JP2010219315A - Wavelength sweeping light source - Google Patents

Wavelength sweeping light source Download PDF

Info

Publication number
JP2010219315A
JP2010219315A JP2009064585A JP2009064585A JP2010219315A JP 2010219315 A JP2010219315 A JP 2010219315A JP 2009064585 A JP2009064585 A JP 2009064585A JP 2009064585 A JP2009064585 A JP 2009064585A JP 2010219315 A JP2010219315 A JP 2010219315A
Authority
JP
Japan
Prior art keywords
mirror
diffraction grating
diffraction
light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009064585A
Other languages
Japanese (ja)
Inventor
Kenichi Nakamura
賢一 中村
Takashi Nakayama
貴司 中山
Shintaro Morimoto
慎太郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2009064585A priority Critical patent/JP2010219315A/en
Publication of JP2010219315A publication Critical patent/JP2010219315A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength sweeping light source that can perform high-speed continuous wavelength sweeping of single mode over a wide wavelength range, and emit a plurality of output light beams. <P>SOLUTION: An external resonator type wavelength sweeping light source, employing a Littmann system, that continuously varies the wavelength of light emitted by a semiconductor light-emitting element 22 within a predetermined range by varying a resonator length in accordance with angle variation of a reflecting surface 32a of a rotary mirror 30 includes: a half-mirror 240 which reflects part of the light emitted by the semiconductor light-emitting element 22 toward a predetermined incidence position G of a diffraction grating 25, and reflects part of light returned from the diffraction grating 25 through a reverse optical path toward a low-reflectivity surface 22a of the semiconductor light-emitting element 22 and transmits at least part of the rest; and a first output mirror 241 which emits first output light L<SB>1</SB>to the outside by reflecting the light returned from the diffraction grating 25 through the reverse optical path and transmitted through the half-mirror 240 in a direction not crossing the rotary mirror 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、外部共振器型の波長掃引光源に関し、特に、製造が容易で、高速に波長掃引できる波長掃引光源に関する。   The present invention relates to a wavelength-swept light source of an external resonator type, and more particularly, to a wavelength-swept light source that is easy to manufacture and capable of performing wavelength sweep at high speed.

波長掃引光源は、光通信回線や光通信機器の試験用の光源あるいはFBG(Fiber Bragg Grating)センサなどの光ファイバセンシング用光源として広く用いられている。現在、広い波長範囲に亘ってシングルモードの高速な連続波長掃引が可能といった極めて高性能な光源は、リトマン型と呼ばれる外部共振器型の波長掃引光源として実現されている。   A wavelength-swept light source is widely used as a light source for testing an optical communication line or an optical communication device or an optical fiber sensing light source such as an FBG (Fiber Bragg Grating) sensor. At present, an extremely high-performance light source capable of performing single-mode high-speed continuous wavelength sweeping over a wide wavelength range is realized as an external resonator type wavelength sweeping light source called a Litman type.

このような波長掃引光源の例としては、MEMS(Micro Electro Mechanical Systems)技術によって従来よりも大幅に小型化された回動ミラーを備えた光源が挙げられる(例えば、特許文献1参照)。   As an example of such a wavelength swept light source, there is a light source provided with a rotating mirror that is significantly reduced in size by a MEMS (Micro Electro Mechanical Systems) technique (see, for example, Patent Document 1).

このような波長掃引光源においてモードホップフリーの連続波長掃引を実現するためには、該光源が適用される装置用の少なくとも1つの光出力の他に、その光出力の波長情報をモニタリングするための光出力が別途必要となる。このため、一般に波長掃引光源には複数の出力光を出射可能であることが求められる。   In order to realize a mode-hop-free continuous wavelength sweep in such a wavelength-swept light source, in addition to at least one light output for a device to which the light source is applied, in addition to monitoring wavelength information of the light output A separate optical output is required. For this reason, generally, a wavelength swept light source is required to be able to emit a plurality of output lights.

例えば、波長掃引光源内の共振器において共振する光を複数の光出力ポートを介して外部に取り出す方法として、共振器内に光分波器を配置することが従来から行われてきた(例えば、特許文献2参照)。この方法は、従来型のように大型で共振器長が十分に長く、共振器内部に光分波器を配置するための十分なスペースを有する光源では有用な技術である。   For example, as a method for extracting light resonating in a resonator in a wavelength swept light source to the outside through a plurality of optical output ports, it has been conventionally performed to arrange an optical demultiplexer in the resonator (for example, Patent Document 2). This method is useful for a light source having a large size and a sufficiently long resonator length as in the conventional type and having a sufficient space for placing an optical demultiplexer inside the resonator.

特許第4073886号明細書Japanese Patent No. 4073886 特開平9−102645号公報JP-A-9-102645

しかしながら、特許文献1に開示された光源においては、その共振器長が非常に短いため、内部に前述の光分波器を配置する空間的なスペースを確保することは非常に困難である。   However, since the resonator length of the light source disclosed in Patent Document 1 is very short, it is very difficult to secure a spatial space in which the above-described optical demultiplexer is arranged.

ここで、共振器が真空もしくは空気中において構成されている場合を考える。自由空間の屈折率は1であるのに対して、例えば光学ガラスなどは屈折率が1.5程度である。従って、仮に光学ガラス製の光分波器を共振器内に配置できたとしても、共振器長のうち光分波器の長さの1.5倍分の光路長が同光分波器によって占められるため、モードホップフリーの連続波長掃引が保証される共振器長を実現できなくなってしまう。   Here, consider a case where the resonator is configured in a vacuum or in air. The refractive index of free space is 1, whereas the refractive index of optical glass, for example, is about 1.5. Accordingly, even if an optical demultiplexer made of optical glass can be arranged in the resonator, the optical path length corresponding to 1.5 times the length of the optical demultiplexer out of the resonator length is Therefore, it becomes impossible to realize a resonator length that guarantees a mode-hop-free continuous wavelength sweep.

さらに、このような光源は、小型化を実現するために高密度実装されているため、単に光分波器を配置しただけでは他の光学部品によって光が遮られて、光を外部に出力することができない。   Further, since such a light source is mounted at a high density in order to achieve miniaturization, light is blocked by other optical components simply by placing an optical demultiplexer, and the light is output to the outside. I can't.

本発明は、このような従来の課題を解決するためになされたものであって、広い波長範囲に亘ってシングルモードの高速な連続波長掃引が可能であり、且つ複数の出力光を出射できる波長掃引光源を提供することを目的とする。   The present invention has been made to solve such a conventional problem, and is capable of single-mode high-speed continuous wavelength sweeping over a wide wavelength range and a wavelength capable of emitting a plurality of output lights. An object is to provide a swept light source.

本発明の波長掃引光源は、基台と、前記基台上に固定され、2つの端面のうち一方の端面が他方の端面に比べ低反射率面である半導体発光素子と、前記基台上に固定され、前記半導体発光素子の前記低反射率面からの出射光を平行光に変換するコリメートレンズと、光を回折するための回折溝が平行に形成されている回折面を有し、前記コリメートレンズから出射された光が、前記回折溝と直交し且つ前記回折面に対して非直交となる所定入射角で所定入射位置に入射される状態で前記基台上に固定された回折格子と、前記基台上に固定され、前記回折格子の前記回折面と対向する反射板を有し、前記回折格子の前記回折溝と平行な特定位置の軸を中心にして前記回折面と直交する平面内で回動可能に形成され、前記コリメートレンズから出射されて前記回折格子の前記回折面に入射した光に対する回折光のうち前記反射板の反射面に直交する光路に沿った光を反射させて逆光路で前記回折格子に戻し、該戻された光を入射光路と同じ光路で前記コリメートレンズを介して前記半導体発光素子へ戻す回動ミラーと、を備え、前記回動ミラーの前記反射面の角度変化に応じて前記半導体発光素子から前記コリメートレンズおよび前記回折格子の前記回折面を経て前記回動ミラーの前記反射面に至る共振器長を変化させ、前記半導体発光素子が出射する光の波長を所定範囲内で連続的に変化させるリトマン方式外部共振器型の波長掃引光源において、前記基台上に固定され、前記コリメートレンズから出射された光の一部を前記回折格子の前記所定入射位置に向けて反射させるとともに、前記回折格子から逆光路で戻された光の一部を前記半導体発光素子の前記低反射率面に向けて反射させ、残りの少なくとも一部を透過させる固定ミラーを備え、前記半導体発光素子、前記コリメートレンズ、前記固定ミラーおよび前記回折格子が前記回動ミラーの一面側に配置され、前記半導体発光素子から前記固定ミラーを介して前記回折格子に至る光路が、前記回動ミラーと非交差であり、前記回動ミラーの回動中心位置から前記回折格子の前記所定入射位置までの距離r、前記回動中心位置から前記反射面を延長した平面までの距離L2、前記半導体発光素子の実効共振端面から前記固定ミラーまでの光路長L3、該固定ミラーから前記回折格子の前記回折面の前記所定入射位置までの光路長L4および前記固定ミラーから前記回折格子の前記回折面への光入射角αとの間に、r=(L3+L4−L2)/sin αの関係が成立し、前記回動ミラーは、前記基台に固定されたフレームと、前記フレームの内側に配置され一面側に前記反射面が形成された前記反射板と、前記反射板の外縁と前記フレームの内縁との間を連結する捩れ変形可能で前記回折格子の前記回折溝と平行な一直線上に並ぶ一対の連結部と、で一体的に形成され、前記反射板に往復回動するための力を周期的に付与する回動駆動手段により、前記連結部を中心に前記反射板を往復回動させる構造を有しており、さらに、前記回折格子から逆光路で戻されて前記固定ミラーを透過した光を前記回動ミラーに対して非交差となる方向に反射させる第1の出力ミラーを備え、該第1の出力ミラーから第1の出力光を出射する構成を有している。   The wavelength swept light source of the present invention includes a base, a semiconductor light emitting element that is fixed on the base, and one of the two end faces has a lower reflectivity surface than the other end face, and the base. A collimating lens that is fixed and converts light emitted from the low-reflectance surface of the semiconductor light-emitting element into parallel light; and a diffractive surface in which diffraction grooves for diffracting light are formed in parallel. A diffraction grating fixed on the base in a state where light emitted from a lens is incident on a predetermined incident position at a predetermined incident angle orthogonal to the diffraction groove and non-orthogonal to the diffraction surface; A reflecting plate fixed on the base and facing the diffractive surface of the diffraction grating, and in a plane perpendicular to the diffractive surface about an axis at a specific position parallel to the diffraction groove of the diffraction grating It is formed so that it can be rotated with the collimating lens. Of the diffracted light with respect to the light incident on the diffractive surface of the diffraction grating, the light along the optical path perpendicular to the reflective surface of the reflecting plate is reflected and returned to the diffractive grating by the reverse optical path, and the returned light A rotating mirror that returns the semiconductor light emitting element to the semiconductor light emitting element via the collimating lens in the same optical path as the incident optical path, and from the semiconductor light emitting element to the collimating lens according to a change in the angle of the reflecting surface of the rotating mirror. A Littman-type external resonance that changes the resonator length from the diffraction surface of the diffraction grating to the reflection surface of the rotating mirror and continuously changes the wavelength of light emitted from the semiconductor light emitting element within a predetermined range. And a part of the light emitted from the collimating lens is reflected toward the predetermined incident position of the diffraction grating. A fixed mirror that reflects a part of the light returned from the diffraction grating by a reverse optical path toward the low-reflectance surface of the semiconductor light-emitting element and transmits at least a part of the remaining light-emitting element; The collimating lens, the fixed mirror, and the diffraction grating are arranged on one surface side of the rotating mirror, and an optical path from the semiconductor light emitting element to the diffraction grating via the fixed mirror is non-intersecting with the rotating mirror. A distance r from the rotation center position of the rotation mirror to the predetermined incident position of the diffraction grating, a distance L2 from the rotation center position to a plane extending the reflection surface, an effective resonance end surface of the semiconductor light emitting element The optical path length L3 from the fixed mirror to the fixed mirror, the optical path length L4 from the fixed mirror to the predetermined incident position of the diffraction surface of the diffraction grating, and the diffraction grating from the fixed mirror The relationship r = (L3 + L4-L2) / sin α is established between the light incident angle α on the diffractive surface of the child, and the rotating mirror includes a frame fixed to the base, and the frame The reflection plate is disposed on the inner side of the reflection plate, and the reflection surface is formed on one side of the reflection plate. The torsional deformation connecting the outer edge of the reflection plate and the inner edge of the frame is parallel to the diffraction groove of the diffraction grating. And a pair of connecting portions arranged in a straight line, and a rotation driving means for periodically applying a force for reciprocating rotation to the reflecting plate, the reflecting plate is centered on the connecting portion. A first output for reflecting light that has been returned from the diffraction grating through a reverse optical path and transmitted through the fixed mirror in a direction that does not intersect the rotating mirror; A first output light from the first output mirror It has a configuration to emit.

この構成により、広い波長範囲に亘ってシングルモードの高速な連続波長掃引が可能であり、且つ半導体発光素子の他方の端面からの出力光、回折格子の0次回折光に加え、第1の出力ミラーからの第1の出力光を出射することができる。   With this configuration, a single-mode high-speed continuous wavelength sweep is possible over a wide wavelength range, and in addition to the output light from the other end face of the semiconductor light emitting element and the 0th-order diffracted light of the diffraction grating, the first output mirror 1st output light from can be emitted.

また、本発明の波長掃引光源は、前記回折格子から逆光路で戻されて前記固定ミラーを透過した光を前記回動ミラーに対して非交差となる方向に反射させるとともに前記第1の出力ミラーに向かって透過させる第nの出力ミラー(n≧2)を備え、該第nの出力ミラーから第nの出力光を出射する構成を有している。   In addition, the wavelength swept light source of the present invention reflects the light returned from the diffraction grating through a reverse optical path and transmitted through the fixed mirror in a non-intersecting direction with respect to the rotating mirror and the first output mirror. And an n-th output mirror (n ≧ 2) that is transmitted toward the light source, and the n-th output light is emitted from the n-th output mirror.

この構成により、さらに第nの出力ミラー(n≧2)からの第nの出力光を出射することができる。   With this configuration, it is possible to emit the nth output light from the nth output mirror (n ≧ 2).

また、本発明の波長掃引光源は、前記固定ミラーと前記出力ミラーとが一体的に形成されてなる反射部材を備える構成を有していてもよい。   Moreover, the wavelength swept light source of the present invention may have a configuration including a reflecting member in which the fixed mirror and the output mirror are integrally formed.

また、本発明の波長掃引光源は、前記半導体発光素子から前記コリメートレンズを経て前記固定ミラーに至る光路が前記回折格子の前記回折溝と平行となり、且つ前記固定ミラーから該回折格子に至る光路が該回折溝に対して垂直となるように前記固定ミラーが配置され、前記回折格子から逆光路で戻されて前記固定ミラーを透過した光を前記回折格子の前記回折溝と平行な方向に反射させるように前記第1の出力ミラーが配置された構成を有していてもよい。   In the wavelength-swept light source of the present invention, an optical path from the semiconductor light emitting element through the collimating lens to the fixed mirror is parallel to the diffraction groove of the diffraction grating, and an optical path from the fixed mirror to the diffraction grating is The fixed mirror is disposed so as to be perpendicular to the diffraction groove, and the light that has been returned from the diffraction grating through a reverse optical path and transmitted through the fixed mirror is reflected in a direction parallel to the diffraction groove of the diffraction grating. In this way, the first output mirror may be arranged.

また、本発明の波長掃引光源は、基台と、前記基台上に固定され、2つの端面のうち一方の端面が他方の端面に比べ低反射率面である半導体発光素子と、前記基台上に固定され、前記半導体発光素子の前記低反射率面からの出射光を平行光に変換するコリメートレンズと、光を回折するための回折溝が平行に形成されている回折面を有し、前記コリメートレンズから出射された光が、前記回折溝と直交し且つ前記回折面に対して非直交となる所定入射角で所定入射位置に入射される状態で前記基台上に固定された回折格子と、前記基台上に固定され、前記回折格子の前記回折面と対向する反射板を有し、前記回折格子の前記回折溝と平行な特定位置の軸を中心にして前記回折面と直交する平面内で回動可能に形成され、前記コリメートレンズから出射されて前記回折格子の前記回折面に入射した光に対する回折光のうち前記反射板の反射面に直交する光路に沿った光を反射させて逆光路で前記回折格子に戻し、該戻された光を入射光路と同じ光路で前記コリメートレンズを介して前記半導体発光素子へ戻す回動ミラーと、を備え、前記回動ミラーの前記反射面の角度変化に応じて前記半導体発光素子から前記コリメートレンズおよび前記回折格子の前記回折面を経て前記回動ミラーの前記反射面に至る共振器長を変化させ、前記半導体発光素子が出射する光の波長を所定範囲内で連続的に変化させるリトマン方式外部共振器型の波長掃引光源において、前記基台上に固定され、前記コリメートレンズから出射された光の一部を前記回折格子の前記所定入射位置に向けて反射させるとともに、前記回折格子から逆光路で戻された光の一部を前記半導体発光素子の前記低反射率面に向けて反射させ、残りの少なくとも一部を透過させる固定ミラーを備え、前記半導体発光素子、前記コリメートレンズ、前記固定ミラーおよび前記回折格子が前記回動ミラーの一面側に配置され、前記半導体発光素子から前記固定ミラーを介して前記回折格子に至る光路が、前記回動ミラーと非交差であり、前記回動ミラーの回動中心位置から前記回折格子の前記所定入射位置までの距離r、前記回動中心位置から前記反射面を延長した平面までの距離L2、前記半導体発光素子の実効共振端面から前記固定ミラーまでの光路長L3、該固定ミラーから前記回折格子の前記回折面の前記所定入射位置までの光路長L4および前記固定ミラーから前記回折格子の前記回折面への光入射角αとの間に、r=(L3+L4−L2)/sin αの関係が成立し、前記回動ミラーは、前記基台に固定されたフレームと、前記フレームの内側に配置され一面側に前記反射面が形成された前記反射板と、前記反射板の外縁と前記フレームの内縁との間を連結する捩れ変形可能で前記回折格子の前記回折溝と平行な一直線上に並ぶ一対の連結部と、で一体的に形成され、前記反射板に往復回動するための力を周期的に付与する回動駆動手段により、前記連結部を中心に前記反射板を往復回動させる構造を有しており、前記半導体発光素子から前記コリメートレンズを経て前記固定ミラーに至る光路が前記回折格子の前記回折溝と平行となり、且つ前記固定ミラーから該回折格子に至る光路が該回折溝に対して垂直となるように前記固定ミラーが配置され、前記回折格子から逆光路で戻されて前記固定ミラーを透過した光を出力光として出射する構成を有していてもよい。   Further, the wavelength swept light source of the present invention includes a base, a semiconductor light emitting element that is fixed on the base, and one of the two end faces has a lower reflectivity surface than the other end face, and the base. A collimating lens that is fixed on the semiconductor light-emitting element and converts the light emitted from the low-reflectance surface of the semiconductor light-emitting element into parallel light; and a diffractive surface in which diffraction grooves for diffracting light are formed in parallel. A diffraction grating fixed on the base in a state where light emitted from the collimating lens is incident on a predetermined incident position at a predetermined incident angle orthogonal to the diffraction groove and non-orthogonal to the diffraction surface And a reflector fixed on the base and facing the diffraction surface of the diffraction grating, and orthogonal to the diffraction surface about an axis at a specific position parallel to the diffraction groove of the diffraction grating The collimating lens is formed so as to be rotatable in a plane. Of the diffracted light with respect to the light emitted from the diffraction grating and incident on the diffraction surface of the diffraction grating, the light along the optical path orthogonal to the reflection surface of the reflector is reflected and returned to the diffraction grating by a reverse optical path. A rotating mirror that returns the reflected light to the semiconductor light emitting element through the collimating lens in the same optical path as the incident optical path, and from the semiconductor light emitting element to the collimator according to an angle change of the reflecting surface of the rotating mirror A Littman method for changing the wavelength of the light emitted from the semiconductor light emitting element continuously within a predetermined range by changing a resonator length from the diffraction surface of the lens and the diffraction grating to the reflection surface of the rotating mirror. In the external resonator type wavelength sweeping light source, when a part of the light that is fixed on the base and emitted from the collimating lens is reflected toward the predetermined incident position of the diffraction grating, In addition, the semiconductor light emitting device includes a fixed mirror that reflects a part of the light returned from the diffraction grating by a reverse optical path toward the low reflectance surface of the semiconductor light emitting element and transmits at least a part of the remaining light. An element, the collimating lens, the fixed mirror, and the diffraction grating are arranged on one surface side of the rotating mirror, and an optical path from the semiconductor light emitting element to the diffraction grating via the fixed mirror is not on the rotating mirror. A distance r from the rotation center position of the rotation mirror to the predetermined incident position of the diffraction grating, a distance L2 from the rotation center position to a plane extending the reflection surface, and the semiconductor light emitting element An optical path length L3 from the effective resonance end surface to the fixed mirror, an optical path length L4 from the fixed mirror to the predetermined incident position of the diffraction surface of the diffraction grating, and the fixed mirror to the The relationship r = (L3 + L4-L2) / sin α is established between the light incident angle α on the diffraction surface of the diffraction grating, and the rotating mirror includes a frame fixed to the base, The reflection plate disposed on the inner side of the frame and having the reflection surface formed on one side thereof, and torsionally deformable connecting the outer edge of the reflection plate and the inner edge of the frame, and parallel to the diffraction grooves of the diffraction grating And a pair of connecting portions arranged in a straight line, and the reflecting plate centering on the connecting portion by a rotation driving means that periodically applies a force for reciprocating rotation to the reflecting plate. The optical path from the semiconductor light emitting element through the collimating lens to the fixed mirror is parallel to the diffraction groove of the diffraction grating and from the fixed mirror to the diffraction grating. The optical path is to the diffraction groove The fixed mirror is arranged so as to be perpendicular, or may have a structure for emitting light transmitted through the fixed mirror back to backlight path from the diffraction grating as an output light.

本発明は、広い波長範囲に亘ってシングルモードの高速な連続波長掃引が可能であり、且つ複数の出力光を出射できる波長掃引光源を提供するものである。   The present invention provides a wavelength swept light source capable of single-mode high-speed continuous wavelength sweeping over a wide wavelength range and emitting a plurality of output lights.

本発明の第1の実施形態の波長掃引光源の構成を示す斜視図The perspective view which shows the structure of the wavelength sweep light source of the 1st Embodiment of this invention. 本発明の第1の実施形態の波長掃引光源の構成を示す平面図The top view which shows the structure of the wavelength swept light source of the 1st Embodiment of this invention 本発明の第1の実施形態の波長掃引光源が備える半導体発光素子の構成を示す断面図Sectional drawing which shows the structure of the semiconductor light-emitting device with which the wavelength sweep light source of the 1st Embodiment of this invention is provided. 本発明の第1の実施形態の波長掃引光源が備える回動ミラーの分解斜視図The disassembled perspective view of the rotation mirror with which the wavelength sweep light source of the 1st Embodiment of this invention is provided. 駆動信号と波長変化の関係を示すグラフGraph showing the relationship between drive signal and wavelength change 本発明の第1の実施形態の波長掃引光源が波長を連続的に掃引するための条件を説明するための模式図The schematic diagram for demonstrating the conditions for the wavelength sweep light source of the 1st Embodiment of this invention to sweep a wavelength continuously 本発明の第2の実施形態の波長掃引光源の構成を示す斜視図The perspective view which shows the structure of the wavelength swept light source of the 2nd Embodiment of this invention. 本発明の第3の実施形態の波長掃引光源の構成を示す斜視図The perspective view which shows the structure of the wavelength swept light source of the 3rd Embodiment of this invention. 本発明の第3の実施形態の波長掃引光源の要部の構成を示す断面図Sectional drawing which shows the structure of the principal part of the wavelength swept light source of the 3rd Embodiment of this invention. 本発明の第3の実施形態の波長掃引光源の要部の他の構成例を示す断面図Sectional drawing which shows the other structural example of the principal part of the wavelength swept light source of the 3rd Embodiment of this invention.

以下、本発明に係る波長掃引光源の実施形態について、図面を用いて説明する。   Hereinafter, embodiments of a wavelength swept light source according to the present invention will be described with reference to the drawings.

(第1の実施形態)
以下、本発明に係る波長掃引光源の実施形態について図面を用いて説明する。図1は波長掃引光源20の斜視図、図2は平面図である。
(First embodiment)
Hereinafter, embodiments of a wavelength swept light source according to the present invention will be described with reference to the drawings. 1 is a perspective view of the wavelength swept light source 20, and FIG. 2 is a plan view.

即ち、波長掃引光源20は、上面が互いに平行な高段部21aと低段部21bとを有する基台21と、高段部21a上に固定され、2つの端面22a、22bのうち一方の端面22aが他方の端面に比べ低反射率面である半導体発光素子22と、半導体発光素子22の低反射率面22aからの出射光を平行光に変換する高段部21a上に固定されたコリメートレンズ23と、光を回折するための回折溝25bが平行に形成されている回折面25aを有し、コリメートレンズ23から出射された光が、回折溝25bと直交し且つ回折面25aに対して非直交となる所定の入射角αで所定入射位置Gに入射される状態で基台21の低段部21bに垂直に固定された回折格子25と、を備える。   That is, the wavelength swept light source 20 is fixed on the base 21 having a high step portion 21a and a low step portion 21b whose upper surfaces are parallel to each other, and one end surface of the two end surfaces 22a and 22b. The semiconductor light emitting element 22 in which 22a is a low reflectance surface compared with the other end surface, and the collimating lens fixed on the high step part 21a which converts the emitted light from the low reflectance surface 22a of the semiconductor light emitting element 22 into parallel light 23 and a diffractive surface 25a in which a diffraction groove 25b for diffracting light is formed in parallel, and the light emitted from the collimating lens 23 is orthogonal to the diffraction groove 25b and non-diffracting with respect to the diffractive surface 25a. And a diffraction grating 25 that is vertically fixed to the lower step portion 21b of the base 21 while being incident on the predetermined incident position G at a predetermined incident angle α that is orthogonal.

また、波長掃引光源20は、回折格子25の回折面25aと対向する反射板32を有し、回折格子25の回折溝25bと平行な特定位置の軸を中心にして回折面25aと直交する平面内で回動可能に形成され、コリメートレンズ23から出射されて回折格子25の回折面25aに入射した光に対する回折光のうち反射板32の反射面32aに直交する光路に沿った光を反射させて逆光路で回折格子25に戻し、該戻された光を入射光路と同じ光路でコリメートレンズ23を介して半導体発光素子22へ戻すMEMS(Micro Electro Mechanical Systems)構造の回動ミラー30と、コリメートレンズ23から出射された平行光を高段部21aの上面に垂直な反射面240aで受け、その一部を回折格子25の回折面25aに向けて反射させるとともに、回折格子25から逆光路で戻された光の一部を半導体発光素子22の低反射率面22aに向けて反射させ、残りの少なくとも一部を透過させる固定ミラーとしてのハーフミラー240と、を備える。   Further, the wavelength swept light source 20 has a reflecting plate 32 facing the diffraction surface 25a of the diffraction grating 25, and is a plane orthogonal to the diffraction surface 25a with the axis at a specific position parallel to the diffraction groove 25b of the diffraction grating 25 as the center. Of the diffracted light with respect to the light emitted from the collimating lens 23 and incident on the diffraction surface 25a of the diffraction grating 25, and reflects light along an optical path orthogonal to the reflection surface 32a of the reflection plate 32. A rotating mirror 30 having a MEMS (Micro Electro Mechanical Systems) structure for returning the returned light to the diffraction grating 25 in the reverse optical path and returning the returned light to the semiconductor light emitting element 22 through the collimating lens 23 in the same optical path as the incident optical path; The parallel light emitted from the lens 23 is received by the reflection surface 240a perpendicular to the upper surface of the high step portion 21a, and a part thereof is reflected toward the diffraction surface 25a of the diffraction grating 25, and A half mirror 240 as a fixed mirror that reflects part of the light returned from the folding grating 25 through the reverse optical path toward the low reflectance surface 22a of the semiconductor light emitting element 22 and transmits at least part of the remaining part. .

この回折格子25の回折面25aに対する反射面32aの角度を所定角度範囲で周期的に変化させることで、半導体発光素子22からコリメートレンズ23、ハーフミラー240の反射面240aおよび回折格子25の回折面25aを経て回動ミラー30の反射面32aに至る共振器長が連続的且つ周期的に変化し、これによって波長掃引光源20から出射される光の波長も連続的且つ周期的に変化する。   By periodically changing the angle of the reflection surface 32a with respect to the diffraction surface 25a of the diffraction grating 25 within a predetermined angle range, the semiconductor light emitting element 22, the collimating lens 23, the reflection surface 240a of the half mirror 240, and the diffraction surface of the diffraction grating 25 are obtained. The resonator length reaching the reflecting surface 32a of the rotating mirror 30 via 25a changes continuously and periodically, and the wavelength of the light emitted from the wavelength sweep light source 20 also changes continuously and periodically.

さらに、波長掃引光源20は、回折格子25から逆光路で戻されてハーフミラー240を透過した光を回動ミラー30に対して非交差となる方向に反射させることにより、第1の出力光L1を外部に出射する第1の出力ミラー241を備える。 Furthermore, the wavelength swept light source 20 reflects the light returned from the diffraction grating 25 through the reverse optical path and transmitted through the half mirror 240 in a direction that does not intersect the rotating mirror 30, whereby the first output light L A first output mirror 241 for emitting 1 to the outside is provided.

なお、ハーフミラー240と第1の出力ミラー241との間には、ハーフミラー240からの出射光を第1の出力ミラー241に向けて透過させるとともに、該出射光を回動ミラー30に対して非交差となる方向に反射させることにより、第2の出力光L2および第Nの出力光LN(N≧3)(図示せず)を外部に出射する第2の出力ミラー242および第Nの出力ミラー(N≧3)(図示せず)が配置されていてもよい。 In addition, between the half mirror 240 and the first output mirror 241, the emitted light from the half mirror 240 is transmitted toward the first output mirror 241, and the emitted light is transmitted to the rotating mirror 30. The second output mirror 242 and the Nth output mirror 242 that emit the second output light L 2 and the Nth output light L N (N ≧ 3) (not shown) to the outside by reflecting in the non-intersecting direction. Output mirrors (N ≧ 3) (not shown) may be arranged.

なお、ハーフミラー240、第2の出力ミラー242および第Nの出力ミラー(N≧3)の透過率は、半導体発光素子22の端面22bからの出力光LA、第1の出力光L1および第nの出力光Ln(n≧2)のそれぞれについて所望の光強度を得られる値とすればよい。 Incidentally, a half mirror 240, the transmittance of the output mirror (N ≧ 3) of the second output mirror 242 and the N, the output light L A from the end face 22b of the semiconductor light emitting element 22, the first output light L 1 and it may be the value obtained the desired light intensity for each of the output light L n of the n (n ≧ 2).

なお、ハーフミラー240から出射され第1の出力ミラー241、第2の出力ミラー242または第Nの出力ミラー(N≧3)で反射される光の光路は、波長掃引光源20の共振器の光路に含まれない。従って、ハーフミラー240から第1の出力ミラー241、第2の出力ミラー242または第Nの出力ミラー(N≧3)に至る光路長は共振器長と無関係であるため、これらのミラーが他の光学部品と接触しない限り各光路長は任意の長さであってよい。   The optical path of the light emitted from the half mirror 240 and reflected by the first output mirror 241, the second output mirror 242, or the Nth output mirror (N ≧ 3) is the optical path of the resonator of the wavelength sweep light source 20. Not included. Accordingly, since the optical path length from the half mirror 240 to the first output mirror 241, the second output mirror 242, or the Nth output mirror (N ≧ 3) is independent of the resonator length, Each optical path length may be an arbitrary length as long as it does not contact the optical component.

なお、回動ミラー30は図示しない回動ミラーホルダに固定され、該回動ミラーホルダは基台21の低段部21b上に固定されている。半導体発光素子22は図示しないチップキャリアに固定され、該チップキャリアが基台21の高段部21a上に固定されている。また、コリメートレンズ23、ハーフミラー240、第1の出力ミラー241、第2の出力ミラー242および第Nの出力ミラー(N≧3)は基台21の高段部21a上に、回折格子25は基台21の低段部21b上にそれぞれ半田、溶接もしくは接着剤で固定されている。ただし、いずれの場合でも別部材(例えば、レンズの場合であればレンズホルダ)を介して間接的に基台21に固定してもよい。   The rotating mirror 30 is fixed to a rotating mirror holder (not shown), and the rotating mirror holder is fixed on the lower step portion 21 b of the base 21. The semiconductor light emitting element 22 is fixed to a chip carrier (not shown), and the chip carrier is fixed on the high step portion 21 a of the base 21. The collimating lens 23, the half mirror 240, the first output mirror 241, the second output mirror 242, and the Nth output mirror (N ≧ 3) are on the high step portion 21a of the base 21, and the diffraction grating 25 is It is fixed on the lower step portion 21b of the base 21 with solder, welding or adhesive. However, in any case, it may be indirectly fixed to the base 21 via another member (for example, a lens holder in the case of a lens).

半導体発光素子22は、図3の光の伝搬方向に沿って切断した断面図に示すように、例えば、n型InP(インジウム・リン)からなるn型半導体基板101の上に、InGaAsP(インジウム・ガリウム・砒素・リン)からなる活性層102(なお、ここで言う活性層102は、MQWとそれを挟むSCH層を含む)、p型InPクラッド層103、InGaAs(インジウム・ガリウム・砒素)からなるコンタクト層104が順次積層されて構成される半導体レーザである。   As shown in the cross-sectional view taken along the light propagation direction in FIG. 3, the semiconductor light emitting element 22 is formed, for example, on an n-type semiconductor substrate 101 made of n-type InP (indium / phosphorus) on an InGaAsP (indium / phosphorus). An active layer 102 made of gallium, arsenic, and phosphorus (here, the active layer 102 includes MQW and an SCH layer sandwiching it), a p-type InP cladding layer 103, and InGaAs (indium gallium arsenide). In this semiconductor laser, contact layers 104 are sequentially stacked.

さらに、n型半導体基板101の下面には下部電極105、コンタクト層104上には上部電極106が蒸着形成されている。また、既に述べたように2つの端面22a、22bのうちの一方の端面22aの反射率が他方の端面22bの反射率より低く形成されている。   Further, a lower electrode 105 is formed on the lower surface of the n-type semiconductor substrate 101, and an upper electrode 106 is formed on the contact layer 104 by vapor deposition. Further, as already described, the reflectance of one end surface 22a of the two end surfaces 22a, 22b is formed lower than the reflectance of the other end surface 22b.

回動ミラー30は、図4の分解斜視図に示すように、導電性を有する基板(例えばシリコン基板)に対するエッチング処理等によって形成され、上板31a、下板31b、横板31c、31dで横長矩形枠状に形成されたフレーム31と、フレーム31の内側に同心状に配置され、少なくとも一面側に光を反射させるための反射面32aが形成された横長矩形の反射板32と、フレーム31の上板31a、下板31bの互いに対向する内縁中央から反射板32の上縁中央および下縁中央まで上下に一直線上に並ぶようにそれぞれ延びてフレーム31の上板31a、下板31bと反射板32との間を連結し、捩れ変形して反射板32を回動させる一対の連結部33、34と、を有する。   As shown in the exploded perspective view of FIG. 4, the rotating mirror 30 is formed by etching or the like on a conductive substrate (for example, a silicon substrate), and is horizontally long by an upper plate 31a, a lower plate 31b, and horizontal plates 31c and 31d. A frame 31 formed in a rectangular frame shape, a horizontally long rectangular reflector 32 arranged concentrically on the inner side of the frame 31 and having a reflecting surface 32a for reflecting light on at least one surface side, The upper plate 31a, the lower plate 31b, and the reflecting plate 31a, the lower plate 31b, and the reflecting plate 32 extend in a straight line from the center of the inner edges of the upper plate 31a and the lower plate 31b facing each other to the center of the upper and lower edges of the reflecting plate 32. And a pair of connecting portions 33 and 34 for rotating the reflecting plate 32 by being twisted and deformed.

反射板32の反射面32aとしては、例えば素材表面に対する鏡面仕上げ、高い反射率を示す金属膜の蒸着、あるいは誘電体多層膜で形成することができる。また、回動ミラー30がレーザ光に対して高い反射率を示す材質である場合には、反射膜や反射シートを設けなくても、その素材表面を反射面とすることができる。   The reflecting surface 32a of the reflecting plate 32 can be formed of, for example, a mirror finish on the material surface, vapor deposition of a metal film exhibiting high reflectivity, or a dielectric multilayer film. Further, when the rotating mirror 30 is made of a material exhibiting a high reflectance with respect to the laser light, the surface of the material can be used as a reflecting surface without providing a reflecting film or a reflecting sheet.

ただし、回動ミラー30が導電性を持たない場合には、静電駆動力確保のため、ミラー材として導電性の金属膜を蒸着する必要がある。   However, when the rotating mirror 30 does not have conductivity, it is necessary to deposit a conductive metal film as a mirror material in order to ensure electrostatic driving force.

連結部33、34の幅および長さは、連結部33、34自体がその長方向に沿って捩じれ変形でき、その変形に対して自ら元の状態に戻るための復帰力を生じるように設定されている。   The widths and lengths of the connecting portions 33 and 34 are set so that the connecting portions 33 and 34 themselves can be twisted and deformed along the longitudinal direction, and a restoring force is generated to return to the original state by the deformation. ing.

また、回動ミラー30のフレーム31の横板31c、31dの一方(ここでは横板31c)の両面には、反射板32に静電的に外力を与えるための電極板35、36がそれぞれ絶縁性を有するスペーサ37を介して取り付けられている。電極板35、36は、反射板32の一端側(ここでは左端側)の両面にスペーサ37の厚み分の隙間を開けた状態でオーバラップしている。なお、ここではスペーサ37を縦長矩形状にしているが、フレーム31全体の補強のために、スペーサ37をフレーム31と重なり合う矩形枠状に形成してもよい。   Further, electrode plates 35 and 36 for applying an external force to the reflecting plate 32 are insulated on both surfaces of one of the horizontal plates 31c and 31d (here, the horizontal plate 31c) of the frame 31 of the rotating mirror 30. It attaches via the spacer 37 which has property. The electrode plates 35 and 36 are overlapped with a gap corresponding to the thickness of the spacer 37 formed on both surfaces of one end side (here, the left end side) of the reflection plate 32. Here, the spacer 37 has a vertically long rectangular shape, but the spacer 37 may be formed in a rectangular frame shape that overlaps the frame 31 in order to reinforce the entire frame 31.

この回動ミラー30は、反射板32の回動中心位置(連結部33、34の中心を結ぶ線)が、回折格子25の回折面25aを延長した面上で且つ回折溝25bと平行となる状態で、基台21上に固定されている。   In the rotation mirror 30, the rotation center position of the reflection plate 32 (a line connecting the centers of the coupling portions 33 and 34) is on a surface extending from the diffraction surface 25a of the diffraction grating 25 and parallel to the diffraction groove 25b. In the state, it is fixed on the base 21.

なお、回動ミラー30は、電極板35、36およびスペーサ37を含めて上述のようにシリコン基板のエッチング処理等で形成されるが、その製造方法は任意である。   The rotating mirror 30 includes the electrode plates 35 and 36 and the spacer 37, and is formed by etching the silicon substrate as described above. However, the manufacturing method is arbitrary.

例えば、単層基板で回動ミラー30のフレーム31、反射板32および連結部33、34をエッチング形成し、別の基板でスペーサ37と、電極板35、36を形成して、これらを貼り合わせて構成する方法、あるいは、SOI基板等の3層基板を用い、その上層基板に、回動ミラー30のフレーム31、反射板32、連結部33、34をエッチング形成し、その下層基板にスペーサ37をエッチング形成し、別の工程で製造された電極板35を貼り付けて一方の電極を形成すること等、種々の方法で製造可能である。   For example, the frame 31, the reflecting plate 32, and the connecting portions 33 and 34 of the rotating mirror 30 are formed by etching on a single layer substrate, and the spacer 37 and the electrode plates 35 and 36 are formed on another substrate, and these are bonded together. Or a three-layer substrate such as an SOI substrate, the frame 31 of the rotating mirror 30, the reflection plate 32, and the connecting portions 33 and 34 are etched on the upper layer substrate, and the spacer 37 is formed on the lower layer substrate. Can be manufactured by various methods such as forming one electrode by attaching the electrode plate 35 manufactured in another process.

さらに、回動ミラー30は、図2に示すように、反射板32に外力を与え、一対の連結部33、34の中心を結ぶ線である上記回動中心位置Oを中心に反射板32を所定角度範囲で往復回動させる回動駆動手段としてのミラー駆動装置40を有する。   Further, as shown in FIG. 2, the rotating mirror 30 applies an external force to the reflecting plate 32, and the reflecting plate 32 is centered on the rotating center position O that is a line connecting the centers of the pair of connecting portions 33 and 34. It has a mirror driving device 40 as a rotation driving means for reciprocating rotation within a predetermined angle range.

ミラー駆動装置40は、回動ミラー30のフレーム31を基準電位として2つの電極板35、36に対して、例えば図5(a)、(b)に示すような位相が180度ずれた駆動信号V1、V2を印加して、電極板35、36と反射板32の端部との間に静電的な吸引力を交互に生じさせ、反射板32を往復回動させる。   The mirror driving device 40 uses a frame 31 of the rotating mirror 30 as a reference potential, for example, a driving signal whose phase is shifted by 180 degrees with respect to the two electrode plates 35 and 36 as shown in FIGS. By applying V1 and V2, an electrostatic attractive force is alternately generated between the electrode plates 35 and 36 and the end of the reflecting plate 32, and the reflecting plate 32 is reciprocally rotated.

この駆動信号V1、V2の周波数は、回動ミラー30の反射板32の形状、重さおよび連結部33、34の捩れバネ定数等によって決まる反射板32の固有振動数に等しくなるように設定されているので、少ない駆動電力で反射板32を大きな角度で往復回動させることができる。   The frequencies of the drive signals V1 and V2 are set to be equal to the natural frequency of the reflector 32 determined by the shape and weight of the reflector 32 of the rotating mirror 30 and the torsion spring constant of the coupling portions 33 and 34. Therefore, the reflecting plate 32 can be reciprocated at a large angle with a small driving power.

この反射板32の往復回動により、波長掃引光源20内の実効光路長、および、回折格子25の回折面25aに対する反射板32の反射面32aの角度が変化して、半導体発光素子22から出力されるレーザ光の波長が図5(c)に示すように連続的且つ周期的に変化する。   By the reciprocating rotation of the reflecting plate 32, the effective optical path length in the wavelength swept light source 20 and the angle of the reflecting surface 32 a of the reflecting plate 32 with respect to the diffracting surface 25 a of the diffraction grating 25 are changed, and output from the semiconductor light emitting element 22. The wavelength of the emitted laser light changes continuously and periodically as shown in FIG.

ただし、この波長掃引光源20のように、一面側に反射面32aが形成されている反射板32自体を回動させるという単純化された構造の場合、その回動中心は、連結部33、34の中心を結ぶ線上、即ち、反射板32の内部にあって反射面32aを延長した面上にはなく、上記の従来のリトマン方式の条件を満たさない。   However, in the case of a simplified structure in which the reflecting plate 32 itself having the reflecting surface 32a formed on one surface side is rotated like the wavelength swept light source 20, the rotation center is the connecting portions 33, 34. Is not on the line connecting the centers of the two, i.e., inside the reflecting plate 32 and on the surface extending the reflecting surface 32a, and does not satisfy the conditions of the conventional Litman method.

そこで、この実施形態の波長掃引光源20では、特許第3069643号明細書に開示された技術を適用して波長を連続的に可変している。   Therefore, in the wavelength swept light source 20 of this embodiment, the wavelength is continuously varied by applying the technique disclosed in Japanese Patent No. 3069643.

即ち、波長掃引光源20は、図6の点線で示すようにハーフミラー240、第1の出力ミラー241、第2の出力ミラー242および第Nの出力ミラー(N≧3)(図示せず)を用いずにレーザ光が反射板32を透過するとした仮想的な配置において、回折格子25の回折面25aを延長した平面をH1、半導体発光素子22の内部の屈折率を考慮した実効共振端面22cを延長した平面をH2、反射板32の反射面32aを延長した平面をH3とし、反射板32の回動中心位置Oと回折格子25との間の位置で平面H1と平面H3とが交わる場合、回動中心位置Oから回折格子25の所定入射位置Gまでの距離をr、所定入射位置Gから半導体発光素子22の実効共振端面22cまでの実効光路長をL1、回動中心位置Oから平面H3までの距離をL2、回折格子25に対する光の入射角をαとするとき、下の式が成り立つようにすることで、モードホップを発生することなく、シングルモードで波長を連続的に可変できるというものである。
r=(L1−L2)/sin α ・・・・・・(1)
That is, the wavelength swept light source 20 includes a half mirror 240, a first output mirror 241, a second output mirror 242, and an Nth output mirror (N ≧ 3) (not shown) as shown by the dotted line in FIG. In a hypothetical arrangement in which laser light is transmitted through the reflector 32 without being used, a plane obtained by extending the diffraction surface 25a of the diffraction grating 25 is H1, and an effective resonance end surface 22c considering the refractive index inside the semiconductor light emitting element 22 is used. When the extended plane is H2, the plane extending the reflection surface 32a of the reflection plate 32 is H3, and the plane H1 and the plane H3 intersect at a position between the rotation center position O of the reflection plate 32 and the diffraction grating 25, The distance from the rotation center position O to the predetermined incident position G of the diffraction grating 25 is r, the effective optical path length from the predetermined incident position G to the effective resonance end face 22c of the semiconductor light emitting element 22 is L1, and the rotation center position O to the plane H3. Until When the distance is L2 and the incident angle of light with respect to the diffraction grating 25 is α, the following equation is satisfied, so that the wavelength can be continuously varied in a single mode without generating a mode hop. is there.
r = (L1-L2) / sin α (1)

ただし、本実施形態のように半導体発光素子22から回折格子25に至る光路をハーフミラー240を介して折り曲げた場合、所定入射位置Gから半導体発光素子22の実効共振端面22cまでの実効光路長L1は、半導体発光素子22の実効共振端面22cとハーフミラー240までの光路長L3と、ハーフミラー240から所定入射位置Gまでの光路長L4との和で表わされる(L1=L3+L4)。   However, when the optical path from the semiconductor light emitting element 22 to the diffraction grating 25 is bent via the half mirror 240 as in this embodiment, the effective optical path length L1 from the predetermined incident position G to the effective resonance end face 22c of the semiconductor light emitting element 22 is obtained. Is represented by the sum of the optical path length L3 from the effective resonance end face 22c of the semiconductor light emitting element 22 to the half mirror 240 and the optical path length L4 from the half mirror 240 to the predetermined incident position G (L1 = L3 + L4).

よって、次の式が成り立つように各部を配置することで、図5(c)に示したようにモードホップのない連続波長掃引が可能となる。
r=(L3+L4−L2)/sin α ・・・・・・(2)
Therefore, by arranging each part so that the following equation holds, continuous wavelength sweep without mode hopping can be performed as shown in FIG.
r = (L3 + L4-L2) / sin α (2)

即ち、波長掃引光源20は、ハーフミラー240を介して回折格子25に光を入射して、半導体発光素子22、コリメートレンズ23、ハーフミラー240、第1の出力ミラー241、第2の出力ミラー242、第Nの出力ミラー(N≧3)および回折格子25を反射板32の一面側に配置させ、反射板32と光路とを交差させない構成であるため、反射板32に光通過用の穴などを設ける必要がない。このため、剛性低下による変形が起こらず、薄い板であっても安定で再現性の高い高速な波長掃引を行うことができる。   That is, the wavelength swept light source 20 makes light incident on the diffraction grating 25 through the half mirror 240, and the semiconductor light emitting element 22, the collimating lens 23, the half mirror 240, the first output mirror 241, and the second output mirror 242. Since the Nth output mirror (N ≧ 3) and the diffraction grating 25 are arranged on one surface side of the reflection plate 32 so that the reflection plate 32 and the optical path do not cross each other, the reflection plate 32 has a hole for passing light, etc. There is no need to provide. For this reason, deformation due to a decrease in rigidity does not occur, and even a thin plate can perform high-speed wavelength sweeping that is stable and highly reproducible.

このように本実施形態の波長掃引光源20では、反射板32の反射面32aを延長した平面と回折面25aを回動中心位置O方向に延長した面で挟まれた空間内で、且つ回動中心位置Oと回折面25aの所定入射位置Gとの間にハーフミラー240を配置し、回動ミラー30の反射板32の反射面32aを延長した面で区切られてなる2つの空間のうち、回折格子25が含まれる方の空間に半導体発光素子22、コリメートレンズ23、ハーフミラー240、第1の出力ミラー241、第2の出力ミラー242および第Nの出力ミラー(N≧3)を配置し、半導体発光素子22からコリメートレンズ23を介してハーフミラー240に光を入射して、その反射光を回折格子25の回折面25aの所定入射位置Gに入射している。   Thus, in the wavelength swept light source 20 of the present embodiment, the rotation is performed in a space sandwiched between a plane obtained by extending the reflection surface 32a of the reflection plate 32 and a surface obtained by extending the diffraction surface 25a in the rotation center position O direction. A half mirror 240 is disposed between the center position O and the predetermined incident position G of the diffractive surface 25a, and two spaces separated by a surface obtained by extending the reflecting surface 32a of the reflecting plate 32 of the rotating mirror 30 are provided. The semiconductor light emitting element 22, the collimating lens 23, the half mirror 240, the first output mirror 241, the second output mirror 242, and the Nth output mirror (N ≧ 3) are arranged in the space including the diffraction grating 25. Light is incident on the half mirror 240 from the semiconductor light emitting element 22 through the collimator lens 23, and the reflected light is incident on a predetermined incident position G of the diffraction surface 25a of the diffraction grating 25.

このため、光路とは無関係に、反射面32aを有する反射板32自体を往復回動させるという極めて単純な構造で回動ミラーを構成することができ、高速で精度の高い波長可変が行える。   Therefore, regardless of the optical path, the rotating mirror can be configured with a very simple structure in which the reflecting plate 32 itself having the reflecting surface 32a is reciprocally rotated, and the wavelength can be tuned at high speed and with high accuracy.

以上のように構成された本実施形態の波長掃引光源20は、従来の光分波器に代わる光分波手段としてハーフミラー240、第1の出力ミラー241、第2の出力ミラー242および第Nの出力ミラー(N≧3)を備えるため、共振器長が非常に短い微小な構造であっても、式(2)を満たすモードホップフリーの波長掃引が可能になるだけでなく、他の光学部品に遮られることなく複数の出力光(半導体発光素子22の端面22bからの出力光LA、回折格子25の0次回折光としての出力光LB、第1の出力ミラー241からの第1の出力光L1、第2の出力ミラー242からの第2の出力光L2および第Nの出力ミラー(N≧3)からの第Nの出力光LN)を外部に出射することができる。 The wavelength swept light source 20 of the present embodiment configured as described above has a half mirror 240, a first output mirror 241, a second output mirror 242, and an Nth as an optical demultiplexing means instead of the conventional optical demultiplexer. Since the output mirror (N ≧ 3) is provided, not only can the mode hop-free wavelength sweep satisfying Equation (2) be achieved even with a very small resonator length, but also other optical components. A plurality of output lights (the output light L A from the end face 22 b of the semiconductor light emitting element 22, the output light L B as the 0th-order diffracted light of the diffraction grating 25, and the first output from the first output mirror 241 without being blocked by the components) The output light L 1 , the second output light L 2 from the second output mirror 242, and the Nth output light L N from the Nth output mirror (N ≧ 3) can be emitted to the outside.

また、本実施形態の波長掃引光源20では、全ての光学部品が固定されているため、外部からの振動などの影響を受けにくく、さらに従来の光源のような複雑なモードホップ抑止の制御手段を用いなくても非常に安定したモードホップフリーの波長掃引を実現することができる。   Further, in the wavelength swept light source 20 of the present embodiment, since all the optical components are fixed, it is not easily affected by vibrations from the outside, and moreover, a complicated mode hop suppression control means like a conventional light source is provided. Even if it is not used, a very stable mode hop-free wavelength sweep can be realized.

(第2の実施形態)
本発明に係る波長掃引光源の第2の実施形態について図面を用いて説明する。第1の実施形態と同様の構成については説明を省略する。
(Second Embodiment)
A second embodiment of the wavelength swept light source according to the present invention will be described with reference to the drawings. The description of the same configuration as that of the first embodiment is omitted.

本実施形態の波長掃引光源50は、図7に示すように、ハーフミラー240および第1の出力ミラー241が一体的に形成されてなる反射部材24を備える。このような反射部材24は、例えば互いに平行な2つの端面を有する光学ガラスを準備し、それぞれの端面に誘電体多層膜のコーティングまたはミラーコーティングを施すことにより実現できる。また、反射部材24の内部にさらに第nの出力ミラー(n≧2)(図示せず)が形成されていてもよい。   As shown in FIG. 7, the wavelength swept light source 50 of the present embodiment includes a reflecting member 24 in which a half mirror 240 and a first output mirror 241 are integrally formed. Such a reflecting member 24 can be realized, for example, by preparing optical glass having two end faces parallel to each other and applying a dielectric multilayer coating or mirror coating to each end face. Further, an nth output mirror (n ≧ 2) (not shown) may be further formed inside the reflecting member 24.

なお、ハーフミラー240から出射され反射部材24の内部を透過して第1の出力ミラー241で反射される光の光路は波長掃引光源50の共振器の光路に含まれない。従って、従来の光分波器と異なり、反射部材24の光導波方向の長さは共振器長と無関係であるため、反射部材24が他の光学部品と接触しない限り任意の長さであってよい。   The optical path of light emitted from the half mirror 240 and transmitted through the reflecting member 24 and reflected by the first output mirror 241 is not included in the optical path of the resonator of the wavelength sweep light source 50. Therefore, unlike the conventional optical demultiplexer, the length of the reflecting member 24 in the optical waveguide direction is independent of the resonator length, so that the length of the reflecting member 24 is arbitrary as long as the reflecting member 24 does not contact other optical components. Good.

以上のように構成された本実施形態の波長掃引光源は、ハーフミラー240および第1の出力ミラー241が一体的に形成されているため、製造工程における光学部品間の光軸合わせが簡易となる。   In the wavelength swept light source of the present embodiment configured as described above, since the half mirror 240 and the first output mirror 241 are integrally formed, the optical axis alignment between the optical components in the manufacturing process is simplified. .

(第3の実施形態)
本発明に係る波長掃引光源の第3の実施形態について図面を用いて説明する。第1および第2の実施形態と同様の構成については説明を省略する。
(Third embodiment)
A third embodiment of the wavelength swept light source according to the present invention will be described with reference to the drawings. The description of the same configuration as in the first and second embodiments is omitted.

第1および第2の実施形態では、ハーフミラー240の反射面240aが回折格子25の回折溝25bと平行で、半導体発光素子22から、コリメートレンズ23、ハーフミラー240、回折格子25を経て反射板32に至る光路が同一平面上となるように構成されていたが、これは本発明を限定するものではなく、半導体発光素子22とコリメートレンズ23は、反射板32の反射面32aを延長した平面で隔成される2つの空間のうち回折格子25が含まれる方の空間であれば任意の位置に配置することができ、その位置に合わせてハーフミラー240の反射面240aの向きを設定すればよい。   In the first and second embodiments, the reflecting surface 240 a of the half mirror 240 is parallel to the diffraction groove 25 b of the diffraction grating 25, and is reflected from the semiconductor light emitting element 22 through the collimator lens 23, the half mirror 240, and the diffraction grating 25. However, this is not intended to limit the present invention, and the semiconductor light emitting element 22 and the collimating lens 23 are planes obtained by extending the reflecting surface 32a of the reflecting plate 32. As long as the space including the diffraction grating 25 is included in the two spaces separated by 1, it can be arranged at an arbitrary position, and the direction of the reflection surface 240 a of the half mirror 240 is set according to the position. Good.

例えば、図8およびそのA−A線断面図である図9に示すように、半導体発光素子22とコリメートレンズ23を、その光軸が回折格子25の回折溝25bと平行となるよう基台21に対して上下に並ぶように配置し、コリメートレンズ23からの光を、基台21の上面に対して45度の角度をなすハーフミラー240を有する反射部材44で受けて、回折格子25の回折面25aに入射してもよい。   For example, as shown in FIG. 8 and FIG. 9 which is a sectional view taken along line AA, the semiconductor light emitting element 22 and the collimating lens 23 are arranged so that the optical axis thereof is parallel to the diffraction groove 25b of the diffraction grating 25. The light from the collimating lens 23 is received by a reflecting member 44 having a half mirror 240 that forms an angle of 45 degrees with respect to the upper surface of the base 21, and is diffracted by the diffraction grating 25. The light may enter the surface 25a.

反射部材44は、図9に示すように、ハーフミラー240と第1の出力ミラー241とが互いに90度の角度をなして交わるように一体的に形成されてなる。   As shown in FIG. 9, the reflecting member 44 is integrally formed so that the half mirror 240 and the first output mirror 241 intersect with each other at an angle of 90 degrees.

なお、半導体発光素子22、コリメートレンズ23および反射部材44は基台21上に固定された支持部材41に支持されている。第1の実施形態と同様に、半導体発光素子22は図示しないチップキャリアに固定され、該チップキャリアが支持部材41の側面に固定されている。また、コリメートレンズ23および反射部材44は支持部材41の側面に、回折格子25は基台21上にそれぞれ半田、溶接もしくは接着剤で固定されている。ただし、いずれの場合でも別部材(例えば、レンズの場合であればレンズホルダ)を介して間接的に支持部材41または基台21に固定してもよい。   The semiconductor light emitting element 22, the collimating lens 23, and the reflecting member 44 are supported by a support member 41 fixed on the base 21. Similar to the first embodiment, the semiconductor light emitting element 22 is fixed to a chip carrier (not shown), and the chip carrier is fixed to the side surface of the support member 41. The collimating lens 23 and the reflecting member 44 are fixed to the side surface of the support member 41, and the diffraction grating 25 is fixed to the base 21 by soldering, welding, or adhesive. However, in any case, the support member 41 or the base 21 may be indirectly fixed via another member (for example, a lens holder in the case of a lens).

支持部材41および基台21には第1の出力ミラー241からの第1の出力光L1を外部に出力するための貫通孔41a、21cがそれぞれ形成されている。 The support member 41 and the base 21 are formed with through holes 41 a and 21 c for outputting the first output light L 1 from the first output mirror 241 to the outside, respectively.

以上のように構成された本実施形態の波長掃引光源60は、従来の光分波器に代えてハーフミラー240および第1の出力ミラー241を有する反射部材44を備えるため、他の光学部品に遮られることなく計3個の出力光(半導体発光素子22の端面22bからの出力光LA、回折格子25の0次回折光としての出力光LB、第1の出力ミラー241からの第1の出力光L1)を基台21に垂直な2方向、基台21に平行な1方向へ出力することができる。 Since the wavelength swept light source 60 of the present embodiment configured as described above includes the reflecting member 44 having the half mirror 240 and the first output mirror 241 instead of the conventional optical demultiplexer, other optical components are used. A total of three output lights (output light L A from the end face 22 b of the semiconductor light emitting element 22, output light L B as the 0th-order diffracted light of the diffraction grating 25, and first light from the first output mirror 241 without being blocked) The output light L 1 ) can be output in two directions perpendicular to the base 21 and in one direction parallel to the base 21.

また、図10の断面図に示すように、本発明の波長掃引光源は、反射ミラー240を有する反射部材54を備え、回折格子25から逆光路で戻されてハーフミラー240を透過した光L0を外部に出力するための貫通孔41bが支持部材41に形成されたものであってもよい。このように構成された波長掃引光源は、他の光学部品に遮られることなく計3個の出力光(半導体発光素子22の端面22bからの出力光LA、回折格子25の0次回折光としての出力光LB、ハーフミラー240からの透過光L0)を基台21に垂直な1方向、基台21に平行な2方向へ出力することができる。また、透過光L0の進行方向、つまり透過光L0の取り出し方向は、必要に応じて反射板などで任意の方向に変えることもできる。 As shown in the sectional view of FIG. 10, the wavelength swept light source of the present invention includes the reflecting member 54 having the reflecting mirror 240, and returns the light L 0 that is returned from the diffraction grating 25 through the reverse optical path and transmitted through the half mirror 240. May be formed in the support member 41 through the through hole 41b. The wavelength-swept light source configured in this way has a total of three output lights (output light L A from the end face 22b of the semiconductor light emitting element 22 and zero-order diffracted light of the diffraction grating 25 without being blocked by other optical components). The output light L B and the transmitted light L 0 from the half mirror 240 can be output in one direction perpendicular to the base 21 and in two directions parallel to the base 21. Also, the traveling direction of the transmitted light L 0, i.e. the take-out direction of the transmitted light L 0 is may be varied in any direction such as a reflective plate if necessary.

20、50、60 波長掃引光源
21 基台
21a 高段部
21b 低段部
22 半導体発光素子
22a 端面(低反射率面)
22b 端面
22c 実効共振端面
23 コリメートレンズ
24、44、54 反射部材
25 回折格子
25a 回折面
25b 回折溝
30 回動ミラー
31 フレーム
32 反射板
32a 反射面
33、34 連結部
40 ミラー駆動装置(回動駆動手段)
240 ハーフミラー(固定ミラー)
240a 反射面
241 第1の出力ミラー
242 第2の出力ミラー
20, 50, 60 Wavelength swept light source 21 Base 21a High step portion 21b Low step portion 22 Semiconductor light emitting element 22a End face (low reflectivity surface)
22b End face 22c Effective resonance end face 23 Collimating lens 24, 44, 54 Reflective member 25 Diffraction grating 25a Diffraction face 25b Diffraction groove 30 Rotating mirror 31 Frame 32 Reflecting plate 32a Reflecting face 33, 34 Connecting portion 40 Mirror drive device (rotation drive) means)
240 half mirror (fixed mirror)
240a Reflecting surface 241 First output mirror 242 Second output mirror

Claims (5)

基台(21)と、
前記基台上に固定され、2つの端面(22a、22b)のうち一方の端面が他方の端面に比べ低反射率面である半導体発光素子(22)と、
前記基台上に固定され、前記半導体発光素子の前記低反射率面からの出射光を平行光に変換するコリメートレンズ(23)と、
光を回折するための回折溝(25b)が平行に形成されている回折面(25a)を有し、前記コリメートレンズから出射された光が、前記回折溝と直交し且つ前記回折面に対して非直交となる所定入射角で所定入射位置に入射される状態で前記基台上に固定された回折格子(25)と、
前記基台上に固定され、前記回折格子の前記回折面と対向する反射板(32)を有し、前記回折格子の前記回折溝と平行な特定位置の軸を中心にして前記回折面と直交する平面内で回動可能に形成され、前記コリメートレンズから出射されて前記回折格子の前記回折面に入射した光に対する回折光のうち前記反射板の反射面(32a)に直交する光路に沿った光を反射させて逆光路で前記回折格子に戻し、該戻された光を入射光路と同じ光路で前記コリメートレンズを介して前記半導体発光素子へ戻す回動ミラー(30)と、を備え、
前記回動ミラーの前記反射面の角度変化に応じて前記半導体発光素子から前記コリメートレンズおよび前記回折格子の前記回折面を経て前記回動ミラーの前記反射面に至る共振器長を変化させ、前記半導体発光素子が出射する光の波長を所定範囲内で連続的に変化させるリトマン方式外部共振器型の波長掃引光源において、
前記基台上に固定され、前記コリメートレンズから出射された光の一部を前記回折格子の前記所定入射位置に向けて反射させるとともに、前記回折格子から逆光路で戻された光の一部を前記半導体発光素子の前記低反射率面に向けて反射させ、残りの少なくとも一部を透過させる固定ミラー(240)を備え、
前記半導体発光素子、前記コリメートレンズ、前記固定ミラーおよび前記回折格子が前記回動ミラーの一面側に配置され、前記半導体発光素子から前記固定ミラーを介して前記回折格子に至る光路が、前記回動ミラーと非交差であり、
前記回動ミラーの回動中心位置から前記回折格子の前記所定入射位置までの距離r、前記回動中心位置から前記反射面を延長した平面までの距離L2、前記半導体発光素子の実効共振端面(22c)から前記固定ミラーまでの光路長L3、該固定ミラーから前記回折格子の前記回折面の前記所定入射位置までの光路長L4および前記固定ミラーから前記回折格子の前記回折面への光入射角αとの間に、
r=(L3+L4−L2)/sin αの関係が成立し、
前記回動ミラーは、
前記基台に固定されたフレーム(31)と、
前記フレームの内側に配置され一面側に前記反射面が形成された前記反射板と、
前記反射板の外縁と前記フレームの内縁との間を連結する捩れ変形可能で前記回折格子の前記回折溝と平行な一直線上に並ぶ一対の連結部(33、34)と、で一体的に形成され、
前記反射板に往復回動するための力を周期的に付与する回動駆動手段(40)により、前記連結部を中心に前記反射板を往復回動させる構造を有しており、
さらに、
前記回折格子から逆光路で戻されて前記固定ミラーを透過した光を前記回動ミラーに対して非交差となる方向に反射させる第1の出力ミラー(241)を備え、該第1の出力ミラーから第1の出力光を出射することを特徴とする波長掃引光源。
A base (21);
A semiconductor light emitting element (22) fixed on the base and having one end face of the two end faces (22a, 22b) having a lower reflectivity than the other end face;
A collimator lens (23) fixed on the base and converting the emitted light from the low reflectance surface of the semiconductor light emitting element into parallel light;
A diffraction groove (25b) for diffracting light has a diffraction surface (25a) formed in parallel, and the light emitted from the collimating lens is orthogonal to the diffraction groove and to the diffraction surface A diffraction grating (25) fixed on the base in a state of being incident on a predetermined incident position at a predetermined incident angle that is non-orthogonal;
A reflecting plate (32) fixed on the base and facing the diffraction surface of the diffraction grating, and orthogonal to the diffraction surface about an axis at a specific position parallel to the diffraction groove of the diffraction grating Of the diffracted light with respect to the light emitted from the collimating lens and incident on the diffractive surface of the diffraction grating, along an optical path perpendicular to the reflective surface (32a) of the reflector. A rotating mirror (30) that reflects light and returns it to the diffraction grating in a reverse optical path, and returns the returned light to the semiconductor light emitting element through the collimator lens in the same optical path as the incident optical path;
According to the change in angle of the reflecting surface of the rotating mirror, the resonator length from the semiconductor light emitting element to the reflecting surface of the rotating mirror through the collimating lens and the diffraction surface of the diffraction grating is changed, In a wavelength sweep light source of a Littman external resonator type that continuously changes the wavelength of light emitted from the semiconductor light emitting element within a predetermined range,
A part of the light fixed on the base and reflected from the collimating lens is reflected toward the predetermined incident position of the diffraction grating, and a part of the light returned from the diffraction grating by a reverse optical path is reflected. A fixed mirror (240) that reflects toward the low reflectivity surface of the semiconductor light emitting element and transmits at least a portion of the remaining surface;
The semiconductor light emitting element, the collimating lens, the fixed mirror, and the diffraction grating are arranged on one surface side of the rotating mirror, and an optical path from the semiconductor light emitting element to the diffraction grating through the fixed mirror is the rotating Non-intersecting with the mirror,
A distance r from the rotation center position of the rotation mirror to the predetermined incident position of the diffraction grating, a distance L2 from the rotation center position to a plane extending the reflection surface, an effective resonance end surface of the semiconductor light emitting element ( 22c) to the fixed mirror, the optical path length L3 from the fixed mirror to the predetermined incident position of the diffraction surface of the diffraction grating, and the light incident angle from the fixed mirror to the diffraction surface of the diffraction grating. Between α and
The relationship r = (L3 + L4-L2) / sin α is established,
The rotating mirror is
A frame (31) fixed to the base;
The reflecting plate disposed inside the frame and having the reflecting surface formed on one side thereof;
A pair of connecting portions (33, 34) that are torsionally deformable and connect between the outer edge of the reflector and the inner edge of the frame and that are aligned in a straight line parallel to the diffraction groove of the diffraction grating. And
It has a structure in which the reflection plate is reciprocally rotated around the connecting portion by rotation driving means (40) that periodically applies a force for reciprocating rotation to the reflection plate,
further,
A first output mirror (241) for reflecting light returned from the diffraction grating by a reverse optical path and transmitted through the fixed mirror in a direction that does not intersect the rotating mirror; A wavelength-swept light source that emits the first output light from.
前記回折格子から逆光路で戻されて前記固定ミラーを透過した光を前記回動ミラーに対して非交差となる方向に反射させるとともに前記第1の出力ミラーに向かって透過させる第nの出力ミラー(n≧2)(242)を備え、該第nの出力ミラーから第nの出力光を出射することを特徴とする請求項1に記載の波長掃引光源。   The nth output mirror that reflects the light returned from the diffraction grating through the reverse optical path and transmitted through the fixed mirror in a direction that does not intersect the rotating mirror and transmits the light toward the first output mirror. 2. The wavelength-swept light source according to claim 1, further comprising (n ≧ 2) (242), wherein the n-th output light is emitted from the n-th output mirror. 前記固定ミラーと前記出力ミラーとが一体的に形成されてなる反射部材を備えることを特徴とする請求項1または請求項2に記載の波長掃引光源。   The wavelength swept light source according to claim 1, further comprising a reflecting member in which the fixed mirror and the output mirror are integrally formed. 前記半導体発光素子から前記コリメートレンズを経て前記固定ミラーに至る光路が前記回折格子の前記回折溝と平行となり、且つ前記固定ミラーから該回折格子に至る光路が該回折溝に対して垂直となるように前記固定ミラーが配置され、
前記回折格子から逆光路で戻されて前記固定ミラーを透過した光を前記回折格子の前記回折溝と平行な方向に反射させるように前記第1の出力ミラーが配置されたことを特徴とする請求項3に記載の波長掃引光源。
An optical path from the semiconductor light emitting element through the collimating lens to the fixed mirror is parallel to the diffraction groove of the diffraction grating, and an optical path from the fixed mirror to the diffraction grating is perpendicular to the diffraction groove. The fixed mirror is arranged in
The first output mirror is disposed so as to reflect light returned from the diffraction grating through a reverse optical path and transmitted through the fixed mirror in a direction parallel to the diffraction groove of the diffraction grating. Item 4. The wavelength-swept light source according to Item 3.
基台(21)と、
前記基台上に固定され、2つの端面(22a、22b)のうち一方の端面が他方の端面に比べ低反射率面である半導体発光素子(22)と、
前記基台上に固定され、前記半導体発光素子の前記低反射率面からの出射光を平行光に変換するコリメートレンズ(23)と、
光を回折するための回折溝(25b)が平行に形成されている回折面(25a)を有し、前記コリメートレンズから出射された光が、前記回折溝と直交し且つ前記回折面に対して非直交となる所定入射角で所定入射位置に入射される状態で前記基台上に固定された回折格子(25)と、
前記基台上に固定され、前記回折格子の前記回折面と対向する反射板(32)を有し、前記回折格子の前記回折溝と平行な特定位置の軸を中心にして前記回折面と直交する平面内で回動可能に形成され、前記コリメートレンズから出射されて前記回折格子の前記回折面に入射した光に対する回折光のうち前記反射板の反射面(32a)に直交する光路に沿った光を反射させて逆光路で前記回折格子に戻し、該戻された光を入射光路と同じ光路で前記コリメートレンズを介して前記半導体発光素子へ戻す回動ミラー(30)と、を備え、
前記回動ミラーの前記反射面の角度変化に応じて前記半導体発光素子から前記コリメートレンズおよび前記回折格子の前記回折面を経て前記回動ミラーの前記反射面に至る共振器長を変化させ、前記半導体発光素子が出射する光の波長を所定範囲内で連続的に変化させるリトマン方式外部共振器型の波長掃引光源において、
前記基台上に固定され、前記コリメートレンズから出射された光の一部を前記回折格子の前記所定入射位置に向けて反射させるとともに、前記回折格子から逆光路で戻された光の一部を前記半導体発光素子の前記低反射率面に向けて反射させ、残りの少なくとも一部を透過させる固定ミラー(240)を備え、
前記半導体発光素子、前記コリメートレンズ、前記固定ミラーおよび前記回折格子が前記回動ミラーの一面側に配置され、前記半導体発光素子から前記固定ミラーを介して前記回折格子に至る光路が、前記回動ミラーと非交差であり、
前記回動ミラーの回動中心位置から前記回折格子の前記所定入射位置までの距離r、前記回動中心位置から前記反射面を延長した平面までの距離L2、前記半導体発光素子の実効共振端面(22c)から前記固定ミラーまでの光路長L3、該固定ミラーから前記回折格子の前記回折面の前記所定入射位置までの光路長L4および前記固定ミラーから前記回折格子の前記回折面への光入射角αとの間に、
r=(L3+L4−L2)/sin αの関係が成立し、
前記回動ミラーは、
前記基台に固定されたフレーム(31)と、
前記フレームの内側に配置され一面側に前記反射面が形成された前記反射板と、
前記反射板の外縁と前記フレームの内縁との間を連結する捩れ変形可能で前記回折格子の前記回折溝と平行な一直線上に並ぶ一対の連結部(33、34)と、で一体的に形成され、
前記反射板に往復回動するための力を周期的に付与する回動駆動手段(40)により、前記連結部を中心に前記反射板を往復回動させる構造を有しており、
前記半導体発光素子から前記コリメートレンズを経て前記固定ミラーに至る光路が前記回折格子の前記回折溝と平行となり、且つ前記固定ミラーから該回折格子に至る光路が該回折溝に対して垂直となるように前記固定ミラーが配置され、
前記回折格子から逆光路で戻されて前記固定ミラーを透過した光を出力光として出射することを特徴とする波長掃引光源。
A base (21);
A semiconductor light emitting element (22) fixed on the base and having one end face of the two end faces (22a, 22b) having a lower reflectivity than the other end face;
A collimator lens (23) fixed on the base and converting the emitted light from the low reflectance surface of the semiconductor light emitting element into parallel light;
A diffraction groove (25b) for diffracting light has a diffraction surface (25a) formed in parallel, and the light emitted from the collimating lens is orthogonal to the diffraction groove and to the diffraction surface A diffraction grating (25) fixed on the base in a state of being incident on a predetermined incident position at a predetermined incident angle that is non-orthogonal;
A reflecting plate (32) fixed on the base and facing the diffraction surface of the diffraction grating, and orthogonal to the diffraction surface about an axis at a specific position parallel to the diffraction groove of the diffraction grating Of the diffracted light with respect to the light emitted from the collimating lens and incident on the diffractive surface of the diffraction grating, along an optical path perpendicular to the reflective surface (32a) of the reflector. A rotating mirror (30) that reflects light and returns it to the diffraction grating in a reverse optical path, and returns the returned light to the semiconductor light emitting element through the collimator lens in the same optical path as the incident optical path;
According to the change in angle of the reflecting surface of the rotating mirror, the resonator length from the semiconductor light emitting element to the reflecting surface of the rotating mirror through the collimating lens and the diffraction surface of the diffraction grating is changed, In a wavelength sweep light source of a Littman external resonator type that continuously changes the wavelength of light emitted from the semiconductor light emitting element within a predetermined range,
A part of the light fixed on the base and reflected from the collimating lens is reflected toward the predetermined incident position of the diffraction grating, and a part of the light returned from the diffraction grating by a reverse optical path is reflected. A fixed mirror (240) that reflects toward the low reflectivity surface of the semiconductor light emitting element and transmits at least a portion of the remaining surface;
The semiconductor light emitting element, the collimating lens, the fixed mirror, and the diffraction grating are arranged on one surface side of the rotating mirror, and an optical path from the semiconductor light emitting element to the diffraction grating through the fixed mirror is the rotating Non-intersecting with the mirror,
A distance r from the rotation center position of the rotation mirror to the predetermined incident position of the diffraction grating, a distance L2 from the rotation center position to a plane extending the reflection surface, an effective resonance end surface of the semiconductor light emitting element ( 22c) to the fixed mirror, the optical path length L3 from the fixed mirror to the predetermined incident position of the diffraction surface of the diffraction grating, and the light incident angle from the fixed mirror to the diffraction surface of the diffraction grating. Between α and
The relationship r = (L3 + L4-L2) / sin α is established,
The rotating mirror is
A frame (31) fixed to the base;
The reflecting plate disposed inside the frame and having the reflecting surface formed on one side thereof;
A pair of connecting portions (33, 34) that are torsionally deformable and connect between the outer edge of the reflector and the inner edge of the frame and that are aligned in a straight line parallel to the diffraction groove of the diffraction grating. And
It has a structure in which the reflection plate is reciprocally rotated around the connecting portion by rotation driving means (40) that periodically applies a force for reciprocating rotation to the reflection plate,
An optical path from the semiconductor light emitting element through the collimating lens to the fixed mirror is parallel to the diffraction groove of the diffraction grating, and an optical path from the fixed mirror to the diffraction grating is perpendicular to the diffraction groove. The fixed mirror is arranged in
2. A wavelength swept light source, characterized in that light that has been returned from the diffraction grating through a reverse optical path and transmitted through the fixed mirror is emitted as output light.
JP2009064585A 2009-03-17 2009-03-17 Wavelength sweeping light source Pending JP2010219315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064585A JP2010219315A (en) 2009-03-17 2009-03-17 Wavelength sweeping light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064585A JP2010219315A (en) 2009-03-17 2009-03-17 Wavelength sweeping light source

Publications (1)

Publication Number Publication Date
JP2010219315A true JP2010219315A (en) 2010-09-30

Family

ID=42977832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064585A Pending JP2010219315A (en) 2009-03-17 2009-03-17 Wavelength sweeping light source

Country Status (1)

Country Link
JP (1) JP2010219315A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284125A (en) * 2004-03-30 2005-10-13 Anritsu Corp Variable wavelength light source
JP2008227407A (en) * 2007-03-15 2008-09-25 Yokogawa Electric Corp External-resonator wavelength variable light source and light source device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284125A (en) * 2004-03-30 2005-10-13 Anritsu Corp Variable wavelength light source
JP2008227407A (en) * 2007-03-15 2008-09-25 Yokogawa Electric Corp External-resonator wavelength variable light source and light source device

Similar Documents

Publication Publication Date Title
US20210351562A1 (en) Optical device having a substrate and a laser unit that emits light into the substrate
JP4073886B2 (en) Variable wavelength light source
US9921115B2 (en) Optical fiber coupled photonic crystal slab strain sensor, system and method of fabrication and use
JP4983391B2 (en) Optical module and manufacturing method thereof
KR20160091379A (en) Wavelength tunable mems-fabry perot filter
JP5715481B2 (en) Optical module and manufacturing method thereof
US11635290B2 (en) Optical module
CN114384686B (en) Optical device
US8036506B2 (en) Multi-fiber section tunable optical filter
US10564358B2 (en) Micromechanically actuated deformable optical beam steering for wavelength tunable optical sources, filters and detectors
US9008134B2 (en) Resonator, variable wavelength optical filter, and variable wavelength laser diode
JP2005159002A (en) Light receiving element, optical module, and optical transmission device
JP2012074445A (en) Wavelength-variable laser
WO2019244554A1 (en) Planar lightwave circuit and optical device
JP2010219315A (en) Wavelength sweeping light source
JP2012098756A (en) Optical path converting body and packaging structure thereof, and optical module with the same
JP6497699B2 (en) Light modulation device and light modulation system
JP2009139546A (en) Variable wavelength light source
WO2019009398A1 (en) Optical device
JP4700698B2 (en) Wavelength-tunable selective optoelectronic filter
CN110799886B (en) Optical device
JP2007027547A (en) Test light source and optical testing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416