WO2018168776A1 - 熱サイクルシステム - Google Patents

熱サイクルシステム Download PDF

Info

Publication number
WO2018168776A1
WO2018168776A1 PCT/JP2018/009522 JP2018009522W WO2018168776A1 WO 2018168776 A1 WO2018168776 A1 WO 2018168776A1 JP 2018009522 W JP2018009522 W JP 2018009522W WO 2018168776 A1 WO2018168776 A1 WO 2018168776A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
cycle system
heat cycle
thermal cycle
current
Prior art date
Application number
PCT/JP2018/009522
Other languages
English (en)
French (fr)
Inventor
勝也 上野
岡本 秀一
成雄 梶谷
哲央 大塚
一本松 正道
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP18768071.5A priority Critical patent/EP3598040A4/en
Priority to JP2019506010A priority patent/JPWO2018168776A1/ja
Priority to CN201880018070.6A priority patent/CN110402361B/zh
Publication of WO2018168776A1 publication Critical patent/WO2018168776A1/ja
Priority to US16/569,440 priority patent/US10830518B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a heat cycle system using a working medium for heat cycle containing trifluoroethylene, and more particularly, a heat cycle system that suppresses the self-decomposition reaction of trifluoroethylene even when the inside of the system is at a high temperature or high pressure.
  • a heat cycle system that suppresses the self-decomposition reaction of trifluoroethylene even when the inside of the system is at a high temperature or high pressure.
  • a working medium for a heat cycle such as a refrigerant for a refrigerator, a refrigerant for an air conditioner, a working medium for a power generation system (waste heat recovery power generation, etc.), a working medium for a latent heat transport device (heat pipe, etc.), a secondary cooling medium, etc.
  • chlorofluorocarbons such as chlorotrifluoromethane and dichlorodifluoromethane
  • HCFC hydrochlorofluorocarbons
  • chlorodifluoromethane chlorodifluoromethane.
  • CFCs and HCFCs are currently subject to regulation because of their impact on the stratospheric ozone layer.
  • HFC hydrogen fluorocarbons
  • R410A a quasi-azeotropic refrigerant mixture having a mass ratio of 1: 1 between HFC-32 and HFC-125 is a refrigerant that has been widely used.
  • HFC may cause global warming.
  • R410A is widely used in ordinary air conditioners and so-called so-called packaged air conditioners and room air conditioners because of its high refrigerating capacity.
  • GWP global warming potential
  • the global warming potential (GWP) is as high as 2088, and therefore development of a low GWP working medium is required.
  • HFO hydrofluoroolefin
  • Patent Document 1 As a working medium for heat cycle using HFO, a working medium using trifluoroethylene (HFO-1123) is known.
  • HFO-1123 a working medium using trifluoroethylene
  • Patent Document 1 has the above characteristics and excellent cycle performance.
  • a technique related to a working medium for heat cycle using the obtained HFO-1123 is disclosed.
  • Patent Document 1 an attempt is made to use HFO-1123 in combination with various HFCs as a working medium for the purpose of improving the nonflammability and cycle performance of the working medium.
  • Non-Patent Document 1 reports an attempt to suppress the self-decomposition reaction by mixing HFO-1123 with other components such as vinylidene fluoride to reduce the content of HFO-1123. ing.
  • HFO-1123 As a working medium for heat cycle, as described above, if HFO-1123 is exposed to high temperature or high pressure and there is an ignition source, there is a risk of self-decomposition of HFO-1123. It is necessary to keep in mind that there are.
  • the present invention is a thermal cycle system using trifluoroethylene (HFO-1123), which has little influence on global warming and has good cycle performance (capacity) as a working medium for thermal cycle,
  • HFO-1123 trifluoroethylene
  • Capacity cycle performance
  • the present inventors diligently studied to solve the above-described problems. As a result, even when the thermal cycle system is in an abnormal operation state, the thermal cycle system is configured to have a predetermined configuration so that the self-decomposition reaction of HFO-1123 occurs. Has been found to be effectively avoided, and the present invention has been completed.
  • the present invention provides a thermal cycle system having a configuration described in [1] to [11] below.
  • a thermal cycle system having a circulation path for circulating a working medium for thermal cycle containing trifluoroethylene from the compressor to the compressor via a condenser, an expansion valve and an evaporator, the compression system
  • a thermal cycle system comprising a current limiting device capable of limiting a current within 6 milliseconds from an abnormal operation state in an electric circuit of the machine.
  • the heat cycle system according to [1] wherein the current limiting device is capable of current limiting within 1 millisecond from when the current limiting device enters an abnormal operation state.
  • the working medium for heat cycle contains 60 to 80% by mass of the trifluoroethylene and 20 to 40% by mass of at least one of difluoromethane and 2,3,3,3-tetrafluoro-1-propene.
  • Item 7. The thermal cycle system according to Item 6.
  • the heat cycle system is a refrigeration / refrigeration device, an air conditioning device, a power generation system, a heat transport device, or a secondary cooler.
  • a heat cycle system is a room air conditioner, a store packaged air conditioner, a building packaged air conditioner, a facility packaged air conditioner, a gas engine heat pump, a train air conditioner, an automobile air conditioner, a built-in showcase, a separate showcase, The thermal cycle system according to any one of [1] to [10], which is a commercial refrigeration / refrigerator, ice maker, or vending machine.
  • the working medium containing HFO-1123 that can suppress the influence on global warming and has practical thermal cycle performance is used. Even in such a case, it is possible to provide a thermal cycle system that can avoid the self-decomposition reaction of HFO-1123.
  • FIG. 2 is a cycle diagram in which a change in state of a working medium in the refrigeration cycle system of FIG. 1 is described on a pressure-enthalpy diagram. It is the figure which showed schematic structure of the compressor which has a current limiting device. It is the figure which showed the time-dependent change of the electric current in Example 1 and a pressure. It is the figure which showed the time-dependent change of the electric current and voltage in the reference example 1. FIG. It is the figure which showed the time-dependent change of the electric current in the reference comparative example 1, and a pressure. It is the figure which showed the time-dependent change of the electric current and voltage in the reference comparative example 1. FIG.
  • HFC saturated hydrofluorocarbon
  • HFO halogenated hydrocarbons
  • HFC and HFO the abbreviations of the compounds are shown in parentheses after the compound names, but in the present specification, the abbreviations are used instead of the compound names as necessary.
  • HFC is a compound in which a part of hydrogen atoms of a saturated hydrocarbon compound is replaced with a fluorine atom
  • HFO is composed of a hydrogen atom, a fluorine atom, and an oxygen atom. It is a compound having a heavy bond.
  • a thermal cycle working medium (hereinafter, simply referred to as a working medium) used in the thermal cycle system of the present embodiment will be described.
  • the working medium used here is a working medium containing HFO-1123. Further, the working medium used here is preferably a working medium for heat cycle in which the content of HFO-1123 in the whole working medium is more than 50 mass% and not more than 100 mass%.
  • the working medium for heat cycle used in the present embodiment may be made of HFO-1123 alone as described above, and may contain HFO-1123 and other working medium.
  • the global warming potential (100 years) of HFO-1123 is 0.3 as a value measured according to the IPCC Fourth Assessment Report.
  • GWP is a value of 100 years in the IPCC Fourth Assessment Report unless otherwise specified.
  • the working medium used in this embodiment contains HFO-1123 having an extremely low GWP of more than 50% by mass, the GWP value of the working medium can be kept low.
  • the GWP of other components is higher than HFO-1123, for example, a saturated HFC described later, the composition becomes lower as the content ratio is lower.
  • the content ratio of HFO-1123 in the working medium for heat cycle is preferably more than 50% by mass, more preferably more than 60% by mass, and still more preferably more than 70% by mass. .
  • GWP is low enough and it can ensure favorable refrigerating capacity.
  • the working medium for heat cycle used in the present embodiment may optionally contain a compound used as a normal working medium in addition to HFO-1123 as long as the effects of the present invention are not impaired.
  • HFO other than HFC and HFO-1123 is preferable.
  • HFC As an optional component HFC, for example, an HFC having an effect of reducing a temperature gradient, an effect of improving ability, or an effect of further improving efficiency when used in a heat cycle in combination with HFO-1123 is used.
  • HFC high performance heat cycle
  • the working medium for heat cycle used in the present embodiment includes such an HFC, better cycle performance can be obtained.
  • HFC is known to have a higher GWP than HFO-1123. Therefore, in addition to improving the cycle performance as the working medium, an HFC used as an optional component is selected from the viewpoint of keeping GWP within an allowable range.
  • an HFC having 1 to 5 carbon atoms is preferable as an HFC that has little influence on the ozone layer and has little influence on global warming.
  • the HFC may be linear, branched, or cyclic.
  • HFCs difluoromethane (HFC-32), difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane (HFC-125), pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclo Examples include pentane.
  • HFC 1,1-difluoroethane
  • HFC-152a 1,1,1-trifluoroethane
  • HFC-150 1,1,2,2-tetrafluoroethane
  • HFC-125 1,1,2,2-tetrafluoroethane
  • HFC-32, HFC -134a, and HFC-125 are more preferred.
  • One HFC may be used alone, or two or more HFCs may be used in combination.
  • the preferred HFC GWP is 675 for HFC-32, 1430 for HFC-134a, and 3500 for HFC-125. From the viewpoint of keeping the GWP of the working medium low, the HFC-32 is most preferable as an optional component HFC.
  • Optional HFO includes 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), trans-1,2-difluoroethylene (HFO-1132 (E)), cis-1,2- Difluoroethylene (HFO-1132 (Z)), 2-fluoropropene (HFO-1261yf), 1,1,2-trifluoropropene (HFO-1243yc), trans-1,2,3,3,3-pentafluoro Propene (HFO-1225ye (E)), cis-1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z)), trans-1,3,3,3-tetrafluoropropene (HFO- 1234ze (E)), cis-1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)), 3,3,3-trifluoro Propene (HFO-1243zf), and the like.
  • HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z) are preferable as the optional HFO because it has a high critical temperature and is excellent in safety and coefficient of performance.
  • HFOs other than HFO-1123 may be used alone, or two or more thereof may be used in combination.
  • the working medium for heat cycle used in the present embodiment contains HFC and / or HFO other than HFO-1123 as an optional component, HFC and HFO other than HFO-1123 in 100% by mass of the working medium.
  • the total content is preferably 50% by mass or less, more preferably 40% by mass or less, and most preferably 30% by mass or less.
  • the total content of HFO other than HFC and HFO-1123 in the working medium is appropriately adjusted within the above range depending on the type of HFO other than HFC and HFO-1123 used.
  • adjustment is made in consideration of the viewpoint of lowering the temperature gradient, improving the capacity, or increasing the efficiency, and also the global warming potential. To do.
  • the thermal cycle working medium used in the present embodiment includes, in particular, 60 to 80% by mass of HFO-1123 and 20 to 40% by mass of at least one of HFC-32 and HFO-1234yf. Little impact on global warming and excellent refrigeration cycle characteristics. In addition, even when trouble such as abnormal operation occurs in the thermal cycle system, it becomes easier to avoid the self-decomposition reaction of HFO-1123 by combining with the current limiting device, and the thermal cycle system can be made extremely safe. Therefore, it is preferable.
  • the working fluid for heat cycle used in this embodiment contains carbon dioxide, hydrocarbon, chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO), etc. as other optional components in addition to the above optional components. Also good.
  • Other optional components are preferably components that have little influence on the ozone layer and little influence on global warming.
  • hydrocarbon examples include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.
  • a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
  • the working fluid for heat cycle used in the present embodiment contains hydrocarbons
  • the content thereof is preferably 10% by mass or less, more preferably 1 to 10% by mass with respect to 100% by mass of the working medium. It is more preferably from 7 to 7% by mass, and most preferably from 2 to 5% by mass. If the hydrocarbon is 10% by mass or less, the solubility of the mineral refrigerating machine oil in the working medium becomes better.
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • 1,1-dichloro-2,3,3,3-tetrafluoropropene is used as CFO because it is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium for heat cycle.
  • CFO-1214ya 1,3-dichloro-1,2,3,3-tetrafluoropropene
  • CFO-1112 1,2-dichloro-1,2-difluoroethylene
  • One type of CFO may be used alone, or two or more types may be used in combination.
  • the content is preferably 50% by weight, more preferably 40% by weight or less, and more preferably 30% by weight with respect to 100% by weight of the working medium. The following are most preferred. If the content of CFO is not more than the upper limit value, good cycle performance can be easily obtained.
  • HCFO examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
  • hydrochlorofluoropropene examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
  • HCFO 1-chloro-2,3,3,3-tetrafluoro is used because it is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium for heat cycle used in the present embodiment.
  • Propene (HCFO-1224yd) and 1-chloro-1,2-difluoroethylene (HCFO-1122) are preferred.
  • HCFO may be used alone or in combination of two or more.
  • the content of HCFO in 100% by mass of the working medium is preferably 50% by mass or less, more preferably 40% by mass or less, and 30% by mass. The following are most preferred. If the content of HCFO is not more than the upper limit value, good cycle performance can be easily obtained.
  • the total content is preferably 50% by mass or less with respect to 100% by mass of the working medium, The amount is more preferably less than 40% by weight, and further preferably less than 30% by weight.
  • the working medium for heat cycle used in the present embodiment described above is an HFO that has little influence on global warming and contains HFO-1123 that has an excellent ability as a working medium. It has a practical cycle performance while suppressing the influence on.
  • composition for thermal cycle system The working medium for heat cycle is usually preferably mixed with refrigeration oil to form a composition for heat cycle system used in the heat cycle system of the present embodiment.
  • This composition for a heat cycle system is used by being enclosed in a circulation path of the heat cycle system.
  • the composition for a heat cycle system may further contain known additives such as a stabilizer and a leak detection substance.
  • refrigerator oil As the refrigerating machine oil, a known refrigerating machine oil used for a composition for a heat cycle system can be employed without particular limitation, together with a working medium made of a halogenated hydrocarbon. Specific examples of the refrigerating machine oil include oxygen-containing refrigerating machine oil (ester refrigerating machine oil, ether refrigerating machine oil, etc.), fluorine refrigerating machine oil, mineral refrigerating machine oil, hydrocarbon refrigerating machine oil, and the like.
  • ester refrigerating machine oils include dibasic acid ester oils, polyol ester oils, complex ester oils, and polyol carbonate oils.
  • the dibasic acid ester oil includes a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a carbon number having a linear or branched alkyl group.
  • Esters with 1 to 15 monohydric alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, etc. are preferred.
  • dibasic acid ester oil examples include ditridecyl glutarate, di (2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, di (3-ethylhexyl) sebacate and the like.
  • Polyol ester oils include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7- Heptanediol, 1,12-dodecanediol, etc.) or polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.); Fatty acids having 6 to 20 carbon atoms (hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, eicosanoic acid,
  • Polyol ester oils include esters of hindered alcohols (neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.) (trimethylol propane tripelargonate, pentaerythritol 2-ethylhexanoate). And pentaerythritol tetrapelargonate) are preferred.
  • hindered alcohols neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.
  • trimel propane tripelargonate pentaerythritol 2-ethylhexanoate
  • pentaerythritol tetrapelargonate are preferred.
  • the complex ester oil is an ester of a fatty acid and a dibasic acid, a monohydric alcohol and a polyol.
  • fatty acid, dibasic acid, monohydric alcohol, and polyol the same ones as described above can be used.
  • the polyol carbonate oil is an ester of carbonic acid and polyol.
  • examples of the polyol include the same diol as described above and the same polyol as described above.
  • the polyol carbonate oil may be a ring-opening polymer of cyclic alkylene carbonate.
  • Examples of the ether refrigerating machine oil include polyvinyl ether oil and polyoxyalkylene oil.
  • examples of the polyvinyl ether oil include those obtained by polymerizing vinyl ether monomers such as alkyl vinyl ethers, and copolymers obtained by copolymerizing vinyl ether monomers and hydrocarbon monomers having an olefinic double bond.
  • a vinyl ether monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • hydrocarbon monomer having an olefinic double bond examples include ethylene, propylene, butene, pentene, hexene, heptene, octene, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, various alkyl-substituted styrenes, and the like.
  • the hydrocarbon monomer which has an olefinic double bond may be used individually by 1 type, and may be used in combination of 2 or more type. Of the above-mentioned compounds, any isomer may be used as long as it has an isomer.
  • the polyvinyl ether copolymer may be either a block or a random copolymer.
  • a polyvinyl ether oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyoxyalkylene oil examples include polyoxyalkylene monools, polyoxyalkylene polyols, alkyl etherified products of polyoxyalkylene monools and polyoxyalkylene polyols, and esterified products of polyoxyalkylene monools and polyoxyalkylene polyols.
  • Polyoxyalkylene monools and polyoxyalkylene polyols are used to open a C 2-4 alkylene oxide (ethylene oxide, propylene oxide, etc.) in an initiator such as water or a hydroxyl group-containing compound in the presence of a catalyst such as an alkali hydroxide. Examples thereof include those obtained by a method of addition polymerization.
  • the oxyalkylene units in the polyalkylene chain may be the same in one molecule, or two or more oxyalkylene units may be included. It is preferable that at least an oxypropylene unit is contained in one molecule.
  • the initiator used for the reaction examples include water, monohydric alcohols such as methanol and butanol, and polyhydric alcohols such as ethylene glycol, propylene glycol, pentaerythritol, and glycerol.
  • the polyoxyalkylene oil is preferably an alkyl etherified product or an esterified product of polyoxyalkylene monool or polyoxyalkylene polyol.
  • the polyoxyalkylene polyol is preferably polyoxyalkylene glycol.
  • an alkyl etherified product of polyoxyalkylene glycol in which the terminal hydroxyl group of polyoxyalkylene glycol is capped with an alkyl group such as a methyl group, called polyglycol oil is preferable.
  • fluorinated refrigerating machine oil examples include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly ⁇ -olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, and the like.
  • mineral-based refrigeration oil refrigerating machine oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil is refined (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation) Paraffinic mineral oil, naphthenic mineral oil, etc., which are refined by appropriately combining refining, clay treatment, etc.).
  • hydrocarbon refrigerating machine oil examples include poly ⁇ -olefin, alkylbenzene, alkylnaphthalene and the like.
  • Refrigerating machine oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the refrigerating machine oil is preferably at least one selected from polyol ester oil, polyvinyl ether oil, and polyglycol oil from the viewpoint of compatibility with the working medium.
  • the amount of the refrigerating machine oil may be within a range that does not significantly reduce the effect of the present invention, and is preferably 10 to 100 parts by mass, more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
  • a stabilizer is a component that improves the stability of the working medium against heat and oxidation.
  • a known stabilizer used in a heat cycle system together with a working medium composed of a halogenated hydrocarbon, for example, an oxidation resistance improver, a heat resistance improver, a metal deactivator, etc. is not particularly limited. Can be adopted.
  • oxidation resistance improver and heat resistance improver examples include N, N′-diphenylphenylenediamine, p-octyldiphenylamine, p, p′-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2-naphthylamine.
  • the oxidation resistance improver and the heat resistance improver may be used alone or in combination of two or more.
  • Metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Dimethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Amine salts thereof or derivatives thereof.
  • the addition amount of the stabilizer may be in a range that does not significantly reduce the effect of the present invention, and is preferably 5 parts by mass or less, more preferably 1 part by mass or less with respect to 100 parts by mass of the working medium.
  • leak detection substance examples include ultraviolet fluorescent dyes, odorous gases and odor masking agents.
  • the ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-T-10-502737, JP-T 2007-511645, JP-T 2008-500437, JP-T 2008-531836.
  • odor masking agent examples include known fragrances used in heat cycle systems, together with working media composed of halogenated hydrocarbons, such as those described in JP-T-2008-500337 and JP-A-2008-531836. Can be mentioned.
  • a solubilizing agent that improves the solubility of the leak detection substance in the working medium may be used.
  • the solubilizer include those described in JP-T-2007-511645, JP-T-2008-500437, JP-T-2008-531836.
  • the addition amount of the leak detection substance may be in a range that does not significantly reduce the effect of the present invention, and is preferably 2 parts by mass or less, more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the working medium.
  • This thermal cycle system is a system using HFO-1123 as a working medium for thermal cycle.
  • this working medium for heat cycle it is usually applied as a composition for a heat cycle system containing the working medium.
  • the thermal cycle system of the present invention includes a basic thermal cycle having the same configuration as a conventionally known thermal cycle system.
  • the thermal cycle system of the present invention may have any circulation path in which the working medium is circulated from the compressor to the compressor via the condenser, the expansion valve, and the evaporator.
  • the heat cycle system of the present invention may be a heat pump system that uses warm heat obtained by a condenser, or may be a refrigeration cycle system that uses cold heat obtained by an evaporator.
  • the heat cycle system include refrigeration / refrigeration equipment, air conditioning equipment, power generation systems, heat transport devices, and secondary coolers.
  • the thermal cycle system of the present invention can stably exhibit thermal cycle performance even in a higher temperature operating environment, it is preferably used for an air conditioner that is often installed outdoors.
  • the thermal cycle system of the present invention is also preferably used for refrigeration / refrigeration equipment.
  • air conditioners include room air conditioners, packaged air conditioners (store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, etc.), gas engine heat pumps, train air conditioners, automobile air conditioners, and the like.
  • refrigeration / refrigeration equipment include showcases (built-in showcases, separate showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
  • a power generation system using a Rankine cycle system is preferable.
  • the working medium is heated by geothermal energy, solar heat, waste heat in the middle to high temperature range of about 50 to 200 ° C in the evaporator, and the working medium turned into high-temperature and high-pressure steam is expanded.
  • An example is a system in which power is generated by adiabatic expansion by a machine, and a generator is driven by work generated by the adiabatic expansion.
  • the heat cycle system of the present invention may be a heat transport device.
  • a latent heat transport device is preferable.
  • Examples of the latent heat transport device include a heat pipe and a two-phase sealed thermosyphon device that transport latent heat using phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device.
  • the heat pipe is applied to a relatively small cooling device such as a cooling device for a heat generating part of a semiconductor element or an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for a gas-gas heat exchanger, for promoting snow melting on roads, and for preventing freezing.
  • the refrigeration cycle system is a system that uses cold heat obtained by an evaporator.
  • a refrigeration cycle system 10 shown in FIG. 1 cools and liquefies a compressor 11 that compresses the working medium vapor A into a high-temperature and high-pressure working medium vapor B and the working medium vapor B discharged from the compressor 11.
  • the condenser 12 as a low-temperature and high-pressure working medium C
  • the expansion valve 13 that expands the working medium C discharged from the condenser 12 to form a low-temperature and low-pressure working medium D
  • the working medium D discharged from the expansion valve 13
  • a pump 15 for supplying a load fluid E to the evaporator 14 and a pump 16 for supplying a fluid F to the condenser 12.
  • the refrigeration cycle system 10 circulates the heat cycle working medium from the compressor 11 to the compressor 11 via the condenser 12, the expansion valve 13 and the evaporator 14 in the same manner as the known heat cycle system. It will be driven.
  • the working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 into a high-temperature and high-pressure working medium vapor B (hereinafter referred to as “AB process”).
  • AB process high-temperature and high-pressure working medium vapor B
  • the working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to obtain a low temperature and high pressure working medium C. At this time, the fluid F is heated to become fluid F ′ and is discharged from the condenser 12 (hereinafter referred to as “BC process”).
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to obtain a low-temperature and low-pressure working medium D (hereinafter referred to as “CD process”).
  • the working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to obtain high-temperature and low-pressure working medium vapor A. At this time, the load fluid E is cooled to become the load fluid E ′ and discharged from the evaporator 14 (hereinafter referred to as “DA process”).
  • the refrigeration cycle system 10 is a cycle system including adiabatic / isoentropic change, isoenthalpy change, and isopressure change.
  • the state change of the working medium is described on the pressure-enthalpy line (curve) diagram shown in FIG. 2, it can be expressed as a trapezoid having A, B, C, and D as apexes.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 to convert the high-temperature and low-pressure working medium vapor A into the high-temperature and high-pressure working medium vapor B, which is indicated by an AB line in FIG.
  • the BC process is a process in which the condenser 12 performs isobaric cooling to convert the high-temperature and high-pressure working medium vapor B into a low-temperature and high-pressure working medium C, and is indicated by a BC line in FIG.
  • the pressure at this time is the condensation pressure.
  • Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature.
  • the temperature gradient is shown as a difference between T 1 and T 2 .
  • the CD process is a process in which the enthalpy expansion is performed by the expansion valve 13 and the low-temperature and high-pressure working medium C is used as the low-temperature and low-pressure working medium D, and is indicated by a CD line in FIG.
  • T 2 -T 3 is (i) ⁇ supercooling degree of the working medium in the cycle of (iv) (hereinafter, optionally in the "SC" It is shown.)
  • the DA process is a process of performing isobaric heating in the evaporator 14 to return the low-temperature and low-pressure working medium D to the high-temperature and low-pressure working medium vapor A, and is indicated by a DA line in FIG.
  • the pressure at this time is the evaporation pressure.
  • Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ⁇ superheat of the working medium in the cycle of (iv) a (hereinafter,. Indicated by "SH", if necessary) .
  • T 4 indicates the temperature of the working medium D.
  • the thermal cycle system of this embodiment has a current limiting device capable of limiting the current within 6 milliseconds from the detection of the abnormal operation state in the electric circuit of the compressor.
  • a current limiting device capable of limiting the current within 6 milliseconds from the detection of the abnormal operation state in the electric circuit of the compressor.
  • the electric circuit may be an electric circuit that can limit or stop the operation of the compressor, and examples thereof include a current supply path and a compressor circuit.
  • an ignition source for example, spark energy generated in a thermal cycle system in an electric circuit is exemplified as a typical ignition source, and the spark energy is usually generated by short-circuiting a conductor of the electric circuit.
  • the HFO-1123 constituting the working medium when the HFO-1123 constituting the working medium is 100%, it is assumed that when the received energy exceeds 2.5 J, it ignites and a self-decomposition reaction occurs. And in the case of the abnormal operation state generally assumed, it is considered that the ignition is performed in about 100 milliseconds from the time of the abnormal operation state.
  • HFO-1123 constituting the working medium is 60% and HFC-32 is 40%
  • the received energy exceeds 200 J
  • a self-decomposition reaction occurs, and it is assumed that ignition occurs.
  • the ignition occurs in about 1 second from the time of the abnormal operation state.
  • the concentration of HFO-1123 in the working medium is low, the energy required for ignition is larger than in the case where the above-mentioned HFO-1123 is 100%, so the time required for ignition is also increased. From the above viewpoint, it is preferable that the energy received by the working medium for heat cycle is suppressed to 200 J or less from the spark energy generated in the heat cycle system.
  • the energy received by the heat cycle working medium from the spark energy generated in the heat cycle system is the energy excluding the energy propagated to the main body of the device near the place where the spark is generated from the spark energy generated in the system.
  • the energy received by the working medium for heat cycle from the spark energy can be suppressed to 200 J or less by suppressing the spark energy generated in the heat cycle system to 200 J or less.
  • the abnormal operation state means a state where there is a possibility of causing the self-decomposition reaction of HFO-1123 by deviating from the steady operation in the thermal cycle system, and is set as appropriate according to the device configuration. Specifically, when the electric circuit current of the compressor exceeds the design upper limit current, the voltage of the compressor electric circuit exceeds the design upper limit pressure, and the temperature of the compressor electric circuit exceeds the design upper limit. A state that satisfies any one of the conditions when the temperature is exceeded.
  • the current, voltage, power in the compressor's electrical circuit, torque, temperature, pressure, etc. in the compressor are monitored by sensors, etc., and threshold values are set respectively. It can be detected by constantly monitoring whether the value is exceeded. And when an abnormal driving
  • Such abnormal operation state detection and current limitation may be configured to provide a current limiting device that can automatically limit current when an abnormal operation state occurs, such as a fuse. .
  • a device, a sensor, or the like for detecting an abnormal operation state is unnecessary, and the device configuration can be simplified.
  • the scroll compressor 110 shown in FIG. 3 includes a driving unit including a stator 112 and a rotor 113, a scroll compression mechanism 114 that compresses a working medium for heat cycle by rotation of the driving unit, and a compression unit. And a suction pipe 115 that leads the working medium for heat cycle into the scroll compression mechanism 114, and a discharge pipe that is connected to the condenser and sends the compressed working medium for heat cycle in the sealed container 111 to the condenser side.
  • the scroll compressor 110 basically has the same configuration as a known compressor, and the current limiting device 120 is a characteristic part. Therefore, the current limiting device 120 will be described below.
  • the scroll type compressor was demonstrated here as an example, if it is a well-known compressor, it can apply, without being specifically limited. Examples thereof include a piston crank compressor, a piston swash plate compressor, a rotary piston compressor, a rotary vane compressor, a single rotor compressor, a twin rotor compressor, and a centrifugal compressor.
  • Compressor driving means for example, the stator 112 and the rotor 113 in FIG. 3 are normally connected to an external power supply 118 via a power supply terminal 117 and obtain driving energy by a power supply path 119.
  • a current limiting unit 120 is provided in the power supply path 119.
  • the self-decomposition reaction of HFO-1123 can be prevented from occurring. That is, when an abnormal operation state occurs, for example, the power supply path (conductive wire) connecting the power supply terminal 117 and the stator 122 becomes high temperature, and the coating material of the conductive wire may deteriorate, and the conductive wire itself may be exposed. In that case, the exposed conductor may serve as an ignition source, and the self-decomposition reaction of HFO-1123 may proceed.
  • the current limiting means 120 as in the present embodiment, even if the conductor is exposed, the current in the power supply path can be reached in a very short time when the predetermined threshold value is exceeded. Can be restricted. Therefore, the energy received by HFO-1123 can be effectively limited, and ignition due to self-decomposition reaction can be prevented.
  • any device can be used as long as it can limit the current within 6 milliseconds from the detection of the abnormal operation state in the power supply path 119.
  • any current or voltage can be used as long as the current or voltage can be reduced (including stopping the current, that is, interrupting the current).
  • the current limiting device include a semiconductor protection fuse, a fast-acting fuse, a fast-acting fuse, and a current-limiting fuse.
  • the current limiting device 120 is capable of limiting the current within 1 millisecond from the time when the abnormal state is detected.
  • the semiconductor protection fuse As the semiconductor protection fuse, a semiconductor protection fuse that has been conventionally used for protecting a semiconductor circuit and can perform current limitation in a short time as described above may be used. Specific examples of this semiconductor protection fuse include, for example, semiconductor protection fuses such as CR2L (S) type and CR6L type (both manufactured by Fuji Electric Device Control Co., Ltd., trade name: Super Rapid Fuse Series). .
  • semiconductor protection fuses such as CR2L (S) type and CR6L type (both manufactured by Fuji Electric Device Control Co., Ltd., trade name: Super Rapid Fuse Series).
  • fast-acting fuse for example, a fast-acting fuse FLG type for semiconductor protection manufactured by Mitsubishi Electric Corporation can be cited.
  • Examples of the fast-acting fuse include a QAS type and a QFS type manufactured by Sensora Technologies, Inc.
  • a sensor that detects current, voltage, power, torque, temperature, pressure, etc. is prepared separately, and the value detected by the sensor exceeds the threshold value for abnormal operation status.
  • the current limiting device may be activated.
  • the current limiting by the current limiting device 120 is performed by controlling the upper limit voltage below the maximum operating voltage of the compressor, controlling the upper limit current below the allowable current of the compressor, stopping the current, etc. in the power supply path 119. It can be carried out.
  • a method for controlling the moisture concentration in the thermal cycle system a method using a moisture removing means such as a desiccant (silica gel, activated alumina, zeolite, lithium chloride, etc.) can be mentioned.
  • a desiccant silicon gel, activated alumina, zeolite, lithium chloride, etc.
  • the desiccant is preferably brought into contact with a liquid working medium from the viewpoint of dehydration efficiency.
  • a desiccant it is preferable to place a desiccant at the outlet of the condenser 12 or at the inlet of the evaporator 14 to contact the working medium.
  • a zeolitic desiccant is preferable from the viewpoint of the chemical reactivity between the desiccant and the working medium and the moisture absorption capacity of the desiccant.
  • the main component is a compound represented by the following formula (3) from the viewpoint of excellent hygroscopic capacity.
  • Zeolite desiccants are preferred.
  • M is a Group 1 element such as Na or K, or a Group 2 element such as Ca
  • n is a valence of M
  • x and y are values determined by a crystal structure.
  • the working medium When a desiccant having a pore size larger than the molecular diameter of the working medium is used, the working medium is adsorbed in the desiccant, resulting in a chemical reaction between the working medium and the desiccant, and generation of a non-condensable gas. Undesirable phenomena such as a decrease in the strength of the desiccant and a decrease in the adsorption capacity will occur.
  • a zeolitic desiccant having a small pore size as the desiccant.
  • a sodium / potassium A type synthetic zeolite having a pore diameter of 3.5 angstroms or less is preferable.
  • the size of the zeolitic desiccant is preferably about 0.5 to 5 mm because if it is too small, it will cause clogging of valves and piping details of the heat cycle system, and if it is too large, the drying ability will be reduced.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be formed into an arbitrary shape by solidifying powdery zeolite with a binder (such as bentonite).
  • a binder such as bentonite
  • Other desiccants silicon gel, activated alumina, etc.
  • the use ratio of the zeolitic desiccant with respect to the working medium is not particularly limited.
  • the water concentration in the heat cycle system is preferably less than 10,000 ppm, more preferably less than 1000 ppm, and particularly preferably less than 100 ppm in terms of mass ratio to the working medium for heat cycle.
  • Non-condensable gas concentration Furthermore, when non-condensable gas is mixed in the heat cycle system, it adversely affects heat transfer in the condenser and the evaporator and increases in operating pressure. Therefore, it is necessary to suppress mixing as much as possible.
  • oxygen which is one of non-condensable gases, reacts with the working medium and refrigerating machine oil to promote decomposition.
  • the non-condensable gas concentration is preferably less than 10,000 ppm, more preferably less than 1000 ppm, and particularly preferably less than 100 ppm in terms of mass ratio with respect to the working medium for heat cycle.
  • the presence of chlorine in the heat cycle system has undesirable effects such as deposit formation due to reaction with metals, wear of bearings, decomposition of heat cycle working medium and refrigeration oil.
  • the chlorine concentration in the heat cycle system is preferably 100 ppm or less, and particularly preferably 50 ppm or less in terms of a mass ratio with respect to the heat cycle working medium.
  • Metal concentration The presence of metals such as palladium, nickel, and iron in the thermal cycle system has undesirable effects such as decomposition and oligomerization of HFO-1123.
  • the metal concentration in the heat cycle system is preferably 5 ppm or less, particularly preferably 1 ppm or less, in terms of a mass ratio with respect to the heat cycle working medium.
  • the presence of acid in the thermal cycle system has undesirable effects such as acceleration of oxidative decomposition and self-decomposition of HFO-1123.
  • the acid content concentration in the heat cycle system is preferably 1 ppm or less, particularly preferably 0.2 ppm or less, in terms of a mass ratio with respect to the heat cycle working medium.
  • the presence of metal powder, other oils other than refrigerating machine oil, and high-boiling residues in the heat cycle system adversely affects the clogging of the vaporizer and increased resistance of the rotating part.
  • the residue concentration in the heat cycle system is preferably 1000 ppm or less, and particularly preferably 100 ppm or less in terms of mass ratio with respect to the heat cycle working medium.
  • the residue can be removed by filtering the working medium for the heat cycle system with a filter or the like.
  • each component (HFO-1123, HFO-1234yf, etc.) of the working medium for the heat cycle system is filtered to remove the residue, and then mixed. It is good also as a working medium for heat cycle systems.
  • the above-mentioned thermal cycle system uses a thermal cycle working medium containing trifluoroethylene, so that practical cycle performance can be obtained while suppressing the influence on global warming, and HFO-1123 can be used during abnormal operation. Self-decomposition reaction can be suppressed.
  • an AC voltage of 150 V was applied to the electrodes installed in the autoclave to generate an electric spark inside the autoclave.
  • the current and voltage were measured using a Tektronix oscilloscope TDS5054B.
  • the presence or absence of self-decomposition reaction was confirmed by measuring temperature and pressure changes in the autoclave generated after application.
  • the temperature and pressure were measured using MX-100 manufactured by YOKOGAWA.
  • the current value was also simply recorded by connecting to MX-100 via a YOKOGAWA current divider 221603. When the pressure increase exceeded 1% of the initial pressure, it was determined that the autolysis reaction proceeded under the temperature and pressure conditions.
  • the electrode installed in the autoclave is such that one end of two copper plates facing each other are brought into contact with each other, and at this time, the two copper plates and the contacts have a coil-like shape.
  • a voltage is applied to one of the copper plates
  • a current flows through the two copper plates through the contact portion, and a magnetic field is generated therein according to Ampere's law.
  • the current is subjected to the outward force by Fleming's law due to the generated magnetic field, the contact between the copper plates is released, and the principle that spark is generated at that moment is used.
  • FIG. 12 shows a typical current / voltage curve when an AC voltage is applied. There is a point on the graph where the voltage changes rapidly. When an electric spark is generated, the resistance value of the entire circuit rapidly increases in a stepped manner, so that the voltage curve changes under the influence. This point was defined as the electric spark occurrence time, and the point at which the resistance value returned to the original resistance value of the entire circuit was designated as the spark occurrence end time.
  • the energy applied in the system was calculated using the following formula (1), with the current and voltage values in the meantime being I (t) and V (t), respectively.
  • the thermal cycle system of the present embodiment in the thermal cycle system using the working medium including HFO-1123, even when an abnormal operation state occurs, the self-decomposition reaction is avoided, the apparatus is damaged, etc. Can be suppressed.
  • the heat cycle system of the present invention includes a freezer / refrigerator (built-in showcase, separate showcase, commercial refrigeration / refrigerator, vending machine, ice maker, etc.), air conditioner (room air conditioner, store packaged air conditioner, building) Packaged air conditioners, facility packaged air conditioners, gas engine heat pumps, train air conditioners, automotive air conditioners, etc.), power generation systems (waste heat recovery power generation, etc.), heat transport devices (heat pipes, etc.), secondary coolers, etc. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

地球温暖化係数が小さいトリフルオロエチレンを含む熱サイクル用作動媒体を用いた耐久性の高い熱サイクルシステムを提供する。トリフルオロエチレンを含む熱サイクル用作動媒体を、圧縮機11から、凝縮器12、膨張弁13および蒸発器14を経由して圧縮機11に循環させる循環経路を有する熱サイクルシステムであって、圧縮機の電気回路において、異常運転状態となったときから6ミリ秒以内に電流制限が可能な電流制限装置を有する熱サイクルシステム10。

Description

熱サイクルシステム
 本発明は、トリフルオロエチレンを含む熱サイクル用作動媒体を使用した熱サイクルシステムに係り、特に、システム内部が高温または高圧下となった場合でもトリフルオロエチレンの自己分解反応を抑えた熱サイクルシステムに関する。
 従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクル用の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(CFC)、クロロジフルオロメタン等のヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCおよびHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。
 このような経緯から、熱サイクル用作動媒体としては、CFCやHCFCに代えて、オゾン層への影響が少ない、ジフルオロメタン(HFC-32)、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)等のヒドロフルオロカーボン(HFC)が用いられている。例えば、R410A(HFC-32とHFC-125の質量比1:1の擬似共沸混合冷媒)等は従来から広く使用されてきた冷媒である。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。
 R410Aは、冷凍能力の高さからいわゆるパッケージエアコンやルームエアコンと言われる通常の空調機器等に広く用いられる。しかし、地球温暖化係数(GWP)が2088と高く、そのため低GWP作動媒体の開発が求められている。
 そこで最近では、炭素-炭素二重結合を有するヒドロフルオロオレフィン(HFO)、すなわち炭素-炭素二重結合を有するHFCに期待が集まっている。このHFOは、炭素-炭素二重結合が大気中のOHラジカルによって分解されやすいことから、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない作動媒体である。
 このHFOを用いた熱サイクル用作動媒体としては、トリフルオロエチレン(HFO-1123)を用いた作動媒体が知られており、例えば、特許文献1には上記特性を有するとともに、優れたサイクル性能が得られるHFO-1123を用いた熱サイクル用作動媒体に係る技術が開示されている。特許文献1では、さらに、該作動媒体の不燃性、サイクル性能等を高める目的で、HFO-1123に、各種HFCを組み合わせて作動媒体とする試みもされている。
 また、このHFO-1123は、単独で用いた場合に高温または高圧下で着火源があると、自己分解することが知られている。そこで、非特許文献1には、HFO-1123を、他の成分、例えばフッ化ビニリデン等と混合し、HFO-1123の含有量を抑えた混合物とすることで自己分解反応を抑える試みが報告されている。
国際公開第2012/157764号
Combusion, Explosion, and Shock Waves, Vol. 42, No 2, pp. 140-143, 2006
 HFO-1123の熱サイクル用作動媒体としての使用を検討する場合、上記したように、HFO-1123が高温または高圧下に晒され、着火源があるとHFO-1123の自己分解反応が生じるおそれがある点に留意する必要がある。
 そこで、本発明は、地球温暖化への影響が少なく、かつ、サイクル性能(能力)が良好なトリフルオロエチレン(HFO-1123)を熱サイクル用作動媒体として用いた熱サイクルシステムであって、異常運転のようなトラブルが生じて該熱サイクル用作動媒体が高温または高圧かつ着火源がある環境に晒された場合においても、HFO-1123の自己分解反応を回避できる、熱サイクルシステムの提供を目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討したところ、熱サイクルシステムが異常運転状態となった場合にも、熱サイクルシステムを所定の構成としておくことで、HFO-1123の自己分解反応を効果的に回避できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[11]に記載の構成を有する熱サイクルシステムを提供する。
 [1]トリフルオロエチレンを含む熱サイクル用作動媒体を、圧縮機から、凝縮器、膨張弁および蒸発器を経由して前記圧縮機に循環させる循環経路を有する熱サイクルシステムであって、前記圧縮機の電気回路において、異常運転状態となったときから6ミリ秒以内に電流制限が可能な電流制限装置を有することを特徴とする熱サイクルシステム。
 [2]前記電流制限装置が、異常運転状態となったときから1ミリ秒以内に電流制限が可能である[1]に記載の熱サイクルシステム。
 [3]前記電流制限装置における前記電流制限が、電流を停止させる[1]または[2]に記載の熱サイクルシステム。
 [4]前記電流制限が、前記熱サイクルシステム内で生じるスパークエネルギーから前記熱サイクル用作動媒体が受け取るエネルギーを200J以下に抑制する[1]~[3]のいずれかに記載の熱サイクルシステム。
 [5]前記電流制限装置が、半導体保護用ヒューズ、速動ヒューズ、速断ヒューズおよび限流ヒューズから選ばれる少なくとも1つ以上を有する[1]~[4]のいずれかに記載の熱サイクルシステム。
 [6]前記熱サイクル用作動媒体が、前記トリフルオロエチレンを50質量%超含む[1]~[5]のいずれかに記載の熱サイクルシステム。
 [7]前記熱サイクル用作動媒体が、前記トリフルオロエチレンを60質量%超含む[6]に記載の熱サイクルシステム。
 [8]前記熱サイクル用作動媒体が、前記トリフルオロエチレンを60~80質量%、ジフルオロメタン及び2,3,3,3-テトラフルオロ-1-プロペンの少なくとも一方を20~40質量%含む請求項6に記載の熱サイクルシステム。
 [9]前記熱サイクル用作動媒体が、トリフルオロエチレンとジフルオロメタンからなる[1]~[8]のいずれかに記載の熱サイクルシステム。
 [10]熱サイクルシステムが、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である[1]~[9]のいずれかに記載の熱サイクルシステム。
 [11]熱サイクルシステムが、ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機である[1]~[10]のいずれかに記載の熱サイクルシステム。
 本発明の熱サイクルシステムによれば、地球温暖化への影響を抑制でき、実用的な熱サイクル性能を有するHFO-1123を含む作動媒体を使用しているが、仮にシステムにおいて異常な運転状態となった場合でも、HFO-1123の自己分解反応を回避できる熱サイクルシステムを提供できる。
本発明の熱サイクルシステムの一例である冷凍サイクルシステムの概略構成図である。 図1の冷凍サイクルシステムにおける作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。 電流制限装置を有する圧縮機の概略構成を示した図である。 参考例1における電流及び圧力の経時変化を示した図である。 参考例1における電流及び電圧の経時変化を示した図である。 参考比較例1における電流及び圧力の経時変化を示した図である。 参考比較例1における電流及び電圧の経時変化を示した図である。 参考例2における電流及び圧力の経時変化を示した図である。 参考例2における電流及び電圧の経時変化を示した図である。 参考比較例2における電流及び圧力の経時変化を示した図である。 参考比較例2における電流及び電圧の経時変化を示した図である。 印加エネルギーの算出方法を説明するための電流と電圧の経時変化を例示した図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。
 本明細書においては、特に断りのない限り飽和のヒドロフルオロカーボンをHFCといい、HFOとは区別して用いる。また、HFCを飽和のヒドロフルオロカーボンと記載する場合もある。さらに、HFCやHFOのハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。
 なお、「HFC」は飽和炭化水素化合物の水素原子の一部をフッ素原子に置き換えた化合物であり、「HFO」は水素原子、フッ素原子、酸素原子から構成されて、分子内に炭素-炭素二重結合を有する化合物である。
(第1の実施形態)
 まず、本実施形態の熱サイクルシステムに使用される熱サイクル用作動媒体(以下、単に作動媒体と称することもある。)について説明する。ここで使用する作動媒体は、HFO-1123を含む作動媒体である。また、ここで使用する作動媒体は、作動媒体全量中におけるHFO-1123の含有量が50質量%を超え100質量%以下である熱サイクル用の作動媒体であることが好ましい。
 本実施形態で使用される熱サイクル用作動媒体は、上記のようにHFO-1123単独からなってもよく、HFO-1123とその他の作動媒体とを含有してもよい。ここで、HFO-1123の地球温暖化係数(100年)は、IPCC第4次評価報告書に準じて測定された値として、0.3である。本明細書においてGWPは、特に断りのない限りIPCC第4次評価報告書の100年の値である。
 このように、本実施形態で使用される作動媒体が、GWPの極めて低いHFO-1123を50質量%超含有することで、該作動媒体のGWPの値も低く抑えられる。その他の成分のGWPが、例えば、後述の飽和HFCのように、HFO-1123よりも高い場合には、その含有割合が低いほどGWPが低い組成となる。
 熱サイクル用作動媒体中のHFO-1123の含有割合が高い場合に、高温または高圧下で着火源が存在すると、連鎖的な自己分解反応をおこすおそれがある。なお、作動媒体としてHFO-1123の含有量を低くすることで自己分解反応を抑えることができるが、その含有量が低すぎると、混合する他の作動媒体にもよるが、GWPが上昇し、冷凍能力および成績係数が低下する場合が多い。
 上記の観点から、熱サイクル用作動媒体中のHFO-1123の含有割合を50質量%超とすることが好ましく、60質量%超とすることがより好ましく、70質量%超とすることがさらに好ましい。このような含有量とすることで、GWPが十分に低く、良好な冷凍能力を確保できる。
[任意成分]
 本実施形態に使用される熱サイクル用作動媒体は、本発明の効果を損なわない範囲でHFO-1123以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。
 任意成分としては、HFC、HFO-1123以外のHFOが好ましい。
(HFC)
 任意成分のHFCとしては、例えば、HFO-1123と組み合わせて熱サイクルに用いた際に、温度勾配を下げる作用、能力を向上させる作用または効率をより高める作用を有するHFCが用いられる。本実施形態に使用される熱サイクル用作動媒体がこのようなHFCを含むと、より良好なサイクル性能が得られる。
 なお、HFCは、HFO-1123に比べてGWPが高いことが知られている。したがって、上記作動媒体としてのサイクル性能の向上に加えて、GWPを許容の範囲にとどめる観点から任意成分として用いるHFCを選択する。
 オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCとして具体的には炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。
 HFCとしては、ジフルオロメタン(HFC-32)、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。
 なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクル特性が優れる点から、HFC-32、1,1-ジフルオロエタン(HFC-152a)、1,1,1-トリフルオロエタン(HFC-143a)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、およびHFC-125が好ましく、HFC-32、HFC-134a、およびHFC-125がより好ましい。
 HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、上記好ましいHFCのGWPは、HFC-32については675であり、HFC-134aについては1430であり、HFC-125については3500である。作動媒体のGWPを低く抑える観点から、任意成分のHFCとしては、HFC-32が最も好ましい。
(HFO-1123以外のHFO)
 任意成分のHFOとしては、2,3,3,3-テトラフルオロ-1-プロペン(HFO-1234yf)、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、シス-1,2-ジフルオロエチレン(HFO-1132(Z))、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、トランス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、シス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)等が挙げられる。
 なかでも、任意成分のHFOとしては、高い臨界温度を有し、安全性、成績係数が優れる点から、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)が好ましい。
 これらのHFO-1123以外のHFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態に使用される熱サイクル用作動媒体が、任意成分のHFCおよび/または、HFO-1123以外のHFOを含む場合、該作動媒体100質量%中のHFCおよび、HFO-1123以外のHFOの合計の含有量は、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が最も好ましい。作動媒体におけるHFCおよびHFO-1123以外のHFOの合計の含有量は、用いるHFCおよびHFO-1123以外のHFOの種類に応じて、上記範囲内で適宜調整される。このとき、HFO-1123と組み合わせて熱サイクルに用いた際に、温度勾配を下げる、能力を向上させる、または、効率をより高める、等の観点、さらには地球温暖化係数を勘案して、調整する。
 本実施形態に使用される熱サイクル作動媒体は、特に、HFO-1123を60~80質量%と、HFC-32及びHFO-1234yfの少なくとも一方を20~40質量%と、を含むことにより、地球温暖化への影響が少なく、冷凍サイクル特性が優れる。また、熱サイクルシステムに異常運転のようなトラブルが生じた場合においても、電流制限装置と組み合わせることによりHFO-1123の自己分解反応をより回避しやすくなり、極めて安全性の高い熱サイクルシステムとできるので好ましい。
(その他の任意成分)
 本実施形態に使用される熱サイクル用作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)、ヒドロクロロフルオロオレフィン(HCFO)等をその他の任意成分として含有してもよい。その他の任意成分としては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。
 炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態に使用される熱サイクル用作動媒体が炭化水素を含有する場合、その含有量は作動媒体の100質量%に対して10質量%以下が好ましく、1~10質量%がより好ましく、1~7質量%がさらに好ましく、2~5質量%が最も好ましい。炭化水素が10質量%以下であれば、作動媒体への鉱物系冷凍機油の溶解性がより良好になる。
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。本実施形態において熱サイクル用作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。
 CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態に使用される熱サイクル用作動媒体がCFOを含有する場合、その含有量は該作動媒体の100質量%に対して50質量%が好ましく、40質量%以下がより好ましく、30質量%以下が最も好ましい。CFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。
 HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレン等が挙げられる。本実施形態に使用される熱サイクル用作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、HCFOとしては、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)が好ましい。
 HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態に使用される熱サイクル用作動媒体がHCFOを含む場合、該作動媒体100質量%中のHCFOの含有量は、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が最も好ましい。HCFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。
 本実施形態に使用される熱サイクル用作動媒体が上記のような任意成分およびその他の任意成分を含有する場合、その合計含有量は、作動媒体100質量%に対して50質量%以下が好ましく、40質量%未満がより好ましく、30質量%未満がさらに好ましい。
 以上説明した本実施形態に使用される熱サイクル用作動媒体は、地球温暖化への影響が少ないHFOであって、作動媒体としての能力に優れるHFO-1123を含有するものであり、地球温暖化への影響を抑えつつ、実用的なサイクル性能を有するものである。
(熱サイクルシステム用組成物)
 上記の熱サイクル用作動媒体は、通常、冷凍機油と混合して本実施形態の熱サイクルシステムに使用される熱サイクルシステム用組成物とすることが好ましい。この熱サイクルシステム用組成物は、上記熱サイクルシステムの循環経路内に封入して使用される。この熱サイクルシステム用組成物は、これら以外にさらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
(冷凍機油)
 冷凍機油としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステム用組成物に用いられる公知の冷凍機油が特に制限なく採用できる。冷凍機油として具体的には、含酸素系冷凍機油(エステル系冷凍機油、エーテル系冷凍機油等)、フッ素系冷凍機油、鉱物系冷凍機油、炭化水素系冷凍機油等が挙げられる。
 エステル系冷凍機油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。
 二塩基酸エステル油としては、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖または分枝アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール等)とのエステルが好ましい。この二塩基酸エステル油としては、具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3-エチルヘキシル)等が挙げられる。
 ポリオールエステル油としては、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,5-ペンタジオール、ネオペンチルグリコール、1,7-ヘプタンジオール、1,12-ドデカンジオール等)または水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、グリセリン、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物等)と、炭素数6~20の脂肪酸(ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、エイコサン酸、オレイン酸等の直鎖または分枝の脂肪酸、もしくはα炭素原子が4級であるいわゆるネオ酸等)とのエステルが好ましい。
 なお、これらのポリオールエステル油は、遊離の水酸基を有していてもよい。
 ポリオールエステル油としては、ヒンダードアルコール(ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスルトール等)のエステル(トリメチロールプロパントリペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールテトラペラルゴネート等)が好ましい。
 コンプレックスエステル油とは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、上述と同様のものを用いることができる。
 ポリオール炭酸エステル油とは、炭酸とポリオールとのエステルである。
 ポリオールとしては、上述と同様のジオールや上述と同様のポリオールが挙げられる。また、ポリオール炭酸エステル油としては、環状アルキレンカーボネートの開環重合体であってもよい。
 エーテル系冷凍機油としては、ポリビニルエーテル油やポリオキシアルキレン油が挙げられる。
 ポリビニルエーテル油としては、アルキルビニルエーテルなどのビニルエーテルモノマーを重合して得られたものや、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとを共重合して得られた共重合体がある。
 ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、各種アルキル置換スチレン等が挙げられる。
 オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記した化合物のうち、異性体が存在するものは、いずれの異性体を用いてもよい。
 ポリビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。ポリビニルエーテル油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリオキシアルキレン油としては、ポリオキシアルキレンモノオール、ポリオキシアルキレンポリオール、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールのアルキルエーテル化物、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールのエステル化物等が挙げられる。
 ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールは、水酸化アルカリなどの触媒の存在下、水や水酸基含有化合物などの開始剤に炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を開環付加重合させる方法等により得られたものが挙げられる。また、ポリアルキレン鎖中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。
 反応に用いる開始剤としては、水、メタノールやブタノール等の1価アルコール、エチレングリコール、プロピレングリコール、ペンタエリスリトール、グリセロール等の多価アルコールが挙げられる。
 ポリオキシアルキレン油としては、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールの、アルキルエーテル化物やエステル化物が好ましい。また、ポリオキシアルキレンポリオールとしては、ポリオキシアルキレングリコールが好ましい。特に、ポリグリコール油と呼ばれる、ポリオキシアルキレングリコールの末端水酸基がメチル基等のアルキル基でキャップされた、ポリオキシアルキレングリコールのアルキルエーテル化物が好ましい。
 フッ素系冷凍機油としては、合成油(後述する鉱物油、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。
 鉱物系冷凍機油としては、原油を常圧蒸留または減圧蒸留して得られた冷凍機油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。
 炭化水素系冷凍機油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。
 冷凍機油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 冷凍機油としては、作動媒体との相溶性の点から、ポリオールエステル油、ポリビニルエーテル油およびポリグリコール油から選ばれる1種以上が好ましい。
 冷凍機油の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、10~100質量部が好ましく、20~50質量部がより好ましい。
(安定剤)
 安定剤は、熱および酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が特に制限なく採用できる。
 耐酸化性向上剤および耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメチルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2-メチルベンズアミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。
 安定剤の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、5質量部以下が好ましく、1質量部以下がより好ましい。
(漏れ検出物質)
 漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来、ハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の紫外線蛍光染料が挙げられる。
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の香料が挙げられる。
 漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
 可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。
 漏れ検出物質の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、2質量部以下が好ましく、0.5質量部以下がより好ましい。
<熱サイクルシステム>
 次に、上記の熱サイクル用作動媒体を適用する本発明の熱サイクルシステムについて説明する。この熱サイクルシステムは、HFO-1123を熱サイクル用作動媒体として用いたシステムである。この熱サイクル用作動媒体を熱サイクルシステムに適用するにあたっては、通常、作動媒体を含有する熱サイクルシステム用組成物として適用する。
 また、本発明の熱サイクルシステムは、基本的な熱サイクルは従来公知の熱サイクルシステムと同一の構成のものが挙げられる。本発明の熱サイクルシステムは、作動媒体を圧縮機から凝縮器、膨張弁および蒸発器を経由して圧縮器に循環される循環経路を有するものであればよい。本発明の熱サイクルシステムは、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。
 この熱サイクルシステムとして、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置および二次冷却機等が挙げられる。なかでも、本発明の熱サイクルシステムは、より高温の作動環境でも安定して熱サイクル性能を発揮できるため、屋外等に設置されることが多い空調機器に用いられることが好ましい。また、本発明の熱サイクルシステムは、冷凍・冷蔵機器に用いられることも好ましい。
 空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等)、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等が挙げられる。
 冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケース等)、業務用冷凍・冷蔵庫、自動販売機、製氷機等が挙げられる。
 発電システムとしては、ランキンサイクルシステムによる発電システムが好ましい。
 発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。
 また、本発明の熱サイクルシステムは、熱輸送装置であってもよい。熱輸送装置としては、潜熱輸送装置が好ましい。
 潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮等の現象を利用して潜熱輸送を行うヒートパイプおよび二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子や電子機器の発熱部の冷却装置等、比較的小型の冷却装置に適用される。二相密閉型熱サイフォンは、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進および凍結防止等に広く利用される。
 以下、本発明の一実施形態である熱サイクルシステムとして、図1に示した冷凍サイクルシステム10を参照して説明する。ここで、冷凍サイクルシステムとは、蒸発器で得られる冷熱を利用するシステムである。
 図1に示す冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16と、を具備して構成されるシステムである。すなわち、この冷凍サイクルシステム10は、公知の熱サイクルシステムと同様に、熱サイクル用作動媒体を、圧縮機11から、凝縮器12、膨張弁13および蒸発器14を経由して圧縮機11に循環させて運転されるものである。
 まず、冷凍サイクルの流れを説明する。冷凍サイクルシステム10においては、以下の(i)~(iv)のサイクルが繰り返される。
 (i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする(以下、「AB過程」という。)。
 (ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される(以下、「BC過程」という。)。
 (iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする(以下、「CD過程」という。)。
 (iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される(以下、「DA過程」という。)。
 冷凍サイクルシステム10は、断熱・等エントロピ変化、等エンタルピ変化および等圧変化からなるサイクルシステムである。作動媒体の状態変化を、図2に示される圧力-エンタルピ線(曲線)図上に記載すると、A、B、C、Dを頂点とする台形として表すことができる。
 AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程であり、図2においてAB線で示される。
 BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程であり、図2においてBC線で示される。この際の圧力が凝縮圧である。圧力-エンタルピ線とBC線の交点のうち高エンタルピ側の交点Tが凝縮温度であり、低エンタルピ側の交点Tが凝縮沸点温度である。ここで、HFO-1123と他の作動媒体との混合媒体で非共沸混合媒体の場合、その温度勾配はTとTの差として示される。
 CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程であり、図2においてCD線で示される。なお、低温高圧の作動媒体Cにおける温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過冷却度(以下、必要に応じて「SC」で示す。)となる。
 DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程であり、図2においてDA線で示される。この際の圧力が蒸発圧である。圧力-エンタルピ線とDA線の交点のうち高エンタルピ側の交点Tは蒸発温度である。作動媒体蒸気Aの温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過熱度(以下、必要に応じて「SH」で示す。)となる。なお、Tは作動媒体Dの温度を示す。
 そして、本実施形態の熱サイクルシステムは、圧縮機の電気回路において、異常運転状態を検知したときから6ミリ秒以内に電流制限が可能な電流制限装置を有する。このような電流制限装置を設けることで、非常に短い時間で電気回路において電流制限がなされ、HFO-1123の自己分解反応を回避することができる。
 なお、ここで電気回路は、圧縮機の動作を制限、停止等できる電気回路であればよく、例えば、電流供給経路、圧縮機回路等が例示できる。
 上記したように、HFO-1123が高温、高圧下となるような環境において、着火源が存在すると自己分解反応が生じ、爆発する等のおそれがある。しかしながら、本発明者らは着火源が存在する場合においても、その着火源からHFO-1123を含む熱サイクル用作動媒体が受け取るエネルギーを所定のエネルギー量以下に抑えることで、自己分解反応の発生を有意に抑制できることを見出した。なお、着火源としては、例えば、電気回路において熱サイクルシステム内で生じるスパークエネルギーが典型的な着火源として挙げられ、スパークエネルギーは、通常、電気回路の導線が短絡する等により発生する。
 すなわち、作動媒体を構成するHFO-1123が100%のとき、受け取るエネルギーが2.5Jを超えると着火し、自己分解反応が生じてしまうことが想定される。そして、一般に想定される異常運転状態の場合には、その異常運転状態となったときから100ミリ秒程度で着火すると考えられる。
 したがって、本実施形態においては、異常運転状態となったときから100ミリ秒以内に電流制限を可能とする電流制限装置を設けることで、上記着火を回避し、自己分解反応の発生を抑制する。このような構成とすることで、熱サイクルシステムが異常運転に陥った場合でも危険を回避できる。
 また、作動媒体を構成するHFO-1123が60%、HFC-32が40%のとき、受け取るエネルギーが200Jを超えると自己分解反応が生じ、着火してしまうことが想定される。そして、一般に想定される異常運転状態の場合には、その異常運転状態となったときから1秒程度で着火すると考えられる。この場合、作動媒体中のHFO-1123の濃度が低くなっているため、上記のHFO-1123が100%の場合と比べて着火に必要なエネルギーが大きいため、着火までにかかる時間も長くなる。
 上記観点から、前記熱サイクルシステム内で生じるスパークエネルギーから前記熱サイクル用作動媒体が受け取るエネルギーを200J以下に抑制することが好ましい。
 なお、熱サイクルシステム内で生じるスパークエネルギーから熱サイクル用作動媒体が受け取るエネルギーは、システム内で発生するスパークエネルギーのうちスパーク発生場所近傍に存在する機器本体などに伝播するエネルギーを除いたエネルギーとなるが、発生するスパークエネルギーが最大値となるので熱サイクルシステム内で生じるスパークエネルギーを200J以下に抑制することでスパークエネルギーから前記熱サイクル用作動媒体が受け取るエネルギーを200J以下に抑制することができる。
 なお、本明細書において異常運転状態とは、熱サイクルシステムにおける定常運転から外れ、HFO-1123の自己分解反応を生じさせるおそれのある状態を意味し、その装置構成に応じて適宜設定する。具体的には、圧縮機の電気回路の電流が設計上限電流以上となったとき、圧縮機の電気回路の電圧が設計上限圧力以上となったとき、および圧縮機の電気回路の温度が設計上限温度以上となったときのいずれか一つを満たした状態をいう。
 このような異常運転状態は、圧縮機の電気回路における電流、電圧、電力や、圧縮機内部におけるトルク、温度、圧力等をセンサ等により監視し、それぞれしきい値を設定しておき、その設定値を超えるか否かを常にモニターしておくことで検知できる。そして、異常運転状態を検知した場合、後述する電流制限機器を作動させ、電気回路において電流を制限する。
 なお、このような異常運転状態の検知、電流の制限は、異常運転状態となった場合に、自動的に電流を制限可能な電流制限機器、例えば、ヒューズ等、を設ける構成としておいてもよい。この場合、異常運転状態を検知する装置、センサ等が不要で、装置構成を簡素にすることができる。
 以下、圧縮機の電源供給経路に電流制限装置を有する場合について、図3を参照しながら説明する。ここでは、電流制限装置を、スクロール式圧縮機の電源供給経路に設けた例について説明する。図3に示したスクロール式圧縮機110は、密閉容器111内に、ステーター112とローター113とからなる駆動手段と、駆動手段の回転により熱サイクル用作動媒体を圧縮するスクロール圧縮機構114と、圧縮器と接続され、該スクロール圧縮機構114内に熱サイクル用作動媒体を導く吸入管115と、凝縮器と接続され、密閉容器111内の圧縮された熱サイクル用作動媒体を凝縮器側へ送り出す吐出管116と、密閉容器111に設けられ、外部電源と接続して駆動手段に電源を供給するための電源供給端子117と、電源供給端子117と接続された外部電源118と、外部電源118から駆動手段に電源を供給するための電源供給経路119と、異常運転状態を検知したときに電流制限を可能とする電流制限装置120と、を有して構成されている。
 このスクロール式圧縮機110は、基本的に公知の圧縮機と同様の構成を有するものであり、電流制限装置120が特徴的な部分である。したがって、以下、電流制限装置120について説明する。なお、ここではスクロール式圧縮機を例に説明したが、公知の圧縮機であれば特に限定されずに適用できる。例えば、ピストンクランク式圧縮機、ピストン斜板式圧縮機、回転ピストン式圧縮機、ロータリーベーン式圧縮機、シングルローター式圧縮機、ツインローター式圧縮機、遠心式圧縮機等が挙げられる。
 圧縮機の駆動手段、例えば、図3におけるステーター112およびローター113は、通常、電源供給端子117を介して外部電源118と接続されて、電源供給経路119によりその駆動エネルギーを得ている。そして、本実施形態においては、この電源供給経路119に、電流制限手段120が設けられている。
 このように、電流制限手段120を設けて、上記のような異常運転状態を検知したときに電流制限を行うことで、HFO-1123の自己分解反応を発生させないようにできる。すなわち、異常運転状態となった場合、例えば、電源供給端子117とステーター122とを接続する電源供給経路(導線)が高温となり導線の被覆材料が劣化して、導線自体が露出するおそれがある。その場合、この露出した導線が着火源となり、HFO-1123の自己分解反応が進行するおそれがある。しかし、本実施形態のように、電流制限手段120を設けておくことで、仮に導線が露出した場合においても、所定のしきい値を超えた場合に非常に短時間で、電源供給経路における電流制限ができる。そのため、HFO-1123が受け取るエネルギーを効果的に制限でき、自己分解反応による着火が起こらないようにできる。
 ここで使用される電流制限装置120としては、電源供給経路119において、異常運転状態を検知したときから6ミリ秒以内に、その電流制限が可能なものであればよい。電流制限としては、電流または電圧の低減(電流の停止、すなわち電流の遮断も含む)することを可能とするものであればよい。この電流制限機器としては、例えば、半導体保護用ヒューズ、速動ヒューズ、速断ヒューズ、限流ヒューズ等が挙げられる。また、電流制限装置120は、異常状態を検知したときから1ミリ秒以内に電流制限を可能とするものが好ましい。
 半導体保護用ヒューズとしては、従来、半導体回路の保護に用いられており、上記のような短時間で電流制限を行うことができる半導体保護用ヒューズであればよい。この半導体保護用ヒューズの具体例としては、例えば、CR2L(S)形、CR6L形等の半導体保護用ヒューズ(いずれも、富士電機機器制御株式会社製、商品名:スーパーラピッドヒューズシリーズ)が挙げられる。
 速動ヒューズとしては、例えば、三菱電機株式会社製の半導体保護用速動ヒューズFLG形が挙げられる。
 速断ヒューズとしては、例えば、株式会社センサータ・テクノロジーズ社製のQAS形、QFS形が挙げられる。
 また、異常運転状態の検知は、電流、電圧、電力、トルク、温度、圧力等を検知するセンサを別で用意しておき、当該センサで検知した値が異常運転状態のしきい値を超えた場合に、電流制限装置を作動させるようにしてもよい。
 なお、この電流制限装置120による電流制限は、電源供給経路119において、上限電圧を圧縮機の最高使用電圧以下に制御、上限電流を圧縮機の許容電流以下に制御、電流を停止、する等により行うことができる。
(水分濃度)
 なお、熱サイクルシステムの稼働に際しては、水分の混入や、酸素等の不凝縮性気体の混入による不具合の発生を避けるために、これらの混入を抑制する手段を設けることが好ましい。
 熱サイクルシステム内に水分が混入すると、特に低温で使用される際に問題が生じる場合がある。例えば、キャピラリーチューブ内での氷結、作動媒体や冷凍機油の加水分解、サイクル内で発生した酸成分による材料劣化、コンタミナンツの発生等の問題が発生する。特に、冷凍機油がポリグリコール油、ポリオールエステル油等である場合は、吸湿性が極めて高く、また、加水分解反応を生じやすく、冷凍機油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。したがって、冷凍機油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を制御する必要がある。
 熱サイクルシステム内の水分濃度を制御する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト、塩化リチウム等)等の水分除去手段を用いる方法が挙げられる。
乾燥剤は、液状の作動媒体と接触させることが、脱水効率の点で好ましい。例えば、凝縮器12の出口、または蒸発器14の入口に乾燥剤を配置して、作動媒体と接触させることが好ましい。
 乾燥剤としては、乾燥剤と作動媒体との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
 ゼオライト系乾燥剤としては、従来の鉱物系冷凍機油に比べて吸湿量の高い冷凍機油を用いる場合には、吸湿能力に優れる点から、下式(3)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
 M2/nO・Al・xSiO・yHO  …(3)
 ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
 乾燥剤の選定においては、細孔径および破壊強度が重要である。
 作動媒体の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、作動媒体が乾燥剤中に吸着され、その結果、作動媒体と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。
 したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5オングストローム以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。作動媒体の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、作動媒体を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、作動媒体の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。
 ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、約0.5~5mmが好ましい。形状としては、粒状または円筒状が好ましい。
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等。)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等。)を併用してもよい。
 作動媒体に対するゼオライト系乾燥剤の使用割合は、特に限定されない。
 熱サイクルシステム内の水分濃度は、熱サイクル用作動媒体に対する質量割合で、10000ppm未満が好ましく、1000ppm未満が更に好ましく、100ppm未満が特に好ましい。
(不凝縮性気体濃度)
 さらに、熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、作動媒体や冷凍機油と反応し、分解を促進する。
 不凝縮性気体濃度は、熱サイクル用作動媒体に対する質量割合で、10000ppm未満が好ましく、1000ppm未満が更に好ましく、100ppm未満が特に好ましい。
(塩素濃度)
 熱サイクルシステム内に塩素が存在すると、金属との反応による堆積物の生成、軸受け部の磨耗、熱サイクル用作動媒体や冷凍機油の分解等、好ましくない影響をおよぼす。
 熱サイクルシステム内の塩素濃度は、熱サイクル用作動媒体に対する質量割合で100ppm以下が好ましく、50ppm以下が特に好ましい。
(金属濃度)
 熱サイクルシステム内にパラジウム、ニッケル、鉄などの金属が存在すると、HFO-1123の分解やオリゴマー化等、好ましくない影響をおよぼす。
 熱サイクルシステム内の金属濃度は、熱サイクル用作動媒体に対する質量割合で5ppm以下が好ましく、1ppm以下が特に好ましい。
(酸分濃度)
 熱サイクルシステム内に酸分が存在すると、HFO-1123の酸化分解、自己分解反応が促進する等、好ましくない影響をおよぼす。
 熱サイクルシステム内の酸分濃度は、熱サイクル用作動媒体に対する質量割合で1ppm以下が好ましく、0.2ppm以下が特に好ましい。
 また、熱サイクル組成物から酸分を除去する目的で、NaFなどの脱酸剤による酸分除去を行う手段を熱サイクルシステム内に設けることで、熱サイクル組成物から酸分を除去することが好ましい。
(残渣濃度)
 熱サイクルシステム内に金属粉、冷凍機油以外の他の油、高沸分などの残渣が存在すると、気化器部分の詰まりや回転部の抵抗増加等、好ましくない影響をおよぼす。
 熱サイクルシステム内の残渣濃度は、熱サイクル用作動媒体に対する質量割合で1000ppm以下が好ましく、100ppm以下が特に好ましい。
 残渣は、熱サイクルシステム用作動媒体をフィルター等でろ過することで除去することができる。また、熱サイクルシステム用作動媒体とする前に、熱サイクルシステム用作動媒体の各成分(HFO-1123、HFO-1234yf等)ごとにフィルターでろ過を行って残渣を除去し、その後に混合して熱サイクルシステム用作動媒体としてもよい。
 上記した熱サイクルシステムは、トリフルオロエチレンを含む熱サイクル用作動媒体を用いることで、地球温暖化への影響を抑えつつ、実用的なサイクル性能が得られると共に、異常運転時においてHFO-1123の自己分解反応を抑えることができる。
 以下、本発明を、熱サイクルシステム内部を仮想した耐圧容器(オートクレーブ)で試験を行った参考例および参考比較例によりさらに詳細に説明する。なお、本発明は、これら参考例および参考比較例により何ら限定されるものではない。
(参考例1)
 内部に電極が設置され、真空ポンプにて真空引きされた内容積650cmの耐圧容器(オートクレーブ)にHFO-1123を封入後、外部ヒーターを用いて100℃になるように昇温した。反応器内の温度が100℃に到達したら過剰分のHFO-1123をパージしてオートクレーブの内圧が2MPaGになるように調節した。ここで用いる電極は外部の交流電源と接続され、かつ、電極と交流電源の間に富士電機(株)製のスーパーラピッドヒューズCR2LS-10(商品名)を設け、オートクレーブ内に設置した。
 次に、このオートクレーブ内に設置された電極に150Vの交流電圧を印加し、オートクレーブ内部で電気スパークを発生させた。電流および電圧はTektronix製オシロスコープTDS5054Bを用いて測定した。印加後に発生するオートクレーブ内の温度と圧力変化を測定することにより自己分解反応の有無を確認した。温度および圧力はYOKOGAWA製のMX-100を用いて測定した。またYOKOGAWA製分流器221603を介してMX-100につなぐことで、電流値についても簡易的に記録した。
 なお、圧力上昇が初期圧力の1%を超えて上昇した場合に、該温度、圧力条件下において自己分解反応が進行したと判断した。
 図4に示すように電極に150Vの交流電圧を印加しスパークを発生させても、内部圧力に変化はなかった。また電極間に掛かる電圧及び電流は図5に示すようにスパークを発生させてから6ミリ秒以内(0.0053秒の間)だけ観測された。これは、上記スーパーラピッドヒューズが動作し、溶断したため、電圧及び電流の変化を極めて短時間のみとし、HFO-1123の自己分解反応の進行を抑制できたものである。
 この結果を解析するとオートクレーブ内で電気スパークにより印加されたエネルギーは0.33Jとなることがわかった。このことから過電圧がかかった際でも、瞬時に電流を遮断できるラピッドヒューズを設置しておくと、系内に流れる電流が抑制され、たとえスパークが発生してもそのエネルギーを極めて小さいものとできることがわかった。
 なお、後述する参考比較例1におけるエネルギーと比較すると、発生するエネルギーはラピッドヒューズを設置しなかった場合の4.7Jと比べて約15分の1程度に抑えられていることがわかる。
 ここで、オートクレーブ内に設置された電極は、互いに向き合った二本の銅板の一端を接触させ、この際二枚の銅板、接点をコイル状の形状を持つような形状としたものである。これにより、銅板の一方に電圧を印加すると接触部を通じて二枚の銅板に電流が流れ、その内部にアンペールの法則により磁場が発生する。そして発生した磁場により電流はフレミングの法則により外向きの力を受け、銅板同士の接点が離れ、その瞬間にスパークが発生するという原理を利用している。
(参考比較例1)
 参考例1とは電極と交流電源との間にスーパーラピッドヒューズを設けていない点が異なる以外は、同様の装置構成の耐圧容器(オートクレーブ)に対して、同一の手順で実験を行った。
 図6に示すように電極に150Vの交流電圧を印加しスパークを発生させると、スパークを発生させてから約0.2秒後に圧力が急上昇しHFO-1123の自己分解反応(不均化)が観測された。
 また電極間に掛かる電圧及び電流は図7に示すように0.01秒の間だけ観測された。この結果を解析すると反応器内で電気スパークにより印加されたエネルギーは4.7Jとなることがわかった。
(参考例2)
 参考例1で用いたのと同じ耐圧容器(オートクレーブ)を真空ポンプにて真空引きにした後、HFO-1123とHFC-32を質量パーセントでHFO-1123/HFC-32=80%/20%となるように封入した。その後、外部ヒーターを用いて100℃になるように昇温した。反応器内の温度が100℃に到達したら過剰分の反応器内部のガスをパージしてオートクレーブの内圧が4MPaGになるように調節した。ここで用いる電極は参考例1と同様に外部の交流電源と接続され、かつ、電極と交流電源の間に富士電機(株)製のスーパーラピッドヒューズCR2LS-10(商品名)を設け、オートクレーブ内に設置した。
 次に、このオートクレーブ内に設置された電極に120Vの交流電圧を印加し、オートクレーブ内部で電気スパークを発生させた。なお、参考例1と同様に圧力上昇が初期圧力の1%を超えて上昇した場合に、該温度、圧力条件下において自己分解反応が進行したと判断した。
 図8に示すように電極に120Vの交流電圧を印加しスパークを発生させても、内部圧力に変化はなかった。また電極間に掛かる電圧及び電流は図9に示すようにスパークを発生させてから3ミリ秒以内(0.0027秒の間)だけ観測された。これは、上記スーパーラピッドヒューズが動作し、溶断したため、電圧及び電流の変化を極めて短時間のみとし、HFO-1123の自己分解反応の進行を抑制できたものである。
 この結果を解析するとオートクレーブ内で電気スパークにより印加されたエネルギーは0.025Jとなることがわかった。このことから過電圧がかかった際でも、瞬時に電流を遮断できるラピッドヒューズを設置しておくと、系内に流れる電流が抑制され、たとえスパークが発生してもそのエネルギーを極めて小さいものとできることがわかった。
 なお、後述する参考比較例2におけるエネルギーと比較すると、発生するエネルギーはラピッドヒューズを設置しなかった場合の7.9Jと比べて約300分の1程度に抑えられていることがわかる。
(参考比較例2)
 参考例2とは電極と交流電源との間にラピッドヒューズを設けていない点が異なる以外は、同様の装置構成の耐圧容器(オートクレーブ)に対して、同一の手順で実験を行った。
 図10に示すように電極に120Vの交流電圧を印加しスパークを発生させると、約0.2秒後に圧力が急上昇しHFO-1123の自己分解反応(不均化)が観測された。
 また電極間に掛かる電圧及び電流は図11に示すようにスパークを発生させてから0.097秒の間だけ観測された。この結果を解析すると反応器内で電気スパークにより印加されたエネルギーは7.9Jとなることがわかった。
(参考例3)
 参考例1で用いたのと同じ耐圧容器(オートクレーブ)を真空ポンプにて真空引きにした後、HFO-1123とHFC-32を質量パーセントでHFO-1123/HFC-32=60%/40%となるように封入した。その後、外部ヒーターを用いて100℃になるように昇温した。反応器内の温度が100℃に到達したら過剰分の反応器内部のガスをパージしてオートクレーブの内圧が4MPaGになるように調節した。ここで用いる電極は参考例1と同様に外部の交流電源と接続され、かつ、電極と交流電源の間に富士電機(株)製のスーパーラピッドヒューズCR2LS-10(商品名)を設け、オートクレーブ内に設置した。
 次に、このオートクレーブ内に設置された電極に180Vの交流電圧を印加し、オートクレーブ内部で電気スパークを発生させた。なお、参考例1と同様に圧力上昇が初期圧力の1%を超えて上昇した場合に、該温度、圧力条件下において自己分解反応が進行したと判断した。
 電極に180Vの交流電圧を印加しスパークを発生させても、内部圧力に変化はなく不均化反応は抑制されていることが確認された。電極間に掛かる電圧及び電流は電気スパークを発生させてから6ミリ秒以内(0.0055秒の間)だけ観測され、印加されたスパークエネルギーは0.85Jと解析された。
 なお、後述する参考比較例3におけるエネルギーと比較すると、発生するエネルギーはスーパーラピッドヒューズを設置しなかった場合の260Jと比べて約300分の1程度に抑えられていることがわかる。
(参考比較例3)
 参考例3とは電極と交流電源との間にスーパーラピッドヒューズを設けていない点が異なる以外は、同様の装置構成の耐圧容器(オートクレーブ)に対して、同一の手順で実験を行った。
 電極に180Vの交流電圧を印加しスパークを発生させると、約0.2秒後に圧力が急上昇しHFO-1123の自己分解反応(不均化)が観測された。
 また電極間に掛かる電圧及び電流は0.2秒の間観測された。解析により電気スパークにより印加されたエネルギーは260Jとなることがわかった。
[印加エネルギーの計算方法]
 上記印加されたエネルギーは、以下のように計算、算出した。
 図12に交流電圧を印加した場合の代表的な電流・電圧曲線を示した。グラフ上電圧が急激に変化している点が存在している。電気スパークが発生すると回路全体の抵抗値がステップ状に急上昇するため、その影響を受けて電圧の曲線が変化している。その点を電気スパークの発生時刻とし、抵抗値が元の回路全体の抵抗値に戻った点をスパーク発生終了時刻とした。その間の電流・電圧の値をそれぞれI(t)、V(t)として以下の数式(1)を用いて系内に印加されたエネルギーを計算した。
Figure JPOXMLDOC01-appb-M000001
 以上より、本実施形態の熱サイクルシステムによれば、HFO-1123を含む作動媒体を使用した熱サイクルシステムにおいて、異常な運転状態となった場合でも、自己分解反応を回避し、装置の損傷等を抑制することができる。
 本発明の熱サイクルシステムは、冷凍・冷蔵機器(内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、自動販売機、製氷機等)、空調機器(ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等)、発電システム(廃熱回収発電等)、熱輸送装置(ヒートパイプ等)、二次冷却機等として有用である。
 10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ、110…スクロール式圧縮機、111…密閉容器、112…ステーター、113…ローター、114…スクロール圧縮機構、115…吸入管、116…吐出管、117…電源接続端子、118…外部電源、119…電源供給経路、120…電流制限装置。

Claims (11)

  1.  トリフルオロエチレンを含む熱サイクル用作動媒体を、圧縮機から、凝縮器、膨張弁および蒸発器を経由して前記圧縮機に循環させる循環経路を有する熱サイクルシステムであって、
     前記圧縮機の電気回路において、異常運転状態となったときから6ミリ秒以内に電流制限が可能な電流制限装置を有することを特徴とする熱サイクルシステム。
  2.  前記電流制限装置が、異常運転状態となったときから1ミリ秒以内に電流制限が可能である請求項1に記載の熱サイクルシステム。
  3.  前記電流制限装置における前記電流制限が、電流を停止させる請求項1または2に記載の熱サイクルシステム。
  4.  前記電流制限が、前記熱サイクルシステム内で生じるスパークエネルギーから前記熱サイクル用作動媒体が受け取るエネルギーを200J以下に抑制する請求項1~3のいずれか1項に記載の熱サイクルシステム。
  5.  前記電流制限装置が、半導体保護用ヒューズ、速動ヒューズ、速断ヒューズおよび限流ヒューズから選ばれる少なくとも1つ以上を有する請求項1~4のいずれか1項に記載の熱サイクルシステム。
  6.  前記熱サイクル用作動媒体が、前記トリフルオロエチレンを50質量%超含む請求項1~5のいずれか1項に記載の熱サイクルシステム。
  7.  前記熱サイクル用作動媒体が、前記トリフルオロエチレンを60質量%超含む請求項6に記載の熱サイクルシステム。
  8.  前記熱サイクル用作動媒体が、前記トリフルオロエチレンを60~80質量%、ジフルオロメタン及び2,3,3,3-テトラフルオロ-1-プロペンの少なくとも一方を20~40質量%含む請求項6に記載の熱サイクルシステム。
  9.  前記熱サイクル用作動媒体が、トリフルオロエチレンとジフルオロメタンからなる請求項1~8のいずれか1項に記載の熱サイクルシステム。
  10.  熱サイクルシステムが、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である請求項1~9のいずれか1項に記載の熱サイクルシステム。
  11.  熱サイクルシステムが、ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機である請求項1~10のいずれか1項に記載の熱サイクルシステム。
PCT/JP2018/009522 2017-03-14 2018-03-12 熱サイクルシステム WO2018168776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18768071.5A EP3598040A4 (en) 2017-03-14 2018-03-12 THERMODYNAMIC CYCLE SYSTEM
JP2019506010A JPWO2018168776A1 (ja) 2017-03-14 2018-03-12 熱サイクルシステム
CN201880018070.6A CN110402361B (zh) 2017-03-14 2018-03-12 热循环系统
US16/569,440 US10830518B2 (en) 2017-03-14 2019-09-12 Heat cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-049165 2017-03-14
JP2017049165 2017-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/569,440 Continuation US10830518B2 (en) 2017-03-14 2019-09-12 Heat cycle system

Publications (1)

Publication Number Publication Date
WO2018168776A1 true WO2018168776A1 (ja) 2018-09-20

Family

ID=63523083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009522 WO2018168776A1 (ja) 2017-03-14 2018-03-12 熱サイクルシステム

Country Status (5)

Country Link
US (1) US10830518B2 (ja)
EP (1) EP3598040A4 (ja)
JP (1) JPWO2018168776A1 (ja)
CN (1) CN110402361B (ja)
WO (1) WO2018168776A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101081B1 (en) * 2014-01-31 2019-12-18 AGC Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249412A (en) 1978-12-11 1981-02-10 Townsend Claude A Iii Fluorescent leak detection composition
JPH09245689A (ja) * 1996-03-13 1997-09-19 Toshiba Corp 電界放出型冷陰極を用いた画像表示装置
JPH10502737A (ja) 1994-08-29 1998-03-10 スペクトロニクス コーポレイション 漏洩検出用流体を導入する方法
JP2005174588A (ja) * 2003-12-08 2005-06-30 Honda Motor Co Ltd 高感度ヒューズ
JP2007511645A (ja) 2003-11-13 2007-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 紫外線蛍光染料および可溶化剤を含有する冷媒組成物
JP2008500437A (ja) 2004-05-26 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヒドロフルオロカーボンを含む1,1,1,2,2,4,5,5,5−ノナフルオロ−4−(トリフルオロメチル)−3−ペンタノン組成物およびその使用
JP2008531836A (ja) 2005-03-04 2008-08-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロオレフィンを含む組成物
WO2012157764A1 (ja) 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
JP2015012706A (ja) * 2013-06-28 2015-01-19 旭化成エレクトロニクス株式会社 トランジスタの駆動回路及びそれを用いた半導体遮断器並びにその遮断制御方法
WO2015136979A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
WO2015140882A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍装置
WO2015174054A1 (ja) * 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2016024576A1 (ja) * 2014-08-12 2016-02-18 旭硝子株式会社 熱サイクルシステム
JP2016027296A (ja) * 2014-07-02 2016-02-18 旭硝子株式会社 熱サイクルシステム
JP2016217247A (ja) * 2015-05-20 2016-12-22 三菱電機株式会社 圧縮機、及びその圧縮機を備えたヒートポンプ装置
JP2017049165A (ja) 2015-09-03 2017-03-09 三菱電機株式会社 誘導飛しょう体の誘導装置及び誘導飛しょう体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820130A (en) * 1987-12-14 1989-04-11 American Standard Inc. Temperature sensitive solenoid valve in a scroll compressor
DE19726678A1 (de) * 1997-06-24 1999-01-07 Siemens Ag Passiver Halbleiterstrombegrenzer
WO2001012967A1 (en) * 1999-08-16 2001-02-22 Coleman Powermate, Inc. System that supplies electrical power and compressed air
US7197890B2 (en) * 2004-09-10 2007-04-03 Carrier Corporation Valve for preventing unpowered reverse run at shutdown
JP2009036056A (ja) * 2007-07-31 2009-02-19 Ubukata Industries Co Ltd 密閉形電動圧縮機
US20130162387A1 (en) * 2011-12-22 2013-06-27 Roy Kelley Thermal cutoff link safety fuse in hvac system
US9480177B2 (en) * 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
EP3101082B1 (en) * 2014-01-31 2020-12-02 AGC Inc. Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP6493388B2 (ja) * 2014-03-17 2019-04-03 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
EP3121241B1 (en) * 2014-03-18 2019-10-30 AGC Inc. Heat cycle system composition and heat cycle system
JP2016213956A (ja) * 2015-05-08 2016-12-15 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
US10436226B2 (en) * 2016-02-24 2019-10-08 Emerson Climate Technologies, Inc. Compressor having sound control system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249412A (en) 1978-12-11 1981-02-10 Townsend Claude A Iii Fluorescent leak detection composition
JPH10502737A (ja) 1994-08-29 1998-03-10 スペクトロニクス コーポレイション 漏洩検出用流体を導入する方法
JPH09245689A (ja) * 1996-03-13 1997-09-19 Toshiba Corp 電界放出型冷陰極を用いた画像表示装置
JP2007511645A (ja) 2003-11-13 2007-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 紫外線蛍光染料および可溶化剤を含有する冷媒組成物
JP2005174588A (ja) * 2003-12-08 2005-06-30 Honda Motor Co Ltd 高感度ヒューズ
JP2008500437A (ja) 2004-05-26 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヒドロフルオロカーボンを含む1,1,1,2,2,4,5,5,5−ノナフルオロ−4−(トリフルオロメチル)−3−ペンタノン組成物およびその使用
JP2008531836A (ja) 2005-03-04 2008-08-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロオレフィンを含む組成物
WO2012157764A1 (ja) 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
JP2015012706A (ja) * 2013-06-28 2015-01-19 旭化成エレクトロニクス株式会社 トランジスタの駆動回路及びそれを用いた半導体遮断器並びにその遮断制御方法
WO2015136979A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 冷凍サイクル装置
WO2015140882A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 冷凍装置
WO2015174054A1 (ja) * 2014-05-12 2015-11-19 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP2016027296A (ja) * 2014-07-02 2016-02-18 旭硝子株式会社 熱サイクルシステム
WO2016024576A1 (ja) * 2014-08-12 2016-02-18 旭硝子株式会社 熱サイクルシステム
JP2016217247A (ja) * 2015-05-20 2016-12-22 三菱電機株式会社 圧縮機、及びその圧縮機を備えたヒートポンプ装置
JP2017049165A (ja) 2015-09-03 2017-03-09 三菱電機株式会社 誘導飛しょう体の誘導装置及び誘導飛しょう体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
COMBUSTION, EXPLOSION, AND SHOCK WAVES, vol. 42, no. 2, 2006, pages 140 - 143
See also references of EP3598040A4

Also Published As

Publication number Publication date
EP3598040A4 (en) 2021-01-06
JPWO2018168776A1 (ja) 2020-05-14
CN110402361A (zh) 2019-11-01
EP3598040A1 (en) 2020-01-22
CN110402361B (zh) 2022-04-01
US20200003469A1 (en) 2020-01-02
US10830518B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
JP6583521B2 (ja) 熱サイクルシステム用組成物および熱サイクルシステム
JP6950765B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP6504172B2 (ja) 熱サイクルシステム
EP3305869B1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
CN106029824B (zh) 热循环系统用组合物以及热循环系统
CN106133110B (zh) 热循环用工作介质、热循环系统用组合物以及热循环系统
JP6493388B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2020100844A (ja) 熱サイクルシステム用組成物および熱サイクルシステム
WO2018047816A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2014123120A1 (ja) ヒートポンプ用作動媒体およびヒートポンプシステム
JP6634393B2 (ja) 電気自動車用のエアコン用作動媒体および電気自動車用のエアコン用作動媒体組成物
WO2018193974A1 (ja) 熱サイクルシステム
JP6260446B2 (ja) 熱サイクルシステム
US10830518B2 (en) Heat cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018768071

Country of ref document: EP

Effective date: 20191014