WO2019009398A1 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
WO2019009398A1
WO2019009398A1 PCT/JP2018/025640 JP2018025640W WO2019009398A1 WO 2019009398 A1 WO2019009398 A1 WO 2019009398A1 JP 2018025640 W JP2018025640 W JP 2018025640W WO 2019009398 A1 WO2019009398 A1 WO 2019009398A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis direction
torsion
movable
torsion bar
optical
Prior art date
Application number
PCT/JP2018/025640
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 杉本
智史 鈴木
恭輔 港谷
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018080679A external-priority patent/JP7112876B2/en
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP18828856.7A priority Critical patent/EP3650917A4/en
Priority to CN201880043509.0A priority patent/CN110799886B/en
Priority to US16/625,702 priority patent/US11740452B2/en
Publication of WO2019009398A1 publication Critical patent/WO2019009398A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry

Definitions

  • the present disclosure relates to an optical device configured as, for example, a MEMS (Micro Electro Mechanical Systems) device.
  • MEMS Micro Electro Mechanical Systems
  • the elastic support may be configured to include a twist support that is torsionally deformed when the movable part moves in the movement direction.
  • An object of the present disclosure is to provide an optical device capable of suppressing a decrease in optical characteristics due to a variation in the shape of a torsional support.
  • An optical device is connected between a base having a main surface, a movable portion having an optical function portion, and a base having a main surface and the movable portion, and the movable portion is perpendicular to the main surface.
  • An elastic support portion for supporting the movable portion to be movable along a first direction, the elastic support portion extending along a second direction perpendicular to the first direction, the lever being a lever A first torsion support connected between the arm and the movable part, and a second torsion support extending along the second direction and connected between the lever and the base,
  • the torsional spring constant of the torsional support is greater than the torsional spring constant of the second torsional support.
  • the torsion spring constant of the first torsion support connected between the lever and the movable part is larger than the torsion spring constant of the second torsion support connected between the lever and the base.
  • the width of the first torsion support may be wider than the width of the second torsion support when viewed from the first direction.
  • the torsion spring constant of the first torsion support can be suitably made larger than the torsion spring constant of the second torsion support.
  • the length of the first torsion support may be shorter than the length of the second torsion support when viewed from the first direction.
  • the torsion spring constant of the first torsion support portion can be further preferably made larger than the torsion spring constant of the second torsion support portion.
  • the base, the movable portion, and the elastic support may be configured by an SOI substrate.
  • the optical device formed by the MEMS technology it is possible to suppress the deterioration of the optical characteristics due to the variation in the shape of the torsional support.
  • An optical device is provided on a base and is provided on a fixed comb electrode having a plurality of fixed comb teeth, at least one of the movable portion and the elastic support portion, and the plurality of fixed comb teeth And a movable comb electrode having a plurality of movable comb teeth alternately arranged.
  • the actuator unit for moving the movable unit can be simplified and power consumption can be reduced.
  • the optical device may include only one pair of elastic support portions.
  • the movement of the movable portion can be stabilized, for example, as compared with the case where only one elastic support portion is provided.
  • the total number of torsion supports can be reduced, for example, as compared to the case where three or more elastic supports are provided. As a result, the spring constant of each torsion support can be secured, and the influence of the variation in the shape of the torsion support can be reduced.
  • an optical device capable of suppressing a decrease in optical characteristics due to the variation in the shape of the torsional support.
  • FIG. 1 is a longitudinal sectional view of an optical module provided with an optical device according to an embodiment.
  • FIG. 3 is a plan view of the optical device shown in FIGS. 2 and 1;
  • FIG. 3 is a plan view showing a part of FIG. 2 in an enlarged manner.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a graph showing the tilt of the mirror surface at the time of movement in the example and the comparative example.
  • the optical module 1 includes a mirror unit 2 and a beam splitter unit 3.
  • the mirror unit 2 has an optical device 10 and a fixed mirror 21.
  • the optical device 10 includes a movable mirror (movable portion) 11.
  • the beam splitter unit 3, the movable mirror 11 and the fixed mirror 21 form an interference optical system for the measurement light L 0.
  • the interference optical system here is a Michelson interference optical system.
  • the optical device 10 includes, in addition to the movable mirror 11, a base 12, a drive unit 13, a first optical function unit 17, and a second optical function unit 18.
  • the base 12 has a major surface 12 a.
  • the movable mirror 11 has a mirror surface (optical function portion) 11a along a plane parallel to the major surface 12a.
  • the movable mirror 11 is supported by the base 12 so as to be movable along a Z-axis direction (a direction parallel to the Z-axis, a first direction) perpendicular to the major surface 12 a.
  • the drive unit 13 moves the movable mirror 11 along the Z-axis direction.
  • the first optical function unit 17 is disposed on one side of the movable mirror 11 in the X-axis direction (a direction parallel to the X-axis, a third direction) perpendicular to the Z-axis direction when viewed from the Z-axis direction There is.
  • the second optical function unit 18 is disposed on the other side of the movable mirror 11 in the X-axis direction when viewed from the Z-axis direction.
  • Each of the first optical function unit 17 and the second optical function unit 18 is a light passing opening provided in the base 12 and is open on one side and the other side in the Z-axis direction. In the optical module 1, the second optical function unit 18 is not used as a light passing aperture.
  • At least one of the first optical function unit 17 and the second optical function unit 18 may be used as an optical function unit, or the first optical function unit 17 and the second optical function unit 18 may be used. Both of the optical function units 18 may not be used as optical function units.
  • the fixed mirror 21 has a mirror surface 21a extending along a plane parallel to the major surface 12a (a plane perpendicular to the Z-axis direction). The position of the fixed mirror 21 with respect to the base 12 is fixed.
  • the mirror surface 11a of the movable mirror 11 and the mirror surface 21a of the fixed mirror 21 face one side (the beam splitter unit 3 side) in the Z-axis direction.
  • the mirror unit 2 has a support 22, a submount 23 and a package 24.
  • the package 24 accommodates the optical device 10, the fixed mirror 21, the support 22 and the submount 23.
  • the package 24 includes a bottom wall 241, side walls 242 and a top wall 243.
  • the package 24 is formed in, for example, a rectangular box shape.
  • the package 24 has, for example, a size of about 30 ⁇ 25 ⁇ 10 (thickness) mm.
  • the bottom wall 241 and the side wall 242 are integrally formed with each other.
  • the top wall 243 faces the bottom wall 241 in the Z-axis direction, and is fixed to the side wall 242.
  • the top wall 243 is light transmissive to the measurement light L0.
  • a space S is formed by the package 24.
  • the space S is opened to the outside of the mirror unit 2 through, for example, a vent or a gap provided in the package 24.
  • the space S may be an airtight space in which a high degree of vacuum is maintained, or an airtight space filled with an inert gas such as nitrogen.
  • the support 22 is fixed to the inner surface of the bottom wall 241 via the submount 23.
  • the support 22 is formed, for example, in a rectangular plate shape.
  • the support 22 is light transmissive to the measurement light L0.
  • the base 12 of the optical device 10 is fixed to the surface 22 a of the support 22 opposite to the submount 23. That is, the base 12 is supported by the support 22.
  • a recess 22 b is formed on the surface 22 a of the support 22, and a gap (a part of the space S) is formed between the optical device 10 and the top wall 243.
  • An opening 23 a is formed in the submount 23.
  • the fixed mirror 21 is disposed on the surface 22c of the support 22 on the submount 23 side so as to be located in the opening 23a. That is, the fixed mirror 21 is disposed on the surface 22 c of the support 22 opposite to the base 12.
  • the fixed mirror 21 is disposed on one side of the movable mirror 11 in the X-axis direction when viewed from the Z-axis direction.
  • the fixed mirror 21 overlaps the first optical function unit 17 of the optical device 10 when viewed in the Z-axis direction.
  • the mirror unit 2 further includes a plurality of lead pins 25 and a plurality of wires 26.
  • Each lead pin 25 is fixed to the bottom wall 241 in a state of penetrating the bottom wall 241.
  • Each lead pin 25 is electrically connected to the drive unit 13 via the wire 26.
  • an electrical signal for moving the movable mirror 11 along the Z-axis direction is applied to the drive unit 13 via the plurality of lead pins 25 and the plurality of wires 26.
  • the beam splitter unit 3 is supported by the top wall 243 of the package 24. Specifically, the beam splitter unit 3 is fixed to the surface 243 a of the top wall 243 opposite to the optical device 10 by the optical resin 4.
  • the optical resin 4 is light transmissive to the measurement light L0.
  • the beam splitter unit 3 has a half mirror surface 31, a total reflection mirror surface 32, and a plurality of optical surfaces 33a, 33b, 33c, and 33d.
  • the beam splitter unit 3 is configured by bonding a plurality of optical blocks.
  • the half mirror surface 31 is formed of, for example, a dielectric multilayer film.
  • the total reflection mirror surface 32 is formed of, for example, a metal film.
  • the optical surface 33a is, for example, a surface perpendicular to the Z-axis direction, and overlaps the first optical function portion 17 of the optical device 10 and the mirror surface 21a of the fixed mirror 21 when viewed from the Z-axis direction.
  • the optical surface 33a transmits the measurement light L0 incident along the Z-axis direction.
  • the half mirror surface 31 is, for example, a surface inclined 45 degrees with respect to the optical surface 33a, and overlaps the first optical function portion 17 of the optical device 10 and the mirror surface 21a of the fixed mirror 21 when viewed from the Z-axis direction. ing.
  • the half mirror surface 31 reflects a part of the measurement light L0 incident on the optical surface 33a along the Z-axis direction along the X-axis direction, and the remaining part of the measurement light L0 along the Z-axis direction. Permeate to the side.
  • the total reflection mirror surface 32 is a surface parallel to the half mirror surface 31.
  • the total reflection mirror surface 32 overlaps the mirror surface 11a of the movable mirror 11 when viewed from the Z axis direction and when viewed from the X axis direction. And overlap.
  • the total reflection mirror surface 32 reflects a part of the measurement light L0 reflected by the half mirror surface 31 toward the movable mirror 11 along the Z-axis direction.
  • the optical surface 33 b is a surface parallel to the optical surface 33 a and overlaps the mirror surface 11 a of the movable mirror 11 when viewed in the Z-axis direction.
  • the optical surface 33b transmits a part of the measurement light L0 reflected by the total reflection mirror surface 32 to the movable mirror 11 side along the Z-axis direction.
  • the optical surface 33c is a surface parallel to the optical surface 33a, and overlaps the mirror surface 21a of the fixed mirror 21 when viewed from the Z-axis direction.
  • the optical surface 33 c transmits the remaining portion of the measurement light L 0 transmitted through the half mirror surface 31 to the fixed mirror 21 side along the Z-axis direction.
  • the optical surface 33 d is, for example, a surface perpendicular to the X-axis direction, and overlaps the half mirror surface 31 and the total reflection mirror surface 32 when viewed from the X-axis direction.
  • the optical surface 33d transmits the measurement light L1 along the X-axis direction.
  • the measurement light L1 is sequentially reflected by the mirror surface 11a of the movable mirror 11 and the total reflection mirror surface 32 and transmitted through the half mirror surface 31.
  • a part of the measurement light L0 and the mirror surface 21a of the fixed mirror 21 and the half mirror surface This is interference light with the remaining part of the measurement light L0 sequentially reflected by 31.
  • the optical module 1 configured as described above, when the measurement light L0 is incident on the beam splitter unit 3 from the outside of the optical module 1 via the optical surface 33a, a part of the measurement light L0 has the half mirror surface 31 and all The light is reflected sequentially by the reflection mirror surface 32 and travels toward the mirror surface 11 a of the movable mirror 11. Then, a part of the measurement light L0 is reflected by the mirror surface 11a of the movable mirror 11, travels in the opposite direction on the same optical path (optical path P1 described later), and passes through the half mirror surface 31 of the beam splitter unit 3. Do.
  • the remaining part of the measurement light L 0 passes through the half mirror surface 31 of the beam splitter unit 3, passes through the first optical function unit 17, passes through the support 22, and passes through the mirror surface 21 a of the fixed mirror 21. Progress towards The remaining portion of the measurement light L0 is reflected by the mirror surface 21a of the fixed mirror 21, travels in the opposite direction on the same optical path (optical path P2 described later), and is reflected by the half mirror surface 31 of the beam splitter unit 3. Ru.
  • the measurement light L1 is emitted from the beam splitter unit 3 to the outside of the optical module 1 via the optical surface 33d.
  • FTIR Fastier transform infrared spectrometer
  • the support 22 corrects the optical path difference between the optical path P 1 between the beam splitter unit 3 and the movable mirror 11 and the optical path P 2 between the beam splitter unit 3 and the fixed mirror 21.
  • the optical path P1 is an optical path from the half mirror surface 31 to the mirror surface 11a of the movable mirror 11 located at the reference position through the total reflection mirror surface 32 and the optical surface 33b sequentially It is a light path along which a part of the light L0 travels.
  • the optical path P2 is an optical path from the half mirror surface 31 to the mirror surface 21a of the fixed mirror 21 sequentially through the optical surface 33c and the first optical function unit 17, and is an optical path through which the remaining portion of the measurement light L0 travels. is there.
  • the support 22 has an optical path length of the optical path P1 (optical path length considering the refractive index of each medium through which the optical path P1 passes) and an optical path length of the optical path P2 (optical path length considering the refractive index of each medium through which the optical path P2 passes).
  • the optical path difference between the optical path P1 and the optical path P2 is corrected so that the difference becomes smaller (for example, eliminated).
  • the support 22 can be made of, for example, the same light transmitting material as each optical block constituting the beam splitter unit 3. In that case, the thickness (length in the Z-axis direction) of the support 22 can be made equal to the distance between the half mirror surface 31 and the total reflection mirror surface 32 in the X-axis direction.
  • the movable mirror 11 other than the mirror surface 11 a, the base 12, the drive unit 13, the first optical function unit 17 and the second optical function unit 18 A silicon on insulator (substrate) 50 is formed. That is, the optical device 10 is configured of the SOI substrate 50.
  • the optical device 10 is formed, for example, in a rectangular plate shape.
  • the optical device 10 has, for example, a size of about 15 ⁇ 10 ⁇ 0.3 (thickness) mm.
  • the SOI substrate 50 has a support layer 51, a device layer 52 and an intermediate layer 53.
  • the support layer 51 is a first silicon layer.
  • the device layer 52 is a second silicon layer.
  • the intermediate layer 53 is an insulating layer disposed between the support layer 51 and the device layer 52.
  • the base 12 is formed by the support layer 51, the device layer 52 and part of the intermediate layer 53.
  • the major surface 12 a of the base 12 is the surface of the device layer 52 opposite to the intermediate layer 53.
  • the main surface 12 b of the base 12 opposite to the main surface 12 a is a surface of the support layer 51 opposite to the intermediate layer 53.
  • the main surface 12a of the base 12 and the surface 22a of the support 22 are bonded to each other (see FIG. 1).
  • the movable mirror 11 is disposed with a point of intersection of the axis R1 and the axis R2 as a center position (center of gravity).
  • the axis R1 is a straight line extending in the X-axis direction.
  • the axis R2 is a straight line extending in a Y-axis direction (a direction parallel to the Y-axis, a second direction) perpendicular to the X-axis direction and the Z-axis direction.
  • the optical device 10 When viewed in the Z-axis direction, the optical device 10 exhibits a shape that is line-symmetrical about the axis R1 and line-symmetrical about the axis R2.
  • the movable mirror 11 has a main body portion 111, a frame portion 112, and a pair of connecting portions 113.
  • the main body portion 111 has a circular shape when viewed from the Z-axis direction.
  • the main body portion 111 has a central portion 114 and an outer edge portion 115.
  • a metal film is formed on the surface of the central portion 114 on the main surface 12 b side, and a circular mirror surface 11 a is provided.
  • the central portion 114 is formed by a portion of the device layer 52.
  • the outer edge portion 115 surrounds the central portion 114 when viewed in the Z-axis direction.
  • the outer edge portion 115 has a first main body portion 115 a and a first beam portion 115 b.
  • the first main body portion 115 a is formed of a part of the device layer 52.
  • the first beam portion 115 b is formed of a part of the support layer 51 and the intermediate layer 53.
  • the first beam portion 115 b is provided on the surface of the first main portion 115 a on the main surface 12 b side.
  • the first beam portion 115 b is formed such that the thickness of the outer edge portion 115 in the Z-axis direction is larger than the thickness of the central portion 114 in the Z-axis direction.
  • the first beam portion 115b When viewed in the Z-axis direction, has an annular shape and surrounds the mirror surface 11a.
  • the first beam portion 115 b extends along the outer edge of the main body portion 111 when viewed in the Z-axis direction.
  • the outer edge of the first beam portion 115 b extends along the outer edge of the main body portion 111 at a predetermined distance from the outer edge of the main body portion 111 when viewed in the Z-axis direction.
  • the inner edge of the first beam portion 115b extends along the outer edge of the mirror surface 11a at a predetermined distance from the outer edge of the mirror surface 11a when viewed in the Z-axis direction.
  • the frame portion 112 surrounds the main body portion 111 at a predetermined distance from the main body portion 111 when viewed from the Z-axis direction.
  • the frame portion 112 has an annular shape when viewed from the Z-axis direction.
  • the frame 112 has a second main body 112a and a second beam 112b.
  • the second main body 112 a is formed by a part of the device layer 52.
  • the second beam portion 112 b is formed of a part of the support layer 51 and the intermediate layer 53.
  • the second beam portion 112 b is provided on the surface of the second main portion 112 a on the main surface 12 b side.
  • the second beam portion 112 b is formed such that the thickness of the frame portion 112 in the Z-axis direction is larger than the thickness of the central portion 114 in the Z-axis direction.
  • the second beam portion 112 b has an annular shape when viewed in the Z-axis direction.
  • the outer edge of the second beam 112 b extends along the outer edge of the frame 112 at a predetermined distance from the outer edge of the frame 112 when viewed in the Z-axis direction.
  • the inner edge of the second beam portion 112 b extends along the inner edge of the frame portion 112 at a predetermined distance from the inner edge of the frame portion 112 when viewed in the Z-axis direction.
  • the thickness of the second beam portion 112b in the Z-axis direction is equal to the thickness of the first beam portion 115b in the Z-axis direction.
  • the width of the second beam portion 112 b is wider than the width of the first beam portion 115 b.
  • the width of the first beam portion 115b when viewed from the Z-axis direction is the length of the first beam portion 115b in the direction perpendicular to the extending direction of the first beam portion 115b, and in the present embodiment, the first beam portion 115b The length of the first beam portion 115b in the radial direction of the beam portion 115b. The same applies to the width of the second beam portion 112 b when viewed in the Z-axis direction.
  • Each of the pair of connecting portions 113 connects the main body portion 111 and the frame portion 112 to each other.
  • the pair of connecting portions 113 is disposed on one side and the other side in the Y-axis direction with respect to the main body portion 111.
  • Each connecting portion 113 has a third main portion 113a and a third beam portion 113b.
  • the third main body portion 113 a is formed of a part of the device layer 52.
  • the third main body portion 113a is connected to the first main body portion 115a and the second main body portion 112a.
  • the third beam portion 113 b is formed of a part of the support layer 51 and the intermediate layer 53.
  • the third beam portion 113 b is connected to the first beam portion 115 b and the second beam portion 112 b.
  • the third beam portion 113 b is provided on the surface of the third main portion 113 a on the main surface 12 b side.
  • the third beam portion 113 b is formed such that the thickness of the connection portion 113 in the Z-axis direction is larger than the thickness of the central portion 114 in the Z-axis direction.
  • the thickness of the third beam portion 113b in the Z-axis direction is equal to the thickness of each of the first beam portion 115b and the second beam portion 112b in the Z-axis direction.
  • the width of the third beam portion 113b is larger than the width of each of the first beam portion 115b and the second beam portion 112b.
  • the width of the third beam portion 113b is the length of the third beam portion 113b in the extending direction of the first beam portion 115b.
  • the movable mirror 11 further includes a pair of brackets 116 and a pair of brackets 117.
  • Each bracket 116 and each bracket 117 are formed by a part of the device layer 52.
  • Each bracket 116 extends along the Y-axis direction, and has a rectangular shape when viewed from the Z-axis direction.
  • One bracket 116 protrudes from one side of the frame 112 toward one side in the Y-axis direction, and the other bracket 116 protrudes from the side of the frame 112 toward the other side in the Y-axis direction.
  • the pair of brackets 116 is disposed on the same center line parallel to the Y-axis direction.
  • Each bracket 116 extends from an end of the frame portion 112 on the first optical function portion 17 side.
  • Each bracket 117 extends along the Y-axis direction, and has a rectangular shape when viewed from the Z-axis direction.
  • One bracket 117 protrudes from one side of the frame 112 toward one side in the Y-axis direction, and the other bracket 117 protrudes from the side of the frame 112 toward the other side in the Y-axis direction.
  • the pair of brackets 117 is disposed on the same center line parallel to the Y-axis direction.
  • Each bracket 117 extends from an end of the frame 112 on the second optical function portion 18 side (opposite to the first optical function portion 17).
  • the drive unit 13 has a first elastic support 14, a second elastic support 15, and an actuator 16.
  • the first elastic support portion 14, the second elastic support portion 15 and the actuator portion 16 are formed by the device layer 52.
  • Each of the first elastic support portion 14 and the second elastic support portion 15 is connected between the base 12 and the movable mirror 11.
  • the first elastic support portion 14 and the second elastic support portion 15 support the movable mirror 11 so that the movable mirror 11 can move along the Z-axis direction.
  • the first elastic support portion 14 includes a pair of levers 141, a link 142, a link 143, a pair of brackets 144, a pair of first torsion bars (first torsion support portions) 145, and a pair of second torsion bars (second torsion support). Part) 146 and a pair of electrode support parts 147.
  • the pair of levers 141 is disposed on both sides of the first optical function portion 17 in the Y-axis direction.
  • Each lever 141 has a plate shape extending along a plane perpendicular to the Z-axis direction. In the present embodiment, each lever 141 extends along the X-axis direction.
  • the link 142 is bridged between the ends 141 a of the pair of levers 141 on the movable mirror 11 side.
  • the link 142 has a plate shape extending along a plane perpendicular to the Z-axis direction.
  • the link 142 extends along the Y-axis direction.
  • the link 143 is bridged between the end 141 b of the pair of levers 141 opposite to the movable mirror 11.
  • the link 143 has a plate shape extending along a plane perpendicular to the Z-axis direction, and extends along the Y-axis direction.
  • the first optical function portion 17 is an opening defined by the pair of levers 141, the link 142 and the link 143.
  • the first optical function unit 17 has a rectangular shape when viewed from the Z-axis direction.
  • the first optical function unit 17 is, for example, a cavity.
  • a material having optical transparency to the measurement light L0 may be disposed in the opening forming the first optical function unit 17.
  • Each bracket 144 has a rectangular shape when viewed from the Z-axis direction. Each bracket 144 is provided on the surface of the link 142 on the movable mirror 11 side so as to protrude to the movable mirror 11 side. One bracket 144 is disposed in the vicinity of one end of the link 142, and the other bracket 144 is disposed in the vicinity of the other end of the link 142.
  • the pair of first torsion bars 145 is stretched between the end of one bracket 116 and one bracket 144 and between the end of the other bracket 116 and the other bracket 144, respectively. . That is, the pair of first torsion bars 145 is connected between the pair of levers 141 and the movable mirror 11 respectively. Each first torsion bar 145 extends along the Y-axis direction. The pair of first torsion bars 145 are disposed on the same center line parallel to the Y-axis direction.
  • the pair of second torsion bars 146 is respectively disposed between the end portion 141 b of the one lever 141 opposite to the movable mirror 11 and the base 12 and the other end of the other lever 141 opposite to the movable mirror 11. It is bridged between the section 141 b and the base 12. That is, the pair of second torsion bars 146 is connected between the pair of levers 141 and the base 12 respectively.
  • Each second torsion bar 146 extends along the Y-axis direction.
  • the pair of second torsion bars 146 are disposed on the same center line parallel to the Y-axis direction.
  • the end 141 b of each lever 141 is provided with a projecting portion 141 c that protrudes outward in the Y-axis direction, and the second torsion bar 146 is connected to the projecting portion 141 c.
  • Each electrode support portion 147 extends along the Y-axis direction, and has a rectangular shape when viewed from the Z-axis direction.
  • One electrode support portion 147 extends from the middle portion of one lever 141 toward the opposite side to the first optical function portion 17.
  • the other electrode support part 147 protrudes from the middle part of the other lever 141 to the opposite side to the first optical function part 17.
  • the pair of electrode support portions 147 is disposed on the same center line parallel to the Y-axis direction when viewed from the Z-axis direction.
  • the second elastic support portion 15 includes a pair of levers 151, a link 152, a link 153, a pair of brackets 154, a pair of first torsion bars (a first torsion support portion) 155, and a pair of second torsion bars (a second torsion support). Part) 156 and a pair of electrode support parts 157.
  • the pair of levers 151 is disposed on both sides of the second optical function portion 18 in the Y-axis direction.
  • Each lever 151 has a plate shape extending along a plane perpendicular to the Z-axis direction. In the present embodiment, each lever 151 extends along the X-axis direction.
  • the link 152 is bridged between the ends 151 a of the pair of levers 151 on the movable mirror 11 side.
  • the link 152 has a plate shape extending along a plane perpendicular to the Z-axis direction.
  • the link 152 extends along the Y-axis direction.
  • the link 153 is bridged between the end 151 b of the pair of levers 151 opposite to the movable mirror 11.
  • the link 153 has a plate shape extending along a plane perpendicular to the Z-axis direction, and extends along the Y-axis direction.
  • the second optical function portion 18 is an opening defined by the pair of levers 151, the link 152 and the link 153.
  • the second optical function unit 18 has a rectangular shape when viewed from the Z-axis direction.
  • the second optical function unit 18 is, for example, a cavity.
  • a material having optical transparency to the measurement light L0 may be disposed in the opening forming the second optical function unit 18.
  • Each bracket 154 has a rectangular shape when viewed from the Z-axis direction. Each bracket 154 is provided on the surface of the link 152 on the movable mirror 11 side so as to protrude to the movable mirror 11 side. One bracket 154 is disposed in the vicinity of one end of the link 152, and the other bracket 154 is disposed in the vicinity of the other end of the link 152.
  • the pair of first torsion bars 155 is stretched between the end of one bracket 117 and one bracket 154 and between the end of the other bracket 117 and the other bracket 154, respectively. . That is, the pair of first torsion bars 155 is connected between the pair of levers 151 and the movable mirror 11 respectively. Each first torsion bar 155 extends along the Y-axis direction. The pair of first torsion bars 155 is disposed on the same center line parallel to the Y-axis direction.
  • the pair of second torsion bars 156 are respectively disposed between the end 151 b of the one lever 151 opposite to the movable mirror 11 and the base 12 and the other end of the other lever 151 opposite to the movable mirror 11. It is bridged between the unit 151 b and the base 12. That is, the pair of second torsion bars 156 are respectively connected between the pair of levers 151 and the base 12. Each second torsion bar 156 extends along the Y-axis direction. The pair of second torsion bars 156 is disposed on the same center line parallel to the Y-axis direction.
  • the end 151b of each lever 151 is provided with a protrusion 151c that protrudes outward in the Y-axis direction, and the second torsion bar 156 is connected to the protrusion 151c.
  • Each electrode support portion 157 extends along the Y-axis direction, and has a rectangular shape when viewed from the Z-axis direction.
  • One electrode support portion 157 extends from the middle portion of one lever 151 toward the opposite side to the second optical function portion 18.
  • the other electrode support portion 157 protrudes from the middle portion of the other lever 151 to the opposite side to the second optical function portion 18.
  • the pair of electrode support portions 157 is disposed on the same center line parallel to the Y-axis direction when viewed from the Z-axis direction.
  • the actuator unit 16 moves the movable mirror 11 along the Z-axis direction.
  • the actuator unit 16 includes a pair of fixed comb electrodes 161, a pair of movable comb electrodes 162, a pair of fixed comb electrodes 163, and a pair of movable comb electrodes 164.
  • the positions of the fixed comb electrodes 161 and 163 are fixed.
  • the movable comb electrodes 162 and 164 move as the movable mirror 11 moves.
  • One fixed comb electrode 161 is provided on the surface of the device layer 52 of the base 12 facing the one electrode support portion 147.
  • the other fixed comb electrode 161 is provided on the surface of the device layer 52 facing the other electrode support 147.
  • Each fixed comb electrode 161 has a plurality of fixed comb teeth 161 a extending along a plane perpendicular to the Y-axis direction. These fixed comb teeth 161a are arranged side by side at a predetermined interval in the Y-axis direction.
  • One movable comb electrode 162 is provided on the surface on both sides in the X axis direction of one electrode support portion 147.
  • the other movable comb electrode 162 is provided on the surface on both sides in the X-axis direction of the other electrode support portion 147.
  • Each movable comb electrode 162 has a plurality of movable combs 162 a extending along a plane perpendicular to the Y-axis direction. These movable comb teeth 162a are arranged side by side at a predetermined interval in the Y-axis direction.
  • a plurality of fixed comb teeth 161a and a plurality of movable comb teeth 162a are alternately arranged. That is, the fixed comb teeth 161 a of the one fixed comb electrode 161 are located between the movable comb teeth 162 a of the one movable comb electrode 162. In the other fixed comb electrode 161 and the other movable comb electrode 162, a plurality of fixed comb teeth 161a and a plurality of movable comb teeth 162a are alternately arranged.
  • the fixed comb teeth 161 a of the other fixed comb electrode 161 are located between the movable comb teeth 162 a of the other movable comb electrode 162.
  • adjacent fixed comb teeth 161a and movable comb teeth 162a face each other in the Y-axis direction.
  • the distance between the adjacent fixed comb teeth 161a and the movable comb teeth 162a is, for example, about several ⁇ m.
  • One fixed comb electrode 163 is provided on the surface of the device layer 52 of the base 12 facing the one electrode support portion 157.
  • the other fixed comb electrode 163 is provided on the surface of the device layer 52 facing the other electrode support portion 157.
  • Each fixed comb electrode 163 has a plurality of fixed comb teeth 163 a extending along a plane perpendicular to the Y-axis direction. These fixed comb teeth 163a are arranged side by side at a predetermined interval in the Y-axis direction.
  • One movable comb electrode 164 is provided on the surface on both sides of one electrode support portion 157 in the X-axis direction.
  • the other movable comb electrode 164 is provided on the surface on both sides of the other electrode support portion 157 in the X-axis direction.
  • Each movable comb electrode 164 has a plurality of movable comb teeth 164 a extending along a plane perpendicular to the Y-axis direction. These movable comb teeth 164a are arranged side by side at a predetermined interval in the Y-axis direction.
  • one fixed comb electrode 163 and one movable comb electrode 164 a plurality of fixed comb teeth 163a and a plurality of movable comb teeth 164a are alternately arranged. That is, the fixed comb teeth 163 a of one fixed comb electrode 163 are located between the movable comb teeth 164 a of one movable comb electrode 164. In the other fixed comb electrode 163 and the other movable comb electrode 164, a plurality of fixed comb teeth 163a and a plurality of movable comb teeth 164a are alternately arranged.
  • the fixed comb teeth 163 a of the other fixed comb electrode 163 are located between the movable comb teeth 164 a of the other movable comb electrode 164.
  • adjacent fixed comb teeth 163a and movable comb teeth 164a face each other in the Y-axis direction.
  • the distance between the fixed comb teeth 163a and the movable comb teeth 164a adjacent to each other is, for example, about several ⁇ m.
  • the base 12 is provided with a plurality of electrode pads 121 and 122.
  • Each of the electrode pads 121 and 122 is formed on the surface of the device layer 52 in an opening 12 c formed on the main surface 12 b of the base 12 so as to reach the device layer 52.
  • Each electrode pad 121 is electrically connected to the fixed comb electrode 161 or the fixed comb electrode 163 via the device layer 52.
  • Each electrode pad 122 is electrically connected to the movable comb electrode 162 or the movable comb electrode 164 via the first elastic support portion 14 or the second elastic support portion 15.
  • the wires 26 are stretched between the electrode pads 121 and 122 and the lead pins 25.
  • the Z axis Between the fixed comb electrode 161 and the movable comb electrode 162 opposed to each other, and the fixed comb electrode 163 and the movable comb electrode 164 opposed to each other, so as to move the movable mirror 11 to one side in the direction. Electrostatic force occurs during the At this time, the first torsion bars 145 and 155 and the second torsion bars 146 and 156 are twisted in the first elastic support 14 and the second elastic support 15, respectively, and the first elastic support 14 and the second elastic support An elastic force is generated at 15.
  • the movable mirror 11 is reciprocated at the resonance frequency level along the Z-axis direction by applying a periodic electrical signal to the drive unit 13 via the plurality of lead pins 25 and the plurality of wires 26. be able to.
  • the drive unit 13 functions as an electrostatic actuator. [Detailed configuration of the torsion bar]
  • Each first torsion bar 145 and each second torsion bar 146 have a flat plate shape perpendicular to the X-axis direction.
  • Each first torsion bar 145 has, for example, a length (length in the Y-axis direction) of 30 ⁇ m to 300 ⁇ m, a width (length in the X-axis direction) of 5 ⁇ m to 30 ⁇ m, and a thickness (length in the Z-axis direction) of 30 ⁇ m to 100 ⁇ m It is formed to a degree.
  • Each second torsion bar 146 has, for example, a length (length in the Y-axis direction) of 30 ⁇ m to 300 ⁇ m, a width (length in the X-axis direction) of 5 ⁇ m to 30 ⁇ m, and a thickness (length in the Z-axis direction) of 30 ⁇ m to 100 ⁇ m It is formed to a degree.
  • the length of the first torsion bar 145 is equal to the length of the second torsion bar 146.
  • the width of the first torsion bar 145 is wider than the width of the second torsion bar 146.
  • the thickness of the first torsion bar 145 is equal to the thickness of the second torsion bar 146.
  • the length of the first torsion bar 145 is The length of the first torsion bar 145 not including the widening portion is meant, and the width of the first torsion bar 145 means the width of the first torsion bar 145 not including the widening portion. Further, the width of the first torsion bar 145 means the width (minimum width) at the narrowest position.
  • the torsion spring constant of the first torsion bar 145 is larger than the torsion spring constant of the second torsion bar 146.
  • the torsion spring constant of the first torsion bar 145 is, for example, about 0.00004 N ⁇ m / rad.
  • the torsion spring constant of the second torsion bar 146 is, for example, about 0.00003 N ⁇ m / rad.
  • the torsion spring constants of the first torsion bar 145 and the second torsion bar 146 are set, for example, in the range of about 0.000001 N ⁇ m / rad to 0.001 N ⁇ m / rad.
  • the length and thickness of the first torsion bar 145 are equal to the length and thickness of the second torsion bar 146, and the width of the first torsion bar 145 is wider than the width of the second torsion bar 146.
  • the torsion spring constant of the first torsion bar 145 is larger than the torsion spring constant of the second torsion bar 146.
  • Each first torsion bar 155 and each second torsion bar 156 have a flat plate shape perpendicular to the X-axis direction.
  • the first torsion bar 155 is formed, for example, in the same shape as the first torsion bar 145.
  • the second torsion bar 156 is formed, for example, in the same shape as the second torsion bar 146.
  • the length of the first torsion bar 155 is equal to the length of the second torsion bar 156.
  • the width of the first torsion bar 155 is wider than the width of the second torsion bar 156.
  • the thickness of the first torsion bar 155 is equal to the thickness of the second torsion bar 156.
  • the torsion spring constant of the first torsion bar 155 is larger than the torsion spring constant of the second torsion bar 156.
  • the torsion spring constant of the first torsion bar 155 is, for example, equal to the torsion spring constant of the first torsion bar 145.
  • the torsion spring constant of the second torsion bar 156 is, for example, equal to the torsion spring constant of the second torsion bar 146.
  • the length and thickness of the first torsion bar 155 are equal to the length and thickness of the second torsion bar 156, and the width of the first torsion bar 155 is wider than the width of the second torsion bar 156.
  • the torsion spring constant of the first torsion bar 155 is larger than the torsion spring constant of the second torsion bar 156.
  • FIG. 5 is a graph showing the inclination of the mirror surface 11a at the time of movement in the example and the comparative example.
  • the example corresponds to the optical device 10 of the above embodiment.
  • the width of the first torsion bar 145 is 18 ⁇ m
  • the width of the second torsion bar 146 is 15 ⁇ m
  • the width of the first torsion bar 155 is 18 ⁇ m
  • the width of the second torsion bar 156 is 16 ⁇ m.
  • the length of each of the first torsion bars 145 and 155 and the second torsion bars 146 and 156 is 100 ⁇ m
  • the thickness is 70 ⁇ m.
  • the width of the first torsion bar 145 is 16 ⁇ m
  • the width of the second torsion bar 146 is 17 ⁇ m
  • the width of the first torsion bar 155 is 16 ⁇ m
  • the width of the second torsion bar 156 is 18 ⁇ m.
  • the length of each of the first torsion bars 145 and 155 and the second torsion bars 146 and 156 is 100 ⁇ m
  • the thickness is 70 ⁇ m.
  • the other configuration of the comparative example is the same as that of the example.
  • the embodiment corresponds to the case where the width of the second torsion bar 146 is narrowed by 1 ⁇ m in the configuration in which the width of the first torsion bars 145 and 155 is 18 ⁇ m and the width of the second torsion bars 146 and 156 is 16 ⁇ m.
  • the comparative example corresponds to the case where the width of the second torsion bar 146 is narrowed by 1 ⁇ m in the configuration in which the width of the first torsion bars 145 and 155 is 16 ⁇ m and the width of the second torsion bars 146 and 156 is 18 ⁇ m. .
  • the torsion spring constant of the first torsion bar 145 is larger than the torsion spring constant of the second torsion bar 146, and the first torsion bar 155
  • the torsion spring constant is larger than the torsion spring constant of the second torsion bar 156.
  • the torsion spring constant of the first torsion bar 145 is smaller than the torsion spring constant of the second torsion bar 146 and the first torsion bar 155
  • the torsion spring constant is smaller than the torsion spring constant of the second torsion bar 156.
  • Deviation of the shape of the second torsion bar 146 as described above may occur due to the following reasons.
  • the optical device 10 is formed on the SOI substrate 50 using MEMS technology (patterning and etching) or the like.
  • the processing in the longitudinal direction is performed by patterning, while the processing in the width direction is performed by etching. Therefore, while the shift of the length of the second torsion bar 146 is unlikely to occur, the shift of the width of the second torsion bar 146 may occur due to a manufacturing error or the like. Since the processing in the thickness direction of the second torsion bar 146 is performed by etching using the intermediate layer 53 as an etching stop layer, the thickness of the second torsion bar 146 hardly deviates.
  • the target posture is a posture in which the mirror surface 11 a is perpendicular to the Z-axis direction.
  • the inclination from the target posture of the mirror surface 11a was smaller than in the comparative example.
  • the torsion spring constants of the first torsion bars 145 and 155 larger than the torsion spring constants of the second torsion bars 146 and 156, it is possible to suppress the inclination from the target posture of the mirror surface 11a. This is because, in the example, although the rate of change (the ratio of the amount of deformation to the original length) of the second torsion bar 146 is larger than the rate of change in the comparative example, compared to the comparative example. This is also apparent from the fact that the inclination of the mirror surface 11a from the target posture is small.
  • the torsion spring constant of the first torsion bar 145 connected between the lever 141 and the movable mirror 11 is the second torsion connected between the lever 141 and the base 12. It is larger than the torsion spring constant of the bar 146.
  • the torsion spring constant of the first torsion bar 155 connected between the lever 151 and the movable mirror 11 is larger than the torsion spring constant of the second torsion bar 156 connected between the lever 151 and the base 12 .
  • the movable mirror 11 is moved from the target posture when the movable mirror 11 moves in the Z-axis direction. It is possible to suppress tilting. Therefore, according to the optical device 10, it is possible to suppress a decrease in optical characteristics caused by the variation in the shapes of the first torsion bars 145 and 155 and the second torsion bars 146 and 156.
  • the movable mirror 11 is prevented from tilting from the target posture not only when the width of the second torsion bar 146 becomes narrow but also when the width of the second torsion bar 146 becomes wide. be able to. In addition, even when a deviation occurs in at least one of the length and the thickness of the second torsion bar 146, the movable mirror 11 can be prevented from tilting from the target posture. Similarly, not only when the shape of the second torsion bar 146 deviates, but also when the shape of at least one of the first torsion bars 145 and 155 and the second torsion bar 156 deviates, the movable mirror 11 Can be prevented from tilting from the target attitude.
  • the width of the first torsion bars 145, 155 is wider than the width of the second torsion bars 146, 156 when viewed in the Z-axis direction.
  • the torsion spring constant of the first torsion bars 145 and 155 can be suitably made larger than the torsion spring constant of the second torsion bars 146 and 156.
  • the base 12, the movable mirror 11, the first elastic support portion 14, and the second elastic support portion 15 are configured by the SOI substrate 50.
  • the optical device 10 is provided on the base 12 and provided on the fixed comb electrodes 161 and 163 having a plurality of fixed comb teeth 161 a and 163 a, and on the first elastic support portion 14 and the second elastic support portion 15. And a movable comb electrode 162, 164 having a plurality of movable comb teeth 162a, 164a alternately arranged.
  • the actuator unit 16 for moving the movable mirror 11 can be simplified and the power consumption can be reduced.
  • the optical device 10 also includes a first elastic support 14 and a second elastic support 15. Thereby, the movement of the movable mirror 11 can be stabilized as compared with, for example, the case where only one elastic support portion is provided. In addition, the total number of torsion bars can be reduced, for example, as compared to the case where three or more elastic supports are provided. As a result, the spring constant of each torsion bar can be secured, and the influence of variations in the shape of the torsion bar can be reduced.
  • this indication is not limited to the above-mentioned embodiment.
  • the material and shape of each configuration are not limited to the above-described materials and shapes, and various materials and shapes can be adopted.
  • the width of the first torsion bar 145 is equal to the width of the second torsion bar 146, and the length of the first torsion bar 145 is shorter than the length of the second torsion bar 146.
  • the torsion spring constant of 145 may be larger than the torsion spring constant of the second torsion bar 146.
  • the width of the first torsion bar 155 is equal to the width of the second torsion bar 156, and the length of the first torsion bar 155 is shorter than the length of the second torsion bar 156.
  • the torsion spring constant may be larger than the torsion spring constant of the second torsion bar 156.
  • the torsion spring constant of the first torsion bar 145 may be larger than the torsion spring constant of the second torsion bar 146, and the length, width and thickness of each of the first torsion bar 145 and the second torsion bar 146 The relationship may be arbitrarily selected. The same applies to the first torsion bar 155 and the second torsion bar 156.
  • each of the main body 111 and the mirror surface 11a may have an arbitrary shape such as a rectangular shape or an octagonal shape when viewed from the Z-axis direction.
  • the frame portion 112 may have an arbitrary ring shape such as a rectangular ring shape or an octagonal ring shape when viewed from the Z-axis direction.
  • the frame portion 112 and the connecting portion 113 may be omitted.
  • Each of the 1st beam part 115b, the 2nd beam part 112b, and the 3rd beam part 113b may be formed in arbitrary shapes, and may be omitted.
  • the 1st torsion support part was comprised by the plate-shaped 1st torsion bar 145, the structure of a 1st torsion support part is not restricted to this.
  • the first torsion bar 145 may have any shape such as a bar shape.
  • the first torsion support may be configured by connecting a plurality of (for example, two) torsion bars in series via the connection.
  • the second torsion support may be configured by connecting a plurality of (for example, three) torsion bars in series via the connection.
  • each of the first optical function unit 17 and the second optical function unit 18 may be configured by an opening formed in the SOI substrate 50.
  • Each of the first optical function unit 17 and the second optical function unit 18 may have an arbitrary cross-sectional shape such as a circular shape or an octagonal shape.
  • the movable comb electrodes 162 and 164 may be provided on the movable mirror 11, and may be disposed, for example, along the outer edge of the frame portion 112.
  • the optical device 10 may include a movable portion provided with another optical function portion other than the mirror surface 11 a instead of the movable mirror 11. As another optical function part, a lens etc. are mentioned, for example.
  • the actuator unit 16 is not limited to the electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like.
  • the optical module 1 is not limited to that which comprises FTIR, but may comprise another optical system.
  • the optical device 10 may be configured by something other than the SOI substrate 50, and may be configured by, for example, a substrate made of only silicon.

Abstract

An optical device that comprises: a base that has a main surface; a mobile part that has an optical function part; and an elastic support part that is connected between the base and the mobile part and supports the mobile part such that the mobile part can move along a first direction that is orthogonal to the main surface. The elastic support part has: a lever; a first torsional support part that extends along a second direction and is connected between the lever and the mobile part, the second direction being the orthogonal to the first direction; and a second torsional support part that extends along the second direction and is connected between the lever and the base. The torsional spring constant of the first torsional support part is greater than the torsional spring constant of the second torsional support part.

Description

光学デバイスOptical device
 本開示は、例えばMEMS(Micro Electro Mechanical Systems)デバイスとして構成される光学デバイスに関する。 The present disclosure relates to an optical device configured as, for example, a MEMS (Micro Electro Mechanical Systems) device.
 MEMSデバイスとして、ベースと、光学機能部を有する可動部と、ベースと可動部との間に接続され、可動部が移動方向に沿って移動可能となるように可動部を支持する弾性支持部と、を備える光学デバイスが知られている(例えば特許文献1参照)。このような光学デバイスでは、弾性支持部が、可動部が移動方向に沿って移動する際に捩れ変形する捩り支持部を含んで構成される場合がある。 As a MEMS device, a base, a movable part having an optical function part, an elastic support part connected between the base and the movable part and supporting the movable part such that the movable part can move along the moving direction An optical device is known (see, for example, Patent Document 1). In such an optical device, the elastic support may be configured to include a twist support that is torsionally deformed when the movable part moves in the movement direction.
米国特許出願公開2008/0284078号明細書U.S. Patent Application Publication No. 2008/0284078
 上述したような光学デバイスでは、可動部が移動方向に沿って大きく移動可能となるように、捩り支持部の幅を狭くして捩り支持部を捩れ易く構成することが考えられる。しかしながら、そのような構成においては、製造誤差等により捩り支持部の形状にずれが生じた場合に、可動部が移動方向に移動した際に可動部が目標姿勢から傾いてしまい、その結果、光学特性が低下するおそれがある。 In the optical device as described above, it is conceivable to narrow the width of the torsion support portion so that the torsion support portion is easily twisted so that the movable portion can be moved largely along the moving direction. However, in such a configuration, when a displacement occurs in the shape of the torsion support portion due to a manufacturing error or the like, the movable portion tilts from the target posture when the movable portion moves in the movement direction, and as a result, optical There is a risk of deterioration of the characteristics.
 本開示は、捩り支持部の形状のばらつきに起因する光学特性の低下を抑制することができる光学デバイスを提供することを目的とする。 An object of the present disclosure is to provide an optical device capable of suppressing a decrease in optical characteristics due to a variation in the shape of a torsional support.
 本開示の一側面に係る光学デバイスは、主面を有するベースと、光学機能部を有する可動部と、主面を有するベースと可動部との間に接続され、可動部が主面に垂直な第1方向に沿って移動可能となるように可動部を支持する弾性支持部と、を備え、弾性支持部は、レバーと、第1方向に垂直な第2方向に沿って延在し、レバーと可動部との間に接続された第1捩り支持部と、第2方向に沿って延在し、レバーとベースとの間に接続された第2捩り支持部と、を有し、第1捩り支持部の捩りばね定数は、第2捩り支持部の捩りばね定数よりも大きい。 An optical device according to one aspect of the present disclosure is connected between a base having a main surface, a movable portion having an optical function portion, and a base having a main surface and the movable portion, and the movable portion is perpendicular to the main surface. An elastic support portion for supporting the movable portion to be movable along a first direction, the elastic support portion extending along a second direction perpendicular to the first direction, the lever being a lever A first torsion support connected between the arm and the movable part, and a second torsion support extending along the second direction and connected between the lever and the base, The torsional spring constant of the torsional support is greater than the torsional spring constant of the second torsional support.
 この光学デバイスでは、レバーと可動部との間に接続された第1捩り支持部の捩りばね定数が、レバーとベースとの間に接続された第2捩り支持部の捩りばね定数よりも大きい。これにより、製造誤差等により第1捩り支持部及び第2捩り支持部の少なくとも一方の形状にずれが生じた場合でも、可動部が第1方向に移動した際に可動部が目標姿勢から傾くのを抑制することができる。よって、この光学デバイスによれば、捩り支持部の形状のばらつきに起因する光学特性の低下を抑制することができる。 In this optical device, the torsion spring constant of the first torsion support connected between the lever and the movable part is larger than the torsion spring constant of the second torsion support connected between the lever and the base. As a result, even if the shape of at least one of the first torsion support portion and the second torsion support portion is deviated due to a manufacturing error or the like, the movable portion tilts from the target posture when the movable portion moves in the first direction. Can be suppressed. Therefore, according to this optical device, it is possible to suppress the deterioration of the optical characteristics caused by the variation in the shape of the torsion support portion.
 本開示の一側面に係る光学デバイスでは、第1方向から見た場合に、第1捩り支持部の幅は、第2捩り支持部の幅よりも広くてもよい。この場合、第1捩り支持部の捩りばね定数を第2捩り支持部の捩りばね定数よりも好適に大きくすることができる。 In the optical device according to one aspect of the present disclosure, the width of the first torsion support may be wider than the width of the second torsion support when viewed from the first direction. In this case, the torsion spring constant of the first torsion support can be suitably made larger than the torsion spring constant of the second torsion support.
 本開示の一側面に係る光学デバイスでは、第1方向から見た場合に、第1捩り支持部の長さは、第2捩り支持部の長さよりも短くてもよい。この場合、第1捩り支持部の捩りばね定数を第2捩り支持部の捩りばね定数よりも一層好適に大きくすることができる。 In the optical device according to one aspect of the present disclosure, the length of the first torsion support may be shorter than the length of the second torsion support when viewed from the first direction. In this case, the torsion spring constant of the first torsion support portion can be further preferably made larger than the torsion spring constant of the second torsion support portion.
 本開示の一側面に係る光学デバイスでは、ベース、可動部及び弾性支持部は、SOI基板によって構成されていてもよい。この場合、MEMS技術によって形成される光学デバイスにおいて、捩り支持部の形状のばらつきに起因する光学特性の低下を抑制することができる。 In the optical device according to one aspect of the present disclosure, the base, the movable portion, and the elastic support may be configured by an SOI substrate. In this case, in the optical device formed by the MEMS technology, it is possible to suppress the deterioration of the optical characteristics due to the variation in the shape of the torsional support.
 本開示の一側面に係る光学デバイスは、ベースに設けられ、複数の固定櫛歯を有する固定櫛歯電極と、前記可動部及び前記弾性支持部の少なくとも一方に設けられ、前記複数の固定櫛歯と互い違いに配置された複数の可動櫛歯を有する可動櫛歯電極と、を更に備えていてもよい。この場合、可動部を移動させるためのアクチュエータ部をシンプル化及び低消費電力化することができる。 An optical device according to one aspect of the present disclosure is provided on a base and is provided on a fixed comb electrode having a plurality of fixed comb teeth, at least one of the movable portion and the elastic support portion, and the plurality of fixed comb teeth And a movable comb electrode having a plurality of movable comb teeth alternately arranged. In this case, the actuator unit for moving the movable unit can be simplified and power consumption can be reduced.
 本開示の一側面に係る光学デバイスは、弾性支持部を一対のみ備えてもよい。この場合、例えば1つの弾性支持部のみが備えられる場合と比べて、可動部の動作を安定化することができる。また、例えば3つ以上の弾性支持部が備えられる場合と比べて、捩り支持部の総数を低減することができる。その結果、各捩り支持部のばね定数を確保することができ、捩り支持部の形状のばらつきによる影響を受け難くすることができる。 The optical device according to one aspect of the present disclosure may include only one pair of elastic support portions. In this case, the movement of the movable portion can be stabilized, for example, as compared with the case where only one elastic support portion is provided. In addition, the total number of torsion supports can be reduced, for example, as compared to the case where three or more elastic supports are provided. As a result, the spring constant of each torsion support can be secured, and the influence of the variation in the shape of the torsion support can be reduced.
 本開示の一側面によれば、捩り支持部の形状のばらつきに起因する光学特性の低下を抑制することができる光学デバイスを提供できる。 According to one aspect of the present disclosure, it is possible to provide an optical device capable of suppressing a decrease in optical characteristics due to the variation in the shape of the torsional support.
図1は、一実施形態に係る光学デバイスを備える光モジュールの縦断面図である。FIG. 1 is a longitudinal sectional view of an optical module provided with an optical device according to an embodiment. 図2、図1に示される光学デバイスの平面図である。FIG. 3 is a plan view of the optical device shown in FIGS. 2 and 1; 図3は、図2の一部を拡大して示す平面図である。FIG. 3 is a plan view showing a part of FIG. 2 in an enlarged manner. 図4は、図2のIV-IV線に沿っての断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 図5は、実施例及び比較例における移動時のミラー面の傾きを示すグラフである。FIG. 5 is a graph showing the tilt of the mirror surface at the time of movement in the example and the comparative example.
 以下、本開示の一側面に係る実施形態について、図面を参照しつつ詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明を省略する。
[光モジュールの構成]
Hereinafter, an embodiment according to one aspect of the present disclosure will be described in detail with reference to the drawings. In the following description, the same or corresponding elements will be denoted by the same reference symbols, without redundant description.
[Optical module configuration]
 図1に示されるように、光モジュール1は、ミラーユニット2及びビームスプリッタユニット3を備えている。ミラーユニット2は、光学デバイス10及び固定ミラー21を有している。光学デバイス10は、可動ミラー(可動部)11を含んでいる。光モジュール1では、ビームスプリッタユニット3、可動ミラー11及び固定ミラー21によって、測定光L0について干渉光学系が構成されている。干渉光学系は、ここでは、マイケルソン干渉光学系である。 As shown in FIG. 1, the optical module 1 includes a mirror unit 2 and a beam splitter unit 3. The mirror unit 2 has an optical device 10 and a fixed mirror 21. The optical device 10 includes a movable mirror (movable portion) 11. In the optical module 1, the beam splitter unit 3, the movable mirror 11 and the fixed mirror 21 form an interference optical system for the measurement light L 0. The interference optical system here is a Michelson interference optical system.
 光学デバイス10は、可動ミラー11に加え、ベース12、駆動部13、第1光学機能部17及び第2光学機能部18を含んでいる。ベース12は、主面12aを有している。可動ミラー11は、主面12aに平行な平面に沿ったミラー面(光学機能部)11aを有している。可動ミラー11は、主面12aに垂直なZ軸方向(Z軸に平行な方向、第1方向)に沿って移動可能となるようにベース12において支持されている。駆動部13は、Z軸方向に沿って可動ミラー11を移動させる。第1光学機能部17は、Z軸方向から見た場合に、Z軸方向に垂直なX軸方向(X軸に平行な方向、第3方向)における可動ミラー11の一方の側に配置されている。第2光学機能部18は、Z軸方向から見た場合に、X軸方向における可動ミラー11の他方の側に配置されている。第1光学機能部17及び第2光学機能部18のそれぞれは、ベース12に設けられた光通過開口部であり、Z軸方向における一方の側及び他方の側に開口している。なお、光モジュール1では、第2光学機能部18は、光通過開口部として用いられていない。光学デバイス10が他の装置に適用される場合、第1光学機能部17及び第2光学機能部18の少なくとも一方が光学機能部として用いられてもよいし、第1光学機能部17及び第2光学機能部18の両方が光学機能部として用いられなくてもよい。 The optical device 10 includes, in addition to the movable mirror 11, a base 12, a drive unit 13, a first optical function unit 17, and a second optical function unit 18. The base 12 has a major surface 12 a. The movable mirror 11 has a mirror surface (optical function portion) 11a along a plane parallel to the major surface 12a. The movable mirror 11 is supported by the base 12 so as to be movable along a Z-axis direction (a direction parallel to the Z-axis, a first direction) perpendicular to the major surface 12 a. The drive unit 13 moves the movable mirror 11 along the Z-axis direction. The first optical function unit 17 is disposed on one side of the movable mirror 11 in the X-axis direction (a direction parallel to the X-axis, a third direction) perpendicular to the Z-axis direction when viewed from the Z-axis direction There is. The second optical function unit 18 is disposed on the other side of the movable mirror 11 in the X-axis direction when viewed from the Z-axis direction. Each of the first optical function unit 17 and the second optical function unit 18 is a light passing opening provided in the base 12 and is open on one side and the other side in the Z-axis direction. In the optical module 1, the second optical function unit 18 is not used as a light passing aperture. When the optical device 10 is applied to another apparatus, at least one of the first optical function unit 17 and the second optical function unit 18 may be used as an optical function unit, or the first optical function unit 17 and the second optical function unit 18 may be used. Both of the optical function units 18 may not be used as optical function units.
 固定ミラー21は、主面12aに平行な平面(Z軸方向に垂直な平面)に沿って延在するミラー面21aを有している。固定ミラー21のベース12に対する位置は、固定されている。ミラーユニット2においては、可動ミラー11のミラー面11a及び固定ミラー21のミラー面21aが、Z軸方向における一方の側(ビームスプリッタユニット3側)を向いている。 The fixed mirror 21 has a mirror surface 21a extending along a plane parallel to the major surface 12a (a plane perpendicular to the Z-axis direction). The position of the fixed mirror 21 with respect to the base 12 is fixed. In the mirror unit 2, the mirror surface 11a of the movable mirror 11 and the mirror surface 21a of the fixed mirror 21 face one side (the beam splitter unit 3 side) in the Z-axis direction.
 ミラーユニット2は、光学デバイス10及び固定ミラー21に加え、支持体22、サブマウント23及びパッケージ24を有している。パッケージ24は、光学デバイス10、固定ミラー21、支持体22及びサブマウント23を収容している。パッケージ24は、底壁241、側壁242及び天壁243を含んでいる。パッケージ24は、例えば、直方体箱状に形成されている。パッケージ24は、例えば、30×25×10(厚さ)mm程度のサイズを有している。底壁241及び側壁242は、互いに一体的に形成されている。天壁243は、Z軸方向において底壁241と対向しており、側壁242に固定されている。天壁243は、測定光L0に対して光透過性を有している。ミラーユニット2では、パッケージ24によって空間Sが形成されている。空間Sは、例えば、パッケージ24に設けられた通気孔又は隙間等を介してミラーユニット2の外部に開放されている。このように空間Sが気密な空間でない場合、パッケージ24内に存在する樹脂材料からのアウトガス、又はパッケージ24内に存在する水分等に起因するミラー面11aの汚染又は曇り等を抑制することができる。なお、空間Sは、高い真空度が維持された気密な空間、或いは窒素等の不活性ガスが充填された気密な空間であってもよい。 In addition to the optical device 10 and the fixed mirror 21, the mirror unit 2 has a support 22, a submount 23 and a package 24. The package 24 accommodates the optical device 10, the fixed mirror 21, the support 22 and the submount 23. The package 24 includes a bottom wall 241, side walls 242 and a top wall 243. The package 24 is formed in, for example, a rectangular box shape. The package 24 has, for example, a size of about 30 × 25 × 10 (thickness) mm. The bottom wall 241 and the side wall 242 are integrally formed with each other. The top wall 243 faces the bottom wall 241 in the Z-axis direction, and is fixed to the side wall 242. The top wall 243 is light transmissive to the measurement light L0. In the mirror unit 2, a space S is formed by the package 24. The space S is opened to the outside of the mirror unit 2 through, for example, a vent or a gap provided in the package 24. As described above, when the space S is not an airtight space, it is possible to suppress contamination, fogging, etc. of the mirror surface 11 a due to outgassing from the resin material present in the package 24 or moisture present in the package 24. . The space S may be an airtight space in which a high degree of vacuum is maintained, or an airtight space filled with an inert gas such as nitrogen.
 底壁241の内面には、サブマウント23を介して支持体22が固定されている。支持体22は、例えば、矩形板状に形成されている。支持体22は、測定光L0に対して光透過性を有している。支持体22におけるサブマウント23とは反対側の表面22aには、光学デバイス10のベース12が固定されている。つまり、ベース12は、支持体22によって支持されている。支持体22の表面22aには、凹部22bが形成されており、光学デバイス10と天壁243との間には、隙間(空間Sの一部)が形成されている。これにより、可動ミラー11がZ軸方向に沿って移動させられた際に、可動ミラー11及び駆動部13が支持体22及び天壁243に接触することが防止される。 The support 22 is fixed to the inner surface of the bottom wall 241 via the submount 23. The support 22 is formed, for example, in a rectangular plate shape. The support 22 is light transmissive to the measurement light L0. The base 12 of the optical device 10 is fixed to the surface 22 a of the support 22 opposite to the submount 23. That is, the base 12 is supported by the support 22. A recess 22 b is formed on the surface 22 a of the support 22, and a gap (a part of the space S) is formed between the optical device 10 and the top wall 243. Thereby, when the movable mirror 11 is moved along the Z-axis direction, the movable mirror 11 and the drive unit 13 are prevented from contacting the support 22 and the top wall 243.
 サブマウント23には、開口23aが形成されている。固定ミラー21は、開口23a内に位置するように、支持体22におけるサブマウント23側の表面22cに配置されている。つまり、固定ミラー21は、支持体22におけるベース12とは反対側の表面22cに配置されている。固定ミラー21は、Z軸方向から見た場合に、X軸方向における可動ミラー11の一方の側に配置されている。固定ミラー21は、Z軸方向から見た場合に、光学デバイス10の第1光学機能部17と重なっている。 An opening 23 a is formed in the submount 23. The fixed mirror 21 is disposed on the surface 22c of the support 22 on the submount 23 side so as to be located in the opening 23a. That is, the fixed mirror 21 is disposed on the surface 22 c of the support 22 opposite to the base 12. The fixed mirror 21 is disposed on one side of the movable mirror 11 in the X-axis direction when viewed from the Z-axis direction. The fixed mirror 21 overlaps the first optical function unit 17 of the optical device 10 when viewed in the Z-axis direction.
 ミラーユニット2は、複数のリードピン25及び複数のワイヤ26を更に有している。各リードピン25は、底壁241を貫通した状態で、底壁241に固定されている。各リードピン25は、ワイヤ26を介して駆動部13と電気的に接続されている。ミラーユニット2では、可動ミラー11をZ軸方向に沿って移動させるための電気信号が、複数のリードピン25及び複数のワイヤ26を介して駆動部13に付与される。 The mirror unit 2 further includes a plurality of lead pins 25 and a plurality of wires 26. Each lead pin 25 is fixed to the bottom wall 241 in a state of penetrating the bottom wall 241. Each lead pin 25 is electrically connected to the drive unit 13 via the wire 26. In the mirror unit 2, an electrical signal for moving the movable mirror 11 along the Z-axis direction is applied to the drive unit 13 via the plurality of lead pins 25 and the plurality of wires 26.
 ビームスプリッタユニット3は、パッケージ24の天壁243によって支持されている。具体的には、ビームスプリッタユニット3は、天壁243における光学デバイス10とは反対側の表面243aに光学樹脂4によって固定されている。光学樹脂4は、測定光L0に対して光透過性を有している。 The beam splitter unit 3 is supported by the top wall 243 of the package 24. Specifically, the beam splitter unit 3 is fixed to the surface 243 a of the top wall 243 opposite to the optical device 10 by the optical resin 4. The optical resin 4 is light transmissive to the measurement light L0.
 ビームスプリッタユニット3は、ハーフミラー面31、全反射ミラー面32及び複数の光学面33a,33b,33c,33dを有している。ビームスプリッタユニット3は、複数の光学ブロックが接合されることで構成されている。ハーフミラー面31は、例えば誘電体多層膜によって形成されている。全反射ミラー面32は、例えば金属膜によって形成されている。 The beam splitter unit 3 has a half mirror surface 31, a total reflection mirror surface 32, and a plurality of optical surfaces 33a, 33b, 33c, and 33d. The beam splitter unit 3 is configured by bonding a plurality of optical blocks. The half mirror surface 31 is formed of, for example, a dielectric multilayer film. The total reflection mirror surface 32 is formed of, for example, a metal film.
 光学面33aは、例えばZ軸方向に垂直な面であり、Z軸方向から見た場合に、光学デバイス10の第1光学機能部17及び固定ミラー21のミラー面21aと重なっている。光学面33aは、Z軸方向に沿って入射した測定光L0を透過させる。 The optical surface 33a is, for example, a surface perpendicular to the Z-axis direction, and overlaps the first optical function portion 17 of the optical device 10 and the mirror surface 21a of the fixed mirror 21 when viewed from the Z-axis direction. The optical surface 33a transmits the measurement light L0 incident along the Z-axis direction.
 ハーフミラー面31は、例えば光学面33aに対して45度傾斜した面であり、Z軸方向から見た場合に、光学デバイス10の第1光学機能部17及び固定ミラー21のミラー面21aと重なっている。ハーフミラー面31は、Z軸方向に沿って光学面33aに入射した測定光L0の一部をX軸方向に沿って反射し且つ当該測定光L0の残部をZ軸方向に沿って固定ミラー21側に透過させる。 The half mirror surface 31 is, for example, a surface inclined 45 degrees with respect to the optical surface 33a, and overlaps the first optical function portion 17 of the optical device 10 and the mirror surface 21a of the fixed mirror 21 when viewed from the Z-axis direction. ing. The half mirror surface 31 reflects a part of the measurement light L0 incident on the optical surface 33a along the Z-axis direction along the X-axis direction, and the remaining part of the measurement light L0 along the Z-axis direction. Permeate to the side.
 全反射ミラー面32は、ハーフミラー面31に平行な面であり、Z軸方向から見た場合に可動ミラー11のミラー面11aと重なっており且つX軸方向から見た場合にハーフミラー面31と重なっている。全反射ミラー面32は、ハーフミラー面31によって反射された測定光L0の一部をZ軸方向に沿って可動ミラー11側に反射する。 The total reflection mirror surface 32 is a surface parallel to the half mirror surface 31. The total reflection mirror surface 32 overlaps the mirror surface 11a of the movable mirror 11 when viewed from the Z axis direction and when viewed from the X axis direction. And overlap. The total reflection mirror surface 32 reflects a part of the measurement light L0 reflected by the half mirror surface 31 toward the movable mirror 11 along the Z-axis direction.
 光学面33bは、光学面33aに平行な面であり、Z軸方向から見た場合に可動ミラー11のミラー面11aと重なっている。光学面33bは、全反射ミラー面32によって反射された測定光L0の一部をZ軸方向に沿って可動ミラー11側に透過させる。 The optical surface 33 b is a surface parallel to the optical surface 33 a and overlaps the mirror surface 11 a of the movable mirror 11 when viewed in the Z-axis direction. The optical surface 33b transmits a part of the measurement light L0 reflected by the total reflection mirror surface 32 to the movable mirror 11 side along the Z-axis direction.
 光学面33cは、光学面33aに平行な面であり、Z軸方向から見た場合に固定ミラー21のミラー面21aと重なっている。光学面33cは、ハーフミラー面31を透過した測定光L0の残部をZ軸方向に沿って固定ミラー21側に透過させる。 The optical surface 33c is a surface parallel to the optical surface 33a, and overlaps the mirror surface 21a of the fixed mirror 21 when viewed from the Z-axis direction. The optical surface 33 c transmits the remaining portion of the measurement light L 0 transmitted through the half mirror surface 31 to the fixed mirror 21 side along the Z-axis direction.
 光学面33dは、例えばX軸方向に垂直な面であり、X軸方向から見た場合にハーフミラー面31及び全反射ミラー面32と重なっている。光学面33dは、測定光L1をX軸方向に沿って透過させる。測定光L1は、可動ミラー11のミラー面11a及び全反射ミラー面32で順次に反射されてハーフミラー面31を透過した測定光L0の一部と、固定ミラー21のミラー面21a及びハーフミラー面31で順次に反射された測定光L0の残部との干渉光である。 The optical surface 33 d is, for example, a surface perpendicular to the X-axis direction, and overlaps the half mirror surface 31 and the total reflection mirror surface 32 when viewed from the X-axis direction. The optical surface 33d transmits the measurement light L1 along the X-axis direction. The measurement light L1 is sequentially reflected by the mirror surface 11a of the movable mirror 11 and the total reflection mirror surface 32 and transmitted through the half mirror surface 31. A part of the measurement light L0 and the mirror surface 21a of the fixed mirror 21 and the half mirror surface This is interference light with the remaining part of the measurement light L0 sequentially reflected by 31.
 以上のように構成された光モジュール1では、光モジュール1の外部から光学面33aを介してビームスプリッタユニット3に測定光L0が入射すると、測定光L0の一部は、ハーフミラー面31及び全反射ミラー面32で順次に反射されて、可動ミラー11のミラー面11aに向かって進行する。そして、測定光L0の一部は、可動ミラー11のミラー面11aで反射されて、同一の光路(後述する光路P1)上を逆方向に進行し、ビームスプリッタユニット3のハーフミラー面31を透過する。 In the optical module 1 configured as described above, when the measurement light L0 is incident on the beam splitter unit 3 from the outside of the optical module 1 via the optical surface 33a, a part of the measurement light L0 has the half mirror surface 31 and all The light is reflected sequentially by the reflection mirror surface 32 and travels toward the mirror surface 11 a of the movable mirror 11. Then, a part of the measurement light L0 is reflected by the mirror surface 11a of the movable mirror 11, travels in the opposite direction on the same optical path (optical path P1 described later), and passes through the half mirror surface 31 of the beam splitter unit 3. Do.
 一方、測定光L0の残部は、ビームスプリッタユニット3のハーフミラー面31を透過した後、第1光学機能部17を通過し、更に、支持体22を透過して、固定ミラー21のミラー面21aに向かって進行する。そして、測定光L0の残部は、固定ミラー21のミラー面21aで反射されて、同一の光路(後述する光路P2)上を逆方向に進行し、ビームスプリッタユニット3のハーフミラー面31で反射される。 On the other hand, the remaining part of the measurement light L 0 passes through the half mirror surface 31 of the beam splitter unit 3, passes through the first optical function unit 17, passes through the support 22, and passes through the mirror surface 21 a of the fixed mirror 21. Progress towards The remaining portion of the measurement light L0 is reflected by the mirror surface 21a of the fixed mirror 21, travels in the opposite direction on the same optical path (optical path P2 described later), and is reflected by the half mirror surface 31 of the beam splitter unit 3. Ru.
 ビームスプリッタユニット3のハーフミラー面31を透過した測定光L0の一部と、ビームスプリッタユニット3のハーフミラー面31で反射された測定光L0の残部とは、干渉光である測定光L1となり、測定光L1は、ビームスプリッタユニット3から光学面33dを介して光モジュール1の外部に出射する。光モジュール1によれば、Z軸方向に沿って可動ミラー11を高速で往復動させることができるので、小型且つ高精度のFTIR(フーリエ変換型赤外分光分析器)を提供することができる。 Part of the measurement light L0 transmitted through the half mirror surface 31 of the beam splitter unit 3 and the remaining part of the measurement light L0 reflected by the half mirror surface 31 of the beam splitter unit 3 become measurement light L1 which is interference light, The measurement light L1 is emitted from the beam splitter unit 3 to the outside of the optical module 1 via the optical surface 33d. According to the optical module 1, since the movable mirror 11 can be reciprocated at high speed along the Z-axis direction, a compact and high-precision FTIR (Fourier transform infrared spectrometer) can be provided.
 支持体22は、ビームスプリッタユニット3と可動ミラー11との間の光路P1と、ビームスプリッタユニット3と固定ミラー21との間の光路P2との間の光路差を補正する。具体的には、光路P1は、ハーフミラー面31から、全反射ミラー面32及び光学面33bを順次に介して、基準位置に位置する可動ミラー11のミラー面11aに至る光路であって、測定光L0の一部が進行する光路である。光路P2は、ハーフミラー面31から、光学面33c及び第1光学機能部17を順次に介して、固定ミラー21のミラー面21aに至る光路であって、測定光L0の残部が進行する光路である。支持体22は、光路P1の光路長(光路P1が通る各媒質の屈折率を考慮した光路長)と光路P2の光路長(光路P2が通る各媒質の屈折率を考慮した光路長)との差が小さくなる(例えば無くなる)ように、光路P1と光路P2との間の光路差を補正する。なお、支持体22は、例えば、ビームスプリッタユニット3を構成する各光学ブロックと同一の光透過性材料によって形成することができる。その場合、支持体22の厚さ(Z軸方向における長さ)は、X軸方向におけるハーフミラー面31と全反射ミラー面32との距離と同一とすることができる。
[光学デバイスの構成]
The support 22 corrects the optical path difference between the optical path P 1 between the beam splitter unit 3 and the movable mirror 11 and the optical path P 2 between the beam splitter unit 3 and the fixed mirror 21. Specifically, the optical path P1 is an optical path from the half mirror surface 31 to the mirror surface 11a of the movable mirror 11 located at the reference position through the total reflection mirror surface 32 and the optical surface 33b sequentially It is a light path along which a part of the light L0 travels. The optical path P2 is an optical path from the half mirror surface 31 to the mirror surface 21a of the fixed mirror 21 sequentially through the optical surface 33c and the first optical function unit 17, and is an optical path through which the remaining portion of the measurement light L0 travels. is there. The support 22 has an optical path length of the optical path P1 (optical path length considering the refractive index of each medium through which the optical path P1 passes) and an optical path length of the optical path P2 (optical path length considering the refractive index of each medium through which the optical path P2 passes). The optical path difference between the optical path P1 and the optical path P2 is corrected so that the difference becomes smaller (for example, eliminated). The support 22 can be made of, for example, the same light transmitting material as each optical block constituting the beam splitter unit 3. In that case, the thickness (length in the Z-axis direction) of the support 22 can be made equal to the distance between the half mirror surface 31 and the total reflection mirror surface 32 in the X-axis direction.
[Optical Device Configuration]
 図2、図3及び図4に示されるように、可動ミラー11のうちミラー面11a以外の部分、ベース12、駆動部13、第1光学機能部17及び第2光学機能部18は、SOI(Silicon On Insulator)基板50によって構成されている。つまり、光学デバイス10は、SOI基板50によって構成されている。光学デバイス10は、例えば、矩形板状に形成されている。光学デバイス10は、例えば、15×10×0.3(厚さ)mm程度のサイズを有している。SOI基板50は、支持層51、デバイス層52及び中間層53を有している。支持層51は、第1シリコン層である。デバイス層52は、第2シリコン層である。中間層53は、支持層51とデバイス層52との間に配置された絶縁層である。 As shown in FIG. 2, FIG. 3 and FIG. 4, the movable mirror 11 other than the mirror surface 11 a, the base 12, the drive unit 13, the first optical function unit 17 and the second optical function unit 18 A silicon on insulator (substrate) 50 is formed. That is, the optical device 10 is configured of the SOI substrate 50. The optical device 10 is formed, for example, in a rectangular plate shape. The optical device 10 has, for example, a size of about 15 × 10 × 0.3 (thickness) mm. The SOI substrate 50 has a support layer 51, a device layer 52 and an intermediate layer 53. The support layer 51 is a first silicon layer. The device layer 52 is a second silicon layer. The intermediate layer 53 is an insulating layer disposed between the support layer 51 and the device layer 52.
 ベース12は、支持層51、デバイス層52及び中間層53の一部によって形成されている。ベース12の主面12aは、デバイス層52における中間層53とは反対側の表面である。ベース12における主面12aとは反対側の主面12bは、支持層51における中間層53とは反対側の表面である。光モジュール1では、ベース12の主面12aと支持体22の表面22aとが互いに接合されている(図1参照)。 The base 12 is formed by the support layer 51, the device layer 52 and part of the intermediate layer 53. The major surface 12 a of the base 12 is the surface of the device layer 52 opposite to the intermediate layer 53. The main surface 12 b of the base 12 opposite to the main surface 12 a is a surface of the support layer 51 opposite to the intermediate layer 53. In the optical module 1, the main surface 12a of the base 12 and the surface 22a of the support 22 are bonded to each other (see FIG. 1).
 可動ミラー11は、軸線R1と軸線R2との交点を中心位置(重心位置)として配置されている。軸線R1は、X軸方向に延在する直線である。軸線R2は、X軸方向及びZ軸方向に垂直なY軸方向(Y軸に平行な方向、第2方向)に延在する直線である。光学デバイス10は、Z軸方向から見た場合に、軸線R1に関して線対称且つ軸線R2に関して線対称な形状を呈している。 The movable mirror 11 is disposed with a point of intersection of the axis R1 and the axis R2 as a center position (center of gravity). The axis R1 is a straight line extending in the X-axis direction. The axis R2 is a straight line extending in a Y-axis direction (a direction parallel to the Y-axis, a second direction) perpendicular to the X-axis direction and the Z-axis direction. When viewed in the Z-axis direction, the optical device 10 exhibits a shape that is line-symmetrical about the axis R1 and line-symmetrical about the axis R2.
 可動ミラー11は、本体部111、枠部112及び一対の連結部113を有している。本体部111は、Z軸方向から見た場合に円形状を呈している。本体部111は、中央部114及び外縁部115を有している。中央部114における主面12b側の表面上には、例えば、金属膜が形成されることで、円形状のミラー面11aが設けられている。中央部114は、デバイス層52の一部によって形成されている。外縁部115は、Z軸方向から見た場合に中央部114を囲んでいる。外縁部115は、第1本体部115a及び第1梁部115bを有している。第1本体部115aは、デバイス層52の一部によって形成されている。 The movable mirror 11 has a main body portion 111, a frame portion 112, and a pair of connecting portions 113. The main body portion 111 has a circular shape when viewed from the Z-axis direction. The main body portion 111 has a central portion 114 and an outer edge portion 115. For example, a metal film is formed on the surface of the central portion 114 on the main surface 12 b side, and a circular mirror surface 11 a is provided. The central portion 114 is formed by a portion of the device layer 52. The outer edge portion 115 surrounds the central portion 114 when viewed in the Z-axis direction. The outer edge portion 115 has a first main body portion 115 a and a first beam portion 115 b. The first main body portion 115 a is formed of a part of the device layer 52.
 第1梁部115bは、支持層51及び中間層53の一部によって形成されている。第1梁部115bは、第1本体部115aにおける主面12b側の表面上に設けられている。第1梁部115bは、Z軸方向における外縁部115の厚さがZ軸方向における中央部114の厚さよりも厚くなるように形成されている。第1梁部115bは、Z軸方向から見た場合に、円環状を呈し、ミラー面11aを囲んでいる。第1梁部115bは、Z軸方向から見た場合に、本体部111の外縁に沿って延在している。本実施形態では、第1梁部115bの外縁は、Z軸方向から見た場合に、本体部111の外縁から所定の間隔を空けて、本体部111の外縁に沿って延在している。第1梁部115bの内縁は、Z軸方向から見た場合に、ミラー面11aの外縁から所定の間隔を空けて、ミラー面11aの外縁に沿って延在している。 The first beam portion 115 b is formed of a part of the support layer 51 and the intermediate layer 53. The first beam portion 115 b is provided on the surface of the first main portion 115 a on the main surface 12 b side. The first beam portion 115 b is formed such that the thickness of the outer edge portion 115 in the Z-axis direction is larger than the thickness of the central portion 114 in the Z-axis direction. When viewed in the Z-axis direction, the first beam portion 115b has an annular shape and surrounds the mirror surface 11a. The first beam portion 115 b extends along the outer edge of the main body portion 111 when viewed in the Z-axis direction. In the present embodiment, the outer edge of the first beam portion 115 b extends along the outer edge of the main body portion 111 at a predetermined distance from the outer edge of the main body portion 111 when viewed in the Z-axis direction. The inner edge of the first beam portion 115b extends along the outer edge of the mirror surface 11a at a predetermined distance from the outer edge of the mirror surface 11a when viewed in the Z-axis direction.
 枠部112は、Z軸方向から見た場合に、本体部111から所定の間隔を空けて本体部111を囲んでいる。枠部112は、Z軸方向から見た場合に円環状を呈している。枠部112は、第2本体部112a及び第2梁部112bを有している。第2本体部112aは、デバイス層52の一部によって形成されている。 The frame portion 112 surrounds the main body portion 111 at a predetermined distance from the main body portion 111 when viewed from the Z-axis direction. The frame portion 112 has an annular shape when viewed from the Z-axis direction. The frame 112 has a second main body 112a and a second beam 112b. The second main body 112 a is formed by a part of the device layer 52.
 第2梁部112bは、支持層51及び中間層53の一部によって形成されている。第2梁部112bは、第2本体部112aにおける主面12b側の表面上に設けられている。第2梁部112bは、Z軸方向における枠部112の厚さがZ軸方向における中央部114の厚さよりも厚くなるように形成されている。第2梁部112bは、Z軸方向から見た場合に円環状を呈している。第2梁部112bの外縁は、Z軸方向から見た場合に、枠部112の外縁から所定の間隔を空けて、枠部112の外縁に沿って延在している。第2梁部112bの内縁は、Z軸方向から見た場合に、枠部112の内縁から所定の間隔を空けて、枠部112の内縁に沿って延在している。 The second beam portion 112 b is formed of a part of the support layer 51 and the intermediate layer 53. The second beam portion 112 b is provided on the surface of the second main portion 112 a on the main surface 12 b side. The second beam portion 112 b is formed such that the thickness of the frame portion 112 in the Z-axis direction is larger than the thickness of the central portion 114 in the Z-axis direction. The second beam portion 112 b has an annular shape when viewed in the Z-axis direction. The outer edge of the second beam 112 b extends along the outer edge of the frame 112 at a predetermined distance from the outer edge of the frame 112 when viewed in the Z-axis direction. The inner edge of the second beam portion 112 b extends along the inner edge of the frame portion 112 at a predetermined distance from the inner edge of the frame portion 112 when viewed in the Z-axis direction.
 Z軸方向における第2梁部112bの厚さは、Z軸方向における第1梁部115bの厚さと等しい。Z軸方向から見た場合に、第2梁部112bの幅は、第1梁部115bの幅よりも広い。Z軸方向から見た場合における第1梁部115bの幅とは、第1梁部115bの延在方向に垂直な方向における第1梁部115bの長さであり、本実施形態では、第1梁部115bの半径方向における第1梁部115bの長さである。この点は、Z軸方向から見た場合における第2梁部112bの幅についても同様である。 The thickness of the second beam portion 112b in the Z-axis direction is equal to the thickness of the first beam portion 115b in the Z-axis direction. When viewed in the Z-axis direction, the width of the second beam portion 112 b is wider than the width of the first beam portion 115 b. The width of the first beam portion 115b when viewed from the Z-axis direction is the length of the first beam portion 115b in the direction perpendicular to the extending direction of the first beam portion 115b, and in the present embodiment, the first beam portion 115b The length of the first beam portion 115b in the radial direction of the beam portion 115b. The same applies to the width of the second beam portion 112 b when viewed in the Z-axis direction.
 一対の連結部113のそれぞれは、本体部111と枠部112とを互いに連結している。一対の連結部113は、本体部111に対してY軸方向における一方の側と他方の側とにそれぞれ配置されている。各連結部113は、第3本体部113a及び第3梁部113bを有している。第3本体部113aは、デバイス層52の一部によって形成されている。第3本体部113aは、第1本体部115a及び第2本体部112aに接続されている。 Each of the pair of connecting portions 113 connects the main body portion 111 and the frame portion 112 to each other. The pair of connecting portions 113 is disposed on one side and the other side in the Y-axis direction with respect to the main body portion 111. Each connecting portion 113 has a third main portion 113a and a third beam portion 113b. The third main body portion 113 a is formed of a part of the device layer 52. The third main body portion 113a is connected to the first main body portion 115a and the second main body portion 112a.
 第3梁部113bは、支持層51及び中間層53の一部によって形成されている。第3梁部113bは、第1梁部115b及び第2梁部112bに接続されている。第3梁部113bは、第3本体部113aにおける主面12b側の表面上に設けられている。第3梁部113bは、Z軸方向における連結部113の厚さがZ軸方向における中央部114の厚さよりも厚くなるように形成されている。Z軸方向における第3梁部113bの厚さは、Z軸方向における第1梁部115b及び第2梁部112bのそれぞれの厚さと等しい。第3梁部113bの幅は、第1梁部115b及び第2梁部112bのそれぞれの幅よりも大きい。第3梁部113bの幅とは、第1梁部115bの延在方向に沿っての第3梁部113bの長さである。 The third beam portion 113 b is formed of a part of the support layer 51 and the intermediate layer 53. The third beam portion 113 b is connected to the first beam portion 115 b and the second beam portion 112 b. The third beam portion 113 b is provided on the surface of the third main portion 113 a on the main surface 12 b side. The third beam portion 113 b is formed such that the thickness of the connection portion 113 in the Z-axis direction is larger than the thickness of the central portion 114 in the Z-axis direction. The thickness of the third beam portion 113b in the Z-axis direction is equal to the thickness of each of the first beam portion 115b and the second beam portion 112b in the Z-axis direction. The width of the third beam portion 113b is larger than the width of each of the first beam portion 115b and the second beam portion 112b. The width of the third beam portion 113b is the length of the third beam portion 113b in the extending direction of the first beam portion 115b.
 可動ミラー11は、一対のブラケット116及び一対のブラケット117を更に有している。各ブラケット116及び各ブラケット117は、デバイス層52の一部によって形成されている。各ブラケット116は、Y軸方向に沿って延在し、Z軸方向から見た場合に矩形状を呈している。一方のブラケット116は、枠部112の側面からY軸方向における一方の側に向かって突出しており、他方のブラケット116は、枠部112の側面からY軸方向における他方の側に向かって突出している。一対のブラケット116は、Y軸方向に平行な同一の中心線上に配置されている。各ブラケット116は、枠部112における第1光学機能部17側の端部から延在している。 The movable mirror 11 further includes a pair of brackets 116 and a pair of brackets 117. Each bracket 116 and each bracket 117 are formed by a part of the device layer 52. Each bracket 116 extends along the Y-axis direction, and has a rectangular shape when viewed from the Z-axis direction. One bracket 116 protrudes from one side of the frame 112 toward one side in the Y-axis direction, and the other bracket 116 protrudes from the side of the frame 112 toward the other side in the Y-axis direction. There is. The pair of brackets 116 is disposed on the same center line parallel to the Y-axis direction. Each bracket 116 extends from an end of the frame portion 112 on the first optical function portion 17 side.
 各ブラケット117は、Y軸方向に沿って延在し、Z軸方向から見た場合に矩形状を呈している。一方のブラケット117は、枠部112の側面からY軸方向における一方の側に向かって突出しており、他方のブラケット117は、枠部112の側面からY軸方向における他方の側に向かって突出している。一対のブラケット117は、Y軸方向に平行な同一の中心線上に配置されている。各ブラケット117は、枠部112における第2光学機能部18側(第1光学機能部17とは反対側)の端部から延在している。 Each bracket 117 extends along the Y-axis direction, and has a rectangular shape when viewed from the Z-axis direction. One bracket 117 protrudes from one side of the frame 112 toward one side in the Y-axis direction, and the other bracket 117 protrudes from the side of the frame 112 toward the other side in the Y-axis direction. There is. The pair of brackets 117 is disposed on the same center line parallel to the Y-axis direction. Each bracket 117 extends from an end of the frame 112 on the second optical function portion 18 side (opposite to the first optical function portion 17).
 駆動部13は、第1弾性支持部14、第2弾性支持部15及びアクチュエータ部16を有している。第1弾性支持部14、第2弾性支持部15及びアクチュエータ部16は、デバイス層52によって形成されている。 The drive unit 13 has a first elastic support 14, a second elastic support 15, and an actuator 16. The first elastic support portion 14, the second elastic support portion 15 and the actuator portion 16 are formed by the device layer 52.
 第1弾性支持部14及び第2弾性支持部15のそれぞれは、ベース12と可動ミラー11との間に接続されている。第1弾性支持部14及び第2弾性支持部15は、可動ミラー11がZ軸方向に沿って移動可能となるように可動ミラー11を支持している。 Each of the first elastic support portion 14 and the second elastic support portion 15 is connected between the base 12 and the movable mirror 11. The first elastic support portion 14 and the second elastic support portion 15 support the movable mirror 11 so that the movable mirror 11 can move along the Z-axis direction.
 第1弾性支持部14は、一対のレバー141、リンク142、リンク143、一対のブラケット144、一対の第1トーションバー(第1捩り支持部)145、一対の第2トーションバー(第2捩り支持部)146、及び一対の電極支持部147を有している。一対のレバー141は、Y軸方向における第1光学機能部17の両側に配置されている。各レバー141は、Z軸方向に垂直な平面に沿って延在する板状を呈している。本実施形態では、各レバー141は、X軸方向に沿って延在している。 The first elastic support portion 14 includes a pair of levers 141, a link 142, a link 143, a pair of brackets 144, a pair of first torsion bars (first torsion support portions) 145, and a pair of second torsion bars (second torsion support). Part) 146 and a pair of electrode support parts 147. The pair of levers 141 is disposed on both sides of the first optical function portion 17 in the Y-axis direction. Each lever 141 has a plate shape extending along a plane perpendicular to the Z-axis direction. In the present embodiment, each lever 141 extends along the X-axis direction.
 リンク142は、一対のレバー141における可動ミラー11側の端部141a間に掛け渡されている。リンク142は、Z軸方向に垂直な平面に沿って延在する板状を呈している。リンク142は、Y軸方向に沿って延在している。リンク143は、一対のレバー141における可動ミラー11とは反対側の端部141b間に掛け渡されている。リンク143は、Z軸方向に垂直な平面に沿って延在する板状を呈し、Y軸方向に沿って延在している。本実施形態では、第1光学機能部17は、一対のレバー141、リンク142及びリンク143によって画定された開口部である。第1光学機能部17は、Z軸方向から見た場合に矩形状を呈している。第1光学機能部17は、例えば空洞である。或いは、第1光学機能部17を構成する開口部内には、測定光L0に対して光透過性を有する材料が配置されてもよい。 The link 142 is bridged between the ends 141 a of the pair of levers 141 on the movable mirror 11 side. The link 142 has a plate shape extending along a plane perpendicular to the Z-axis direction. The link 142 extends along the Y-axis direction. The link 143 is bridged between the end 141 b of the pair of levers 141 opposite to the movable mirror 11. The link 143 has a plate shape extending along a plane perpendicular to the Z-axis direction, and extends along the Y-axis direction. In the present embodiment, the first optical function portion 17 is an opening defined by the pair of levers 141, the link 142 and the link 143. The first optical function unit 17 has a rectangular shape when viewed from the Z-axis direction. The first optical function unit 17 is, for example, a cavity. Alternatively, a material having optical transparency to the measurement light L0 may be disposed in the opening forming the first optical function unit 17.
 各ブラケット144は、Z軸方向から見た場合に矩形状を呈している。各ブラケット144は、可動ミラー11側に突出するように、リンク142における可動ミラー11側の表面に設けられている。一方のブラケット144は、リンク142の一端の近傍に配置されており、他方のブラケット144は、リンク142の他端の近傍に配置されている。 Each bracket 144 has a rectangular shape when viewed from the Z-axis direction. Each bracket 144 is provided on the surface of the link 142 on the movable mirror 11 side so as to protrude to the movable mirror 11 side. One bracket 144 is disposed in the vicinity of one end of the link 142, and the other bracket 144 is disposed in the vicinity of the other end of the link 142.
 一対の第1トーションバー145は、それぞれ、一方のブラケット116の先端部と一方のブラケット144との間、及び、他方のブラケット116の先端部と他方のブラケット144との間に掛け渡されている。つまり、一対の第1トーションバー145は、それぞれ、一対のレバー141と可動ミラー11との間に接続されている。各第1トーションバー145は、Y軸方向に沿って延在している。一対の第1トーションバー145は、Y軸方向に平行な同一の中心線上に配置されている。 The pair of first torsion bars 145 is stretched between the end of one bracket 116 and one bracket 144 and between the end of the other bracket 116 and the other bracket 144, respectively. . That is, the pair of first torsion bars 145 is connected between the pair of levers 141 and the movable mirror 11 respectively. Each first torsion bar 145 extends along the Y-axis direction. The pair of first torsion bars 145 are disposed on the same center line parallel to the Y-axis direction.
 一対の第2トーションバー146は、それぞれ、一方のレバー141における可動ミラー11とは反対側の端部141bとベース12との間、及び、他方のレバー141における可動ミラー11とは反対側の端部141bとベース12との間に掛け渡されている。つまり、一対の第2トーションバー146は、それぞれ、一対のレバー141とベース12との間に接続されている。各第2トーションバー146は、Y軸方向に沿って延在している。一対の第2トーションバー146は、Y軸方向に平行な同一の中心線上に配置されている。各レバー141の端部141bには、Y軸方向における外側に突出した突出部141cが設けられており、第2トーションバー146は、突出部141cに接続されている。 The pair of second torsion bars 146 is respectively disposed between the end portion 141 b of the one lever 141 opposite to the movable mirror 11 and the base 12 and the other end of the other lever 141 opposite to the movable mirror 11. It is bridged between the section 141 b and the base 12. That is, the pair of second torsion bars 146 is connected between the pair of levers 141 and the base 12 respectively. Each second torsion bar 146 extends along the Y-axis direction. The pair of second torsion bars 146 are disposed on the same center line parallel to the Y-axis direction. The end 141 b of each lever 141 is provided with a projecting portion 141 c that protrudes outward in the Y-axis direction, and the second torsion bar 146 is connected to the projecting portion 141 c.
 各電極支持部147は、Y軸方向に沿って延在し、Z軸方向から見た場合に矩形状を呈している。一方の電極支持部147は、一方のレバー141の中間部から第1光学機能部17とは反対側に向かって延在している。他方の電極支持部147は、他方のレバー141の中間部から第1光学機能部17とは反対側に突出している。一対の電極支持部147は、Z軸方向から見た場合に、Y軸方向に平行な同一の中心線上に配置されている。 Each electrode support portion 147 extends along the Y-axis direction, and has a rectangular shape when viewed from the Z-axis direction. One electrode support portion 147 extends from the middle portion of one lever 141 toward the opposite side to the first optical function portion 17. The other electrode support part 147 protrudes from the middle part of the other lever 141 to the opposite side to the first optical function part 17. The pair of electrode support portions 147 is disposed on the same center line parallel to the Y-axis direction when viewed from the Z-axis direction.
 第2弾性支持部15は、一対のレバー151、リンク152、リンク153、一対のブラケット154、一対の第1トーションバー(第1捩り支持部)155、一対の第2トーションバー(第2捩り支持部)156、及び一対の電極支持部157を有している。一対のレバー151は、Y軸方向における第2光学機能部18の両側に配置されている。各レバー151は、Z軸方向に垂直な平面に沿って延在する板状を呈している。本実施形態では、各レバー151は、X軸方向に沿って延在している。 The second elastic support portion 15 includes a pair of levers 151, a link 152, a link 153, a pair of brackets 154, a pair of first torsion bars (a first torsion support portion) 155, and a pair of second torsion bars (a second torsion support). Part) 156 and a pair of electrode support parts 157. The pair of levers 151 is disposed on both sides of the second optical function portion 18 in the Y-axis direction. Each lever 151 has a plate shape extending along a plane perpendicular to the Z-axis direction. In the present embodiment, each lever 151 extends along the X-axis direction.
 リンク152は、一対のレバー151における可動ミラー11側の端部151a間に掛け渡されている。リンク152は、Z軸方向に垂直な平面に沿って延在する板状を呈している。リンク152は、Y軸方向に沿って延在している。リンク153は、一対のレバー151における可動ミラー11とは反対側の端部151b間に掛け渡されている。リンク153は、Z軸方向に垂直な平面に沿って延在する板状を呈し、Y軸方向に沿って延在している。本実施形態では、第2光学機能部18は、一対のレバー151、リンク152及びリンク153によって画定された開口部である。第2光学機能部18は、Z軸方向から見た場合に矩形状を呈している。第2光学機能部18は、例えば空洞である。或いは、第2光学機能部18を構成する開口部内には、測定光L0に対して光透過性を有する材料が配置されてもよい。 The link 152 is bridged between the ends 151 a of the pair of levers 151 on the movable mirror 11 side. The link 152 has a plate shape extending along a plane perpendicular to the Z-axis direction. The link 152 extends along the Y-axis direction. The link 153 is bridged between the end 151 b of the pair of levers 151 opposite to the movable mirror 11. The link 153 has a plate shape extending along a plane perpendicular to the Z-axis direction, and extends along the Y-axis direction. In the present embodiment, the second optical function portion 18 is an opening defined by the pair of levers 151, the link 152 and the link 153. The second optical function unit 18 has a rectangular shape when viewed from the Z-axis direction. The second optical function unit 18 is, for example, a cavity. Alternatively, a material having optical transparency to the measurement light L0 may be disposed in the opening forming the second optical function unit 18.
 各ブラケット154は、Z軸方向から見た場合に矩形状を呈している。各ブラケット154は、可動ミラー11側に突出するように、リンク152における可動ミラー11側の表面に設けられている。一方のブラケット154は、リンク152の一端の近傍に配置されており、他方のブラケット154は、リンク152の他端の近傍に配置されている。 Each bracket 154 has a rectangular shape when viewed from the Z-axis direction. Each bracket 154 is provided on the surface of the link 152 on the movable mirror 11 side so as to protrude to the movable mirror 11 side. One bracket 154 is disposed in the vicinity of one end of the link 152, and the other bracket 154 is disposed in the vicinity of the other end of the link 152.
 一対の第1トーションバー155は、それぞれ、一方のブラケット117の先端部と一方のブラケット154との間、及び、他方のブラケット117の先端部と他方のブラケット154との間に掛け渡されている。つまり、一対の第1トーションバー155は、それぞれ、一対のレバー151と可動ミラー11との間に接続されている。各第1トーションバー155は、Y軸方向に沿って延在している。一対の第1トーションバー155は、Y軸方向に平行な同一の中心線上に配置されている。 The pair of first torsion bars 155 is stretched between the end of one bracket 117 and one bracket 154 and between the end of the other bracket 117 and the other bracket 154, respectively. . That is, the pair of first torsion bars 155 is connected between the pair of levers 151 and the movable mirror 11 respectively. Each first torsion bar 155 extends along the Y-axis direction. The pair of first torsion bars 155 is disposed on the same center line parallel to the Y-axis direction.
 一対の第2トーションバー156は、それぞれ、一方のレバー151における可動ミラー11とは反対側の端部151bとベース12との間、及び、他方のレバー151における可動ミラー11とは反対側の端部151bとベース12との間に掛け渡されている。つまり、一対の第2トーションバー156は、それぞれ、一対のレバー151とベース12との間に接続されている。各第2トーションバー156は、Y軸方向に沿って延在している。一対の第2トーションバー156は、Y軸方向に平行な同一の中心線上に配置されている。各レバー151の端部151bには、Y軸方向における外側に突出した突出部151cが設けられており、第2トーションバー156は、突出部151cに接続されている。 The pair of second torsion bars 156 are respectively disposed between the end 151 b of the one lever 151 opposite to the movable mirror 11 and the base 12 and the other end of the other lever 151 opposite to the movable mirror 11. It is bridged between the unit 151 b and the base 12. That is, the pair of second torsion bars 156 are respectively connected between the pair of levers 151 and the base 12. Each second torsion bar 156 extends along the Y-axis direction. The pair of second torsion bars 156 is disposed on the same center line parallel to the Y-axis direction. The end 151b of each lever 151 is provided with a protrusion 151c that protrudes outward in the Y-axis direction, and the second torsion bar 156 is connected to the protrusion 151c.
 各電極支持部157は、Y軸方向に沿って延在し、Z軸方向から見た場合に矩形状を呈している。一方の電極支持部157は、一方のレバー151の中間部から第2光学機能部18とは反対側に向かって延在している。他方の電極支持部157は、他方のレバー151の中間部から第2光学機能部18とは反対側に突出している。一対の電極支持部157は、Z軸方向から見た場合に、Y軸方向に平行な同一の中心線上に配置されている。 Each electrode support portion 157 extends along the Y-axis direction, and has a rectangular shape when viewed from the Z-axis direction. One electrode support portion 157 extends from the middle portion of one lever 151 toward the opposite side to the second optical function portion 18. The other electrode support portion 157 protrudes from the middle portion of the other lever 151 to the opposite side to the second optical function portion 18. The pair of electrode support portions 157 is disposed on the same center line parallel to the Y-axis direction when viewed from the Z-axis direction.
 アクチュエータ部16は、Z軸方向に沿って可動ミラー11を移動させる。アクチュエータ部16は、一対の固定櫛歯電極161、一対の可動櫛歯電極162、一対の固定櫛歯電極163、及び一対の可動櫛歯電極164を有している。固定櫛歯電極161,163の位置は、固定されている。可動櫛歯電極162,164は、可動ミラー11の移動に伴って移動する。 The actuator unit 16 moves the movable mirror 11 along the Z-axis direction. The actuator unit 16 includes a pair of fixed comb electrodes 161, a pair of movable comb electrodes 162, a pair of fixed comb electrodes 163, and a pair of movable comb electrodes 164. The positions of the fixed comb electrodes 161 and 163 are fixed. The movable comb electrodes 162 and 164 move as the movable mirror 11 moves.
 一方の固定櫛歯電極161は、ベース12のデバイス層52における一方の電極支持部147と向かい合う表面に設けられている。他方の固定櫛歯電極161は、デバイス層52における他方の電極支持部147と向かい合う表面に設けられている。各固定櫛歯電極161は、Y軸方向に垂直な平面に沿って延在する複数の固定櫛歯161aを有している。これらの固定櫛歯161aは、Y軸方向に所定の間隔を空けて並んで配置されている。 One fixed comb electrode 161 is provided on the surface of the device layer 52 of the base 12 facing the one electrode support portion 147. The other fixed comb electrode 161 is provided on the surface of the device layer 52 facing the other electrode support 147. Each fixed comb electrode 161 has a plurality of fixed comb teeth 161 a extending along a plane perpendicular to the Y-axis direction. These fixed comb teeth 161a are arranged side by side at a predetermined interval in the Y-axis direction.
 一方の可動櫛歯電極162は、一方の電極支持部147におけるX軸方向の両側の表面に設けられている。他方の可動櫛歯電極162は、他方の電極支持部147におけるX軸方向の両側の表面に設けられている。各可動櫛歯電極162は、Y軸方向に垂直な平面に沿って延在する複数の可動櫛歯162aを有している。これらの可動櫛歯162aは、Y軸方向に所定の間隔を空けて並んで配置されている。 One movable comb electrode 162 is provided on the surface on both sides in the X axis direction of one electrode support portion 147. The other movable comb electrode 162 is provided on the surface on both sides in the X-axis direction of the other electrode support portion 147. Each movable comb electrode 162 has a plurality of movable combs 162 a extending along a plane perpendicular to the Y-axis direction. These movable comb teeth 162a are arranged side by side at a predetermined interval in the Y-axis direction.
 一方の固定櫛歯電極161及び一方の可動櫛歯電極162においては、複数の固定櫛歯161aと複数の可動櫛歯162aとが互い違いに配置されている。つまり、一方の固定櫛歯電極161の各固定櫛歯161aが一方の可動櫛歯電極162の可動櫛歯162a間に位置している。他方の固定櫛歯電極161及び他方の可動櫛歯電極162においては、複数の固定櫛歯161aと複数の可動櫛歯162aとが互い違いに配置されている。つまり、他方の固定櫛歯電極161の各固定櫛歯161aが他方の可動櫛歯電極162の可動櫛歯162a間に位置している。一対の固定櫛歯電極161及び一対の可動櫛歯電極162において、隣り合う固定櫛歯161aと可動櫛歯162aとは、Y軸方向において互いに向かい合っている。隣り合う固定櫛歯161a及び可動櫛歯162a間の距離は、例えば数μm程度である。 In one fixed comb electrode 161 and one movable comb electrode 162, a plurality of fixed comb teeth 161a and a plurality of movable comb teeth 162a are alternately arranged. That is, the fixed comb teeth 161 a of the one fixed comb electrode 161 are located between the movable comb teeth 162 a of the one movable comb electrode 162. In the other fixed comb electrode 161 and the other movable comb electrode 162, a plurality of fixed comb teeth 161a and a plurality of movable comb teeth 162a are alternately arranged. That is, the fixed comb teeth 161 a of the other fixed comb electrode 161 are located between the movable comb teeth 162 a of the other movable comb electrode 162. In the pair of fixed comb electrodes 161 and the pair of movable comb electrodes 162, adjacent fixed comb teeth 161a and movable comb teeth 162a face each other in the Y-axis direction. The distance between the adjacent fixed comb teeth 161a and the movable comb teeth 162a is, for example, about several μm.
 一方の固定櫛歯電極163は、ベース12のデバイス層52における一方の電極支持部157と向かい合う表面に設けられている。他方の固定櫛歯電極163は、デバイス層52における他方の電極支持部157と向かい合う表面に設けられている。各固定櫛歯電極163は、Y軸方向に垂直な平面に沿って延在する複数の固定櫛歯163aを有している。これらの固定櫛歯163aは、Y軸方向に所定の間隔を空けて並んで配置されている。 One fixed comb electrode 163 is provided on the surface of the device layer 52 of the base 12 facing the one electrode support portion 157. The other fixed comb electrode 163 is provided on the surface of the device layer 52 facing the other electrode support portion 157. Each fixed comb electrode 163 has a plurality of fixed comb teeth 163 a extending along a plane perpendicular to the Y-axis direction. These fixed comb teeth 163a are arranged side by side at a predetermined interval in the Y-axis direction.
 一方の可動櫛歯電極164は、一方の電極支持部157におけるX軸方向の両側の表面に設けられている。他方の可動櫛歯電極164は、他方の電極支持部157におけるX軸方向の両側の表面に設けられている。各可動櫛歯電極164は、Y軸方向に垂直な平面に沿って延在する複数の可動櫛歯164aを有している。これらの可動櫛歯164aは、Y軸方向に所定の間隔を空けて並んで配置されている。 One movable comb electrode 164 is provided on the surface on both sides of one electrode support portion 157 in the X-axis direction. The other movable comb electrode 164 is provided on the surface on both sides of the other electrode support portion 157 in the X-axis direction. Each movable comb electrode 164 has a plurality of movable comb teeth 164 a extending along a plane perpendicular to the Y-axis direction. These movable comb teeth 164a are arranged side by side at a predetermined interval in the Y-axis direction.
 一方の固定櫛歯電極163及び一方の可動櫛歯電極164においては、複数の固定櫛歯163aと複数の可動櫛歯164aとが互い違いに配置されている。つまり、一方の固定櫛歯電極163の各固定櫛歯163aが一方の可動櫛歯電極164の可動櫛歯164a間に位置している。他方の固定櫛歯電極163及び他方の可動櫛歯電極164においては、複数の固定櫛歯163aと複数の可動櫛歯164aとが互い違いに配置されている。つまり、他方の固定櫛歯電極163の各固定櫛歯163aが他方の可動櫛歯電極164の可動櫛歯164a間に位置している。一対の固定櫛歯電極163及び一対の可動櫛歯電極164において、隣り合う固定櫛歯163aと可動櫛歯164aとは、Y軸方向において互いに向かい合っている。互いに隣り合う固定櫛歯163a及び可動櫛歯164a間の距離は、例えば数μm程度である。 In one fixed comb electrode 163 and one movable comb electrode 164, a plurality of fixed comb teeth 163a and a plurality of movable comb teeth 164a are alternately arranged. That is, the fixed comb teeth 163 a of one fixed comb electrode 163 are located between the movable comb teeth 164 a of one movable comb electrode 164. In the other fixed comb electrode 163 and the other movable comb electrode 164, a plurality of fixed comb teeth 163a and a plurality of movable comb teeth 164a are alternately arranged. That is, the fixed comb teeth 163 a of the other fixed comb electrode 163 are located between the movable comb teeth 164 a of the other movable comb electrode 164. In the pair of fixed comb electrodes 163 and the pair of movable comb electrodes 164, adjacent fixed comb teeth 163a and movable comb teeth 164a face each other in the Y-axis direction. The distance between the fixed comb teeth 163a and the movable comb teeth 164a adjacent to each other is, for example, about several μm.
 ベース12には、複数の電極パッド121,122が設けられている。各電極パッド121,122は、デバイス層52に至るようにベース12の主面12bに形成された開口12c内において、デバイス層52の表面に形成されている。各電極パッド121は、デバイス層52を介して、固定櫛歯電極161又は固定櫛歯電極163と電気的に接続されている。各電極パッド122は、第1弾性支持部14又は第2弾性支持部15を介して、可動櫛歯電極162又は可動櫛歯電極164と電気的に接続されている。ワイヤ26は、各電極パッド121,122と各リードピン25との間に掛け渡されている。 The base 12 is provided with a plurality of electrode pads 121 and 122. Each of the electrode pads 121 and 122 is formed on the surface of the device layer 52 in an opening 12 c formed on the main surface 12 b of the base 12 so as to reach the device layer 52. Each electrode pad 121 is electrically connected to the fixed comb electrode 161 or the fixed comb electrode 163 via the device layer 52. Each electrode pad 122 is electrically connected to the movable comb electrode 162 or the movable comb electrode 164 via the first elastic support portion 14 or the second elastic support portion 15. The wires 26 are stretched between the electrode pads 121 and 122 and the lead pins 25.
 以上のように構成された光学デバイス10では、複数のリードピン25及び複数のワイヤ26を介して、複数の電極パッド121と複数の電極パッド122との間に電圧が印加されると、例えばZ軸方向における一方の側に可動ミラー11を移動させるように、互いに対向する固定櫛歯電極161と可動櫛歯電極162との間、及び、互いに対向する固定櫛歯電極163と可動櫛歯電極164との間に静電気力が生じる。このとき、第1弾性支持部14及び第2弾性支持部15において各第1トーションバー145,155及び各第2トーションバー146,156が捩れて、第1弾性支持部14及び第2弾性支持部15に弾性力が生じる。光学デバイス10では、複数のリードピン25及び複数のワイヤ26を介して駆動部13に周期的な電気信号を付与することで、Z軸方向に沿って可動ミラー11をその共振周波数レベルで往復動させることができる。このように、駆動部13は、静電アクチュエータとして機能する。
[トーションバーの詳細な構成]
In the optical device 10 configured as described above, when a voltage is applied between the plurality of electrode pads 121 and the plurality of electrode pads 122 via the plurality of lead pins 25 and the plurality of wires 26, for example, the Z axis Between the fixed comb electrode 161 and the movable comb electrode 162 opposed to each other, and the fixed comb electrode 163 and the movable comb electrode 164 opposed to each other, so as to move the movable mirror 11 to one side in the direction. Electrostatic force occurs during the At this time, the first torsion bars 145 and 155 and the second torsion bars 146 and 156 are twisted in the first elastic support 14 and the second elastic support 15, respectively, and the first elastic support 14 and the second elastic support An elastic force is generated at 15. In the optical device 10, the movable mirror 11 is reciprocated at the resonance frequency level along the Z-axis direction by applying a periodic electrical signal to the drive unit 13 via the plurality of lead pins 25 and the plurality of wires 26. be able to. Thus, the drive unit 13 functions as an electrostatic actuator.
[Detailed configuration of the torsion bar]
 各第1トーションバー145及び各第2トーションバー146は、X軸方向に垂直な平板状を呈している。各第1トーションバー145は、例えば、長さ(Y軸方向における長さ)30μm~300μm、幅(X軸方向における長さ)5μm~30μm、厚さ(Z軸方向における長さ)30μm~100μm程度に形成されている。各第2トーションバー146は、例えば、長さ(Y軸方向における長さ)30μm~300μm、幅(X軸方向における長さ)5μm~30μm、厚さ(Z軸方向における長さ)30μm~100μm程度に形成されている。 Each first torsion bar 145 and each second torsion bar 146 have a flat plate shape perpendicular to the X-axis direction. Each first torsion bar 145 has, for example, a length (length in the Y-axis direction) of 30 μm to 300 μm, a width (length in the X-axis direction) of 5 μm to 30 μm, and a thickness (length in the Z-axis direction) of 30 μm to 100 μm It is formed to a degree. Each second torsion bar 146 has, for example, a length (length in the Y-axis direction) of 30 μm to 300 μm, a width (length in the X-axis direction) of 5 μm to 30 μm, and a thickness (length in the Z-axis direction) of 30 μm to 100 μm It is formed to a degree.
 本実施形態では、第1トーションバー145の長さは、第2トーションバー146の長さと等しい。第1トーションバー145の幅は、第2トーションバー146の幅よりも広い。第1トーションバー145の厚さは、第2トーションバー146の厚さと等しい。なお、第1トーションバー145におけるブラケット116側及びブラケット144側の少なくとも一方の端部に、当該端部に近づくほど幅が広がる拡幅部が設けられている場合、第1トーションバー145の長さとは、当該拡幅部を含めない第1トーションバー145の長さを意味し、第1トーションバー145の幅とは、当該拡幅部を含めない第1トーションバー145の幅を意味する。また、第1トーションバー145の幅とは、幅が最も狭い位置における幅(最小幅)を意味する。これらの点は、第1トーションバー155及び第2トーションバー146,156についても同様である。 In the present embodiment, the length of the first torsion bar 145 is equal to the length of the second torsion bar 146. The width of the first torsion bar 145 is wider than the width of the second torsion bar 146. The thickness of the first torsion bar 145 is equal to the thickness of the second torsion bar 146. In the case where at least one end on the bracket 116 side and the bracket 144 side of the first torsion bar 145 is provided with a widening portion whose width is widened toward the end, the length of the first torsion bar 145 is The length of the first torsion bar 145 not including the widening portion is meant, and the width of the first torsion bar 145 means the width of the first torsion bar 145 not including the widening portion. Further, the width of the first torsion bar 145 means the width (minimum width) at the narrowest position. These points also apply to the first torsion bar 155 and the second torsion bars 146 and 156.
 第1トーションバー145の捩りばね定数は、第2トーションバー146の捩りばね定数よりも大きい。第1トーションバー145の捩りばね定数は、例えば、0.00004N・m/rad程度である。第2トーションバー146の捩りばね定数は、例えば、0.00003N・m/rad程度である。第1トーションバー145及び第2トーションバー146の捩りばね定数は、例えば、0.000001N・m/rad~0.001N・m/rad程度の範囲内で設定される。本実施形態では、第1トーションバー145の長さ及び厚さが第2トーションバー146の長さ及び厚さと等しく、且つ第1トーションバー145の幅が第2トーションバー146の幅よりも広いことにより、第1トーションバー145の捩りばね定数が第2トーションバー146の捩りばね定数よりも大きくなっている。 The torsion spring constant of the first torsion bar 145 is larger than the torsion spring constant of the second torsion bar 146. The torsion spring constant of the first torsion bar 145 is, for example, about 0.00004 N · m / rad. The torsion spring constant of the second torsion bar 146 is, for example, about 0.00003 N · m / rad. The torsion spring constants of the first torsion bar 145 and the second torsion bar 146 are set, for example, in the range of about 0.000001 N · m / rad to 0.001 N · m / rad. In the present embodiment, the length and thickness of the first torsion bar 145 are equal to the length and thickness of the second torsion bar 146, and the width of the first torsion bar 145 is wider than the width of the second torsion bar 146. Thus, the torsion spring constant of the first torsion bar 145 is larger than the torsion spring constant of the second torsion bar 146.
 各第1トーションバー155及び各第2トーションバー156は、X軸方向に垂直な平板状を呈している。第1トーションバー155は、例えば、第1トーションバー145と同一の形状に形成されている。第2トーションバー156は、例えば、第2トーションバー146と同一の形状に形成されている。本実施形態では、第1トーションバー155の長さは、第2トーションバー156の長さと等しい。第1トーションバー155の幅は、第2トーションバー156の幅よりも広い。第1トーションバー155の厚さは、第2トーションバー156の厚さと等しい。 Each first torsion bar 155 and each second torsion bar 156 have a flat plate shape perpendicular to the X-axis direction. The first torsion bar 155 is formed, for example, in the same shape as the first torsion bar 145. The second torsion bar 156 is formed, for example, in the same shape as the second torsion bar 146. In the present embodiment, the length of the first torsion bar 155 is equal to the length of the second torsion bar 156. The width of the first torsion bar 155 is wider than the width of the second torsion bar 156. The thickness of the first torsion bar 155 is equal to the thickness of the second torsion bar 156.
 第1トーションバー155の捩りばね定数は、第2トーションバー156の捩りばね定数よりも大きい。第1トーションバー155の捩りばね定数は、例えば、第1トーションバー145の捩りばね定数と等しい。第2トーションバー156の捩りばね定数は、例えば、第2トーションバー146の捩りばね定数と等しい。本実施形態では、第1トーションバー155の長さ及び厚さが第2トーションバー156の長さ及び厚さと等しく、且つ第1トーションバー155の幅が第2トーションバー156の幅よりも広いことにより、第1トーションバー155の捩りばね定数が第2トーションバー156の捩りばね定数よりも大きくなっている。
[作用及び効果]
The torsion spring constant of the first torsion bar 155 is larger than the torsion spring constant of the second torsion bar 156. The torsion spring constant of the first torsion bar 155 is, for example, equal to the torsion spring constant of the first torsion bar 145. The torsion spring constant of the second torsion bar 156 is, for example, equal to the torsion spring constant of the second torsion bar 146. In the present embodiment, the length and thickness of the first torsion bar 155 are equal to the length and thickness of the second torsion bar 156, and the width of the first torsion bar 155 is wider than the width of the second torsion bar 156. Thus, the torsion spring constant of the first torsion bar 155 is larger than the torsion spring constant of the second torsion bar 156.
[Action and effect]
 図5を参照しつつ、光学デバイス10の作用効果を説明する。図5は、実施例及び比較例における移動時のミラー面11aの傾きを示すグラフである。実施例は、上記実施形態の光学デバイス10に対応する。実施例では、第1トーションバー145の幅を18μmとし、第2トーションバー146の幅を15μmとし、第1トーションバー155の幅を18μmとし、第2トーションバー156の幅を16μmとした。第1トーションバー145,155及び第2トーションバー146,156のそれぞれの長さを100μmとし、厚さを70μmとした。 The effects of the optical device 10 will be described with reference to FIG. FIG. 5 is a graph showing the inclination of the mirror surface 11a at the time of movement in the example and the comparative example. The example corresponds to the optical device 10 of the above embodiment. In the embodiment, the width of the first torsion bar 145 is 18 μm, the width of the second torsion bar 146 is 15 μm, the width of the first torsion bar 155 is 18 μm, and the width of the second torsion bar 156 is 16 μm. The length of each of the first torsion bars 145 and 155 and the second torsion bars 146 and 156 is 100 μm, and the thickness is 70 μm.
 比較例では、第1トーションバー145の幅を16μmとし、第2トーションバー146の幅を17μmとし、第1トーションバー155の幅を16μmとし、第2トーションバー156の幅を18μmとした。第1トーションバー145,155及び第2トーションバー146,156のそれぞれの長さを100μmとし、厚さを70μmとした。比較例のその他の構成は、実施例と同様とした。 In the comparative example, the width of the first torsion bar 145 is 16 μm, the width of the second torsion bar 146 is 17 μm, the width of the first torsion bar 155 is 16 μm, and the width of the second torsion bar 156 is 18 μm. The length of each of the first torsion bars 145 and 155 and the second torsion bars 146 and 156 is 100 μm, and the thickness is 70 μm. The other configuration of the comparative example is the same as that of the example.
 実施例は、第1トーションバー145,155の幅が18μmであり、第2トーションバー146,156の幅が16μmである構成において、第2トーションバー146の幅が1μm狭くなった場合に相当する。比較例は、第1トーションバー145,155の幅が16μmであり、第2トーションバー146,156の幅が18μmである構成において、第2トーションバー146の幅が1μm狭くなった場合に相当する。 The embodiment corresponds to the case where the width of the second torsion bar 146 is narrowed by 1 μm in the configuration in which the width of the first torsion bars 145 and 155 is 18 μm and the width of the second torsion bars 146 and 156 is 16 μm. . The comparative example corresponds to the case where the width of the second torsion bar 146 is narrowed by 1 μm in the configuration in which the width of the first torsion bars 145 and 155 is 16 μm and the width of the second torsion bars 146 and 156 is 18 μm. .
 実施例において第2トーションバー146の幅が狭くなる前の構成では、第1トーションバー145の捩りばね定数は、第2トーションバー146の捩りばね定数よりも大きく、且つ、第1トーションバー155の捩りばね定数は、第2トーションバー156の捩りばね定数よりも大きい。比較例において第2トーションバー146の幅が狭くなる前の構成では、第1トーションバー145の捩りばね定数は、第2トーションバー146の捩りばね定数よりも小さく、且つ、第1トーションバー155の捩りばね定数は、第2トーションバー156の捩りばね定数よりも小さい。 In the configuration before the width of the second torsion bar 146 is narrowed in the embodiment, the torsion spring constant of the first torsion bar 145 is larger than the torsion spring constant of the second torsion bar 146, and the first torsion bar 155 The torsion spring constant is larger than the torsion spring constant of the second torsion bar 156. In the configuration before the width of the second torsion bar 146 is narrowed in the comparative example, the torsion spring constant of the first torsion bar 145 is smaller than the torsion spring constant of the second torsion bar 146 and the first torsion bar 155 The torsion spring constant is smaller than the torsion spring constant of the second torsion bar 156.
 上述したような第2トーションバー146の形状のずれは、次の理由により生じ得る。光学デバイス10は、MEMS技術(パターニング及びエッチング)等を用いてSOI基板50に形成される。第2トーションバー146においては、長さ方向の加工がパターニングによって行なわれるのに対し、幅方向の加工はエッチングによって行なわれる。そのため、第2トーションバー146の長さにはずれが生じ難い一方、第2トーションバー146の幅には製造誤差等によりずれが生じることがある。なお、第2トーションバー146の厚さ方向の加工は中間層53をエッチングストップ層として用いたエッチングによって行なわれるため、第2トーションバー146の厚さにはずれは生じ難い。 Deviation of the shape of the second torsion bar 146 as described above may occur due to the following reasons. The optical device 10 is formed on the SOI substrate 50 using MEMS technology (patterning and etching) or the like. In the second torsion bar 146, the processing in the longitudinal direction is performed by patterning, while the processing in the width direction is performed by etching. Therefore, while the shift of the length of the second torsion bar 146 is unlikely to occur, the shift of the width of the second torsion bar 146 may occur due to a manufacturing error or the like. Since the processing in the thickness direction of the second torsion bar 146 is performed by etching using the intermediate layer 53 as an etching stop layer, the thickness of the second torsion bar 146 hardly deviates.
 図5に示されるように、実施例及び比較例のように第2トーションバー146の幅が狭くなった場合、可動ミラー11がZ軸方向に移動した際にミラー面11a(可動ミラー11)が目標姿勢から傾く。実施例及び比較例では、目標姿勢は、ミラー面11aがZ軸方向に垂直となる姿勢である。 As shown in FIG. 5, when the width of the second torsion bar 146 is narrowed as in the embodiment and the comparative example, the mirror surface 11a (movable mirror 11) is moved when the movable mirror 11 moves in the Z-axis direction. Tilt from the target attitude. In the embodiment and the comparative example, the target posture is a posture in which the mirror surface 11 a is perpendicular to the Z-axis direction.
 図5に示されるように、実施例では、比較例と比べて、ミラー面11aの目標姿勢からの傾きが小さかった。このように、第1トーションバー145,155の捩りばね定数をそれぞれ第2トーションバー146,156の捩りばね定数よりも大きくすることにより、ミラー面11aの目標姿勢から傾きを抑制することができる。このことは、実施例では、第2トーションバー146の幅の変化率(元の長さに対する変形量の割合)が比較例における当該変化率よりも大きいにもかかわらず、比較例と比べて、ミラー面11aの目標姿勢からの傾きが小さかったことからも明らかである。 As shown in FIG. 5, in the example, the inclination from the target posture of the mirror surface 11a was smaller than in the comparative example. As described above, by making the torsion spring constants of the first torsion bars 145 and 155 larger than the torsion spring constants of the second torsion bars 146 and 156, it is possible to suppress the inclination from the target posture of the mirror surface 11a. This is because, in the example, although the rate of change (the ratio of the amount of deformation to the original length) of the second torsion bar 146 is larger than the rate of change in the comparative example, compared to the comparative example. This is also apparent from the fact that the inclination of the mirror surface 11a from the target posture is small.
 以上説明したように、光学デバイス10では、レバー141と可動ミラー11との間に接続された第1トーションバー145の捩りばね定数が、レバー141とベース12との間に接続された第2トーションバー146の捩りばね定数よりも大きい。これにより、製造誤差等により第1トーションバー145及び第2トーションバー146の少なくとも一方の形状にずれが生じた場合でも、可動ミラー11がZ軸方向に移動した際に可動ミラー11が目標姿勢から傾くのを抑制することができる。また、レバー151と可動ミラー11との間に接続された第1トーションバー155の捩りばね定数が、レバー151とベース12との間に接続された第2トーションバー156の捩りばね定数よりも大きい。これにより、製造誤差等により第1トーションバー155及び第2トーションバー156の少なくとも一方の形状にずれが生じた場合でも、可動ミラー11がZ軸方向に移動した際に可動ミラー11が目標姿勢から傾くのを抑制することができる。よって、光学デバイス10によれば、第1トーションバー145,155及び第2トーションバー146,156の形状のばらつきに起因する光学特性の低下を抑制することができる。なお、光学デバイス10では、第2トーションバー146の幅が狭くなった場合だけでなく、第2トーションバー146の幅が広くなった場合にも、可動ミラー11が目標姿勢から傾くのを抑制することができる。また、第2トーションバー146の長さ及び厚さの少なくとも一方にずれが生じた場合にも、可動ミラー11が目標姿勢から傾くのを抑制することができる。同様に、第2トーションバー146の形状にずれが生じた場合だけでなく、第1トーションバー145,155及び第2トーションバー156の少なくとも1つの形状にずれが生じた場合にも、可動ミラー11が目標姿勢から傾くのを抑制することができる。 As described above, in the optical device 10, the torsion spring constant of the first torsion bar 145 connected between the lever 141 and the movable mirror 11 is the second torsion connected between the lever 141 and the base 12. It is larger than the torsion spring constant of the bar 146. As a result, even when a displacement occurs in at least one of the first torsion bar 145 and the second torsion bar 146 due to a manufacturing error or the like, the movable mirror 11 is moved from the target posture when the movable mirror 11 moves in the Z-axis direction. It is possible to suppress tilting. Further, the torsion spring constant of the first torsion bar 155 connected between the lever 151 and the movable mirror 11 is larger than the torsion spring constant of the second torsion bar 156 connected between the lever 151 and the base 12 . As a result, even when a displacement occurs in at least one of the first torsion bar 155 and the second torsion bar 156 due to a manufacturing error or the like, the movable mirror 11 is moved from the target posture when the movable mirror 11 moves in the Z-axis direction. It is possible to suppress tilting. Therefore, according to the optical device 10, it is possible to suppress a decrease in optical characteristics caused by the variation in the shapes of the first torsion bars 145 and 155 and the second torsion bars 146 and 156. In the optical device 10, the movable mirror 11 is prevented from tilting from the target posture not only when the width of the second torsion bar 146 becomes narrow but also when the width of the second torsion bar 146 becomes wide. be able to. In addition, even when a deviation occurs in at least one of the length and the thickness of the second torsion bar 146, the movable mirror 11 can be prevented from tilting from the target posture. Similarly, not only when the shape of the second torsion bar 146 deviates, but also when the shape of at least one of the first torsion bars 145 and 155 and the second torsion bar 156 deviates, the movable mirror 11 Can be prevented from tilting from the target attitude.
 また、光学デバイス10では、Z軸方向から見た場合に、第1トーションバー145,155の幅が、第2トーションバー146,156の幅よりも広い。これにより、第1トーションバー145,155の捩りばね定数を第2トーションバー146,156の捩りばね定数よりも好適に大きくすることができる。 Further, in the optical device 10, the width of the first torsion bars 145, 155 is wider than the width of the second torsion bars 146, 156 when viewed in the Z-axis direction. Thereby, the torsion spring constant of the first torsion bars 145 and 155 can be suitably made larger than the torsion spring constant of the second torsion bars 146 and 156.
 また、光学デバイス10では、ベース12、可動ミラー11、第1弾性支持部14及び第2弾性支持部15が、SOI基板50によって構成されている。これにより、MEMS技術によって形成される光学デバイス10において、第1トーションバー145,155及び第2トーションバー146,156の形状のばらつきに起因する光学特性の低下を抑制することができる。 Further, in the optical device 10, the base 12, the movable mirror 11, the first elastic support portion 14, and the second elastic support portion 15 are configured by the SOI substrate 50. Thereby, in the optical device 10 formed by the MEMS technology, it is possible to suppress the deterioration of the optical characteristics due to the variation in the shapes of the first torsion bars 145 and 155 and the second torsion bars 146 and 156.
 また、光学デバイス10は、ベース12に設けられ、複数の固定櫛歯161a,163aを有する固定櫛歯電極161,163と、第1弾性支持部14及び第2弾性支持部15に設けられ、複数の固定櫛歯161a,163aと互い違いに配置された複数の可動櫛歯162a,164aを有する可動櫛歯電極162,164と、を備えている。これにより、可動ミラー11を移動させるためのアクチュエータ部16をシンプル化及び低消費電力化することができる。 Further, the optical device 10 is provided on the base 12 and provided on the fixed comb electrodes 161 and 163 having a plurality of fixed comb teeth 161 a and 163 a, and on the first elastic support portion 14 and the second elastic support portion 15. And a movable comb electrode 162, 164 having a plurality of movable comb teeth 162a, 164a alternately arranged. Thus, the actuator unit 16 for moving the movable mirror 11 can be simplified and the power consumption can be reduced.
 また、光学デバイス10は、第1弾性支持部14及び第2弾性支持部15を備えている。これにより、例えば1つの弾性支持部のみが備えられる場合と比べて、可動ミラー11の動作を安定化することができる。また、例えば3つ以上の弾性支持部が備えられる場合と比べて、トーションバーの総数を低減することができる。その結果、各トーションバーのばね定数を確保することができ、トーションバーの形状のばらつきによる影響を受け難くすることができる。 The optical device 10 also includes a first elastic support 14 and a second elastic support 15. Thereby, the movement of the movable mirror 11 can be stabilized as compared with, for example, the case where only one elastic support portion is provided. In addition, the total number of torsion bars can be reduced, for example, as compared to the case where three or more elastic supports are provided. As a result, the spring constant of each torsion bar can be secured, and the influence of variations in the shape of the torsion bar can be reduced.
 以上、本開示の一実施形態について説明したが、本開示は、上記実施形態に限られない。各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。 As mentioned above, although one embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment. The material and shape of each configuration are not limited to the above-described materials and shapes, and various materials and shapes can be adopted.
 上記実施形態において、第1トーションバー145の幅が第2トーションバー146の幅と等しく、且つ第1トーションバー145の長さが第2トーションバー146の長さよりも短いことにより、第1トーションバー145の捩りばね定数が第2トーションバー146の捩りばね定数よりも大きくなっていてもよい。同様に、第1トーションバー155の幅が第2トーションバー156の幅と等しく、且つ第1トーションバー155の長さが第2トーションバー156の長さよりも短いことにより、第1トーションバー155の捩りばね定数が第2トーションバー156の捩りばね定数よりも大きくなっていてもよい。 In the above embodiment, the width of the first torsion bar 145 is equal to the width of the second torsion bar 146, and the length of the first torsion bar 145 is shorter than the length of the second torsion bar 146. The torsion spring constant of 145 may be larger than the torsion spring constant of the second torsion bar 146. Similarly, the width of the first torsion bar 155 is equal to the width of the second torsion bar 156, and the length of the first torsion bar 155 is shorter than the length of the second torsion bar 156. The torsion spring constant may be larger than the torsion spring constant of the second torsion bar 156.
 この場合でも、上記実施形態と同様に、第1トーションバー145,155及び第2トーションバー146,156の形状のばらつきに起因する光学特性の低下を抑制することができる。つまり、第1トーションバー145の捩りばね定数が第2トーションバー146の捩りばね定数よりも大きければよく、第1トーションバー145及び第2トーションバー146の長さ、幅及び厚さのそれぞれの大小関係は任意に選択されてよい。この点は第1トーションバー155及び第2トーションバー156についても同様である。 Also in this case, it is possible to suppress the deterioration of the optical characteristics caused by the variation in the shapes of the first torsion bars 145 and 155 and the second torsion bars 146 and 156 as in the above embodiment. That is, the torsion spring constant of the first torsion bar 145 may be larger than the torsion spring constant of the second torsion bar 146, and the length, width and thickness of each of the first torsion bar 145 and the second torsion bar 146 The relationship may be arbitrarily selected. The same applies to the first torsion bar 155 and the second torsion bar 156.
 上記実施形態において、本体部111及びミラー面11aのそれぞれは、Z軸方向から見た場合に、矩形状、八角形状等の任意の形状を呈していてよい。枠部112は、Z軸方向から見た場合に、矩形環状、八角形環状等の任意の環形状を呈していてよい。枠部112及び連結部113が省略されてもよい。第1梁部115b、第2梁部112b及び第3梁部113bのそれぞれは、任意の形状に形成されてよく、省略されてもよい。上記実施形態では、第1捩り支持部が板状の第1トーションバー145によって構成されていたが、第1捩り支持部の構成はこれに限られない。第1トーションバー145は、棒状等の任意の形状であってよい。第1捩り支持部は、複数(例えば2つ)のトーションバーが接続部を介して直列に接続されることにより構成されてもよい。これらの点は第1トーションバー155及び第2トーションバー146,156(第2捩り支持部)についても同様である。例えば、第2捩り支持部は、複数(例えば3つ)のトーションバーが接続部を介して直列に接続されることにより構成されてもよい。 In the above embodiment, each of the main body 111 and the mirror surface 11a may have an arbitrary shape such as a rectangular shape or an octagonal shape when viewed from the Z-axis direction. The frame portion 112 may have an arbitrary ring shape such as a rectangular ring shape or an octagonal ring shape when viewed from the Z-axis direction. The frame portion 112 and the connecting portion 113 may be omitted. Each of the 1st beam part 115b, the 2nd beam part 112b, and the 3rd beam part 113b may be formed in arbitrary shapes, and may be omitted. In the said embodiment, although the 1st torsion support part was comprised by the plate-shaped 1st torsion bar 145, the structure of a 1st torsion support part is not restricted to this. The first torsion bar 145 may have any shape such as a bar shape. The first torsion support may be configured by connecting a plurality of (for example, two) torsion bars in series via the connection. The same applies to the first torsion bar 155 and the second torsion bars 146 and 156 (second torsion support portion). For example, the second torsion support may be configured by connecting a plurality of (for example, three) torsion bars in series via the connection.
 上記実施形態において、リンク143,153が省略されてもよい。この場合、第1光学機能部17及び第2光学機能部18のそれぞれは、SOI基板50に形成された開口によって構成されてもよい。第1光学機能部17及び第2光学機能部18のそれぞれは、円形状、八角形状等の任意の断面形状を有していてもよい。可動櫛歯電極162,164は、可動ミラー11に設けられていてもよく、例えば、枠部112の外縁に沿って配置されていてもよい。光学デバイス10は、可動ミラー11に代えて、ミラー面11a以外の他の光学機能部が設けられた可動部を備えていてもよい。他の光学機能部としては、例えば、レンズ等が挙げられる。アクチュエータ部16は、静電アクチュエータに限定されず、例えば、圧電式アクチュエータ、電磁式アクチュエータ等であってもよい。光モジュール1は、FTIRを構成するものに限定されず、他の光学系を構成するものであってもよい。光学デバイス10は、SOI基板50以外によって構成されてもよく、例えば、シリコンのみからなる基板によって構成されてもよい。 In the above embodiment, the links 143 and 153 may be omitted. In this case, each of the first optical function unit 17 and the second optical function unit 18 may be configured by an opening formed in the SOI substrate 50. Each of the first optical function unit 17 and the second optical function unit 18 may have an arbitrary cross-sectional shape such as a circular shape or an octagonal shape. The movable comb electrodes 162 and 164 may be provided on the movable mirror 11, and may be disposed, for example, along the outer edge of the frame portion 112. The optical device 10 may include a movable portion provided with another optical function portion other than the mirror surface 11 a instead of the movable mirror 11. As another optical function part, a lens etc. are mentioned, for example. The actuator unit 16 is not limited to the electrostatic actuator, and may be, for example, a piezoelectric actuator, an electromagnetic actuator, or the like. The optical module 1 is not limited to that which comprises FTIR, but may comprise another optical system. The optical device 10 may be configured by something other than the SOI substrate 50, and may be configured by, for example, a substrate made of only silicon.
 10…光学デバイス、11…可動ミラー(可動部)、11a…ミラー面(光学機能部)、12a…主面、12…ベース、14…第1弾性支持部、15…第2弾性支持部、141,151…レバー、145,155…第1トーションバー(第1捩り支持部)、146,156…第2トーションバー(第2捩り支持部)、161,163…固定櫛歯電極、161a,163a…固定櫛歯、162,164…可動櫛歯電極、162a,164a…可動櫛歯。 DESCRIPTION OF SYMBOLS 10 ... Optical device, 11 ... Movable mirror (movable part), 11a ... Mirror surface (optical function part), 12a ... Principal surface, 12 ... Base, 14 ... 1st elastic support part, 15 ... 2nd elastic support part, 141 , 151 ... lever, 145, 155 ... first torsion bar (first torsion support), 146, 156 ... second torsion bar (second torsion support), 161, 163 ... fixed comb electrode 161a, 163a ... Fixed comb teeth, 162, 164 ... movable comb electrodes, 162a, 164a ... movable combs.

Claims (6)

  1.  主面を有するベースと、
     光学機能部を有する可動部と、
     前記ベースと前記可動部との間に接続され、前記可動部が前記主面に垂直な第1方向に沿って移動可能となるように前記可動部を支持する弾性支持部と、を備え、
     前記弾性支持部は、レバーと、前記第1方向に垂直な第2方向に沿って延在し、前記レバーと前記可動部との間に接続された第1捩り支持部と、前記第2方向に沿って延在し、前記レバーと前記ベースとの間に接続された第2捩り支持部と、を有し、
     前記第1捩り支持部の捩りばね定数は、前記第2捩り支持部の捩りばね定数よりも大きい、光学デバイス。
    A base having a main surface,
    A movable part having an optical function part,
    An elastic support portion connected between the base and the movable portion and supporting the movable portion such that the movable portion can move along a first direction perpendicular to the main surface;
    The elastic support portion includes a lever, a first torsion support portion extending along a second direction perpendicular to the first direction, and connected between the lever and the movable portion, and the second direction. And a second torsion support connected between the lever and the base.
    The optical device, wherein a torsion spring constant of the first torsion support portion is larger than a torsion spring constant of the second torsion support portion.
  2.  前記第1方向から見た場合に、前記第1捩り支持部の幅は、前記第2捩り支持部の幅よりも広い、請求項1に記載の光学デバイス。 The optical device according to claim 1, wherein a width of the first torsion support portion is wider than a width of the second torsion support portion when viewed from the first direction.
  3.  前記第1方向から見た場合に、前記第1捩り支持部の長さは、前記第2捩り支持部の長さよりも短い、請求項1又は2に記載の光学デバイス。 The optical device according to claim 1, wherein a length of the first torsion support portion is shorter than a length of the second torsion support portion when viewed from the first direction.
  4.  前記ベース、前記可動部及び前記弾性支持部は、SOI基板によって構成されている、請求項1~3のいずれか一項に記載の光学デバイス。 The optical device according to any one of claims 1 to 3, wherein the base, the movable portion, and the elastic support portion are formed of an SOI substrate.
  5.  前記ベースに設けられ、複数の固定櫛歯を有する固定櫛歯電極と、
     前記可動部及び前記弾性支持部の少なくとも一方に設けられ、前記複数の固定櫛歯と互い違いに配置された複数の可動櫛歯を有する可動櫛歯電極と、を更に備える、請求項1~4のいずれか一項に記載の光学デバイス。
    A fixed comb electrode provided on the base and having a plurality of fixed comb teeth;
    5. The movable comb electrode according to claim 1, further comprising: a movable comb electrode provided on at least one of the movable portion and the elastic support portion and having a plurality of movable comb teeth alternately arranged with the plurality of fixed comb teeth. An optical device according to any one of the preceding claims.
  6.  前記弾性支持部を一対のみ備える、請求項1~5のいずれか一項に記載の光学デバイス。 The optical device according to any one of claims 1 to 5, comprising only one pair of elastic support portions.
PCT/JP2018/025640 2017-07-06 2018-07-06 Optical device WO2019009398A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18828856.7A EP3650917A4 (en) 2017-07-06 2018-07-06 Optical device
CN201880043509.0A CN110799886B (en) 2017-07-06 2018-07-06 Optical device
US16/625,702 US11740452B2 (en) 2017-07-06 2018-07-06 Optical device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2017133093 2017-07-06
JP2017-133093 2017-07-06
JP2017235022 2017-12-07
JP2017235021 2017-12-07
JP2017-235022 2017-12-07
JP2017-235025 2017-12-07
JP2017235025 2017-12-07
JP2017-235021 2017-12-07
JP2018080679A JP7112876B2 (en) 2017-07-06 2018-04-19 optical device
JP2018-080679 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019009398A1 true WO2019009398A1 (en) 2019-01-10

Family

ID=64951022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025640 WO2019009398A1 (en) 2017-07-06 2018-07-06 Optical device

Country Status (2)

Country Link
TW (1) TWI782053B (en)
WO (1) WO2019009398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113424028A (en) * 2019-01-30 2021-09-21 浜松光子学株式会社 Optical module, signal processing system, and signal processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155965A (en) * 2005-12-02 2007-06-21 Anritsu Corp Variable wavelength optical filter
US20080284078A1 (en) 2005-11-25 2008-11-20 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Micromechanical Element Which Can be Deflected
JP2010184334A (en) * 2009-02-13 2010-08-26 Fujitsu Ltd Micro movable element and optical interferometer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043423A (en) * 2003-11-06 2005-05-11 삼성전자주식회사 Frequency tunable resonant scanner
US8729770B1 (en) * 2003-12-02 2014-05-20 Adriatic Research Institute MEMS actuators with combined force and bi-directional rotation
US8269395B2 (en) * 2009-10-02 2012-09-18 Siyuan He Translating and rotation micro mechanism
JP5577742B2 (en) * 2010-02-23 2014-08-27 セイコーエプソン株式会社 Optical scanner and image forming apparatus
JP2014182225A (en) * 2013-03-18 2014-09-29 Seiko Epson Corp Optical scanner, actuator, image display device, and head-mounted display
JP6196867B2 (en) * 2013-10-01 2017-09-13 浜松ホトニクス株式会社 Optical module
JP6319771B2 (en) * 2015-11-06 2018-05-09 株式会社山王 Porous nickel thin film and method for producing the same
TWI581004B (en) * 2015-11-18 2017-05-01 財團法人工業技術研究院 Tunable optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080284078A1 (en) 2005-11-25 2008-11-20 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Micromechanical Element Which Can be Deflected
JP2007155965A (en) * 2005-12-02 2007-06-21 Anritsu Corp Variable wavelength optical filter
JP2010184334A (en) * 2009-02-13 2010-08-26 Fujitsu Ltd Micro movable element and optical interferometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113424028A (en) * 2019-01-30 2021-09-21 浜松光子学株式会社 Optical module, signal processing system, and signal processing method
US11898841B2 (en) 2019-01-30 2024-02-13 Hamamatsu Photonics K.K. Optical module, signal processing system, and signal processing method

Also Published As

Publication number Publication date
TWI782053B (en) 2022-11-01
TW201906783A (en) 2019-02-16

Similar Documents

Publication Publication Date Title
JP6543776B1 (en) Optical device
WO2019009392A1 (en) Optical device
JP7125913B2 (en) optical device
EP3650911B1 (en) Optical device
WO2019009398A1 (en) Optical device
US11635613B2 (en) Optical device
JP7112876B2 (en) optical device
CN110799889B (en) Optical device
JP6503149B1 (en) Optical device and method of manufacturing the same
TWI837096B (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018828856

Country of ref document: EP

Effective date: 20200206