WO2018168689A1 - Rotation device, propulsion device, and power generation device - Google Patents

Rotation device, propulsion device, and power generation device Download PDF

Info

Publication number
WO2018168689A1
WO2018168689A1 PCT/JP2018/009216 JP2018009216W WO2018168689A1 WO 2018168689 A1 WO2018168689 A1 WO 2018168689A1 JP 2018009216 W JP2018009216 W JP 2018009216W WO 2018168689 A1 WO2018168689 A1 WO 2018168689A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
rotating
edge
rotating shaft
rotating device
Prior art date
Application number
PCT/JP2018/009216
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 坂和
Original Assignee
中澤 弘幸
保江 邦夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中澤 弘幸, 保江 邦夫 filed Critical 中澤 弘幸
Publication of WO2018168689A1 publication Critical patent/WO2018168689A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a rotation device, a propulsion device, and a power generation device.
  • a rotating device used for hydroelectric power generation and wind power generation is described in, for example, Japanese Patent Application Laid-Open No. 2002-295359 (Patent Document 1) and Japanese Patent Application Laid-Open No. 5-60053 (Patent Document 2).
  • a rotating device having a general structure includes a rotating shaft and an impeller. The impeller has a plurality of blades attached to the rotating shaft and extending so as to be substantially orthogonal to the extending direction of the rotating shaft.
  • turbulence tends to occur on the downstream side of the fluid flow.
  • wind power generation for example, there is a risk of damage to the blade and the rotating shaft due to such turbulent flow.
  • hydroelectric power generation it is necessary to arrange a space for dissipating such turbulent flow downstream of the rotating device so that such turbulent flow does not hinder the rotation of the impeller.
  • resistance is generated between the blade and the fluid passing outside the rotation region of the blade. Such resistance causes problems such as turbulence, blade damage, and noise.
  • the present invention has been made in view of such problems of the prior art. More specifically, the present invention provides a rotating device and a power generator that can improve efficiency while suppressing the occurrence of turbulent flow on the downstream side and outside of the rotating device.
  • the rotating device includes a rotating shaft and an impeller.
  • the impeller is attached to the rotating shaft.
  • the impeller is composed of a plurality of blades. Each of the plurality of blades has a first portion, a second portion, a third portion, and a fourth portion.
  • the first part is arranged on the rotating shaft side.
  • the second part is continuous with the first part.
  • the third part is continuous with the second part.
  • the fourth portion is connected to the third portion and extends substantially parallel to the extending direction of the rotation shaft from the third portion.
  • the first part and the extending direction of the rotating shaft form a first angle.
  • the second portion and the extending direction of the rotating shaft form a second angle.
  • the third portion and the extending direction of the rotating shaft form a third angle.
  • the first angle is smaller than the second angle.
  • the third angle is larger than the first angle and smaller than the second angle.
  • the rotating device it is possible to efficiently extract rotational energy from the fluid input to the rotating device while suppressing generation of turbulent flow on the downstream side and outside of the rotating device.
  • the width of the first portion in plan view may be narrower than the width of the second portion in plan view. In this case, it is possible to more efficiently extract rotational energy from the fluid input to the rotating device while further suppressing the occurrence of turbulent flow on the downstream side and outside of the rotating device.
  • the first angle may be a negative angle. In this case, it is possible to more efficiently extract rotational energy from the fluid input to the rotating device while increasing the strength of the blade and suppressing the occurrence of turbulent flow on the downstream side and outside of the rotating device.
  • the rotating shaft may have a first end.
  • Each of the plurality of blades may be attached to the first end side of the rotating shaft.
  • Each of the plurality of blades may have a first edge and a second edge located on the opposite side of the first edge.
  • the plurality of blades may be inclined so as to move away from the first end as they go from the first edge side to the second edge side.
  • the second edge located in the fourth portion may protrude from the second edge located in the first portion, the second portion, and the third portion.
  • a power generation device includes a plurality of the rotation devices and a generator. Each of the plurality of rotating devices is connected in series. The rotation of the rotating shaft of the rotating device is transmitted to the generator. According to the power generator according to one embodiment of the present invention, efficient power generation can be performed even when a plurality of rotating devices are connected in series.
  • a propulsion device includes the above rotating device and a power source.
  • the power source is connected to the rotating shaft of the rotating device and rotates the rotating shaft around the central axis.
  • the propulsive force is efficiently obtained from the power source by suppressing the generation of turbulent flow downstream in the flow direction of the fluid passing through the rotation device and outside the rotation device. be able to.
  • the rotating device it is possible to efficiently extract rotational energy from the fluid input to the rotating device while suppressing generation of turbulent flow on the downstream side and outside of the rotating device.
  • efficient power generation can be performed even when a plurality of rotating devices are connected in series.
  • the propulsion device the propulsive force is efficiently obtained from the power source by suppressing the generation of turbulent flow downstream in the flow direction of the fluid passing through the rotation device and outside the rotation device. be able to.
  • FIG. 1 is a plan view of the rotating device 1 according to the embodiment.
  • FIG. 2 is a side view of the rotating device 1 according to the embodiment.
  • FIG. 3 is a cross-sectional view of the blade 21 of the rotating device according to the embodiment.
  • FIG. 3 shows a cross-sectional view of the second portion 21b as an example.
  • the rotating device 1 according to the embodiment includes a rotating shaft 10 and an impeller 20.
  • the rotary shaft 10 has a first end 10a and a second end 10b.
  • the second end 10b is an end opposite to the first end 10a.
  • the rotating shaft 10 is disposed substantially parallel to the flow direction of fluid (wind, water, etc.) input to the rotating device 1 according to the embodiment.
  • the first end 10a is arranged to face the upstream side in the flow direction of the fluid input to the rotating device 1 according to the embodiment.
  • the direction from the first end 10a to the second end 10b is referred to as the extending direction of the rotating shaft 10.
  • the impeller 20 is attached to the rotary shaft 10. More specifically, the impeller 20 is attached to the first end 10 a side of the rotating shaft 10.
  • the impeller 20 includes a plurality of blades.
  • the impeller 20 includes, for example, a blade 21, a blade 22, a blade 23, and a blade 24.
  • the number of blades constituting the impeller 20 is not limited to four.
  • the number of blades constituting the impeller 20 may be two or three, or may be five or more.
  • the blade 21, the blade 22, the blade 23, and the blade 24 are arranged at equal intervals in a plan view (as viewed from a direction parallel to the extending direction of the rotating shaft 10).
  • the configurations of the blade 21, the blade 22, the blade 23, and the blade 24 are common. Therefore, in the following, the configuration of the blade 21 will be described as a representative.
  • the blade 21 has a first portion 21a, a second portion 21b, a third portion 21c, and a fourth portion 21d.
  • the first portion 21 a is disposed on the rotating shaft 10 side of the blade 21.
  • the second portion 21b is continuous with the first portion 21a.
  • the third portion 21c is continuous with the second portion 21b.
  • the first portion 21a is disposed on the innermost side in the radial direction
  • the third portion 21c is positioned on the innermost side in the radial direction. It arrange
  • the fourth portion 21d is continuous with the third portion 21c.
  • the fourth portion 21d extends substantially parallel to the extending direction of the rotating shaft 10 (the direction from the first end 10a toward the second end 10b). More specifically, the fourth portion 21 d extends toward the upstream side in the flow direction of the fluid input to the rotating device 1.
  • the fourth portion 21d extends substantially in parallel with the extending direction of the rotating shaft 10.
  • the extending direction of the fourth portion 21d is 0 ° ⁇ 10 with respect to the extending direction of the rotating shaft 10. This means that the angle is at an angle.
  • the blade 21 has a first edge 21e and a second edge 21f.
  • the second edge 21f is an edge of the blade 21 located on the opposite side to the first edge 21e.
  • the blade 21 is inclined so as to move away from the first end 10a as it goes from the first edge 21e side to the second edge 21f side.
  • the second edge 21f located in the fourth portion 21d is a first edge located in the first portion 21a, the second portion 21b, and the third portion 21c in plan view (as viewed from a direction parallel to the extending direction of the rotation shaft 10). It is preferable to protrude from the two edges 21f.
  • the first portion 21a and the extending direction of the rotary shaft 10 form a first angle ⁇ 1.
  • the second portion 21b and the extending direction of the rotary shaft 10 form a second angle ⁇ 2.
  • the third portion 21c and the extending direction of the rotating shaft 10 form a third angle ⁇ 3.
  • the first angle ⁇ 1, the second angle ⁇ 2, and the third angle ⁇ 3 are measured at, for example, the second edge 21f.
  • the first angle ⁇ 1 may be an angle formed by the direction from the first edge 21e toward the second edge 21f in the first portion 21a and the extending direction of the rotating shaft 10.
  • the second angle ⁇ 2 may be an angle formed by the direction from the first edge 21e toward the second edge 21f in the second portion 21b and the extending direction of the rotary shaft 10.
  • the third angle ⁇ 3 may be, for example, an angle formed by the direction from the first edge 21e toward the second edge 21f in the third portion 21c and the extending direction of the rotating shaft 10.
  • the first angle ⁇ 1 is smaller than the second angle ⁇ 2.
  • the third angle ⁇ 3 is larger than the first angle ⁇ 1 and smaller than the second angle ⁇ 2. That is, the first angle ⁇ 1, the second angle ⁇ 2, and the third angle ⁇ 3 satisfy the relationship of the first angle ⁇ 1 ⁇ the third angle ⁇ 3 ⁇ the second angle ⁇ 2.
  • the first angle ⁇ 1 may be a negative angle. That is, the first portion 21a may be inclined in the direction opposite to the second portion 21b and the third portion 21c with respect to the extending direction of the rotating shaft 10.
  • the first angle ⁇ 1 is preferably ⁇ 30 ° to 30 °.
  • the second angle ⁇ 2 is preferably not less than 20 ° and not more than 75 °.
  • the third angle ⁇ 3 is preferably not less than 10 ° and not more than 60 °.
  • the blade 21 has a width W in a plan view (viewed from a direction parallel to the extending direction of the rotating shaft 10). From another viewpoint, the width W passes through the first edge 21e and is parallel to the extending direction of the rotating shaft 10, and the second edge 21f and extends in the extending direction of the rotating shaft 10. The distance from the parallel straight line (see FIG. 3).
  • variety of the member itself in the 1st part 21a is wider than the width W in the 1st part 21a.
  • the width W in the first portion 21a is smaller than the width W in the second portion 21b when the first angle ⁇ 1 is a regular angle. When the first angle ⁇ 1 is a negative angle, the width W in the first portion 21a may be larger than the width W in the second portion 21b.
  • the blade 21 has a first surface 21g and a second surface 21h.
  • the first surface 21g is a surface facing the upstream side of the fluid input to the rotating device 1 according to the embodiment.
  • the first angle ⁇ 1 is a negative angle
  • the first surface 21g located in the first portion 21a faces the downstream side of the fluid input to the rotating device 1 according to the embodiment.
  • the second surface 21h is the opposite surface of the first surface 21g.
  • the first surface 21g preferably has an S-shape in a cross-sectional view.
  • the first surface 21g preferably has an inflection point between the first edge 21e and the second edge 21f. More specifically, the first surface 21g has an angle formed by the tangential direction of the first surface 21g and the extending direction of the rotary shaft 10 from the first edge 21e side to the second edge 21f side in a cross-sectional view. Therefore, it is preferable to have a curved shape that once increases and then decreases toward the second edge 21f side.
  • the first surface 21g located in the second part 21b and the third part 21c is directed to the first end 10a side (upstream side in the fluid flow direction), Since the first surface 21g located in the first portion 21a is directed to the second end 10b side (downstream side in the fluid flow direction), the first surface 21g located in the first portion 21a is in a sectional view.
  • the first surface 21g located in the second portion 21b and the third portion 21c has an S-shape opposite to that of the first surface 21g.
  • the first surface 21g and the second surface 21h have a shape that is inverted in plan view as viewed from the upstream side of the fluid.
  • the fluid passing through the vicinity of the first portion 21a moves so as to enter the back side of the fluid passing through the second portion 21b.
  • the fluid passing between the blades is more efficiently converted into a spiral rotation in the direction opposite to the rotation direction of the impeller 20.
  • the space near the second edge 21f located in the first portion 21a is widened, the fluid passing through the first portion 21a is synergistic as a result of drawing the fluid passing through the second portion 21b. You will get the fluid's kinetic energy.
  • the spiral rotation of the fluid passing between the blades is based on the spiral flow generated by the fluid passing through the second edge 21f located at the boundary between the first portion 21a and the second portion 21b.
  • the force acting on the impeller 20 is located in the first portion 21a. 21 g of 1st surfaces can receive more efficiently and can urge rotation of impeller 20 more.
  • the first surface 21g has a tangential direction at the first edge 21e substantially parallel to the flow direction of the fluid that is to flow into the rotating device 1 in a cross-sectional view (for example, the first edge 21e located at the first portion 21a).
  • the angle formed by the tangential direction at 0 and the extending direction of the rotary shaft 10 is 0 ° ⁇ 10 °, and the angle formed by the tangential direction at the first edge 21e located at the second portion 21b and the extending direction of the rotary shaft 10 is 0.
  • the angle between the tangential direction of the first edge 21e located at the third portion 21c and the extending direction of the rotary shaft 10 is from 0 ° to 30 ° (from 0 ° to 30 °). Is preferred.
  • the first surface 21g preferably has a curved shape such that the tangential direction at the second edge 21f is along the flow direction of the fluid when passing through the rotating device 1 in a cross-sectional view.
  • the blade 21 has the cross-sectional shape (S-shape) as described above, and the blade 21 may be configured in a shape in which flat plates are joined together.
  • the first surface 21g and the second surface 21h are preferably parallel. That is, in the blade 21, the thickness of the blade 21 located between the first edge 21e and the second edge 21f is not greater than the thickness of the blade 21 located at the first edge 21e and the second edge 21f. Is preferred. In other words, the second surface 21h may have the same shape as the first surface 21g in a cross-sectional view.
  • the blade 21 may bend in a direction from the second end 10b toward the first end 10a as it goes from the first portion 21a side toward the third portion 21c side.
  • FIG. 4 is a schematic diagram illustrating a configuration of the power generation device according to the embodiment.
  • the power generation device according to the embodiment includes a rotating device 1 and a generator 30.
  • the number of the rotating devices 1 is preferably plural.
  • Each of the plurality of rotating devices 1 is connected in series. That is, each of the plurality of rotating devices 1 is sequentially connected from the upstream side to the downstream side in the fluid flow direction. From another point of view, the plurality of rotating devices 1 share a single rotating shaft 10.
  • the rotating shaft 10 of the rotating device 1 is connected to the generator 30.
  • the rotating shaft 10 may be connected to the generator 30 via a rotation speed conversion mechanism (speed increaser, speed reducer, etc.).
  • the rotation speed conversion mechanism is realized by, for example, a gear mechanism (gear box).
  • the generator 30 performs a power generation operation by transmitting the rotation around the central axis of the rotating shaft 10 of the rotating device 1. More specifically, the generator 30 performs a power generation operation by transmitting the rotation around the central axis of the rotating shaft 10 of the rotating device 1 to the rotating shaft of the generator 30.
  • FIG. 5 is a schematic diagram illustrating a flow of fluid in the rotating device 1 according to the embodiment.
  • the flow of the fluid is indicated by solid arrows.
  • the impeller 20 rotates in the clockwise direction.
  • the first angle ⁇ 1, the second angle ⁇ 2, and the third angle ⁇ 3 satisfy the relationship of the first angle ⁇ 1 ⁇ the third angle ⁇ 3 ⁇ the second angle ⁇ 2. Therefore, the degree to which the fluid input to the rotating device 1 according to the embodiment is bent when passing through the vicinity of the first part 21a, the second part 21b, and the third part 21c (passes through the vicinity of the first part 21a).
  • the degree of bending at the time) ⁇ (degree of bending when passing through the vicinity of the third portion 21c) ⁇ (degree of bending when passing through the second portion 21b) is satisfied.
  • the fluid input to the rotating device 1 contacts each blade of the impeller 20 to rotate the impeller 20, and between the blades of the impeller 20.
  • the contact rotates in a spiral shape.
  • the spiral direction of rotation is opposite to the direction of rotation of the impeller 20.
  • the fourth portion 21d extends substantially parallel to the extending direction of the rotation shaft 10
  • the fluid flow inside the region defined by the rotation trajectory of each blade and the outside of the region Can be separated from the fluid flow in the region located in the region (that is, the resistance between each blade and the fluid flowing outside the rotating device 1 can be reduced), and the region located outside the region. The influence from can be reduced.
  • the pressure of the fluid that has passed through each blade in a spiral shape is lower than that of the surroundings.
  • the impeller 20 is further urged due to the pressure difference from the upstream side.
  • the spirally rotating flow is caused to flow outside the impeller 20 (that is, outside the region defined by the rotation trajectory of each blade) due to a pressure difference with the fluid flowing outside the impeller 20. Pull the flowing fluid. Since the fluid flowing outside the impeller 20 is a constant-velocity linear flow, the spiral flow that has passed between the blades merges with the blade to approach the constant-velocity linear flow again.
  • the input fluid rotates the impeller 20 not only on the upstream surface in the fluid flow direction of the impeller 20 but also on the downstream surface. Therefore, rotational energy can be efficiently extracted from the input fluid.
  • the rotating device 1 according to the embodiment when the fluid to be input merges with the fluid passing through the outside of the impeller 20 on the downstream surface of the impeller 20 in the fluid flow direction, Since the rotation is eliminated, it is possible to make it difficult to generate a turbulent flow on the downstream side of the rotating device.
  • the 4th part 21d reduces resistance between the fluid which flows the outer side of the rotating apparatus 1.
  • the efficiency can be improved while suppressing the occurrence of turbulent flow on the downstream side and outside of the rotating device 1.
  • the case where the rotating device 1 is arranged in the flow of fluid has been described as an example.
  • the rotating device 1 is incorporated in a propulsion device or in a blower, the above is the flow of fluid.
  • a phenomenon similar to the above occurs, an efficient and stable fluid flow can be extracted from the rotation of the rotating device 1 generated by the power source.
  • the rotating device 1 when the width W of the first portion 21a is smaller than the width W of the second portion 21b, the fluid passes through the vicinity of the first portion 21a with lower resistance. Therefore, in this case, it becomes easier to cause a spiral rotation when passing through each blade of the impeller 20. Therefore, in this case, rotational energy can be extracted from the fluid more efficiently.
  • the second edge 21f located in the fourth portion 21d protrudes from the second edge 21f located in the first portion 21a, the second portion 21b, and the third portion 21c in plan view.
  • the spiral flow formed when the fluid passes through each blade of the impeller can be prevented from being dissipated radially outward.
  • the flow of the spiral fluid passing between more blades can be merged with the flow of fluid flowing outside and downstream of the impeller 20. Therefore, in this case, rotational energy can be extracted from the fluid more efficiently.
  • the rotating device 1 when the first angle ⁇ 1 is a negative angle, the fluid passes through the vicinity of the first portion 21a with lower resistance even if the width of the member itself in the first portion 21a is increased. To do. Therefore, in this case, the strength of each blade can be improved while causing a spiral rotation when the fluid passes through each blade of the impeller 20. Further, in the rotating device 1 according to the embodiment, when the first angle ⁇ 1 is a negative angle, the fluid passing while rotating in a spiral manner between the blades further urges the rotation of the impeller 20. . Therefore, in this case, rotational energy can be extracted from the fluid more efficiently.
  • the thickness of the blade 21 does not need to be large between the first edge 21e and the second edge 21f. Therefore, in the rotating device 1 according to the embodiment, when the blade 21 has the first surface 21g and the second surface 21h that is opposite to the first surface 21g and is parallel to the first surface 21g, the blade 21 21 can be reduced in weight and the manufacturing process of the blade 21 can be simplified.
  • the rotating device 1 according to the embodiment can efficiently extract rotational energy from the fluid while suppressing generation of turbulent flow on the downstream side and outside of the rotating device. Therefore, according to the power generation device according to the embodiment, efficient power generation can be performed.
  • the rotating shaft 10 can be made shared between each rotating apparatus 1.
  • the fluid flowing on the downstream side and the outside of the rotating device 1 can be merged with the fluid passing between the blades. Therefore, according to the power generation device according to the embodiment, the fluid flowing on the downstream side and the outside of the rotating device 1 according to the embodiment can also contribute to the power generation operation.
  • the rotating shaft 10 of the rotating device 1 according to the embodiment is connected to the generator 30 and used as the power generating device
  • the specific application example of the rotating device 1 according to the embodiment is not limited thereto. It is not something that can be done.
  • the rotating device 1 according to the embodiment can be used for a propulsion device.
  • the propulsion device includes the rotation device 1 according to the embodiment and a power source such as a motor and an engine.
  • the rotating shaft 10 of the rotating device 1 according to the embodiment is connected to a power source.
  • the power source rotates the rotating shaft 10 around the central axis.
  • Such a propulsion device suppresses generation of turbulent flow on the downstream side in the flow direction of the fluid passing through the rotating device 1 and outside of the rotating device 1 and generation of turbulent flow with respect to the fluid passing outside of the rotating device 1. Thus, it is possible to obtain a propulsive force efficiently.
  • the rotating device 1 since the generation of turbulent flow on the downstream side in the flow direction of the fluid passing therethrough and the outside of the rotating device 1 can be suppressed, It is also preferably incorporated into the device.
  • the rotating device 1 suppresses generation of turbulent flow downstream of the flow direction of the fluid passing through the rotating device 1 and outside of the rotating device 1 and generation of turbulent flow with respect to the fluid passing outside of the rotating device 1. Therefore, the rotating device 1 according to the embodiment can generate a stable fluid flow when the rotating shaft 10 is connected to a power source such as a motor. Therefore, the blowing device such as a fan or a blower fan can be used. Can also be suitably used.
  • the above-described embodiment is particularly preferably applied to, for example, a power generation device such as a wind power generation device or a hydroelectric power generation device, a propulsion device, a rectification device, a blower device, and a rotation device used in such a device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydraulic Turbines (AREA)
  • Wind Motors (AREA)

Abstract

A rotation device according to an aspect of the present invention is provided with a rotating shaft and a blade. The blade is mounted on the rotating shaft. The blade has a first portion, a second portion, a third portion, and a fourth portion. The first portion is disposed on the rotating shaft-side. The second portion is connected to the first portion. The third portion is connected to the second portion. The fourth portion is connected to the third portion and extends, from the third portion, almost parallel to the extension direction of the rotating shaft. The first portion and the extension direction of the rotating shaft form a first angle. The second portion and the extension direction of the rotating shaft form a second angle. The third portion and the extension direction of the rotating shaft form a third angle. The first angle is smaller than the third angle. The second angle is an angle between the first angle and the third angle.

Description

回転装置、推進装置及び発電装置Rotating device, propulsion device and power generation device
 本発明は、回転装置、推進装置及び発電装置に関する。 The present invention relates to a rotation device, a propulsion device, and a power generation device.
 従来から、風、水等の流体の流れを回転運動に変換することにより発電を行う風力発電、水力発電が知られている。水力発電、風力発電に用いられる回転装置の一般的な構造は、例えば特開2002-295359号公報(特許文献1)及び特開平5-60053号公報(特許文献2)に記載されている。一般的な構造を有する回転装置は、回転軸と、羽根車とを有している。羽根車は、回転軸に取り付けられ、回転軸の延在方向に対して略直交するように延在している複数のブレードを有している。特許文献1及び特許文献2に記載の回転装置においては、回転軸の延在方向に略平行な風、水等の流体の流れがブレードと接触することにより、ブレードは、回転軸を中心軸周りに回転される。回転軸の中心軸周りの発電により、発電機は発電を行う。 Conventionally, wind power generation and hydroelectric power generation are known that generate power by converting a flow of fluid such as wind and water into a rotational motion. A general structure of a rotating device used for hydroelectric power generation and wind power generation is described in, for example, Japanese Patent Application Laid-Open No. 2002-295359 (Patent Document 1) and Japanese Patent Application Laid-Open No. 5-60053 (Patent Document 2). A rotating device having a general structure includes a rotating shaft and an impeller. The impeller has a plurality of blades attached to the rotating shaft and extending so as to be substantially orthogonal to the extending direction of the rotating shaft. In the rotating devices described in Patent Document 1 and Patent Document 2, when the flow of fluid such as wind or water substantially parallel to the extending direction of the rotating shaft comes into contact with the blade, the blade rotates around the rotating shaft about the central axis. To be rotated. The generator generates power by generating power around the central axis of the rotating shaft.
特開2002-295359号公報JP 2002-295359 A 特開平5-60053号公報JP-A-5-60053
 一般的な構造の回転装置においては、流体の流れの下流側に乱流が生じやすい。その結果、例えば風力発電においては、そのような乱流に起因して、ブレードや回転軸が損傷するおそれがある。また、例えば水力発電においては、そのような乱流が羽根車の回転の妨げとならないように、回転装置の下流側に、このような乱流を散逸させるための空間を配置する必要がある。さらに、一般的な構造の回転装置においては、ブレードの端部において、ブレードの回転領域の外側を通過する流体との間で抵抗が生じる。このような抵抗に起因して、乱流の発生、ブレードの損傷、騒音の発生等の問題が生じる。 In a rotating device having a general structure, turbulence tends to occur on the downstream side of the fluid flow. As a result, in wind power generation, for example, there is a risk of damage to the blade and the rotating shaft due to such turbulent flow. Further, for example, in hydroelectric power generation, it is necessary to arrange a space for dissipating such turbulent flow downstream of the rotating device so that such turbulent flow does not hinder the rotation of the impeller. Further, in a rotation device having a general structure, resistance is generated between the blade and the fluid passing outside the rotation region of the blade. Such resistance causes problems such as turbulence, blade damage, and noise.
 本発明は、このような従来技術の問題点に鑑みてなされたものである。より具体的には、本発明は、回転装置の下流側及び外側における乱流の発生を抑えつつ、効率を向上させることができる回転装置及び発電装置を提供するものである。 The present invention has been made in view of such problems of the prior art. More specifically, the present invention provides a rotating device and a power generator that can improve efficiency while suppressing the occurrence of turbulent flow on the downstream side and outside of the rotating device.
 本発明の一態様に係る回転装置は、回転軸と、羽根車とを備えている。羽根車は、回転軸に取り付けられている。羽根車は、複数のブレードから構成されている。複数のブレードの各々は、第1部分と、第2部分と、第3部分と、第4部分とを有している。 The rotating device according to one aspect of the present invention includes a rotating shaft and an impeller. The impeller is attached to the rotating shaft. The impeller is composed of a plurality of blades. Each of the plurality of blades has a first portion, a second portion, a third portion, and a fourth portion.
 第1部分は、回転軸の側に配置されている。第2部分は、第1部分に連なっている。第3部分は、第2部分に連なっている。第4部分は、第3部分に連なり、かつ第3部分から回転軸の延在方向に略平行に延在している。 The first part is arranged on the rotating shaft side. The second part is continuous with the first part. The third part is continuous with the second part. The fourth portion is connected to the third portion and extends substantially parallel to the extending direction of the rotation shaft from the third portion.
 第1部分と回転軸の延在方向とは、第1角度をなしている。第2部分と回転軸の延在方向とは、第2角度をなしている。第3部分と回転軸の延在方向とは、第3角度をなしている。第1角度は、第2角度よりも小さい。第3角度は、第1角度より大きく、第2角度より小さい。 The first part and the extending direction of the rotating shaft form a first angle. The second portion and the extending direction of the rotating shaft form a second angle. The third portion and the extending direction of the rotating shaft form a third angle. The first angle is smaller than the second angle. The third angle is larger than the first angle and smaller than the second angle.
 本発明の一態様に係る回転装置によると、回転装置の下流側及び外側における乱流の発生を抑えつつ、回転装置に入力される流体から効率的に回転エネルギーを取り出すことができる。 According to the rotating device according to one aspect of the present invention, it is possible to efficiently extract rotational energy from the fluid input to the rotating device while suppressing generation of turbulent flow on the downstream side and outside of the rotating device.
 上記回転装置において、平面視における第1部分の幅は、平面視における第2部分の幅より狭くてもよい。この場合には、さらに回転装置の下流側及び外側における乱流の発生を抑えつつ、回転装置に入力される流体からさらに効率的に回転エネルギーを取り出すことができる。 In the above rotating device, the width of the first portion in plan view may be narrower than the width of the second portion in plan view. In this case, it is possible to more efficiently extract rotational energy from the fluid input to the rotating device while further suppressing the occurrence of turbulent flow on the downstream side and outside of the rotating device.
 上記回転装置において、第1角度は、負角をなしていてもよい。この場合には、ブレードの強度を高めながら、回転装置の下流側及び外側における乱流の発生を抑えつつ、回転装置に入力される流体からさらに効率的に回転エネルギーを取り出すことができる。 In the above rotating device, the first angle may be a negative angle. In this case, it is possible to more efficiently extract rotational energy from the fluid input to the rotating device while increasing the strength of the blade and suppressing the occurrence of turbulent flow on the downstream side and outside of the rotating device.
 上記回転装置において、回転軸は、第1端を有していてもよい。複数のブレードの各々は、回転軸の第1端の側に取り付けられていてもよい。複数のブレードの各々は、第1エッジと、第1エッジの反対側に位置する第2エッジとを有していてもよい。複数のブレードは、第1エッジの側から第2のエッジの側に向かうにつれ、第1端から遠ざかるように傾斜していてもよい。第4部分に位置する第2エッジは、第1部分、第2部分及び第3部分に位置する第2エッジから突出していてもよい。 In the above rotating device, the rotating shaft may have a first end. Each of the plurality of blades may be attached to the first end side of the rotating shaft. Each of the plurality of blades may have a first edge and a second edge located on the opposite side of the first edge. The plurality of blades may be inclined so as to move away from the first end as they go from the first edge side to the second edge side. The second edge located in the fourth portion may protrude from the second edge located in the first portion, the second portion, and the third portion.
 この場合には、さらに回転装置の下流側及び外側における乱流の発生を抑えつつ、回転装置に入力される流体からさらに効率的に回転エネルギーを取り出すことができる。 In this case, it is possible to more efficiently extract rotational energy from the fluid input to the rotating device while further suppressing the occurrence of turbulent flow downstream and outside the rotating device.
 本発明の一態様に係る発電装置は、複数の上記回転装置と、発電機とを備えている。複数の上記回転装置の各々は、直列に接続されている。発電機には、上記回転装置の回転軸の回転が伝達される。本発明の一態様に係る発電装置によると、回転装置を複数直列に接続する場合であっても、効率的な発電を行うことができる。 A power generation device according to an aspect of the present invention includes a plurality of the rotation devices and a generator. Each of the plurality of rotating devices is connected in series. The rotation of the rotating shaft of the rotating device is transmitted to the generator. According to the power generator according to one embodiment of the present invention, efficient power generation can be performed even when a plurality of rotating devices are connected in series.
 本発明の一態様に係る推進装置は、上記の回転装置と、動力源とを備える。動力源は、上記の回転装置の回転軸に接続され、かつ当該回転軸を中心軸周りに回転させる。本発明の一態様に係る推進装置によると、回転装置を通過する流体の流れ方向の下流側及び回転装置の外側における乱流の発生を抑制することにより、動力源から効率的に推進力を得ることができる。 A propulsion device according to one aspect of the present invention includes the above rotating device and a power source. The power source is connected to the rotating shaft of the rotating device and rotates the rotating shaft around the central axis. According to the propulsion device according to one aspect of the present invention, the propulsive force is efficiently obtained from the power source by suppressing the generation of turbulent flow downstream in the flow direction of the fluid passing through the rotation device and outside the rotation device. be able to.
 本発明の一態様に係る回転装置によると、回転装置の下流側及び外側における乱流の発生を抑えつつ、回転装置に入力される流体から効率的に回転エネルギーを取り出すことができる。本発明の一態様に係る発電装置によると、回転装置を複数直列に接続する場合であっても、効率的な発電を行うことができる。本発明の一態様に係る推進装置によると、回転装置を通過する流体の流れ方向の下流側及び回転装置の外側における乱流の発生を抑制することにより、動力源から効率的に推進力を得ることができる。 According to the rotating device according to one aspect of the present invention, it is possible to efficiently extract rotational energy from the fluid input to the rotating device while suppressing generation of turbulent flow on the downstream side and outside of the rotating device. According to the power generator according to one embodiment of the present invention, efficient power generation can be performed even when a plurality of rotating devices are connected in series. According to the propulsion device according to one aspect of the present invention, the propulsive force is efficiently obtained from the power source by suppressing the generation of turbulent flow downstream in the flow direction of the fluid passing through the rotation device and outside the rotation device. be able to.
実施形態に係る回転装置の平面図である。It is a top view of the rotation device concerning an embodiment. 実施形態に係る回転装置の側面図である。It is a side view of the rotation device concerning an embodiment. 実施形態に係る回転装置のブレード21における断面図である。It is sectional drawing in the braid | blade 21 of the rotating apparatus which concerns on embodiment. 実施形態に係る発電装置の構成を示す模式図である。It is a mimetic diagram showing the composition of the power generator concerning an embodiment. 実施形態に係る回転装置における流体の流れを示す模式図である。It is a schematic diagram which shows the flow of the fluid in the rotating apparatus which concerns on embodiment.
 本発明の実施形態の詳細について、図を参照して説明する。なお、各図中同一又は相当部分には同一符号を付している。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Details of the embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. Moreover, you may combine arbitrarily at least one part of embodiment described below.
 (実施形態に係る回転装置の構成)
 以下に、実施形態に係る回転装置1の構成について、図1~図3を参照して説明する。
(Configuration of Rotating Device According to Embodiment)
Hereinafter, the configuration of the rotating device 1 according to the embodiment will be described with reference to FIGS. 1 to 3.
 図1は、実施形態に係る回転装置1の平面図である。図2は、実施形態に係る回転装置1の側面図である。図3は、実施形態に係る回転装置のブレード21の断面図である。なお、図3には、例示として、第2部分21bにおける断面図が示されている。図1及び図2に示すように、実施形態に係る回転装置1は、回転軸10と、羽根車20とを有している。 FIG. 1 is a plan view of the rotating device 1 according to the embodiment. FIG. 2 is a side view of the rotating device 1 according to the embodiment. FIG. 3 is a cross-sectional view of the blade 21 of the rotating device according to the embodiment. FIG. 3 shows a cross-sectional view of the second portion 21b as an example. As shown in FIGS. 1 and 2, the rotating device 1 according to the embodiment includes a rotating shaft 10 and an impeller 20.
 回転軸10は、第1端10aと、第2端10bとを有している。第2端10bは、第1端10aの反対側の端である。回転軸10は、実施形態に係る回転装置1に入力する流体(風、水等)の流れ方向と略平行に配置される。第1端10aは、例えば実施形態に係る回転装置1に入力する流体の流れ方向の上流側を向くように配置されている。なお、以下においては、第1端10aから第2端10bに向かう方向を、回転軸10の延在方向という。 The rotary shaft 10 has a first end 10a and a second end 10b. The second end 10b is an end opposite to the first end 10a. The rotating shaft 10 is disposed substantially parallel to the flow direction of fluid (wind, water, etc.) input to the rotating device 1 according to the embodiment. For example, the first end 10a is arranged to face the upstream side in the flow direction of the fluid input to the rotating device 1 according to the embodiment. In the following, the direction from the first end 10a to the second end 10b is referred to as the extending direction of the rotating shaft 10.
 羽根車20は、回転軸10に取り付けられている。より具体的には、羽根車20は、回転軸10の第1端10a側に取り付けられている。羽根車20は、複数のブレードにより構成されている。羽根車20は、例えばブレード21、ブレード22、ブレード23及びブレード24を有している。 The impeller 20 is attached to the rotary shaft 10. More specifically, the impeller 20 is attached to the first end 10 a side of the rotating shaft 10. The impeller 20 includes a plurality of blades. The impeller 20 includes, for example, a blade 21, a blade 22, a blade 23, and a blade 24.
 なお、羽根車20を構成するブレードの枚数は、4枚に限られるものではない。例えば、羽根車20を構成するブレードの枚数は、2枚又は3枚であってもよいし、5枚以上であってもよい。 Note that the number of blades constituting the impeller 20 is not limited to four. For example, the number of blades constituting the impeller 20 may be two or three, or may be five or more.
 ブレード21、ブレード22、ブレード23及びブレード24は、平面視において(回転軸10の延在方向に平行な方向からみて)、等間隔に配置されている。ブレード21、ブレード22、ブレード23及びブレード24の構成は、共通している。そのため、以下においては、ブレード21の構成について代表して説明するものとする。 The blade 21, the blade 22, the blade 23, and the blade 24 are arranged at equal intervals in a plan view (as viewed from a direction parallel to the extending direction of the rotating shaft 10). The configurations of the blade 21, the blade 22, the blade 23, and the blade 24 are common. Therefore, in the following, the configuration of the blade 21 will be described as a representative.
 ブレード21は、第1部分21aと、第2部分21bと、第3部分21cと、第4部分21dとを有している。第1部分21aは、ブレード21の回転軸10側に配置されている。第2部分21bは、第1部分21aに連なっている。第3部分21cは、第2部分21bに連なっている。 The blade 21 has a first portion 21a, a second portion 21b, a third portion 21c, and a fourth portion 21d. The first portion 21 a is disposed on the rotating shaft 10 side of the blade 21. The second portion 21b is continuous with the first portion 21a. The third portion 21c is continuous with the second portion 21b.
 このことを別の観点からいえば、第1部分21a、第2部分21b及び第3部分21cのうち、第1部分21aが最も径方向における内側に配置され、第3部分21cが最も径方向における外側に配置されており、第2部分21bが径方向において第1部分21aと第3部分21cとに挟み込まれるように配置されている。 From another viewpoint, of the first portion 21a, the second portion 21b, and the third portion 21c, the first portion 21a is disposed on the innermost side in the radial direction, and the third portion 21c is positioned on the innermost side in the radial direction. It arrange | positions outside and is arrange | positioned so that the 2nd part 21b may be pinched | interposed into the 1st part 21a and the 3rd part 21c in radial direction.
 第4部分21dは、第3部分21cに連なっている。第4部分21dは、回転軸10の延在方向(第1端10aから第2端10bに向かう方向)に略平行に延在している。より具体的には、第4部分21dは、回転装置1に入力される流体の流れ方向における上流側に向かって延在している。ここで、第4部分21dが回転軸10の延在方向と略平行に延在するとは、第4部分21dの延在方向が、回転軸10の延在方向との間で、0°±10°の角度をなしていることをいう。 The fourth portion 21d is continuous with the third portion 21c. The fourth portion 21d extends substantially parallel to the extending direction of the rotating shaft 10 (the direction from the first end 10a toward the second end 10b). More specifically, the fourth portion 21 d extends toward the upstream side in the flow direction of the fluid input to the rotating device 1. Here, the fourth portion 21d extends substantially in parallel with the extending direction of the rotating shaft 10. The extending direction of the fourth portion 21d is 0 ° ± 10 with respect to the extending direction of the rotating shaft 10. This means that the angle is at an angle.
 ブレード21は、第1エッジ21eと、第2エッジ21fとを有している。第2エッジ21fは、第1エッジ21eと反対側に位置するブレード21のエッジである。ブレード21は、第1エッジ21e側から第2エッジ21f側に向かうにつれて、第1端10aから遠ざかるように傾斜している。 The blade 21 has a first edge 21e and a second edge 21f. The second edge 21f is an edge of the blade 21 located on the opposite side to the first edge 21e. The blade 21 is inclined so as to move away from the first end 10a as it goes from the first edge 21e side to the second edge 21f side.
 第4部分21dに位置する第2エッジ21fは、平面視において(回転軸10の延在方向に平行な方向からみて)、第1部分21a、第2部分21b及び第3部分21cに位置する第2エッジ21fよりも突出していることが好ましい。 The second edge 21f located in the fourth portion 21d is a first edge located in the first portion 21a, the second portion 21b, and the third portion 21c in plan view (as viewed from a direction parallel to the extending direction of the rotation shaft 10). It is preferable to protrude from the two edges 21f.
 第1部分21aと回転軸10の延在方向とは、第1角度θ1をなしている。第2部分21bと回転軸10の延在方向とは、第2角度θ2をなしている。第3部分21cと回転軸10の延在方向とは、第3角度θ3をなしている。第1角度θ1、第2角度θ2及び第3角度θ3は、例えば、第2エッジ21fにおいて測定される。第1角度θ1は、例えば第1部分21aにおける第1エッジ21eから第2エッジ21fに向かう方向と回転軸10の延在方向とがなす角度としてもよい。第2角度θ2は、例えば第2部分21bにおける第1エッジ21eから第2エッジ21fに向かう方向と回転軸10の延在方向とがなす角度としてもよい。第3角度θ3は、例えば第3部分21cにおける第1エッジ21eから第2エッジ21fに向かう方向と回転軸10の延在方向とがなす角度としてもよい。 The first portion 21a and the extending direction of the rotary shaft 10 form a first angle θ1. The second portion 21b and the extending direction of the rotary shaft 10 form a second angle θ2. The third portion 21c and the extending direction of the rotating shaft 10 form a third angle θ3. The first angle θ1, the second angle θ2, and the third angle θ3 are measured at, for example, the second edge 21f. For example, the first angle θ1 may be an angle formed by the direction from the first edge 21e toward the second edge 21f in the first portion 21a and the extending direction of the rotating shaft 10. For example, the second angle θ2 may be an angle formed by the direction from the first edge 21e toward the second edge 21f in the second portion 21b and the extending direction of the rotary shaft 10. The third angle θ3 may be, for example, an angle formed by the direction from the first edge 21e toward the second edge 21f in the third portion 21c and the extending direction of the rotating shaft 10.
 第1角度θ1は、第2角度θ2よりも小さい。第3角度θ3は、第1角度θ1よりも大きく、第2角度θ2よりも小さい。すなわち、第1角度θ1、第2角度θ2及び第3角度θ3は、第1角度θ1<第3角度θ3<第2角度θ2との関係を充足している。 The first angle θ1 is smaller than the second angle θ2. The third angle θ3 is larger than the first angle θ1 and smaller than the second angle θ2. That is, the first angle θ1, the second angle θ2, and the third angle θ3 satisfy the relationship of the first angle θ1 <the third angle θ3 <the second angle θ2.
 第1角度θ1は、負角であってもよい。すなわち、第1部分21aは、回転軸10の延在方向に対して、第2部分21b及び第3部分21cとは逆方向に傾斜していてもよい。 The first angle θ1 may be a negative angle. That is, the first portion 21a may be inclined in the direction opposite to the second portion 21b and the third portion 21c with respect to the extending direction of the rotating shaft 10.
 第1角度θ1は、好ましくは、-30°以上30°以下である。第2角度θ2は、好ましくは、20°以上75°以下である。第3角度θ3は、好ましくは、10°以上60°以下である。 The first angle θ1 is preferably −30 ° to 30 °. The second angle θ2 is preferably not less than 20 ° and not more than 75 °. The third angle θ3 is preferably not less than 10 ° and not more than 60 °.
 ブレード21は、平面視において(回転軸10の延在方向に平行な方向からみて)、幅Wを有している。幅Wは、別の観点からいえば、第1エッジ21eを通過し、かつ回転軸10の延在方向に平行な直線と、第2エッジ21fを通過し、かつ回転軸10の延在方向に平行な直線との距離である(図3参照)。なお、第1部分21aにおける部材自体の幅は、第1部分21aにおける幅Wよりも広くなっている。第1部分21aにおける幅Wは、第1角度θ1が正角である場合には、第2部分21bにおける幅Wよりも小さい。なお、第1角度θ1が負角である場合には、第1部分21aにおける幅Wは、第2部分21bにおける幅Wよりも大きくてもよい。 The blade 21 has a width W in a plan view (viewed from a direction parallel to the extending direction of the rotating shaft 10). From another viewpoint, the width W passes through the first edge 21e and is parallel to the extending direction of the rotating shaft 10, and the second edge 21f and extends in the extending direction of the rotating shaft 10. The distance from the parallel straight line (see FIG. 3). In addition, the width | variety of the member itself in the 1st part 21a is wider than the width W in the 1st part 21a. The width W in the first portion 21a is smaller than the width W in the second portion 21b when the first angle θ1 is a regular angle. When the first angle θ1 is a negative angle, the width W in the first portion 21a may be larger than the width W in the second portion 21b.
 図3に示すように、ブレード21は、第1面21gと、第2面21hとを有している。第1面21gは、実施形態に係る回転装置1に入力される流体の上流側を向いている面である。なお、第1角度θ1が負角である場合、第1部分21aに位置する第1面21gは、実施形態に係る回転装置1に入力される流体の下流側を向くことになる。第2面21hは、第1面21gの反対面である。 As shown in FIG. 3, the blade 21 has a first surface 21g and a second surface 21h. The first surface 21g is a surface facing the upstream side of the fluid input to the rotating device 1 according to the embodiment. When the first angle θ1 is a negative angle, the first surface 21g located in the first portion 21a faces the downstream side of the fluid input to the rotating device 1 according to the embodiment. The second surface 21h is the opposite surface of the first surface 21g.
 第1面21gは、断面視において、S字形状を有していることが好ましい。すなわち、第1面21gは、第1エッジ21eと第2エッジ21fとの間に変曲点を有していることが好ましい。より具体的には、第1面21gは、断面視において、第1面21gの接線方向と回転軸10の延在方向とがなす角度が第1エッジ21e側から第2エッジ21f側に向かうにしたがって一旦増加した後、さらに第2エッジ21f側に向かうにしたがって減少するような曲線形状を有していることが好ましい。 The first surface 21g preferably has an S-shape in a cross-sectional view. In other words, the first surface 21g preferably has an inflection point between the first edge 21e and the second edge 21f. More specifically, the first surface 21g has an angle formed by the tangential direction of the first surface 21g and the extending direction of the rotary shaft 10 from the first edge 21e side to the second edge 21f side in a cross-sectional view. Therefore, it is preferable to have a curved shape that once increases and then decreases toward the second edge 21f side.
 なお、第1角度θ1が負角である場合、第2部分21b及び第3部分21cに位置する第1面21gは第1端10a側(流体の流れ方向における上流側)に向いている一方、第1部分21aに位置する第1面21gは、第2端10b側(流体の流れ方向における下流側)に向くようになるため、第1部分21aに位置する第1面21gは、断面視において、第2部分21b及び第3部分21cに位置する第1面21gとは逆のS字形状となる。 When the first angle θ1 is a negative angle, the first surface 21g located in the second part 21b and the third part 21c is directed to the first end 10a side (upstream side in the fluid flow direction), Since the first surface 21g located in the first portion 21a is directed to the second end 10b side (downstream side in the fluid flow direction), the first surface 21g located in the first portion 21a is in a sectional view. The first surface 21g located in the second portion 21b and the third portion 21c has an S-shape opposite to that of the first surface 21g.
 この場合には、第1部分21aから第2部分21bにかけて、第1面21gと第2面21hとが、流体の上流側からみた平面視において、反転したような形状となる。その結果、第1部分21aの近傍を通過する流体は、第2部分21bを通過する流体の裏側に入り込むように移動する。その結果、各ブレード間を通過する流体が、より効率的に羽根車20の回転方向とは反対方向の渦巻状の回転に変換される。また、この場合には、第1部分21aに位置する第2エッジ21f近傍の空間が広げられるため、第1部分21aを通過する流体は、第2部分21bを通過する流体を引き込む結果、相乗的な流体の移動エネルギーを得ることになる。 In this case, from the first portion 21a to the second portion 21b, the first surface 21g and the second surface 21h have a shape that is inverted in plan view as viewed from the upstream side of the fluid. As a result, the fluid passing through the vicinity of the first portion 21a moves so as to enter the back side of the fluid passing through the second portion 21b. As a result, the fluid passing between the blades is more efficiently converted into a spiral rotation in the direction opposite to the rotation direction of the impeller 20. In this case, since the space near the second edge 21f located in the first portion 21a is widened, the fluid passing through the first portion 21a is synergistic as a result of drawing the fluid passing through the second portion 21b. You will get the fluid's kinetic energy.
 このように、各ブレード間を通過する流体の渦巻状の回転が、第1部分21aと第2部分21bとの境界に位置する第2エッジ21fを通過した流体により生じる渦巻状の流れが基軸となり、ブレード21全体によって生じる渦巻状の回転が促され、この渦巻状の回転が羽根車20の回転をさらに付勢する際(後述)に、羽根車20に働く力を第1部分21aに位置する第1面21gがより効率的に受け、羽根車20の回転をより付勢することができる。 Thus, the spiral rotation of the fluid passing between the blades is based on the spiral flow generated by the fluid passing through the second edge 21f located at the boundary between the first portion 21a and the second portion 21b. When the spiral rotation generated by the entire blade 21 is urged, and the spiral rotation further urges the rotation of the impeller 20 (described later), the force acting on the impeller 20 is located in the first portion 21a. 21 g of 1st surfaces can receive more efficiently and can urge rotation of impeller 20 more.
 第1面21gは、断面視において、第1エッジ21eにおける接線方向と回転装置1に流入しようとする流体の流れ方向とが略平行となる(例えば、第1部分21aに位置する第1エッジ21eにおける接線方向と回転軸10の延在方向とがなす角度が0°±10°、第2部分21bに位置する第1エッジ21eにおける接線方向と回転軸10の延在方向とがなす角度が0°から60°、第3部分21cに位置する第1エッジ21eにおける接線方向と回転軸10の延在方向とがなす角度が、0°から30°となる場合)曲線形状を有していることが好ましい。第1面21gは、断面視において、第2エッジ21fにおける接線方向が回転装置1を通過しようとする際の流体の流れ方向に沿うような曲線形状を有していることが好ましい。 The first surface 21g has a tangential direction at the first edge 21e substantially parallel to the flow direction of the fluid that is to flow into the rotating device 1 in a cross-sectional view (for example, the first edge 21e located at the first portion 21a). The angle formed by the tangential direction at 0 and the extending direction of the rotary shaft 10 is 0 ° ± 10 °, and the angle formed by the tangential direction at the first edge 21e located at the second portion 21b and the extending direction of the rotary shaft 10 is 0. The angle between the tangential direction of the first edge 21e located at the third portion 21c and the extending direction of the rotary shaft 10 is from 0 ° to 30 ° (from 0 ° to 30 °). Is preferred. The first surface 21g preferably has a curved shape such that the tangential direction at the second edge 21f is along the flow direction of the fluid when passing through the rotating device 1 in a cross-sectional view.
 これにより、流体と各ブレードの接触に伴う抗力を抑制し、乱流の発生をさらに抑制することができる。なお、ブレード21が上記のような断面形状(S字形状)を有することは必須ではなく、ブレード21は、平板をつなぎ合わせたような形状で構成されていてもよい。 This makes it possible to suppress drag caused by contact between the fluid and each blade, and to further suppress the occurrence of turbulence. In addition, it is not essential that the blade 21 has the cross-sectional shape (S-shape) as described above, and the blade 21 may be configured in a shape in which flat plates are joined together.
 第1面21gと第2面21hとは、平行であることが好ましい。すなわち、ブレード21は、第1エッジ21eと第2エッジ21fとの間に位置するブレード21の厚みは、第1エッジ21e及び第2エッジ21fに位置するブレード21の厚みよりも大きくなっていないことが好ましい。このことを別の観点からいえば、第2面21hは、断面視において、第1面21gと同様の形状を有してもよい。 The first surface 21g and the second surface 21h are preferably parallel. That is, in the blade 21, the thickness of the blade 21 located between the first edge 21e and the second edge 21f is not greater than the thickness of the blade 21 located at the first edge 21e and the second edge 21f. Is preferred. In other words, the second surface 21h may have the same shape as the first surface 21g in a cross-sectional view.
 図2に示すように、ブレード21は、第1部分21a側から第3部分21c側に向かうにしたがって、第2端10bから第1端10aに向かう方向への湾曲が大きくなっていてもよい。 As shown in FIG. 2, the blade 21 may bend in a direction from the second end 10b toward the first end 10a as it goes from the first portion 21a side toward the third portion 21c side.
 (実施形態に係る発電装置の構成)
 以下に、実施形態に係る発電装置の構成について図4を参照して説明する。
(Configuration of power generator according to embodiment)
Below, the structure of the electric power generating apparatus which concerns on embodiment is demonstrated with reference to FIG.
 図4は、実施形態に係る発電装置の構成を示す模式図である。図4に示すように、実施形態に係る発電装置は、回転装置1と、発電機30とを有している。回転装置1の数は、複数であることが好ましい。複数の回転装置1の各々は、直列に接続されている。すなわち、複数の回転装置1の各々は、流体の流れ方向の上流側から下流側に向かって順次接続されている。このことをさらに別の観点からいえば、複数の回転装置1は、1本の回転軸10を共通して用いている。 FIG. 4 is a schematic diagram illustrating a configuration of the power generation device according to the embodiment. As shown in FIG. 4, the power generation device according to the embodiment includes a rotating device 1 and a generator 30. The number of the rotating devices 1 is preferably plural. Each of the plurality of rotating devices 1 is connected in series. That is, each of the plurality of rotating devices 1 is sequentially connected from the upstream side to the downstream side in the fluid flow direction. From another point of view, the plurality of rotating devices 1 share a single rotating shaft 10.
 発電機30には、回転装置1の回転軸10が接続されている。回転軸10は、回転数変換機構(増速機、減速機等)を介して発電機30に接続されていてもよい。回転数変換機構は、例えば歯車機構(ギアボックス)により実現される。発電機30は、回転装置1の回転軸10の中心軸周りの回転が伝達されることにより、発電動作を行う。より具体的には、回転装置1の回転軸10の中心軸周りの回転が発電機30の回転軸に伝達されることにより、発電機30は発電動作を行う。 The rotating shaft 10 of the rotating device 1 is connected to the generator 30. The rotating shaft 10 may be connected to the generator 30 via a rotation speed conversion mechanism (speed increaser, speed reducer, etc.). The rotation speed conversion mechanism is realized by, for example, a gear mechanism (gear box). The generator 30 performs a power generation operation by transmitting the rotation around the central axis of the rotating shaft 10 of the rotating device 1. More specifically, the generator 30 performs a power generation operation by transmitting the rotation around the central axis of the rotating shaft 10 of the rotating device 1 to the rotating shaft of the generator 30.
 (実施形態に係る回転装置の効果)
 以下に、実施形態に係る回転装置1の効果について説明する。
(Effect of the rotating device according to the embodiment)
Below, the effect of the rotating apparatus 1 which concerns on embodiment is demonstrated.
 まず、実施形態に係る回転装置1の羽根車20の流体の流れ方向での上流側の面において生じる現象について説明する。図5は、実施形態に係る回転装置1における流体の流れを示す模式図である。図5中において、流体の流れは、実線矢印により示されている。なお、図5中において、羽根車20は、時計回り方向に回転する。 First, a phenomenon that occurs on the upstream surface in the fluid flow direction of the impeller 20 of the rotating device 1 according to the embodiment will be described. FIG. 5 is a schematic diagram illustrating a flow of fluid in the rotating device 1 according to the embodiment. In FIG. 5, the flow of the fluid is indicated by solid arrows. In FIG. 5, the impeller 20 rotates in the clockwise direction.
 上記のとおり、第1角度θ1、第2角度θ2及び第3角度θ3は、第1角度θ1<第3角度θ3<第2角度θ2との関係を充足している。そのため、実施形態に係る回転装置1に入力される流体が第1部分21a、第2部分21b及び第3部分21cの近傍を通過する際に曲げられる程度は、(第1部分21a近傍を通過する際に曲げられる程度)<(第3部分21c近傍を通過する際に曲げられる程度)<(第2部分21bを通過する際に曲げられる程度)との関係を充足することになる。 As described above, the first angle θ1, the second angle θ2, and the third angle θ3 satisfy the relationship of the first angle θ1 <the third angle θ3 <the second angle θ2. Therefore, the degree to which the fluid input to the rotating device 1 according to the embodiment is bent when passing through the vicinity of the first part 21a, the second part 21b, and the third part 21c (passes through the vicinity of the first part 21a). The degree of bending at the time) <(degree of bending when passing through the vicinity of the third portion 21c) <(degree of bending when passing through the second portion 21b) is satisfied.
 その結果、図5に示すように、実施形態に係る回転装置1に入力される流体は、羽根車20の各ブレードに接触して羽根車20を回転させるとともに、羽根車20の各ブレードの間を通過する際に、当該接触により渦巻状に回転する。なお、この渦巻状の回転方向は、羽根車20の回転方向と逆方向になる。 As a result, as shown in FIG. 5, the fluid input to the rotating device 1 according to the embodiment contacts each blade of the impeller 20 to rotate the impeller 20, and between the blades of the impeller 20. When passing through, the contact rotates in a spiral shape. The spiral direction of rotation is opposite to the direction of rotation of the impeller 20.
 上記のとおり、第4部分21dは、回転軸10の延在方向と略平行に延在しているため、各ブレードの回転軌道により画される領域の内側における流体の流れと、当該領域の外側に位置する領域における流体の流れとを分離することができ(すなわち、各ブレードと回転装置1の外側を流れる流体との間の抵抗を軽減することができ)、当該領域の外側に位置する領域からの影響を低減することができる。 As described above, since the fourth portion 21d extends substantially parallel to the extending direction of the rotation shaft 10, the fluid flow inside the region defined by the rotation trajectory of each blade and the outside of the region Can be separated from the fluid flow in the region located in the region (that is, the resistance between each blade and the fluid flowing outside the rotating device 1 can be reduced), and the region located outside the region. The influence from can be reduced.
 また、第4部分21dに位置する第2エッジ21fが第3部分21cに位置する第2エッジ21fよりも突出している場合、流体が羽根車の各ブレードを通過する際に形成される渦巻状の流れが径方向外側に散逸してしまうことを抑制することができる。 In addition, when the second edge 21f located in the fourth portion 21d protrudes from the second edge 21f located in the third portion 21c, a spiral shape formed when the fluid passes through each blade of the impeller. It is possible to suppress the flow from being dissipated radially outward.
 次に、実施形態に係る回転装置1の羽根車20の流体の流れ方向での下流側の面において生じる現象について説明する。 Next, a phenomenon that occurs on the downstream surface in the fluid flow direction of the impeller 20 of the rotating device 1 according to the embodiment will be described.
 上記のとおり、各ブレードの間を通過した流体は、羽根車20の回転方向と逆方向に回転するため、回転軸10等との摩擦による抵抗が減少する。また、本発明者らが見出した知見によると、各ブレード間を渦巻状に回転して通過した流体は、圧力が周囲よりも低下する。この渦巻状に回転する流れは、上記のとおり、回転方向が羽根車20と逆であるため、上流側との圧力差に起因して、羽根車20をさらに付勢する。さらに、この渦巻状に回転する流れは、羽根車20の外側を流れる流体との圧力差に起因して、羽根車20の外側(すなわち、各ブレードの回転軌道により画される領域の外側)を流れる流体を引き込む。羽根車20の外側を流れる流体は、等速直線的な流れであるため、各ブレード間を通過した渦巻状の流れは、これと合流することで、再び等速直線的な流れに近づく。 As described above, since the fluid that has passed between the blades rotates in the direction opposite to the rotation direction of the impeller 20, resistance due to friction with the rotary shaft 10 or the like decreases. Further, according to the knowledge found by the present inventors, the pressure of the fluid that has passed through each blade in a spiral shape is lower than that of the surroundings. As described above, since the flow rotating in the spiral shape is opposite to the impeller 20, the impeller 20 is further urged due to the pressure difference from the upstream side. Further, the spirally rotating flow is caused to flow outside the impeller 20 (that is, outside the region defined by the rotation trajectory of each blade) due to a pressure difference with the fluid flowing outside the impeller 20. Pull the flowing fluid. Since the fluid flowing outside the impeller 20 is a constant-velocity linear flow, the spiral flow that has passed between the blades merges with the blade to approach the constant-velocity linear flow again.
 このように、実施形態に係る回転装置1によると、入力される流体は、羽根車20の流体の流れ方向での上流側の面のみならず、下流側の面においても、羽根車20を回転させるように作用するため、入力される流体から効率的に回転エネルギーを取り出すことができる。さらに、実施形態に係る回転装置1によると、入力される流体が羽根車20の流体の流れ方向での下流側の面において羽根車20の外側を通過する流体と合流する際に、渦巻状の回転が解消されるため、回転装置の下流側における乱流を生じさせ難くすることができる。そして、入力される流体の流れ方向の上流側においては、第4部分21dが回転装置1の外側を流れる流体との間の抵抗を減少させる。 As described above, according to the rotating device 1 according to the embodiment, the input fluid rotates the impeller 20 not only on the upstream surface in the fluid flow direction of the impeller 20 but also on the downstream surface. Therefore, rotational energy can be efficiently extracted from the input fluid. Further, according to the rotating device 1 according to the embodiment, when the fluid to be input merges with the fluid passing through the outside of the impeller 20 on the downstream surface of the impeller 20 in the fluid flow direction, Since the rotation is eliminated, it is possible to make it difficult to generate a turbulent flow on the downstream side of the rotating device. And in the upstream of the flow direction of the input fluid, the 4th part 21d reduces resistance between the fluid which flows the outer side of the rotating apparatus 1. FIG.
 以上の結果として、実施形態に係る回転装置1によると、回転装置1の下流側及び外側における乱流の発生を抑えつつ、効率を向上させることができる。なお、上記においては、回転装置1を流体の流れの中に配置する場合を例に説明したが、回転装置1を推進装置に組み込む場合や送風装置に組み込む場合においては、上記とは流体の流れの方向が逆となるが、上記と類似した現象が生じることにより、動力源によって生じる回転装置1の回転から効率的かつ安定した流体の流れを取り出すことができる。 As a result, according to the rotating device 1 according to the embodiment, the efficiency can be improved while suppressing the occurrence of turbulent flow on the downstream side and outside of the rotating device 1. In the above description, the case where the rotating device 1 is arranged in the flow of fluid has been described as an example. However, when the rotating device 1 is incorporated in a propulsion device or in a blower, the above is the flow of fluid. However, when a phenomenon similar to the above occurs, an efficient and stable fluid flow can be extracted from the rotation of the rotating device 1 generated by the power source.
 実施形態に係る回転装置1において、第1部分21aにおける幅Wが第2部分21bにおける幅Wよりも小さい場合、流体は、第1部分21aの近傍をより低い抵抗で通過する。したがって、この場合には、羽根車20の各ブレードを通過する際の渦巻状の回転をさらに生じさせやすくなる。そのため、この場合には、さらに効率的に流体から回転エネルギーを取り出すことが可能となる。 In the rotating device 1 according to the embodiment, when the width W of the first portion 21a is smaller than the width W of the second portion 21b, the fluid passes through the vicinity of the first portion 21a with lower resistance. Therefore, in this case, it becomes easier to cause a spiral rotation when passing through each blade of the impeller 20. Therefore, in this case, rotational energy can be extracted from the fluid more efficiently.
 実施形態に係る回転装置1において、第4部分21dに位置する第2エッジ21fが、平面視において、第1部分21a、第2部分21b及び第3部分21cに位置する第2エッジ21fよりも突出している場合、上記の通り、流体が羽根車の各ブレードを通過する際に形成される渦巻状の流れが径方向外側に散逸してしまうことを抑制することができる。その結果、より多くの各ブレード間を通過する渦巻状の流体の流れを、羽根車20よりも外側かつ下流側を流れる流体の流れと合流させることができる。そのため、この場合には、さらに効率的に流体から回転エネルギーを取り出すことが可能となる。 In the rotating device 1 according to the embodiment, the second edge 21f located in the fourth portion 21d protrudes from the second edge 21f located in the first portion 21a, the second portion 21b, and the third portion 21c in plan view. In this case, as described above, the spiral flow formed when the fluid passes through each blade of the impeller can be prevented from being dissipated radially outward. As a result, the flow of the spiral fluid passing between more blades can be merged with the flow of fluid flowing outside and downstream of the impeller 20. Therefore, in this case, rotational energy can be extracted from the fluid more efficiently.
 実施形態に係る回転装置1において、第1角度θ1が負角である場合、第1部分21aにおける部材自体の幅を大きくしても、流体は、第1部分21aの近傍をより低い抵抗で通過する。そのため、この場合には、流体が羽根車20の各ブレードを通過する際の渦巻状の回転を生じさせつつ、各ブレードの強度を向上させることができる。また、実施形態に係る回転装置1において、第1角度θ1が負角である場合、各ブレードの間を渦巻状に回転しながら通過する流体が、羽根車20の回転をさらに付勢しやすくなる。そのため、この場合には、さらに効率的に流体から回転エネルギーを取り出すことが可能となる。 In the rotating device 1 according to the embodiment, when the first angle θ1 is a negative angle, the fluid passes through the vicinity of the first portion 21a with lower resistance even if the width of the member itself in the first portion 21a is increased. To do. Therefore, in this case, the strength of each blade can be improved while causing a spiral rotation when the fluid passes through each blade of the impeller 20. Further, in the rotating device 1 according to the embodiment, when the first angle θ1 is a negative angle, the fluid passing while rotating in a spiral manner between the blades further urges the rotation of the impeller 20. . Therefore, in this case, rotational energy can be extracted from the fluid more efficiently.
 実施形態に係る回転装置1においては、原理的に、第1エッジ21eと第2エッジ21fとの間において、ブレード21の厚みが大きくなっている必要がない。そのため、実施形態に係る回転装置1において、ブレード21が第1面21gと、第1面21gの反対面であり、かつ第1面21gに平行な第2面21hとを有する場合には、ブレード21の軽量化、ブレード21の製造工程の簡略化が可能となる。 In the rotating device 1 according to the embodiment, in principle, the thickness of the blade 21 does not need to be large between the first edge 21e and the second edge 21f. Therefore, in the rotating device 1 according to the embodiment, when the blade 21 has the first surface 21g and the second surface 21h that is opposite to the first surface 21g and is parallel to the first surface 21g, the blade 21 21 can be reduced in weight and the manufacturing process of the blade 21 can be simplified.
 (実施形態に係る発電装置の効果)
 上記のとおり、実施形態に係る回転装置1は、回転装置の下流側及び外側における乱流の発生を抑制しつつ、流体から効率的に回転エネルギーを取り出すことができる。そのため、実施形態に係る発電装置によると、効率的な発電を行うことができる。
(Effect of the power generation device according to the embodiment)
As described above, the rotating device 1 according to the embodiment can efficiently extract rotational energy from the fluid while suppressing generation of turbulent flow on the downstream side and outside of the rotating device. Therefore, according to the power generation device according to the embodiment, efficient power generation can be performed.
 より具体的には、流体の速度及び密度が概ね同一である流体の中に複数の回転装置を配置する場合、回転装置の各々の回転が同期する。そのため、実施形態に係る発電装置によると、各回転装置1間で回転軸10を共通化することができる。また、上記のとおり、実施形態に係る回転装置1においては、回転装置1の下流側かつ外側を流れる流体を、各ブレードの間を通過する流体に合流させることができる。そのため、実施形態に係る発電装置によると、実施形態に係る回転装置1の下流側かつ外側を流れる流体をも発電動作に寄与させることができる。 More specifically, when a plurality of rotating devices are arranged in fluids having substantially the same velocity and density, the rotations of the rotating devices are synchronized. Therefore, according to the electric power generating apparatus which concerns on embodiment, the rotating shaft 10 can be made shared between each rotating apparatus 1. FIG. Further, as described above, in the rotating device 1 according to the embodiment, the fluid flowing on the downstream side and the outside of the rotating device 1 can be merged with the fluid passing between the blades. Therefore, according to the power generation device according to the embodiment, the fluid flowing on the downstream side and the outside of the rotating device 1 according to the embodiment can also contribute to the power generation operation.
 (その他)
 上記においては、実施形態に係る回転装置1の回転軸10を発電機30に接続して発電装置として用いる例について説明したが、実施形態に係る回転装置1の具体的な適用例はこれに限られるものではない。例えば、実施形態に係る回転装置1は、推進装置に用いることができる。この推進装置は、実施形態に係る回転装置1と、モータ、エンジン等の動力源とを有している。実施形態に係る回転装置1の回転軸10は、動力源に接続される。動力源は、回転軸10を中心軸周りに回転させる。
(Other)
In the above, the example in which the rotating shaft 10 of the rotating device 1 according to the embodiment is connected to the generator 30 and used as the power generating device has been described, but the specific application example of the rotating device 1 according to the embodiment is not limited thereto. It is not something that can be done. For example, the rotating device 1 according to the embodiment can be used for a propulsion device. The propulsion device includes the rotation device 1 according to the embodiment and a power source such as a motor and an engine. The rotating shaft 10 of the rotating device 1 according to the embodiment is connected to a power source. The power source rotates the rotating shaft 10 around the central axis.
 このような推進装置は、回転装置1を通過する流体の流れ方向の下流側及び回転装置1の外側における乱流の発生及び回転装置1の外側を通過する流体に対する乱流の発生を抑制することにより、効率的に推進力を得ることができる。 Such a propulsion device suppresses generation of turbulent flow on the downstream side in the flow direction of the fluid passing through the rotating device 1 and outside of the rotating device 1 and generation of turbulent flow with respect to the fluid passing outside of the rotating device 1. Thus, it is possible to obtain a propulsive force efficiently.
 また、実施形態に係る回転装置1においては、通過する流体の流れ方向の下流側及び回転装置1の外側における乱流の発生を抑制することができるため、実施形態に係る回転装置1は、整流装置にも好適に組み込まれる。 Further, in the rotating device 1 according to the embodiment, since the generation of turbulent flow on the downstream side in the flow direction of the fluid passing therethrough and the outside of the rotating device 1 can be suppressed, It is also preferably incorporated into the device.
 さらに、回転装置1は、回転装置1を通過する流体の流れ方向の下流側及び回転装置1の外側における乱流の発生及び回転装置1の外側を通過する流体に対する乱流の発生を抑制することができるため、実施形態に係る回転装置1は、回転軸10がモータ等の動力源に接続されることにより、安定した流体の流れを生じさせることができるため、扇風機、送風ファン等の送風装置としても好適に用いることができる。 Further, the rotating device 1 suppresses generation of turbulent flow downstream of the flow direction of the fluid passing through the rotating device 1 and outside of the rotating device 1 and generation of turbulent flow with respect to the fluid passing outside of the rotating device 1. Therefore, the rotating device 1 according to the embodiment can generate a stable fluid flow when the rotating shaft 10 is connected to a power source such as a motor. Therefore, the blowing device such as a fan or a blower fan can be used. Can also be suitably used.
 今回開示された実施形態は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施形態ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
 上記の実施形態は、例えば風力発電装置、水力発電装置等の発電装置、推進装置、整流装置、送風装置及びそのような装置に用いられる回転装置に特に好適に適用される。 The above-described embodiment is particularly preferably applied to, for example, a power generation device such as a wind power generation device or a hydroelectric power generation device, a propulsion device, a rectification device, a blower device, and a rotation device used in such a device.
 1  回転装置
 10  回転軸
 10a  第1端
 10b  第2端
 20  羽根車
 21,22,23,24  ブレード
 21a  第1部分
 21b  第2部分
 21c  第3部分
 21d  第4部分
 21e  第1エッジ
 21f  第2エッジ
 21g  第1面
 21h  第2面
 30  発電機
 W  幅
DESCRIPTION OF SYMBOLS 1 Rotating device 10 Rotating shaft 10a 1st end 10b 2nd end 20 Impeller 21, 22, 23, 24 Blade 21a 1st part 21b 2nd part 21c 3rd part 21d 4th part 21e 1st edge 21f 2nd edge 21g 1st surface 21h 2nd surface 30 Generator W width

Claims (6)

  1.  第1端を有する回転軸と、
     前記回転軸の前記第1端に取り付けられ、複数のブレードから構成される羽根車とを備え、
     前記複数のブレードの各々は、前記回転軸の側に位置する第1部分と、前記第1部分に連なる第2部分と、前記第2部分に連なる第3部分と、前記第3部分に連なり、かつ前記回転軸の延在方向と略平行に延在する第4部分とを有し、
     前記複数のブレードの各々は、第1エッジと、前記第1エッジの反対側に位置する第2エッジとを有し、
     前記複数のブレードの各々は、前記第1エッジの側から前記第2エッジの側に向かうにつれ、前記第1端から遠ざかるように傾斜しており、
     前記第1部分と前記回転軸の延在方向とは、前記第1エッジにおいて第1角度をなし、
     前記第2部分と前記回転軸の延在方向とは、前記第1エッジにおいて第2角度をなし、
     前記第3部分と前記回転軸の延在方向とは、前記第1エッジにおいて第3角度をなし、
     前記第1角度は、前記第2角度より小さく、
     前記第3角度は、前記第1角度より大きく、前記第2角度より小さい、回転装置。
    A rotating shaft having a first end;
    An impeller attached to the first end of the rotating shaft and comprising a plurality of blades;
    Each of the plurality of blades is connected to the first part located on the rotating shaft side, the second part connected to the first part, the third part connected to the second part, and the third part, And a fourth portion extending substantially parallel to the extending direction of the rotating shaft,
    Each of the plurality of blades has a first edge and a second edge located on the opposite side of the first edge;
    Each of the plurality of blades is inclined so as to move away from the first end as it goes from the first edge side to the second edge side.
    The first portion and the extending direction of the rotating shaft form a first angle at the first edge,
    The second portion and the extending direction of the rotation axis form a second angle at the first edge,
    The third portion and the extending direction of the rotation shaft form a third angle at the first edge,
    The first angle is smaller than the second angle,
    The rotation device, wherein the third angle is larger than the first angle and smaller than the second angle.
  2.  平面視における前記第1部分の幅は、平面視における前記第2部分の幅よりも狭い、請求項1に記載の回転装置。 The rotation device according to claim 1, wherein a width of the first portion in a plan view is narrower than a width of the second portion in a plan view.
  3.  前記第1角度は、負角である、請求項1に記載の回転装置。 The rotating device according to claim 1, wherein the first angle is a negative angle.
  4.  前記第4部分に位置する前記第2エッジは、前記第3部分に位置する前記第2エッジから突出している、請求項1に記載の回転装置。 The rotating device according to claim 1, wherein the second edge located in the fourth portion protrudes from the second edge located in the third portion.
  5.  請求項1~4のいずれか1項に記載の前記回転装置と、
     前記複数の前記回転装置の前記回転軸の回転が伝達されることにより発電を行う発電機とを備え、
     前記複数の前記回転装置の各々は、直列に接続される、発電装置。
    The rotating device according to any one of claims 1 to 4,
    A generator that generates electric power by transmitting rotation of the rotating shafts of the plurality of rotating devices;
    Each of the plurality of rotating devices is a power generation device connected in series.
  6.  請求項1~4のいずれか1項に記載の前記回転装置と、
     前記回転軸に接続され、前記回転軸を回転させる動力源とを備える、推進装置。
    The rotating device according to any one of claims 1 to 4,
    A propulsion device comprising: a power source connected to the rotating shaft and rotating the rotating shaft.
PCT/JP2018/009216 2017-03-14 2018-03-09 Rotation device, propulsion device, and power generation device WO2018168689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072579 2017-03-14
JP2017072579A JP6245486B1 (en) 2017-03-14 2017-03-14 Rotating device, propulsion device and power generation device

Publications (1)

Publication Number Publication Date
WO2018168689A1 true WO2018168689A1 (en) 2018-09-20

Family

ID=60658963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009216 WO2018168689A1 (en) 2017-03-14 2018-03-09 Rotation device, propulsion device, and power generation device

Country Status (2)

Country Link
JP (1) JP6245486B1 (en)
WO (1) WO2018168689A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055351B2 (en) * 2018-03-05 2022-04-18 株式会社中央発電 Power generator
JP6426869B1 (en) * 2018-06-08 2018-11-21 株式会社グローバルエナジー Horizontal axis rotor
JP6928325B1 (en) * 2021-04-01 2021-09-01 株式会社グローバルエナジー Horizontal axis wind turbine, horizontal axis rotor and rotor blade
JP6975921B1 (en) * 2021-05-20 2021-12-01 株式会社グローバルエナジー Fuel economy reduction ship
JP6966135B1 (en) * 2021-05-20 2021-11-10 株式会社グローバルエナジー Wind power boat
JP6948094B1 (en) * 2021-05-20 2021-10-13 株式会社グローバルエナジー Rotor blade

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560053A (en) * 1991-08-26 1993-03-09 Mitsubishi Heavy Ind Ltd Windmill
WO2014132328A1 (en) * 2013-02-26 2014-09-04 三菱重工業株式会社 Windmill vane and wind power generation device provided with same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560053A (en) * 1991-08-26 1993-03-09 Mitsubishi Heavy Ind Ltd Windmill
WO2014132328A1 (en) * 2013-02-26 2014-09-04 三菱重工業株式会社 Windmill vane and wind power generation device provided with same

Also Published As

Publication number Publication date
JP6245486B1 (en) 2017-12-13
JP2018150923A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6245486B1 (en) Rotating device, propulsion device and power generation device
JP5946707B2 (en) Axial turbine blade
US9726027B2 (en) Turbine
US10288036B2 (en) Rotor
US9938957B2 (en) Rotor
JP5785181B2 (en) Turbine
JP2012072735A (en) Centrifugal compressor
WO2018194105A1 (en) Vertical-shaft turbine
JP2015095962A (en) Rotary machine
JP6726986B2 (en) Sealing device, rotary machine
JP4482649B2 (en) Savonius turbine
JP6954739B2 (en) Rotor for generator
JP5049954B2 (en) Torque converter
JP2015228768A (en) Rotary machine
WO2021033419A1 (en) Vane wheel for wind power generation and wind power generation system
WO2015166813A1 (en) Axial flow impeller and turbine
WO2015174267A1 (en) Wave power generation device
JP6158019B2 (en) Axial turbine generator
JP6572725B2 (en) Torque converter and manufacturing method thereof
JP4814186B2 (en) Drag type windmill
WO2018168744A1 (en) Vertical axis wind turbine, blade thereof, and wind power generation device
JP6488111B2 (en) Axial turbine generator
KR20120077523A (en) Vertical wing structure of turbine using wind power or water power
JP6725824B1 (en) Induction type tidal power generator
JP6685879B2 (en) Hydraulic machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766617

Country of ref document: EP

Kind code of ref document: A1