JP6928325B1 - Horizontal axis wind turbine, horizontal axis rotor and rotor blade - Google Patents

Horizontal axis wind turbine, horizontal axis rotor and rotor blade Download PDF

Info

Publication number
JP6928325B1
JP6928325B1 JP2021062925A JP2021062925A JP6928325B1 JP 6928325 B1 JP6928325 B1 JP 6928325B1 JP 2021062925 A JP2021062925 A JP 2021062925A JP 2021062925 A JP2021062925 A JP 2021062925A JP 6928325 B1 JP6928325 B1 JP 6928325B1
Authority
JP
Japan
Prior art keywords
blade
hub
rotation
rotating
wing tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021062925A
Other languages
Japanese (ja)
Other versions
JP2022158191A (en
Inventor
鈴木 政彦
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Energy Co Ltd
Original Assignee
Global Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Energy Co Ltd filed Critical Global Energy Co Ltd
Priority to JP2021062925A priority Critical patent/JP6928325B1/en
Application granted granted Critical
Publication of JP6928325B1 publication Critical patent/JP6928325B1/en
Publication of JP2022158191A publication Critical patent/JP2022158191A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】 本発明は、ブレードの数が多くても回転時の気流が干渉しにくく、低風速でも回転効率の高い横軸風車、横軸ロータ及びロータブレードを提供することを目的としている。【解決手段】 ハブの周面に複数の揚力型ブレードが配設され、各揚力型ブレードは翼端を上向きとした状態で、正面視でハブ5Aの軸線方向を向く揚力型ブレードの基部6Aの厚さの中央を、ハブ5Aの軸心を通るブレード中心線Sが通っている。揚力型ブレード6の前縁6Bの回転前面6Gは前記ブレード中心線Sと平行で、長さの中間から翼端にかけて回転後方向に大きく屈曲され、翼端の翼先端面6Dが正面に水平横長に見えるとともに、前記翼先端面6Dの前縁の厚さ中心6Eの回転軌跡Vよりも、前記翼先端面6Dの後縁端6cは外側になって、前記基部6Aから翼先端面6Dへかけての回転後面6Fが、正面から見えるように形成されている横軸風車。【選択図】 図1PROBLEM TO BE SOLVED: To provide a horizontal axis wind turbine, a horizontal axis rotor and a rotor blade, which are less likely to interfere with airflow during rotation even if the number of blades is large and have high rotation efficiency even at a low wind speed. SOLUTION: A plurality of lift type blades are arranged on a peripheral surface of a hub, and each lift type blade has a base portion 6A of a lift type blade facing the axial direction of the hub 5A in a front view with the blade tip facing upward. The blade center line S passing through the axis of the hub 5A passes through the center of the thickness. The rotating front surface 6G of the leading edge 6B of the lift type blade 6 is parallel to the blade center line S, is greatly bent in the rearward rotation direction from the middle of the length to the blade tip, and the blade tip surface 6D of the blade tip is horizontally and horizontally long in front. The trailing edge end 6c of the wing tip surface 6D is on the outside of the rotation locus V of the thickness center 6E of the leading edge of the wing tip surface 6D, and extends from the base portion 6A to the wing tip surface 6D. A horizontal axis windmill in which the 6th floor of the rotating rear surface is formed so that it can be seen from the front. [Selection diagram] Fig. 1

Description

本発明は、回転時に通過する気流の干渉が生じにくく、回転性能に優れ、低風速でも回転トルクの高い横軸風車、横軸ロータ及びロータブレードに関する。 The present invention relates to a horizontal axis wind turbine, a horizontal axis rotor, and a rotor blade, which are less likely to cause interference of airflow passing through during rotation, have excellent rotational performance, and have high rotational torque even at low wind speeds.

横軸風車の横軸ロータは、例えば特許文献1に記載されている。 The horizontal axis rotor of the horizontal axis wind turbine is described in, for example, Patent Document 1.

特開2018−40304号JP-A-2018-40304

特許文献1に記載の横軸ロータは、ブレードの正面形状が、縦長方向の中間部が最大弦長部とされ、最大弦長部から翼端にかけて回転後方向へ大きく屈曲させた横向傾斜部とされ、該横向傾斜部は側面視で前記最大弦長部から翼端へかけて正面方向へ前向傾斜させてあるものである。その結果、ブレードの正面に当る気流は、最大弦長部に集まり、ロータの回転後方向へ通過し回転効率を高めるものとされている。この気流の通過方向では、ブレードが多いと干渉が生じるので低風速域では効率を高くすることが困難である。
本発明は、ブレードの数を多くしても各ブレード間を通過する気流の干渉が生じにくく、低風速でも回転効率と回転トルクの高い横軸風車、横軸ロータ及びロータブレードを提供することを目的としている。
In the horizontal axis rotor described in Patent Document 1, the front shape of the blade is a laterally inclined portion in which the middle portion in the vertically long direction is the maximum chord length portion and is greatly bent in the rearward rotation direction from the maximum chord length portion to the wing tip. The laterally inclined portion is inclined forward in the front direction from the maximum chord length portion to the wing tip in a side view. As a result, the airflow that hits the front of the blade collects at the maximum chord length portion and passes in the rearward direction of the rotation of the rotor to improve the rotation efficiency. In the passing direction of this air flow, it is difficult to increase the efficiency in the low wind speed range because interference occurs when there are many blades.
The present invention provides a horizontal axis wind turbine, a horizontal axis rotor, and a rotor blade, in which interference of airflow passing between each blade is unlikely to occur even if the number of blades is increased, and the rotation efficiency and rotation torque are high even at a low wind speed. I am aiming.

本発明は前記課題を解決するために、次のような技術的手段を講じた。 The present invention has taken the following technical measures in order to solve the above problems.

(1) 支柱2上に回転可能に配設した回転支持体3で、風車筐体4を水平に支持する構成において、前杆3Cと後杆3Dを立設した前記回転支持体3における前記前杆3Cで前記風車筐体4の先端部4Aを水平に支持し、前記後杆3Dで前記風車筐体の後端部4Bを水平に支持し、前記風車筐体4の前記先端部4Aと前記後端部4Bの間に、横軸ロータ5をそのハブ5Aの前後及び幅の中心が、前記支柱2の支柱線Uと重なるように配設し、前記風車筐体4の前記先端部4Aと前記後端部4Bにはそれぞれ発電機4C、4Dを、その各回転軸4E、4Fが同一軸線上になるように配設するとともに、当該前後の回転軸4E、4Fの間に前記横軸ロータ5のハブ5A中心に固定した回転軸5B、5Cの前後端部を連結して前記横軸ロータ5を同軸回転可能とし、前記横軸ロータ5は、前記回転軸5B、5Cを前後に向けた状態で、前記ハブ5Aの周面に複数の揚力型ブレード6を定間隔に放射方向に向けて固定し、前記揚力型ブレード6の翼端を上向きとした正面視で、前記揚力型ブレード6の基部6Aは、その前縁6Bの厚さの中心が前記ハブ5Aの軸心を通るブレード中心線Sに沿い、前記前縁6Bの回転前面6Gは前記ブレード中心線Sと平行に形成され、かつ翼長の中間から翼端へかけて前記回転前面6Gは回転後方向へ大きく屈曲して、前記前縁6Bが厚く後縁端6Cへかけて細く尖る翼先端面6Dを正面横長に見えるようにし、前記基部6Aから翼端へかけての後縁6Cは、次第に回転後方向へ傾斜して前記翼先端面6Dに近づくに従って急激に屈曲して、前記翼先端面6Dの前縁端6Eの回転軌跡Vよりも前記翼先端面6Dにおける前記後縁端6cが外側になるように形成し、かつ前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは正面から見えるようにし、前記翼先端面6Dにおける前記後縁端6cの回転軌跡は、前記支柱2の支柱軸心線Uに重なる位置になるように形成されてなる横軸風車。 (1) In a configuration in which the wind turbine housing 4 is horizontally supported by the rotary support 3 rotatably arranged on the support column 2, the front of the rotary support 3 in which the front axle 3C and the rear axle 3D are erected. The rod 3C horizontally supports the tip 4A of the windmill housing 4, the rear rod 3D horizontally supports the rear end 4B of the windmill housing, and the tip 4A of the windmill housing 4 and the tip 4A are said. A horizontal axis rotor 5 is arranged between the rear end portions 4B so that the front and rear and the center of the width of the hub 5A overlap with the strut axis core line U of the strut 2, and the tip portion of the windmill housing 4 is provided. Generators 4C and 4D are arranged on the 4A and the rear end portion 4B so that their respective rotation shafts 4E and 4F are on the same axis, and the lateral sides are provided between the front and rear rotation shafts 4E and 4F. The front and rear ends of the rotating shafts 5B and 5C fixed to the center of the hub 5A of the shaft rotor 5 are connected to enable coaxial rotation of the horizontal shaft rotor 5, and the horizontal shaft rotor 5 moves the rotating shafts 5B and 5C back and forth. A plurality of lifting blades 6 are fixed to the peripheral surface of the hub 5A in the radial direction at regular intervals in a facing state, and the lifting blades are viewed from the front with the blade tips of the lifting blades 6 facing upward. base 6A of 6, before along the center of the thickness of the edge 6B the blade center line S passing through the axis of the hub 5A, rotating front 6G of the front edge 6B is formed parallel to the said blade in the core wire S In addition, the rotating front surface 6G is greatly bent in the rearward rotation direction from the middle of the wing length to the wing tip, and the wing tip surface 6D having a thick front edge 6B and a thin point toward the trailing edge end 6C is made horizontally long in the front. To make it visible, the trailing edge 6C from the base 6A to the wing tip gradually inclines in the rearward rotation direction and sharply bends as it approaches the wing tip surface 6D , and the trailing edge 6D of the wing tip surface 6D is made visible. The trailing edge end 6c of the blade tip surface 6D is formed to be outside the rotation locus V of 6E, and the rotation rear surface 6F from the base portion 6A to the blade tip surface 6D is visible from the front. A horizontal axis wind turbine formed so that the rotation locus of the trailing edge end 6c on the blade tip surface 6D overlaps the strut axis core line U of the strut 2.

(2) 前記揚力型ブレード6の前記翼先端面6Dにおける前記前縁端6Eの前記回転軌跡Vは、前記横軸ロータ5の前記ハブ5Aにおける前記前端面5Eの平面視における回転軌跡Xよりも正面前方に位置するように形成され、前記揚力型ブレード6の前記翼先端面6Dにおける前記後縁端6cの回転軌跡は前記ロータ5の前記ハブ5Aにおける前後の中心の回転軌跡Rと重なるように前記揚力型ブレード6が形成されている前記(1)に記載の横軸風車。 (2) The rotation locus V of the leading edge end 6E on the blade tip surface 6D of the lift type blade 6 is larger than the rotation locus X of the front end surface 5E on the hub 5A of the horizontal axis rotor 5 in a plan view. It is formed so as to be located in front of the front surface, so that the rotation locus of the trailing edge end 6c on the blade tip surface 6D of the lift type blade 6 overlaps with the rotation locus R of the front and rear centers of the rotor 5 in the hub 5A. The horizontal axis wind turbine according to (1) above, wherein the lift type blade 6 is formed.

(3)軸ロータ5の前記ハブ5Aの回転軸5B、5Cの前後端部を、それぞれ前後に突出させる前記ハブ5Aの周面に、前記揚力型ブレード6を複数枚定間隔で放射方向へ向けて固定し、各揚力型ブレード6の基部6Aの平面視の基端面は、前縁部が厚く後端にかけて次第に薄くした形状として、該基部6Aの前後を前記ハブ5Aの前後を向く軸線に沿うように設定し、前記揚力型ブレード6の翼端を上向きとした正面視で、該揚力型ブレード6の前記基部6Aの前縁6Bの厚さ中心を、前記ハブ5Aの軸心を通るブレード中心線Sに沿わせた状態で、前記前縁6Bの回転方向に対面する回転前面6Gを前記ブレード中心線Sと平行に形成し、かつ前記揚力型ブレード6の長さの中間から翼端へかけて回転後方向へ大きく屈曲させて前記揚力型ブレード6の翼先端面6Dを正面に向けてほぼ水平に形成し、前記翼先端面6Dは、前記前縁6B部分が厚く後縁端6cへかけて先尖りとし、前記翼先端面6Dにおける前縁端6Eの回転軌跡Vよりも前記翼先端面6Dにおける後縁端6cが外側になるようにし、前記揚力型ブレード6の基部6Aから前記翼先端面6Dへかけての、回転方向の後方である回転後面6F全部が正面から見えるようにしてなる横軸ロータ。 (3) A plurality of lift type blades 6 are radiated in the radial direction on the peripheral surface of the hub 5A on which the front and rear ends of the rotating shafts 5B and 5C of the hub 5A of the horizontal shaft rotor 5 are projected back and forth. The base end surface of the base portion 6A of each lift type blade 6 has a shape in which the front edge portion is thick and gradually becomes thinner toward the rear end, and the front and rear of the base portion 6A are aligned with the axis facing the front and rear of the hub 5A. A blade that is set to follow and passes through the center of thickness of the leading edge 6B of the base portion 6A of the lift-type blade 6 and the axis of the hub 5A in a front view with the wing tip of the lift-type blade 6 facing upward. Along the center line S, the rotating front surface 6G facing the leading edge 6B in the rotation direction is formed parallel to the blade center line S, and from the middle of the length of the lift type blade 6 to the tip of the blade. The wing tip surface 6D of the lift type blade 6 is formed substantially horizontally toward the front by bending the wing tip surface 6D significantly in the rearward direction of rotation. The wing is sharpened so that the trailing edge end 6c on the wing tip surface 6D is outside the rotation locus V of the leading edge end 6E on the wing tip surface 6D, and the wing is formed from the base 6A of the lift type blade 6. A horizontal axis rotor that allows the entire 6F of the rotating rear surface, which is rearward in the rotating direction, to the leading edge surface 6D to be seen from the front.

(4) 前記横軸ロータ5は、前後に長い風車筐体4の先端部と後端部の中間に、ハブ5Aにおける前後の回転軸5B、5Cを前後に向けて支持されるものとし、前記ハブの中心から前後に向けて突出する前後の回転軸5B、5C先端部を、前記風車筐体の先端部4Aと後端部4Bに内装した前後の発電機4C、4Dの前後を向く回転軸5B、5Cの先端に、接続具5D、5Dを介して同心状に連結するようにしてなる前記(3)に記載の横軸ロータ。 (4) The horizontal shaft rotor 5 is supported with the front and rear rotating shafts 5B and 5C of the hub 5A facing forward and backward between the front end portion and the rear end portion of the wind turbine housing 4 which is long in the front and rear. Front and rear rotating shafts 5B and 5C protruding from the center of the hub in the front-rear direction are installed in the front end 4A and the rear end 4B of the wind turbine housing. The horizontal axis rotor according to (3) above, which is concentrically connected to the tips of 5B and 5C via fittings 5D and 5D.

(5) 横軸ロータ5における揚力型ブレード6であって、ハブ5Aに固定して翼端を垂直に上向きとした状態の正面視において、前記揚力型ブレード6の基部6Aの厚さの中央を通るブレード中心線Sをハブ5Aの軸心を通るものとし、前記揚力型ブレード6の前縁6Bを正面に向け、その回転時の回転前面6Gが前記ブレード中心線Sに平行に回転前方に設定されて、後縁6Cが翼端へ向かって斜めに立ち上がり、翼長の中間から翼端へかけては、大きく回転後方向へ屈曲されて、翼先端面6Dが水平横長に正面に現れ、該翼先端面6Dにおける前縁6Bの前縁端6Eの回転軌跡Vよりも、該翼先端面6Dにおける後縁端6cが外側になるように形成され、前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは、全体が正面から見えるように形成し、前記揚力型ブレード6の平面視は、前記回転前面6Gが後部が広がる半円形で、これに続く後縁端6cにかけて先尖りとされ、前記翼先端面6Dにおける前記前縁6Bの回転軌跡Tは、前記ハブ5Aの前端面5Eの回転軌跡Xよりも正面前方に突出されているロータブレード。 (5) In the front view of the lift type blade 6 in the horizontal axis rotor 5 in a state where the lift type blade 6 is fixed to the hub 5A and the blade tip is vertically upward, the center of the thickness of the base portion 6A of the lift type blade 6 is set. The blade center line S to pass through is assumed to pass through the axis of the hub 5A, the leading edge 6B of the lift type blade 6 is directed to the front, and the rotating front surface 6G at the time of rotation is set to rotate forward in parallel with the blade center line S. Then, the trailing edge 6C rises diagonally toward the wing tip, and from the middle of the wing length to the wing tip, it is greatly bent in the rearward rotation direction, and the wing tip surface 6D appears horizontally and horizontally in front of the blade. It is formed so that the trailing edge end 6c on the blade tip surface 6D is outside the rotation locus V of the leading edge end 6E of the leading edge 6B on the blade tip surface 6D, and extends from the base portion 6A to the blade tip surface 6D. The rotating rear surface 6F is formed so that the entire surface can be seen from the front, and the plan view of the lift type blade 6 is such that the rotating front surface 6G is a semicircle with a wide rear portion and is pointed toward the trailing edge end 6c following the semicircular shape. The rotation locus T of the leading edge 6B on the blade tip surface 6D is a rotor blade that protrudes in front of the rotation locus X of the front end surface 5E of the hub 5A.

本発明によると、次のような効果が奏せられる。 According to the present invention, the following effects can be achieved.

前記(1)に記載の発明においては、横軸ロータ5がその回転軸5B、5Cを前後に突出させて前後の回転軸5B、5Cが風車筐体4の先端部4Aと後端部4Bの中間に両持ちで支持されているので、横軸ロータ5が振動しにくく安定して回転することが出来る。
横軸ロータ5は、複数の揚力型ブレード6をハブ5Aの周面に配設されているので受風面積が広く、低風速でも回転効率が高く、回転トルクも高い。
複数の揚力型ブレード6を配設すると、横軸ロータ5の回転に伴い各揚力型ブレード6間に生じる通過気流の干渉が生じて回転効率が低下し、或いは騒音が生じ易いが、本発明では揚力型ブレード6の形状が前例のない特種形に形成されているので、それが解消されている。
すなわち、風上を向く正面で、翼端を上向きとした揚力型ブレード6は、基部6Aが前後方向へ長く向いており、その厚みの中央に、ハブ5Aの軸心を通るブレード中心線Sが垂直に形成されている。揚力型ブレード6の正面に見える前縁6Bにおける回転方向に対面する回転前面6Gは、前記ブレード中心線Sに平行に形成され、翼端へ向かって長さの中間から大きく回転後方向に屈曲し、正面に翼先端面6Dが横長に見えるように形成されている。回転時に遠心部で高速に回転する揚力型ブレード6の翼端に近い部分では、風の抵抗がかかりにくく、かつコアンダ効果によって通過する気流は高速となり、その結果として負圧になって通過するので、ハブ5A周面における回転前後の揚力型ブレード6の配置間隔が狭くても通過気流の干渉障害が生じにくい特長がある。
前記揚力型ブレード6は前記基部6Aから前記翼先端面6Dにかけての、回転時に、回転する後方向にある回転後面6Fは、正面から見えるように形成されている。すなわち横軸ロータ5の正面に当る気流は、前記揚力型ブレード6の回転後面6Fにあたって、その斜めの表面を滑って回転後方向へ斜めに通過するとともに、揚力型ブレード6を回転方向に押し出すことにより横軸ロータ5を回転させる。この場合、揚力型ブレード6の前記基部6Aから遠心方向へ移動する気流は、正面方向へ突出している前記翼先端面6Dの後縁端6c部分で回転軸5B方向の背面方向へ斜めに通過して、反作用で揚力型ブレード6の回転遠心部において揚力型ブレード6を前縁6B方向に強く押し出して回転させる。
In the invention described in (1) above, the horizontal shaft rotor 5 projects its rotating shafts 5B and 5C back and forth, and the front and rear rotating shafts 5B and 5C are the front end 4A and the rear end 4B of the wind turbine housing 4. Since it is supported by both sides in the middle, the horizontal axis rotor 5 is less likely to vibrate and can rotate stably.
Since the horizontal axis rotor 5 has a plurality of lift type blades 6 arranged on the peripheral surface of the hub 5A, the wind receiving area is wide, the rotation efficiency is high even at a low wind speed, and the rotation torque is also high.
When a plurality of lift-type blades 6 are arranged, interference of the passing airflow generated between the lift-type blades 6 due to the rotation of the horizontal axis rotor 5 occurs, the rotation efficiency decreases, or noise is likely to occur. Since the shape of the lift type blade 6 is formed into an unprecedented special shape, this is solved.
That is, in the lift type blade 6 having the blade tip facing upward in the front facing upwind, the base portion 6A faces long in the front-rear direction, and the blade center line S passing through the axis of the hub 5A is located at the center of the thickness. It is formed vertically. The rotating front surface 6G facing the rotation direction at the leading edge 6B visible on the front surface of the lift type blade 6 is formed parallel to the blade center line S, and bends from the middle of the length toward the blade tip in the rearward rotation direction. , The wing tip surface 6D is formed so as to be horizontally long on the front surface. In the part near the tip of the lift type blade 6 that rotates at high speed in the centrifugal part during rotation, wind resistance is less likely to be applied, and the airflow that passes through due to the Coanda effect becomes high speed, and as a result, it passes under negative pressure. Even if the arrangement interval of the lift type blades 6 before and after rotation on the peripheral surface of the hub 5A is narrow, there is a feature that interference interference of the passing airflow is unlikely to occur.
The lift type blade 6 is formed so that the rotating rear surface 6F, which is in the rear direction of rotation during rotation from the base portion 6A to the blade tip surface 6D, can be seen from the front. That is, the airflow that hits the front surface of the horizontal axis rotor 5 hits the rotation rear surface 6F of the lift type blade 6 and slides on the diagonal surface thereof to pass diagonally in the rearward direction of rotation and pushes out the lift type blade 6 in the rotation direction. Rotates the horizontal axis rotor 5 by In this case, the airflow moving in the centrifugal direction from the base portion 6A of the lift type blade 6 passes obliquely in the rearward direction in the rotation axis 5B direction at the trailing edge end 6c portion of the blade tip surface 6D protruding in the front direction. Then, due to the reaction, the lift-type blade 6 is strongly pushed out in the leading edge 6B direction and rotated in the rotary centrifuge portion of the lift-type blade 6.

前記(2)に記載の発明においては、前記揚力型ブレード6の前記翼先端面6Dにおける前記前縁端6Eの前記回転軌跡Vは、前記横軸ロータ5の前記ハブ5Aにおける前記前端面5Eの平面視における回転軌跡Xよりも正面前方に位置するように形成され、前記翼先端面6Dにおける前記後縁端6cの回転軌跡Rは前記横軸ロータ5の前記ハブ5Aにおける前後の中心の回転軌跡Rと重なるように前記揚力型ブレード6が形成されているので、正面視で正面に見える前記翼先端面6Dは、ハブ5Aの前後の中心の回転軌跡Rより前方に張出していると同時に、平面視で前記翼先端面6Dは、その前縁端6Eから後縁端6cへかけて背後方向へ傾斜していて、前記揚力型ブレード6の翼端部における回転後面6Fに当る気流を、後に続く揚力型ブレード6の回転前面6Gに沿つて高速で通過する気流に沿うように通過させて回転効率を高める。 In the invention described in (2), the rotation locus V of the leading edge end 6E on the blade tip surface 6D of the lift type blade 6 is the front end surface 5E of the hub 5A of the horizontal axis rotor 5. It is formed so as to be located in front of the rotation locus X in a plan view, and the rotation locus R of the trailing edge end 6c on the blade tip surface 6D is a rotation locus of the center of the horizontal axis rotor 5 in the front and rear of the hub 5A. Since the lift type blade 6 is formed so as to overlap with R, the wing tip surface 6D, which can be seen from the front when viewed from the front, projects forward from the rotation locus R at the center of the front and rear of the hub 5A, and at the same time, is flat. Visually, the wing tip surface 6D is inclined in the rear direction from the leading edge end 6E to the trailing edge end 6c, and is followed by an air flow that hits the rotating rear surface 6F at the wing tip portion of the lift type blade 6. The lift type blade 6 is passed along the rotating front surface 6G along with the airflow passing at high speed to improve the rotation efficiency.

前記(3)に記載の発明においては、横軸ロータ5の前記ハブ5Aの回転軸5B、5Cの前後端部を、それぞれ前後に突出させる前記ハブ5Aの周面に、揚力型ブレード6を複数枚定間隔で放射方向へ向けて固定し、各揚力型ブレード6の基部6Aの平面視の基端面は、前縁部が厚く後縁端にかけて次第に薄くした形状として、該基部6Aの前後をハブ5Aの前後を向く軸線Wに沿うように設定してあるので、前記基部6Aは前後に長く、正面からの気流は抵抗が少なく通過することができ、回転効率が高まる。
前記揚力型ブレード6の翼端を上向きとした正面視で、該揚力型ブレードの前記基部6Aの前縁6Bの厚さ中心を、前記ハブ5Aの軸心を通るブレード中心線Sに沿わせた状態で、前記前縁6Bの回転方向に対面する回転前面6Gをブレード中心線Sと平行に形成し、かつ揚力型ブレード6の長さの中間から翼端へかけて回転後方向へ大きく屈曲させて、揚力型ブレード6の翼先端面6Dを正面に向けてほぼ水平横長に形成してあるので、揚力型ブレード6の正面視は、回転前面6Gは垂直で、前記後縁6Cは基部6Aから翼端方へ回転後方向へ傾斜しており、回転後面6Fは翼端方向へ広がって受風面積が遠心部で広いので、回転トルクが高くなる。
前記翼先端面6Dは、前縁6B部分が厚く後縁端6cへかけて先尖りとし、前記翼先端面6Dにおける前縁端6Eの回転軌跡Vよりも翼先端面6Dにおける後縁端6cが外側になるようにしてあるので、前記回転後面6Fに当る気流は翼先端面6Dの後縁端6cで外側へ抜けて、反動で翼先端面6Dの前縁端6E方向へ押し出す。揚力型ブレード6の基部6Aから翼先端面6Dへかけての回転方向の後方である回転後面6F全部が正面から見えるようにしてあるので、正面から揚力型ブレード6に当る気流は、ほとんどが回転後面6Fに当り、斜め背後に通過して、反作用として揚力型ブレード6を回転させるので、回転効率が高いものとなる。
In the invention described in (3) above, a plurality of lift type blades 6 are provided on the peripheral surface of the hub 5A in which the front and rear ends of the rotating shafts 5B and 5C of the hub 5A of the horizontal shaft rotor 5 are projected forward and backward, respectively. The base end surface of the base portion 6A of each lift type blade 6 is fixed in the radial direction at regular intervals, and the front edge portion is thick and the shape is gradually thinned toward the trailing edge end, and the front and rear of the base portion 6A are hubbed. Since it is set along the axis W facing the front and back of 5A, the base 6A is long in the front and back, and the airflow from the front can pass through with little resistance, and the rotation efficiency is improved.
The thickness center of the front edge 6B of the base portion 6A of the lift-type blade was aligned with the blade center line S passing through the axis of the hub 5A in a front view with the blade tip of the lift-type blade 6 facing upward. In this state, the rotation front surface 6G facing the rotation direction of the front edge 6B is formed parallel to the blade center line S, and is greatly bent in the rearward rotation direction from the middle of the length of the lift type blade 6 to the blade tip. Since the blade tip surface 6D of the lift-type blade 6 is formed to be substantially horizontally and horizontally long toward the front, the front view of the lift-type blade 6 is such that the rotating front surface 6G is vertical and the trailing edge 6C is from the base portion 6A. It is inclined toward the tip of the blade in the rearward direction of rotation, and the rear surface 6F of the rotation expands in the direction of the tip of the blade and the wind receiving area is wide in the distal portion, so that the rotational torque becomes high.
The wing tip surface 6D has a thick leading edge 6B portion and is pointed toward the trailing edge end 6c, and the trailing edge end 6c on the wing tip surface 6D is larger than the rotation locus V of the leading edge end 6E on the wing tip surface 6D. Since it is designed to be on the outside, the airflow that hits the rotating rear surface 6F escapes to the outside at the trailing edge end 6c of the blade tip surface 6D, and is pushed out in the direction of the leading edge end 6E of the blade tip surface 6D by reaction. Since the entire rear surface of the rotation 6F, which is behind the rotation direction from the base 6A of the lift blade 6 to the tip surface 6D of the blade, is visible from the front, most of the airflow that hits the lift blade 6 from the front rotates. Since it hits the rear surface 6F, passes diagonally behind, and rotates the lift type blade 6 as a reaction, the rotation efficiency is high.

前記(4)に記載の発明における横軸ロータ6は、前後に長い風車筐体4の先端部4Aと後端部4Bの中間に、ハブ5Aにおける回転軸5B、5Cを前後に向けて、前記ハブ5Aが両持ちで支持されるので、振動しにくく回転安定性が高まる。前記ハブ5Aの軸心部から前後に向けて突出する前後の回転軸5B、5C先端部を、前記風車筐体4の先端部4Aと後端部4Bにそれぞれ内装した、前後の同型の発電機4C、4Dの回転軸4E、4Fの先端に、接続具5D、5Dを介して同心状に連結するようにしたので、ブレが生じにくく、かつハブ5Aの前後の回転軸5B、5C先にかかる前記発電機4C、4Dの負荷が均等で、円滑な回転により回転効率に伴う発電効率が高まる。 In the horizontal shaft rotor 6 according to the invention described in (4) above, the rotating shafts 5B and 5C of the hub 5A are directed forward and backward between the front end portion 4A and the rear end portion 4B of the wind turbine housing 4 which is long in the front-rear direction. Since the hub 5A is supported by both sides, it is less likely to vibrate and rotational stability is improved. Front and rear rotating shafts 5B and 5C that project from the axis of the hub 5A in the front-rear direction are installed in the front end portion 4A and the rear end portion 4B of the wind turbine housing 4, respectively, and are of the same type in the front and rear. Since it is concentrically connected to the tips of the rotating shafts 4E and 4F of the 4C and 4D via the fittings 5D and 5D, blurring is unlikely to occur and the rotating shafts 5B and 5C before and after the hub 5A are covered. The load of the generators 4C and 4D is even, and the smooth rotation enhances the power generation efficiency associated with the rotation efficiency.

前記(5)に記載の発明における横軸ロータ5における揚力型ブレード6は、翼端を垂直に上向きとした状態の正面視において、揚力型ブレード6の基部6Aの厚さの中央を通るブレード中心線Sをハブ5Aの軸心を通るものとし、前記揚力型ブレード6の前縁6Bを正面に向け、その回転時の回転前面6Gが前記ブレード中心線Sに平行に回転前方に設定されて、後縁6Cが翼端の回転後方向へ向かって斜めに立ち上がり、翼長の中間から翼端へかけては、大きく回転後方向へ屈曲されており、翼先端面6Dが水平横長に正面に現れ、該翼先端面6Dにおける前縁6Bの前縁端6Eの回転軌跡Vよりも、該翼先端面6Dにおける後縁端6cが外側になるように形成されているので、側面視では翼先端面6Dの前縁6Bが正面前方へ突出して、正面に受ける気流を包みこむようにして捕らえることができ、気流は回転後方向の背面外側を向く後縁端6cから外方へ通過する。
前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは、全体が正面から見えるように形成されているので、正面から当る気流はこの回転後面6Fで受けることになり、基部6Aから翼端へ移動し、横長に前方へ突出している前記翼先端面6Dに当って後縁6Cから斜め後方へ通過して反作用として揚力型ブレード6を回転させる。
前記揚力型ブレード6の平面視は、前記回転前面6Gが回転後方へ広がる半円形で、これに続く後縁端6cにかけて先尖りとされ、前記翼先端面6Dにおける前記前縁6Bの回転軌跡Tは、前記ハブ5Aの前端面5Eの回転軌跡Xよりも正面方向に突出されているので、前記基部6Aの中心より正面方向にある前記回転後面6Fが、正面に当る気流を抱えこむようにして回転後方向へ気流を通過させて回転効率を高める。
The lift-type blade 6 in the horizontal axis rotor 5 according to the invention described in (5) above is a blade center passing through the center of the thickness of the base 6A of the lift-type blade 6 in a front view with the blade tip facing vertically upward. The line S is assumed to pass through the axis of the hub 5A, the leading edge 6B of the lift type blade 6 is directed to the front, and the rotating front surface 6G at the time of rotation is set to be rotated forward in parallel with the blade center line S. The trailing edge 6C rises diagonally toward the rearward rotation of the blade tip, and is greatly bent in the rearward rotation direction from the middle of the blade length to the blade tip, and the blade tip surface 6D appears horizontally and horizontally in front. Since the trailing edge end 6c on the wing tip surface 6D is formed so as to be outside the rotation locus V of the leading edge end 6E of the leading edge 6B on the wing tip surface 6D, the wing tip surface is viewed from the side. The leading edge 6B of the 6D projects forward in the front and can be captured by wrapping the airflow received in the front, and the airflow passes outward from the trailing edge end 6c facing the rear outer side in the rearward rotation direction.
Since the rotating rear surface 6F from the base portion 6A to the wing tip surface 6D is formed so that the entire surface can be seen from the front, the airflow hit from the front is received by the rotating rear surface 6F, and the airflow hits from the front is received from the base portion 6A to the wing tip. It moves, hits the wing tip surface 6D projecting laterally forward, passes diagonally backward from the trailing edge 6C, and rotates the lift type blade 6 as a reaction.
The plan view of the lifting blade 6 is a semicircular shape in which the rotating front surface 6G extends rearward in rotation, and is pointed toward the trailing edge end 6c following the rotation front surface 6G, and the rotation locus T of the front edge 6B on the blade tip surface 6D. Is projected in the front direction from the rotation locus X of the front end surface 5E of the hub 5A. Increases rotational efficiency by passing airflow in the direction.

本発明の横軸風車の実施例1の正面図である。It is a front view of Example 1 of the horizontal axis wind turbine of this invention. 図1の側面図で左方が正面である。In the side view of FIG. 1, the left side is the front. 図1の平面図で左方が正面である。In the plan view of FIG. 1, the left side is the front. 図3における風車筐体の一部断面図である。It is a partial cross-sectional view of the wind turbine housing in FIG. 図1における揚力型ブレードの拡大正面図である。It is an enlarged front view of the lift type blade in FIG. 図5における揚力型ブレードの平面図である。It is a top view of the lift type blade in FIG.

本発明の一実施形態を、図面を参照して説明する。図において、横軸風車1は、支柱2の上部に回転支持体3を回転可能に支持している。回転支持体3は、軸部3Aの上に側面視で前後に長い基部3Bと、前後端部で上向きに立上がる前杆3Cと後杆3Dとで略U字形に形成してある。前記前杆3Cと後杆3Dは、横断面形を、前部は厚く後端へ向かって薄くした略魚形状に形成されている。これによって、正面から前記前杆3Cと後杆3Dに当る気流は抵抗が小さく通過する。 An embodiment of the present invention will be described with reference to the drawings. In the figure, the horizontal axis wind turbine 1 rotatably supports the rotary support 3 on the upper part of the support column 2. The rotary support 3 is formed in a substantially U shape on the shaft portion 3A by a base portion 3B which is long in the front-rear direction in a side view, and a front rod 3C and a rear rod 3D which rise upward at the front-rear end portion. The front rod 3C and the rear rod 3D are formed in a substantially fish shape having a cross-sectional shape, the front portion being thick and the rear rod being thinned toward the rear end. As a result, the airflow that hits the front rod 3C and the rear rod 3D from the front passes through with a small resistance.

前記回転支持体3の上部には、風車筐体4の空洞の前端部4Aと後端部4Bが所定の間隔を置いてそれぞれ固定支持されている。前記風車筐体4は、前端部4Aは前記回転支持体3の前杆3C上に固定支持され、後端部4Bは前記回転支持体3の前記後杆3D上に固定支持されており、前記前端部4Aと前記後端部4Bの内部には、それぞれ図4に示すように、同型式の発電機4C、4Dが回転軸4E、4Fの先端を前後で対向させ、かつ同心状に内設されている。 The front end portion 4A and the rear end portion 4B of the cavity of the wind turbine housing 4 are fixedly supported on the upper portion of the rotary support 3 at predetermined intervals. In the wind turbine housing 4, the front end portion 4A is fixedly supported on the front rod 3C of the rotary support 3, and the rear end portion 4B is fixedly supported on the rear rod 3D of the rotary support 3. Inside the front end portion 4A and the rear end portion 4B, as shown in FIG. 4, generators 4C and 4D of the same type are installed concentrically with the tips of the rotating shafts 4E and 4F facing each other in the front-rear direction. Has been done.

前記風車筐体4の中央部は横軸ロータ5のハブ5Aとされ、該ハブ5Aの前後の中心の回転軌跡Rは、図2に示すように前記支柱2の中心軸線U上に設定されている。前記ハブ5Aの内部には、図4に断面図を示すように、回転軸5B、5Cが前後に長く、かつその前後端部を前記風車筐体4の前後に配設した発電機4C、4Dの前後を向く回転軸4E、4Fの対向する先端に、同心状に接続具5D、5Dを介して連結されている。 The central portion of the wind turbine housing 4 is a hub 5A of the horizontal axis rotor 5, and the rotation locus R of the center of the front and rear of the hub 5A is set on the central axis U of the support column 2 as shown in FIG. There is. Inside the hub 5A, as shown in the cross-sectional view in FIG. 4, the rotating shafts 5B and 5C are long in the front-rear direction, and the front-rear end portions thereof are arranged in the front-rear direction of the wind turbine housing 4 generators 4C and 4D. It is concentrically connected to the opposite ends of the rotating shafts 4E and 4F facing the front and back of the above via the connecting tools 5D and 5D.

図4において、前記前部の発電機4Cの後向きに突出された回転軸4Eと、後部の発電機4Dの前向きに突出する回転軸4Fの対向間には、前記横軸ロータ5のハブ5Aの前向き回転軸5Bと後向きの回転軸5Cのそれぞれの先端部が、接続具5D、5Dを介して同心に回転可能に連結されている。 In FIG. 4, the hub 5A of the horizontal axis rotor 5 is located between the rotating shaft 4E projecting backward from the front generator 4C and the rotating shaft 4F projecting forward from the rear generator 4D. The tips of the forward rotation shaft 5B and the rearward rotation shaft 5C are concentrically and rotatably connected via the connectors 5D and 5D.

この前後の発電機4C、4Dは同じ型式のものであり、回転軸4E、4Fの突出する方向だけを前後に変更されている。従って前後の発電機4C、4Dは前記横軸ロータ5の回転によって同じ方向に回転されて、それぞれ均等な発電をする。 The generators 4C and 4D before and after this are of the same model, and only the protruding directions of the rotating shafts 4E and 4F are changed back and forth. Therefore, the front and rear generators 4C and 4D are rotated in the same direction by the rotation of the horizontal axis rotor 5, and each generates electricity uniformly.

前記前後の発電機4C、4Dにより発電された電気は、前記回転支持体3の前記前杆3Cと後杆3D内部を通る図示しないコードが、下の支柱2内に配設された図示しない蓄電池に接続されていて、該蓄電池に蓄電されたり、他所に配電されるようになっている。 The electricity generated by the front and rear generators 4C and 4D is a storage battery (not shown) in which a cord (not shown) passing through the front rod 3C and the rear rod 3D of the rotary support 3 is arranged in the lower support column 2. It is connected to the storage battery so that it can be stored in the storage battery or distributed to other places.

前記横軸ロータ5は、そのハブ5Aの前後に反対側へ突出する各回転軸5B、5Cが、軸受により支持されていないので軸受による摩擦抵抗がかからず、直接に前後の発電機4C、4Dの回転軸4E、4Fに同心状に直結されているため、ブレが生じにくく、風力を発電機4C、4Dに直接伝えて発電する効率が高まる。 In the horizontal shaft rotor 5, since the rotating shafts 5B and 5C protruding to the front and rear opposite sides of the hub 5A are not supported by bearings, frictional resistance is not applied by the bearings, and the front and rear generators 4C directly. Since it is directly connected to the 4D rotating shafts 4E and 4F concentrically, blurring is unlikely to occur, and the efficiency of transmitting wind power directly to the generators 4C and 4D is improved.

また同じ発電量を得るにも、大型の発電機では低風速の時に始動しにくく時間的ロスが生じるが、同じ発電量を2台の小型発電機を使用することにより、低風速でも始動が早くなり、風は風速が一定ではなく停止もするので、その繰り返しの中で一定時間内での発電量は、小型発電機の方が始動の早さによりトータル的に発電量が多くなり発電効率が高まる。 Also, in order to obtain the same amount of power generation, it is difficult to start with a large generator at low wind speed and time loss occurs, but by using two small generators with the same amount of power generation, starting is quick even at low wind speed. As a result, the wind speed is not constant and the wind stops, so the amount of power generated within a certain period of time is greater for the small generator due to the quick start, and the power generation efficiency is higher. Increase.

前記風車筐体4の後端部4Bの上面には、方向舵7が前後に長く垂直に立設されており、後端部4Bの下面には、前記回転支持体3の前記後杆3Dに接するように、下部方向舵8が前後に長く垂直に配設されている。
これにより、風向きの変化にも瞬時に前記回転支持体3が回転して、前記横軸ロータ5の正面を常に風上に向けて風力を揚力型ブレード6の正面に受けて、効率の高い発電をさせることが出来る。
A rudder 7 is vertically erected on the upper surface of the rear end portion 4B of the wind turbine housing 4, and is in contact with the rear rod 3D of the rotary support 3 on the lower surface of the rear end portion 4B. As described above, the lower rudder 8 is arranged vertically in the front-rear direction.
As a result, the rotary support 3 instantly rotates even when the wind direction changes, and the front surface of the horizontal axis rotor 5 is always directed upwind to receive the wind power on the front surface of the lift type blade 6 for highly efficient power generation. Can be made to.

前記横軸ロータ5は、ハブ5Aの周面に正面視で均等間隔に8枚の揚力型ブレード6が配設されている。ただしこの枚数に限定されるものではなく、この揚力型ブレード6は、従来のブレードと異なって、形状が特種なために、多数配設しても回転前後の各揚力型ブレードの間を通過する気流に生じる干渉が生じにくく、その結果として低風速でも回転トルクの高い回転をすることができる。 In the horizontal axis rotor 5, eight lift blades 6 are arranged at equal intervals in front view on the peripheral surface of the hub 5A. However, the number of the lift blades 6 is not limited to this number, and unlike the conventional blades, the lift type blades 6 have a special shape, so even if a large number of the blades are arranged, they pass between the lift type blades before and after rotation. Interference generated in the airflow is unlikely to occur, and as a result, it is possible to rotate with a high rotational torque even at a low wind speed.

すなわち、図6に平面を示すように、前記揚力型ブレード6の前記翼先端面6Dは、後縁端6cが前記ハブ5Aの前後の中心の回転軌跡R上にあり、前記翼先端面6Dの前縁6Bは、前記ハブ5Aの前端面5Eよりも正面前方へ斜めに突出しているため、前記回転後面6Fに沿って通過する気流は、前記揚力型ブレード6の回転後方向でなく、横軸ロータ6の背面方向に、風車筐体4の後端部4Bの周面に沿うように抜けるため、各揚力型ブレード6の間を通過する気流の干渉が生じにくい。 That is, as shown in a plane in FIG. 6, the wing tip surface 6D of the lift type blade 6 has a trailing edge end 6c on the rotation locus R at the center of the front and rear of the hub 5A, and the wing tip surface 6D. Since the leading edge 6B projects diagonally forward from the front end surface 5E of the hub 5A, the airflow passing along the rotating rear surface 6F is not in the rearward direction of the lift type blade 6 but on the horizontal axis. Since it comes out along the peripheral surface of the rear end portion 4B of the wind turbine housing 4 in the rearward direction of the rotor 6, interference of the airflow passing between the lift type blades 6 is unlikely to occur.

前記揚力型ブレード6の正面は、図4に示すように、ハブ4の中心を通るブレード中心線Sに対して、前縁6Bは正面を向いて平行であるが、翼端へかけて大きく回転後方向へ屈曲していて、後縁6Cは基部6Aから翼端方向へかけて次第に回転後方向へ傾斜して、翼先端面6Dは、前部の幅が広く後部へかけて弧を描いて鳥の嘴のように細く横長に正面を向いて形成されている。 As shown in FIG. 4, the front surface of the lift type blade 6 is parallel to the blade center line S passing through the center of the hub 4, and the leading edge 6B faces the front surface, but rotates greatly toward the blade tip. It is bent in the rear direction, the trailing edge 6C gradually rotates from the base 6A toward the wing tip and inclines in the rear direction, and the wing tip surface 6D has a wide front part and draws an arc toward the rear part. It is formed like a bird's beak, thin and horizontally long, facing the front.

図5において、前記翼先端面6Dの前記前縁6Bの厚さの中心の前縁端6Eの回転軌跡Vよりも、前記翼先端面6Dの後縁端6cは外側にあるので、揚力型ブレード6の、前記回転後面6Fに沿って基部6Aから翼先端面6D方向へ通過する気流は、後縁端6cで背面の外向きに通過する。すなわち図2における風車筐体4の周面に平行に沿って後端部4Bの背後方向へ通過する。 In FIG. 5, since the trailing edge end 6c of the blade tip surface 6D is outside the rotation locus V of the leading edge end 6E at the center of the thickness of the leading edge 6B of the blade tip surface 6D, the lift type blade The airflow passing from the base portion 6A toward the blade tip surface 6D along the rotating rear surface 6F of No. 6 passes outward on the back surface at the trailing edge end 6c. That is, it passes in the direction behind the rear end portion 4B along the peripheral surface of the wind turbine housing 4 in FIG.

また図2に示すように、前記翼先端面6Dの前記前縁6Bの回転軌跡Tは、前記ハブ5Aの先端面5Eの回転軌跡Xよりも正面前方に位置しているが、前記翼先端面6Dの後縁端6cの回転軌跡Rは、前記ハブ5Aの前後の中心の回転軌跡Rと重なる位置となっている。 Further, as shown in FIG. 2, the rotation locus T of the leading edge 6B of the wing tip surface 6D is located in front of the rotation locus X of the tip surface 5E of the hub 5A, but the wing tip surface. The rotation locus R of the trailing edge end 6c of 6D is positioned so as to overlap the rotation locus R of the center in the front and rear of the hub 5A.

このことは、前記翼先端面6Dが平面視における前記基部6Aの中心よりも正面方向へ出ている事を示し、前記翼先端面6Dに近い前記回転後面6Fに当る気流は、枠で囲い込まれるようになって前記回転後面6Fの後縁6Cから背面方向へ通過して回転効率を高める。 This indicates that the wing tip surface 6D protrudes in the front direction from the center of the base portion 6A in a plan view, and the airflow that hits the rotating rear surface 6F near the wing tip surface 6D is surrounded by a frame. The rotation efficiency is increased by passing from the trailing edge 6C of the rotation rear surface 6F toward the back surface.

前記揚力型ブレード6の基部6Aの回転方向に対しての前記回転後面6F(図1及び図5では正面に現われている)は、図3に示すように、前記風車筐体4の軸心線Wに対して平行にハブ4に固定されているが、図3の前記軸心線Wの位置に符号31で示す横断面は、図5における31ー31線断面を示しており、風車筐体4の前記軸心線Wに対する揚力型ブレード6の回転後面6Fは、その後縁6Cが回転後方向へ38度〜40度の範囲で傾斜している。 As shown in FIG. 3, the rotating rear surface 6F (appearing on the front surface in FIGS. 1 and 5) with respect to the rotation direction of the base portion 6A of the lift type blade 6 is the axial core line of the wind turbine housing 4. Although it is fixed to the hub 4 in parallel with W, the cross section indicated by reference numeral 31 at the position of the axis W in FIG. 3 shows the cross section of lines 31-31 in FIG. The trailing edge 6C of the lift-type blade 6 with respect to the axial core line W of No. 4 is inclined in the range of 38 ° to 40 ° in the rearward rotation direction.

図3における符号32で示す横断面は、図5における32-32線断面を示しており、その回転後面6Fは、風車筐体4の軸心線Wに対して28度〜30度の範囲で後縁6Cを内側に向けて傾斜させている。 The cross section indicated by reference numeral 32 in FIG. 3 shows the cross section taken along the line 32-32 in FIG. 5, and the rotating rear surface 6F thereof is in the range of 28 degrees to 30 degrees with respect to the axis W of the wind turbine housing 4. The trailing edge 6C is tilted inward.

すなわち前記揚力型ブレード6は、基部6Aの回転後面6Fは風車筐体4の軸心線Wに対して平行であるが、翼端方向へ行くに従って、次第に後縁6Cを前縁6Bよりも回転後方向へ傾斜させて、翼先端面6Dにおいては、その後縁端6cをハブ5Aの前後の中心の回転軌跡Rまで正面方向に傾斜させている。 That is, in the lift type blade 6, the rotating rear surface 6F of the base portion 6A is parallel to the axis W of the wind turbine housing 4, but the trailing edge 6C gradually rotates more than the leading edge 6B toward the blade tip direction. In the wing tip surface 6D, the trailing edge 6c is tilted in the rear direction to the rotation locus R at the center of the front and rear of the hub 5A in the front direction.

その結果、正面から前記揚力型ブレード6に当る気流は、基部6Aにおいては風車筐体4の軸心線Wに沿う後方向へ流れ、翼端の方へ行くに従って前記後縁6Cが風車筐体4の軸心線W方へ寄り、かつ前記支柱2の軸心線Uに近づいている。 As a result, the airflow that hits the lift-type blade 6 from the front flows in the rear direction along the axis W of the wind turbine housing 4 at the base 6A, and the trailing edge 6C becomes the wind turbine housing as it goes toward the blade tip. It is closer to the axis W of the column 4 and closer to the axis U of the support column 2.

また前記揚力型ブレード6の回転前方に対面する回転前面6Gは、図3の揚力型ブレード6の断面でよくわかるように、前縁6Bから弦の中央部へかけて大きく膨らんでいるため、この回転前面6Gに沿う気流は、コアンダ効果によって高速で風車筐体4の軸心線Wの背面方向へ抜けるため、揚力型ブレード6は回転前面6Gに生じる気圧が回転後面6Fに生じる気圧より低く、この気圧の差によって、回転前面方向へ引寄せられて高速回転する。 Further, as can be clearly seen from the cross section of the lift-type blade 6 in FIG. 3, the rotation front surface 6G facing the front of the rotation of the lift-type blade 6 bulges greatly from the leading edge 6B to the center of the string. Since the airflow along the rotating front surface 6G escapes at high speed toward the back surface of the axis W of the wind turbine housing 4 due to the Coanda effect, the air pressure generated on the rotating front surface 6G is lower than the air pressure generated on the rotating rear surface 6F. Due to this difference in atmospheric pressure, it is attracted toward the front surface of rotation and rotates at high speed.

また揚力型ブレード6の回転前面6Gに沿う気流が高速で通過するため、揚力型ブレード6の枚数が多くても、回転時の前後の揚力型ブレード6の回転により生じる気流の干渉が生じにくく、低風速の時においても回転効率が高く、ロータ5の回転トルクが強い特徴がある。 Further, since the airflow along the rotation front surface 6G of the lift type blade 6 passes at high speed, even if the number of lift type blades 6 is large, the airflow interference caused by the rotation of the lift type blades 6 before and after the rotation is unlikely to occur. It is characterized by high rotational efficiency even at low wind speeds and strong rotational torque of the rotor 5.

図6に平面を示すように、揚力型ブレード6は翼端部を上向きにした状態で、基部6Aはハブ5Aの中心にあるが、翼端の後縁端6cは前記基部6Aの中心から回転後方へ大きく離れていることは、従来の前向き傾斜部を形成した縦長ブレードとは大きく異なっている。 As shown in the plane shown in FIG. 6, the lift type blade 6 has the base portion 6A at the center of the hub 5A with the blade tip facing upward, but the trailing edge end 6c of the blade tip rotates from the center of the base portion 6A. The large distance to the rear is very different from the conventional vertically elongated blade forming the forward inclined portion.

従って、従来の前向傾斜部を有する縦長ブレードの前向傾斜部と異なって、翼端における翼先端面6Dが、正面視で水平横長に形成され、平面視で、翼先端面6Dの前縁6Bが基部6Aより回転後方で、かつハブ5Aの正面5Aよりも正面前方に突出しており、平面視で翼先端面6Dの後縁端6cが基部6Aの中心の回転軌跡R上にあり、回転後面6Fの後縁6Cが背面方向へ傾斜している分、後縁6Cの長さの中間が、基部6Aの背面よりも大きく背面方向へ突出して、翼端へかけて、翼先端面6Dの後縁端6cが正面方向へ出ている。 Therefore, unlike the forward inclined portion of the vertically elongated blade having the conventional forward inclined portion, the blade tip surface 6D at the blade tip is formed horizontally and horizontally long in the front view, and the leading edge of the blade tip surface 6D in the plan view. 6B is rotationally rearward of the base 6A and protrudes in front of the front 5A of the hub 5A, and the trailing edge end 6c of the wing tip surface 6D is on the rotation locus R of the center of the base 6A in a plan view and rotates. Since the trailing edge 6C of the rear surface 6F is inclined toward the rear surface, the middle of the length of the trailing edge 6C protrudes toward the rear surface more than the back surface of the base portion 6A, and extends toward the wing tip to reach the wing tip surface 6D. The trailing edge 6c protrudes in the front direction.

このように、揚力型ブレード6は長さの中間までは、全体が前縁6Bから後縁6Cへかけて背面方向へ傾斜しており、揚力型ブレード6の長さの中間から屈曲して翼端へかけては次第に正面の回転後部寄りに伸びて、翼先端面6Dがその前縁6Bをハブ5Aの前面5Eよりも正面前方へ突出させて、揚力型ブレード6の長さの半分以上、翼端へかけての部分が、正面に当る気流を包みこむようにして、回転後方の翼端の背面方向へ気流を纏めて通過させるので、低風速でも回転効率と発電効率を高くする事が出来る。 As described above, the lift type blade 6 is inclined in the rear direction from the leading edge 6B to the trailing edge 6C up to the middle of the length, and is bent from the middle of the length of the lift type blade 6 to be a wing. Gradually extending toward the rear end of the front rotation, the wing tip surface 6D projects its leading edge 6B from the front 5E of the hub 5A to the front front, more than half the length of the lift blade 6. Since the portion extending to the wing tip wraps the airflow that hits the front and allows the airflow to pass collectively toward the back surface of the wing tip behind the rotation, the rotation efficiency and the power generation efficiency can be improved even at a low wind speed.

この発明にかかる横軸風車、横軸ロータ及びロータブレードは、低風速でも回転効率が高く、回転トルクも高いので、風力発電装置に利用される。また横軸ロータやロータブレードは、水力発電装置用に利用することができる。 The horizontal axis wind turbine, horizontal axis rotor, and rotor blade according to the present invention are used in a wind power generator because they have high rotational efficiency and high rotational torque even at low wind speeds. Further, the horizontal axis rotor and rotor blade can be used for a hydroelectric power generation device.

1.横軸風車
2.支柱
3.回転支持体
3A.軸部
3B.基部
3C.前杆
3D.後杆
4.風車筐体
4A.前端部
4B.後端部
4C.前部発電機
4D.後部発電機
4E.後向回転軸
4F.前向回転軸
5. 横軸ロータ
5A.ハブ
5B.前向回転軸
5C.後向回転軸
5D.接続具
5E. 前端面
6.揚力型ブレード
6A.基部
6B.前縁
6C.後縁
6c.後縁端
6D.翼先端面
6E.前縁端
6F.回転後面
6G.回転前面
7.方向舵
8.下部方向舵
R.ハブの中心回転軌跡(翼端面後縁回転軌跡)
S.ブレード中心線
T.翼端面前縁中心回転軌跡
U.支柱軸心線
V.翼先端面前縁端回転軌跡
W.風車筐体軸心線
X.ハブの前端面回転軌跡
Y.ハブの後端面回転軌跡
1. 1. Horizontal axis windmill 2. Prop 3. Rotating support 3A. Shaft 3B. Base 3C. Front rod 3D. Rear rod 4. Wind turbine housing 4A. Front end 4B. Rear end 4C. Front generator 4D. Rear generator 4E. Backward rotation shaft 4F. Forward rotation axis 5. Horizontal axis rotor 5A. Hub 5B. Forward rotation shaft 5C. Backward rotation shaft 5D. Connector 5E. Front end face 6. Lift type blade 6A. Base 6B. Leading edge 6C. Trailing edge 6c. Trailing edge 6D. Wing tip surface 6E. Leading edge edge 6F. Rotating rear surface 6G. Rotating front 7. Rudder
8. Lower rudder R. Hub center rotation locus (blade end face trailing edge rotation locus)
S. Blade center line T. Rotational locus of the center of the front edge of the wing tip U.S. Strut axis core line V. Wing tip surface front edge end rotation locus W. Wind turbine housing axis X. Front end face rotation locus of hub Y. Rotational trajectory of the rear end face of the hub

Claims (5)

支柱2上に回転可能に配設した回転支持体3で、風車筐体4を水平に支持する構成において、前杆3Cと後杆3Dを立設した前記回転支持体3における前記前杆3Cで前記風車筐体4の先端部4Aを水平に支持し、前記後杆3Dで前記風車筐体の後端部4Bを水平に支持し、前記風車筐体4の前記先端部4Aと前記後端部4Bの間に、横軸ロータ5をそのハブ5Aの前後及び幅の中心が、前記支柱2の支柱軸心線Uと重なるように配設し、前記風車筐体4の前記先端部4Aと前記後端部4Bにはそれぞれ発電機4C、4Dを、その各回転軸4E、4Fが同一軸線上になるように配設するとともに、当該前後の回転軸4E、4Fの間に前記横軸ロータ5のハブ5A中心に固定した回転軸5B、5Cの前後端部を連結して前記横軸ロータ5を同軸回転可能とし、前記横軸ロータ5は、前記回転軸5B、5Cを前後に向けた状態で、前記ハブ5Aの周面に複数の揚力型ブレード6を定間隔に放射方向に向けて固定し、前記揚力型ブレード6の翼端を上向きとした正面視で、前記揚力型ブレード6の基部6Aは、その前縁6Bの厚さの中心が前記ハブ5Aの軸心を通るブレード中心線Sに沿い、前記前縁6Bの回転前面6Gは前記ブレード中心線Sと平行に形成され、かつ翼長の中間から翼端へかけて前記回転前面6Gは回転後方向へ大きく屈曲して、前記前縁6Bが厚く後縁端6cへかけて細く尖る翼先端面6Dを正面横長に見えるようにし、前記基部6Aから翼端へかけての後縁6Cは、次第に回転後方向へ傾斜して前記翼先端面6Dに近づくに従って急激に屈曲して、前記翼先端面6Dの前縁端6Eの回転軌跡Vよりも前記翼先端面6Dにおける前記後縁端6Cが外側になるように形成し、かつ前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは正面から見えるようにし、前記翼先端面6Dにおける前記後縁端6cの回転軌跡は、前記支柱2の支柱軸心線Uに重なる位置になるように形成されてなることを特徴とする横軸風車。 In a configuration in which the wind turbine housing 4 is horizontally supported by the rotary support 3 rotatably arranged on the support column 2, the front axle 3C in the rotary support 3 on which the front axle 3C and the rear axle 3D are erected The tip 4A of the windmill housing 4 is horizontally supported, the rear end 4B of the windmill housing is horizontally supported by the rear axle 3D, and the tip 4A and the rear end of the windmill housing 4 are supported horizontally. A horizontal axis rotor 5 is arranged between 4B so that the front and rear and the center of the width of the hub 5A overlap with the support axis core line U of the support 2, and the tip portion 4A of the windmill housing 4 and the tip portion 4A and the said. Generators 4C and 4D are arranged at the rear end 4B so that their rotating shafts 4E and 4F are on the same axis, and the horizontal shaft rotor 5 is located between the front and rear rotating shafts 4E and 4F. The horizontal shaft rotor 5 is coaxially rotatable by connecting the front and rear ends of the rotary shafts 5B and 5C fixed to the center of the hub 5A, and the horizontal shaft rotor 5 is in a state where the rotary shafts 5B and 5C are directed forward and backward. Then, a plurality of lift-type blades 6 are fixed to the peripheral surface of the hub 5A at regular intervals in the radial direction, and the base portion of the lift-type blade 6 is viewed from the front with the blade tips of the lift-type blade 6 facing upward. 6A is along the blade center line S center of the thickness of the front edge 6B is passing through an axis of the hub 5A, rotating front 6G of the front edge 6B is formed in parallel with the blade in the core wire S, and From the middle of the wing length to the wing tip, the rotating front surface 6G is greatly bent in the rearward rotation direction so that the wing tip surface 6D having a thick front edge 6B and a thin point toward the trailing edge end 6c can be seen as a front horizontal length. The trailing edge 6C from the base portion 6A to the wing tip gradually inclines in the rearward rotation direction and sharply bends as it approaches the wing tip surface 6D , so that the front edge end 6E of the wing tip surface 6D rotates. The trailing edge end 6C of the blade tip surface 6D is formed to be outside the locus V, and the rotating rear surface 6F from the base portion 6A to the blade tip surface 6D is visible from the front. A horizontal axis wind turbine, characterized in that the rotation locus of the trailing edge end 6c in 6D is formed so as to overlap the column axis core line U of the column 2. 前記揚力型ブレード6の翼先端面6Dにおける前縁端6Eの回転軌跡Vは、前記横軸ロータ5のハブ5Aにおける前端面の回転軌跡Xより前方に位置するように形成され、前記揚力型ブレード6の翼先端面6Dにおける後縁端6cの回転軌跡Rは、前記横軸ロータ5の前記ハブ5Aにおける前後の中心の回転軌跡と重なるように、前記揚力型ブレード6が形成されていることを特徴とする請求項1に記載の横軸風車。 The rotation locus V of the leading edge end 6E on the blade tip surface 6D of the lift type blade 6 is formed so as to be located in front of the rotation locus X of the front end surface of the hub 5A of the horizontal axis rotor 5. The lift type blade 6 is formed so that the rotation locus R of the trailing edge end 6c on the blade tip surface 6D of No. 6 overlaps with the rotation locus of the front and rear centers of the hub 5A of the horizontal axis rotor 5. The horizontal axis wind turbine according to claim 1. 軸ロータ5のハブ5Aの回転軸5B、5Cの前後端部を、それぞれ前後に突出させる前記ハブ5Aの周面に、揚力型ブレード6を複数を定間隔で放射方向へ向けて固定し、各揚力型ブレード6の基部6Aの基端面は、前部が厚く後端にかけて次第に薄くした形状として、その前後を前記ハブ5Aの前後を向く軸線に沿うように前記ハブ周面に固定し、前記揚力型ブレード6の翼端を上向きとした正面視で、揚力型ブレード6の前記基部6Aの前縁6Bの厚さ中心を、前記ハブ5Aの軸心を通るブレード中心線Sに沿わせた状態で、前記前縁6Bの回転方向に対面する回転前面6Gを前記ブレード中心線Sと平行に形成し、かつ前記揚力型ブレードの長さの中間から翼端へかけて回転後方向へ大きく屈曲させて、前記揚力型ブレード6の翼先端面6Dを正面に向けてほぼ水平に形成し、前記翼先端面6Dは、前記前縁6B部分が厚く後端6Cへかけて先尖りとし、前記翼先端面6Dにおける前縁端6Eの回転軌跡よりも前記翼先端面6Dにおける後縁端6が外側になるようにし、前記揚力型ブレード6の基部6Aから前記翼先端面6Dへかけての回転方向の後方である回転後面6Fが、正面から見えるようにしてなることを特徴とする横軸ロータ。 A plurality of lift type blades 6 are fixed in the radial direction at regular intervals on the peripheral surface of the hub 5A in which the front and rear ends of the rotation shafts 5B and 5C of the hub 5A of the horizontal shaft rotor 5 are projected back and forth. The base end surface of the base portion 6A of each lift type blade 6 has a shape in which the front portion is thick and gradually becomes thinner toward the rear end, and the front and rear portions thereof are fixed to the hub peripheral surface so as to be along the axis facing the front and rear of the hub 5A. A state in which the thickness center of the leading edge 6B of the base portion 6A of the lift type blade 6 is aligned with the blade center line S passing through the axis of the hub 5A in a front view with the wing tip of the lift type blade 6 facing upward. Then, the rotating front surface 6G facing the rotating direction of the leading edge 6B is formed parallel to the blade center line S, and is greatly bent in the rearward rotation direction from the middle of the length of the lift type blade to the blade tip. The wing tip surface 6D of the lift type blade 6 is formed substantially horizontally toward the front, and the wing tip surface 6D has a thick leading edge 6B and a pointed tip toward the rear end 6C. The direction of rotation from the base portion 6A of the lift type blade 6 to the wing tip surface 6D so that the trailing edge end 6c on the wing tip surface 6D is outside the rotation locus of the leading edge end 6E on the surface 6D. A horizontal axis rotor characterized in that the rotating rear surface 6F, which is behind the surface, is visible from the front. 前記横軸ロータは、前後に長い風車筐体の先端部と後端部の中間に、ハブにおける回転軸を前後に向けて支持されるものとし、前記ハブの中心から前後に向けて突出する前後の回転軸先端部を、前記風車筐体の先端部と後端部に内装した前後の発電機の前後を向く回転軸の先端に、接続具を介して同心状に連結するようにしてなることを特徴とする請求項3に記載の横軸ロータ。 The horizontal axis rotor is supported by the rotation axis of the hub in the front-rear direction between the front end portion and the rear end portion of the wind turbine housing which is long in the front-rear direction, and the front-rear direction protrudes from the center of the hub in the front-rear direction. The tip of the rotating shaft of the above is concentrically connected to the tip of the rotating shaft facing the front and rear of the front and rear generators installed in the front end and the rear end of the wind turbine housing via a connector. The horizontal axis rotor according to claim 3. 横軸ロータにおける揚力型ブレードであって、ハブ5Aに固定して翼端を垂直に上向きとした状態の正面視において、前記揚力型ブレード6の基部6Aの厚さの中央を通るブレード中心線Sをハブ5Aの軸心を通るものとし、前記揚力型ブレード6の前縁6Bを正面に向け、その回転時の回転前面6Gが前記ブレード中心線Sに平行に回転前方に設定されて、後縁6Cが翼端へ向かって斜めに立ち上がり、翼長の中間から翼端へかけては、大きく回転後方向へ屈曲されて、翼先端面6Dが水平横長に正面に現れ、該翼先端面6Dにおける前記前縁6Bの前縁端6Eの回転軌跡Vよりも、該翼先端面6Dにおける後縁端6cが外側になるように形成され、前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは、全体が正面から見えるように形成し、前記揚力型ブレード6の平面視は、前記回転前面6Gが後部が広がる半円形で、これに続く後縁端6cにかけて先尖りとされ、前記翼先端面6Dにおける前記前縁6Bの回転軌跡Tは、前記ハブ5Aの前端面5Eの回転軌跡Xよりも正面前方に突出されていることを特徴とするロータブレード。 A blade center line S passing through the center of the thickness of the base 6A of the lift-type blade 6 in a front view in a state where the lift-type blade in the horizontal axis rotor is fixed to the hub 5A and the blade tip is vertically upward. Is passed through the axis of the hub 5A, the front edge 6B of the lift type blade 6 is directed to the front, and the rotating front surface 6G at the time of rotation is set in the rotation front in parallel with the blade center line S, and the trailing edge is set. 6C rises diagonally toward the wing tip, and from the middle of the wing length to the wing tip, it is greatly bent in the rearward direction of rotation, and the wing tip surface 6D appears horizontally and horizontally in front of the wing tip surface 6D. The trailing edge end 6c of the wing tip surface 6D is formed so as to be outside the rotation locus V of the front edge end 6E of the front edge 6B, and the rotating rear surface 6F from the base portion 6A to the wing tip surface 6D is formed. , The whole is formed so as to be seen from the front, and the plan view of the lift type blade 6 is a semicircular shape in which the rotating front surface 6G has a wide rear portion, and is pointed toward the trailing edge end 6c following the rotating front surface 6G. The rotor blade in 6D is characterized in that the rotation locus T of the front edge 6B projects forward in front of the rotation locus X of the front end surface 5E of the hub 5A.
JP2021062925A 2021-04-01 2021-04-01 Horizontal axis wind turbine, horizontal axis rotor and rotor blade Active JP6928325B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021062925A JP6928325B1 (en) 2021-04-01 2021-04-01 Horizontal axis wind turbine, horizontal axis rotor and rotor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021062925A JP6928325B1 (en) 2021-04-01 2021-04-01 Horizontal axis wind turbine, horizontal axis rotor and rotor blade

Publications (2)

Publication Number Publication Date
JP6928325B1 true JP6928325B1 (en) 2021-09-01
JP2022158191A JP2022158191A (en) 2022-10-17

Family

ID=77456296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021062925A Active JP6928325B1 (en) 2021-04-01 2021-04-01 Horizontal axis wind turbine, horizontal axis rotor and rotor blade

Country Status (1)

Country Link
JP (1) JP6928325B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166324A (en) * 2016-03-14 2017-09-21 株式会社Tingara T-type leading end blade for turbine
JP2018091280A (en) * 2016-12-06 2018-06-14 株式会社ベルシオン Horizontal shaft rotor
JP2018150923A (en) * 2017-03-14 2018-09-27 中澤 弘幸 Slewing gear, propulsion device and power generator
JP2020101151A (en) * 2018-12-25 2020-07-02 株式会社グローバルエナジー Water turbine device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166324A (en) * 2016-03-14 2017-09-21 株式会社Tingara T-type leading end blade for turbine
JP2018091280A (en) * 2016-12-06 2018-06-14 株式会社ベルシオン Horizontal shaft rotor
JP2018150923A (en) * 2017-03-14 2018-09-27 中澤 弘幸 Slewing gear, propulsion device and power generator
JP2020101151A (en) * 2018-12-25 2020-07-02 株式会社グローバルエナジー Water turbine device

Also Published As

Publication number Publication date
JP2022158191A (en) 2022-10-17

Similar Documents

Publication Publication Date Title
US7726934B2 (en) Vertical axis wind turbine
JP4174473B2 (en) Improved turbine
US20180216599A1 (en) Horizontal axis wind machine with multiple rotors
CA2740120A1 (en) Wind powered apparatus having counter rotating blades
WO2007141834A1 (en) Blades for wind wheel, wind wheel, and wind-driven electric power generator
KR20120125031A (en) Blade arrangement of vertical axis windpower generation
JPS5928754B2 (en) Vertical axis wind turbine blade
EP1422422A2 (en) Darrieus windmill
JP4918664B2 (en) Wind power generator
JP2011032918A (en) Wind turbine
JP6928325B1 (en) Horizontal axis wind turbine, horizontal axis rotor and rotor blade
CN108700027A (en) Rotor blade
JP2000220561A (en) Wind power generator
JP2007517155A (en) Wind turbine engine
JP2002235656A (en) Linear vane installation method for vertical shaft wind power generating device
JP4892716B1 (en) Wind power generator
JP6948094B1 (en) Rotor blade
TWI697616B (en) Transverse axis rotor
JP6944743B1 (en) Exhaust gas power generator and rotor
JP6469303B1 (en) Wind power generation system
KR101943845B1 (en) Horizontal wind power generator
JP2002221143A (en) Aerofoil for vertical shaft type wind power generation device and design method for the same
JP2007107448A (en) Vertical type windmill
CN210919341U (en) Household mini wind power generation device
JP6997580B2 (en) Vertical blade and vertical axis rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210428

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210721

R150 Certificate of patent or registration of utility model

Ref document number: 6928325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250