Aの一方の側において、デバイス層3Aの実装領域37Aに実装されている。固定ミラー6Aが有するミラー部61Aのミラー面61aAは、デバイス層3Aに対して支持層2Aとは反対側に位置している。ミラー面61aAは、例えばYA軸方向に垂直な面であり、ビームスプリッタ7A側に向いている。 The fixed mirror 6A is mounted on the mounting region 37A of the device layer 3A on one side of the beam splitter 7A in the YA axis direction. The mirror surface 61aA of the mirror portion 61A of the fixed mirror 6A is located on the opposite side of the support layer 2A with respect to the device layer 3A. The mirror surface 61aA is, for example, a surface perpendicular to the YA axis direction and faces the beam splitter 7A side.
 光入射部8Aは、YA軸方向におけるビームスプリッタ7Aの他方の側において、デバイス層3Aに実装されている。光入射部8Aは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光入射部8Aは、外部から干渉光学系10Aに測定光を入射させるように配置されている。 The light incident portion 8A is mounted on the device layer 3A on the other side of the beam splitter 7A in the YA axis direction. The light incident part 8A is configured by, for example, an optical fiber and a collimating lens. The light incident part 8A is arranged so that measurement light is incident on the interference optical system 10A from the outside.
 光出射部9Aは、XA軸方向におけるビームスプリッタ7Aの他方の側において、デバイス層3Aに実装されている。光出射部9Aは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光出射部9Aは、干渉光学系10Aから外部に測定光(干渉光)を出射させるように配置されている。 The light emitting portion 9A is mounted on the device layer 3A on the other side of the beam splitter 7A in the XA axis direction. The light emitting unit 9A is configured by, for example, an optical fiber and a collimating lens. The light emitting portion 9A is arranged to emit measurement light (interference light) from the interference optical system 10A to the outside.
 ビームスプリッタ7Aは、光学機能面7aAを有するキューブタイプのビームスプリッタである。光学機能面7aAは、デバイス層3Aに対して支持層2Aとは反対側に位置している。ビームスプリッタ7Aは、デバイス層3Aに形成された矩形状の開口3aAの1つの隅部にビームスプリッタ7Aの底面側の1つの角部が接触させられることで、位置決めされている。ビームスプリッタ7Aは、位置決めされた状態で接着等によって支持層2Aに固定されることで、支持層2Aに実装されている。 The beam splitter 7A is a cube type beam splitter having an optical functional surface 7aA. The optical functional surface 7aA is located on the side opposite to the support layer 2A with respect to the device layer 3A. The beam splitter 7A is positioned by bringing one corner on the bottom side of the beam splitter 7A into contact with one corner of the rectangular opening 3aA formed in the device layer 3A. The beam splitter 7A is mounted on the support layer 2A by being fixed to the support layer 2A by adhesion or the like in a positioned state.
 以上のように構成された光モジュール1Aでは、光入射部8Aを介して外部から干渉光学系10Aに測定光L0Aが入射すると、測定光L0Aの一部は、ビームスプリッタ7Aの光学機能面7aAで反射されて可動ミラー5Aに向かって進行し、測定光L0Aの残部は、ビームスプリッタ7Aの光学機能面7aAを透過して固定ミラー6Aに向かって進行する。測定光L0Aの一部は、可動ミラー5Aのミラー面51aAで反射されて、同一光路上をビームスプリッタ7Aに向かって進行し、ビームスプリッタ7Aの光学機能面7aAを透過する。測定光L0Aの残部は、固定ミラー6Aのミラー面61aAで反射されて、同一光路上をビームスプリッタ7Aに向かって進行し、ビームスプリッタ7Aの光学機能面7aAで反射される。ビームスプリッタ7Aの光学機能面7aAを透過した測定光L0Aの一部と、ビームスプリッタ7Aの光学機能面7aAで反射された測定光L0Aの残部とは、干渉光である測定光L1Aとなり、測定光L1Aは、光出射部9Aを介して干渉光学系10Aから外部に出射する。光モジュール1Aによれば、方向AAに沿って可動ミラー5Aを高速で往復動させることができるので、小型且つ高精度のFTIRを提供することができる。
[可動ミラー及びその周辺構造]
In the optical module 1A configured as described above, when the measurement light L0A is incident on the interference optical system 10A from the outside via the light incident portion 8A, a part of the measurement light L0A is transmitted to the optical functional surface 7aA of the beam splitter 7A. The reflected light travels toward the movable mirror 5A, and the remaining portion of the measurement light L0A passes through the optical function surface 7aA of the beam splitter 7A and travels toward the fixed mirror 6A. A part of the measurement light L0A is reflected by the mirror surface 51aA of the movable mirror 5A, travels on the same optical path toward the beam splitter 7A, and passes through the optical functional surface 7aA of the beam splitter 7A. The remaining part of the measurement light L0A is reflected by the mirror surface 61aA of the fixed mirror 6A, travels on the same optical path toward the beam splitter 7A, and is reflected by the optical function surface 7aA of the beam splitter 7A. A part of the measurement light L0A transmitted through the optical functional surface 7aA of the beam splitter 7A and the remaining part of the measurement light L0A reflected by the optical functional surface 7aA of the beam splitter 7A become the measurement light L1A that is interference light, and the measurement light L1A is emitted to the outside from the interference optical system 10A via the light emitting portion 9A. According to the optical module 1A, the movable mirror 5A can be reciprocated at high speed along the direction AA, so that a small and highly accurate FTIR can be provided.
[Movable mirror and surrounding structure]
 図2及び図3に示されるように、可動ミラー5Aは、ミラー部51Aと、弾性部52Aと、連結部53Aと、一対の脚部54Aと、一対の係止部55Aと、を有している。以下のように構成される可動ミラー5Aは、MEMS技術(パターニング及びエッチング)によって一体的に形成されている。 2 and 3, the movable mirror 5A includes a mirror part 51A, an elastic part 52A, a connecting part 53A, a pair of leg parts 54A, and a pair of locking parts 55A. Yes. The movable mirror 5A configured as follows is integrally formed by a MEMS technique (patterning and etching).
 ミラー部51Aは、ミラー面51aAを主面として有する板状(例えば、円板状)に形成されている。弾性部52Aは、XA軸方向(ミラー面51aAに垂直な方向)から見た場合にミラー部51Aから離間しつつミラー部51Aを囲む環状(例えば、円環状)に形成されている。連結部53Aは、XA軸方向から見た場合にミラー部51Aの中心に対してYA軸方向における一方の側において、ミラー部51Aと弾性部52Aとを互いに連結している。 The mirror part 51A is formed in a plate shape (for example, a disk shape) having the mirror surface 51aA as a main surface. The elastic part 52A is formed in an annular shape (for example, an annular shape) surrounding the mirror part 51A while being separated from the mirror part 51A when viewed from the XA axis direction (direction perpendicular to the mirror surface 51aA). The connection portion 53A connects the mirror portion 51A and the elastic portion 52A to each other on one side in the YA axis direction with respect to the center of the mirror portion 51A when viewed from the XA axis direction.
 一対の脚部54Aは、XA軸方向から見た場合にミラー部51Aの中心に対してYA軸方向における両側において、弾性部52Aにおける外側の表面に連結されている。つまり、ミラー部51A及び弾性部52Aは、YA軸方向において一対の脚部54Aに挟まれている。各脚部54Aは、ミラー部51A及び弾性部52Aよりも実装領域31A側に延在している。一対の係止部55Aは、各脚部54Aにおける実装領域31A側の端部にそれぞれ設けられている。各係止部55Aは、XA軸方向から見た場合に内側(互いに近づく側)に例えばV字状に屈曲するように形成されている。 The pair of leg portions 54A are connected to the outer surface of the elastic portion 52A on both sides in the YA axis direction with respect to the center of the mirror portion 51A when viewed from the XA axis direction. That is, the mirror part 51A and the elastic part 52A are sandwiched between the pair of leg parts 54A in the YA axis direction. Each leg 54A extends closer to the mounting region 31A than the mirror 51A and the elastic part 52A. The pair of locking portions 55A are provided at the end portions on the mounting region 31A side in the respective leg portions 54A. Each locking portion 55A is formed so as to be bent in, for example, a V shape on the inner side (side closer to each other) when viewed from the XA axis direction.
 以上のように構成された可動ミラー5Aは、実装領域31Aに形成された開口31bAに一対の係止部55Aが配置されることで、実装領域31Aに実装されている。開口31bAは、ZA軸方向において実装領域31Aの両側に開口している。各係止部55Aの一部は、実装領域31Aにおける中間層4A側の表面から突出している。つまり、可動ミラー5Aは、実装領域31Aを貫通している。 The movable mirror 5A configured as described above is mounted in the mounting region 31A by arranging a pair of locking portions 55A in the opening 31bA formed in the mounting region 31A. The openings 31bA are opened on both sides of the mounting region 31A in the ZA axis direction. A part of each locking portion 55A protrudes from the surface on the intermediate layer 4A side in the mounting region 31A. That is, the movable mirror 5A penetrates the mounting area 31A.
 実装領域31Aの開口31bAに配置された一対の係止部55Aには、外側(互いに遠ざかる側)に力が作用している。可動ミラー5Aは、当該力によって実装領域31Aに固定されている。当該力は、可動ミラー5Aが実装領域31Aに実装される際に圧縮された環状の弾性部52Aが初期状態に復元しようとして生じているものである。 A force acts on the outside (side away from each other) in the pair of locking portions 55A arranged in the opening 31bA of the mounting region 31A. The movable mirror 5A is fixed to the mounting region 31A by the force. The force is generated when the annular elastic portion 52A compressed when the movable mirror 5A is mounted on the mounting region 31A is restored to the initial state.
 なお、図1に示されるように、開口31bAは、ZA軸方向から見た場合にビームスプリッタ7Aとは反対側に末広がりの台形状に形成されている。このような形状を呈する開口31bAに、内側に屈曲する形状を呈する一対の係止部55Aが係合することで、可動ミラー5Aは、XA軸方向、YA軸方向及びZA軸方向のそれぞれにおいて自動的に位置決めされる(セルフアライメントされる)。 As shown in FIG. 1, the opening 31bA is formed in a trapezoidal shape spreading toward the opposite side to the beam splitter 7A when viewed from the ZA axis direction. The movable mirror 5A automatically moves in each of the XA axis direction, the YA axis direction, and the ZA axis direction by engaging the opening 31bA having such a shape with a pair of engaging portions 55A that are bent inward. Positioned (self-aligned).
 図2及び図3に示されるように、中間層4Aには、開口(第1開口)41Aが形成されている。開口41Aは、ZA軸方向において中間層4Aの両側に開口している。支持層2Aには、開口(第2開口)21Aが形成されている。開口21Aは、ZA軸方向において支持層2Aの両側に開口している。光モジュール1Aでは、中間層4Aの開口41A内の領域及び支持層2Aの開口21A内の領域によって、一続きの空間S1Aが構成されている。つまり、空間S1Aは、中間層4Aの開口41A内の領域及び支持層2Aの開口21A内の領域を含んでいる。 2 and 3, an opening (first opening) 41A is formed in the intermediate layer 4A. The openings 41A are opened on both sides of the intermediate layer 4A in the ZA axis direction. An opening (second opening) 21A is formed in the support layer 2A. The openings 21A are opened on both sides of the support layer 2A in the ZA axial direction. In the optical module 1A, a continuous space S1A is constituted by a region in the opening 41A of the intermediate layer 4A and a region in the opening 21A of the support layer 2A. That is, the space S1A includes a region in the opening 41A of the intermediate layer 4A and a region in the opening 21A of the support layer 2A.
 空間S1Aは、支持層2Aとデバイス層3Aとの間に形成されており、少なくとも実装領域31A及び駆動領域32Aに対応している。具体的には、中間層4Aの開口41A内の領域及び支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいる。中間層4Aの開口41A内の領域は、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分(すなわち、支持層2Aに対して浮いた状態とすべき部分であって、例えば、実装領域31Aの全体、各弾性支持領域34Aの弾性変形部34bA、第1櫛歯部33aA及び第2櫛歯部31aA)を支持層2Aから離間させるための隙間を形成している。つまり、少なくとも実装領域31A及び駆動領域32Aに対応する空間S1Aとは、実装領域31Aの全体と、駆動領域32Aの少なくとも一部と、が支持層2Aから離間するように、支持層2Aとデバイス層3Aとの間に形成された空間を意味する。 The space S1A is formed between the support layer 2A and the device layer 3A, and corresponds to at least the mounting region 31A and the drive region 32A. Specifically, the region in the opening 41A of the intermediate layer 4A and the region in the opening 21A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction. The region in the opening 41A of the intermediate layer 4A is a portion that should be separated from the support layer 2A in the mounting region 31A and the drive region 32A (that is, a portion that should be in a floating state with respect to the support layer 2A. A gap for separating the entire mounting region 31A, the elastic deformation portion 34bA, the first comb tooth portion 33aA, and the second comb tooth portion 31aA) of each elastic support region 34A from the support layer 2A is formed. That is, the space S1A corresponding to at least the mounting region 31A and the drive region 32A is the support layer 2A and the device layer so that the entire mounting region 31A and at least a part of the drive region 32A are separated from the support layer 2A. It means the space formed between 3A.
 空間S1Aには、可動ミラー5Aが有する各係止部55Aの一部が位置している。具体的には、各係止部55Aの一部は、中間層4Aの開口41A内の領域を介して、支持層2Aの開口21A内の領域に位置している。各係止部55Aの一部は、デバイス層3Aにおける中間層4A側の表面から空間S1A内に、例えば100μm程度突出している。上述したように、中間層4Aの開口41A内の領域及び支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいるため、実装領域31Aが方向AAに沿って往復動した際に、可動ミラー5Aの各係止部55Aうち空間S1Aに位置する一部が、中間層4A及び支持層2Aと接触することはない。
[固定ミラー及びその周辺構造]
A part of each locking portion 55A of the movable mirror 5A is located in the space S1A. Specifically, a part of each locking portion 55A is located in a region in the opening 21A of the support layer 2A via a region in the opening 41A of the intermediate layer 4A. A part of each locking portion 55A protrudes from the surface on the intermediate layer 4A side in the device layer 3A into the space S1A, for example, by about 100 μm. As described above, the region in the opening 41A of the intermediate layer 4A and the region in the opening 21A of the support layer 2A include the range in which the mounting region 31A moves when viewed from the ZA axis direction. Is reciprocated along the direction AA, a part of each locking portion 55A of the movable mirror 5A located in the space S1A does not come into contact with the intermediate layer 4A and the support layer 2A.
[Fixed mirror and its peripheral structure]
 図4及び図5に示されるように、固定ミラー6Aは、ミラー部61Aと、弾性部62Aと、連結部63Aと、一対の脚部64Aと、一対の係止部65Aと、を有している。以下のように構成される固定ミラー6Aは、MEMS技術(パターニング及びエッチング)によって一体的に形成されている。 As shown in FIGS. 4 and 5, the fixed mirror 6A includes a mirror part 61A, an elastic part 62A, a connecting part 63A, a pair of leg parts 64A, and a pair of locking parts 65A. Yes. The fixed mirror 6A configured as follows is integrally formed by a MEMS technique (patterning and etching).
 ミラー部61Aは、ミラー面61aAを主面として有する板状(例えば、円板状)に形成されている。弾性部62Aは、YA軸方向(ミラー面61aAに垂直な方向)から見た場合にミラー部61Aから離間しつつミラー部61Aを囲む環状(例えば、円環状)に形成されている。連結部63Aは、YA軸方向から見た場合にミラー部61Aの中心に対してXA軸方向における一方の側において、ミラー部61Aと弾性部62Aとを互いに連結している。 The mirror part 61A is formed in a plate shape (for example, a disk shape) having the mirror surface 61aA as a main surface. The elastic portion 62A is formed in an annular shape (for example, an annular shape) surrounding the mirror portion 61A while being separated from the mirror portion 61A when viewed from the YA axis direction (direction perpendicular to the mirror surface 61aA). The connecting part 63A connects the mirror part 61A and the elastic part 62A to each other on one side in the XA axis direction with respect to the center of the mirror part 61A when viewed from the YA axis direction.
 一対の脚部64Aは、YA軸方向から見た場合にミラー部61Aの中心に対してXA軸方向における両側において、弾性部62Aにおける外側の表面に連結されている。つまり、ミラー部61A及び弾性部62Aは、XA軸方向において一対の脚部64Aに挟まれている。各脚部64Aは、ミラー部61A及び弾性部62Aよりも実装領域37A側に延在している。一対の係止部65Aは、各脚部64Aにおける実装領域37A側の端部にそれぞれ設けられている。各係止部65Aは、YA軸方向から見た場合に内側(互いに近づく側)に例えばV字状に屈曲するように形成されている。 The pair of leg portions 64A are connected to the outer surface of the elastic portion 62A on both sides in the XA axis direction with respect to the center of the mirror portion 61A when viewed from the YA axis direction. That is, the mirror part 61A and the elastic part 62A are sandwiched between the pair of leg parts 64A in the XA axis direction. Each leg portion 64A extends to the mounting region 37A side with respect to the mirror portion 61A and the elastic portion 62A. The pair of locking portions 65A are provided at the end portions on the mounting region 37A side in the respective leg portions 64A. Each locking portion 65A is formed so as to be bent in, for example, a V shape on the inner side (side closer to each other) when viewed from the YA axis direction.
 以上のように構成された固定ミラー6Aは、実装領域37Aに形成された開口37aAに一対の係止部65Aが配置されることで、実装領域37Aに実装されている。開口37aAは、ZA軸方向において実装領域37Aの両側に開口している。各係止部65Aの一部は、実装領域37Aにおける中間層4A側の表面から突出している。つまり、固定ミラー6Aは、実装領域37Aを貫通している。 The fixed mirror 6A configured as described above is mounted in the mounting region 37A by arranging the pair of locking portions 65A in the opening 37aA formed in the mounting region 37A. The openings 37aA are opened on both sides of the mounting area 37A in the ZA axis direction. A part of each locking portion 65A protrudes from the surface on the intermediate layer 4A side in the mounting region 37A. That is, the fixed mirror 6A penetrates the mounting area 37A.
 実装領域37Aの開口37aAに配置された一対の係止部65Aには、外側(互いに遠ざかる側)に力が作用している。固定ミラー6Aは、当該力によって実装領域37Aに固定されている。当該力は、固定ミラー6Aが実装領域37Aに実装される際に圧縮された環状の弾性部62Aが初期状態に復元しようとして生じているものである。 A force acts on the outside (side away from each other) on the pair of locking portions 65A arranged in the opening 37aA of the mounting region 37A. The fixed mirror 6A is fixed to the mounting region 37A by the force. The force is generated when the annular elastic portion 62A compressed when the fixed mirror 6A is mounted on the mounting region 37A is restored to the initial state.
 なお、図1に示されるように、開口37aAは、ZA軸方向から見た場合にビームスプリッタ7Aとは反対側に末広がりの台形状に形成されている。このような形状を呈する開口37aAに、内側に屈曲する形状を呈する一対の係止部65Aが係合することで、固定ミラー6Aは、XA軸方向、YA軸方向及びZA軸方向のそれぞれにおいて自動的に位置決めされる(セルフアライメントされる)。 Note that, as shown in FIG. 1, the opening 37aA is formed in a trapezoidal shape spreading toward the opposite side to the beam splitter 7A when viewed from the ZA axis direction. The fixed mirror 6A is automatically operated in each of the XA axis direction, the YA axis direction, and the ZA axis direction by engaging the opening 37aA having such a shape with a pair of engaging portions 65A that are bent inward. Positioned (self-aligned).
 図4及び図5に示されるように、中間層4Aには、開口42Aが形成されている。開口42Aは、ZA軸方向から見た場合に実装領域37Aの開口37aAを含んでおり、ZA軸方向において中間層4Aの両側に開口している。支持層2Aには、開口22Aが形成されている。開口22Aは、ZA軸方向から見た場合に実装領域37Aの開口37aAを含んでおり、ZA軸方向において支持層2Aの両側に開口している。光モジュール1Aでは、中間層4Aの開口42A内の領域及び支持層2Aの開口22A内の領域によって、一続きの空間S2Aが構成されている。つまり、空間S2Aは、中間層4Aの開口42A内の領域及び支持層2Aの開口22A内の領域を含んでいる。 As shown in FIGS. 4 and 5, an opening 42A is formed in the intermediate layer 4A. The opening 42A includes the opening 37aA of the mounting region 37A when viewed from the ZA axis direction, and opens on both sides of the intermediate layer 4A in the ZA axis direction. An opening 22A is formed in the support layer 2A. The opening 22A includes the opening 37aA of the mounting region 37A when viewed from the ZA axis direction, and is open on both sides of the support layer 2A in the ZA axis direction. In the optical module 1A, a continuous space S2A is constituted by the region in the opening 42A of the intermediate layer 4A and the region in the opening 22A of the support layer 2A. That is, the space S2A includes a region in the opening 42A of the intermediate layer 4A and a region in the opening 22A of the support layer 2A.
 空間S2Aには、固定ミラー6Aが有する各係止部65Aの一部が位置している。具体的には、各係止部65Aの一部は、中間層4Aの開口42A内の領域を介して、支持層2Aの開口22A内の領域に位置している。各係止部65Aの一部は、デバイス層3Aにおける中間層4A側の表面から空間S2A内に、例えば100μm程度突出している。
[作用及び効果]
A part of each locking portion 65A of the fixed mirror 6A is located in the space S2A. Specifically, a part of each locking portion 65A is located in a region in the opening 22A of the support layer 2A via a region in the opening 42A of the intermediate layer 4A. A part of each locking portion 65A protrudes from the surface of the device layer 3A on the intermediate layer 4A side into the space S2A, for example, by about 100 μm.
[Action and effect]
 光モジュール1Aでは、可動ミラー5Aがデバイス層3Aの実装領域31Aを貫通しており、可動ミラー5Aの各係止部55Aの一部が支持層2Aとデバイス層3Aとの間に形成された空間S1Aに位置している。これにより、例えば各係止部55Aのサイズ等が制限されないため、デバイス層3Aの実装領域31Aに可動ミラー5Aを安定的に且つ強固に固定することができる。よって、光モジュール1Aによれば、デバイス層3Aに対する可動ミラー5Aの確実な実装が実現される。 In the optical module 1A, the movable mirror 5A passes through the mounting region 31A of the device layer 3A, and a part of each locking portion 55A of the movable mirror 5A is formed between the support layer 2A and the device layer 3A. Located in S1A. Thereby, for example, the size and the like of each locking portion 55A is not limited, so that the movable mirror 5A can be stably and firmly fixed to the mounting region 31A of the device layer 3A. Therefore, according to the optical module 1A, reliable mounting of the movable mirror 5A to the device layer 3A is realized.
 また、光モジュール1Aでは、可動ミラー5Aの各係止部55Aの一部が、中間層4Aの開口41A内の領域を介して、支持層2Aの開口21A内の領域に位置している。これにより、デバイス層3Aに対する可動ミラー5Aの確実な実装のための構成を好適に実現することができる。 Further, in the optical module 1A, a part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the opening 41A of the intermediate layer 4A. Thereby, the structure for reliable mounting of movable mirror 5A to device layer 3A can be suitably realized.
 また、光モジュール1Aでは、支持層2AがSOI基板の第1シリコン層であり、デバイス層3AがSOI基板の第2シリコン層であり、中間層4AがSOI基板の絶縁層である。これにより、デバイス層3Aに対する可動ミラー5Aの確実な実装のための構成をSOI基板によって好適に実現することができる。 In the optical module 1A, the support layer 2A is the first silicon layer of the SOI substrate, the device layer 3A is the second silicon layer of the SOI substrate, and the intermediate layer 4A is the insulating layer of the SOI substrate. Thereby, the structure for reliable mounting of the movable mirror 5A to the device layer 3A can be suitably realized by the SOI substrate.
 また、光モジュール1Aでは、可動ミラー5Aのミラー面51aAが、デバイス層3Aに対して支持層2Aとは反対側に位置している。これにより、光モジュール1Aの構成を簡易化することができる。 In the optical module 1A, the mirror surface 51aA of the movable mirror 5A is located on the opposite side of the support layer 2A with respect to the device layer 3A. Thereby, the configuration of the optical module 1A can be simplified.
 また、光モジュール1Aでは、可動ミラー5A、固定ミラー6A及びビームスプリッタ7Aが、干渉光学系10Aを構成するように配置されている。これにより、感度が向上されたFTIRを得ることができる。 In the optical module 1A, the movable mirror 5A, the fixed mirror 6A, and the beam splitter 7A are arranged so as to constitute the interference optical system 10A. Thereby, FTIR with improved sensitivity can be obtained.
 また、光モジュール1Aでは、光入射部8Aが、外部から干渉光学系10Aに測定光を入射させるように配置されており、光出射部9Aが、干渉光学系10Aから外部に測定光を出射させるように配置されている。これにより、光入射部8A及び光出射部9Aを備えるFTIRを得ることができる。
[変形例]
In the optical module 1A, the light incident part 8A is arranged so that the measurement light is incident on the interference optical system 10A from the outside, and the light emitting part 9A emits the measurement light from the interference optical system 10A to the outside. Are arranged as follows. Thereby, FTIR provided with 8 A of light-incidence parts and 9 A of light-projection parts can be obtained.
[Modification]
 以上、本開示の一側面の一実施形態について説明したが、本開示の一側面は、上記実施形態に限定されない。例えば、各構成の材料及び形状は、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。その一例として、ミラー部51A及びミラー面51aAの形状は、円形状に限定されず、矩形状等、その他の形状であってもよい。 Although one embodiment of one aspect of the present disclosure has been described above, one aspect of the present disclosure is not limited to the above embodiment. For example, the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed. As an example, the shapes of the mirror portion 51A and the mirror surface 51aA are not limited to a circular shape, and may be other shapes such as a rectangular shape.
 また、空間S1Aは、支持層2Aとデバイス層3Aとの間に形成されており、少なくとも実装領域31A及び駆動領域32Aに対応していれば、図6及び図7に示されるように、様々な態様を採用することができる。 Further, the space S1A is formed between the support layer 2A and the device layer 3A, and as long as it corresponds to at least the mounting region 31A and the drive region 32A, as shown in FIG. 6 and FIG. Aspects can be employed.
 図6に示される構成では、開口21Aの代わりに、デバイス層3A側に開口する凹部23Aが支持層2Aに形成されており、中間層4Aの開口41A内の領域及び支持層2Aの凹部23A内の領域によって空間S1Aが構成されている。この場合、支持層2Aの凹部23A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいる。可動ミラー5Aの各係止部55Aの一部は、中間層4Aの開口41A内の領域を介して、凹部23A内の領域に位置している。この構成によっても、デバイス層3Aに対する可動ミラー5Aの確実な実装のための構成を好適に実現することができる。 In the configuration shown in FIG. 6, in place of the opening 21A, a recess 23A that opens to the device layer 3A side is formed in the support layer 2A, and the region in the opening 41A of the intermediate layer 4A and the recess 23A in the support layer 2A A space S1A is configured by the regions. In this case, the region in the recess 23A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A through a region in the opening 41A of the intermediate layer 4A. Also with this configuration, a configuration for reliably mounting the movable mirror 5A on the device layer 3A can be suitably realized.
 図7の(a)に示される構成では、支持層2Aの開口21A内の領域が、ZA軸方向から見た場合に可動ミラー5Aの各係止部55Aが移動する範囲を含んでいる。図7の(b)に示される構成では、支持層2Aの凹部23A内の領域が、ZA軸方向から見た場合に可動ミラー5Aの各係止部55Aが移動する範囲を含んでいる。これらの場合、中間層4Aの開口41A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。いずれの構成でも、実装領域31Aが方向AAに沿って往復動した際に、可動ミラー5Aの各係止部55Aうち空間S1Aに位置する一部が、中間層4A及び支持層2Aと接触することはない。 7 (a), the region in the opening 21A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction. In the configuration shown in FIG. 7B, the region in the recess 23A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction. In these cases, the region in the opening 41A of the intermediate layer 4A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and is separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the power portion from the support layer 2A is formed. In any configuration, when the mounting region 31A reciprocates along the direction AA, a part of each locking portion 55A of the movable mirror 5A located in the space S1A comes into contact with the intermediate layer 4A and the support layer 2A. There is no.
 また、支持層2Aとデバイス層3Aとは、中間層4Aを介さずに互いに接合されていてもよい。この場合、支持層2Aは、例えば、シリコン、ガラス、セラミック等によって形成され、デバイス層3Aは、例えば、シリコン等によって形成される。支持層2Aとデバイス層3Aとは、例えば、直接接合、表面活性化接合、プラズマ接合、陽極接合、メタル接合、樹脂接合等によって互いに接合される。この場合にも、空間S1Aは、支持層2Aとデバイス層3Aとの間に形成されており、少なくとも実装領域31A及び駆動領域32Aに対応していれば、図8、図9、図10及び図11に示されるように、様々な態様を採用することができる。いずれの構成によっても、デバイス層3Aに対する可動ミラー5Aの確実な実装のための構成を好適に実現することができる。 Further, the support layer 2A and the device layer 3A may be joined to each other without interposing the intermediate layer 4A. In this case, the support layer 2A is formed of, for example, silicon, glass, ceramic, and the like, and the device layer 3A is formed of, for example, silicon. The support layer 2A and the device layer 3A are bonded to each other by, for example, direct bonding, surface activation bonding, plasma bonding, anodic bonding, metal bonding, resin bonding, or the like. Also in this case, the space S1A is formed between the support layer 2A and the device layer 3A, and if it corresponds to at least the mounting region 31A and the drive region 32A, FIG. 8, FIG. 9, FIG. As shown in FIG. 11, various modes can be adopted. In any of the configurations, a configuration for surely mounting the movable mirror 5A on the device layer 3A can be suitably realized.
 図8の(a)に示される構成では、支持層2Aの開口21A内の領域によって空間S1Aが構成されている。この場合、支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、支持層2Aの開口21A内の領域に位置している。 In the configuration shown in FIG. 8A, a space S1A is configured by the region in the opening 21A of the support layer 2A. In this case, the region in the opening 21A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. A part of each locking portion 55A of the movable mirror 5A is located in a region within the opening 21A of the support layer 2A.
 図8の(b)に示される構成では、支持層2Aの凹部23A内の領域によって空間S1Aが構成されている。この場合、支持層2Aの凹部23A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、支持層2Aの凹部23A内の領域に位置している。 In the configuration shown in FIG. 8B, the space S1A is constituted by the region in the recess 23A of the support layer 2A. In this case, the region in the recess 23A of the support layer 2A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A.
 図9の(a)に示される構成では、支持層2A側に開口する凹部(第1凹部)38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域及び支持層2Aの開口21A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域及び支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいる。デバイス層3Aの凹部38A内の領域は、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域を介して、支持層2Aの開口21A内の領域に位置している。 In the configuration shown in FIG. 9A, a recess (first recess) 38A that opens to the support layer 2A side is formed in the device layer 3A, and the region in the recess 38A of the device layer 3A and the support layer 2A A space S1A is configured by the region in the opening 21A. In this case, the region in the recess 38A of the device layer 3A and the region in the opening 21A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction. The region in the recess 38A of the device layer 3A forms a gap for separating the portion to be separated from the support layer 2A in the mounting region 31A and the drive region 32A from the support layer 2A. A part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the recess 38A of the device layer 3A.
 図9の(b)に示される構成では、凹部38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域及び支持層2Aの凹部(第2凹部)23A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域及び支持層2Aの凹部23A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでいる。デバイス層3Aの凹部38A内の領域は、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域を介して、支持層2Aの凹部23A内の領域に位置している。 In the configuration shown in FIG. 9B, the recess 38A is formed in the device layer 3A, and the space is defined by the region in the recess 38A of the device layer 3A and the region in the recess (second recess) 23A of the support layer 2A. S1A is configured. In this case, the region in the recess 38A of the device layer 3A and the region in the recess 23A of the support layer 2A include a range in which the mounting region 31A moves when viewed from the ZA axis direction. The region in the recess 38A of the device layer 3A forms a gap for separating the portion to be separated from the support layer 2A in the mounting region 31A and the drive region 32A from the support layer 2A. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A via a region in the recess 38A of the device layer 3A.
 図10の(a)に示される構成では、凹部38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域及び支持層2Aの開口21A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。支持層2Aの開口21A内の領域は、ZA軸方向から見た場合に可動ミラー5Aの各係止部55Aが移動する範囲を含んでいる。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域を介して、支持層2Aの開口21A内の領域に位置している。 In the configuration shown in FIG. 10A, the recess 38A is formed in the device layer 3A, and the space S1A is configured by the region in the recess 38A of the device layer 3A and the region in the opening 21A of the support layer 2A. Yes. In this case, the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. The region in the opening 21A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction. A part of each locking portion 55A of the movable mirror 5A is located in a region in the opening 21A of the support layer 2A via a region in the recess 38A of the device layer 3A.
 図10の(b)に示される構成では、凹部38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域及び支持層2Aの凹部(第2凹部)23A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。支持層2Aの凹部23A内の領域は、ZA軸方向から見た場合に可動ミラー5Aの各係止部55Aが移動する範囲を含んでいる。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域を介して、支持層2Aの凹部23A内の領域に位置している。 In the configuration shown in FIG. 10B, the recess 38A is formed in the device layer 3A, and the space is defined by the region in the recess 38A of the device layer 3A and the region in the recess (second recess) 23A of the support layer 2A. S1A is configured. In this case, the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. The region in the recess 23A of the support layer 2A includes a range in which each locking portion 55A of the movable mirror 5A moves when viewed from the ZA axis direction. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 23A of the support layer 2A via a region in the recess 38A of the device layer 3A.
 図11に示される構成では、凹部38Aがデバイス層3Aに形成されており、デバイス層3Aの凹部38A内の領域によって空間S1Aが構成されている。この場合、デバイス層3Aの凹部38A内の領域は、ZA軸方向から見た場合に実装領域31Aが移動する範囲を含んでおり、実装領域31A及び駆動領域32Aのうち支持層2Aから離間させるべき部分を支持層2Aから離間させるための隙間を形成している。可動ミラー5Aの各係止部55Aの一部は、デバイス層3Aの凹部38A内の領域に位置している。 In the configuration shown in FIG. 11, the recess 38A is formed in the device layer 3A, and the space S1A is constituted by the region in the recess 38A of the device layer 3A. In this case, the region in the recess 38A of the device layer 3A includes a range in which the mounting region 31A moves when viewed from the ZA axis direction, and should be separated from the support layer 2A in the mounting region 31A and the drive region 32A. A gap for separating the portion from the support layer 2A is formed. A part of each locking portion 55A of the movable mirror 5A is located in a region in the recess 38A of the device layer 3A.
 また、図12の(a)及び(b)に示されるように、可動ミラー5Aの各脚部54Aの一部及び各係止部55Aの一部が空間S1Aに位置しており、可動ミラー5Aのミラー面51aAが、支持層2Aに対してデバイス層3Aとは反対側に位置していてもよい。この場合、固定ミラー6Aのミラー面61aA及びビームスプリッタ7Aの光学機能面7aAも、支持層2Aに対してデバイス層3Aとは反対側に位置している。なお、図12の(b)に示される構成では、支持層2Aとは反対側に突出するスペーサ39Aがデバイス層3Aに一体的に設けられている。スペーサ39Aは、可動ミラー5Aの各係止部55Aのうちデバイス層3Aから支持層2Aとは反対側に突出する部分よりも突出しており、当該部分を保護している。 As shown in FIGS. 12A and 12B, a part of each leg 54A and a part of each locking part 55A of the movable mirror 5A are located in the space S1A, and the movable mirror 5A. The mirror surface 51aA may be located on the opposite side of the support layer 2A from the device layer 3A. In this case, the mirror surface 61aA of the fixed mirror 6A and the optical functional surface 7aA of the beam splitter 7A are also located on the opposite side of the support layer 2A from the device layer 3A. In the configuration shown in FIG. 12B, the device layer 3A is integrally provided with a spacer 39A protruding to the side opposite to the support layer 2A. The spacer 39A protrudes from a portion of each locking portion 55A of the movable mirror 5A that protrudes from the device layer 3A to the side opposite to the support layer 2A, and protects the portion.
 また、図13に示されるように、可動ミラー5Aは、ミラー面51aAが実装領域31Aと交差した状態で、実装領域31Aを貫通していてもよい。図13に示される可動ミラー5Aでは、一対の脚部54Aが設けられておらず、一対の係止部55Aが、XA軸方向から見た場合にミラー部51Aの中心に対してYA軸方向における両側において、弾性部52Aにおける外側の表面に連結されている。つまり、ミラー部51A及び弾性部52Aは、YA軸方向において一対の係止部55Aに挟まれている。この場合、実装領域31Aにおいて開口31bAを画定する部分のうちミラー面51aAに対向する部分は、測定光L0Aを通過させるために、切り欠かれる。図13に示される可動ミラー5Aでは、ミラー面51aAが実装領域31Aと交差している。これにより、可動ミラー5Aの重心位置を実装領域31Aに近付けることができるので、可動ミラー5Aが実装された実装領域31Aをより安定的に移動させることができる。 Further, as shown in FIG. 13, the movable mirror 5A may penetrate the mounting region 31A in a state where the mirror surface 51aA intersects the mounting region 31A. In the movable mirror 5A shown in FIG. 13, the pair of leg portions 54A is not provided, and the pair of locking portions 55A is in the YA axis direction with respect to the center of the mirror portion 51A when viewed from the XA axis direction. On both sides, it is connected to the outer surface of the elastic portion 52A. That is, the mirror part 51A and the elastic part 52A are sandwiched between the pair of locking parts 55A in the YA axis direction. In this case, a portion of the mounting region 31A that defines the opening 31bA that is opposed to the mirror surface 51aA is notched in order to allow the measurement light L0A to pass therethrough. In the movable mirror 5A shown in FIG. 13, the mirror surface 51aA intersects the mounting area 31A. Thereby, since the gravity center position of movable mirror 5A can be brought close to mounting area 31A, mounting area 31A where movable mirror 5A was mounted can be moved more stably.
 また、図14及び図15に示されるように、連結部53Aは、ミラー面51aAの中心よりも実装領域31A側に設けられていてもよい。この構成によれば、例えば、連結部53Aがミラー面51aAの中心よりも実装領域31Aとは反対側に設けられている場合に比べ、可動ミラー5Aの重心位置を実装領域31Aに近付けることができるので、可動ミラー5Aが実装された実装領域31Aをより安定的に移動させることができる。また、図14に示されるように、各係止部55Aは、開口31bAとは別に設けられた開口31cA内に配置される折返部55aAを有していてもよい。この構成によれば、実装領域31Aに可動ミラー5Aをより確実に固定することができる。また、図15に示されるように、弾性部52Aには、一対の係止部55A間の距離が変化するように弾性部52Aを弾性変形させるためのハンドル56Aが設けられていてもよい。この構成によれば、ハンドル56Aを操作することで、一対の係止部55A間の距離を変化させることができるので、一対の係止部55A間の距離を変化させた状態で一対の係止部55Aを開口31bAに挿入し、その後に、ハンドル56Aの操作を解放することで、各係止部55Aを開口31bAの内面に接触させることができる。これにより、可動ミラー5Aは、開口31bAの内面から各係止部55Aに付与される反力によって実装領域31Aに支持される。なお、全ての例において、可動ミラー5Aは、開口31bAの内面から各係止部55Aに付与される反力によって実装領域31Aに支持され得るが、実装領域31Aに可動ミラー5Aをより確実に固定するために、各係止部55Aと実装領域31Aとの間に接着剤を配置してもよい。 14 and 15, the connecting portion 53A may be provided closer to the mounting region 31A than the center of the mirror surface 51aA. According to this configuration, for example, the position of the center of gravity of the movable mirror 5A can be closer to the mounting region 31A than when the connecting portion 53A is provided on the opposite side of the mounting region 31A from the center of the mirror surface 51aA. Therefore, the mounting area 31A on which the movable mirror 5A is mounted can be moved more stably. Further, as shown in FIG. 14, each locking portion 55 </ b> A may have a folded portion 55 a </ i> A arranged in an opening 31 c </ i> A provided separately from the opening 31 b </ i> A. According to this configuration, the movable mirror 5A can be more reliably fixed to the mounting region 31A. Further, as shown in FIG. 15, the elastic portion 52A may be provided with a handle 56A for elastically deforming the elastic portion 52A so that the distance between the pair of locking portions 55A changes. According to this configuration, since the distance between the pair of locking portions 55A can be changed by operating the handle 56A, the pair of locking portions with the distance between the pair of locking portions 55A changed. Each locking portion 55A can be brought into contact with the inner surface of the opening 31bA by inserting the portion 55A into the opening 31bA and then releasing the operation of the handle 56A. Accordingly, the movable mirror 5A is supported on the mounting region 31A by the reaction force applied to each locking portion 55A from the inner surface of the opening 31bA. In all the examples, the movable mirror 5A can be supported by the mounting region 31A by the reaction force applied to each locking portion 55A from the inner surface of the opening 31bA, but the movable mirror 5A is more securely fixed to the mounting region 31A. In order to do this, an adhesive may be disposed between each locking portion 55A and the mounting region 31A.
 また、上記実施形態では、固定ミラー6Aがデバイス層3Aに実装されていたが、固定ミラー6Aは、支持層2A、デバイス層3A及び中間層4Aの少なくとも1つに実装されていればよい。また、上記実施形態では、ビームスプリッタ7Aが支持層2Aに実装されていたが、ビームスプリッタ7Aは、支持層2A、デバイス層3A及び中間層4Aの少なくとも1つに実装されていればよい。また、ビームスプリッタ7Aは、キューブタイプのビームスプリッタに限定されず、プレートタイプのビームスプリッタであってもよい。 In the above embodiment, the fixed mirror 6A is mounted on the device layer 3A. However, the fixed mirror 6A may be mounted on at least one of the support layer 2A, the device layer 3A, and the intermediate layer 4A. In the above embodiment, the beam splitter 7A is mounted on the support layer 2A. However, the beam splitter 7A may be mounted on at least one of the support layer 2A, the device layer 3A, and the intermediate layer 4A. The beam splitter 7A is not limited to a cube type beam splitter, and may be a plate type beam splitter.
 また、光モジュール1Aは、光入射部8Aに加え、光入射部8Aに入射させる測定光を発生させる発光素子を備えていてもよい。或いは、光モジュール1Aは、光入射部8Aに代えて、干渉光学系10Aに入射させる測定光を発生させる発光素子を備えていてもよい。また、光モジュール1Aは、光出射部9Aに加え、光出射部9Aから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。或いは、光モジュール1Aは、光出射部9Aに代えて、干渉光学系10Aから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。 The optical module 1A may include a light emitting element that generates measurement light to be incident on the light incident portion 8A in addition to the light incident portion 8A. Alternatively, the optical module 1A may include a light emitting element that generates measurement light incident on the interference optical system 10A, instead of the light incident portion 8A. The optical module 1A may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9A in addition to the light emitting unit 9A. Alternatively, the optical module 1A may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10A, instead of the light emitting unit 9A.
 また、各アクチュエータ領域33Aに電気的に接続された第1貫通電極、及び各弾性支持領域34Aの両端部34aAのそれぞれに電気的に接続された第2貫通電極が、支持層2A及び中間層4A(中間層4Aが存在しない場合には支持層2Aのみ)に設けられており、第1貫通電極と第2貫通電極との間に電圧が印加されてもよい。また、実装領域31Aを移動させるアクチュエータは、静電アクチュエータに限定されず、例えば、圧電式アクチュエータ、電磁式アクチュエータ等であってもよい。また、光モジュール1Aは、FTIRを構成するものに限定されず、他の光学系を構成するものであってもよい。
[第2実施形態]
In addition, the first through electrode electrically connected to each actuator region 33A and the second through electrode electrically connected to each of both end portions 34aA of each elastic support region 34A are the support layer 2A and the intermediate layer 4A. (Only the support layer 2A when the intermediate layer 4A does not exist) is provided, and a voltage may be applied between the first through electrode and the second through electrode. The actuator that moves the mounting region 31A is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like. Further, the optical module 1A is not limited to the one constituting the FTIR, and may constitute another optical system.
[Second Embodiment]
 MEMSデバイスとして、凹部が形成された主面を有するベースと、凹部においてベースに実装された光学素子とを備える光モジュールが知られている(例えば、米国特許出願公開第2002/0186477号明細書参照)。このような光モジュールでは、凹部に光学素子が挿入されており、凹部の底面に形成されたボンドパッドのリフローによって光学素子がベースに接着されている。 As a MEMS device, there is known an optical module including a base having a main surface in which a recess is formed, and an optical element mounted on the base in the recess (see, for example, US Patent Application Publication No. 2002/0186477). ). In such an optical module, an optical element is inserted into the recess, and the optical element is bonded to the base by reflow of a bond pad formed on the bottom surface of the recess.
 上述したような光モジュールでは、ポータブル機器への搭載や、移送時にかかる衝撃に対する耐性の確保の観点等から、光学素子をベースに確実に実装することが求められる。しかしながら、上述したような光モジュールでは、衝撃に対する耐性が十分ではなく、衝撃が作用した場合に、光学素子が凹部から容易に脱落してしまうおそれがある。 The optical module as described above is required to be securely mounted on the basis of an optical element from the viewpoint of mounting on a portable device and securing resistance to impact applied during transfer. However, the optical module as described above is not sufficiently resistant to impact, and when the impact is applied, the optical element may easily fall out of the recess.
 そこで、本開示の別の一側面は、光学素子の確実な実装を実現することができる光モジュールを提供することを目的とする。 Therefore, another aspect of the present disclosure aims to provide an optical module capable of realizing reliable mounting of an optical element.
 本開示の別の一側面に係る光モジュールは、ベースと、ベースに実装された光学素子と、を備え、ベースは、互いに対向する第1表面及び第2表面を有し、ベースには、第1表面及び第2表面に開口する第1開口、並びに第2表面に開口する第2開口が設けられ、光学素子は、光学面を有する光学部と、光学部をベースに支持する支持部と、を有し、支持部は、第1開口を介して第2表面から突出した突出部と、突出部から第2表面に向かって延び、第2表面側から第2開口に入り込んだ折返部と、を含む。 An optical module according to another aspect of the present disclosure includes a base and an optical element mounted on the base. The base has a first surface and a second surface that face each other. A first opening that opens to the first surface and the second surface, and a second opening that opens to the second surface are provided, and the optical element includes an optical unit having an optical surface, a support unit that supports the optical unit as a base, The support portion has a protrusion protruding from the second surface through the first opening, a folded portion extending from the protrusion toward the second surface and entering the second opening from the second surface side, and including.
 この光モジュールでは、第1表面及び第2表面に開口する第1開口、並びに第2表面に開口する第2開口がベースに設けられている。また、光学部をベースに支持する支持部が、第1開口を介して第2表面から突出した突出部と、突出部から第2表面に向かって延び、第2表面側から第2開口に入り込んだ折返部と、を含んでいる。これにより、例えば衝撃により光学素子が第1表面に交差する方向に外れようとした場合でも、折返部が第2開口の第2表面側の縁部に当接することで、光学素子の脱落を抑制することができる。よって、この光モジュールによれば、光学素子の確実な実装を実現することができる。 In this optical module, a first opening that opens to the first surface and the second surface and a second opening that opens to the second surface are provided in the base. In addition, the support part that supports the optical part on the base protrudes from the second surface through the first opening, extends from the protruding part toward the second surface, and enters the second opening from the second surface side. And a folding part. Thus, even when the optical element is about to come off in the direction intersecting the first surface due to impact, for example, the folded portion abuts against the edge on the second surface side of the second opening, thereby suppressing the optical element from falling off. can do. Therefore, according to this optical module, it is possible to realize the reliable mounting of the optical element.
 本開示の別の一側面の光モジュールでは、第2開口は、第1開口を挟むように一対設けられ、突出部は、一対設けられ、折返部は、一対の突出部それぞれに設けられ、一対の第2開口にそれぞれ入り込んでいてもよい。これによれば、光学素子の脱落をより確実に抑制することができる。 In an optical module according to another aspect of the present disclosure, a pair of second openings are provided so as to sandwich the first opening, a pair of protrusions are provided, and a folded part is provided in each of the pair of protrusions. It may enter into each of the second openings. According to this, dropping of the optical element can be more reliably suppressed.
 本開示の別の一側面の光モジュールでは、突出部は、少なくとも第1開口の第1表面側の縁部に当接していてもよい。これによれば、光学素子の脱落をより一層確実に抑制することができる。 In the optical module according to another aspect of the present disclosure, the protruding portion may be in contact with at least the edge portion on the first surface side of the first opening. According to this, dropping of the optical element can be suppressed more reliably.
 本開示の別の一側面の光モジュールでは、折返部は、第2開口の第2表面側の縁部に当接していてもよい。これによれば、光学素子の脱落をより一層確実に抑制することができる。 In the optical module according to another aspect of the present disclosure, the folded portion may be in contact with an edge portion on the second surface side of the second opening. According to this, dropping of the optical element can be suppressed more reliably.
 本開示の別の一側面の光モジュールでは、光学素子は、弾性部を更に有し、突出部は、一対設けられ、一対の突出部は、弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされ、弾性部の弾性力が付与された状態において第1開口に挿入されており、光学素子は、第1開口の内面から一対の突出部に付与される弾性力の反力によりベースに支持されていてもよい。これによれば、弾性部の弾性力を利用して光学素子をベースに実装することができる。この場合、弾性力を利用して光学素子がベースに実装され、しかも、折返部によって光学素子の脱落が抑制されているため、接着剤の使用量を低減すること、或いは接着剤を不要とすることが可能となる。接着剤の使用量の低減により、次のような利点が得られる。すなわち、接着材のはみ出しにより、光学面に汚染等が生じたり、光モジュールの駆動領域に破壊や動作不良が生じたりするのを抑制することができる。また、接着材の形成のための領域(構成要素間のスペース)が削減されることで、光モジュールの小型化を図ることもできる。 In the optical module according to another aspect of the present disclosure, the optical element further includes an elastic part, the pair of protrusions is provided, and the pair of protrusions are given an elastic force according to elastic deformation of the elastic part. In addition, the distance between each other is variable, and the elastic force is applied to the pair of protrusions from the inner surface of the first opening. It may be supported by the base by the reaction force. According to this, the optical element can be mounted on the base using the elastic force of the elastic portion. In this case, the optical element is mounted on the base using elastic force, and the optical element is prevented from falling off by the folded portion, so that the amount of the adhesive used is reduced or the adhesive is unnecessary. It becomes possible. The following advantages are obtained by reducing the amount of adhesive used. That is, it is possible to suppress the occurrence of contamination or the like on the optical surface due to the protrusion of the adhesive material, or the destruction or malfunction of the optical module drive region. Further, the area for forming the adhesive (space between components) is reduced, so that the optical module can be reduced in size.
 本開示の別の一側面の光モジュールでは、一対の突出部は、互いに離れる方向に弾性部の弾性力が付与された状態において第1開口に挿入されていてもよい。これによれば、弾性力を利用して光学素子をベースに好適に実装することができる。 In the optical module according to another aspect of the present disclosure, the pair of protrusions may be inserted into the first opening in a state where the elastic force of the elastic part is applied in a direction away from each other. According to this, the optical element can be suitably mounted on the base using the elastic force.
 本開示の別の一側面の光モジュールでは、第1開口の内面は、第1表面に交差する方向から見た場合に、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一対の傾斜面同士が対向する方向に交差する方向において一対の傾斜面と対向する対向面と、を含んでもよい。これによれば、突出部を第1開口に挿入して弾性部の弾性変形の一部を解放したときに、弾性力によって突出部を傾斜面に摺動させて対向面に突き当てることで、第1表面に沿った方向に光学素子を位置決めすることができる。 In the optical module according to another aspect of the present disclosure, the pair of inner surfaces of the first opening are inclined so that the distance from each other increases from one end to the other when viewed from a direction intersecting the first surface. And an opposing surface that faces the pair of inclined surfaces in a direction crossing a direction in which the pair of inclined surfaces face each other. According to this, when the protruding portion is inserted into the first opening and a part of the elastic deformation of the elastic portion is released, the protruding portion is slid on the inclined surface by the elastic force and hits the opposing surface. The optical element can be positioned in a direction along the first surface.
 本開示の別の一側面の光モジュールでは、第1表面に交差する方向から見た場合に、一方の傾斜面の他端と他方の傾斜面の他端とを通る直線に対する一対の傾斜面の傾斜角は、45度以下であってもよい。これによれば、突出部に付与される弾性力の反力を、一対の傾斜面同士が対向する方向よりも、一対の傾斜面同士が対向する方向に交差する方向に多く分散することができる。このため、一対の傾斜面同士が対向する方向に交差する方向の衝撃に対する耐性を向上することができる。 In an optical module according to another aspect of the present disclosure, a pair of inclined surfaces with respect to a straight line passing through the other end of one inclined surface and the other end of the other inclined surface when viewed from a direction intersecting the first surface. The inclination angle may be 45 degrees or less. According to this, the reaction force of the elastic force applied to the projecting portion can be more dispersed in the direction intersecting the direction in which the pair of inclined surfaces oppose each other than in the direction in which the pair of inclined surfaces oppose each other. . For this reason, the tolerance with respect to the impact of the direction which cross | intersects the direction where a pair of inclined surface opposes can be improved.
 本開示の別の一側面の光モジュールでは、ベースは、支持層と、支持層上に設けられ、第1表面及び第2表面を含むデバイス層と、を有してもよい。これによれば、光学素子の確実な実装のための構成を好適に実現することができる。 In the optical module according to another aspect of the present disclosure, the base may include a support layer and a device layer provided on the support layer and including the first surface and the second surface. According to this, the structure for reliable mounting of the optical element can be suitably realized.
 本開示の別の一側面の光モジュールでは、ベースは、支持層とデバイス層との間に設けられた中間層を有してもよい。これによれば、光学素子の確実な実装のための構成を一層好適に実現することができる。 In the optical module according to another aspect of the present disclosure, the base may include an intermediate layer provided between the support layer and the device layer. According to this, the structure for reliable mounting of the optical element can be realized more suitably.
 本開示の別の一側面の光モジュールは、支持層、デバイス層又は中間層に実装された固定ミラーと、支持層、デバイス層又は中間層に実装されたビームスプリッタと、を更に備え、光学素子は、ミラー面である光学面を含む可動ミラーであり、デバイス層は、光学素子が実装された実装領域と、実装領域に接続された駆動領域と、を有し、可動ミラー、固定ミラー及びビームスプリッタは、干渉光学系を構成するように配置されていてもよい。例えばMEMS技術によってSOI(Silicon On Insulator)基板上に干渉光学系を形成することによりFTIR(フーリエ変換型赤外分光分析器)を構成した場合、可動ミラーのサイズがSOI基板に対する深堀加工の達成度に依存する点で、次のような課題がある。すなわち、SOI基板に対する深堀加工の達成度は最大でも500μm程度であるため、可動ミラーのサイズを大きくしてFTIRにおける感度を向上させるのには限界がある。これに対して、この光モジュールによれば、別体で形成された可動ミラーをデバイス層に実装するため、感度が向上されたFTIRを得ることができる。 The optical module according to another aspect of the present disclosure further includes a fixed mirror mounted on the support layer, the device layer, or the intermediate layer, and a beam splitter mounted on the support layer, the device layer, or the intermediate layer, and an optical element Is a movable mirror including an optical surface that is a mirror surface, and the device layer has a mounting region in which the optical element is mounted and a drive region connected to the mounting region, and the movable mirror, the fixed mirror, and the beam The splitter may be arranged to constitute an interference optical system. For example, when an FTIR (Fourier Transform Infrared Spectrometer) is configured by forming an interference optical system on an SOI (Silicon On Insulator) substrate by MEMS technology, the size of the movable mirror is the achievement level of deep drilling on the SOI substrate. There are the following problems in dependence on That is, since the degree of achievement of deep processing for the SOI substrate is about 500 μm at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. On the other hand, according to this optical module, since the movable mirror formed separately is mounted on the device layer, FTIR with improved sensitivity can be obtained.
 本開示の別の一側面の光モジュールでは、支持層は、SOI基板の第1シリコン層であり、デバイス層は、SOI基板の第2シリコン層であり、中間層は、SOI基板の絶縁層であってもよい。これによれば、デバイス層に対する可動ミラーの確実な実装のための構成をSOI基板によって好適に実現することができる。 In the optical module according to another aspect of the present disclosure, the support layer is a first silicon layer of an SOI substrate, the device layer is a second silicon layer of the SOI substrate, and the intermediate layer is an insulating layer of the SOI substrate. There may be. According to this, the configuration for surely mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
 本開示の別の一側面の光モジュールは、外部から干渉光学系に測定光を入射させるように配置された光入射部と、干渉光学系から外部に測定光を出射させるように配置された光出射部と、を更に備えてもよい。これによれば、光入射部及び光出射部を備えるFTIRを得ることができる。 An optical module according to another aspect of the present disclosure includes a light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside, and light arranged to emit the measurement light from the interference optical system to the outside. And a light emitting part. According to this, FTIR provided with a light incident part and a light emission part can be obtained.
 本開示の別の一側面によれば、光学素子の確実な実装を実現することができる光モジュールを提供することができる。 According to another aspect of the present disclosure, it is possible to provide an optical module that can realize reliable mounting of an optical element.
 以下、本開示の別の一側面の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光モジュールの構成]
Hereinafter, an embodiment of another aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
 図16に示されるように、光モジュール1Bは、ベースBBを備えている。ベースBBは、支持層2Bと、支持層2B上に設けられたデバイス層3Bと、支持層2Bとデバイス層3Bとの間に設けられた中間層4Bと、備えている。支持層2B、デバイス層3B及び中間層4Bは、SOI基板によって構成されている。具体的には、支持層2Bは、SOI基板の第1シリコン層である。デバイス層3Bは、SOI基板の第2シリコン層である。中間層4Bは、SOI基板の絶縁層である。支持層2B、デバイス層3B及び中間層4Bは、それらの積層方向であるZB軸方向(ZB軸に平行な方向)から見た場合に、例えば、一辺が10mm程度の矩形状を呈している。支持層2B及びデバイス層3Bのそれぞれの厚さは、例えば数百μm程度である。中間層4Bの厚さは、例えば数μm程度である。なお、図16では、デバイス層3Bの1つの角部及び中間層4Bの1つの角部が切り欠かれた状態で、デバイス層3B及び中間層4Bが示されている。 As shown in FIG. 16, the optical module 1B includes a base BB. The base BB includes a support layer 2B, a device layer 3B provided on the support layer 2B, and an intermediate layer 4B provided between the support layer 2B and the device layer 3B. The support layer 2B, the device layer 3B, and the intermediate layer 4B are configured by an SOI substrate. Specifically, the support layer 2B is the first silicon layer of the SOI substrate. The device layer 3B is a second silicon layer of the SOI substrate. The intermediate layer 4B is an insulating layer of the SOI substrate. The support layer 2B, the device layer 3B, and the intermediate layer 4B have a rectangular shape with, for example, a side of about 10 mm when viewed from the ZB axis direction (a direction parallel to the ZB axis) that is the stacking direction thereof. Each thickness of the support layer 2B and the device layer 3B is, for example, about several hundred μm. The thickness of the intermediate layer 4B is, for example, about several μm. In FIG. 16, the device layer 3B and the intermediate layer 4B are shown with one corner of the device layer 3B and one corner of the intermediate layer 4B cut out.
 デバイス層3Bは、実装領域31Bと、実装領域31Bに接続された駆動領域32Bと、を有している。駆動領域32Bは、一対のアクチュエータ領域33Bと、一対の弾性支持領域34Bと、を含んでいる。実装領域31B及び駆動領域32B(すなわち、実装領域31B並びに一対のアクチュエータ領域33B及び一対の弾性支持領域34B)は、MEMS技術(パターニング及びエッチング)によってデバイス層3Bの一部に一体的に形成されている。 The device layer 3B has a mounting area 31B and a drive area 32B connected to the mounting area 31B. The drive region 32B includes a pair of actuator regions 33B and a pair of elastic support regions 34B. The mounting region 31B and the drive region 32B (that is, the mounting region 31B and the pair of actuator regions 33B and the pair of elastic support regions 34B) are integrally formed on a part of the device layer 3B by MEMS technology (patterning and etching). Yes.
 一対のアクチュエータ領域33Bは、XB軸方向(ZB軸に直交するXB軸に平行な方向)において実装領域31Bの両側に配置されている。つまり、実装領域31Bは、XB軸方向において一対のアクチュエータ領域33Bに挟まれている。各アクチュエータ領域33Bは、中間層4Bを介して支持層2Bに固定されている。各アクチュエータ領域33Bにおける実装領域31B側の側面には、第1櫛歯部33aBが設けられている。各第1櫛歯部33aBは、その直下の中間層4Bが除去されることで、支持層2Bに対して浮いた状態となっている。各アクチュエータ領域33Bには、第1電極35Bが設けられている。 The pair of actuator regions 33B are disposed on both sides of the mounting region 31B in the XB axis direction (a direction parallel to the XB axis perpendicular to the ZB axis). That is, the mounting region 31B is sandwiched between the pair of actuator regions 33B in the XB axis direction. Each actuator region 33B is fixed to the support layer 2B via the intermediate layer 4B. A first comb tooth portion 33aB is provided on the side surface of each actuator region 33B on the mounting region 31B side. Each first comb tooth portion 33aB is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the first comb tooth portion 33aB. A first electrode 35B is provided in each actuator region 33B.
 一対の弾性支持領域34Bは、YB軸方向(ZB軸及びXB軸に直交するYB軸に平行な方向)において実装領域31Bの両側に配置されている。つまり、実装領域31Bは、YB軸方向において一対の弾性支持領域34Bに挟まれている。各弾性支持領域34Bの両端部34aBは、中間層4Bを介して支持層2Bに固定されている。各弾性支持領域34Bの弾性変形部34bB(両端部34aBの間の部分)は、複数の板バネが連結された構造を有している。各弾性支持領域34Bの弾性変形部34bBは、その直下の中間層4Bが除去されることで、支持層2Bに対して浮いた状態となっている。各弾性支持領域34Bにおいて両端部34aBのそれぞれには、第2電極36Bが設けられている。 The pair of elastic support regions 34B are disposed on both sides of the mounting region 31B in the YB axis direction (a direction parallel to the YB axis perpendicular to the ZB axis and the XB axis). That is, the mounting region 31B is sandwiched between the pair of elastic support regions 34B in the YB axis direction. Both end portions 34aB of each elastic support region 34B are fixed to the support layer 2B via the intermediate layer 4B. Each elastic support region 34B has an elastic deformation portion 34bB (a portion between both end portions 34aB) having a structure in which a plurality of leaf springs are connected. The elastic deformation portion 34bB of each elastic support region 34B is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below it. In each elastic support region 34B, a second electrode 36B is provided at each of both end portions 34aB.
 実装領域31Bには、各弾性支持領域34Bの弾性変形部34bBが接続されている。実装領域31Bは、その直下の中間層4Bが除去されることで、支持層2Bに対して浮いた状態となっている。つまり、実装領域31Bは、一対の弾性支持領域34Bによって支持されている。実装領域31Bにおける各アクチュエータ領域33B側の側面には、第2櫛歯部31aBが設けられている。各第2櫛歯部31aBは、その直下の中間層4Bが除去されることで、支持層2Bに対して浮いた状態となっている。互いに対向する第1櫛歯部33aB及び第2櫛歯部31aBにおいては、第1櫛歯部33aBの各櫛歯が第2櫛歯部31aBの各櫛歯間に位置している。 The elastic deformation portion 34bB of each elastic support region 34B is connected to the mounting region 31B. The mounting region 31B is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the mounting region 31B. That is, the mounting area 31B is supported by the pair of elastic support areas 34B. A second comb tooth portion 31aB is provided on the side surface of each mounting region 31B on the side of each actuator region 33B. Each second comb tooth portion 31aB is in a state of floating with respect to the support layer 2B by removing the intermediate layer 4B immediately below the second comb tooth portion 31aB. In the first comb tooth portion 33aB and the second comb tooth portion 31aB facing each other, the comb teeth of the first comb tooth portion 33aB are located between the comb teeth of the second comb tooth portion 31aB.
 一対の弾性支持領域34Bは、XB軸に平行な方向ABに対して両側から実装領域31Bを挟んでおり、実装領域31Bが方向ABに沿って移動すると、実装領域31Bが初期位置に戻るように実装領域31Bに弾性力を作用させる。したがって、第1電極35Bと第2電極36Bとの間に電圧が印加されて、互いに対向する第1櫛歯部33aB及び第2櫛歯部31aB間に静電引力が作用すると、当該静電引力と一対の弾性支持領域34Bによる弾性力とがつり合う位置まで、方向ABに沿って実装領域31Bが移動させられる。このように、駆動領域32Bは、静電アクチュエータとして機能する。 The pair of elastic support regions 34B sandwich the mounting region 31B from both sides with respect to the direction AB parallel to the XB axis so that when the mounting region 31B moves along the direction AB, the mounting region 31B returns to the initial position. An elastic force is applied to the mounting region 31B. Therefore, when a voltage is applied between the first electrode 35B and the second electrode 36B and an electrostatic attractive force acts between the first comb tooth portion 33aB and the second comb tooth portion 31aB facing each other, the electrostatic attractive force The mounting region 31B is moved along the direction AB to a position where the elastic force of the pair of elastic support regions 34B is balanced. Thus, the drive region 32B functions as an electrostatic actuator.
 光モジュール1Bは、可動ミラー5Bと、固定ミラー6Bと、ビームスプリッタ7Bと、光入射部8Bと、光出射部9Bと、を更に備えている。可動ミラー5B、固定ミラー6B及びビームスプリッタ7Bは、マイケルソン干渉光学系である干渉光学系10Bを構成するように、デバイス層3B上に配置されている。 The optical module 1B further includes a movable mirror 5B, a fixed mirror 6B, a beam splitter 7B, a light incident part 8B, and a light emitting part 9B. The movable mirror 5B, the fixed mirror 6B, and the beam splitter 7B are arranged on the device layer 3B so as to constitute an interference optical system 10B that is a Michelson interference optical system.
 可動ミラー5Bは、XB軸方向におけるビームスプリッタ7Bの一方の側において、デバイス層3Bの実装領域31Bに実装されている。可動ミラー5Bが有するミラー部51Bのミラー面51aBは、デバイス層3Bに対して支持層2Bとは反対側に位置している。ミラー面51aBは、例えばXB軸方向に垂直な面(すなわち、方向ABに垂直な面)であり、ビームスプリッタ7B側に向いている。 The movable mirror 5B is mounted on the mounting region 31B of the device layer 3B on one side of the beam splitter 7B in the XB axis direction. The mirror surface 51aB of the mirror part 51B of the movable mirror 5B is located on the opposite side of the support layer 2B with respect to the device layer 3B. The mirror surface 51aB is, for example, a surface perpendicular to the XB axis direction (that is, a surface perpendicular to the direction AB) and faces the beam splitter 7B side.
 固定ミラー6Bは、YB軸方向におけるビームスプリッタ7Bの一方の側において、デバイス層3Bの実装領域37Bに実装されている。固定ミラー6Bが有するミラー部61Bのミラー面61aBは、デバイス層3Bに対して支持層2Bとは反対側に位置している。ミラー面61aBは、例えばYB軸方向に垂直な面であり、ビームスプリッタ7B側に向いている。 The fixed mirror 6B is mounted on the mounting region 37B of the device layer 3B on one side of the beam splitter 7B in the YB axis direction. The mirror surface 61aB of the mirror part 61B of the fixed mirror 6B is located on the opposite side of the support layer 2B with respect to the device layer 3B. The mirror surface 61aB is, for example, a surface perpendicular to the YB axis direction and faces the beam splitter 7B side.
 光入射部8Bは、YB軸方向におけるビームスプリッタ7Bの他方の側において、デバイス層3Bに実装されている。光入射部8Bは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光入射部8Bは、外部から干渉光学系10Bに測定光を入射させるように配置されている。 The light incident part 8B is mounted on the device layer 3B on the other side of the beam splitter 7B in the YB axis direction. The light incident portion 8B is configured by, for example, an optical fiber and a collimator lens. The light incident portion 8B is arranged so that the measurement light is incident on the interference optical system 10B from the outside.
 光出射部9Bは、XB軸方向におけるビームスプリッタ7Bの他方の側において、デバイス層3Bに実装されている。光出射部9Bは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光出射部9Bは、干渉光学系10Bから外部に測定光(干渉光)を出射させるように配置されている。 The light emitting portion 9B is mounted on the device layer 3B on the other side of the beam splitter 7B in the XB axis direction. The light emitting portion 9B is configured by, for example, an optical fiber and a collimating lens. The light emitting unit 9B is arranged to emit measurement light (interference light) to the outside from the interference optical system 10B.
 ビームスプリッタ7Bは、光学機能面7aBを有するキューブタイプのビームスプリッタである。光学機能面7aBは、デバイス層3Bに対して支持層2Bとは反対側に位置している。ビームスプリッタ7Bは、デバイス層3Bに形成された矩形状の開口3aBの1つの隅部にビームスプリッタ7Bの底面側の1つの角部が接触させられることで、位置決めされている。ビームスプリッタ7Bは、位置決めされた状態で接着等によって支持層2Bに固定されることで、支持層2Bに実装されている。 The beam splitter 7B is a cube type beam splitter having an optical functional surface 7aB. The optical functional surface 7aB is located on the side opposite to the support layer 2B with respect to the device layer 3B. The beam splitter 7B is positioned by bringing one corner on the bottom side of the beam splitter 7B into contact with one corner of the rectangular opening 3aB formed in the device layer 3B. The beam splitter 7B is mounted on the support layer 2B by being fixed to the support layer 2B by bonding or the like in a positioned state.
 以上のように構成された光モジュール1Bでは、光入射部8Bを介して外部から干渉光学系10Bに測定光L0Bが入射すると、測定光L0Bの一部は、ビームスプリッタ7Bの光学機能面7aBで反射されて可動ミラー5Bに向かって進行し、測定光L0Bの残部は、ビームスプリッタ7Bの光学機能面7aBを透過して固定ミラー6Bに向かって進行する。測定光L0Bの一部は、可動ミラー5Bのミラー面51aBで反射されて、同一光路上をビームスプリッタ7Bに向かって進行し、ビームスプリッタ7Bの光学機能面7aBを透過する。測定光L0Bの残部は、固定ミラー6Bのミラー面61aBで反射されて、同一光路上をビームスプリッタ7Bに向かって進行し、ビームスプリッタ7Bの光学機能面7aBで反射される。ビームスプリッタ7Bの光学機能面7aBを透過した測定光L0Bの一部と、ビームスプリッタ7Bの光学機能面7aBで反射された測定光L0Bの残部とは、干渉光である測定光L1Bとなり、測定光L1Bは、光出射部9Bを介して干渉光学系10Bから外部に出射する。光モジュール1Bによれば、方向ABに沿って可動ミラー5Bを高速で往復動させることができるので、小型且つ高精度のFTIRを提供することができる。
[可動ミラー及びその周辺構造]
In the optical module 1B configured as described above, when the measurement light L0B is incident on the interference optical system 10B from the outside via the light incident portion 8B, a part of the measurement light L0B is transmitted to the optical function surface 7aB of the beam splitter 7B. The reflected light travels toward the movable mirror 5B, and the remaining portion of the measurement light L0B passes through the optical function surface 7aB of the beam splitter 7B and travels toward the fixed mirror 6B. Part of the measurement light L0B is reflected by the mirror surface 51aB of the movable mirror 5B, travels on the same optical path toward the beam splitter 7B, and passes through the optical function surface 7aB of the beam splitter 7B. The remaining part of the measurement light L0B is reflected by the mirror surface 61aB of the fixed mirror 6B, travels on the same optical path toward the beam splitter 7B, and is reflected by the optical function surface 7aB of the beam splitter 7B. A part of the measurement light L0B that has passed through the optical functional surface 7aB of the beam splitter 7B and the remaining part of the measurement light L0B reflected by the optical functional surface 7aB of the beam splitter 7B become the measurement light L1B that is interference light. L1B is emitted to the outside from the interference optical system 10B via the light emitting portion 9B. According to the optical module 1B, the movable mirror 5B can be reciprocated at high speed along the direction AB, so that a small and highly accurate FTIR can be provided.
[Movable mirror and surrounding structure]
 図17、図18及び図19に示されるように、ベースBBは、互いに対向する第1表面BaB及び第2表面BbBを備えている。第1表面BaBは、デバイス層3Bにおける支持層2Bと反対側の表面であり、第2表面BbBは、デバイス層3Bにおける支持層2B側の表面である。可動ミラー5Bは、ミラー面51aBが第1表面BaBと交差(例えば、直交)する平面上に位置し、かつミラー面51aBがベースBBの第1表面BaB側に位置した状態において、ベースBBに実装されている。 As shown in FIGS. 17, 18 and 19, the base BB includes a first surface BaB and a second surface BbB facing each other. The first surface BaB is the surface of the device layer 3B opposite to the support layer 2B, and the second surface BbB is the surface of the device layer 3B on the support layer 2B side. The movable mirror 5B is mounted on the base BB in a state where the mirror surface 51aB is positioned on a plane intersecting (for example, orthogonal to) the first surface BaB and the mirror surface 51aB is positioned on the first surface BaB side of the base BB. Has been.
 可動ミラー(光学素子)5Bは、ミラー部(光学部)51Bと、弾性部52Bと、支持部53Bと、連結部54Bと、を有している。可動ミラー5Bは、MEMS技術(パターニング及びエッチング)によって一体的に形成されている。このため、可動ミラー5Bの厚さ(ミラー面51aBに直交するXB軸方向の寸法)は、各部において一定であり、例えば10μm以上20μm以下程度である。また、ミラー部51B、弾性部52B、支持部53B及び連結部54Bは、YB軸方向(ミラー面51aB及び第1表面BaBの双方に沿った方向)から見た場合に互いに同一平面上に位置するように設けられている。 The movable mirror (optical element) 5B has a mirror part (optical part) 51B, an elastic part 52B, a support part 53B, and a connecting part 54B. The movable mirror 5B is integrally formed by MEMS technology (patterning and etching). For this reason, the thickness of the movable mirror 5B (the dimension in the XB axis direction orthogonal to the mirror surface 51aB) is constant in each part, and is, for example, about 10 μm or more and 20 μm or less. Further, the mirror part 51B, the elastic part 52B, the support part 53B, and the connecting part 54B are located on the same plane when viewed from the YB axis direction (direction along both the mirror surface 51aB and the first surface BaB). It is provided as follows.
 ミラー部51Bは、ミラー面(光学面)51aBを主面として有する板状(例えば、円板状)に形成されている。ミラー面51aBの直径は、例えば1mm程度である。弾性部52Bは、XB軸方向から見た場合にミラー部51Bから離間しつつミラー部51Bを囲む弧状(例えば、半円弧状)に形成されている。 The mirror part 51B is formed in a plate shape (for example, a disk shape) having a mirror surface (optical surface) 51aB as a main surface. The diameter of the mirror surface 51aB is, for example, about 1 mm. The elastic part 52B is formed in an arc shape (for example, a semicircular arc shape) surrounding the mirror part 51B while being separated from the mirror part 51B when viewed from the XB axis direction.
 支持部53Bは、一対の脚部55AB,55BBと、一対の係止部(突出部)56Bと、一対の折返部57Bと、を有している。一対の脚部55AB,55BBは、YB軸方向にミラー部51Bを挟むように設けられ、弾性部52Bの両端部にそれぞれ接続されている。 The support portion 53B has a pair of leg portions 55AB, 55BB, a pair of locking portions (projecting portions) 56B, and a pair of folded portions 57B. The pair of leg portions 55AB and 55BB is provided so as to sandwich the mirror portion 51B in the YB axis direction, and is connected to both ends of the elastic portion 52B.
 脚部55AB及び脚部55BBのそれぞれは、一端が弾性部52Bに接続された第1部分58aBと、第1部分58aBの他端に接続された第2部分58bBと、を有している。脚部55ABの第1部分58aBは、ZB軸方向(第1表面BaBに直交する方向)に沿って延在している。脚部55BBの第1部分58aBは、XB軸方向から見た場合に、ミラー部51Bの外縁に沿って弧状に延在している。脚部55AB及び脚部55BBそれぞれの第2部分58bBは、弾性部52Bから遠ざかるほど(ZB軸負方向に向かうにつれて)互いに近づくように傾斜して延在している。 Each of the leg part 55AB and the leg part 55BB has a first part 58aB having one end connected to the elastic part 52B and a second part 58bB connected to the other end of the first part 58aB. The first portion 58aB of the leg portion 55AB extends along the ZB axis direction (a direction orthogonal to the first surface BaB). The first portion 58aB of the leg portion 55BB extends in an arc shape along the outer edge of the mirror portion 51B when viewed from the XB axis direction. The second portions 58bB of the leg portions 55AB and the leg portions 55BB extend so as to be closer to each other as they move away from the elastic portion 52B (toward the negative direction of the ZB axis).
 一対の係止部56Bは、各第2部分58bBにおける弾性部52Bとは反対側の端部にそれぞれ設けられている。一対の係止部56Bのそれぞれは、XB軸方向から見た場合に内側(互いに近づく側)に例えばV字状に屈曲するように形成されている。各係止部56Bは、傾斜面56aB及び傾斜面56bBを含む。傾斜面56aB及び傾斜面56bBは、一対の係止部56Bにおける互いに対向する面の反対側の面である(外面である)。 The pair of locking portions 56B are provided at the ends of the second portions 58bB opposite to the elastic portions 52B, respectively. Each of the pair of locking portions 56B is formed to be bent in, for example, a V shape on the inner side (side closer to each other) when viewed from the XB axis direction. Each locking portion 56B includes an inclined surface 56aB and an inclined surface 56bB. The inclined surface 56aB and the inclined surface 56bB are surfaces opposite to the surfaces facing each other in the pair of locking portions 56B (outer surfaces).
 一対の係止部56B間において、傾斜面56aBは、ZB軸負方向に向かうにつれて互いに近づくように傾斜している。傾斜面56bBは、ZB軸負方向に向かうにつれて互いに離れるように傾斜している。XB軸方向から見た場合に、ZB軸に対する傾斜面56aBの傾斜角αBは、ZB軸方向に対する傾斜面56bBの傾斜角βBと等しい又は僅かに大きい。例えば、傾斜角αBは、約45度であり、傾斜角βBは約35度である。 Between the pair of locking portions 56B, the inclined surfaces 56aB are inclined so as to approach each other in the negative direction of the ZB axis. The inclined surfaces 56bB are inclined so as to be separated from each other in the negative direction of the ZB axis. When viewed from the XB axis direction, the inclination angle αB of the inclined surface 56aB with respect to the ZB axis is equal to or slightly larger than the inclination angle βB of the inclined surface 56bB with respect to the ZB axis direction. For example, the inclination angle αB is about 45 degrees, and the inclination angle βB is about 35 degrees.
 一対の係止部56Bは、一対の脚部55AB,55BBを介して弾性部52Bにそれぞれ接続されている。これにより、例えばYB軸方向の両側から挟むように一対の脚部55AB,55BBに力を加えることにより、弾性部52BをYB軸方向に圧縮するように弾性変形させ、一対の係止部56B間の距離を縮小させることができる。すなわち、YB軸方向における一対の係止部56B間の距離は、弾性部52Bの弾性変形に応じて可変である。また、一対の係止部56Bには、弾性部52Bの弾性力が付与され得る。 The pair of locking portions 56B are connected to the elastic portion 52B via a pair of leg portions 55AB and 55BB, respectively. Accordingly, for example, by applying force to the pair of leg portions 55AB and 55BB so as to be sandwiched from both sides in the YB axis direction, the elastic portion 52B is elastically deformed so as to be compressed in the YB axis direction, and between the pair of locking portions 56B. The distance can be reduced. That is, the distance between the pair of locking portions 56B in the YB axis direction is variable according to the elastic deformation of the elastic portion 52B. Further, the elastic force of the elastic portion 52B can be applied to the pair of locking portions 56B.
 一対の折返部57Bは、各係止部56Bにおける弾性部52Bとは反対側の端部にそれぞれ設けられている。一対の折返部57Bのそれぞれは、XB軸方向から見た場合に外側(互いに遠ざかる側)かつZB軸正方向側に向かって延びている。各折返部57Bは、傾斜面57aBを含む。傾斜面57aBは、折返部57Bにおける係止部56Bと対向する面である。一対の折返部57B間において、傾斜面57aBは、ZB軸正方向に向かうにつれて互いに離れるように傾斜している。XB軸方向から見た場合に、ZB軸方向に対する傾斜面57aBの傾斜角γBは、傾斜角αBよりも僅かに大きい。傾斜角γBは、例えば約60度である。 The pair of folded portions 57B are provided at the end portions of the respective engaging portions 56B opposite to the elastic portions 52B. Each of the pair of folded portions 57B extends outward (side away from each other) and toward the ZB-axis positive direction when viewed from the XB-axis direction. Each folded portion 57B includes an inclined surface 57aB. The inclined surface 57aB is a surface facing the locking portion 56B in the folded portion 57B. Between the pair of folded portions 57B, the inclined surfaces 57aB are inclined so as to be separated from each other in the positive direction of the ZB axis. When viewed from the XB axis direction, the inclination angle γB of the inclined surface 57aB with respect to the ZB axis direction is slightly larger than the inclination angle αB. The inclination angle γB is about 60 degrees, for example.
 連結部54Bは、ミラー部51Bと脚部55BBとを互いに連結している。連結部54Bは、XB軸方向から見た場合に、所定方向においてミラー部51Bの中心に対して弾性部52Bと反対側において、ミラー部51Bに連結されている。この所定方向は、YB軸方向及びZB軸方向の双方に交差する方向である。連結部54Bは、第1部分58aBと第2部分58bBとの接続部分において、脚部55BBに連結されている。ミラー部51Bの中心は、中心線CL1Bに対してYB軸方向の一方の側(脚部55BB側)に位置している。中心線CL1Bは、後述する第1開口31bBの中心を通りZB軸方向に延びる仮想的な直線である。 The connecting part 54B connects the mirror part 51B and the leg part 55BB to each other. The connection part 54B is connected to the mirror part 51B on the opposite side of the elastic part 52B with respect to the center of the mirror part 51B in a predetermined direction when viewed from the XB axis direction. This predetermined direction is a direction that intersects both the YB-axis direction and the ZB-axis direction. The connecting portion 54B is connected to the leg portion 55BB at the connecting portion between the first portion 58aB and the second portion 58bB. The center of the mirror part 51B is located on one side (the leg part 55BB side) in the YB axis direction with respect to the center line CL1B. The center line CL1B is a virtual straight line that passes through the center of the first opening 31bB described later and extends in the ZB axis direction.
 ここで、ベースBBの実装領域31Bには、第1開口31bBと、一対の第2開口31cBと、が形成されている。第1開口31bB及び各第2開口31cBは、ZB軸方向にデバイス層3Bを貫通し、第1表面BaB及び第2表面BbBの双方に開口している。一対の第2開口31cBは、第1開口31bBをYB軸方向に挟むように設けられている。第1開口31bB及び第2開口31cBの詳細については後述する。 Here, a first opening 31bB and a pair of second openings 31cB are formed in the mounting region 31B of the base BB. The first opening 31bB and each second opening 31cB penetrate the device layer 3B in the ZB axis direction, and are open to both the first surface BaB and the second surface BbB. The pair of second openings 31cB is provided so as to sandwich the first opening 31bB in the YB axis direction. Details of the first opening 31bB and the second opening 31cB will be described later.
 一対の係止部56Bは、互いに離れる方向に弾性部52Bの弾性力が付与された状態において、第1開口31bBに挿入されている。各係止部56Bは、第1開口31bBを介して第2表面BbBから突出している。各係止部56Bは、傾斜面56aBにおいて第1開口31bBの第1表面BaB側の縁部31dBに当接している。各折返部57Bは、各係止部56Bから第2表面BbBに向かって延び、第2表面BbB側から第2開口31cBに入り込んでいる。各折返部57Bは、傾斜面57aBにおいて第2開口31cBの第2表面BbB側の縁部31eBに当接している。このように、係止部56Bが第1開口31bBの第1表面BaB側の縁部31dBに当接し、かつ折返部57Bが第2開口31cBの第2表面BbB側の縁部31eBに当接していることにより、可動ミラー5BがZB軸方向に抜け止めされている。 The pair of locking portions 56B are inserted into the first opening 31bB in a state where the elastic force of the elastic portion 52B is applied in a direction away from each other. Each locking portion 56B protrudes from the second surface BbB via the first opening 31bB. Each locking portion 56B is in contact with the edge portion 31dB on the first surface BaB side of the first opening 31bB on the inclined surface 56aB. Each folded portion 57B extends from each locking portion 56B toward the second surface BbB, and enters the second opening 31cB from the second surface BbB side. Each folded portion 57B is in contact with the edge 31eB on the second surface BbB side of the second opening 31cB on the inclined surface 57aB. Thus, the locking portion 56B contacts the edge 31dB on the first surface BaB side of the first opening 31bB, and the folded portion 57B contacts the edge 31eB on the second surface BbB side of the second opening 31cB. As a result, the movable mirror 5B is prevented from coming off in the ZB-axis direction.
 ここで、中間層4Bには、開口41Bが形成されている。開口41Bは、ZB軸方向において中間層4Bの両側に開口している。支持層2Bには、開口21Bが形成されている。開口21Bは、ZB軸方向において支持層2Bの両側に開口している。光モジュール1Bでは、中間層4Bの開口41B内の領域及び支持層2Bの開口21B内の領域によって、一続きの空間S1Bが構成されている。つまり、空間S1Bは、中間層4Bの開口41B内の領域及び支持層2Bの開口21B内の領域を含んでいる。 Here, an opening 41B is formed in the intermediate layer 4B. The openings 41B are opened on both sides of the intermediate layer 4B in the ZB axis direction. An opening 21B is formed in the support layer 2B. The openings 21B are opened on both sides of the support layer 2B in the ZB axis direction. In the optical module 1B, a continuous space S1B is configured by the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B. That is, the space S1B includes a region in the opening 41B of the intermediate layer 4B and a region in the opening 21B of the support layer 2B.
 空間S1Bは、支持層2Bとデバイス層3Bとの間に形成されており、少なくとも実装領域31B及び駆動領域32Bに対応している。具体的には、中間層4Bの開口41B内の領域及び支持層2Bの開口21B内の領域は、ZB軸方向から見た場合に実装領域31Bが移動する範囲を含んでいる。中間層4Bの開口41B内の領域は、実装領域31B及び駆動領域32Bのうち支持層2Bから離間させるべき部分(すなわち、支持層2Bに対して浮いた状態とすべき部分であって、例えば、実装領域31Bの全体、各弾性支持領域34Bの弾性変形部34bB、第1櫛歯部33aB及び第2櫛歯部31aB)を支持層2Bから離間させるための隙間を形成している。 The space S1B is formed between the support layer 2B and the device layer 3B, and corresponds to at least the mounting region 31B and the drive region 32B. Specifically, the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B include a range in which the mounting region 31B moves when viewed from the ZB axis direction. The region in the opening 41B of the intermediate layer 4B is a portion that should be separated from the support layer 2B in the mounting region 31B and the drive region 32B (that is, a portion that should be in a floating state with respect to the support layer 2B. A gap for separating the entire mounting region 31B, the elastic deformation portion 34bB, the first comb tooth portion 33aB, and the second comb tooth portion 31aB) of each elastic support region 34B from the support layer 2B is formed.
 空間S1Bには、可動ミラー5Bが有する各係止部56Bの一部が位置している。具体的には、各係止部56Bの一部は、中間層4Bの開口41B内の領域を介して、支持層2Bの開口21B内の領域に位置している。各係止部56Bの一部は、第2表面BbBから空間S1B内に、例えば100μm程度突出している。上述したように、中間層4Bの開口41B内の領域及び支持層2Bの開口21B内の領域は、ZB軸方向から見た場合に実装領域31Bが移動する範囲を含んでいるため、実装領域31Bが方向ABに沿って往復動した際に、可動ミラー5Bの各係止部56Bうち空間S1Bに位置する一部が、中間層4B及び支持層2Bと接触することはない。 A part of each locking portion 56B of the movable mirror 5B is located in the space S1B. Specifically, a part of each locking portion 56B is located in a region in the opening 21B of the support layer 2B via a region in the opening 41B of the intermediate layer 4B. A part of each locking portion 56B protrudes from the second surface BbB into the space S1B by about 100 μm, for example. As described above, the region in the opening 41B of the intermediate layer 4B and the region in the opening 21B of the support layer 2B include the range in which the mounting region 31B moves when viewed from the ZB axis direction. Is reciprocated along the direction AB, a part of each locking portion 56B of the movable mirror 5B located in the space S1B does not come into contact with the intermediate layer 4B and the support layer 2B.
 ここで、図19(b)に示されるように、第1開口31bBの内面は、YB軸方向に互いに対向する一対の傾斜面SABと、YB軸方向に互いに対向する一対の傾斜面SBBと、を含む。各傾斜面SABは、一端SAaB及び他端SAbBを含み、各傾斜面SBBは、一端SBaB及び他端SBbBを含む。ZB軸方向から見た場合に、一対の傾斜面SABは、一端SAaBから他端SAbBに向けて互いの距離が拡大するように(例えば、XB軸方向に対して)傾斜し、一対の傾斜面SBBは、一端SBaBから他端SBbBに向けて互いの距離が拡大するように(例えば、XB軸方向に対して)、一対の傾斜面SABと反対側に傾斜している。傾斜面SABと傾斜面SBBとは、XB軸方向(一対の傾斜面SAB同士が対向するYB軸方向に直交する方向)において互いに対向している。 Here, as shown in FIG. 19 (b), the inner surface of the first opening 31bB has a pair of inclined surfaces SAB facing each other in the YB axis direction, a pair of inclined surfaces SBB facing each other in the YB axis direction, including. Each inclined surface SAB includes one end SAaB and the other end SAbB, and each inclined surface SBB includes one end SBaB and the other end SBbB. When viewed from the ZB axis direction, the pair of inclined surfaces SAB are inclined so that the distance from each other increases from one end SAaB to the other end SAbB (for example, with respect to the XB axis direction). The SBB is inclined to the opposite side of the pair of inclined surfaces SAB so that the mutual distance increases from one end SBaB to the other end SBbB (for example, with respect to the XB axial direction). The inclined surface SAB and the inclined surface SBB are opposed to each other in the XB axis direction (a direction orthogonal to the YB axis direction where the pair of inclined surfaces SAB are opposed to each other).
 YB軸方向の両側それぞれにおいて、傾斜面SABの他端SAbBと傾斜面SBBの他端SBbBとは、XB軸方向に沿って延在する接続面SCBを介して互いに接続されている。YB軸方向の両側それぞれにおいて、傾斜面SAB、傾斜面SBB及び接続面SCBは、1つの角部を規定している。XB軸方向の両側それぞれにおいて、傾斜面SABの一端SAaBと傾斜面SBBの一端SBaBとは、YB軸方向に延在する接続面SDBを介して互いに接続されている。接続面SDBは、ZB軸方向から見た場合に、中間部において外側(互いに離れる側)にV字状に拡幅した形状を有している。第1開口31bBは、ZB軸方向から見た場合に、第1開口31bBの中心を通りYB軸方向に平行な中心線CL2Bに関して線対称な形状を有している。ここでの第1開口31bBは、ZB軸方向から見た場合に十角形状を有している。 On both sides in the YB axis direction, the other end SAbB of the inclined surface SAB and the other end SBbB of the inclined surface SBB are connected to each other via a connection surface SCB extending along the XB axis direction. The inclined surface SAB, the inclined surface SBB, and the connecting surface SCB define one corner on each of both sides in the YB axis direction. On both sides in the XB axis direction, one end SAaB of the inclined surface SAB and one end SBaB of the inclined surface SBB are connected to each other via a connection surface SDB extending in the YB axis direction. When viewed from the ZB axis direction, the connection surface SDB has a shape that is widened in a V shape on the outer side (side away from each other) in the intermediate portion. The first opening 31bB has a shape symmetrical with respect to a center line CL2B passing through the center of the first opening 31bB and parallel to the YB axis direction when viewed from the ZB axis direction. The first opening 31bB here has a decagonal shape when viewed from the ZB-axis direction.
 各第2開口31cBの内面は、XB軸方向に互いに対向する一対の傾斜面SEBを含む。一対の傾斜面SEBは、ZB軸方向から見た場合に、第1開口31bBから遠ざかるほど互いに離れるように傾斜している。YB軸方向において、一方の傾斜面SEBは傾斜面SABと対向し、他方の傾斜面SEBは傾斜面SBBと対向している。一対の傾斜面SEBは、ZB軸方向から見た場合に、傾斜面SAB及び傾斜面SBBとYB軸方向に関して線対称な形状を有している。各第2開口31cBは、ZB軸方向から見た場合に、中心線CL2Bに関して線対称な形状を有している。ここでの第2開口31cBは、ZB軸方向から見た場合に六角形状を有している。 The inner surface of each second opening 31cB includes a pair of inclined surfaces SEB that face each other in the XB axis direction. The pair of inclined surfaces SEB are inclined so as to be separated from each other as the distance from the first opening 31bB increases when viewed from the ZB axis direction. In the YB axis direction, one inclined surface SEB faces the inclined surface SAB, and the other inclined surface SEB faces the inclined surface SBB. The pair of inclined surfaces SEB have an axisymmetric shape with respect to the inclined surface SAB and the inclined surface SBB and the YB axis direction when viewed from the ZB axis direction. Each second opening 31cB has a line-symmetric shape with respect to the center line CL2B when viewed from the ZB-axis direction. The second opening 31cB here has a hexagonal shape when viewed from the ZB-axis direction.
 YB軸方向における第1開口31bBの寸法の最大値(すなわち、一対の傾斜面SABの他端SAbB同士の間隔)は、一対の係止部56Bが第1開口31bB内に配置されているときに弾性部52Bの弾性変形の一部のみが解放され得る(すなわち、弾性部52Bが自然長に至らない)値である。したがって、第1開口31bB内に一対の係止部56Bを配置すると、弾性部52Bの弾性力によって一対の係止部56Bが第1開口31bBの内面を押圧し、第1開口31bBの内面からの反力が一対の係止部56Bに付与されることになる。可動ミラー5Bは、当該反力によりベースBBに支持されている。より詳細には、弾性部52Bの弾性力によって、各係止部56Bが第1開口31bBの傾斜面SAB及び傾斜面SBBによって規定される角部に内接し、かつ各折返部57Bが傾斜面SEBに当接した状態となっている。これにより、可動ミラー5BがXB軸方向及びYB軸方向に位置決めされている。 The maximum value of the dimension of the first opening 31bB in the YB-axis direction (that is, the distance between the other ends SAbB of the pair of inclined surfaces SAB) is when the pair of locking portions 56B are disposed in the first opening 31bB. Only a part of the elastic deformation of the elastic part 52B can be released (that is, the elastic part 52B does not reach a natural length). Accordingly, when the pair of locking portions 56B are arranged in the first opening 31bB, the pair of locking portions 56B press the inner surface of the first opening 31bB by the elastic force of the elastic portion 52B, and the inner surface of the first opening 31bB A reaction force is applied to the pair of locking portions 56B. The movable mirror 5B is supported on the base BB by the reaction force. More specifically, due to the elastic force of the elastic portion 52B, each locking portion 56B is inscribed in the corner defined by the inclined surface SAB and the inclined surface SBB of the first opening 31bB, and each folded portion 57B is inclined by the inclined surface SEB. It is in the state which contact | abutted. Thereby, the movable mirror 5B is positioned in the XB axis direction and the YB axis direction.
 次に、図20及び図21を参照しつつ、可動ミラー5Bの実装過程の一例を説明する。まず、図20に示されるように、一対の係止部56B間の距離を縮小させた状態において、一対の係止部56Bを第1表面BaB側から第1開口31bBに挿入する。このとき、一対の係止部56Bは、第1開口31bBの内面に当接していない。 Next, an example of the mounting process of the movable mirror 5B will be described with reference to FIGS. First, as shown in FIG. 20, in a state where the distance between the pair of locking portions 56B is reduced, the pair of locking portions 56B is inserted into the first opening 31bB from the first surface BaB side. At this time, the pair of locking portions 56B are not in contact with the inner surface of the first opening 31bB.
 続いて、図21に示されるように、一対の係止部56B間の距離を拡大させる。これにより、各係止部56Bが第1開口31bBの傾斜面SAB及び傾斜面SBBによって規定される角部に向かって移動する。このとき、可動ミラー5Bの姿勢によっては、各係止部56Bが傾斜面SAB及び傾斜面SBBの一方(以下、当接面という)に先に当接する場合がある。この場合、各係止部56Bは、弾性部52Bの弾性力によって当接面上をYB軸方向の外側(第2開口31cB側)に向けて摺動し、当接面に接触しながら傾斜面SAB及び傾斜面SBBの他方(すなわち、当接面と対向する対向面)に突き当てられる。これにより、各係止部56Bは、傾斜面SAB及び傾斜面SBBによって規定される角部に内接し、XB軸方向及びYB軸方向に位置決めされる(弾性力によりセルフアライメントされる)。 Subsequently, as shown in FIG. 21, the distance between the pair of locking portions 56B is increased. Thereby, each latching | locking part 56B moves toward the corner | angular part prescribed | regulated by the inclined surface SAB and inclined surface SBB of 1st opening 31bB. At this time, depending on the posture of the movable mirror 5B, each locking portion 56B may first come into contact with one of the inclined surface SAB and the inclined surface SBB (hereinafter referred to as a contact surface). In this case, each locking portion 56B slides on the contact surface toward the outside in the YB axis direction (second opening 31cB side) by the elastic force of the elastic portion 52B, and is inclined while contacting the contact surface. It abuts against the other of the SAB and the inclined surface SBB (that is, the facing surface facing the contact surface). Thereby, each latching | locking part 56B is inscribed in the corner | angular part prescribed | regulated by the inclined surface SAB and the inclined surface SBB, and is positioned in the XB-axis direction and the YB-axis direction (self-aligned by an elastic force).
 また、各係止部56Bは、傾斜面56aBにおいて第1開口31bBの第1表面BaB側の縁部51dBに当接する。各係止部56Bは、弾性部52Bの弾性力によって縁部51dB上をZB軸正方向側に向けて摺動する。これにより、各折返部57Bが第2開口31cBに第2表面BbB側から入り込む。各折返部57Bは、傾斜面57aBが第2開口31cBの第2表面BbB側の縁部51eBに当接する位置(図19の位置)まで移動する。これにより、当該位置において一対の係止部56Bが係止され、可動ミラー5BがZB軸方向に位置決めされる(弾性力によりセルフアライメントされる)。つまり、可動ミラー5Bにおいては、弾性部52Bの弾性力を利用して、3次元的にセルフアライメントがなされる。
[固定ミラー及びその周辺構造]
Moreover, each latching | locking part 56B contact | abuts the edge part 51dB by the side of the 1st surface BaB of 1st opening 31bB in the inclined surface 56aB. Each locking portion 56B slides on the edge 51dB toward the ZB-axis positive direction side by the elastic force of the elastic portion 52B. Thereby, each folding | returning part 57B enters into the 2nd opening 31cB from the 2nd surface BbB side. Each folded portion 57B moves to a position (position in FIG. 19) where the inclined surface 57aB contacts the edge portion 51eB on the second surface BbB side of the second opening 31cB. Accordingly, the pair of locking portions 56B are locked at the position, and the movable mirror 5B is positioned in the ZB axis direction (self-aligned by the elastic force). That is, in the movable mirror 5B, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52B.
[Fixed mirror and its peripheral structure]
 固定ミラー6B及びその周辺構造は、実装領域が可動しないことを除いて、上記の可動ミラー5B及びその周辺構造と同様となっている。すなわち、図22及び図23に示されるように固定ミラー(光学素子)6Bは、ミラー部(光学部)61Bと、弾性部62Bと、支持部63Bと、連結部64Bと、を有している。固定ミラー6Bは、ミラー面61aBが第1表面BaBと交差(例えば、直交)する平面上に位置し、かつミラー面61aBがベースBBの第1表面BaB側に位置した状態において、ベースBBに実装されている。固定ミラー6Bは、MEMS技術(パターニング及びエッチング)によって一体的に形成されている。このため、固定ミラー6Bの厚さ(ミラー面61aBに直交するYB軸方向の寸法)は、各部において一定であり、例えば10μm以上20μm以下程度である。また、ミラー部61B、弾性部62B、支持部63B及び連結部64Bは、XB軸方向(ミラー面61aB及び第1表面BaBの双方に沿った方向)から見た場合に互いに同一平面上に位置するように設けられている。 The fixed mirror 6B and its peripheral structure are the same as the movable mirror 5B and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 22 and 23, the fixed mirror (optical element) 6B has a mirror part (optical part) 61B, an elastic part 62B, a support part 63B, and a connecting part 64B. . The fixed mirror 6B is mounted on the base BB in a state where the mirror surface 61aB is positioned on a plane intersecting (for example, orthogonal to) the first surface BaB and the mirror surface 61aB is positioned on the first surface BaB side of the base BB. Has been. The fixed mirror 6B is integrally formed by MEMS technology (patterning and etching). For this reason, the thickness of the fixed mirror 6B (the dimension in the YB axis direction orthogonal to the mirror surface 61aB) is constant in each part, and is, for example, about 10 μm to 20 μm. Further, the mirror part 61B, the elastic part 62B, the support part 63B, and the connecting part 64B are located on the same plane when viewed from the XB axis direction (direction along both the mirror surface 61aB and the first surface BaB). It is provided as follows.
 ミラー部61Bは、ミラー面(光学面)61aBを主面として有する板状(例えば、円板状)に形成されている。ミラー面61aBの直径は、例えば1mm程度である。弾性部62Bは、YB軸方向から見た場合にミラー部61Bから離間しつつミラー部61Bを囲む弧状(例えば、半円弧状)に形成されている。 The mirror part 61B is formed in a plate shape (for example, a disk shape) having a mirror surface (optical surface) 61aB as a main surface. The diameter of the mirror surface 61aB is, for example, about 1 mm. The elastic portion 62B is formed in an arc shape (for example, a semicircular arc shape) surrounding the mirror portion 61B while being separated from the mirror portion 61B when viewed from the YB axis direction.
 支持部63Bは、一対の脚部65AB,65BBと、一対の係止部(突出部)66Bと、一対の折返部67Bと、を有している。一対の脚部65AB,65BBは、XB軸方向にミラー部61Bを挟むように設けられ、弾性部62Bの両端部にそれぞれ接続されている。 The support portion 63B has a pair of leg portions 65AB, 65BB, a pair of locking portions (projections) 66B, and a pair of folded portions 67B. The pair of leg portions 65AB and 65BB are provided so as to sandwich the mirror portion 61B in the XB axis direction, and are respectively connected to both end portions of the elastic portion 62B.
 脚部65AB及び脚部65BBのそれぞれは、一端が弾性部62Bに接続された第1部分68aBと、第1部分68aBの他端に接続された第2部分68bBと、を有している。脚部65ABの第1部分68aBは、ZB軸方向(第1表面BaBに直交する方向)に沿って延在している。脚部65BBの第1部分68aBは、YB軸方向から見た場合に、ミラー部61Bの外縁に沿って円弧状に延在している。脚部65AB及び脚部65BBそれぞれの第2部分68bBは、弾性部62Bから遠ざかるほど(ZB軸負方向に向かうにつれて)互いに近づくように傾斜して延在している。 Each of the leg portion 65AB and the leg portion 65BB has a first portion 68aB having one end connected to the elastic portion 62B and a second portion 68bB connected to the other end of the first portion 68aB. The first portion 68aB of the leg portion 65AB extends along the ZB axis direction (a direction orthogonal to the first surface BaB). The first portion 68aB of the leg portion 65BB extends in an arc shape along the outer edge of the mirror portion 61B when viewed from the YB axis direction. The second portions 68bB of the leg portion 65AB and the leg portion 65BB extend so as to be closer to each other as they move away from the elastic portion 62B (toward the negative direction of the ZB axis).
 一対の係止部66Bは、各第2部分68bBにおける弾性部62Bとは反対側の端部にそれぞれ設けられている。一対の係止部66Bのそれぞれは、YB軸方向から見た場合に内側(互いに近づく側)に例えばV字状に屈曲するように形成されている。各係止部66Bは、傾斜面66aB及び傾斜面66bBを含む。傾斜面66aB及び傾斜面66bBは、一対の係止部66Bにおける互いに対向する面の反対側の面である(外面である)。 The pair of locking portions 66B are provided at the ends of the second portions 68bB opposite to the elastic portions 62B, respectively. Each of the pair of locking portions 66B is formed to be bent in, for example, a V shape on the inner side (side approaching each other) when viewed from the YB axis direction. Each locking portion 66B includes an inclined surface 66aB and an inclined surface 66bB. The inclined surface 66aB and the inclined surface 66bB are surfaces (outer surfaces) opposite to the surfaces facing each other in the pair of locking portions 66B.
 一対の係止部66B間において、傾斜面66aBは、ZB軸負方向に向かうにつれて互いに近づくように傾斜している。傾斜面66bBは、ZB軸負方向に向かうにつれて互いに離れるように傾斜している。YB軸方向から見た場合に、ZB軸方向に対する傾斜面66aB,66bBの傾斜角は、可動ミラー5Bにおける傾斜面56aB,56bBと同様である。 Between the pair of locking portions 66B, the inclined surfaces 66aB are inclined so as to approach each other in the negative direction of the ZB axis. The inclined surfaces 66bB are inclined so as to be separated from each other in the negative direction of the ZB axis. When viewed from the YB axis direction, the inclination angles of the inclined surfaces 66aB and 66bB with respect to the ZB axis direction are the same as those of the inclined surfaces 56aB and 56bB in the movable mirror 5B.
 一対の係止部66Bは、一対の脚部65AB,65BBを介して弾性部62Bにそれぞれ接続されている。これにより、例えばXB軸方向の両側から挟むように一対の脚部65AB,65BBに力を加えることにより、弾性部62BをXB軸方向に圧縮するように弾性変形させ、一対の係止部66B間の距離を縮小させることができる。すなわち、XB軸方向における一対の係止部66B間の距離は、弾性部62Bの弾性変形に応じて可変である。また、一対の係止部66Bには、弾性部62Bの弾性力が付与され得る。 The pair of locking portions 66B are connected to the elastic portion 62B through a pair of leg portions 65AB and 65BB, respectively. Thus, for example, by applying a force to the pair of leg portions 65AB and 65BB so as to be sandwiched from both sides in the XB axis direction, the elastic portion 62B is elastically deformed so as to be compressed in the XB axis direction, and between the pair of locking portions 66B. The distance can be reduced. That is, the distance between the pair of locking portions 66B in the XB axis direction is variable according to the elastic deformation of the elastic portion 62B. Further, the elastic force of the elastic portion 62B can be applied to the pair of locking portions 66B.
 一対の折返部67Bは、各係止部66Bにおける弾性部62Bとは反対側の端部にそれぞれ設けられている。各折返部67Bは、YB軸方向から見た場合に外側(互いに遠ざかる側)かつZB軸正方向側に向かって延びている。各折返部67Bは、傾斜面67aBを含む。傾斜面67aBは、折返部67Bにおける係止部66Bと対向する面である。一対の折返部67B間において、傾斜面67aBは、ZB軸正方向に向かうにつれて互いに離れるように傾斜している。YB軸方向から見た場合に、ZB軸方向に対する傾斜面67aBの傾斜角は、可動ミラー5Bにおける傾斜面57aBと同様である。 The pair of folded portions 67B are provided at the ends of the respective locking portions 66B opposite to the elastic portions 62B. Each folded portion 67B extends outward (side away from each other) and toward the ZB-axis positive direction when viewed from the YB-axis direction. Each folded portion 67B includes an inclined surface 67aB. The inclined surface 67aB is a surface facing the locking portion 66B in the folded portion 67B. Between the pair of folded portions 67B, the inclined surfaces 67aB are inclined so as to be separated from each other in the positive direction of the ZB axis. When viewed from the YB axis direction, the inclination angle of the inclined surface 67aB with respect to the ZB axis direction is the same as that of the inclined surface 57aB of the movable mirror 5B.
 連結部64Bは、ミラー部61Bと脚部65BBとを互いに連結している。連結部64Bは、YB軸方向から見た場合に、ミラー部61Bの中心に対して所定方向における弾性部62Bとは反対の側において、ミラー部61Bに連結されている。この所定方向は、XB軸方向及びZB軸方向の双方に交差する方向である。連結部64Bは、第1部分68aBと第2部分68bBとの接続部分において、脚部65BBに連結されている。ミラー部61Bの中心は、中心線CL3Bに対してXB軸方向の一方の側(脚部65BB側)に位置している。中心線CL3Bは、後述する第1開口37aBの中心を通りZB軸方向に延びる仮想的な直線である。 The connecting part 64B connects the mirror part 61B and the leg part 65BB to each other. The connection portion 64B is connected to the mirror portion 61B on the side opposite to the elastic portion 62B in the predetermined direction with respect to the center of the mirror portion 61B when viewed from the YB axis direction. This predetermined direction is a direction that intersects both the XB axis direction and the ZB axis direction. The connecting portion 64B is connected to the leg portion 65BB at the connecting portion between the first portion 68aB and the second portion 68bB. The center of the mirror part 61B is located on one side (the leg part 65BB side) in the XB axis direction with respect to the center line CL3B. The center line CL3B is a virtual straight line that passes through the center of a first opening 37aB described later and extends in the ZB axis direction.
 ここで、ベースBBの実装領域37Bには、第1開口37aBと、一対の第2開口37bBと、が形成されている。第1開口37aB及び各第2開口37bBは、ZB軸方向にデバイス層3Bを貫通し、第1表面BaB及び第2表面BbBの双方に開口している。一対の第2開口37bBは、第1開口37aBをXB軸方向に挟むように設けられている。 Here, a first opening 37aB and a pair of second openings 37bB are formed in the mounting region 37B of the base BB. The first opening 37aB and each second opening 37bB penetrate the device layer 3B in the ZB axis direction, and are open to both the first surface BaB and the second surface BbB. The pair of second openings 37bB are provided so as to sandwich the first opening 37aB in the XB axis direction.
 一対の係止部66Bは、互いに離れる方向に弾性部62Bの弾性力が付与された状態において、第1開口37aBに挿入されている。各係止部66Bは、第1開口37aBを介して第2表面BbBから突出している。各係止部66Bは、傾斜面66aBにおいて第1開口37aBの第1表面BaB側の縁部に当接している。一対の折返部67Bは、各係止部66Bから第2表面BbBに向かって延び、第2表面BbB側から第2開口37bBに入り込んでいる。各折返部67Bは、傾斜面67aBにおいて第2開口37bBの第2表面BbB側の縁部に当接している。このように、係止部66Bが第1開口37aBの第1表面BaB側の縁部に当接し、かつ折返部67Bが第2開口37bBの第2表面BbB側の縁部に当接していることにより、固定ミラー6BがZB軸方向に抜け止めされている。 The pair of locking portions 66B are inserted into the first opening 37aB in a state where the elastic force of the elastic portion 62B is applied in a direction away from each other. Each locking portion 66B protrudes from the second surface BbB via the first opening 37aB. Each locking portion 66B is in contact with the edge of the first opening 37aB on the first surface BaB side on the inclined surface 66aB. The pair of folded portions 67B extends from the respective locking portions 66B toward the second surface BbB, and enters the second opening 37bB from the second surface BbB side. Each folded portion 67B is in contact with the edge of the second opening 37bB on the second surface BbB side on the inclined surface 67aB. As described above, the locking portion 66B is in contact with the edge of the first opening 37aB on the first surface BaB side, and the folded portion 67B is in contact with the edge of the second opening 37bB on the second surface BbB side. Thus, the fixed mirror 6B is prevented from coming off in the ZB axis direction.
 ここで、中間層4Bには、開口42Bが形成されている。開口42Bは、ZB軸方向から見た場合に実装領域37Bの第1開口37aBを含んでおり、ZB軸方向において中間層4Bの両側に開口している。支持層2Bには、開口22Bが形成されている。開口22Bは、ZB軸方向から見た場合に実装領域37Bの第1開口37aBを含んでおり、ZB軸方向において支持層2Bの両側に開口している。光モジュール1Bでは、中間層4Bの開口42B内の領域及び支持層2Bの開口22B内の領域によって、一続きの空間S2Bが構成されている。つまり、空間S2Bは、中間層4Bの開口42B内の領域及び支持層2Bの開口22B内の領域を含んでいる。 Here, an opening 42B is formed in the intermediate layer 4B. The opening 42B includes the first opening 37aB of the mounting region 37B when viewed from the ZB axis direction, and opens on both sides of the intermediate layer 4B in the ZB axis direction. An opening 22B is formed in the support layer 2B. The opening 22B includes the first opening 37aB of the mounting region 37B when viewed from the ZB axis direction, and opens on both sides of the support layer 2B in the ZB axis direction. In the optical module 1B, a continuous space S2B is constituted by a region in the opening 42B of the intermediate layer 4B and a region in the opening 22B of the support layer 2B. That is, the space S2B includes a region in the opening 42B of the intermediate layer 4B and a region in the opening 22B of the support layer 2B.
 空間S2Bには、固定ミラー6Bが有する各係止部66Bの一部が位置している。具体的には、各係止部66Bの一部は、中間層4Bの開口42B内の領域を介して、支持層2Bの開口22B内の領域に位置している。各係止部66Bの一部は、デバイス層3Bにおける中間層4B側の表面から空間S2B内に、例えば100μm程度突出している。 A part of each locking portion 66B of the fixed mirror 6B is located in the space S2B. Specifically, a part of each locking portion 66B is located in a region in the opening 22B of the support layer 2B via a region in the opening 42B of the intermediate layer 4B. A part of each locking portion 66B protrudes from the surface on the intermediate layer 4B side in the device layer 3B into the space S2B, for example, about 100 μm.
 ここで、第1開口37aB及び第2開口37bBの内面は、それぞれ、実装領域31Bにおける第1開口31bB及び第2開口31cBの内面と同様に構成されている。したがって、第1開口37aB内に一対の係止部66Bを配置すると、弾性部62Bの弾性力によって一対の係止部66Bが第1開口37aBの内面を押圧し、第1開口37aBの内面からの反力が一対の係止部66Bに付与されることになる。固定ミラー6Bは、当該反力によりベースBBに支持されている。固定ミラー6Bにおいても、可動ミラー5Bの場合と同様に、第1開口37aBの内面と弾性力とを利用した3次元的なセルフアライメントがなされる。
[作用及び効果]
Here, the inner surfaces of the first opening 37aB and the second opening 37bB are configured similarly to the inner surfaces of the first opening 31bB and the second opening 31cB in the mounting region 31B, respectively. Therefore, when the pair of locking portions 66B are disposed in the first opening 37aB, the pair of locking portions 66B press the inner surface of the first opening 37aB by the elastic force of the elastic portion 62B, and the inner surface of the first opening 37aB A reaction force is applied to the pair of locking portions 66B. The fixed mirror 6B is supported by the base BB by the reaction force. In the fixed mirror 6B, as in the case of the movable mirror 5B, three-dimensional self-alignment using the inner surface of the first opening 37aB and the elastic force is performed.
[Action and effect]
 光モジュール1Bでは、第1表面BaB及び第2表面BbBに開口する第1開口31bB、並びに第2表面BbBに開口する第2開口31cB部がベースBBに設けられている。また、光学部をベースBBに支持する支持部53Bが、第1開口31bBを介して第2表面BbBから突出した係止部56Bと、係止部56Bから第2表面BbBに向かって延び、第2表面BbB側から第2開口31cBに入り込んだ折返部57Bと、を含んでいる。これにより、例えば衝撃により可動ミラー5Bが第1表面BaBに交差する方向に外れようとした場合でも、折返部57Bが第2開口31cBの第2表面BbB側の縁部31eBに当接することで、可動ミラー5Bの脱落を抑制することができる。よって、光モジュール1Bによれば、可動ミラー5Bの確実な実装を実現することができる。 In the optical module 1B, a first opening 31bB opening in the first surface BaB and the second surface BbB, and a second opening 31cB opening in the second surface BbB are provided in the base BB. Further, a support portion 53B that supports the optical portion on the base BB extends to the locking portion 56B protruding from the second surface BbB via the first opening 31bB, and extends from the locking portion 56B toward the second surface BbB. 2 and a folded portion 57B that enters the second opening 31cB from the surface BbB side. Thereby, for example, even when the movable mirror 5B is about to come off in the direction intersecting the first surface BaB due to an impact, the folded portion 57B comes into contact with the edge 31eB on the second surface BbB side of the second opening 31cB. Dropping of the movable mirror 5B can be suppressed. Therefore, according to the optical module 1B, the movable mirror 5B can be reliably mounted.
 また、光モジュール1Bでは、第2開口31cBが第1開口31bBを挟むように一対設けられており、折返部57Bが一対の係止部56Bそれぞれに設けられて一対の第2開口31cBにそれぞれ入り込んでいる。これにより、可動ミラー5Bの脱落をより確実に抑制することができる。 Further, in the optical module 1B, a pair of second openings 31cB are provided so as to sandwich the first opening 31bB, and a folded portion 57B is provided in each of the pair of locking portions 56B and enters the pair of second openings 31cB. It is out. Thereby, dropping of the movable mirror 5B can be more reliably suppressed.
 また、光モジュール1Bでは、係止部56Bが第1開口31bBの第1表面BaB側の縁部31dBに当接している。これにより、可動ミラー5Bの脱落をより一層確実に抑制することができる。 In the optical module 1B, the locking portion 56B is in contact with the edge 31dB on the first surface BaB side of the first opening 31bB. Thereby, dropping of the movable mirror 5B can be more reliably suppressed.
 また、光モジュール1Bでは、折返部57Bが第2開口31cBの第2表面BbB側の縁部31eBに当接している。これにより、可動ミラー5Bの脱落をより一層確実に抑制することができる。特に、係止部56Bが第1開口31bBの第1表面BaB側の縁部31dBに当接し、かつ折返部57Bが第2開口31cBの第2表面BbB側の縁部31eBに当接している場合、係止部56Bと折返部57BとによってベースBBを近接した二点間で挟んで支持するため、XB軸方向及びZB軸方向の衝撃に対する耐性を一層向上することができる。 In the optical module 1B, the folded portion 57B is in contact with the edge 31eB on the second surface BbB side of the second opening 31cB. Thereby, dropping of the movable mirror 5B can be more reliably suppressed. Particularly, when the locking portion 56B is in contact with the edge 31dB on the first surface BaB side of the first opening 31bB, and the folded portion 57B is in contact with the edge 31eB on the second surface BbB side of the second opening 31cB. In addition, since the base BB is sandwiched and supported between the two adjacent points by the locking portion 56B and the folded portion 57B, the resistance to impacts in the XB axis direction and the ZB axis direction can be further improved.
 また、光モジュール1Bでは、一対の係止部56Bが、弾性部52Bの弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされ、弾性部52Bの弾性力が付与された状態において第1開口31bBに挿入されている。そして、可動ミラー5Bが、第1開口31bBの内面から一対の係止部56Bに付与される弾性力の反力によりベースBBに支持されている。これにより、弾性部52Bの弾性力を利用して可動ミラー5BをベースBBに実装することができる。更に、弾性力を利用して可動ミラー5BがベースBBに実装され、しかも、折返部57Bによって可動ミラー5Bの脱落が抑制されているため、接着剤の使用量を低減すること、或いは接着剤を不要とすることが可能となる。接着剤の使用量の低減により、次のような利点が得られる。すなわち、接着材のはみ出しにより、ミラー面51aBに汚染等が生じたり、光モジュール1Bの駆動領域32Bに破壊や動作不良が生じたりするのを抑制することができる。また、接着材の形成のための領域(構成要素間のスペース)が削減されることで、光モジュール1Bの小型化を図ることもできる。 In the optical module 1B, the pair of locking portions 56B is provided with an elastic force according to the elastic deformation of the elastic portion 52B, the distance between them is variable, and the elastic force of the elastic portion 52B is applied. Are inserted into the first opening 31bB. The movable mirror 5B is supported on the base BB by the reaction force of the elastic force applied to the pair of locking portions 56B from the inner surface of the first opening 31bB. Thereby, the movable mirror 5B can be mounted on the base BB using the elastic force of the elastic portion 52B. Furthermore, since the movable mirror 5B is mounted on the base BB using elastic force, and the movable mirror 5B is prevented from falling off by the folded portion 57B, the amount of adhesive used can be reduced, or the adhesive can be used. It becomes possible to make it unnecessary. The following advantages are obtained by reducing the amount of adhesive used. That is, it is possible to suppress the occurrence of contamination or the like on the mirror surface 51aB or the destruction or malfunction of the drive region 32B of the optical module 1B due to the protrusion of the adhesive. Further, the area for forming the adhesive (the space between the components) is reduced, so that the optical module 1B can be downsized.
 また、光モジュール1Bでは、一対の係止部56Bが、互いに離れる方向に弾性部52Bの弾性力が付与された状態において第1開口31bBに挿入されている。これにより、弾性力を利用して可動ミラー5BをベースBBに好適に実装することができる。 In the optical module 1B, the pair of locking portions 56B are inserted into the first opening 31bB in a state where the elastic force of the elastic portion 52B is applied in a direction away from each other. Thereby, the movable mirror 5B can be suitably mounted on the base BB using the elastic force.
 また、光モジュール1Bでは、第1開口31bBの内面が、ZB軸方向から見た場合に、一端SAaBから他端SAbBに向けて互いの距離が拡大するように傾斜した一対の傾斜面SABと、一対の傾斜面SAB同士が対向するYB軸方向に直交するXB軸方向において一対の傾斜面SABと対向する一対の傾斜面SBBと、を含む。これにより、係止部56Bを第1開口31bBに挿入して弾性部52Bの弾性変形の一部を解放したときに、弾性力によって係止部56Bを傾斜面SABに摺動させて傾斜面SBBに突き当てることで、第1表面BaBに沿った方向に可動ミラー5Bを位置決めすることができる。 Further, in the optical module 1B, when the inner surface of the first opening 31bB is viewed from the ZB axis direction, a pair of inclined surfaces SAB that are inclined so that the distance from one end SAaB to the other end SAbB increases. A pair of inclined surfaces SBB opposite to the pair of inclined surfaces SAB in the XB axis direction orthogonal to the YB axis direction where the pair of inclined surfaces SAB oppose each other. Accordingly, when the locking portion 56B is inserted into the first opening 31bB and a part of the elastic deformation of the elastic portion 52B is released, the locking portion 56B is slid on the inclined surface SAB by the elastic force, and the inclined surface SBB. The movable mirror 5B can be positioned in a direction along the first surface BaB.
 また、光モジュール1Bでは、ベースBBが、支持層2Bと、支持層2B上に設けられ、第1表面BaB及び第2表面BbBを含むデバイス層3Bと、を有している。これにより、可動ミラー5Bの確実な実装のための構成を好適に実現することができる。 Further, in the optical module 1B, the base BB has a support layer 2B and a device layer 3B provided on the support layer 2B and including the first surface BaB and the second surface BbB. Thereby, the structure for reliable mounting of the movable mirror 5B can be suitably realized.
 また、光モジュール1Bでは、ベースBBが、支持層2Bとデバイス層3Bとの間に設けられた中間層4Bを有している。これにより、可動ミラー5Bの確実な実装のための構成を一層好適に実現することができる。 In the optical module 1B, the base BB has an intermediate layer 4B provided between the support layer 2B and the device layer 3B. Thereby, the structure for reliable mounting of the movable mirror 5B can be realized more suitably.
 また、光モジュール1Bでは、可動ミラー5B、固定ミラー6B及びビームスプリッタ7Bが、干渉光学系10Bを構成するように配置されている。これにより、感度が向上されたFTIRを得ることができる。 Further, in the optical module 1B, the movable mirror 5B, the fixed mirror 6B, and the beam splitter 7B are arranged so as to constitute the interference optical system 10B. Thereby, FTIR with improved sensitivity can be obtained.
 また、光モジュール1Bでは、支持層2BがSOI基板の第1シリコン層であり、デバイス層3BがSOI基板の第2シリコン層であり、中間層4BがSOI基板の絶縁層である。これにより、デバイス層3Bに対する可動ミラー5Bの確実な実装のための構成をSOI基板によって好適に実現することができる。 In the optical module 1B, the support layer 2B is the first silicon layer of the SOI substrate, the device layer 3B is the second silicon layer of the SOI substrate, and the intermediate layer 4B is the insulating layer of the SOI substrate. Thereby, the structure for reliable mounting of the movable mirror 5B to the device layer 3B can be suitably realized by the SOI substrate.
 また、光モジュール1Bでは、光入射部8Bが、外部から干渉光学系10Bに測定光を入射させるように配置されており、光出射部9Bが、干渉光学系10Bから外部に測定光を出射させるように配置されている。これにより、光入射部8B及び光出射部9Bを備えるFTIRを得ることができる。 In the optical module 1B, the light incident part 8B is arranged so that the measurement light is incident on the interference optical system 10B from the outside, and the light emitting part 9B emits the measurement light to the outside from the interference optical system 10B. Are arranged as follows. Thereby, FTIR provided with the light-incidence part 8B and the light-projection part 9B can be obtained.
 また、光モジュール1Bでは、可動ミラー5Bがデバイス層3Bの実装領域31Bを貫通しており、可動ミラー5Bの各係止部56Bの一部が支持層2Bとデバイス層3Bとの間に形成された空間S1Bに位置している。これにより、例えば係止部56Bや折返部57Bのサイズ等が制限されないため、デバイス層3Bの実装領域31Bに可動ミラー5Bを安定的に且つ強固に固定することができる。すなわち、光モジュール1Bでは、空間S1Bを有する構成を採用することで、可動ミラー5Bの形状として折返部57Bを備えた形状を採用することが可能となっているそして、脆弱な可動ミラー5Bの形状として敢えて折返部57Bを備えた形状を採用することで、外力や環境変化への耐性を高め、ポータブル機器等への搭載に耐え得る光モジュール1Bを実現している。
[変形例]
In the optical module 1B, the movable mirror 5B passes through the mounting region 31B of the device layer 3B, and a part of each locking portion 56B of the movable mirror 5B is formed between the support layer 2B and the device layer 3B. Located in the space S1B. Thereby, for example, since the size of the locking portion 56B and the folded portion 57B is not limited, the movable mirror 5B can be stably and firmly fixed to the mounting region 31B of the device layer 3B. That is, in the optical module 1B, by adopting the configuration having the space S1B, it is possible to adopt a shape including the folded portion 57B as the shape of the movable mirror 5B. And, the shape of the fragile movable mirror 5B As a result, the optical module 1 </ b> B that can withstand mounting on portable devices and the like is realized by increasing the resistance to external forces and environmental changes by adopting the shape including the folded portion 57 </ b> B.
[Modification]
 以上、本開示の別の一側面の一実施形態について説明したが、本開示の別の一側面は、上記実施形態に限定されない。例えば、各構成の材料及び形状は、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。 As mentioned above, although one embodiment of another aspect of the present disclosure has been described, another aspect of the present disclosure is not limited to the above embodiment. For example, the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed.
 また、図24に示される第1変形例のように第1開口31bBが構成されてもよい。第1変形例では、YB軸方向の両側それぞれにおいて、傾斜面SABの他端SAbBと傾斜面SBBの他端SBbBとが互いに直接に接続されている。ZB軸方向から見た場合に、一方の傾斜面SABの他端SAbBと他方の傾斜面SABの他端SAbBとを通る直線(ここでは、中心線CL2B)に対する一対の傾斜面SABの傾斜角δBは、45度以下である。傾斜角δBは、例えば約35度である。第1変形例においても、上記実施形態と同様に、第1開口31bBは、ZB軸方向から見た場合に中心線CL2Bに関して線対称な形状を有している。このような第1変形例によっても、上記実施形態と同様に、可動ミラー5Bの確実な実装を実現することができる。更に、係止部56Bに付与される弾性力の反力を、YB軸方向よりもXB軸方向に多く分散することができる。これにより、FTIRの信頼性の向上のために重要なXB軸方向の衝撃に対する耐性を向上することができる。 Moreover, the 1st opening 31bB may be comprised like the 1st modification shown by FIG. In the first modification, the other end SAbB of the inclined surface SAB and the other end SBbB of the inclined surface SBB are directly connected to each other on both sides in the YB axis direction. When viewed from the ZB-axis direction, the inclination angle δB of the pair of inclined surfaces SAB with respect to a straight line (here, the center line CL2B) passing through the other end SAbB of one inclined surface SAB and the other end SAbB of the other inclined surface SAB. Is 45 degrees or less. The inclination angle δB is, for example, about 35 degrees. Also in the first modified example, similarly to the above-described embodiment, the first opening 31bB has a line-symmetric shape with respect to the center line CL2B when viewed from the ZB axis direction. Also according to such a first modified example, the movable mirror 5B can be reliably mounted as in the above embodiment. Further, the reaction force of the elastic force applied to the locking portion 56B can be distributed more in the XB axis direction than in the YB axis direction. As a result, resistance to impact in the XB axis direction, which is important for improving the reliability of FTIR, can be improved.
 また、上記実施形態では、第1開口31bBが一対の傾斜面SABと一対の傾斜面SBBとを含んでいたが、第1開口31bBは、一対の傾斜面SABと、一対の傾斜面SABの他端SAbB同士を互いに接続する基準線(図19では、中心線CL2B)に沿って延在する基準面と、を含んでもよい。この場合、係止部56Bを第1開口31bBに挿入して弾性部52Bの弾性変形の一部を解放したときに、弾性力によって係止部56Bを傾斜面SABに摺動させて当該基準面に突き当てることで、第1表面BaBに沿った方向に可動ミラー5Bを位置決めすることができる。 In the above embodiment, the first opening 31bB includes the pair of inclined surfaces SAB and the pair of inclined surfaces SBB. However, the first opening 31bB includes the pair of inclined surfaces SAB and the pair of inclined surfaces SAB. And a reference plane extending along a reference line (center line CL2B in FIG. 19) connecting the ends SAbB to each other. In this case, when the locking portion 56B is inserted into the first opening 31bB and a part of the elastic deformation of the elastic portion 52B is released, the locking portion 56B is slid on the inclined surface SAB by the elastic force, and the reference surface The movable mirror 5B can be positioned in a direction along the first surface BaB.
 また、上記実施形態では、ミラー面51aBがベースBBの第1表面BaB側に位置していたが、可動ミラー5Bは、ミラー面51aBの一部又は全部がベースBBの第2表面BbB側に突出した状態でベースBBに実装されてもよい。この場合、実装領域31Bにおいて第1開口31bBを画定する部分のうちミラー面51aBに対向する部分は、測定光L0Bを通過させるために、切り欠かれる。また、弾性部52Bは、XB軸方向から見た場合に、ミラー部51Bから離間しつつミラー部51Bを取り囲むように環状(例えば、円環状)に形成されてもよい。また、上記実施形態では、係止部56Bが傾斜面56aBにおいて第1開口31bBの第1表面BaB側の縁部31dBに当接していたが、これに加えて、係止部56Bは、傾斜面56bBにおいて第1開口31bBの第2表面BbB側の縁部に当接してもよい。 In the above embodiment, the mirror surface 51aB is positioned on the first surface BaB side of the base BB. However, in the movable mirror 5B, part or all of the mirror surface 51aB protrudes on the second surface BbB side of the base BB. In this state, it may be mounted on the base BB. In this case, a portion of the mounting region 31B that defines the first opening 31bB that is opposed to the mirror surface 51aB is notched in order to allow the measurement light L0B to pass therethrough. The elastic portion 52B may be formed in an annular shape (for example, an annular shape) so as to surround the mirror portion 51B while being separated from the mirror portion 51B when viewed from the XB axis direction. Moreover, in the said embodiment, although the latching | locking part 56B contact | abutted in edge part 31dB by the side of the 1st surface BaB of 1st opening 31bB in the inclined surface 56aB, in addition to this, the latching | locking part 56B is an inclined surface. At 56 bB, the edge of the first opening 31 bB on the second surface BbB side may be contacted.
 また、上記実施形態において、各第2開口31cBは、第1表面BaBに開口していなくてもよく、例えば、第2表面BbBに開口する凹部であってもよい。また、第1開口31bBと第2開口31cBとは、連通していてもよい。例えば、第1開口31bBと第2開口31cBとの間に第2表面BbBに開口する凹部が設けられ、当該凹部を介して第1開口31bBと第2開口31cBとが連通していてもよい。また、折返部57Bは、第2開口31cBに入り込んでいればよく、第2開口31cBの第2表面BbB側の縁部31eBから離間していてもよい。 Further, in the above-described embodiment, each second opening 31cB may not be opened on the first surface BaB, and may be, for example, a recess opened on the second surface BbB. In addition, the first opening 31bB and the second opening 31cB may communicate with each other. For example, a recess opening in the second surface BbB may be provided between the first opening 31bB and the second opening 31cB, and the first opening 31bB and the second opening 31cB may communicate with each other via the recess. The folded portion 57B only needs to enter the second opening 31cB, and may be separated from the edge 31eB on the second surface BbB side of the second opening 31cB.
 また、図25及び図26に示される変形例のように可動ミラー5ABが構成されてもよい。可動ミラー5ABでは、支持部53Bの脚部55AB及び脚部55BBは、互いに平行にZB軸方向に沿って延在している。一対の係止部56Bのそれぞれは、XB軸方向から見た場合に外側(互いに離れる側)にV字状に屈曲するように形成されている。各係止部56Bの傾斜面56aB及び傾斜面56bBは、一対の係止部56Bにおける互いに対向する面である(内面である)。一対の係止部56B間において、傾斜面56aBは、ZB軸負方向に向かうにつれて互いに離れるように傾斜している。傾斜面56bBは、ZB軸負方向に向かうにつれて互いに近づくように傾斜している。一対の折返部57Bのそれぞれは、XB軸方向から見た場合に内側(互いに近づく側)かつZB軸正方向側に向かって延びている。一対の折返部57B間において、傾斜面57aBは、ZB軸正方向に向かうにつれて互いに近づくように傾斜している。連結部54Bは、中心線CL1B上においてミラー部51Bと弾性部52Bと連結している。ミラー部51Bの中心は、中心線CL1B上に位置している。 Further, the movable mirror 5AB may be configured as in the modification shown in FIGS. In the movable mirror 5AB, the leg portion 55AB and the leg portion 55BB of the support portion 53B extend in parallel with each other along the ZB axis direction. Each of the pair of locking portions 56B is formed to be bent in a V shape outward (side away from each other) when viewed from the XB axis direction. The inclined surface 56aB and the inclined surface 56bB of each locking portion 56B are surfaces facing each other (inner surfaces) in the pair of locking portions 56B. Between the pair of locking portions 56B, the inclined surfaces 56aB are inclined so as to be separated from each other in the negative direction of the ZB axis. The inclined surfaces 56bB are inclined so as to approach each other in the negative direction of the ZB axis. Each of the pair of folded portions 57B extends toward the inside (the side closer to each other) and toward the ZB-axis positive direction when viewed from the XB-axis direction. Between the pair of folded portions 57B, the inclined surfaces 57aB are inclined so as to approach each other in the positive direction of the ZB axis. The connecting portion 54B is connected to the mirror portion 51B and the elastic portion 52B on the center line CL1B. The center of the mirror part 51B is located on the center line CL1B.
 可動ミラー5ABは、ハンドル59Bを更に有している。ハンドル59Bは、弾性部52Bの両端部にそれぞれ接続された一対の変位部59aBを有する。一対の変位部59aBは、YB軸方向において互いに対向するように設けられ、弾性部52Bの端部からZB軸正方向に向かって延びている。各変位部59aBの中間部は、XB軸方向から見た場合に内側にV字状に屈曲している。一対の変位部59aBは、可動ミラー5ABが実装領域37Bに実装された状態において、ミラー部51B、弾性部52B及び支持部53Bに対してZB軸正方向側に位置する。この変形例では、実装領域31Bには、第2開口31cBが1つ形成されると共に、第2開口31cBをYB軸方向に挟むように第1開口31bBが一対形成されている。一対の係止部56Bは、互いに近づく方向に弾性部52Bの弾性力が付与された状態において、一対の第1開口31bBにそれぞれ挿入されている。 The movable mirror 5AB further has a handle 59B. The handle 59B has a pair of displacement portions 59aB connected to both ends of the elastic portion 52B. The pair of displacement portions 59aB are provided so as to face each other in the YB axis direction, and extend from the end of the elastic portion 52B toward the positive direction of the ZB axis. An intermediate portion of each displacement portion 59aB is bent in a V shape inward when viewed from the XB axis direction. The pair of displacement parts 59aB are located on the ZB axis positive direction side with respect to the mirror part 51B, the elastic part 52B, and the support part 53B in a state where the movable mirror 5AB is mounted in the mounting region 37B. In this modification, one second opening 31cB is formed in the mounting region 31B, and a pair of first openings 31bB are formed so as to sandwich the second opening 31cB in the YB axis direction. The pair of locking portions 56B are respectively inserted into the pair of first openings 31bB in a state where the elastic force of the elastic portion 52B is applied in a direction approaching each other.
 可動ミラー5ABをベースBBに実装する際には、一対の変位部59aBに力を付加することにより一対の係止部56B間の距離を拡大させた状態において、一対の係止部56Bを一対の第1開口31bBにそれぞれ挿入する。例えば、一方の係止部56Bを先に第1開口31bBに挿入して第1開口31bBの縁部に当接させた後に、一対の変位部59aBに力を付加することにより、当該一方の係止部56Bから遠ざかるように他方の係止部56Bを変位させた状態において、他方の係止部56Bを第1開口31bBに挿入する。続いて、一対の変位部59aBに付加していた力を解放することにより、一対の係止部56Bを第1開口31bBの内面に当接させて可動ミラー5ABをベースBBに固定する。弾性部52Bの弾性力を利用して3次元的にセルフアライメントがなされる点、及び一対の折返部57Bが第2表面BbB側から第2開口31cBにそれぞれ入り込んで第2開口31cBの第2表面BbB側の縁部に当接する点は、上記実施形態と同様である。このような変形例によっても、上記実施形態と同様に、可動ミラー5ABの確実な実装を実現することができる。なお、上記変形例では、第2開口31cBが1つ形成されていたが、第2開口31cBは、一対の第1開口31bBによって挟まれるように一対形成されていてもよい。 When the movable mirror 5AB is mounted on the base BB, the pair of locking portions 56B is paired with the pair of locking portions 56B in a state where the distance between the pair of locking portions 56B is increased by applying a force to the pair of displacement portions 59aB. Each is inserted into the first opening 31bB. For example, after one locking portion 56B is first inserted into the first opening 31bB and brought into contact with the edge of the first opening 31bB, a force is applied to the pair of displacement portions 59aB, whereby In a state where the other locking portion 56B is displaced so as to move away from the locking portion 56B, the other locking portion 56B is inserted into the first opening 31bB. Subsequently, by releasing the force applied to the pair of displacement portions 59aB, the pair of locking portions 56B are brought into contact with the inner surface of the first opening 31bB, and the movable mirror 5AB is fixed to the base BB. The point where self-alignment is made three-dimensionally using the elastic force of the elastic part 52B, and the pair of folded parts 57B enter the second opening 31cB from the second surface BbB side, respectively, and the second surface of the second opening 31cB. The point of contact with the edge on the BbB side is the same as in the above embodiment. Also according to such a modification, it is possible to realize the reliable mounting of the movable mirror 5AB as in the above embodiment. In the above modification, one second opening 31cB is formed, but a pair of second openings 31cB may be formed so as to be sandwiched between the pair of first openings 31bB.
 また、上記実施形態では、固定ミラー6Bがデバイス層3Bに実装されていたが、固定ミラー6Bは、支持層2B又は中間層4Bに実装されていてもよい。また、上記実施形態では、ビームスプリッタ7Bが支持層2Bに実装されていたが、ビームスプリッタ7Bは、デバイス層3B又は中間層4Bに実装されていてもよい。また、ビームスプリッタ7Bは、キューブタイプのビームスプリッタに限定されず、プレートタイプのビームスプリッタであってもよい。 In the above embodiment, the fixed mirror 6B is mounted on the device layer 3B. However, the fixed mirror 6B may be mounted on the support layer 2B or the intermediate layer 4B. In the above embodiment, the beam splitter 7B is mounted on the support layer 2B. However, the beam splitter 7B may be mounted on the device layer 3B or the intermediate layer 4B. The beam splitter 7B is not limited to a cube type beam splitter, and may be a plate type beam splitter.
 また、光モジュール1Bは、光入射部8Bに加え、光入射部8Bに入射させる測定光を発生させる発光素子を備えていてもよい。或いは、光モジュール1Bは、光入射部8Bに代えて、干渉光学系10Bに入射させる測定光を発生させる発光素子を備えていてもよい。また、光モジュール1Bは、光出射部9Bに加え、光出射部9Bから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。或いは、光モジュール1Bは、光出射部9Bに代えて、干渉光学系10Bから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。 The optical module 1B may include a light emitting element that generates measurement light incident on the light incident portion 8B in addition to the light incident portion 8B. Alternatively, the optical module 1B may include a light emitting element that generates measurement light incident on the interference optical system 10B, instead of the light incident portion 8B. The optical module 1B may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9B in addition to the light emitting unit 9B. Alternatively, the optical module 1B may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10B, instead of the light emitting unit 9B.
 また、各アクチュエータ領域33Bに電気的に接続された第1貫通電極、及び各弾性支持領域34Bの両端部34aBのそれぞれに電気的に接続された第2貫通電極が、支持層2B及び中間層4B(中間層4Bが存在しない場合には支持層2Bのみ)に設けられており、第1貫通電極と第2貫通電極との間に電圧が印加されてもよい。また、実装領域31Bを移動させるアクチュエータは、静電アクチュエータに限定されず、例えば、圧電式アクチュエータ、電磁式アクチュエータ等であってもよい。また、光モジュール1Bは、FTIRを構成するものに限定されず、他の光学系を構成するものであってもよい。 In addition, the first through electrode electrically connected to each actuator region 33B and the second through electrode electrically connected to each of both end portions 34aB of each elastic support region 34B are the support layer 2B and the intermediate layer 4B. (Only the support layer 2B when the intermediate layer 4B is not present) is provided, and a voltage may be applied between the first through electrode and the second through electrode. The actuator that moves the mounting region 31B is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like. Moreover, the optical module 1B is not limited to what constitutes FTIR, and may constitute another optical system.
 さらに、上記実施形態においては、ベースBBに実装される光学素子として、可動ミラー及び固定ミラーを例示した。この例では、光学面はミラー面である。しかしながら、実装対象となる光学素子はミラーに限定されず、例えば、グレーティングや光学フィルタ等の任意のものとすることができる。以上の第2実施形態について、以下に付記する。
[付記1]
 ベースと、前記ベースに実装された光学素子と、を備え、
 前記ベースは、互いに対向する第1表面及び第2表面を有し、前記ベースには、前記第1表面及び前記第2表面に開口する第1開口、並びに前記第2表面に開口する第2開口が設けられ、
 前記光学素子は、光学面を有する光学部と、前記光学部を前記ベースに支持する支持部と、を有し、
 前記支持部は、前記第1開口を介して前記第2表面から突出した突出部と、前記突出部から前記第2表面に向かって延び、前記第2表面側から前記第2開口に入り込んだ折返部と、を含む、光モジュール。
[付記2]
 前記第2開口は、前記第1開口を挟むように一対設けられ、
 前記突出部は、一対設けられ、
 前記折返部は、前記一対の突出部それぞれに設けられ、前記一対の第2開口にそれぞれ入り込んでいる、付記1に記載の光モジュール。
[付記3]
 前記突出部は、少なくとも前記第1開口の前記第1表面側の縁部に当接している、付記1又は2に記載の光モジュール。
[付記4]
 前記折返部は、前記第2開口の前記第2表面側の縁部に当接している、付記1~3のいずれか一項に記載の光モジュール。
[付記5]
 前記光学素子は、弾性部を更に有し、
 前記突出部は、一対設けられ、
 前記一対の突出部は、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされ、前記弾性部の弾性力が付与された状態において前記第1開口に挿入されており、
 前記光学素子は、前記第1開口の内面から前記一対の突出部に付与される前記弾性力の反力により前記ベースに支持されている、付記1~4のいずれか一項に記載の光モジュール。
[付記6]
 前記一対の突出部は、互いに離れる方向に前記弾性部の弾性力が付与された状態において前記第1開口に挿入されている、付記5に記載の光モジュール。
[付記7]
 前記第1開口の内面は、前記第1表面に交差する方向から見た場合に、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、前記一対の傾斜面同士が対向する方向に交差する方向において前記一対の傾斜面と対向する対向面と、を含む、付記5又は6に記載の光モジュール。
[付記8]
 前記第1表面に交差する方向から見た場合に、一方の前記傾斜面の前記他端と他方の前記傾斜面の前記他端とを通る直線に対する前記一対の傾斜面の傾斜角は、45度以下である、付記7に記載の光モジュール。
[付記9]
 前記ベースは、支持層と、前記支持層上に設けられ、前記第1表面及び前記第2表面を含むデバイス層と、を有する、付記1~8のいずれか一項に記載の光モジュール。
[付記10]
 前記ベースは、前記支持層と前記デバイス層との間に設けられた中間層を有する、付記9に記載の光モジュール。
[付記11]
 前記支持層、前記デバイス層又は前記中間層に実装された固定ミラーと、
 前記支持層、前記デバイス層又は前記中間層に実装されたビームスプリッタと、を更に備え、
 前記光学素子は、ミラー面である前記光学面を含む可動ミラーであり、
 前記デバイス層は、前記光学素子が実装された実装領域と、前記実装領域に接続された駆動領域と、を有し、
 前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、付記10に記載の光モジュール。
[付記12]
 前記支持層は、SOI基板の第1シリコン層であり、
 前記デバイス層は、前記SOI基板の第2シリコン層であり、
 前記中間層は、前記SOI基板の絶縁層である、付記11に記載の光モジュール。
[付記13]
 外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
 前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、を更に備える、付記11又は12に記載の光モジュール。
[第3実施形態]
Furthermore, in the said embodiment, the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BB. In this example, the optical surface is a mirror surface. However, the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter. The above second embodiment will be additionally described below.
[Appendix 1]
A base, and an optical element mounted on the base,
The base has a first surface and a second surface facing each other. The base has a first opening that opens on the first surface and the second surface, and a second opening that opens on the second surface. Is provided,
The optical element includes an optical unit having an optical surface, and a support unit that supports the optical unit on the base,
The support portion protrudes from the second surface through the first opening, extends from the protrusion toward the second surface, and is turned back into the second opening from the second surface side. And an optical module.
[Appendix 2]
A pair of the second openings are provided so as to sandwich the first opening,
A pair of the protruding portions are provided,
The optical module according to appendix 1, wherein the folded portion is provided in each of the pair of projecting portions and enters each of the pair of second openings.
[Appendix 3]
The optical module according to appendix 1 or 2, wherein the protrusion is in contact with at least an edge of the first opening on the first surface side.
[Appendix 4]
The optical module according to any one of appendices 1 to 3, wherein the folded portion is in contact with an edge of the second opening on the second surface side.
[Appendix 5]
The optical element further includes an elastic part,
A pair of the protruding portions are provided,
The pair of projecting portions are inserted into the first opening in a state where an elastic force is applied according to elastic deformation of the elastic portion and a distance between the pair of protruding portions is variable and the elastic force of the elastic portion is applied. And
The optical module according to any one of appendices 1 to 4, wherein the optical element is supported on the base by a reaction force of the elastic force applied to the pair of protrusions from the inner surface of the first opening. .
[Appendix 6]
The optical module according to appendix 5, wherein the pair of projecting portions are inserted into the first opening in a state where the elastic force of the elastic portion is applied in a direction away from each other.
[Appendix 7]
The inner surface of the first opening has a pair of inclined surfaces inclined so that the distance from each other increases from one end to the other end when viewed from a direction intersecting the first surface, and the pair of inclined surfaces The optical module according to appendix 5 or 6, including an opposing surface that opposes the pair of inclined surfaces in a direction that intersects with each other.
[Appendix 8]
When viewed from the direction intersecting the first surface, the inclination angle of the pair of inclined surfaces with respect to a straight line passing through the other end of the one inclined surface and the other end of the other inclined surface is 45 degrees. The optical module according to Appendix 7, which is the following.
[Appendix 9]
The optical module according to any one of appendices 1 to 8, wherein the base includes a support layer and a device layer provided on the support layer and including the first surface and the second surface.
[Appendix 10]
The optical module according to appendix 9, wherein the base includes an intermediate layer provided between the support layer and the device layer.
[Appendix 11]
A fixed mirror mounted on the support layer, the device layer or the intermediate layer;
A beam splitter mounted on the support layer, the device layer, or the intermediate layer, and
The optical element is a movable mirror including the optical surface which is a mirror surface;
The device layer has a mounting area where the optical element is mounted, and a driving area connected to the mounting area,
The optical module according to appendix 10, wherein the movable mirror, the fixed mirror, and the beam splitter are arranged so as to constitute an interference optical system.
[Appendix 12]
The support layer is a first silicon layer of an SOI substrate;
The device layer is a second silicon layer of the SOI substrate;
The optical module according to appendix 11, wherein the intermediate layer is an insulating layer of the SOI substrate.
[Appendix 13]
A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
The optical module according to appendix 11 or 12, further comprising: a light emitting unit arranged to emit the measurement light to the outside from the interference optical system.
[Third Embodiment]
 MEMS(Micro Electro Mechanical Systems)技術によってSOI(Silicon On Insulator)基板に干渉光学系が形成された光モジュールが知られている(例えば、特表2012-524295号公報参照)。このような光モジュールは、高精度な光学配置が実現されたFTIR(フーリエ変換型赤外分光分析器)を提供し得るため、注目されている。 An optical module in which an interference optical system is formed on an SOI (Silicon On Insulator) substrate by MEMS (Micro Electro Mechanical Systems) technology is known (see, for example, JP 2012-524295 A). Such an optical module is attracting attention because it can provide an FTIR (Fourier transform infrared spectroscopic analyzer) in which a highly accurate optical arrangement is realized.
 米国特許出願公開第2002/0186477号明細書には、光学システムの製造プロセスが記載されている。このプロセスにおいては、まず、テンプレート基板及び光学ベンチを用意する。テンプレート基板には、エッチングによってアライメントスロットが形成されている。光学ベンチの主面にはボンドパッドが配置されている。続いて、アライメントスロットがボンドパッド上に配置されるように、テンプレート基板を光学ベンチの主面に取り付ける。続いて、光学要素をアライメントスロットの側壁を用いて位置決めしながらアライメントスロットに挿入し、ボンドパッド上に位置させる。そして、ボンドパッドのリフローにより光学要素を光学ベンチに接着する。 US Patent Application Publication No. 2002/0186477 describes an optical system manufacturing process. In this process, first, a template substrate and an optical bench are prepared. An alignment slot is formed on the template substrate by etching. Bond pads are arranged on the main surface of the optical bench. Subsequently, the template substrate is attached to the main surface of the optical bench so that the alignment slot is disposed on the bond pad. Subsequently, the optical element is inserted into the alignment slot while being positioned using the side wall of the alignment slot, and is positioned on the bond pad. Then, the optical element is bonded to the optical bench by reflowing the bond pad.
 上述したような光モジュールには、例えば可動ミラーのサイズがSOI基板に対する深堀加工の達成度に依存する点で、次のような課題がある。すなわち、SOI基板に対する深堀加工の達成度は最大でも500μm程度であるため、可動ミラーのサイズを大きくしてFTIRにおける感度を向上させるのには限界がある。そこで、別体で形成された可動ミラーをデバイス層(例えばSOI基板において駆動領域が形成される層)に実装する技術が考えられる。 The optical module as described above has the following problems in that, for example, the size of the movable mirror depends on the achievement level of deep processing on the SOI substrate. That is, since the degree of achievement of deep processing for the SOI substrate is about 500 μm at the maximum, there is a limit to increase the sensitivity in FTIR by increasing the size of the movable mirror. Therefore, a technique for mounting a movable mirror formed separately on a device layer (for example, a layer in which a drive region is formed in an SOI substrate) can be considered.
 これに対して、特表2012-524295号公報に記載のMEMSデバイスの作製に際して、米国特許出願公開第2002/0186477号明細書に記載のプロセスを用いると、アクチュエータに接続されて可動とされた実装領域にアライメントスロットを設け、そのアライメントスロットに可動ミラーといった光学要素を挿入することにより実装することになる。しかしながら、このような実装方法では、光学要素の実装精度の向上が困難である。 On the other hand, when the MEMS device described in JP 2012-524295 A is manufactured, if the process described in US Patent Application Publication No. 2002/0186477 is used, the mounting is made movable by being connected to the actuator. Mounting is performed by providing an alignment slot in the region and inserting an optical element such as a movable mirror in the alignment slot. However, with such a mounting method, it is difficult to improve the mounting accuracy of the optical element.
 本開示のさらに別の一側面は、光学素子の実装精度を向上しつつ実装強度を確保可能な光モジュールを提供することを目的とする。 Another object of the present disclosure is to provide an optical module capable of ensuring mounting strength while improving mounting accuracy of an optical element.
 本開示のさらに別の一側面に係る光モジュールは、光学素子と光学素子が実装されるベースとを備える光モジュールであって、光学素子は、光学面を有する光学部と、光学部の周囲に設けられた弾性部と、弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、を有し、ベースは、主面と、主面に連通する開口が設けられた実装領域と、を有し、支持部は、弾性部の弾性力が付与された状態において開口に挿入される係止部と、係止部が開口に挿入された状態において実装領域に接触する接触部と、を含み、光学素子は、光学面が主面に交差した状態において、開口の内面から係止部に付与される弾性力の反力により実装領域に支持され、且つ、接触部において実装領域に接着されている。 An optical module according to still another aspect of the present disclosure is an optical module including an optical element and a base on which the optical element is mounted. The optical element includes an optical unit having an optical surface and a periphery of the optical unit. An elastic portion provided, and a pair of support portions to which an elastic force is applied according to elastic deformation of the elastic portion and the distance between them is variable, and the base includes a main surface and a main surface. A mounting area provided with a communicating opening, and the support part is a locking part inserted into the opening in a state where the elastic force of the elastic part is applied, and the locking part is inserted into the opening. The optical element is supported by the mounting region by the reaction force of the elastic force applied to the locking portion from the inner surface of the opening in a state where the optical surface intersects the main surface. In addition, the contact portion is bonded to the mounting region.
 この光モジュールにおいては、光学素子が、弾性部と、弾性部の弾性変形に応じて互いの距離が可変とされた一対の支持部と、を有する。一方、光学素子が実装されるベースの実装領域には、主面に連通する開口が形成されている。したがって、一例として支持部間の距離が縮小するように弾性部を弾性変形させた状態において支持部を開口に挿入し、弾性部の弾性変形の一部を解放することにより、開口内において支持部の互いの距離が拡大し、支持部を開口の内面に当接させることができる。これにより、開口の内面から支持部に付与される弾性力の反力によって、実装領域に対する光学素子の位置が開口の内面に精度よく規定される。さらに、光学素子は、弾性力の反力によって支持されている状態において、支持部の接着部において実装領域に接着される。この結果、この光モジュールによれば、光学素子の実装精度を向上しつつ実装強度の確保が可能である。 In this optical module, the optical element has an elastic part and a pair of support parts whose distances can be changed according to the elastic deformation of the elastic part. On the other hand, an opening communicating with the main surface is formed in the mounting region of the base on which the optical element is mounted. Therefore, as an example, the support portion is inserted into the opening in a state in which the elastic portion is elastically deformed so that the distance between the support portions is reduced, and a part of the elastic deformation of the elastic portion is released, so that the support portion is opened in the opening. The distance between each other increases, and the support portion can be brought into contact with the inner surface of the opening. Thereby, the position of the optical element with respect to the mounting region is accurately defined on the inner surface of the opening by the reaction force of the elastic force applied to the support portion from the inner surface of the opening. Further, the optical element is bonded to the mounting region at the bonding portion of the support portion in a state where the optical element is supported by the reaction force of the elastic force. As a result, according to this optical module, it is possible to ensure the mounting strength while improving the mounting accuracy of the optical element.
 本開示のさらに別の一側面に係る光モジュールおいては、支持部は、係止部と分岐しつつベース側に突出する突出部を含み、接触部は、突出部の先端部を含んでもよい。この場合、接触部としての突出部の先端をベースの主面に突き当てた状態において、光学素子の接着が可能である。特に、光学素子の接着に主面を用いることができるので、接着剤の配置(パターニング)や溶着等の処理の容易化を図ることができる。 In the optical module according to yet another aspect of the present disclosure, the support part may include a protrusion part that protrudes toward the base side while branching from the locking part, and the contact part may include a tip part of the protrusion part. . In this case, the optical element can be bonded in a state where the tip of the protruding portion as the contact portion is abutted against the main surface of the base. In particular, since the main surface can be used for bonding of the optical element, it is possible to facilitate the processing such as placement (patterning) of the adhesive and welding.
 本開示のさらに別の一側面に係る光モジュールにおいては、接触部は、係止部における開口の内面に対向する側面を含んでもよい。この場合、接触部としての係止部の側面を開口の内面に接触させた状態において、光学素子の接着が可能である。特に、この場合には、面同士の接着となるので、接着面積を増大させて実装強度を確実に向上可能である。 In the optical module according to still another aspect of the present disclosure, the contact portion may include a side surface facing the inner surface of the opening in the locking portion. In this case, the optical element can be bonded in a state where the side surface of the locking portion as the contact portion is in contact with the inner surface of the opening. Particularly in this case, since the surfaces are bonded to each other, the bonding area can be increased and the mounting strength can be reliably improved.
 本開示のさらに別の一側面に係る光モジュールにおいては、ベースは、支持層と、支持層上に設けられ、主面及び実装領域を含むデバイス層と、を有し、開口は、主面に交差する方向にデバイス層を貫通しており、支持部は、主面に交差する方向における開口の一対の縁部に当接するように屈曲した係止部を含んでもよい。この場合、係止部が開口の一対の縁部に当接する位置において実装領域に係止される。このため、光学素子をベースにより確実に実装可能であると共に、ベースの主面に交差する方向について光学素子の位置決めが可能である。 In the optical module according to another aspect of the present disclosure, the base includes a support layer, and a device layer provided on the support layer and including a main surface and a mounting region, and the opening is formed on the main surface. The device layer may pass through the device layer in the intersecting direction, and the support portion may include a locking portion that is bent so as to contact a pair of edges of the opening in the direction intersecting the main surface. In this case, the locking portion is locked to the mounting region at a position where the locking portion contacts the pair of edges of the opening. For this reason, the optical element can be reliably mounted on the base, and the optical element can be positioned in the direction intersecting the main surface of the base.
 本開示のさらに別の一側面に係る光モジュールにおいては、開口の内面は、主面に交差する方向からみて、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一方の傾斜面の他端と他方の傾斜面の他端とを接続する基準線に沿って延在する基準面と、を含んでもよい。この場合、支持部を開口に挿入して弾性部の弾性変形の一部を解放したときに、弾性力によって支持部を傾斜面に摺動させて基準面に突き当てることができる。このため、主面に沿った方向における光学素子の自動的な位置決めが可能である。 In the optical module according to still another aspect of the present disclosure, the inner surface of the opening is a pair of inclined surfaces that are inclined so that the distance from each other increases from one end to the other when viewed from the direction intersecting the main surface. And a reference plane extending along a reference line connecting the other end of the one inclined surface and the other end of the other inclined surface. In this case, when the support portion is inserted into the opening and a part of the elastic deformation of the elastic portion is released, the support portion can be slid on the inclined surface by the elastic force and abut against the reference surface. Therefore, automatic positioning of the optical element in the direction along the main surface is possible.
 本開示のさらに別の一側面に係る光モジュールは、支持層、デバイス層、及び支持層とデバイス層との間に設けられた中間層の少なくとも1つに実装された固定ミラーと、支持層、デバイス層、及び前記中間層の少なくとも1つに実装されたビームスプリッタと、を更に備え、光学素子は、ミラー面である光学面を含む可動ミラーであり、デバイス層は、実装領域に接続された駆動領域を有し、可動ミラー、固定ミラー及びビームスプリッタは、干渉光学系を構成するように配置されていてもよい。この場合、感度が向上されたFTIRを得ることができる。 An optical module according to yet another aspect of the present disclosure includes a fixed mirror mounted on at least one of a support layer, a device layer, and an intermediate layer provided between the support layer and the device layer, a support layer, And a beam splitter mounted on at least one of the intermediate layers, wherein the optical element is a movable mirror including an optical surface that is a mirror surface, and the device layer is connected to the mounting region. The movable mirror, the fixed mirror, and the beam splitter may be arranged so as to constitute an interference optical system. In this case, an FTIR with improved sensitivity can be obtained.
 本開示のさらに別の一側面に係る光モジュールにおいては、ベースは、支持層とデバイス層との間に設けられた中間層を有し、支持層は、SOI基板の第1シリコン層であり、デバイス層は、SOI基板の第2シリコン層であり、中間層は、SOI基板の絶縁層であってもよい。この場合、デバイス層に対する可動ミラーの確実な実装のための構成をSOI基板によって好適に実現することができる。 In the optical module according to yet another aspect of the present disclosure, the base includes an intermediate layer provided between the support layer and the device layer, and the support layer is the first silicon layer of the SOI substrate. The device layer may be a second silicon layer of the SOI substrate, and the intermediate layer may be an insulating layer of the SOI substrate. In this case, a configuration for reliably mounting the movable mirror on the device layer can be suitably realized by the SOI substrate.
 本開示のさらに別の一側面に係る光モジュールは、外部から干渉光学系に測定光を入射させるように配置された光入射部と、干渉光学系から外部に測定光を出射させるように配置された光出射部と、を備えてもよい。この場合、光入射部及び光出射部を備えるFTIRを得ることができる。 An optical module according to yet another aspect of the present disclosure is disposed so that the measurement light is incident on the interference optical system from the outside and the measurement light is emitted from the interference optical system to the outside. A light emitting part. In this case, an FTIR including a light incident part and a light emission part can be obtained.
 本開示のさらに別の一側面によれば、光学素子の実装精度を向上しつつ実装強度を確保可能な光モジュールを提供することができる。 According to still another aspect of the present disclosure, it is possible to provide an optical module that can ensure mounting strength while improving mounting accuracy of an optical element.
 以下、本開示のさらに別の一側面の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[光モジュールの構成]
Hereinafter, embodiments of still another aspect of the present disclosure will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping part is abbreviate | omitted.
[Configuration of optical module]
 図27に示されるように、光モジュール1Cは、ベースBCを備えている。ベースBCは、主面BsCを備えている。ベースBCは、支持層2Cと、支持層2C上に設けられたデバイス層3Cと、支持層2Cとデバイス層3Cとの間に設けられた中間層4Cと、備えている。主面BsCは、ここでは、デバイス層3Cにおける支持層2Cと反対側の表面である。支持層2C、デバイス層3C及び中間層4Cは、SOI基板によって構成されている。具体的には、支持層2Cは、SOI基板の第1シリコン層である。デバイス層3Cは、SOI基板の第2シリコン層である。中間層4Cは、SOI基板の絶縁層である。支持層2C、デバイス層3C及び中間層4Cは、それらの積層方向であるZC軸方向(ZC軸に平行な方向)から見た場合に、例えば、一辺が10mm程度の矩形状を呈している。支持層2C及びデバイス層3Cのそれぞれの厚さは、例えば数百μm程度である。中間層4Cの厚さは、例えば数μm程度である。なお、図27では、デバイス層3Cの1つの角部及び中間層4Cの1つの角部が切り欠かれた状態で、デバイス層3C及び中間層4Cが示されている。 As shown in FIG. 27, the optical module 1C includes a base BC. The base BC has a main surface BsC. The base BC includes a support layer 2C, a device layer 3C provided on the support layer 2C, and an intermediate layer 4C provided between the support layer 2C and the device layer 3C. Here, the main surface BsC is a surface of the device layer 3C opposite to the support layer 2C. The support layer 2C, the device layer 3C, and the intermediate layer 4C are configured by an SOI substrate. Specifically, the support layer 2C is the first silicon layer of the SOI substrate. The device layer 3C is a second silicon layer of the SOI substrate. The intermediate layer 4C is an insulating layer of the SOI substrate. The support layer 2C, the device layer 3C, and the intermediate layer 4C have a rectangular shape with, for example, a side of about 10 mm when viewed from the ZC axis direction (a direction parallel to the ZC axis) that is the stacking direction thereof. Each thickness of the support layer 2C and the device layer 3C is, for example, about several hundred μm. The thickness of the intermediate layer 4C is, for example, about several μm. In FIG. 27, the device layer 3C and the intermediate layer 4C are shown with one corner of the device layer 3C and one corner of the intermediate layer 4C cut away.
 デバイス層3Cは、実装領域31Cと、実装領域31Cに接続された駆動領域32Cと、を有している。駆動領域32Cは、一対のアクチュエータ領域33Cと、一対の弾性支持領域34Cと、を含んでいる。実装領域31C及び駆動領域32C(すなわち、実装領域31C並びに一対のアクチュエータ領域33C及び一対の弾性支持領域34C)は、MEMS技術(パターニング及びエッチング)によってデバイス層3Cの一部に一体的に形成されている。 The device layer 3C has a mounting area 31C and a drive area 32C connected to the mounting area 31C. The drive region 32C includes a pair of actuator regions 33C and a pair of elastic support regions 34C. The mounting region 31C and the drive region 32C (that is, the mounting region 31C and the pair of actuator regions 33C and the pair of elastic support regions 34C) are integrally formed on a part of the device layer 3C by MEMS technology (patterning and etching). Yes.
 一対のアクチュエータ領域33Cは、XC軸方向(ZC軸に直交するXC軸に平行な方向)において実装領域31Cの両側に配置されている。つまり、実装領域31Cは、XC軸方向において一対のアクチュエータ領域33Cに挟まれている。各アクチュエータ領域33Cは、中間層4Cを介して支持層2Cに固定されている。各アクチュエータ領域33Cにおける実装領域31C側の側面には、第1櫛歯部33aCが設けられている。各第1櫛歯部33aCは、その直下の中間層4Cが除去されることで、支持層2Cに対して浮いた状態となっている。各アクチュエータ領域33Cには、第1電極35Cが設けられている。 The pair of actuator regions 33C are disposed on both sides of the mounting region 31C in the XC axis direction (direction parallel to the XC axis orthogonal to the ZC axis). That is, the mounting region 31C is sandwiched between the pair of actuator regions 33C in the XC axis direction. Each actuator region 33C is fixed to the support layer 2C via the intermediate layer 4C. A first comb tooth portion 33aC is provided on the side surface of each actuator region 33C on the mounting region 31C side. Each first comb tooth portion 33aC is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the first comb tooth portion 33aC. Each actuator region 33C is provided with a first electrode 35C.
 一対の弾性支持領域34Cは、YC軸方向(ZC軸及びXC軸に直交するYC軸に平行な方向)において実装領域31Cの両側に配置されている。つまり、実装領域31Cは、YC軸方向において一対の弾性支持領域34Cに挟まれている。各弾性支持領域34Cの両端部34aCは、中間層4Cを介して支持層2Cに固定されている。各弾性支持領域34Cの弾性変形部34bC(両端部34aCの間の部分)は、複数の板バネが連結された構造を有している。各弾性支持領域34Cの弾性変形部34bCは、その直下の中間層4Cが除去されることで、支持層2Cに対して浮いた状態となっている。各弾性支持領域34Cにおいて両端部34aCのそれぞれには、第2電極36Cが設けられている。 The pair of elastic support regions 34C are disposed on both sides of the mounting region 31C in the YC axis direction (a direction parallel to the YC axis perpendicular to the ZC axis and the XC axis). That is, the mounting region 31C is sandwiched between the pair of elastic support regions 34C in the YC axis direction. Both end portions 34aC of each elastic support region 34C are fixed to the support layer 2C via the intermediate layer 4C. Each elastic support region 34C has an elastic deformation portion 34bC (a portion between both end portions 34aC) having a structure in which a plurality of leaf springs are connected. The elastic deformation portion 34bC of each elastic support region 34C is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the elastic deformation portion 34bC. In each elastic support region 34C, a second electrode 36C is provided at each of both end portions 34aC.
 実装領域31Cには、各弾性支持領域34Cの弾性変形部34bCが接続されている。実装領域31Cは、その直下の中間層4Cが除去されることで、支持層2Cに対して浮いた状態となっている。つまり、実装領域31Cは、一対の弾性支持領域34Cによって支持されている。実装領域31Cにおける各アクチュエータ領域33C側の側面には、第2櫛歯部31aCが設けられている。各第2櫛歯部31aCは、その直下の中間層4Cが除去されることで、支持層2Cに対して浮いた状態となっている。互いに対向する第1櫛歯部33aC及び第2櫛歯部31aCにおいては、第1櫛歯部33aCの各櫛歯が第2櫛歯部31aCの各櫛歯間に位置している。 The elastic region 34bC of each elastic support region 34C is connected to the mounting region 31C. The mounting region 31C is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the mounting region 31C. That is, the mounting region 31C is supported by the pair of elastic support regions 34C. A second comb tooth portion 31aC is provided on the side surface of each mounting region 31C on the side of each actuator region 33C. Each second comb tooth portion 31aC is in a state of floating with respect to the support layer 2C by removing the intermediate layer 4C immediately below the second comb tooth portion 31aC. In the first comb tooth portion 33aC and the second comb tooth portion 31aC facing each other, each comb tooth of the first comb tooth portion 33aC is located between each comb tooth of the second comb tooth portion 31aC.
 一対の弾性支持領域34Cは、XC軸に平行な方向ACからみて両側から実装領域31Cを挟んでおり、実装領域31Cが方向ACに沿って移動すると、実装領域31Cが初期位置に戻るように実装領域31Cに弾性力を作用させる。したがって、第1電極35Cと第2電極36Cとの間に電圧が印加されて、互いに対向する第1櫛歯部33aC及び第2櫛歯部31aC間に静電引力が作用すると、当該静電引力と一対の弾性支持領域34Cによる弾性力とがつり合う位置まで、方向ACに沿って実装領域31Cが移動させられる。このように、駆動領域32Cは、静電アクチュエータとして機能する。 The pair of elastic support regions 34C sandwich the mounting region 31C from both sides when viewed in the direction AC parallel to the XC axis, and the mounting region 31C is mounted so that the mounting region 31C returns to the initial position when the mounting region 31C moves along the direction AC. An elastic force is applied to the region 31C. Therefore, when a voltage is applied between the first electrode 35C and the second electrode 36C and an electrostatic attractive force acts between the first comb tooth portion 33aC and the second comb tooth portion 31aC facing each other, the electrostatic attractive force The mounting region 31C is moved along the direction AC to a position where the elastic force generated by the pair of elastic support regions 34C is balanced. Thus, the drive region 32C functions as an electrostatic actuator.
 光モジュール1Cは、可動ミラー5Cと、固定ミラー6Cと、ビームスプリッタ7Cと、光入射部8Cと、光出射部9Cと、を更に備えている。可動ミラー5C、固定ミラー6C及びビームスプリッタ7Cは、マイケルソン干渉光学系である干渉光学系10Cを構成するように、デバイス層3C上に配置されている。 The optical module 1C further includes a movable mirror 5C, a fixed mirror 6C, a beam splitter 7C, a light incident part 8C, and a light emitting part 9C. The movable mirror 5C, the fixed mirror 6C, and the beam splitter 7C are arranged on the device layer 3C so as to constitute an interference optical system 10C that is a Michelson interference optical system.
 可動ミラー5Cは、XC軸方向におけるビームスプリッタ7Cの一方の側において、デバイス層3Cの実装領域31Cに実装されている。可動ミラー5Cが有するミラー部51Cのミラー面51aCは、デバイス層3Cに対して支持層2Cとは反対側に位置している。ミラー面51aCは、例えばXC軸方向に垂直な面(すなわち、方向ACに垂直な面)であり、ビームスプリッタ7C側に向いている。 The movable mirror 5C is mounted on the mounting region 31C of the device layer 3C on one side of the beam splitter 7C in the XC axis direction. The mirror surface 51aC of the mirror part 51C included in the movable mirror 5C is located on the opposite side of the support layer 2C with respect to the device layer 3C. The mirror surface 51aC is, for example, a surface perpendicular to the XC axis direction (that is, a surface perpendicular to the direction AC) and faces the beam splitter 7C side.
 固定ミラー6Cは、YC軸方向におけるビームスプリッタ7Cの一方の側において、デバイス層3Cの実装領域37Cに実装されている。固定ミラー6Cが有するミラー部61Cのミラー面61aCは、デバイス層3Cに対して支持層2Cとは反対側に位置している。ミラー面61aCは、例えばYC軸方向に垂直な面であり、ビームスプリッタ7C側に向いている。 The fixed mirror 6C is mounted on the mounting region 37C of the device layer 3C on one side of the beam splitter 7C in the YC axis direction. The mirror surface 61aC of the mirror portion 61C of the fixed mirror 6C is located on the opposite side of the support layer 2C with respect to the device layer 3C. The mirror surface 61aC is, for example, a surface perpendicular to the YC axis direction and faces the beam splitter 7C side.
 光入射部8Cは、YC軸方向におけるビームスプリッタ7Cの他方の側において、デバイス層3Cに実装されている。光入射部8Cは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光入射部8Cは、外部から干渉光学系10Cに測定光を入射させるように配置されている。 The light incident portion 8C is mounted on the device layer 3C on the other side of the beam splitter 7C in the YC axis direction. The light incident part 8C is configured by, for example, an optical fiber and a collimating lens. The light incident part 8C is arranged so that the measurement light is incident on the interference optical system 10C from the outside.
 光出射部9Cは、XC軸方向におけるビームスプリッタ7Cの他方の側において、デバイス層3Cに実装されている。光出射部9Cは、例えば光ファイバ及びコリメートレンズ等によって構成されている。光出射部9Cは、干渉光学系10Cから外部に測定光(干渉光)を出射させるように配置されている。 The light emitting portion 9C is mounted on the device layer 3C on the other side of the beam splitter 7C in the XC axis direction. The light emitting portion 9C is configured by, for example, an optical fiber and a collimating lens. The light emitting unit 9C is arranged to emit measurement light (interference light) from the interference optical system 10C to the outside.
 ビームスプリッタ7Cは、光学機能面7aCを有するキューブタイプのビームスプリッタである。光学機能面7aCは、デバイス層3Cに対して支持層2Cとは反対側に位置している。ビームスプリッタ7Cは、デバイス層3Cに形成された矩形状の開口3aCの1つの隅部にビームスプリッタ7Cの底面側の1つの角部が接触させられることで、位置決めされている。ビームスプリッタ7Cは、位置決めされた状態で接着等によって支持層2Cに固定されることで、支持層2Cに実装されている。 The beam splitter 7C is a cube type beam splitter having an optical functional surface 7aC. The optical functional surface 7aC is located on the side opposite to the support layer 2C with respect to the device layer 3C. The beam splitter 7C is positioned by bringing one corner on the bottom side of the beam splitter 7C into contact with one corner of the rectangular opening 3aC formed in the device layer 3C. The beam splitter 7C is mounted on the support layer 2C by being fixed to the support layer 2C by bonding or the like in a positioned state.
 以上のように構成された光モジュール1Cでは、光入射部8Cを介して外部から干渉光学系10Cに測定光L0Cが入射すると、測定光L0Cの一部は、ビームスプリッタ7Cの光学機能面7aCで反射されて可動ミラー5Cに向かって進行し、測定光L0Cの残部は、ビームスプリッタ7Cの光学機能面7aCを透過して固定ミラー6Cに向かって進行する。測定光L0Cの一部は、可動ミラー5Cのミラー面51aCで反射されて、同一光路上をビームスプリッタ7Cに向かって進行し、ビームスプリッタ7Cの光学機能面7aCを透過する。測定光L0Cの残部は、固定ミラー6Cのミラー面61aCで反射されて、同一光路上をビームスプリッタ7Cに向かって進行し、ビームスプリッタ7Cの光学機能面7aCで反射される。ビームスプリッタ7Cの光学機能面7aCを透過した測定光L0Cの一部と、ビームスプリッタ7Cの光学機能面7aCで反射された測定光L0Cの残部とは、干渉光である測定光L1Cとなり、測定光L1Cは、光出射部9Cを介して干渉光学系10Cから外部に出射する。光モジュール1Cによれば、方向ACに沿って可動ミラー5Cを高速で往復動させることができるので、小型且つ高精度のFTIRを提供することができる。
[可動ミラー及びその周辺構造]
In the optical module 1C configured as described above, when the measurement light L0C is incident on the interference optical system 10C from the outside via the light incident portion 8C, a part of the measurement light L0C is transmitted to the optical functional surface 7aC of the beam splitter 7C. The reflected light travels toward the movable mirror 5C, and the remaining portion of the measurement light L0C passes through the optical function surface 7aC of the beam splitter 7C and travels toward the fixed mirror 6C. A part of the measurement light L0C is reflected by the mirror surface 51aC of the movable mirror 5C, travels toward the beam splitter 7C on the same optical path, and passes through the optical function surface 7aC of the beam splitter 7C. The remaining part of the measurement light L0C is reflected by the mirror surface 61aC of the fixed mirror 6C, travels on the same optical path toward the beam splitter 7C, and is reflected by the optical function surface 7aC of the beam splitter 7C. A part of the measurement light L0C transmitted through the optical functional surface 7aC of the beam splitter 7C and the remaining part of the measurement light L0C reflected by the optical functional surface 7aC of the beam splitter 7C become the measurement light L1C that is interference light, and the measurement light L1C is emitted to the outside from the interference optical system 10C via the light emitting portion 9C. According to the optical module 1C, since the movable mirror 5C can be reciprocated at high speed along the direction AC, a small and highly accurate FTIR can be provided.
[Movable mirror and surrounding structure]
 図28、図29、及び図30に示されるように、可動ミラー(光学素子)5Cは、ミラー面(光学面)51aCを有するミラー部(光学部)51Cと、環状の弾性部52Cと、ミラー部51Cと弾性部52Cとを互いに連結する連結部53Cと、一対の支持部56Cと、支持部56Cと弾性部52Cとを互いに連結する一対の連結部57Cと、を有している。ミラー部51Cは、円板状に形成されている。ミラー面51aCは、ミラー部51Cの円形状の板面である。可動ミラー5Cは、ミラー面51aCが主面BsCに交差(例えば直交)する状態においてベースBCに実装されている。 As shown in FIG. 28, FIG. 29, and FIG. 30, the movable mirror (optical element) 5C includes a mirror part (optical part) 51C having a mirror surface (optical surface) 51aC, an annular elastic part 52C, and a mirror. It has the connection part 53C which mutually connects the part 51C and the elastic part 52C, a pair of support part 56C, and a pair of connection part 57C which mutually connects the support part 56C and the elastic part 52C. The mirror part 51C is formed in a disk shape. The mirror surface 51aC is a circular plate surface of the mirror part 51C. The movable mirror 5C is mounted on the base BC in a state where the mirror surface 51aC intersects (for example, is orthogonal to) the main surface BsC.
 弾性部52Cは、ミラー面51aCに交差する方向(XC軸方向)からみて、ミラー部51Cから離間しつつミラー部51Cを取り囲むように円環状に形成されている。すなわち、弾性部52Cは、ミラー部51Cの周囲に設けられ、円環状の環状領域CACを形成している。連結部53Cは、主面BsCに沿った方向(YC軸方向)におけるミラー部51Cの中心において、ミラー部51Cと弾性部52Cとを互いに連結している。ここでは、単一の連結部53Cが設けられている。連結部53Cは、YC軸方向におけるミラー部51Cの中心を通る中心線DLC上であって、ZC軸方向におけるミラー部51Cの中心に対して、ベースBCの主面BsCと反対側の位置に設けられている。中心線DLCは、ZC軸方向に沿って延びる仮想的な直線である。 The elastic part 52C is formed in an annular shape so as to surround the mirror part 51C while being separated from the mirror part 51C when viewed from the direction intersecting the mirror surface 51aC (XC axis direction). In other words, the elastic part 52C is provided around the mirror part 51C and forms an annular region CAC. The connecting portion 53C connects the mirror portion 51C and the elastic portion 52C to each other at the center of the mirror portion 51C in the direction along the main surface BsC (YC axis direction). Here, a single connecting portion 53C is provided. The connecting portion 53C is provided on the center line DLC passing through the center of the mirror portion 51C in the YC-axis direction and at a position opposite to the main surface BsC of the base BC with respect to the center of the mirror portion 51C in the ZC-axis direction. It has been. The center line DLC is an imaginary straight line extending along the ZC axis direction.
 弾性部52Cは、半円状の板バネ52aCと、板バネ52aCに連続する半円状の板バネ52bCとによって、円環板状に形成されている。板バネ52aCと板バネ52bCとは、中心線DLCに対して対称的に構成されている。板バネ52aCのばね定数と板バネ52bCのばね定数とは、互いに等しい。ここでは、弾性部52Cの全体として、中心線DLCに対して線対称で有り、且つ、ばね定数を等しい。 The elastic portion 52C is formed in an annular plate shape by a semicircular leaf spring 52aC and a semicircular leaf spring 52bC continuous to the leaf spring 52aC. The leaf spring 52aC and the leaf spring 52bC are configured symmetrically with respect to the center line DLC. The spring constant of the leaf spring 52aC and the spring constant of the leaf spring 52bC are equal to each other. Here, the elastic part 52C as a whole is line-symmetric with respect to the center line DLC and has the same spring constant.
 支持部56Cは、断面矩形の棒状であって、YC軸方向にミラー部51C及び弾性部52Cを挟むように設けられている。支持部56Cは、連結部57Cにより弾性部52Cに連結されている。連結部57Cは、ZC軸方向におけるミラー部51Cの中心を通る中心線CLC上に配置されている。中心線CLCは、ミラー部51Cの中心において中心線DLCに交差(直交)し、YC軸方向に沿って延びる仮想的な直線である。したがって、例えば連結部57Cに対応する位置において、YC軸方向の両側から支持部56Cを挟むように支持部56Cに力を加えることにより、弾性部52CをYC軸方向に圧縮するように弾性変形させることができる。すなわち、YC軸方向に沿った支持部56Cの互いの距離は、弾性部52Cの弾性変形に応じて可変である。また、支持部56Cには、弾性部52Cの弾性力が付与され得る。 The support portion 56C is a rod having a rectangular cross section, and is provided so as to sandwich the mirror portion 51C and the elastic portion 52C in the YC axis direction. The support portion 56C is connected to the elastic portion 52C by a connecting portion 57C. The connecting portion 57C is disposed on a center line CLC passing through the center of the mirror portion 51C in the ZC axis direction. The center line CLC is a virtual straight line that intersects (orthogonally intersects) the center line DLC at the center of the mirror portion 51C and extends along the YC axis direction. Therefore, for example, at a position corresponding to the connecting portion 57C, by applying force to the support portion 56C so as to sandwich the support portion 56C from both sides in the YC axis direction, the elastic portion 52C is elastically deformed so as to be compressed in the YC axis direction. be able to. That is, the mutual distance between the support portions 56C along the YC axis direction is variable according to the elastic deformation of the elastic portion 52C. Further, the elastic force of the elastic portion 52C can be applied to the support portion 56C.
 支持部56Cは、脚部54Cを含む。脚部54Cは、ZC軸方向に沿って連結部57Cからミラー面51aCを越えてミラー面51aCの一方側(ここでは主面BsC側)に直線状に延在している。脚部54Cの先端は、主面BsC(すなわち実装領域31C)に接触する接触部58Cとされている。接触部58Cの端面は、例えば、平坦であってもよいが、ここでは曲面状(半球面状)とされている。 The support portion 56C includes a leg portion 54C. The leg portion 54C extends linearly from the connecting portion 57C to the one side (here, the main surface BsC side) of the mirror surface 51aC along the ZC axis direction, beyond the mirror surface 51aC. The tip of the leg portion 54C is a contact portion 58C that comes into contact with the main surface BsC (that is, the mounting region 31C). The end surface of the contact portion 58C may be flat, for example, but is curved (hemispherical) here.
 支持部56Cは、係止部55Cをさらに含む。係止部55Cは、脚部54Cの先端側の中途部分から分岐して延在している。したがって、支持部56Cは、係止部55Cと分岐しつつベースBC側に突出する突出部(脚部54C)を含み、接触部58Cは、当該突出部の先端部を含む。一対の支持部56C間において、係止部55Cは、互いに向けて凸となるようにV字状に屈曲している。係止部55Cは、傾斜面55aC及び傾斜面55bCを含む。傾斜面55aC及び傾斜面55bCは、一対の係止部55Cにおける互いに対向する面の反対側の面である(外面である)。 The support portion 56C further includes a locking portion 55C. The locking portion 55C extends from a midway portion on the distal end side of the leg portion 54C. Therefore, the support part 56C includes a protrusion part (leg part 54C) that branches off from the locking part 55C and protrudes toward the base BC, and the contact part 58C includes a tip part of the protrusion part. Between the pair of support portions 56C, the locking portion 55C is bent in a V shape so as to protrude toward each other. The locking portion 55C includes an inclined surface 55aC and an inclined surface 55bC. The inclined surface 55aC and the inclined surface 55bC are surfaces on the opposite side of the surfaces facing each other in the pair of locking portions 55C (outer surfaces).
 傾斜面55aCは、一対の係止部55C間において、連結部57Cから遠ざかる方向(ZC軸負方向)に互いに近づくように傾斜している。傾斜面55bCは、ZC軸負方向に互いに離間するように傾斜している。XC軸方向からみて、ZC軸に対する傾斜面55aCの傾斜角αCの絶対値は、90°未満である。同様に、傾斜面55bCの傾斜角βCの絶対値は、90°未満である。ここでは、一例として、傾斜角αCの絶対値と傾斜角βCの絶対値とは互いに等しい。 The inclined surfaces 55aC are inclined so as to approach each other in the direction away from the connecting portion 57C (ZC axis negative direction) between the pair of locking portions 55C. The inclined surfaces 55bC are inclined so as to be separated from each other in the negative direction of the ZC axis. When viewed from the XC axis direction, the absolute value of the inclination angle αC of the inclined surface 55aC with respect to the ZC axis is less than 90 °. Similarly, the absolute value of the inclination angle βC of the inclined surface 55bC is less than 90 °. Here, as an example, the absolute value of the inclination angle αC and the absolute value of the inclination angle βC are equal to each other.
 ここで、実装領域31Cには、開口31bCが形成されている。ここでは、開口31bCは、ZC軸方向に延びてデバイス層3Cを貫通している。したがって、開口31bCは、主面BsCとデバイス層3Cにおける主面BsCの反対側の表面とに連通している(至っている)。開口31bCは、ZC軸方向からみたときの形状が台形である柱状を呈している(図30参照)。開口31bCの詳細については後述する。 Here, an opening 31bC is formed in the mounting region 31C. Here, the opening 31bC extends in the ZC axis direction and penetrates the device layer 3C. Therefore, the opening 31bC communicates with (is led to) the main surface BsC and the surface of the device layer 3C opposite to the main surface BsC. The opening 31bC has a columnar shape that is trapezoidal when viewed from the ZC axis direction (see FIG. 30). Details of the opening 31bC will be described later.
 支持部56Cは、弾性部52Cの弾性力が付与された状態において、この開口31bCに挿入される。換言すれば、支持部56C(すなわち可動ミラー5C)が開口31bCを介して実装領域31Cを貫通している。より具体的には、支持部56Cのうちの係止部55Cの一部が、開口31bC内に位置している。その状態において、係止部55Cは、ZC軸方向における開口31bCの一対の縁部(主面BsC側の縁部及び主面BsCの反対側の縁部)に接触している。 The support portion 56C is inserted into the opening 31bC in a state where the elastic force of the elastic portion 52C is applied. In other words, the support portion 56C (that is, the movable mirror 5C) penetrates the mounting region 31C through the opening 31bC. More specifically, a part of the locking portion 55C of the support portion 56C is located in the opening 31bC. In this state, the locking portion 55C is in contact with a pair of edges (the edge on the main surface BsC side and the edge on the opposite side of the main surface BsC) of the opening 31bC in the ZC axis direction.
 ここでは、傾斜面55aCが開口31bCの主面BsC側の縁部に接触し、傾斜面55bCが開口31bCの主面BsCの反対側の縁部に接触している。これにより、ZC軸方向において係止部55Cが実装領域31Cを挟むように実装領域31Cに係止される。この結果、ZC軸方向について、可動ミラー5CがベースBCから抜けることが抑制される。 Here, the inclined surface 55aC is in contact with the edge of the opening 31bC on the main surface BsC side, and the inclined surface 55bC is in contact with the edge of the opening 31bC on the opposite side of the main surface BsC. Accordingly, the locking portion 55C is locked to the mounting region 31C so as to sandwich the mounting region 31C in the ZC axial direction. As a result, the movable mirror 5C is prevented from coming off the base BC in the ZC axis direction.
 このとき、接触部58Cは、主面BsC(すなわち実装領域31C)に接触する。つまり、接触部58Cは、係止部55Cが実装領域31Cを挟むように係止された状態において、実装領域31C(ここでは主面BsC)に接触する。そして、接触部58Cは、実装領域31Cに接着されている。ここでは、一例として、接触部58Cは、例えば樹脂接着層を介して主面BsCに接触し、接着されている。ただし、接触部58Cの接着は、例えば、金属層の溶融、ガラス接着剤、及び、レーザ光の照射による接着等であってもよい。 At this time, the contact portion 58C contacts the main surface BsC (that is, the mounting region 31C). That is, the contact portion 58C contacts the mounting region 31C (here, the main surface BsC) in a state where the locking portion 55C is locked so as to sandwich the mounting region 31C. The contact portion 58C is bonded to the mounting region 31C. Here, as an example, the contact portion 58C is in contact with and bonded to the main surface BsC via, for example, a resin adhesive layer. However, the adhesion of the contact portion 58C may be, for example, adhesion of a metal layer, glass adhesive, laser light irradiation, or the like.
 ここで、中間層4Cには、開口41Cが形成されている。開口41Cは、ZC軸方向において中間層4Cの両側に開口している。支持層2Cには、開口21Cが形成されている。開口21Cは、ZC軸方向において支持層2Cの両側に開口している。光モジュール1Cでは、中間層4Cの開口41C内の領域及び支持層2Cの開口21C内の領域によって、一続きの空間S1Cが構成されている。つまり、空間S1Cは、中間層4Cの開口41C内の領域及び支持層2Cの開口21C内の領域を含んでいる。 Here, an opening 41C is formed in the intermediate layer 4C. The openings 41C are opened on both sides of the intermediate layer 4C in the ZC axis direction. An opening 21C is formed in the support layer 2C. The openings 21C are opened on both sides of the support layer 2C in the ZC axis direction. In the optical module 1C, a continuous space S1C is formed by the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C. That is, the space S1C includes a region in the opening 41C of the intermediate layer 4C and a region in the opening 21C of the support layer 2C.
 空間S1Cは、支持層2Cとデバイス層3Cとの間に形成されており、少なくとも実装領域31C及び駆動領域32Cに対応している。具体的には、中間層4Cの開口41C内の領域及び支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいる。中間層4Cの開口41C内の領域は、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分(すなわち、支持層2Cに対して浮いた状態とすべき部分であって、例えば、実装領域31Cの全体、各弾性支持領域34Cの弾性変形部34bC、第1櫛歯部33aC及び第2櫛歯部31aC)を支持層2Cから離間させるための隙間を形成している。 The space S1C is formed between the support layer 2C and the device layer 3C, and corresponds to at least the mounting region 31C and the drive region 32C. Specifically, the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction. The region in the opening 41C of the intermediate layer 4C is a portion that should be separated from the support layer 2C in the mounting region 31C and the drive region 32C (that is, a portion that should be in a floating state with respect to the support layer 2C. A gap for separating the entire mounting region 31C, the elastic deformation portion 34bC, the first comb tooth portion 33aC, and the second comb tooth portion 31aC) of each elastic support region 34C from the support layer 2C is formed.
 空間S1Cには、可動ミラー5Cが有する各係止部55Cの一部が位置している。具体的には、各係止部55Cの一部は、中間層4Cの開口41C内の領域を介して、支持層2Cの開口21C内の領域に位置している。各係止部55Cの一部は、デバイス層3Cにおける中間層4C側の表面から空間S1C内に、例えば100μm程度突出している。上述したように、中間層4Cの開口41C内の領域及び支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいるため、実装領域31Cが方向ACに沿って往復動した際に、可動ミラー5Cの各係止部55Cうち空間S1Cに位置する一部が、中間層4C及び支持層2Cと接触することはない。 In the space S1C, a part of each locking portion 55C of the movable mirror 5C is located. Specifically, a part of each locking portion 55C is located in a region in the opening 21C of the support layer 2C via a region in the opening 41C of the intermediate layer 4C. A part of each locking portion 55C protrudes from the surface of the device layer 3C on the intermediate layer 4C side into the space S1C, for example, by about 100 μm. As described above, the region in the opening 41C of the intermediate layer 4C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction. Is reciprocated along the direction AC, a part of each locking portion 55C of the movable mirror 5C located in the space S1C does not come into contact with the intermediate layer 4C and the support layer 2C.
 ここで、図30に示されるように、開口31bCの内面は、一対の傾斜面SLCと、基準面SRCと、を含む。傾斜面SLCは、一端SLaCと他端SLbCとを含む。一端SLaC及び他端SLbCは、ZC軸方向からみたときの傾斜面SLCの両端部である。一対の傾斜面SLCは、一端SLaCから他端SLbCに向けて互いの距離が拡大するように(例えばXC軸に対して)傾斜している。基準面SRCは、ZC軸方向からみて、一方の傾斜面SLCの他端SLbCと他方の傾斜面SLCの他端SLbCとを互いに接続する基準線BLCに沿って延在している。ここでは、基準面SRCは、単に、他端SLbC同士を互いに接続している。上述したように、ZC軸方向からみたときの開口31bCの形状は台形である。したがって、ここでは、傾斜面SLCが台形の脚に相当し、基準面SRCは台形の下底に相当する。 Here, as shown in FIG. 30, the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a reference surface SRC. The inclined surface SLC includes one end SLaC and the other end SLbC. One end SLaC and the other end SLbC are both ends of the inclined surface SLC when viewed from the ZC axis direction. The pair of inclined surfaces SLC are inclined (for example, with respect to the XC axis) such that the distance from one end SLaC to the other end SLbC increases. The reference surface SRC extends along a reference line BLC that connects the other end SLbC of one inclined surface SLC and the other end SLbC of the other inclined surface SLC, as viewed from the ZC axis direction. Here, the reference surface SRC simply connects the other ends SLbC to each other. As described above, the shape of the opening 31bC when viewed from the ZC axis direction is a trapezoid. Therefore, here, the inclined surface SLC corresponds to a trapezoidal leg, and the reference surface SRC corresponds to the lower base of the trapezoid.
 ここでは、開口31bCは単一の空間である。YC軸方向における開口31bCの寸法の最小値(すなわち、傾斜面SLCの一端SLaC同士の間隔)は、YC軸方向に沿って弾性部52Cを圧縮するように弾性変形させたとき、一対の係止部55Cを一括して開口31bC内に配置可能な値である。一方、YC軸方向における開口31bCの寸法の最大値(すなわち、傾斜面SLCの他端SLbC同士の間隔)は、一対の係止部55Cが開口31bCに配置されているときに弾性部52Cの弾性変形の一部のみが解放され得る(すなわち弾性部52Cが自然長に至らない)値である。 Here, the opening 31bC is a single space. The minimum value of the dimension of the opening 31bC in the YC axis direction (that is, the distance between the one ends SLaC of the inclined surface SLC) is a pair of locking when the elastic portion 52C is elastically deformed along the YC axis direction. The value is such that the portion 55C can be placed in the opening 31bC in a lump. On the other hand, the maximum value of the dimension of the opening 31bC in the YC-axis direction (that is, the interval between the other ends SLbC of the inclined surface SLC) is the elasticity of the elastic part 52C when the pair of locking parts 55C is disposed in the opening 31bC. Only a part of the deformation can be released (that is, the elastic portion 52C does not reach the natural length).
 したがって、開口31bC内に一対の係止部55Cを配置すると、弾性部52Cの弾性力によって係止部55Cが開口31bCの内面を押圧し、開口31bCの内面からの反力が係止部55C(支持部56C)に付与されることになる。これにより、可動ミラー5Cは、ミラー面51aCが主面BsCに交差(例えば直交)した状態において、開口31bCの内面から支持部56Cに付与される弾性力の反力により実装領域31Cに支持される。この状態において、上述したように、接触部58Cが主面BsC(実装領域31C)に接触し接着されている。したがって、可動ミラー5Cは、ミラー面51aCが主面BsCに交差した状態において、開口31bCの内面から係止部55Cに付与される弾性力の反力により実装領域31Cに支持され、且つ、接触部58Cにおいて実装領域31Cに接着されている。 Accordingly, when the pair of locking portions 55C is disposed in the opening 31bC, the locking portion 55C presses the inner surface of the opening 31bC by the elastic force of the elastic portion 52C, and the reaction force from the inner surface of the opening 31bC is increased by the locking portion 55C ( The support portion 56C) is provided. Accordingly, the movable mirror 5C is supported by the mounting region 31C by the reaction force of the elastic force applied from the inner surface of the opening 31bC to the support portion 56C in a state where the mirror surface 51aC intersects (for example, orthogonally) the main surface BsC. . In this state, as described above, the contact portion 58C is in contact with and bonded to the main surface BsC (mounting region 31C). Accordingly, the movable mirror 5C is supported by the mounting region 31C by the reaction force of the elastic force applied to the locking portion 55C from the inner surface of the opening 31bC in a state where the mirror surface 51aC intersects the main surface BsC, and the contact portion At 58C, it is bonded to the mounting region 31C.
 特に、係止部55Cは、開口31bCの傾斜面SLCに当接される。このため、係止部55Cは、傾斜面SLCからの反力のXC軸方向の成分によって傾斜面SLC上を基準面SRCに向けて摺動し、傾斜面SLCに接触しながら基準面SRCに突き当てられる。これにより、係止部55Cは、傾斜面SLCと基準面SRCとによって規定される角部に内接し、XC軸方向及びYC軸方向の両方において位置決めされる(弾性力によりセルフアライメントされる)。ここでは、係止部55Cの断面形状が四角形であるので、ZC軸方向から見て、傾斜面SLCは係止部55Cに対して点で接触し、基準面SRCは係止部55Cに対して線で接触する。すなわち、ここでは、開口31bCの内面は、ZC軸方向からみて2つの点及び2つの線で一対の係止部55Cに接触する。 Particularly, the locking portion 55C is brought into contact with the inclined surface SLC of the opening 31bC. For this reason, the locking portion 55C slides on the inclined surface SLC toward the reference surface SRC by the component in the XC axis direction of the reaction force from the inclined surface SLC, and pushes against the reference surface SRC while contacting the inclined surface SLC. Hit. Accordingly, the locking portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, and is positioned in both the XC axis direction and the YC axis direction (self-aligned by elastic force). Here, since the cross-sectional shape of the locking portion 55C is a quadrangle, when viewed from the ZC axial direction, the inclined surface SLC contacts the locking portion 55C at a point, and the reference surface SRC is in contact with the locking portion 55C. Touch with a line. That is, here, the inner surface of the opening 31bC contacts the pair of locking portions 55C at two points and two lines when viewed from the ZC axial direction.
 一方、図28に示されるように、XC軸方向からみて、係止部55Cには、開口31bCの縁部においても開口31bCの内面から弾性力の反力が付与される。可動ミラー5Cの実装時には、係止部55Cの傾斜面55aC及び傾斜面55bCの一方に対して反力が付与される場合がある。この場合には、当該反力の傾斜面55aC又は傾斜面55bCに沿った成分によって傾斜面55aC及び傾斜面55bCの一方が縁部に摺動し、傾斜面55aCと傾斜面55bCとの両方が縁部に当接する位置(すなわちZC軸方向に沿って実装領域31Cを挟む位置)に至るようにZC軸方向に沿って移動する。これにより、当該位置において係止部55Cが係止され、可動ミラー5CがZC軸方向について位置決めされる(弾性力によりセルフアライメントされる)。つまり、可動ミラー5Cにおいては、弾性部52Cの弾性力を利用して、3次元的にセルフアライメントがなされる。なお、ここでは、傾斜面55bCと接触部58Cとが、ZC軸方向に沿って互いに対向している。したがって、傾斜面55aCが開口31bCの縁部に接触せずに、接触部58Cと傾斜面55bCとによって開口31bCの縁部を挟むようにセルフアライメントを行うように構成してもよい。 On the other hand, as shown in FIG. 28, when viewed from the XC axial direction, an elastic reaction force is applied to the locking portion 55C from the inner surface of the opening 31bC even at the edge of the opening 31bC. When the movable mirror 5C is mounted, a reaction force may be applied to one of the inclined surface 55aC and the inclined surface 55bC of the locking portion 55C. In this case, one of the inclined surface 55aC and the inclined surface 55bC slides on the edge by the component of the reaction force along the inclined surface 55aC or the inclined surface 55bC, and both the inclined surface 55aC and the inclined surface 55bC are edges. It moves along the ZC axis direction so as to reach a position where it contacts the part (that is, a position that sandwiches the mounting region 31C along the ZC axis direction). Accordingly, the locking portion 55C is locked at the position, and the movable mirror 5C is positioned in the ZC axial direction (self-aligned by the elastic force). That is, in the movable mirror 5C, self-alignment is three-dimensionally performed using the elastic force of the elastic portion 52C. Here, the inclined surface 55bC and the contact portion 58C are opposed to each other along the ZC axis direction. Therefore, the inclined surface 55aC may be configured not to contact the edge of the opening 31bC but to perform self-alignment so that the edge of the opening 31bC is sandwiched between the contact portion 58C and the inclined surface 55bC.
 以上のような可動ミラー5Cは、例えばMEMS技術(パターニング及びエッチング)によって一体的に形成される。したがって、可動ミラー5Cの厚さ(ミラー面51aCに交差する方向の寸法)は、各部において一定であり、例えば、320μm程度である。また、ミラー面51aCの直径は、例えば1mm程度である。さらに、弾性部52Cのミラー部51C側の表面(内面)と、ミラー部51Cの弾性部52C側の表面(外面)との間隔は、例えば200μm程度である。弾性部52Cの厚さ(板バネの厚さ)は、例えば10μm以上20μm以下程度である。
[固定ミラー及びその周辺構造]
The movable mirror 5C as described above is integrally formed by, for example, MEMS technology (patterning and etching). Accordingly, the thickness of the movable mirror 5C (the dimension in the direction intersecting the mirror surface 51aC) is constant in each part, and is, for example, about 320 μm. The diameter of the mirror surface 51aC is, for example, about 1 mm. Furthermore, the distance between the surface (inner surface) of the elastic part 52C on the mirror part 51C side and the surface (outer surface) of the mirror part 51C on the elastic part 52C side is, for example, about 200 μm. The thickness of the elastic portion 52C (thickness of the leaf spring) is, for example, about 10 μm to 20 μm.
[Fixed mirror and its peripheral structure]
 固定ミラー6C及びその周辺構造は、実装領域が可動しないことを除いて、上記の可動ミラー5C及びその周辺構造と同様となっている。すなわち、図31及び図32に示されるように、固定ミラー(光学素子)6Cは、ミラー面(光学面)61aCを有するミラー部(光学部)61Cと、環状の弾性部62Cと、ミラー部61Cと弾性部62Cとを互いに連結する連結部63Cと、一対の支持部66Cと、支持部66Cと弾性部62Cとを互いに連結する一対の連結部67Cと、を有している。ミラー部61Cは、円板状に形成されている。ミラー面61aCは、ミラー部61Cの円形状の板面である。固定ミラー6Cは、ミラー面61aCがベースBCの主面BsCに交差(例えば直交)する状態において、ベースBCに実装されている。 The fixed mirror 6C and its peripheral structure are the same as the movable mirror 5C and its peripheral structure except that the mounting area does not move. That is, as shown in FIGS. 31 and 32, the fixed mirror (optical element) 6C includes a mirror portion (optical portion) 61C having a mirror surface (optical surface) 61aC, an annular elastic portion 62C, and a mirror portion 61C. And the elastic portion 62C, a pair of support portions 66C, and a pair of connection portions 67C that connect the support portion 66C and the elastic portion 62C to each other. The mirror part 61C is formed in a disk shape. The mirror surface 61aC is a circular plate surface of the mirror portion 61C. The fixed mirror 6C is mounted on the base BC in a state where the mirror surface 61aC intersects (for example, is orthogonal to) the main surface BsC of the base BC.
 弾性部62Cは、ミラー面61aCに交差する方向(YC軸方向)からみて、ミラー部61Cから離間しつつミラー部61Cを取り囲むように円環状に形成されている。したがって、弾性部62Cは、ミラー部61Cの周囲に設けられ、円環状の環状領域CACを形成している。連結部63Cは、主面BsCに沿った方向(XC軸方向)におけるミラー部61Cの中心において、ミラー部61Cと弾性部62Cとを互いに連結している。ここでは、単一の連結部63Cが設けられている。連結部63Cは、XC軸方向におけるミラー部61Cの中心を通る中心線DLC上であって、ZC軸方向におけるミラー部61Cの中心に対して、ベースBCの主面BsCと反対側の位置に設けられている。中心線DLCは、ZC軸方向に沿って延びる仮想的な直線である。 The elastic part 62C is formed in an annular shape so as to surround the mirror part 61C while being separated from the mirror part 61C when viewed from the direction intersecting the mirror surface 61aC (YC axis direction). Therefore, the elastic portion 62C is provided around the mirror portion 61C, and forms an annular region CAC. The connecting portion 63C connects the mirror portion 61C and the elastic portion 62C to each other at the center of the mirror portion 61C in the direction along the main surface BsC (XC axis direction). Here, a single connecting portion 63C is provided. The connecting portion 63C is provided on the center line DLC passing through the center of the mirror portion 61C in the XC axis direction and at a position opposite to the main surface BsC of the base BC with respect to the center of the mirror portion 61C in the ZC axis direction. It has been. The center line DLC is an imaginary straight line extending along the ZC axis direction.
 弾性部62Cは、半円状の板バネ62aCと、板バネ62aCに連続する半円状の板バネ62bCとによって、円環板状に形成されている。板バネ62aCと板バネ62bCとは、中心線DLCに対して対称的に構成されている。板バネ62aCのばね定数と板バネ62bCのばね定数とは、互いに等しい。ここでは、弾性部62Cの全体として、中心線DLCに対して線対称で有り、且つ、ばね定数を等しい。 The elastic portion 62C is formed in an annular plate shape by a semicircular leaf spring 62aC and a semicircular leaf spring 62bC continuous to the leaf spring 62aC. The leaf spring 62aC and the leaf spring 62bC are configured symmetrically with respect to the center line DLC. The spring constant of the leaf spring 62aC and the spring constant of the leaf spring 62bC are equal to each other. Here, the elastic part 62C as a whole is line-symmetric with respect to the center line DLC and has the same spring constant.
 支持部66Cは、断面矩形の棒状であって、XC軸方向にミラー部61C及び弾性部62Cを挟むように設けられている。支持部66Cは、連結部67Cにより弾性部62Cに連結されている。連結部67Cは、ZC軸方向におけるミラー部61Cの中心を通る中心線CLC上に配置されている。中心線CLCは、ミラー部61Cの中心において中心線DLCに交差(直交)し、XC軸方向に沿って延びる仮想的な直線である。したがって、例えば連結部67Cに対応する位置において、XC軸方向の両側から支持部66Cを挟むように支持部66Cに力を加えることにより、弾性部62CをXC軸方向に圧縮するように弾性変形させることができる。すなわち、XC軸方向に沿った支持部66Cの互いの距離は、弾性部62Cの弾性変形に応じて可変である。また、支持部66Cには、弾性部62Cの弾性力が付与され得る。 The support portion 66C has a bar shape with a rectangular cross section, and is provided so as to sandwich the mirror portion 61C and the elastic portion 62C in the XC axis direction. The support portion 66C is connected to the elastic portion 62C by a connecting portion 67C. The connecting portion 67C is disposed on a center line CLC passing through the center of the mirror portion 61C in the ZC axis direction. The center line CLC is a virtual straight line that intersects (orthogonally) the center line DLC at the center of the mirror portion 61C and extends along the XC axis direction. Therefore, for example, at the position corresponding to the connecting portion 67C, by applying a force to the support portion 66C so as to sandwich the support portion 66C from both sides in the XC axis direction, the elastic portion 62C is elastically deformed so as to be compressed in the XC axis direction. be able to. That is, the distance between the support portions 66C along the XC axis direction is variable according to the elastic deformation of the elastic portion 62C. Further, the elastic force of the elastic portion 62C can be applied to the support portion 66C.
 支持部66Cは、脚部64Cを含む。脚部64Cは、ZC軸方向に沿って連結部67Cからミラー面61aCを越えてミラー面61aCの一方側(ここでは主面BsC側)に直線状に延在している。脚部64Cの先端は、主面BsC(すなわち実装領域37C)に接触する接触部68Cとされている。接触部68Cの端面は、例えば、平坦であってもよいが、ここでは曲面状(半球面状)とされている。 The support portion 66C includes a leg portion 64C. The leg portion 64C extends linearly along the ZC axis direction from the connecting portion 67C beyond the mirror surface 61aC to one side of the mirror surface 61aC (here, the main surface BsC side). The front end of the leg portion 64C is a contact portion 68C that comes into contact with the main surface BsC (that is, the mounting region 37C). The end surface of the contact portion 68C may be flat, for example, but here is a curved surface (semispherical surface).
 支持部66Cは、係止部65Cをさらに含む。係止部65Cは、脚部64Cの先端側の中途部分から分岐して延在している。したがって、支持部66Cは、係止部65Cと分岐しつつベースBC側に突出する突出部(脚部64C)を含み、接触部68Cは、当該突出部の先端部を含む。一対の支持部66C間において、係止部65Cは、互いに向けて凸となるようにV字状に屈曲している。係止部65Cは、傾斜面65aC及び傾斜面65bCを含む。傾斜面65aC及び傾斜面65bCを含む。傾斜面65aC及び傾斜面65bCは、一対の係止部65Cにおける互いに対向する面の反対側の面である(外面である)。 The support portion 66C further includes a locking portion 65C. The locking part 65C extends from the middle part on the tip side of the leg part 64C. Therefore, the support portion 66C includes a protruding portion (leg portion 64C) that branches off from the locking portion 65C and protrudes toward the base BC, and the contact portion 68C includes a tip portion of the protruding portion. Between the pair of support portions 66C, the locking portion 65C is bent in a V shape so as to protrude toward each other. The locking portion 65C includes an inclined surface 65aC and an inclined surface 65bC. It includes an inclined surface 65aC and an inclined surface 65bC. The inclined surface 65aC and the inclined surface 65bC are surfaces opposite to the surfaces facing each other in the pair of locking portions 65C (outer surfaces).
 傾斜面65aCは、一対の係止部65C間において、連結部67Cから遠ざかる方向(ZC軸負方向)に互いに近づくように傾斜している。傾斜面65bCは、ZC軸負方向に互いに離間するように傾斜している。YC軸方向からみて、ZC軸に対する傾斜面65aC,65bCの傾斜角は、可動ミラー5Cにおける傾斜面55aC,55bCと同様である。 The inclined surfaces 65aC are inclined so as to approach each other in the direction away from the connecting portion 67C (ZC axis negative direction) between the pair of locking portions 65C. The inclined surfaces 65bC are inclined so as to be separated from each other in the ZC axis negative direction. When viewed from the YC axis direction, the inclination angles of the inclined surfaces 65aC and 65bC with respect to the ZC axis are the same as those of the inclined surfaces 55aC and 55bC in the movable mirror 5C.
 ここで、実装領域37Cには、開口37aCが形成されている。ここでは、開口37aCは、ZC軸方向にデバイス層3Cを貫通している。したがって、開口37aCは、主面BsCとデバイス層3Cにおける主面BsCの反対側の表面とに連通している(至っている)。開口37aCは、実装領域31Cにおける開口31bCと同様に、ZC軸方向からみたときの形状が台形である柱状を呈している。 Here, an opening 37aC is formed in the mounting region 37C. Here, the opening 37aC penetrates the device layer 3C in the ZC axis direction. Therefore, the opening 37aC communicates with (is led to) the main surface BsC and the surface of the device layer 3C opposite to the main surface BsC. Similar to the opening 31bC in the mounting region 31C, the opening 37aC has a columnar shape with a trapezoidal shape when viewed from the ZC axis direction.
 支持部66Cは、弾性部62Cの弾性力が付与された状態において、この開口37aCに挿入される。換言すれば、支持部66C(すなわち固定ミラー6C)が開口37aCを介して実装領域37Cを貫通している。より具体的には、支持部66Cのうちの係止部65Cの一部が、開口37aC内に位置している。その状態において、係止部65Cは、ZC軸方向における開口37aCの一対の縁部(主面BsC側の縁部及び主面BsCの反対側の縁部)に接触している。ここでは、傾斜面65aCが開口37aCの主面BsC側の縁部に接触し、傾斜面65bCが開口37aCの主面BsCの反対側の縁部に接触している。これにより、ZC軸方向において係止部65Cが実装領域37Cを挟むように実装領域37Cに係止される。この結果、ZC軸方向について、固定ミラー6CがベースBCから抜けることが抑制される。 The support portion 66C is inserted into the opening 37aC in a state where the elastic force of the elastic portion 62C is applied. In other words, the support portion 66C (that is, the fixed mirror 6C) penetrates the mounting region 37C through the opening 37aC. More specifically, a part of the locking portion 65C of the support portion 66C is located in the opening 37aC. In this state, the locking portion 65C is in contact with a pair of edges of the opening 37aC in the ZC axial direction (an edge on the main surface BsC side and an edge on the opposite side of the main surface BsC). Here, the inclined surface 65aC is in contact with the edge of the opening 37aC on the main surface BsC side, and the inclined surface 65bC is in contact with the edge of the opening 37aC on the opposite side of the main surface BsC. Accordingly, the locking portion 65C is locked to the mounting region 37C so as to sandwich the mounting region 37C in the ZC axial direction. As a result, the fixed mirror 6C is prevented from coming off the base BC in the ZC axis direction.
 このとき、接触部68Cは、主面BsC(すなわち実装領域37C)に接触する。つまり、接触部68Cは、係止部65Cが実装領域37Cを挟むように係止された状態において、実装領域37C(ここでは主面BsC)に接触する。そして、接触部68Cは、実装領域37Cに接着されている。ここでは、一例として、接触部68Cは、例えば樹脂接着層を介して主面BsCに接触し、接着されている。ただし、接触部68Cの接着は、例えば、金属層の溶融、ガラス接着剤、及び、レーザ光の照射による接着等であってもよい。 At this time, the contact portion 68C contacts the main surface BsC (that is, the mounting region 37C). That is, the contact portion 68C contacts the mounting region 37C (here, the main surface BsC) in a state where the locking portion 65C is locked so as to sandwich the mounting region 37C. The contact portion 68C is bonded to the mounting region 37C. Here, as an example, the contact portion 68C is in contact with and bonded to the main surface BsC via a resin adhesive layer, for example. However, the bonding of the contact portion 68C may be, for example, melting of a metal layer, glass adhesive, bonding by laser light irradiation, or the like.
 ここで、中間層4Cには、開口42Cが形成されている。開口42Cは、ZC軸方向から見た場合に実装領域37Cの開口37aCを含んでおり、ZC軸方向において中間層4Cの両側に開口している。支持層2Cには、開口22Cが形成されている。開口22Cは、ZC軸方向から見た場合に実装領域37Cの開口37aCを含んでおり、ZC軸方向において支持層2Cの両側に開口している。光モジュール1Cでは、中間層4Cの開口42C内の領域及び支持層2Cの開口22C内の領域によって、一続きの空間S2Cが構成されている。つまり、空間S2Cは、中間層4Cの開口42C内の領域及び支持層2Cの開口22C内の領域を含んでいる。 Here, an opening 42C is formed in the intermediate layer 4C. The opening 42C includes the opening 37aC of the mounting region 37C when viewed from the ZC axis direction, and opens on both sides of the intermediate layer 4C in the ZC axis direction. An opening 22C is formed in the support layer 2C. The opening 22C includes the opening 37aC of the mounting region 37C when viewed from the ZC axis direction, and opens on both sides of the support layer 2C in the ZC axis direction. In the optical module 1C, a continuous space S2C is formed by the region in the opening 42C of the intermediate layer 4C and the region in the opening 22C of the support layer 2C. That is, the space S2C includes a region in the opening 42C of the intermediate layer 4C and a region in the opening 22C of the support layer 2C.
 空間S2Cには、固定ミラー6Cが有する各係止部65Cの一部が位置している。具体的には、各係止部65Cの一部は、中間層4Cの開口42C内の領域を介して、支持層2Cの開口22C内の領域に位置している。各係止部65Cの一部は、デバイス層3Cにおける中間層4C側の表面から空間S2C内に、例えば100μm程度突出している。 In the space S2C, a part of each locking portion 65C of the fixed mirror 6C is located. Specifically, a part of each locking portion 65C is located in a region in the opening 22C of the support layer 2C via a region in the opening 42C of the intermediate layer 4C. A part of each locking portion 65C protrudes from the surface of the device layer 3C on the intermediate layer 4C side into the space S2C, for example, by about 100 μm.
 ここで、開口37aCの内面は、実装領域31Cにおける開口31bCの内面と同様に構成されている。したがって、開口37aC内に一対の係止部65Cを配置すると、弾性部62Cの弾性力によって係止部65Cが開口37aCの内面を押圧し、開口37aCの内面からの反力が係止部65C(支持部66C)に付与されることになる。これにより、固定ミラー6Cは、ミラー面61aCが主面BsCに交差(例えば直交)した状態において、開口37aCの内面から支持部66Cに付与される弾性力の反力により実装領域37Cに支持される。この状態において、上述したように、接触部68Cが主面BsC(実装領域37C)に接触し接着されている。したがって、固定ミラー6Cは、ミラー面61aCが主面BsCに交差した状態において、開口37aCの内面から係止部65Cに付与される弾性力の反力により実装領域37Cに支持され、且つ、接触部68Cにおいて実装領域37Cに接着されている。なお、固定ミラー6Cにおいても、可動ミラー5Cの場合と同様に、開口37aCの内面と弾性力とを利用した3次元的なセルフアライメントがなされる。 Here, the inner surface of the opening 37aC is configured in the same manner as the inner surface of the opening 31bC in the mounting region 31C. Therefore, when the pair of locking portions 65C is disposed in the opening 37aC, the locking portion 65C presses the inner surface of the opening 37aC by the elastic force of the elastic portion 62C, and the reaction force from the inner surface of the opening 37aC is increased by the locking portion 65C ( The support portion 66C) is applied. Accordingly, the fixed mirror 6C is supported by the mounting region 37C by the reaction force of the elastic force applied to the support portion 66C from the inner surface of the opening 37aC in a state where the mirror surface 61aC intersects (for example, orthogonally) the main surface BsC. . In this state, as described above, the contact portion 68C is in contact with and adhered to the main surface BsC (mounting region 37C). Therefore, the fixed mirror 6C is supported by the mounting region 37C by the reaction force of the elastic force applied to the locking portion 65C from the inner surface of the opening 37aC in a state where the mirror surface 61aC intersects the main surface BsC, and the contact portion At 68C, it is bonded to the mounting region 37C. In the fixed mirror 6C, as in the case of the movable mirror 5C, three-dimensional self-alignment using the inner surface of the opening 37aC and the elastic force is performed.
 以上のような固定ミラー6Cも、可動ミラー5Cと同様に、例えばMEMS技術(パターニング及びエッチング)によって一体的に形成される。固定ミラー6Cの各部の寸法は、例えば可動ミラー5Cの各部の上述した寸法と同様である。
[作用及び効果]
The fixed mirror 6C as described above is also integrally formed by, for example, the MEMS technique (patterning and etching) similarly to the movable mirror 5C. The dimension of each part of the fixed mirror 6C is the same as the above-described dimension of each part of the movable mirror 5C, for example.
[Action and effect]
 光モジュール1Cにおいては、可動ミラー5Cが、弾性部52Cと、弾性部52Cの弾性変形に応じて互いの距離が可変とされた一対の支持部56Cと、を有する。一方、可動ミラー5Cが実装されるベースBCの実装領域31Cには、主面BsCに連通する開口31bCが形成されている。したがって、一例として支持部56C間の距離が縮小するように弾性部52Cを弾性変形させた状態において支持部56Cを開口31bCに挿入し、弾性部52Cの弾性変形の一部を解放することにより、開口31bC内において支持部56Cの互いの距離が拡大し、支持部56Cを開口31bCの内面に当接させることができる。 In the optical module 1C, the movable mirror 5C includes an elastic portion 52C and a pair of support portions 56C whose distances can be changed according to the elastic deformation of the elastic portion 52C. On the other hand, an opening 31bC communicating with the main surface BsC is formed in the mounting region 31C of the base BC on which the movable mirror 5C is mounted. Therefore, as an example, by inserting the support portion 56C into the opening 31bC in a state where the elastic portion 52C is elastically deformed so that the distance between the support portions 56C is reduced, and releasing a part of the elastic deformation of the elastic portion 52C, The mutual distance between the support portions 56C increases in the opening 31bC, and the support portion 56C can be brought into contact with the inner surface of the opening 31bC.
 これにより、開口31bCの内面から支持部56Cに付与される弾性力の反力によって、実装領域31Cに対する可動ミラー5Cの位置が開口31bCの内面に精度よく規定される。さらに、可動ミラー5Cは、弾性力の反力によって支持されている状態において、支持部56Cの接触部58Cにおいて実装領域31Cに接着される。この結果、光モジュール1Cによれば、可動ミラー5Cの実装精度を向上しつつ実装強度の確保が可能である。なお、ここでは、可動ミラー5Cを例に作用及び効果を説明しているが、固定ミラー6Cに関しても同様の作用及び効果が奏される(以下同様)。 Thereby, the position of the movable mirror 5C relative to the mounting region 31C is accurately defined on the inner surface of the opening 31bC by the reaction force of the elastic force applied to the support portion 56C from the inner surface of the opening 31bC. Further, the movable mirror 5C is bonded to the mounting region 31C at the contact portion 58C of the support portion 56C in a state where the movable mirror 5C is supported by the reaction force of the elastic force. As a result, according to the optical module 1C, it is possible to ensure the mounting strength while improving the mounting accuracy of the movable mirror 5C. Here, the action and effect have been described by taking the movable mirror 5C as an example, but the same action and effect are also obtained with respect to the fixed mirror 6C (the same applies hereinafter).
 また、光モジュール1Cおいては、支持部56Cは、係止部55Cと分岐しつつベースBC側に突出する突出部(脚部54C)を含み、接触部58Cは、当該突出部の先端部を含んでいる。このため、接触部58Cとしての突出部の先端をベースBCの主面BsCに突き当てた状態において、可動ミラー5Cの接着が可能である。特に、可動ミラー5Cの接着に主面BsCを用いることができるので、接着剤の配置(パターニング)や溶着等の処理の容易化を図ることができる。 Further, in the optical module 1C, the support portion 56C includes a protruding portion (leg portion 54C) that branches off from the locking portion 55C and protrudes toward the base BC, and the contact portion 58C has a tip portion of the protruding portion. Contains. For this reason, the movable mirror 5C can be bonded in a state where the tip of the protruding portion as the contact portion 58C is abutted against the main surface BsC of the base BC. In particular, since the main surface BsC can be used for bonding the movable mirror 5C, it is possible to facilitate processing such as adhesive placement (patterning) and welding.
 また、可動ミラー5Cにおいては、弾性部52Cが環状領域CACを形成するように設けられている。このため、例えば弾性部52Cが片持ち状態とされる場合(この場合には、弾性部52Cによって環状等の閉じた領域が形成されない)と比較して、弾性部52Cの強度が向上する。したがって、例えば、可動ミラー5Cの製造時やハンドリング時に、弾性部52Cの破損を抑制可能である。 Further, in the movable mirror 5C, the elastic portion 52C is provided so as to form the annular region CAC. For this reason, for example, the strength of the elastic portion 52C is improved as compared with a case where the elastic portion 52C is in a cantilever state (in this case, a closed region such as an annular shape is not formed by the elastic portion 52C). Therefore, for example, it is possible to suppress the breakage of the elastic portion 52C at the time of manufacturing or handling the movable mirror 5C.
 また、光モジュール1Cにおいては、ベースBCは、支持層2Cと、支持層2C上に設けられ、主面BsC及び実装領域31Cを含むデバイス層3Cと、を有する。また、開口31bCは、主面BsCに交差する方向(ZC軸方向)にデバイス層3Cを貫通している。そして、支持部56Cは、ZC軸方向における開口31bCの一対の縁部に当接するように屈曲した係止部55Cを含んでいる。このため、係止部55Cが開口31bCの一対の縁部に当接する位置において実装領域31Cに係止される。このため、可動ミラー5CをベースBCに確実に実装可能であると共に、ベースBCの主面BsCに交差する方向について可動ミラー5Cの位置決めが可能である。 Further, in the optical module 1C, the base BC has a support layer 2C and a device layer 3C provided on the support layer 2C and including the main surface BsC and the mounting region 31C. Further, the opening 31bC penetrates the device layer 3C in a direction intersecting the main surface BsC (ZC axis direction). And the support part 56C contains the latching | locking part 55C bent so that it might contact | abut to a pair of edge part of the opening 31bC in a ZC axial direction. Therefore, the locking portion 55C is locked to the mounting region 31C at a position where the locking portion 55C contacts the pair of edges of the opening 31bC. Therefore, the movable mirror 5C can be reliably mounted on the base BC, and the movable mirror 5C can be positioned in the direction intersecting the main surface BsC of the base BC.
 また、光モジュール1Cにおいては、開口31bCの内面は、ZC軸方向からみて、一端SLaCから他端SLbCに向けて互いの距離が拡大するように傾斜した一対の傾斜面SLCと、一方の傾斜面SLCの他端SLbCと他方の傾斜面SLCの他端SLbCとを接続する基準線BLCに沿って延在する基準面SRCと、を含んでいる。このため、支持部56Cを開口31bCに挿入して弾性部52Cの弾性変形の一部を解放したときに、弾性力によって支持部56Cを傾斜面SLCに摺動させて基準面SRCに突き当てることができる。このため、主面BsCに沿った方向における可動ミラー5Cの位置決めが可能である。 In the optical module 1C, the inner surface of the opening 31bC has a pair of inclined surfaces SLC that are inclined so that the distance from one end SLaC to the other end SLbC increases as viewed from the ZC axis direction, and one inclined surface. And a reference plane SRC extending along a reference line BLC connecting the other end SLbC of the SLC and the other end SLbC of the other inclined surface SLC. For this reason, when the support portion 56C is inserted into the opening 31bC and a part of the elastic deformation of the elastic portion 52C is released, the support portion 56C is slid on the inclined surface SLC by the elastic force and abuts against the reference surface SRC. Can do. For this reason, positioning of the movable mirror 5C in the direction along the main surface BsC is possible.
 また、光モジュール1Cにおいては、弾性部52Cは、XC軸方向からみてミラー部51Cを囲うように環状に形成されることにより環状領域CACを形成している。このため、弾性部52Cに端部が生じないため、弾性部52Cの強度を確実に向上可能である。 Further, in the optical module 1C, the elastic portion 52C is formed in an annular shape so as to surround the mirror portion 51C when viewed from the XC axis direction, thereby forming an annular region CAC. For this reason, since an edge part does not arise in 52 C of elastic parts, the intensity | strength of 52 C of elastic parts can be improved reliably.
 さらに、可動ミラー5Cにおいては、弾性部52Cが、ミラー面51aCの中心線DLCに対して対称的な形状であり、且つ、弾性部52Cのばね定数が、中心線DLCの両側において互いに等しい。このため、例えばYC軸方向に沿って弾性部52Cを弾性変形させるときに、可動ミラー5Cの姿勢が不安定になりにくい(例えばねじれが発生しにくい)。また、弾性部52Cの弾性変形の一部を解放したときに、開口31bCの内面から一対の支持部56Cに対して不均一に反力が入力されることが抑制される。 Furthermore, in the movable mirror 5C, the elastic part 52C has a symmetrical shape with respect to the center line DLC of the mirror surface 51aC, and the spring constant of the elastic part 52C is equal to each other on both sides of the center line DLC. For this reason, for example, when the elastic portion 52C is elastically deformed along the YC axis direction, the posture of the movable mirror 5C is unlikely to become unstable (for example, torsion is unlikely to occur). Further, when a part of the elastic deformation of the elastic portion 52C is released, the reaction force is prevented from being input non-uniformly from the inner surface of the opening 31bC to the pair of support portions 56C.
 ここで、光モジュール1Cでは、可動ミラー5Cがデバイス層3Cの実装領域31Cを貫通しており、可動ミラー5Cの各係止部55Cの一部が支持層2Cとデバイス層3Cとの間に形成された空間S1Cに位置している。これにより、例えば各係止部55Cのサイズ等が制限されないため、デバイス層3Cの実装領域31Cに可動ミラー5Cを安定的に且つ強固に固定することができる。よって、光モジュール1Cによれば、デバイス層3Cに対する可動ミラー5Cの確実な実装が実現される。 Here, in the optical module 1C, the movable mirror 5C penetrates the mounting region 31C of the device layer 3C, and a part of each locking portion 55C of the movable mirror 5C is formed between the support layer 2C and the device layer 3C. Is located in the space S1C. Thereby, for example, since the size of each locking portion 55C is not limited, the movable mirror 5C can be stably and firmly fixed to the mounting region 31C of the device layer 3C. Therefore, according to the optical module 1C, the mounting of the movable mirror 5C on the device layer 3C is realized.
 また、光モジュール1Cでは、可動ミラー5Cの各係止部55Cの一部が、中間層4Cの開口41C内の領域を介して、支持層2Cの開口21C内の領域に位置している。これにより、デバイス層3Cに対する可動ミラー5Cの確実な実装のための構成を好適に実現することができる。 Further, in the optical module 1C, a part of each locking portion 55C of the movable mirror 5C is located in a region in the opening 21C of the support layer 2C via a region in the opening 41C of the intermediate layer 4C. Thereby, the structure for reliable mounting of the movable mirror 5C with respect to the device layer 3C can be suitably realized.
 また、光モジュール1Cでは、支持層2CがSOI基板の第1シリコン層であり、デバイス層3CがSOI基板の第2シリコン層であり、中間層4CがSOI基板の絶縁層である。これにより、デバイス層3Cに対する可動ミラー5Cの確実な実装のための構成をSOI基板によって好適に実現することができる。 In the optical module 1C, the support layer 2C is the first silicon layer of the SOI substrate, the device layer 3C is the second silicon layer of the SOI substrate, and the intermediate layer 4C is the insulating layer of the SOI substrate. Thereby, the structure for reliable mounting of the movable mirror 5C to the device layer 3C can be suitably realized by the SOI substrate.
 また、光モジュール1Cでは、可動ミラー5Cのミラー面51aCが、デバイス層3Cに対して支持層2Cとは反対側に位置している。これにより、光モジュール1Cの構成を簡易化することができる。 In the optical module 1C, the mirror surface 51aC of the movable mirror 5C is located on the opposite side of the support layer 2C with respect to the device layer 3C. Thereby, the configuration of the optical module 1C can be simplified.
 また、光モジュール1Cでは、可動ミラー5C、固定ミラー6C及びビームスプリッタ7Cが、干渉光学系10Cを構成するように配置されている。これにより、感度が向上されたFTIRを得ることができる。 Further, in the optical module 1C, the movable mirror 5C, the fixed mirror 6C, and the beam splitter 7C are arranged so as to constitute the interference optical system 10C. Thereby, FTIR with improved sensitivity can be obtained.
 また、光モジュール1Cでは、光入射部8Cが、外部から干渉光学系10Cに測定光を入射させるように配置されており、光出射部9Cが、干渉光学系10Cから外部に測定光を出射させるように配置されている。これにより、光入射部8C及び光出射部9Cを備えるFTIRを得ることができる。
[変形例]
Further, in the optical module 1C, the light incident part 8C is arranged so that the measurement light is incident on the interference optical system 10C from the outside, and the light emitting part 9C emits the measurement light from the interference optical system 10C to the outside. Are arranged as follows. Thereby, FTIR provided with the light incident part 8C and the light emission part 9C can be obtained.
[Modification]
 以上、本開示のさらに別の一側面の一実施形態について説明したが、本開示のさらに別の一側面は、上記実施形態に限定されない。例えば、各構成の材料及び形状は、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。 As mentioned above, although one embodiment of another aspect of the present disclosure has been described, still another aspect of the present disclosure is not limited to the above embodiment. For example, the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed.
 また、空間S1Cは、支持層2Cとデバイス層3Cとの間に形成されており、少なくとも実装領域31C及び駆動領域32Cに対応していれば、図33及び図34に示されるように、様々な態様を採用することができる。 Further, the space S1C is formed between the support layer 2C and the device layer 3C, and as long as it corresponds to at least the mounting region 31C and the drive region 32C, various spaces can be obtained as shown in FIGS. Aspects can be employed.
 図33に示される構成では、開口21Cの代わりに、デバイス層3C側に開口する凹部23Cが支持層2Cに形成されており、中間層4Cの開口41C内の領域及び支持層2Cの凹部23C内の領域によって空間S1Cが構成されている。この場合、支持層2Cの凹部23C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいる。可動ミラー5Cの各係止部55Cの一部は、中間層4Cの開口41C内の領域を介して、凹部23C内の領域に位置している。この構成によっても、デバイス層3Cに対する可動ミラー5Cの確実な実装のための構成を好適に実現することができる。 In the configuration shown in FIG. 33, instead of the opening 21C, a recess 23C that opens to the device layer 3C side is formed in the support layer 2C, and the region in the opening 41C of the intermediate layer 4C and the recess 23C in the support layer 2C The space S1C is configured by the regions. In this case, the region in the recess 23C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction. A part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C through a region in the opening 41C of the intermediate layer 4C. Also with this configuration, a configuration for reliably mounting the movable mirror 5C on the device layer 3C can be suitably realized.
 図34の(a)に示される構成では、支持層2Cの開口21C内の領域が、ZC軸方向から見た場合に可動ミラー5Cの各係止部55Cが移動する範囲を含んでいる。図34の(b)に示される構成では、支持層2Cの凹部23C内の領域が、ZC軸方向から見た場合に可動ミラー5Cの各係止部55Cが移動する範囲を含んでいる。これらの場合、中間層4Cの開口41C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。いずれの構成でも、実装領域31Cが方向ACに沿って往復動した際に、可動ミラー5Cの各係止部55Cうち空間S1Cに位置する一部が、中間層4C及び支持層2Cと接触することはない。 34 (a), the region in the opening 21C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. In the configuration shown in FIG. 34 (b), the region in the recess 23C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. In these cases, the region in the opening 41C of the intermediate layer 4C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and is separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the power portion from the support layer 2C is formed. In any configuration, when the mounting region 31C reciprocates along the direction AC, a part of each locking portion 55C of the movable mirror 5C located in the space S1C comes into contact with the intermediate layer 4C and the support layer 2C. There is no.
 また、支持層2Cとデバイス層3Cとは、中間層4Cを介さずに互いに接合されていてもよい。この場合、支持層2Cは、例えば、シリコン、ホウケイ酸ガラス、石英ガラス、又は、セラミックによって形成され、デバイス層3Cは、例えばシリコンによって形成される。支持層2Cとデバイス層3Cとは、例えば、表面活性化による常温接合、低温プラズマ接合、高温処理を行う直接接合、絶縁樹脂接着、メタル接合、又は、ガラスフリットによる接合等によって互いに接合される。この場合にも、空間S1Cは、支持層2Cとデバイス層3Cとの間に形成されており、少なくとも実装領域31C及び駆動領域32Cに対応していれば、図35、図36、図37及び図38に示されるように、様々な態様を採用することができる。いずれの構成によっても、デバイス層3Cに対する可動ミラー5Cの確実な実装のための構成を好適に実現することができる。 Further, the support layer 2C and the device layer 3C may be joined to each other without the intermediate layer 4C. In this case, the support layer 2C is formed of, for example, silicon, borosilicate glass, quartz glass, or ceramic, and the device layer 3C is formed of, for example, silicon. The support layer 2C and the device layer 3C are bonded to each other by, for example, normal temperature bonding by surface activation, low temperature plasma bonding, direct bonding for performing high temperature treatment, insulating resin bonding, metal bonding, bonding by glass frit, or the like. Also in this case, the space S1C is formed between the support layer 2C and the device layer 3C, and as long as it corresponds to at least the mounting region 31C and the drive region 32C, FIG. 35, FIG. 36, FIG. As shown at 38, various aspects can be employed. In any configuration, it is possible to suitably realize a configuration for surely mounting the movable mirror 5C on the device layer 3C.
 図35の(a)に示される構成では、支持層2Cの開口21C内の領域によって空間S1Cが構成されている。この場合、支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。可動ミラー5Cの各係止部55Cの一部は、支持層2Cの開口21C内の領域に位置している。 In the configuration shown in FIG. 35A, a space S1C is configured by the region in the opening 21C of the support layer 2C. In this case, the region in the opening 21C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C out of the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. A part of each locking portion 55C of the movable mirror 5C is located in a region within the opening 21C of the support layer 2C.
 図35の(b)に示される構成では、支持層2Cの凹部23C内の領域によって空間S1Cが構成されている。この場合、支持層2Cの凹部23C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。可動ミラー5Cの各係止部55Cの一部は、支持層2Cの凹部23C内の領域に位置している。 In the configuration shown in FIG. 35 (b), a space S1C is configured by the region in the recess 23C of the support layer 2C. In this case, the region in the recess 23C of the support layer 2C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C out of the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. A part of each locking portion 55C of the movable mirror 5C is located in a region in the concave portion 23C of the support layer 2C.
 図36の(a)に示される構成では、支持層2C側に開口する凹部(第1凹部)38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域及び支持層2Cの開口21C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域及び支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいる。デバイス層3Cの凹部38C内の領域は、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。可動ミラー5Cの各係止部55Cの一部は、デバイス層3Cの凹部38C内の領域を介して、支持層2Cの開口21C内の領域に位置している。 In the configuration shown in FIG. 36A, a recess (first recess) 38C that opens to the support layer 2C side is formed in the device layer 3C, and the region in the recess 38C of the device layer 3C and the support layer 2C A space S1C is formed by the region in the opening 21C. In this case, the region in the recess 38C of the device layer 3C and the region in the opening 21C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction. A region in the recess 38C of the device layer 3C forms a gap for separating a portion to be separated from the support layer 2C from the support layer 2C in the mounting region 31C and the drive region 32C. A part of each locking portion 55C of the movable mirror 5C is located in a region in the opening 21C of the support layer 2C via a region in the recess 38C of the device layer 3C.
 図36の(b)に示される構成では、凹部38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域及び支持層2Cの凹部(第2凹部)23C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域及び支持層2Cの凹部23C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでいる。デバイス層3Cの凹部38C内の領域は、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。可動ミラー5Cの各係止部55Cの一部は、デバイス層3Cの凹部38C内の領域を介して、支持層2Cの凹部23C内の領域に位置している。 In the configuration shown in FIG. 36 (b), the recess 38C is formed in the device layer 3C, and the space is defined by the region in the recess 38C of the device layer 3C and the region in the recess (second recess) 23C of the support layer 2C. S1C is configured. In this case, the region in the recess 38C of the device layer 3C and the region in the recess 23C of the support layer 2C include a range in which the mounting region 31C moves when viewed from the ZC axis direction. A region in the recess 38C of the device layer 3C forms a gap for separating a portion to be separated from the support layer 2C from the support layer 2C in the mounting region 31C and the drive region 32C. A part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C of the support layer 2C via a region in the recess 38C of the device layer 3C.
 図37の(a)に示される構成では、凹部38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域及び支持層2Cの開口21C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。支持層2Cの開口21C内の領域は、ZC軸方向から見た場合に可動ミラー5Cの各係止部55Cが移動する範囲を含んでいる。可動ミラー5Cの各係止部55Cの一部は、デバイス層3Cの凹部38C内の領域を介して、支持層2Cの開口21C内の領域に位置している。 In the configuration shown in FIG. 37A, a recess 38C is formed in the device layer 3C, and a space S1C is formed by a region in the recess 38C of the device layer 3C and a region in the opening 21C of the support layer 2C. Yes. In this case, the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. The region in the opening 21C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. A part of each locking portion 55C of the movable mirror 5C is located in a region in the opening 21C of the support layer 2C via a region in the recess 38C of the device layer 3C.
 図37の(b)に示される構成では、凹部38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域及び支持層2Cの凹部(第2凹部)23C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。支持層2Cの凹部23C内の領域は、ZC軸方向から見た場合に可動ミラー5Cの各係止部55Cが移動する範囲を含んでいる。可動ミラー5Cの各係止部55Cの一部は、デバイス層3Cの凹部38C内の領域を介して、支持層2Cの凹部23C内の領域に位置している。 In the configuration shown in FIG. 37 (b), the recess 38C is formed in the device layer 3C, and the space is defined by the region in the recess 38C of the device layer 3C and the region in the recess (second recess) 23C of the support layer 2C. S1C is configured. In this case, the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. The region in the recess 23C of the support layer 2C includes a range in which each locking portion 55C of the movable mirror 5C moves when viewed from the ZC axis direction. A part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 23C of the support layer 2C via a region in the recess 38C of the device layer 3C.
 図38に示される構成では、凹部38Cがデバイス層3Cに形成されており、デバイス層3Cの凹部38C内の領域によって空間S1Cが構成されている。この場合、デバイス層3Cの凹部38C内の領域は、ZC軸方向から見た場合に実装領域31Cが移動する範囲を含んでおり、実装領域31C及び駆動領域32Cのうち支持層2Cから離間させるべき部分を支持層2Cから離間させるための隙間を形成している。可動ミラー5Cの各係止部55Cの一部は、デバイス層3Cの凹部38C内の領域に位置している。 38, the concave portion 38C is formed in the device layer 3C, and the space S1C is configured by the region in the concave portion 38C of the device layer 3C. In this case, the region in the recess 38C of the device layer 3C includes a range in which the mounting region 31C moves when viewed from the ZC axis direction, and should be separated from the support layer 2C in the mounting region 31C and the drive region 32C. A gap for separating the portion from the support layer 2C is formed. A part of each locking portion 55C of the movable mirror 5C is located in a region in the recess 38C of the device layer 3C.
 ここで、上記実施形態においては、可動ミラー5Cは、そのミラー面51aCの全体が主面BsC、又は、ベースBCにおける主面BsCと反対側の表面に突出する場合について説明した。しかしながら、可動ミラー5Cの態様はこの場合に限定されない。例えば、可動ミラー5Cのミラー面51aCの一部が、ベースBCの内部に配置されていてもよい。以下、この例について説明する。 Here, in the above embodiment, the movable mirror 5C has been described with respect to the case where the entire mirror surface 51aC protrudes from the main surface BsC or the surface of the base BC opposite to the main surface BsC. However, the mode of the movable mirror 5C is not limited to this case. For example, a part of the mirror surface 51aC of the movable mirror 5C may be disposed inside the base BC. This example will be described below.
 図39、図40、及び図41に示されるように、ここでは、可動ミラー5ACは、図28に示される可動ミラー5Cと比較して、支持部56Cに代えて支持部56ACを有する点において可動ミラー5Cと相違している。支持部56ACは、弾性部52Cと係止部55Cとの間に配置される中間部59Cを有している。中間部59Cは、YC軸方向に沿ってミラー部51Cを挟むように互いに平行に直線状にZC軸方向に延びている。連結部57Cは、中間部59Cの中央部に含まれる。係止部55Cは、当該中間部59Cの中央部に設けられている。したがって、係止部55Cは、YC軸方向に沿ってミラー部51Cを挟むように配置されている。係止部55Cの形状及び実装領域31Cとの関係は、可動ミラー5Cと同様である。 As shown in FIGS. 39, 40, and 41, here, the movable mirror 5AC is movable in that it has a support portion 56AC instead of the support portion 56C as compared to the movable mirror 5C shown in FIG. This is different from the mirror 5C. The support portion 56AC has an intermediate portion 59C disposed between the elastic portion 52C and the locking portion 55C. The intermediate part 59C extends linearly in the ZC axis direction in parallel to each other so as to sandwich the mirror part 51C along the YC axis direction. The connecting portion 57C is included in the central portion of the intermediate portion 59C. The locking portion 55C is provided at the center of the intermediate portion 59C. Accordingly, the locking portion 55C is disposed so as to sandwich the mirror portion 51C along the YC axis direction. The relationship between the shape of the locking portion 55C and the mounting region 31C is the same as that of the movable mirror 5C.
 これにより、支持部56ACは、可動ミラー5ACの全体が開口31bCを介して実装領域31Cを貫通している状態において、可動ミラー5ACを支持している。ミラー面51aCは、実装領域31Cに交差している。可動ミラー5ACは、係止部55Cにおいてデバイス層3Cに係止され、実装領域31Cに支持される。したがって、中心線CLCの一方側に相対的に長く延びる支持部56C(脚部54C)により可動ミラー5Cを支持する場合と比較して、支持点と重心との乖離が小さく、安定的な実装を実現可能である。 Thereby, the support portion 56AC supports the movable mirror 5AC in a state where the entire movable mirror 5AC penetrates the mounting region 31C through the opening 31bC. The mirror surface 51aC intersects the mounting area 31C. The movable mirror 5AC is locked to the device layer 3C at the locking portion 55C and supported by the mounting region 31C. Therefore, compared with the case where the movable mirror 5C is supported by the support portion 56C (leg portion 54C) extending relatively long on one side of the center line CLC, the deviation between the support point and the center of gravity is small, and stable mounting is achieved. It is feasible.
 具体的には、一例として、支持部56ACは、ZC軸方向におけるミラー面51aCの中心線CLCが、デバイス層3Cの厚さ方向の中心に一致するように、可動ミラー5ACを支持している。このため、ZC軸方向について支持点と重心とが実質的に一致し、より安定的な実装が実現される。なお、この場合には、ミラー面51aCの一部(ここでは半分以上)が、主面BsCよりも支持層2C側に位置することになる。これに対して、ここでは、開口31bCが、実装領域31Cにおけるミラー面51aCの臨む側の端部に至るように延びて開放されている。したがって、この場合であっても、ミラー面51aCに向かう測定光L0Cの光路の制御により、測定光L0Cが実装領域31Cに干渉することを避け、ミラー面51aCの全体を有効に利用することができる。 Specifically, as an example, the support portion 56AC supports the movable mirror 5AC so that the center line CLC of the mirror surface 51aC in the ZC axis direction coincides with the center in the thickness direction of the device layer 3C. For this reason, the support point and the center of gravity substantially coincide with each other in the ZC axis direction, and more stable mounting is realized. In this case, a part (here, half or more) of the mirror surface 51aC is located closer to the support layer 2C than the main surface BsC. On the other hand, here, the opening 31bC is extended and opened so as to reach the end of the mounting region 31C on the side facing the mirror surface 51aC. Therefore, even in this case, by controlling the optical path of the measurement light L0C toward the mirror surface 51aC, the measurement light L0C can be prevented from interfering with the mounting region 31C, and the entire mirror surface 51aC can be used effectively. .
 ここで、支持部56ACは、係止部55Cにおける傾斜面55aCを含む部分の先端から、ミラー部51Cから遠ざかる方向(YC軸方向)に沿って延びる接触部58Cを有している。接触部58Cは、先端部58aCがベース側に屈曲するL字状を呈している。そして、接触部58Cは、先端部58aCにおいて主面BsC(実装領域31C)に接触し、接着される。このように、支持部56ACは、係止部55Cが開口31bCに挿入された状態において実装領域31Cに接触する接触部58Cを含むことになる。これにより、可動ミラー5ACも、可動ミラー5Cと同様に、ミラー面51aCが主面BsCに交差した状態において、開口31bCの内面から係止部55Cに付与される弾性力の反力により実装領域31Cに支持され、且つ、接触部58Cにおいて実装領域31Cに接着されることになる。 Here, the support portion 56AC has a contact portion 58C extending along the direction away from the mirror portion 51C (YC axis direction) from the tip of the portion including the inclined surface 55aC in the locking portion 55C. The contact portion 58C has an L shape in which the front end portion 58aC is bent toward the base side. Then, the contact portion 58C comes into contact with and adheres to the main surface BsC (mounting region 31C) at the distal end portion 58aC. As described above, the support portion 56AC includes the contact portion 58C that contacts the mounting region 31C in a state where the locking portion 55C is inserted into the opening 31bC. Accordingly, the movable mirror 5AC also has the mounting region 31C due to the reaction force of the elastic force applied to the locking portion 55C from the inner surface of the opening 31bC in a state where the mirror surface 51aC intersects the main surface BsC, similarly to the movable mirror 5C. And is bonded to the mounting region 31C at the contact portion 58C.
 なお、上記実施形態では、固定ミラー6Cがデバイス層3Cに実装されていたが、固定ミラー6Cは、支持層2C又は中間層4Cに実装されていてもよい。また、上記実施形態では、ビームスプリッタ7Cが支持層2Cに実装されていたが、ビームスプリッタ7Cは、デバイス層3C又は中間層4Cに実装されていてもよい。すなわち、固定ミラー6C及びビームスプリッタ7Cは、支持層2C、デバイス層3C、及び、中間層4Cのいずれか1つに実装されていればよい。また、ビームスプリッタ7Cは、キューブタイプのビームスプリッタに限定されず、プレートタイプのビームスプリッタであってもよい。 In the above embodiment, the fixed mirror 6C is mounted on the device layer 3C. However, the fixed mirror 6C may be mounted on the support layer 2C or the intermediate layer 4C. In the above embodiment, the beam splitter 7C is mounted on the support layer 2C. However, the beam splitter 7C may be mounted on the device layer 3C or the intermediate layer 4C. That is, the fixed mirror 6C and the beam splitter 7C may be mounted on any one of the support layer 2C, the device layer 3C, and the intermediate layer 4C. The beam splitter 7C is not limited to a cube type beam splitter, and may be a plate type beam splitter.
 また、光モジュール1Cは、光入射部8Cに加え、光入射部8Cに入射させる測定光を発生させる発光素子を備えていてもよい。或いは、光モジュール1Cは、光入射部8Cに代えて、干渉光学系10Cに入射させる測定光を発生させる発光素子を備えていてもよい。また、光モジュール1Cは、光出射部9Cに加え、光出射部9Cから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。或いは、光モジュール1Cは、光出射部9Cに代えて、干渉光学系10Cから出射された測定光(干渉光)を検出する受光素子を備えていてもよい。 The optical module 1C may include a light emitting element that generates measurement light to be incident on the light incident portion 8C in addition to the light incident portion 8C. Alternatively, the optical module 1C may include a light emitting element that generates measurement light incident on the interference optical system 10C, instead of the light incident portion 8C. The optical module 1C may include a light receiving element that detects measurement light (interference light) emitted from the light emitting unit 9C in addition to the light emitting unit 9C. Alternatively, the optical module 1C may include a light receiving element that detects measurement light (interference light) emitted from the interference optical system 10C instead of the light emitting unit 9C.
 また、各アクチュエータ領域33Cに電気的に接続された第1貫通電極、及び各弾性支持領域34Cの両端部34aCのそれぞれに電気的に接続された第2貫通電極が、支持層2C及び中間層4C(中間層4Cが存在しない場合には支持層2Cのみ)に設けられており、第1貫通電極と第2貫通電極との間に電圧が印加されてもよい。また、実装領域31Cを移動させるアクチュエータは、静電アクチュエータに限定されず、例えば、圧電式アクチュエータ、電磁式アクチュエータ等であってもよい。また、光モジュール1Cは、FTIRを構成するものに限定されず、他の光学系を構成するものであってもよい。 In addition, the first through electrode electrically connected to each actuator region 33C and the second through electrode electrically connected to each of the both end portions 34aC of each elastic support region 34C are the support layer 2C and the intermediate layer 4C. (If the intermediate layer 4C does not exist, only the support layer 2C is provided), and a voltage may be applied between the first through electrode and the second through electrode. The actuator that moves the mounting region 31C is not limited to an electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like. Further, the optical module 1C is not limited to the one constituting the FTIR, and may constitute another optical system.
 引き続いて変形例の説明を続ける。なお、以下では、可動ミラー5C及び開口31bCを用いて変形例を説明するが、固定ミラー6C及び開口37aCについても同様の変形が可能である。図42及び図43に示されるように、ここでは、係止部55Cが、脚部54Cにおける連結部57Cと反対側の先端に接続されている。したがって、脚部54Cの先端は、突出部が設けられておらず、接触部とされていない。ここでは、係止部55Cが接触部58Cを含む。より具体的に説明する。 Continuation of the explanation of the modified example. In the following, a modification is described using the movable mirror 5C and the opening 31bC, but the same modification can be made for the fixed mirror 6C and the opening 37aC. As shown in FIGS. 42 and 43, here, the locking portion 55C is connected to the tip of the leg portion 54C opposite to the connecting portion 57C. Therefore, the tip of the leg portion 54C is not provided with a protruding portion and is not a contact portion. Here, the locking portion 55C includes the contact portion 58C. This will be described more specifically.
 係止部55Cは、上述したように、開口31bCに挿入されると、傾斜面SLCからの反力のXC軸方向の成分によって傾斜面SLC上を基準面SRCに向けて摺動し、傾斜面SLCに接触しながら基準面SRCに突き当てられる。つまり、係止部55Cは、開口31bCの内面(基準面SRC)に対向する側面を含む。そして、当該側面は、基準面SRCに接着される。この接着も、上述した主面BsCにおける接着と同様に行うことができる。このように、ここでは、係止部55Cが開口31bCに挿入された状態において実装領域31Cに接触する接触部58Cは、係止部55Cにおける開口31bCの基準面SRCに対向する側面を含む(側面である)。 As described above, when the locking portion 55C is inserted into the opening 31bC, the locking portion 55C slides on the inclined surface SLC toward the reference surface SRC by the component in the XC axis direction of the reaction force from the inclined surface SLC. It abuts against the reference surface SRC while contacting the SLC. That is, the locking portion 55C includes a side surface that faces the inner surface (reference surface SRC) of the opening 31bC. The side surface is bonded to the reference surface SRC. This bonding can also be performed in the same manner as the bonding on the main surface BsC described above. Thus, here, the contact portion 58C that contacts the mounting region 31C in a state where the locking portion 55C is inserted into the opening 31bC includes a side surface that faces the reference surface SRC of the opening 31bC in the locking portion 55C (side surface). Is).
 この場合、接触部58Cとしての係止部55Cの側面を開口31bCの内面に接触させた状態において、可動ミラー5Cの接着が可能である。特に、この場合には、面同士の接着となるので、接着面積を増大させて実装強度を確実に向上可能である。 In this case, the movable mirror 5C can be bonded in a state where the side surface of the locking portion 55C as the contact portion 58C is in contact with the inner surface of the opening 31bC. Particularly in this case, since the surfaces are bonded to each other, the bonding area can be increased and the mounting strength can be reliably improved.
 図44に示される例でも、係止部55Cは、脚部54Cの先端に接続されている。一方で、ここでは、支持部56Cは、脚部54Cと係止部55Cとの接続部分から係止部55Cと分岐しつつベースBC側に突出する突出部を含む。突出部は、一対の支持部56C間において、互いに逆方向に(外側に)突出している。ここでは、接触部58Cはこの突出部である。すなわち、ここでは、接触部58Cは、脚部54Cと係止部55Cとの接続部分から、主面BsCに対する角度が減少するように延在している。そして、接触部58Cの先端部58aCは、係止部55Cが開口31bCに挿入された状態において、主面BsCと略平行になり(例えば略平行になるように弾性変形され)主面BsC(実装領域31C)に接触して接着される。 In the example shown in FIG. 44, the locking portion 55C is connected to the tip of the leg portion 54C. On the other hand, here, the support portion 56C includes a protruding portion that protrudes toward the base BC while branching from the connecting portion between the leg portion 54C and the locking portion 55C to the locking portion 55C. The protruding portions protrude in opposite directions (outside) between the pair of support portions 56C. Here, the contact portion 58C is the protruding portion. That is, here, the contact portion 58C extends from the connection portion between the leg portion 54C and the locking portion 55C so that the angle with respect to the main surface BsC decreases. The front end 58aC of the contact portion 58C is substantially parallel to the main surface BsC (for example, elastically deformed so as to be substantially parallel) in the state where the locking portion 55C is inserted into the opening 31bC. The region 31C) is contacted and adhered.
 図45の(a)に示される例では、可動ミラー5Cは、一対の連結部53Cを有している。ここでは、一対の連結部53Cは、一対の連結部57Cと異なる位置に配置されている。一対の連結部53Cは、中心線CLCの両側に分配されて配置されている。特に、ここでは、一対の連結部53Cは、中心線CLCに対して対称的な位置に配置されている。したがって、ここでは、一対の連結部53Cを結ぶ直線に対して、弾性部52C及び可動ミラー5Cの全体が対称的に構成される。 45 (a), the movable mirror 5C has a pair of connecting portions 53C. Here, the pair of connecting portions 53C are arranged at positions different from the pair of connecting portions 57C. The pair of connecting portions 53C are distributed and arranged on both sides of the center line CLC. In particular, here, the pair of connecting portions 53C are disposed at positions symmetrical with respect to the center line CLC. Therefore, here, the entire elastic portion 52C and the movable mirror 5C are configured symmetrically with respect to a straight line connecting the pair of connecting portions 53C.
 また、図45の(b)に示される例では、可動ミラー5Cは、3つの連結部53Cを有している。3つの連結部53Cは、一対の連結部57Cと異なる位置に配置されている。ここでは、3つの連結部53Cのうちの1つの連結部53Cと2つの連結部53Cとが、中心線CLCの両側に分配されて配置されている。同様に、図45の(c)に示される例では、可動ミラー5Cは、4つの連結部53Cを有している。4つの連結部53Cは、一対の連結部57Cと異なる位置に配置されている。ここでは、4つの連結部53Cは、中心線CLCの両側に2つずつ分配されて配置されている。 In the example shown in FIG. 45B, the movable mirror 5C has three connecting portions 53C. The three connecting portions 53C are arranged at positions different from the pair of connecting portions 57C. Here, one connection part 53C and two connection parts 53C of the three connection parts 53C are distributed and arranged on both sides of the center line CLC. Similarly, in the example shown in FIG. 45C, the movable mirror 5C has four connecting portions 53C. The four connecting portions 53C are arranged at positions different from the pair of connecting portions 57C. Here, the four connecting portions 53C are distributed and arranged on both sides of the center line CLC.
 一方、図46の(a)に示されるように、可動ミラー5Cは、複数の弾性部52Cを有することができる。ここでは、可動ミラー5Cは、一対の弾性部52Cを有している。一対の弾性部52Cは、それぞれ円環板状に形成されており、互いに同心に配置されている。換言すれば、ここでは、一の弾性部52Cが、ミラー部51Cを取り囲むように設けられ、別の弾性部52Cが、当該一の弾性部52C及びミラー部51Cを取り囲むように設けられている。弾性部52Cのそれぞれが環状領域CACを形成している。 On the other hand, as shown in FIG. 46 (a), the movable mirror 5C can have a plurality of elastic portions 52C. Here, the movable mirror 5C has a pair of elastic portions 52C. The pair of elastic portions 52C are each formed in an annular plate shape and are arranged concentrically with each other. In other words, here, one elastic part 52C is provided so as to surround the mirror part 51C, and another elastic part 52C is provided so as to surround the one elastic part 52C and the mirror part 51C. Each of the elastic portions 52C forms an annular region CAC.
 他方、弾性部52Cは、円環板状に限らず、図46の(b)に示されるように楕円環板状であってもよい。すなわち、ミラー面51aCに交差する方向(XC軸方向)からみて、弾性部52Cは楕円状であってもよい。ここでは、一対の連結部53Cは、弾性部52Cの楕円の長軸に対応する位置に配置されている。また、一対の連結部57Cは、弾性部52Cの楕円の短軸に対応する位置に配置されている。 On the other hand, the elastic portion 52C is not limited to an annular plate shape, and may be an elliptical ring plate shape as shown in FIG. That is, the elastic portion 52C may be elliptical when viewed from the direction intersecting the mirror surface 51aC (XC axis direction). Here, the pair of connecting portions 53C is disposed at a position corresponding to the major axis of the ellipse of the elastic portion 52C. Further, the pair of connecting portions 57C is disposed at a position corresponding to the short axis of the ellipse of the elastic portion 52C.
 弾性部52Cの変形例の説明を続ける。図47の(a)に示される例では、可動ミラー5Cは、長方形板状の一対の弾性部52Cと、弾性部52C同士を互いに接続する一対の板状の接続部52sCと、を有する。弾性部52Cは、YC軸方向にミラー部51Cを挟むようにミラー部51Cの両側に配置されている。弾性部52Cは、支持部56Cと略平行にZC軸方向に沿って延在している。接続部52sCは、弾性部52Cの長手方向の両端部に設けられ、弾性部52C同士を接続している。これにより、ここでは、弾性部52Cと接続部52sCとよって、矩形環状の環状領域CACが形成されている。なお、ここでは、単一の連結部53Cが接続部52sCを介して弾性部52Cとミラー部51Cとを互いに連結している。 The description of the modified example of the elastic portion 52C will be continued. In the example shown in FIG. 47A, the movable mirror 5C includes a pair of rectangular plate-like elastic portions 52C and a pair of plate-like connection portions 52sC that connect the elastic portions 52C to each other. The elastic portions 52C are arranged on both sides of the mirror portion 51C so as to sandwich the mirror portion 51C in the YC axis direction. The elastic portion 52C extends along the ZC axis direction substantially parallel to the support portion 56C. The connection parts 52sC are provided at both ends of the elastic part 52C in the longitudinal direction, and connect the elastic parts 52C. Thereby, here, a rectangular annular region CAC is formed by the elastic portion 52C and the connecting portion 52sC. Here, a single connecting portion 53C connects the elastic portion 52C and the mirror portion 51C to each other via the connecting portion 52sC.
 また、図47の(b)に示される例でも、可動ミラー5Cは、一対の弾性部52Cを有している。ここでは、弾性部52Cは、ZC軸方向にミラー部51Cを挟むようにミラー部51Cの両側に配置されている。弾性部52Cは、それぞれ、波板状に形成されている。すなわち、XC軸方向からみて、弾性部52Cは、波形状(ここでは矩形波形状)である。弾性部52Cは、それぞれ、その両端部において支持部56Cに接続されている。これにより、ここでは、弾性部52Cと支持部56Cとによって、概ね矩形の環状領域CACが形成されている。また、ここでは、連結部53Cは、支持部56Cとミラー部51Cとを互いに連結している。このように、ミラー部51Cは、支持部56Cに連結されていてもよい。 Also in the example shown in FIG. 47B, the movable mirror 5C has a pair of elastic portions 52C. Here, the elastic portions 52C are arranged on both sides of the mirror portion 51C so as to sandwich the mirror portion 51C in the ZC axis direction. Each of the elastic portions 52C is formed in a corrugated plate shape. That is, when viewed from the XC axis direction, the elastic portion 52C has a wave shape (in this case, a rectangular wave shape). Each of the elastic parts 52C is connected to the support part 56C at both ends thereof. Thereby, here, a substantially rectangular annular region CAC is formed by the elastic portion 52C and the support portion 56C. Here, the connecting portion 53C connects the support portion 56C and the mirror portion 51C to each other. Thus, the mirror part 51C may be connected to the support part 56C.
 また、図47の(c)に示される例でも、可動ミラー5Cは、一対の弾性部52Cを有している。ここでも、弾性部52Cは、ZC軸方向にミラー部51Cを挟むようにミラー部51Cの両側に配置されている。弾性部52Cは、それぞれ、V字板状に形成されている。すなわち、XC軸方向からみて、弾性部52Cは、V字状である。弾性部52Cは、それぞれ、その両端部において支持部56Cに接続されている。これにより、ここでは、弾性部52Cと支持部56Cとによって、概ね矩形の環状領域CACが形成されている。なお、ここでも、連結部53Cは、支持部56Cとミラー部51Cとを互いに連結している。 In the example shown in FIG. 47C, the movable mirror 5C has a pair of elastic portions 52C. Here, the elastic portions 52C are arranged on both sides of the mirror portion 51C so as to sandwich the mirror portion 51C in the ZC axis direction. Each of the elastic portions 52C is formed in a V-shaped plate shape. That is, the elastic part 52C is V-shaped when viewed from the XC axis direction. Each of the elastic parts 52C is connected to the support part 56C at both ends thereof. Thereby, here, a substantially rectangular annular region CAC is formed by the elastic portion 52C and the support portion 56C. Also in this case, the connecting portion 53C connects the support portion 56C and the mirror portion 51C to each other.
 また、図48の(a)に示される例では、弾性部52Cは、XC軸方向からみて、互いに逆向きに配置された一対の半円部と、半円部同士を接続する一対の直線部とによって、環状に形成されてもよい。或いは、図48の(b)に示されるように、弾性部52Cは、XC軸方向からみて、互いに同じ向きに配置された一対の半円部と、半円部同士を接続する一対の直線部とによって、環状に形成されてもよい。 Further, in the example shown in FIG. 48A, the elastic portion 52C includes a pair of semicircular portions disposed in opposite directions as viewed from the XC axis direction, and a pair of linear portions connecting the semicircular portions. And may be formed in an annular shape. Alternatively, as shown in FIG. 48 (b), the elastic portion 52C includes a pair of semicircular portions arranged in the same direction as seen from the XC axis direction and a pair of linear portions connecting the semicircular portions. And may be formed in an annular shape.
 また、図49に示されるように、弾性部52Cは、XC軸方向からみて、環の一部を切り欠いた形状に形成されてもよい。図49の(a)に示される例では、弾性部52Cは、円環に対して中心線CLCの両側に一対の切り欠き部52cCを設けた形状とされている。すなわち、ここでは、弾性部52Cは、切り欠き部52cCにおいて互いに離間した一対の円弧状部分52dCからなる。連結部53Cは、円弧状部分52dCのそれぞれの端部において、弾性部52Cとミラー部51Cとを互いに連結している。これにより、ここでは、一の円弧状部分52dCと、当該一の円弧状部分52dCに接続された一対の連結部53Cと、ミラー部51Cとによって、1つの環状領域CACが形成されている。 Further, as shown in FIG. 49, the elastic portion 52C may be formed in a shape in which a part of the ring is notched as seen from the XC axis direction. In the example shown in FIG. 49A, the elastic portion 52C has a shape in which a pair of cutout portions 52cC are provided on both sides of the center line CLC with respect to the ring. That is, here, the elastic portion 52C is composed of a pair of arcuate portions 52dC that are separated from each other in the cutout portion 52cC. The connecting portion 53C connects the elastic portion 52C and the mirror portion 51C to each other at each end of the arc-shaped portion 52dC. Thereby, here, one circular region CAC is formed by one arcuate portion 52dC, a pair of connecting portions 53C connected to the one arcuate portion 52dC, and the mirror portion 51C.
 図49の(b),(c)に示される例では、弾性部52Cは、単一の切り欠き部52cCによって単一の円弧状部分52dCとして構成されている。連結部53Cは、弾性部52Cの端部において弾性部52Cとミラー部51Cとを互いに接続している。これにより、ここでは、弾性部52Cと一対の連結部53Cとミラー部51Cとによって環状領域CACが形成されている。なお、ここでは、連結部53Cは、切り欠き部52cCを介して支持部56Cとミラー部51Cとを連結している。すなわち、ミラー部51Cを直接的に支持部56Cに連結してもよい。 49 (b) and 49 (c), the elastic portion 52C is configured as a single arc-shaped portion 52dC by a single notch portion 52cC. The connecting portion 53C connects the elastic portion 52C and the mirror portion 51C to each other at the end of the elastic portion 52C. Thereby, here, the annular region CAC is formed by the elastic portion 52C, the pair of connecting portions 53C, and the mirror portion 51C. Here, the connecting portion 53C connects the support portion 56C and the mirror portion 51C via the notch portion 52cC. That is, the mirror part 51C may be directly connected to the support part 56C.
 引き続いて、図30に示された開口31bCの変形例について説明する。図50の(a)に示されるように、開口31bCのZC軸方向からみたときの形状は、三角形であってもよい。この場合、開口31bCの内面は、一対の傾斜面SLCと基準面SRCとからなる。ここでは、傾斜面SLCの一端SLaC同士が互いに接続されている。この場合にも、傾斜面SLCと基準面SRCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。 Subsequently, a modification of the opening 31bC shown in FIG. 30 will be described. As shown in FIG. 50A, the shape of the opening 31bC when viewed from the ZC axis direction may be a triangle. In this case, the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a reference surface SRC. Here, the one ends SLaC of the inclined surfaces SLC are connected to each other. In this case as well, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by inscribed the locking portion 55C at the corner defined by the inclined surface SLC and the reference surface SRC.
 図50の(b)に示される例では、開口31bCのZC軸方向からみたときの形状は、六角形である。この場合、開口31bCの内面は、一対の傾斜面SLCと、傾斜面SLCと反対側に傾斜する一対の傾斜面SKCと、を含む。一対の傾斜面SKCは、一端SkaCから他端SKbCに向けて互いの距離が拡大するように傾斜している。ここでは、傾斜面SLCの他端SLbCと傾斜面SKCの他端SKbCとが互いに接続され、1つの角部を形成している。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。ここでは、ZC軸方向からみて、1つの係止部55Cが2つの点において開口31bCの内面に接触する。 50 (b), the shape of the opening 31bC when viewed from the ZC axis direction is a hexagon. In this case, the inner surface of the opening 31bC includes a pair of inclined surfaces SLC and a pair of inclined surfaces SKC inclined to the opposite side of the inclined surface SLC. The pair of inclined surfaces SKC are inclined so that the distance from one end SkaC to the other end SKbC increases. Here, the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other to form one corner. Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC. Here, when viewed from the ZC axial direction, one locking portion 55C contacts the inner surface of the opening 31bC at two points.
 図50の(c)に示されるように、傾斜面SLCは、曲面であってもよい。この場合には、一対の傾斜面SLCは、一端SLaCから他端SLbCに向けて互いに距離が拡大するように傾斜し、且つ、湾曲している。ここでは、ZC軸方向からみて、傾斜面SLCは、傾斜面SLCの接線のXC軸に対する傾きが一端SLaCから他端SLbCに向けて徐々に拡大するように湾曲している。傾斜面SLCは、開口31bCの内側に向けて凸となるように湾曲している。この場合であっても、傾斜面SLCと基準面SRCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。 50 (c), the inclined surface SLC may be a curved surface. In this case, the pair of inclined surfaces SLC are inclined and curved so that the distance increases from one end SLaC to the other end SLbC. Here, when viewed from the ZC axis direction, the inclined surface SLC is curved such that the inclination of the tangent to the inclined surface SLC with respect to the XC axis gradually increases from one end SLaC to the other end SLbC. The inclined surface SLC is curved so as to be convex toward the inside of the opening 31bC. Even in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by inscribed in the corners defined by the inclined surface SLC and the reference surface SRC. is there.
 図51の(a)に示される例では、傾斜面SLC及び傾斜面SKCの両方が、開口31bCの内側に凸となるような曲面である。また、傾斜面SLCの他端SLbCと傾斜面SKCの他端SKbCとは、XC軸方向に沿って延びる接続面を介して互いに接続されている。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。 In the example shown in FIG. 51A, both the inclined surface SLC and the inclined surface SKC are curved surfaces that are convex toward the inside of the opening 31bC. The other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other via a connection surface extending along the XC axis direction. Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
 図51の(b)に示される例では、開口31bCは、ZC軸方向からみて2つの部分31pCに分割されている。2つの部分31pCのそれぞれが、傾斜面SLCと基準面SRCとを有している。すなわち、ここでは、基準面SRCも2つの部分に分割されている。ただし、ZC軸方向からみて、基準面SRCは、全体として、一方の部分31pCの傾斜面SLCの他端SLbCと、他方の部分31pCの傾斜面SLCの他端SLbCと、を接続する基準線BLCに沿って延びている。この場合には、1つの係止部55Cが開口31bCの1つの部分31pCに挿入される。そして、傾斜面SLCと基準面SRCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。 In the example shown in FIG. 51 (b), the opening 31bC is divided into two portions 31pC as viewed from the ZC axis direction. Each of the two portions 31pC has an inclined surface SLC and a reference surface SRC. That is, here, the reference plane SRC is also divided into two parts. However, as viewed from the ZC axis direction, the reference surface SRC as a whole is connected to the other end SLbC of the inclined surface SLC of the one portion 31pC and the other end SLbC of the inclined surface SLC of the other portion 31pC. It extends along. In this case, one locking portion 55C is inserted into one portion 31pC of the opening 31bC. The engaging portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, so that the movable mirror 5C can be positioned in both the XC axis direction and the YC axis direction.
 図51の(c)に示される例でも、開口31bCは、ZC軸方向からみて2つの部分31pCに分割されている。2つの部分31pCのそれぞれが、傾斜面SLCと傾斜面SKCとを有している。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。 In the example shown in FIG. 51C, the opening 31bC is divided into two portions 31pC as viewed from the ZC axis direction. Each of the two portions 31pC has an inclined surface SLC and an inclined surface SKC. Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
 図52の(a)に示される例では、開口31bCのZC軸方向からみたときの形状が菱形である。ここでは、開口31bCの内面が、傾斜面SLCと傾斜面SKCとによって構成されていうる。つまり、ここでは、傾斜面SLCと傾斜面SKCとが互いに接続されることに加えて、傾斜面SLCの一端SLaC同士が互いに接続され、且つ、傾斜面SKCの一端SkaC同士が互いに接続されている。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。 52 (a), the shape of the opening 31bC when viewed from the ZC axis direction is a rhombus. Here, the inner surface of the opening 31bC may be constituted by the inclined surface SLC and the inclined surface SKC. That is, here, in addition to the inclined surface SLC and the inclined surface SKC being connected to each other, the one ends SLaC of the inclined surfaces SLC are connected to each other, and the one ends SkaC of the inclined surfaces SKC are connected to each other. . Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
 さらに、図52の(b)に示される例では、傾斜面SLCの他端SLbCと傾斜面SKCの他端SKbCとが、XC軸方向に沿って延びる接続面を介して互いに接続されている。また、傾斜面SLCの一端SLaC同士が互いに接続され、且つ、傾斜面SKCの一端SkaC同士が互いに接続されている。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方について可動ミラー5Cの位置決めが可能である。 Further, in the example shown in FIG. 52B, the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other via a connecting surface extending along the XC axis direction. Further, the one ends SLaC of the inclined surfaces SLC are connected to each other, and the one ends SkaC of the inclined surfaces SKC are connected to each other. Also in this case, the movable mirror 5C can be positioned in both the XC-axis direction and the YC-axis direction by the engagement portion 55C being inscribed at the corner defined by the inclined surface SLC and the inclined surface SKC.
 以上のように、係止部55Cの側面と開口31bCの基準面SRCとの接触といったように、係止部55Cの側面が開口31bCの内面に接触する場合には、係止部55Cにおける当該側面を接触部58Cとして接着に用いることができる。 As described above, when the side surface of the locking portion 55C contacts the inner surface of the opening 31bC, such as the contact between the side surface of the locking portion 55C and the reference surface SRC of the opening 31bC, the side surface of the locking portion 55C. Can be used for bonding as the contact portion 58C.
 ここで、上記においては、支持部56Cが対向する方向に沿って弾性部52Cを圧縮するように弾性変形することにより、支持部56C同士の間隔を縮小させてから係止部55Cを開口31bCに挿入する場合について例示した。しかしながら、支持部56C同士の間隔を拡大させてから係止部55Cを開口31bCに挿入するような変形例も採用し得る。 Here, in the above, the elastic part 52C is elastically deformed so as to compress it along the direction in which the support part 56C opposes, thereby reducing the interval between the support parts 56C, and then the locking part 55C into the opening 31bC. The case of inserting was illustrated. However, it is also possible to adopt a modification in which the locking portion 55C is inserted into the opening 31bC after the interval between the support portions 56C is enlarged.
 すなわち、可動ミラー5C及び開口31bCは、図53及び図54に示されるように変形可能である。図53の例では、支持部56Cは、脚部54C、係止部55C、及び、接触部58Cを備えるが、係止部55Cの屈曲の方向が図28の例と異なる。係止部55Cは、一対の支持部56C間において、互いの対向方向の反対側に凸となるように屈曲している。そして、係止部55Cは、一対の支持部56C間において互いに対向する面(内面)として、傾斜面55aC及び傾斜面55bCを含む。 That is, the movable mirror 5C and the opening 31bC can be deformed as shown in FIGS. In the example of FIG. 53, the support portion 56C includes a leg portion 54C, a locking portion 55C, and a contact portion 58C, but the bending direction of the locking portion 55C is different from the example of FIG. The locking portion 55C is bent so as to protrude toward the opposite side in the opposing direction between the pair of support portions 56C. The locking portion 55C includes an inclined surface 55aC and an inclined surface 55bC as surfaces (inner surfaces) facing each other between the pair of support portions 56C.
 傾斜面55aCは、連結部57Cから遠ざかる方向(ZC軸負方向)に互いに離間するように傾斜している。また、傾斜面55bCは、ZC軸負方向に互いに近づくように傾斜している。それぞれのZC軸に対する傾斜角の絶対値は、上記の例と同様である。なお、ここでは、支持部56Cのそれぞれに対して、ハンドル部56hCが設けられている。ハンドル部56hCは、YC軸方向にミラー部51C及び弾性部52Cを挟むように配置されている。ハンドル部56hC及び連結部57Cは、中心線CLC上に一列に配列されている。 The inclined surfaces 55aC are inclined so as to be separated from each other in a direction away from the connecting portion 57C (ZC axis negative direction). Further, the inclined surfaces 55bC are inclined so as to approach each other in the negative direction of the ZC axis. The absolute value of the tilt angle with respect to each ZC axis is the same as in the above example. Here, a handle portion 56hC is provided for each of the support portions 56C. The handle portion 56hC is disposed so as to sandwich the mirror portion 51C and the elastic portion 52C in the YC axis direction. The handle portion 56hC and the connecting portion 57C are arranged in a line on the center line CLC.
 図53の(a)の例では、ハンドル部56hCはU字状に形成されており、支持部56Cとの間に孔部56sCを形成している。したがって、例えば孔部56sCにアームを挿入することにより、支持部56C同士の間隔を拡大するようにハンドル部56hCに力を加えることができる。また、図53の(b)の例では、ハンドル部56hCは直線状に形成されている。したがって、ハンドル部56hCを摘まむことにより、支持部56C同士の間隔を拡大するようにハンドル部56hCに力を加えることができる。これらの場合、弾性部52Cは、YC軸方向に引き延ばされるように弾性変形する。 53 (a), the handle portion 56hC is U-shaped, and a hole 56sC is formed between the handle portion 56C and the support portion 56C. Therefore, for example, by inserting an arm into the hole 56sC, a force can be applied to the handle portion 56hC so as to increase the interval between the support portions 56C. In the example of FIG. 53B, the handle portion 56hC is formed in a straight line. Therefore, by picking the handle portion 56hC, it is possible to apply a force to the handle portion 56hC so as to increase the interval between the support portions 56C. In these cases, the elastic portion 52C is elastically deformed so as to be extended in the YC axis direction.
 これに対応して、図54に示されるように開口31bCを変形することができる。図54の(a)の例では、開口31bCは2つの3角形状の部分31pCに分割されている。図53に示された可動ミラー5Cにおいては、開口31bCに係止部55Cを挿入した状態において弾性部52Cの弾性変形の一部を解放すると、係止部55C同士が互いに近づくように変位する。この変位を利用してセルフアライメントを行うために、開口31bCのそれぞれの部分31pCにおいては、YC軸方向における実装領域31Cの中心側の面として傾斜面SLCが形成されている。 Correspondingly, the opening 31bC can be deformed as shown in FIG. In the example of FIG. 54A, the opening 31bC is divided into two triangular portions 31pC. In the movable mirror 5C shown in FIG. 53, when a part of the elastic deformation of the elastic portion 52C is released in a state where the locking portion 55C is inserted into the opening 31bC, the locking portions 55C are displaced so as to approach each other. In order to perform self-alignment using this displacement, in each portion 31pC of the opening 31bC, an inclined surface SLC is formed as a surface on the center side of the mounting region 31C in the YC axis direction.
 傾斜面SLCは、一端SLaCと他端SLbCとを含む。一端SLaC及び他端SLbCは、ZC軸方向からみたときの傾斜面SLCの両端部である。一対の傾斜面SLCは、一端SLaCから他端SLbCに向けて互いの距離が縮小するように(例えばXC軸に対して)傾斜している。それぞれの部分31pCの基準面SRCは、ZC軸方向からみて、一方の傾斜面SLCの他端SLbCと他方の傾斜面SLCの他端SLbCとを互いに接続する基準線BLCに沿って延在している。 The inclined surface SLC includes one end SLaC and the other end SLbC. One end SLaC and the other end SLbC are both ends of the inclined surface SLC when viewed from the ZC axis direction. The pair of inclined surfaces SLC are inclined (for example, with respect to the XC axis) such that the distance from one end SLaC to the other end SLbC decreases. The reference surface SRC of each portion 31pC extends along a reference line BLC that connects the other end SLbC of one inclined surface SLC and the other end SLbC of the other inclined surface SLC, as viewed from the ZC axis direction. Yes.
 したがって、開口31bC内に一対の係止部55Cを配置すると、係止部55Cは、傾斜面SLCからの反力のXC軸方向の成分によって傾斜面SLC上を基準面SRCに向けて摺動し、傾斜面SLCに接触しながら基準面SRCに突き当てられる。これにより、係止部55Cは、傾斜面SLCと基準面SRCとによって規定される角部に内接し、XC軸方向及びYC軸方向の両方において位置決めされる(弾性力によりセルフアライメントされる)。 Therefore, when the pair of locking portions 55C are arranged in the opening 31bC, the locking portions 55C slide on the inclined surface SLC toward the reference surface SRC by the XC-axis direction component of the reaction force from the inclined surface SLC. The abutting against the reference surface SRC while contacting the inclined surface SLC. Accordingly, the locking portion 55C is inscribed in the corner defined by the inclined surface SLC and the reference surface SRC, and is positioned in both the XC axis direction and the YC axis direction (self-aligned by elastic force).
 図54の(b)の例では、開口31bCは、2つの菱形状の部分31pCに分割されている。開口31bCのそれぞれの部分31pCにおいては、YC軸方向における実装領域31Cの中心側の一対の面として傾斜面SLC及び傾斜面SKCが形成されている。1つの部分31pCに着目したとき、傾斜面SLCと傾斜面SKCとは反対側に傾斜している。傾斜面SKCは、一端SkaCから他端SKbCに向けて互いの距離が縮小するように傾斜している。ここでは、傾斜面SLCの他端SLbCと傾斜面SKCの他端SKbCとが互いに接続され、1つの角部を形成している。この場合にも、傾斜面SLCと傾斜面SKCとによって規定される角部に係止部55Cが内接することにより、XC軸方向及びYC軸方向の両方において位置決めされる(弾性力によりセルフアライメントされる)。 54B, the opening 31bC is divided into two rhombus portions 31pC. In each portion 31pC of the opening 31bC, an inclined surface SLC and an inclined surface SKC are formed as a pair of surfaces on the center side of the mounting region 31C in the YC axis direction. When attention is paid to one portion 31pC, the inclined surface SLC and the inclined surface SKC are inclined to the opposite side. The inclined surfaces SKC are inclined so that the mutual distance decreases from one end SkaC to the other end SKbC. Here, the other end SLbC of the inclined surface SLC and the other end SKbC of the inclined surface SKC are connected to each other to form one corner. Also in this case, the engaging portion 55C is inscribed in the corner portion defined by the inclined surface SLC and the inclined surface SKC, so that it is positioned in both the XC axis direction and the YC axis direction (self-alignment is performed by elastic force). )
 以上、可動ミラー5C及び開口31bCの種々の変形例について説明したが、可動ミラー5C,5AC及び開口31bCの変形例は、上述したものに限定されない。例えば、接触部58Cは、係止部55Cと分岐した突出部と、係止部55Cにおける開口31bCの内面に対向する側面と、の両方を含んでいてもよい。この場合、可動ミラー5Cは、当該突出部及び係止部55Cの側面の両方において実装領域31Cに接着され得る。また、可動ミラー5C,5AC及び開口31bCは、上述した変形例の任意の一部分同士を交換して構成される別の変形例とすることができる。なお、固定ミラー6C及び開口37aCについても同様である。 Although various modifications of the movable mirror 5C and the opening 31bC have been described above, modifications of the movable mirrors 5C and 5AC and the opening 31bC are not limited to those described above. For example, the contact portion 58C may include both a protruding portion branched from the locking portion 55C and a side surface facing the inner surface of the opening 31bC in the locking portion 55C. In this case, the movable mirror 5C can be bonded to the mounting region 31C on both the protruding portion and the side surface of the locking portion 55C. In addition, the movable mirrors 5C and 5AC and the opening 31bC may be another modified example configured by exchanging arbitrary portions of the above-described modified examples. The same applies to the fixed mirror 6C and the opening 37aC.
 さらに、上記実施形態においては、ベースBCに実装される光学素子として、可動ミラー及び固定ミラーを例示した。この例では、光学面はミラー面である。しかしながら、実装対象となる光学素子はミラーに限定されず、例えば、グレーティングや光学フィルタ等の任意のものとすることができる。 Furthermore, in the said embodiment, the movable mirror and the fixed mirror were illustrated as an optical element mounted in base BC. In this example, the optical surface is a mirror surface. However, the optical element to be mounted is not limited to a mirror, and may be an arbitrary element such as a grating or an optical filter.
 また、ミラー部51C,61C及びミラー面51aC,61aCの形状は、円形に限定されず、矩形やその他の形状であってもよい。また、弾性部52Cは、環状領域CACを形成していなくてもよい。以上の第3実施形態について以下に付記する。
[付記14]
 光学素子と前記光学素子が実装されるベースとを備える光モジュールであって、
 前記光学素子は、光学面を有する光学部と、前記光学部の周囲に設けられた弾性部と、前記弾性部の弾性変形に応じて弾性力が付与されると共に互いの距離が可変とされた一対の支持部と、を有し、
 前記ベースは、主面と、前記主面に連通する開口が設けられた実装領域と、を有し、
 前記支持部は、前記弾性部の弾性力が付与された状態において前記開口に挿入される係止部と、前記係止部が前記開口に挿入された状態において前記実装領域に接触する接触部と、を含み、
 前記光学素子は、前記光学面が前記主面に交差した状態において、前記開口の内面から前記係止部に付与される前記弾性力の反力により前記実装領域に支持され、且つ、前記接触部において前記実装領域に接着されている、
 光モジュール。
[付記15]
 前記支持部は、前記係止部と分岐しつつ前記ベース側に突出する突出部を含み、
 前記接触部は、前記突出部の先端部を含む、
 付記14に記載の光モジュール。
[付記16]
 前記接触部は、前記係止部における前記開口の内面に対向する側面を含む、
 付記14又は15に記載の光モジュール。
[付記17]
 前記ベースは、支持層と、前記支持層上に設けられ、前記主面及び前記実装領域を含むデバイス層と、を有し、
 前記開口は、前記主面に交差する方向に前記デバイス層を貫通しており、
 前記係止部は、前記主面に交差する方向における前記開口の一対の縁部に当接するように屈曲している、
 付記14~16のいずれか一項に記載の光モジュール。
[付記18]
 前記開口の内面は、前記主面に交差する方向からみて、一端から他端に向けて互いの距離が拡大するように傾斜した一対の傾斜面と、一方の前記傾斜面の前記他端と他方の前記傾斜面の前記他端とを接続する基準線に沿って延在する基準面と、を含み、
 前記接触部は、前記係止部における前記基準面に対向する側面を含む、
 付記14~17のいずれか一項に記載の光モジュール。
[付記19]
 前記支持層、前記デバイス層、及び前記支持層と前記デバイス層との間に設けられた中間層の少なくとも1つに実装された固定ミラーと、
 前記支持層、前記デバイス層、及び前記中間層の少なくとも1つに実装されたビームスプリッタと、を更に備え、
 前記光学素子は、ミラー面である前記光学面を含む可動ミラーであり、
 前記デバイス層は、前記実装領域に接続された駆動領域を有し、
 前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、
 付記17に記載の光モジュール。
[付記20]
 前記ベースは、前記支持層と前記デバイス層との間に設けられた前記中間層を有し、
 前記支持層は、SOI基板の第1シリコン層であり、
 前記デバイス層は、前記SOI基板の第2シリコン層であり、
 前記中間層は、前記SOI基板の絶縁層である、
 付記19に記載の光モジュール。
[付記21]
 外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
 前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、
 を備える、
 付記19又は20に記載の光モジュール。
The shapes of the mirror portions 51C and 61C and the mirror surfaces 51aC and 61aC are not limited to a circle, and may be a rectangle or other shapes. Further, the elastic portion 52C may not form the annular region CAC. The above third embodiment will be additionally described below.
[Appendix 14]
An optical module comprising an optical element and a base on which the optical element is mounted,
The optical element has an optical part having an optical surface, an elastic part provided around the optical part, an elastic force is applied according to elastic deformation of the elastic part, and a mutual distance is variable. A pair of support parts,
The base has a main surface and a mounting region provided with an opening communicating with the main surface;
The support portion includes a locking portion that is inserted into the opening when the elastic force of the elastic portion is applied, and a contact portion that contacts the mounting region when the locking portion is inserted into the opening. Including,
The optical element is supported by the mounting region by a reaction force of the elastic force applied from the inner surface of the opening to the locking portion in a state where the optical surface intersects the main surface, and the contact portion In the mounting area,
Optical module.
[Appendix 15]
The support portion includes a protruding portion that protrudes toward the base side while branching from the locking portion,
The contact portion includes a tip portion of the protruding portion,
The optical module according to appendix 14.
[Appendix 16]
The contact portion includes a side surface facing the inner surface of the opening in the locking portion.
The optical module according to appendix 14 or 15.
[Appendix 17]
The base includes a support layer, and a device layer provided on the support layer and including the main surface and the mounting region,
The opening passes through the device layer in a direction intersecting the main surface,
The locking portion is bent so as to contact a pair of edges of the opening in a direction intersecting the main surface.
The optical module according to any one of appendices 14 to 16.
[Appendix 18]
The inner surface of the opening has a pair of inclined surfaces inclined so that the distance from one end to the other end increases as viewed from the direction intersecting the main surface, and the other end and the other of the one inclined surface A reference surface extending along a reference line connecting the other end of the inclined surface, and
The contact portion includes a side surface facing the reference surface in the locking portion,
18. The optical module according to any one of appendices 14 to 17.
[Appendix 19]
A fixed mirror mounted on at least one of the support layer, the device layer, and an intermediate layer provided between the support layer and the device layer;
A beam splitter mounted on at least one of the support layer, the device layer, and the intermediate layer, and
The optical element is a movable mirror including the optical surface which is a mirror surface;
The device layer has a drive region connected to the mounting region,
The movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system,
The optical module according to appendix 17.
[Appendix 20]
The base has the intermediate layer provided between the support layer and the device layer,
The support layer is a first silicon layer of an SOI substrate;
The device layer is a second silicon layer of the SOI substrate;
The intermediate layer is an insulating layer of the SOI substrate.
The optical module according to appendix 19.
[Appendix 21]
A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
A light emitting portion arranged to emit the measurement light to the outside from the interference optical system;
Comprising
The optical module according to appendix 19 or 20.
 なお、以上の第1実施形態に係る光モジュール、第2実施形態に係る光モジュール、及び、第3実施形態に係る光モジュールは、それぞれの任意の要素を互いに追加、及び/または交換するように変更され得る。 Note that the optical module according to the first embodiment, the optical module according to the second embodiment, and the optical module according to the third embodiment described above are configured to add and / or replace each arbitrary element. Can be changed.
 デバイス層に対する可動ミラーの確実な実装が実現された光モジュールを提供することができる An optical module in which a movable mirror is reliably mounted on the device layer can be provided.
 1A…光モジュール、2A…支持層、3A…デバイス層、4A…中間層、5A…可動ミラー、6A…固定ミラー、7A…ビームスプリッタ、8A…光入射部、9A…光出射部、10A…干渉光学系、21A…開口(第2開口)、23A…凹部(第2凹部)、31A…実装領域、32A…駆動領域、38A…凹部(第1凹部)、41A…開口(第1開口)、51aA…ミラー面、S1A…空間、1B…光モジュール、2B…支持層、3B…デバイス層、4B…中間層、5B…可動ミラー、6B…固定ミラー、7B…ビームスプリッタ、8B…光入射部、9B…光出射部、10B…干渉光学系、31B…実装領域、31bB…第1開口、31cB…第2開口、32B…駆動領域、51B…ミラー部、51aB…ミラー面、52B…弾性部、53B…支持部、56B…係止部(突出部)、57B…折返部、BB…ベース、BaB…第1表面、BbB…第2表面、SAB…傾斜面、SAaB…一端、SAbB…他端、1C…光モジュール、2C…支持層、3C…デバイス層、4C…中間層、5C,5AC…可動ミラー(光学素子)、6C…固定ミラー(光学素子)、7C…ビームスプリッタ、8C…光入射部、9C…光出射部、10C…干渉光学系、31C,37C…実装領域、31bC,37aC…開口、32C…駆動領域、51C,61C…ミラー部(光学部)、51aC,61aC…ミラー面(光学面)、52C,62C…弾性部、53C,63C…連結部、54C,64C…脚部、55C,65C…係止部、55aC,55bC,65aC,65bC…傾斜面、56C,66C…支持部、57C,67C…連結部、58C,68C…接触部、SLC…傾斜面、SLaC…一端、SLbC…他端、SRC…基準面、BLC…基準線。 DESCRIPTION OF SYMBOLS 1A ... Optical module, 2A ... Support layer, 3A ... Device layer, 4A ... Intermediate layer, 5A ... Movable mirror, 6A ... Fixed mirror, 7A ... Beam splitter, 8A ... Light incident part, 9A ... Light emitting part, 10A ... Interference Optical system, 21A ... opening (second opening), 23A ... concave portion (second concave portion), 31A ... mounting region, 32A ... driving region, 38A ... concave portion (first concave portion), 41A ... opening (first opening), 51aA ... mirror surface, S1A ... space, 1B ... optical module, 2B ... support layer, 3B ... device layer, 4B ... intermediate layer, 5B ... movable mirror, 6B ... fixed mirror, 7B ... beam splitter, 8B ... light incident part, 9B ... light emitting part, 10B ... interference optical system, 31B ... mounting area, 31bB ... first opening, 31cB ... second opening, 32B ... driving area, 51B ... mirror part, 51aB ... mirror surface, 52B ... elastic part, 53 ... support part, 56B ... locking part (protrusion part), 57B ... folding part, BB ... base, BaB ... first surface, BbB ... second surface, SAB ... inclined surface, SAaB ... one end, SAbB ... other end, 1C ... optical module, 2C ... support layer, 3C ... device layer, 4C ... intermediate layer, 5C, 5AC ... movable mirror (optical element), 6C ... fixed mirror (optical element), 7C ... beam splitter, 8C ... light incident part, 9C: Light emitting section, 10C: Interferometric optical system, 31C, 37C: Mounting area, 31bC, 37aC: Opening, 32C: Drive area, 51C, 61C: Mirror section (optical section), 51aC, 61aC: Mirror plane (optical surface) ), 52C, 62C ... elastic part, 53C, 63C ... connecting part, 54C, 64C ... leg part, 55C, 65C ... locking part, 55aC, 55bC, 65aC, 65bC ... inclined surface, 56C, 66C ... Sandwiching member, 57C, 67C ... connection portion, 58C, 68C ... contact portion, SLC ... inclined surface, SLAC ... one end, SLBC ... the other end, SRC ... reference surface, BLC ... reference line.

Claims (9)

  1.  支持層と、
     前記支持層上に設けられたデバイス層と、
     前記デバイス層に実装された可動ミラーと、を備え、
     前記デバイス層は、
     前記可動ミラーが貫通する実装領域と、
     前記実装領域に接続された駆動領域と、を有し、
     前記支持層と前記デバイス層との間には、少なくとも前記実装領域及び前記駆動領域に対応する空間が形成されており、
     前記可動ミラーの一部は、前記空間に位置している、光モジュール。
    A support layer;
    A device layer provided on the support layer;
    A movable mirror mounted on the device layer,
    The device layer is
    A mounting region through which the movable mirror passes,
    A drive region connected to the mounting region,
    A space corresponding to at least the mounting region and the driving region is formed between the support layer and the device layer,
    An optical module in which a part of the movable mirror is located in the space.
  2.  前記支持層と前記デバイス層との間に設けられた中間層を更に備え、
     前記中間層には、第1開口が形成されており、
     前記支持層には、凹部又は第2開口が形成されており、
     前記空間は、前記第1開口内の領域及び前記凹部内の領域、又は、前記第1開口内の領域及び前記第2開口内の領域を含み、
     前記可動ミラーの前記一部は、前記凹部内の領域又は前記第2開口内の領域に位置している、請求項1に記載の光モジュール。
    An intermediate layer provided between the support layer and the device layer;
    A first opening is formed in the intermediate layer,
    In the support layer, a recess or a second opening is formed,
    The space includes a region in the first opening and a region in the recess, or a region in the first opening and a region in the second opening,
    2. The optical module according to claim 1, wherein the part of the movable mirror is located in a region in the recess or a region in the second opening.
  3.  前記支持層は、SOI基板の第1シリコン層であり、
     前記デバイス層は、前記SOI基板の第2シリコン層であり、
     前記中間層は、前記SOI基板の絶縁層である、請求項2に記載の光モジュール。
    The support layer is a first silicon layer of an SOI substrate;
    The device layer is a second silicon layer of the SOI substrate;
    The optical module according to claim 2, wherein the intermediate layer is an insulating layer of the SOI substrate.
  4.  前記支持層には、凹部又は開口が形成されており、
     前記空間は、前記凹部内の領域又は前記開口内の領域を含み、
     前記可動ミラーの前記一部は、前記凹部内の領域又は前記開口内の領域に位置している、請求項1に記載の光モジュール。
    The support layer has a recess or an opening,
    The space includes a region in the recess or a region in the opening,
    The optical module according to claim 1, wherein the part of the movable mirror is located in a region in the recess or a region in the opening.
  5.  前記デバイス層には、凹部が形成されており、
     前記空間は、前記凹部内の領域を含み、
     前記可動ミラーの前記一部は、前記凹部内の領域に位置している、請求項1に記載の光モジュール。
    The device layer has a recess,
    The space includes a region in the recess,
    The optical module according to claim 1, wherein the part of the movable mirror is located in a region in the recess.
  6.  前記デバイス層には、第1凹部が形成されており、
     前記支持層には、第2凹部又は開口が形成されており、
     前記空間は、前記第1凹部内の領域及び前記第2凹部内の領域、又は、前記第1凹部内の領域及び前記開口内の領域を含み、
     前記可動ミラーの前記一部は、前記第2凹部内の領域又は前記開口内の領域に位置している、請求項1に記載の光モジュール。
    A first recess is formed in the device layer,
    A second recess or opening is formed in the support layer,
    The space includes a region in the first recess and a region in the second recess, or a region in the first recess and a region in the opening,
    The optical module according to claim 1, wherein the part of the movable mirror is located in a region in the second recess or a region in the opening.
  7.  前記可動ミラーのミラー面は、前記デバイス層に対して前記支持層とは反対側に位置している、請求項1~6のいずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 6, wherein a mirror surface of the movable mirror is located on a side opposite to the support layer with respect to the device layer.
  8.  前記支持層、前記デバイス層、及び前記支持層と前記デバイス層との間に設けられた中間層の少なくとも1つに実装された固定ミラーと、
     前記支持層、前記デバイス層、及び前記中間層の少なくとも1つに実装されたビームスプリッタと、を更に備え、
     前記可動ミラー、前記固定ミラー及び前記ビームスプリッタは、干渉光学系を構成するように配置されている、請求項1~7のいずれか一項に記載の光モジュール。
    A fixed mirror mounted on at least one of the support layer, the device layer, and an intermediate layer provided between the support layer and the device layer;
    A beam splitter mounted on at least one of the support layer, the device layer, and the intermediate layer, and
    The optical module according to any one of claims 1 to 7, wherein the movable mirror, the fixed mirror, and the beam splitter are arranged to constitute an interference optical system.
  9.  外部から前記干渉光学系に測定光を入射させるように配置された光入射部と、
     前記干渉光学系から外部に前記測定光を出射させるように配置された光出射部と、を更に備える、請求項8に記載の光モジュール。
    A light incident portion arranged to allow measurement light to be incident on the interference optical system from the outside;
    The optical module according to claim 8, further comprising: a light emitting unit arranged to emit the measurement light to the outside from the interference optical system.
PCT/JP2018/009992 2017-03-14 2018-03-14 Optical module WO2018168935A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880017386.3A CN110418994B (en) 2017-03-14 2018-03-14 Optical module
DE112018001349.9T DE112018001349T5 (en) 2017-03-14 2018-03-14 Optical module
US16/492,691 US11513339B2 (en) 2017-03-14 2018-03-14 Optical module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017048561 2017-03-14
JP2017048566A JP6793066B2 (en) 2017-03-14 2017-03-14 Optical module
JP2017-048561 2017-03-14
JP2017-048566 2017-03-14
JP2017074492A JP6716491B2 (en) 2017-03-14 2017-04-04 Optical module
JP2017-074492 2017-04-04

Publications (1)

Publication Number Publication Date
WO2018168935A1 true WO2018168935A1 (en) 2018-09-20

Family

ID=63522318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009992 WO2018168935A1 (en) 2017-03-14 2018-03-14 Optical module

Country Status (2)

Country Link
CN (1) CN110418994B (en)
WO (1) WO2018168935A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082288A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Electrostatic actuator and optical switch using the same
JP2006102934A (en) * 2004-09-29 2006-04-20 Lucent Technol Inc Micro-electromechanical system mirror to make tilting or piston motions for use in adaptive optical device
JP2010184334A (en) * 2009-02-13 2010-08-26 Fujitsu Ltd Micro movable element and optical interferometer
JP2010286609A (en) * 2009-06-10 2010-12-24 Sony Corp Mirror structure
JP2012524295A (en) * 2009-04-17 2012-10-11 シーウェア システムズ Optomechanical optical path delay multiplier for optical MEMS applications
JP2012240129A (en) * 2011-05-16 2012-12-10 Hamamatsu Photonics Kk Optical module and method for producing the same
JP2012242450A (en) * 2011-05-16 2012-12-10 Hamamatsu Photonics Kk Optical component manufacturing method and optical component
US20140192365A1 (en) * 2013-01-07 2014-07-10 Si-Ware Systems Spatial splitting-based optical mems interferometers

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330102B1 (en) * 2000-03-24 2001-12-11 Onix Microsystems Apparatus and method for 2-dimensional steered-beam NxM optical switch using single-axis mirror arrays and relay optics
JP3952902B2 (en) * 2002-08-09 2007-08-01 住友電気工業株式会社 Optical switch, optical add / drop device, optical transmission system, and optical switch manufacturing method
JP4416117B2 (en) * 2004-04-19 2010-02-17 株式会社リコー Deflection mirror, optical scanning device, and image forming apparatus
WO2006073111A1 (en) * 2005-01-05 2006-07-13 Nippon Telegraph And Telephone Corporation Mirror device, mirror array, optical switch, mirror device manufacturing method and mirror substrate manufacturing method
KR100699858B1 (en) * 2005-08-03 2007-03-27 삼성전자주식회사 Reflection device for EUVL lithography, fabricating method of the same and, mask, projection optics system and apparatus of EUVL using the same
WO2008084520A1 (en) * 2006-12-28 2008-07-17 Nikon Corporation Optical device, pattern generating apparatus, pattern generating method, exposure apparatus, exposure method and device manufacturing method
JP2010107628A (en) * 2008-10-29 2010-05-13 Topcon Corp Mems scanning type mirror and method of manufacturing the same
JP5302020B2 (en) * 2009-01-26 2013-10-02 浜松ホトニクス株式会社 Optical module
JP5577742B2 (en) * 2010-02-23 2014-08-27 セイコーエプソン株式会社 Optical scanner and image forming apparatus
WO2012002101A1 (en) * 2010-06-29 2012-01-05 コニカミノルタホールディングス株式会社 Interferometer and fourier transformation spectrophotometer
US9036231B2 (en) * 2010-10-20 2015-05-19 Tiansheng ZHOU Micro-electro-mechanical systems micromirrors and micromirror arrays
KR101912093B1 (en) * 2010-10-29 2018-10-26 삼성전자 주식회사 Optical apparatus
JP2012215691A (en) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The Mems element, optical switch device, display device, and manufacturing method for mems element
JP2013003560A (en) * 2011-06-22 2013-01-07 Hitachi Media Electoronics Co Ltd Mirror device
JP2013105516A (en) * 2011-11-16 2013-05-30 Sanyo Electric Co Ltd Holder for optical element, optical element unit and optical pickup device
JP5926610B2 (en) * 2012-05-18 2016-05-25 浜松ホトニクス株式会社 Spectroscopic sensor
JP2014055871A (en) * 2012-09-13 2014-03-27 Seiko Epson Corp Detecting element, detecting module, an imaging device, detection imaging module, electric device, and terahertz camera
JP2014192365A (en) * 2013-03-27 2014-10-06 Jm Energy Corp Power storage device
DE102013104410A1 (en) * 2013-04-30 2014-10-30 Scansonic Mi Gmbh scanner device
CN104216107B (en) * 2013-05-31 2017-02-08 中芯国际集成电路制造(上海)有限公司 Single-pixel structure, digital micro-mirror device with same and production method of single-pixel structure and digital micro-mirror device
DE102013223933B4 (en) * 2013-11-22 2021-12-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Resonance micromirror assembly
JP6356427B2 (en) * 2014-02-13 2018-07-11 浜松ホトニクス株式会社 Fabry-Perot interference filter
CN105552125A (en) * 2014-10-31 2016-05-04 财团法人工业技术研究院 Semiconductor structure and manufacturing method thereof
JP6565455B2 (en) * 2015-08-05 2019-08-28 セイコーエプソン株式会社 Optical scanner, optical scanner manufacturing method, image display device, and head mounted display
JP2017040700A (en) * 2015-08-18 2017-02-23 セイコーエプソン株式会社 Optical scanner, image display device and head mount display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082288A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Electrostatic actuator and optical switch using the same
JP2006102934A (en) * 2004-09-29 2006-04-20 Lucent Technol Inc Micro-electromechanical system mirror to make tilting or piston motions for use in adaptive optical device
JP2010184334A (en) * 2009-02-13 2010-08-26 Fujitsu Ltd Micro movable element and optical interferometer
JP2012524295A (en) * 2009-04-17 2012-10-11 シーウェア システムズ Optomechanical optical path delay multiplier for optical MEMS applications
JP2010286609A (en) * 2009-06-10 2010-12-24 Sony Corp Mirror structure
JP2012240129A (en) * 2011-05-16 2012-12-10 Hamamatsu Photonics Kk Optical module and method for producing the same
JP2012242450A (en) * 2011-05-16 2012-12-10 Hamamatsu Photonics Kk Optical component manufacturing method and optical component
US20140192365A1 (en) * 2013-01-07 2014-07-10 Si-Ware Systems Spatial splitting-based optical mems interferometers

Also Published As

Publication number Publication date
CN110418994A (en) 2019-11-05
CN110418994B (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US11187579B2 (en) Optical device
US20080291457A1 (en) Optical Displacement Sensor
JP2005284125A (en) Variable wavelength light source
WO2018168935A1 (en) Optical module
EP3650911B1 (en) Optical device
CN110392858B (en) Optical module
JP6716491B2 (en) Optical module
US11513339B2 (en) Optical module
WO2018168927A1 (en) Light module
JP6793066B2 (en) Optical module
JP2018151551A (en) Optical module
WO2018168929A1 (en) Optical module
JP6814076B2 (en) Optical module
WO2018180786A1 (en) Optical component and optical connector and optical module comprising same
JP2009139546A (en) Variable wavelength light source
EP3650917A1 (en) Optical device
JP4763667B2 (en) Groove for fixing optical transmission medium and optical device
JP2006251710A (en) Optical switch
JP2002198558A (en) Optical device and photointerrupter
JPH03203710A (en) Optical switch
JP2010219315A (en) Wavelength sweeping light source
JPH03260613A (en) Optical switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768648

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18768648

Country of ref document: EP

Kind code of ref document: A1