本発明は、回転時に通過する気流の干渉が生じにくく、回転性能に優れ、低風速でも回転トルクの高い横軸風車、横軸ロータ及びロータブレードに関する。
TECHNICAL FIELD The present invention relates to a horizontal-axis wind turbine, a horizontal-axis rotor, and rotor blades, which are less susceptible to interference of airflows passing during rotation, have excellent rotation performance, and have high rotational torque even at low wind speeds.
横軸風車の横軸ロータは、例えば特許文献1に記載されている。
A horizontal axis rotor of a horizontal axis wind turbine is described, for example, in Patent Document 1.
特開2018-40304号JP 2018-40304
特許文献1に記載の横軸ロータは、ブレードの正面形状が、縦長方向の中間部が最大弦長部とされ、最大弦長部から翼端にかけて回転後方向へ大きく屈曲させた横向傾斜部とされ、該横向傾斜部は側面視で前記最大弦長部から翼端へかけて正面方向へ前向傾斜させてあるものである。その結果、ブレードの正面に当る気流は、最大弦長部に集まり、ロータの回転後方向へ通過し回転効率を高めるものとされている。この気流の通過方向では、ブレードが多いと干渉が生じるので低風速域では効率を高くすることが困難である。
本発明は、ブレードの数を多くしても各ブレード間を通過する気流の干渉が生じにくく、低風速でも回転効率と回転トルクの高い横軸風車、横軸ロータ及びロータブレードを提供することを目的としている。
In the horizontal shaft rotor described in Patent Document 1, the front shape of the blade has a maximum chord length portion in the middle portion in the longitudinal direction, and a laterally inclined portion that is greatly bent in the post-rotation direction from the maximum chord length portion to the blade tip. The laterally inclined portion is inclined forward from the maximum chord length portion to the tip of the blade in a side view. As a result, the airflow that hits the front of the blade gathers at the maximum chord length and passes in the backward rotation direction of the rotor, increasing the rotation efficiency. If there are many blades in this air flow passage direction, interference occurs, so it is difficult to increase the efficiency in a low wind speed region.
The present invention is to provide a horizontal-axis wind turbine, a horizontal-axis rotor, and rotor blades, which have high rotational efficiency and high rotational torque even at low wind speeds, with little interference of airflows passing between the blades even if the number of blades is increased. purpose.
本発明は前記課題を解決するために、次のような技術的手段を講じた。
In order to solve the above problems, the present invention has taken the following technical measures.
(1) 支柱2上に回転可能に配設した回転支持体3で、風車筐体4を水平に支持する構成において、前杆3Cと後杆3Dを立設した前記回転支持体3における前記前杆3Cで前記風車筐体4の先端部4Aを水平に支持し、前記後杆3Dで前記風車筐体の後端部4Bを水平に支持し、前記風車筐体4の前記先端部4Aと前記後端部4Bの間に、横軸ロータ5をそのハブ5Aの前後及び幅の中心が、前記支柱2の軸線Uと重なるように配設し、前記風車筐体4の前記先端部4Aと前記後端部4Bにはそれぞれ発電機4C、4Dを、その各回転軸4E、4Fが同一軸線上になるように配設するとともに、当該前後の回転軸4E、4Fの間に前記横軸ロータ5のハブ5A中心に固定した回転軸5B、5Cの前後端部を連結して前記横軸ロータ5を同軸回転可能とし、前記横軸ロータ5は、前記回転軸5B、5Cを前後に向けた状態で、前記ハブ5Aの周面に複数の揚力型ブレード6を定間隔に放射方向に向けて固定し、前記揚力型ブレード6の翼端を上向きとした正面視で、前記揚力型ブレード6の基部6Aは、その前縁6Bの厚さの中心が前記ハブ5Aの軸心を通るブレード中心線Sに沿い、前記前縁6Bの回転前面6Gは前記軸心線Sと平行に形成され、かつ翼長の中間から翼端へかけて前記回転前面6Gは回転後方向へ大きく屈曲して、前記前縁6Bが厚く後縁端6Cへかけて細く尖る翼先端面6Dを正面横長に見えるようにし、前記基部6Aから翼端へかけての後縁6Cは、次第に回転後方向へ傾斜して前記翼先端面6Dに近づくに従って急激に屈曲して、前記翼先端面6Dの前記前縁端6Eの回転軌跡Vよりも前記翼先端面6Dにおける前記後縁端6cが外側になるように形成し、かつ前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは正面から見えるようにし、前記翼先端面6Dにおける前記後縁端6cの回転軌跡は、前記支柱2の軸心線Uに重なる位置になるように形成されてなる横軸風車。
(1) In a configuration in which the wind turbine housing 4 is horizontally supported by the rotating support 3 rotatably disposed on the column 2, the front rod 3C and the rear rod 3D of the rotating support 3 are erected. The front end portion 4A of the wind turbine housing 4 is horizontally supported by the rod 3C, and the rear end portion 4B of the wind turbine housing is horizontally supported by the rear rod 3D. Between the rear end portion 4B, the horizontal rotor 5 is arranged so that the center of the front and rear of the hub 5A and the center of the width overlap with the axis line U of the support column 2, and the front end portion 4A of the wind turbine housing 4 and the above-mentioned Generators 4C and 4D are arranged at the rear end portion 4B so that their rotary shafts 4E and 4F are on the same axis, and the horizontal shaft rotor 5 is arranged between the front and rear rotary shafts 4E and 4F. The front and rear ends of rotary shafts 5B and 5C fixed to the center of the hub 5A are connected to make the horizontal shaft rotor 5 coaxially rotatable. A plurality of lift-type blades 6 are fixed radially at regular intervals on the peripheral surface of the hub 5A, and when viewed from the front with the wing tips of the lift-type blades 6 facing upward, the bases of the lift-type blades 6 6A, the center of the thickness of the leading edge 6B is along the blade center line S passing through the axis of the hub 5A, the front surface 6G of rotation of the leading edge 6B is formed parallel to the axis S, and the blade From the middle of the length to the tip of the blade, the front surface of rotation 6G is greatly bent in the rearward direction of rotation, and the front edge 6B is thick and the blade tip surface 6D, which is thin and sharp toward the trailing edge 6C, is made to look like a front horizontally long, The trailing edge 6C from the base portion 6A to the tip of the blade gradually inclines in the rearward direction of rotation and bends sharply as it approaches the tip surface 6D of the blade, causing the leading edge 6E of the tip surface 6D to rotate. The trailing edge 6c of the blade tip surface 6D is formed so as to be outside the locus V, and the rotation rear surface 6F from the base portion 6A to the blade tip surface 6D is visible from the front, and the blade tip surface A horizontal shaft wind turbine formed so that the rotational locus of the trailing edge 6c at 6D is positioned to overlap the axial center line U of the support 2 .
(2) 前記揚力型ブレード6の前記翼先端面6Dにおける前記前縁端6Eの前記回転軌跡Vは、前記横軸ロータ5の前記ハブ5Aにおける前記前端面5Eの平面視における回転軌跡Xよりも正面前方に位置するように形成され、前記揚力型ブレード6の前記翼先端面6Dにおける前記後縁端6cの回転軌跡は前記ロータ5の前記ハブ5Aにおける前後の中心の回転軌跡Rと重なるように前記揚力型ブレード6が形成されている前記(1)に記載の横軸風車。
(2) The rotational trajectory V of the leading edge 6E of the blade tip surface 6D of the lift blade 6 is longer than the rotational trajectory X of the front end surface 5E of the hub 5A of the horizontal shaft rotor 5 in plan view. The locus of rotation of the trailing edge 6c of the blade tip surface 6D of the lift blade 6 overlaps with the locus of rotation R of the hub 5A of the rotor 5 in the front-rear direction. The horizontal axis wind turbine according to (1) above, in which the lift blades 6 are formed.
(3) 前記横軸ロータ5の前記ハブ5Aの回転軸5B、5Cの前後端部を、それぞれ前後に突出させる前記ハブ5Aの周面に、前記揚力型ブレード6を複数枚定間隔で放射方向へ向けて固定し、各揚力型ブレード6の基部6Aの平面視の基端面は、前縁部が厚く後端にかけて次第に薄くした形状として、該基部6Aの前後を前記ハブ5Aの前後を向く軸線に沿うように設定し、前記揚力型ブレード6の翼端を上向きとした正面視で、該揚力型ブレード6の前記基部6Aの前縁6Bの厚さ中心を、前記ハブ5Aの軸心を通るブレード中心線Sに沿わせた状態で、前記前縁6Bの回転方向に対面する回転前面6Gを前記ブレード中心線Sと平行に形成し、かつ前記揚力型ブレード6の長さの中間から翼端へかけて回転後方向へ大きく屈曲させて前記揚力型ブレード6の翼先端面6Dを正面に向けてほぼ水平に形成し、前記翼先端面6Dは、前記前縁6B部分が厚く後縁端6cへかけて先尖りとし、前記翼先端面6Dにおける前縁端6Eの回転軌跡Vよりも前記翼先端面6Dにおける後縁端6cが外側になるようにし、前記揚力型ブレード6の基部6Aから前記翼先端面6Dへかけての、回転方向の後方である回転後面6F全部が正面から見えるようにしてなる横軸ロータ。
(3) A plurality of lifting blades 6 are arranged at regular intervals in the radial direction on the peripheral surface of the hub 5A from which the front and rear ends of the rotation shafts 5B and 5C of the hub 5A of the horizontal shaft rotor 5 protrude forward and backward. The base end surface of the base 6A of each lifting blade 6 in plan view has a shape in which the front edge is thick and gradually becomes thinner toward the rear end. , and in a front view with the wing tip of the lift blade 6 facing upward, the thickness center of the front edge 6B of the base 6A of the lift blade 6 passes through the axis of the hub 5A In a state along the blade center line S, the front edge 6G of rotation facing the rotation direction of the leading edge 6B is formed parallel to the blade center line S, and the blade tip is formed from the middle of the length of the lift type blade 6 to the tip. The blade tip surface 6D of the lift blade 6 is formed substantially horizontally toward the front by being bent greatly in the rearward direction of rotation, and the blade tip surface 6D is thick at the leading edge 6B and has a trailing edge 6c. The trailing edge 6c of the blade tip surface 6D is made to be outside the rotational locus V of the leading edge 6E of the blade tip surface 6D, and the lift type blade 6 has a base portion 6A to the above-mentioned A horizontal shaft rotor in which the entire rear rotation surface 6F, which is rearward in the rotation direction, is visible from the front to the blade tip surface 6D.
(4) 前記横軸ロータ5は、前後に長い風車筐体4の先端部と後端部の中間に、ハブ5Aにおける前後の回転軸5B、5Cを前後に向けて支持されるものとし、前記ハブの中心から前後に向けて突出する前後の回転軸5B、5C先端部を、前記風車筐体の先端部4Aと後端部4Bに内装した前後の発電機4C、4Dの前後を向く回転軸5B、5Cの先端に、接続具5D、5Dを介して同心状に連結するようにしてなる前記(3)に記載の横軸ロータ。
(4) The horizontal shaft rotor 5 is supported between the front end and the rear end of the wind turbine housing 4 that is long in the front-rear direction, with the front and rear rotation shafts 5B and 5C of the hub 5A facing forward and backward. Front and rear rotating shafts 4C and 4D of the front and rear generators 4C and 4D, in which front and rear rotating shafts 5B and 5C protruding forward and backward from the center of the hub are mounted inside the front end portion 4A and the rear end portion 4B of the wind turbine housing. The horizontal shaft rotor according to (3) above, which is concentrically connected to the ends of 5B and 5C via connecting tools 5D and 5D.
(5) 横軸ロータ5における揚力型ブレード6であって、ハブ5Aに固定して翼端を垂直に上向きとした状態の正面視において、前記揚力型ブレード6の基部6Aの厚さの中央を通るブレード中心線Sをハブ5Aの軸心を通るものとし、前記揚力型ブレード6の前縁6Bを正面に向け、その回転時の回転前面6Gが前記ブレード中心線Sに平行に回転前方に設定されて、後縁6Cが翼端へ向かって斜めに立ち上がり、翼長の中間から翼端へかけては、大きく回転後方向へ屈曲されて、翼先端面6Dが水平横長に正面に現れ、該翼先端面6Dにおける前縁6Bの前縁端6Eの回転軌跡Vよりも、該翼先端面6Dにおける後縁端6cが外側になるように形成され、前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは、全体が正面から見えるように形成し、前記揚力型ブレード6の平面視は、前記回転前面6Gが後部が広がる半円形で、これに続く後縁端6cにかけて先尖りとされ、前記翼先端面6Dにおける前記前縁6Bの回転軌跡Tは、前記ハブ5Aの前端面5Eの回転軌跡Xよりも正面前方に突出されているロータブレード。
(5) The lift blade 6 in the horizontal shaft rotor 5 is fixed to the hub 5A, and in a front view with the blade tip facing vertically upward, the center of the thickness of the base 6A of the lift blade 6 is The blade centerline S passing through is set to pass through the axis of the hub 5A, the front edge 6B of the lift type blade 6 is directed to the front, and the rotation front surface 6G at the time of rotation is parallel to the blade centerline S and set to the front of rotation. As a result, the trailing edge 6C rises obliquely toward the tip of the blade, and from the middle of the blade length to the tip of the blade, it is greatly bent in the backward rotation direction, and the tip surface 6D of the blade appears horizontally and horizontally in front. The trailing edge 6c of the blade tip surface 6D is formed so as to be outside the rotational locus V of the leading edge 6E of the leading edge 6B of the blade tip surface 6D, and from the base portion 6A to the blade tip surface 6D. The rotation rear surface 6F is formed so that the whole can be seen from the front, and the plane view of the lifting blade 6 is such that the rotation front surface 6G has a semi-circular shape with a wide rear portion and a trailing edge 6c that is pointed. A rotor blade in which a rotational trajectory T of the leading edge 6B on the blade tip surface 6D protrudes frontward from a rotational trajectory X of the front end surface 5E of the hub 5A.
本発明によると、次のような効果が奏せられる。
ADVANTAGE OF THE INVENTION According to this invention, the following effects are exhibited.
前記(1)に記載の発明においては、横軸ロータ5がその回転軸5B、5Cを前後に突出させて前後の回転軸5B、5Cが風車筐体4の先端部4Aと後端部4Bの中間に両持ちで支持されているので、横軸ロータ5が振動しにくく安定して回転することが出来る。
横軸ロータ5は、複数の揚力型ブレード6をハブ5Aの周面に配設されているので受風面積が広く、低風速でも回転効率が高く、回転トルクも高い。
複数の揚力型ブレード6を配設すると、横軸ロータ5の回転に伴い各揚力型ブレード6間に生じる通過気流の干渉が生じて回転効率が低下し、或いは騒音が生じ易いが、本発明では揚力型ブレード6の形状が前例のない特種形に形成されているので、それが解消されている。
すなわち、風上を向く正面で、翼端を上向きとした揚力型ブレード6は、基部6Aが前後方向へ長く向いており、その厚みの中央に、ハブ5Aの軸心を通るブレード中心線Sが垂直に形成されている。揚力型ブレード6の正面に見える前縁6Bにおける回転方向に対面する回転前面6Gは、前記ブレード中心線Sに平行に形成され、翼端へ向かって長さの中間から大きく回転後方向に屈曲し、正面に翼先端面6Dが横長に見えるように形成されている。回転時に遠心部で高速に回転する揚力型ブレード6の翼端に近い部分では、風の抵抗がかかりにくく、かつコアンダ効果によって通過する気流は高速となり、その結果として負圧になって通過するので、ハブ5A周面における回転前後の揚力型ブレード6の配置間隔が狭くても通過気流の干渉障害が生じにくい特長がある。
前記揚力型ブレード6は前記基部6Aから前記翼先端面6Dにかけての、回転時に、回転する後方向にある回転後面6Fは、正面から見えるように形成されている。すなわち横軸ロータ5の正面に当る気流は、前記揚力型ブレード6の回転後面6Fにあたって、その斜めの表面を滑って回転後方向へ斜めに通過するとともに、揚力型ブレード6を回転方向に押し出すことにより横軸ロータ5を回転させる。この場合、揚力型ブレード6の前記基部6Aから遠心方向へ移動する気流は、正面方向へ突出している前記翼先端面6Dの後縁端6c部分で回転軸5B方向の背面方向へ斜めに通過して、反作用で揚力型ブレード6の回転遠心部において揚力型ブレード6を前縁6B方向に強く押し出して回転させる。
In the invention described in (1) above, the horizontal rotor 5 protrudes its rotary shafts 5B and 5C forward and backward, and the front and rear rotary shafts 5B and 5C are arranged between the front end portion 4A and the rear end portion 4B of the wind turbine housing 4. Since both sides are supported in the middle, the horizontal shaft rotor 5 is less likely to vibrate and can be stably rotated.
Since the horizontal shaft rotor 5 has a plurality of lifting blades 6 arranged on the peripheral surface of the hub 5A, it has a large wind receiving area, high rotational efficiency even at low wind speeds, and high rotational torque.
When a plurality of lift blades 6 are arranged, interference of air currents generated between the lift blades 6 occurs as the horizontal shaft rotor 5 rotates, resulting in reduced rotational efficiency or noise. Since the shape of the lift blade 6 is formed into an unprecedented special shape, it is eliminated.
That is, the lift type blade 6 has a front face facing upwind and a base portion 6A facing upward in the front-to-back direction. formed vertically. A front edge 6B of the lifting blade 6 facing in the rotational direction is formed parallel to the center line S of the blade, and is bent in the backward direction from the middle of the length toward the tip of the blade. , the wing tip surface 6D is formed so as to look oblong in the front. In the portion near the tip of the lift blade 6 that rotates at high speed in the centrifugal portion during rotation, wind resistance is less likely to be applied, and the passing airflow becomes high speed due to the Coanda effect, and as a result, it passes with negative pressure. , even if the arrangement interval of the lift blades 6 before and after the rotation on the peripheral surface of the hub 5A is narrow, interference of passing air currents is unlikely to occur.
The lift-type blade 6 is formed so that a rotation rear surface 6F, which rotates in the rearward direction during rotation from the base portion 6A to the blade tip surface 6D, can be seen from the front. That is, the airflow that hits the front of the horizontal shaft rotor 5 hits the rear rotation surface 6F of the lift blade 6, slides on the oblique surface, passes obliquely in the rear rotation direction, and pushes the lift blade 6 in the rotation direction. to rotate the horizontal shaft rotor 5 . In this case, the airflow moving in the centrifugal direction from the base portion 6A of the lift blade 6 obliquely passes in the rearward direction in the direction of the rotation axis 5B at the trailing edge 6c portion of the blade tip surface 6D projecting in the frontward direction. As a result, the lift type blade 6 is strongly pushed in the direction of the front edge 6B at the centrifugal portion of the lift type blade 6 to rotate.
前記(2)に記載の発明においては、前記揚力型ブレード6の前記翼先端面6Dにおける前記前縁端6Eの前記回転軌跡Vは、前記横軸ロータ5の前記ハブ5Aにおける前記前端面5Eの平面視における回転軌跡Xよりも正面前方に位置するように形成され、前記翼先端面6Dにおける前記後縁端6cの回転軌跡Rは前記横軸ロータ5の前記ハブ5Aにおける前後の中心の回転軌跡Rと重なるように前記揚力型ブレード6が形成されているので、正面視で正面に見える前記翼先端面6Dは、ハブ5Aの前後の中心の回転軌跡Rより前方に張出していると同時に、平面視で前記翼先端面6Dは、その前縁端6Eから後縁端6cへかけて背後方向へ傾斜していて、前記揚力型ブレード6の翼端部における回転後面6Fに当る気流を、後に続く揚力型ブレード6の回転前面6Gに沿つて高速で通過する気流に沿うように通過させて回転効率を高める。
In the invention described in (2) above, the rotational trajectory V of the leading edge 6E of the blade tip surface 6D of the lift blade 6 is the same as that of the front end surface 5E of the hub 5A of the horizontal shaft rotor 5. The trailing edge 6c of the blade tip surface 6D is formed so as to be located forward in front of the rotational locus X in plan view, and the rotational locus R of the trailing edge 6c of the blade tip surface 6D is the rotational locus of the horizontal shaft rotor 5 at the front-rear center of the hub 5A. Since the lift blade 6 is formed so as to overlap R, the wing tip surface 6D, which is visible in front when viewed from the front, protrudes forward from the locus of rotation R at the center of the front and rear of the hub 5A, and at the same time, is flat. As can be seen, the tip surface 6D of the blade is inclined rearward from the leading edge 6E to the trailing edge 6c, and follows the airflow hitting the rotating rear surface 6F at the tip of the lift blade 6. Rotational efficiency is enhanced by passing along the airflow passing at high speed along the rotation front face 6G of the lift type blade 6. - 特許庁
前記(3)に記載の発明においては、前記横軸ロータ5の前記ハブ5Aの回転軸5B、5Cの前後端部を、それぞれ前後に突出させる前記ハブ5Aの周面に、揚力型ブレード6を複数枚定間隔で放射方向へ向けて固定し、各揚力型ブレード6の基部6Aの平面視の基端面は、前縁部が厚く後縁端にかけて次第に薄くした形状として、該基部6Aの前後をハブ5Aの前後を向く軸線Wに沿うように設定してあるので、前記基部6Aは前後に長く、正面からの気流は抵抗が少なく通過することができ、回転効率が高まる。
前記揚力型ブレード6の翼端を上向きとした正面視で、該揚力型ブレードの前記基部6Aの前縁6Bの厚さ中心を、前記ハブ5Aの軸心を通るブレード中心線Sに沿わせた状態で、前記前縁6Bの回転方向に対面する回転前面6Gをブレード中心線Sと平行に形成し、かつ揚力型ブレード6の長さの中間から翼端へかけて回転後方向へ大きく屈曲させて、揚力型ブレード6の翼先端面6Dを正面に向けてほぼ水平横長に形成してあるので、揚力型ブレード6の正面視は、回転前面6Gは垂直で、前記後縁6Cは基部6Aから翼端方へ回転後方向へ傾斜しており、回転後面6Fは翼端方向へ広がって受風面積が遠心部で広いので、回転トルクが高くなる。
前記翼先端面6Dは、前縁6B部分が厚く後縁端6cへかけて先尖りとし、前記翼先端面6Dにおける前縁端6Eの回転軌跡Vよりも翼先端面6Dにおける後縁端6cが外側になるようにしてあるので、前記回転後面6Fに当る気流は翼先端面6Dの後縁端6cで外側へ抜けて、反動で翼先端面6Dの前縁端6E方向へ押し出す。揚力型ブレード6の基部6Aから翼先端面6Dへかけての回転方向の後方である回転後面6F全部が正面から見えるようにしてあるので、正面から揚力型ブレード6に当る気流は、ほとんどが回転後面6Fに当り、斜め背後に通過して、反作用として揚力型ブレード6を回転させるので、回転効率が高いものとなる。
In the invention described in (3) above, lift type blades 6 are provided on the peripheral surface of the hub 5A from which front and rear ends of the rotation shafts 5B and 5C of the hub 5A of the horizontal shaft rotor 5 protrude forward and backward. A plurality of blades 6 are fixed in the radial direction at regular intervals, and the base end surface of the base 6A of each lift type blade 6 in plan view has a shape in which the leading edge is thick and gradually becomes thinner toward the trailing edge. Since it is set along the longitudinal axis W of the hub 5A, the base portion 6A is longitudinally long, allowing the airflow from the front to pass through with little resistance, thereby increasing the rotation efficiency.
In a front view with the tip of the lift blade 6 facing upward, the thickness center of the leading edge 6B of the base portion 6A of the lift blade 6 is aligned with the blade center line S passing through the axis of the hub 5A. In this state, the rotation front surface 6G facing the rotation direction of the leading edge 6B is formed parallel to the blade center line S, and the lift type blade 6 is bent greatly in the rotation rearward direction from the middle of the length of the lift type blade 6 to the wing tip. Since the wing tip surface 6D of the lift blade 6 is formed to face the front and is substantially horizontally oblong, when viewed from the front, the front surface 6G of rotation of the lift blade 6 is vertical, and the trailing edge 6C extends from the base 6A. Since it is inclined toward the tip of the blade in the post-rotation direction, and the post-rotation surface 6F spreads toward the tip of the blade, the wind receiving area is wide at the centrifugal portion, so the rotational torque increases.
The leading edge 6B portion of the blade tip surface 6D is thick and pointed toward the trailing edge 6c. Since it is designed to be on the outside, the airflow that hits the rear surface 6F escapes to the outside at the trailing edge 6c of the blade tip surface 6D and is pushed toward the front edge 6E of the blade tip surface 6D by reaction. Since the entire rear rotation surface 6F, which is the rear in the rotation direction from the base 6A of the lift blade 6 to the wing tip surface 6D, is visible from the front, most of the airflow that hits the lift blade 6 from the front is rotating. Since it hits the rear surface 6F, passes obliquely behind, and rotates the lift blade 6 as a reaction, the rotation efficiency is high.
前記(4)に記載の発明における横軸ロータ6は、前後に長い風車筐体4の先端部4Aと後端部4Bの中間に、ハブ5Aにおける回転軸5B、5Cを前後に向けて、前記ハブ5Aが両持ちで支持されるので、振動しにくく回転安定性が高まる。前記ハブ5Aの軸心部から前後に向けて突出する前後の回転軸5B、5C先端部を、前記風車筐体4の先端部4Aと後端部4Bにそれぞれ内装した、前後の同型の発電機4C、4Dの回転軸4E、4Fの先端に、接続具5D、5Dを介して同心状に連結するようにしたので、ブレが生じにくく、かつハブ5Aの前後の回転軸5B、5C先にかかる前記発電機4C、4Dの負荷が均等で、円滑な回転により回転効率に伴う発電効率が高まる。
The horizontal rotor 6 in the invention described in (4) above is arranged between the front end portion 4A and the rear end portion 4B of the wind turbine housing 4 that is long in the front-rear direction, with the rotating shafts 5B and 5C of the hub 5A facing front-rear. Since the hub 5A is supported on both sides, it is less likely to vibrate and the rotational stability is enhanced. Front and rear generators of the same type in which front and rear rotation shafts 5B and 5C protruding forward and backward from the hub 5A are internally mounted in the front and rear ends 4A and 4B of the wind turbine housing 4, respectively. Since the ends of the rotating shafts 4E and 4F of 4C and 4D are concentrically connected via connecting tools 5D and 5D, shaking is less likely to occur and they are applied to the front and rear rotating shafts 5B and 5C of the hub 5A. The load of the generators 4C and 4D is even, and the smooth rotation increases the power generation efficiency associated with the rotation efficiency.
前記(5)に記載の発明における横軸ロータ5における揚力型ブレード6は、翼端を垂直に上向きとした状態の正面視において、揚力型ブレード6の基部6Aの厚さの中央を通るブレード中心線Sをハブ5Aの軸心を通るものとし、前記揚力型ブレード6の前縁6Bを正面に向け、その回転時の回転前面6Gが前記ブレード中心線Sに平行に回転前方に設定されて、後縁6Cが翼端の回転後方向へ向かって斜めに立ち上がり、翼長の中間から翼端へかけては、大きく回転後方向へ屈曲されており、翼先端面6Dが水平横長に正面に現れ、該翼先端面6Dにおける前縁6Bの前縁端6Eの回転軌跡Vよりも、該翼先端面6Dにおける後縁端6cが外側になるように形成されているので、側面視では翼先端面6Dの前縁6Bが正面前方へ突出して、正面に受ける気流を包みこむようにして捕らえることができ、気流は回転後方向の背面外側を向く後縁端6cから外方へ通過する。
前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは、全体が正面から見えるように形成されているので、正面から当る気流はこの回転後面6Fで受けることになり、基部6Aから翼端へ移動し、横長に前方へ突出している前記翼先端面6Dに当って後縁6Cから斜め後方へ通過して反作用として揚力型ブレード6を回転させる。
前記揚力型ブレード6の平面視は、前記回転前面6Gが回転後方へ広がる半円形で、これに続く後縁端6cにかけて先尖りとされ、前記翼先端面6Dにおける前記前縁6Bの回転軌跡Tは、前記ハブ5Aの前端面5Eの回転軌跡Xよりも正面方向に突出されているので、前記基部6Aの中心より正面方向にある前記回転後面6Fが、正面に当る気流を抱えこむようにして回転後方向へ気流を通過させて回転効率を高める。
The lift type blade 6 in the horizontal shaft rotor 5 in the invention described in (5) has a blade center passing through the center of the thickness of the base 6A of the lift type blade 6 in a front view with the blade tip facing vertically upward. The line S passes through the axis of the hub 5A, the front edge 6B of the lift blade 6 faces the front, and the rotation front surface 6G during rotation is parallel to the blade center line S and is set forward in rotation, The trailing edge 6C rises obliquely toward the rear rotation direction of the blade tip, and is greatly bent in the rear rotation direction from the middle of the blade length to the blade tip, and the blade tip surface 6D appears horizontally and horizontally in front. , the trailing edge 6c of the blade tip surface 6D is formed to be outside the rotational locus V of the leading edge 6E of the leading edge 6B of the blade tip surface 6D. A front edge 6B of 6D protrudes forward in the front direction so as to envelop and capture the airflow received in the front direction, and the airflow passes outward from the rear edge end 6c facing the outside of the rear surface in the rear rotation direction.
Since the rear rotation surface 6F extending from the base 6A to the blade tip surface 6D is formed so that the whole can be seen from the front, the airflow that hits from the front is received by this rotation rear surface 6F, and flows from the base 6A to the blade tip. As it moves, it strikes the wing tip surface 6D protruding forward in a horizontal direction, passes obliquely rearward from the trailing edge 6C, and rotates the lift blade 6 as a reaction.
In a plan view of the lift blade 6, the front surface 6G of rotation is a semi-circular shape that spreads toward the rear of the rotation, and is sharpened toward the trailing edge 6c following the front surface 6G. , protrudes in the front direction beyond the locus of rotation X of the front end face 5E of the hub 5A. Increases rotation efficiency by allowing airflow to pass in the direction.
本発明の横軸風車の実施例1の正面図である。1 is a front view of Example 1 of a horizontal axis wind turbine of the present invention; FIG.
図1の側面図で左方が正面である。The left side in the side view of FIG. 1 is the front.
図1の平面図で左方が正面である。The left side in the plan view of FIG. 1 is the front.
図3における風車筐体の一部断面図である。FIG. 4 is a partial cross-sectional view of the wind turbine housing in FIG. 3;
図1における揚力型ブレードの拡大正面図である。FIG. 2 is an enlarged front view of the lifting blade in FIG. 1;
図5における揚力型ブレードの平面図である。FIG. 6 is a plan view of the lifting blade in FIG. 5;
本発明の一実施形態を、図面を参照して説明する。図において、横軸風車1は、支柱2の上部に回転支持体3を回転可能に支持している。回転支持体3は、軸部3Aの上に側面視で前後に長い基部3Bと、前後端部で上向きに立上がる前杆3Cと後杆3Dとで略U字形に形成してある。前記前杆3Cと後杆3Dは、横断面形を、前部は厚く後端へ向かって薄くした略魚形状に形成されている。これによって、正面から前記前杆3Cと後杆3Dに当る気流は抵抗が小さく通過する。
One embodiment of the present invention will be described with reference to the drawings. In the figure, a horizontal axis wind turbine 1 rotatably supports a rotation support 3 on the top of a column 2 . The rotary support 3 is formed in a substantially U shape by a base portion 3B which is long in the front-rear direction in a side view on the shaft portion 3A, and a front rod 3C and a rear rod 3D which rise upward at the front and rear ends. The front rod 3C and the rear rod 3D are formed in a substantially fish-like cross-sectional shape in which the front portion is thicker and the rear end is thinner. As a result, the airflow that strikes the front rod 3C and the rear rod 3D from the front passes through with little resistance.
前記回転支持体3の上部には、風車筐体4の空洞の前端部4Aと後端部4Bが所定の間隔を置いてそれぞれ固定支持されている。前記風車筐体4は、前端部4Aは前記回転支持体3の前杆3C上に固定支持され、後端部4Bは前記回転支持体3の前記後杆3D上に固定支持されており、前記前端部4Aと前記後端部4Bの内部には、それぞれ図4に示すように、同型式の発電機4C、4Dが回転軸4E、4Fの先端を前後で対向させ、かつ同心状に内設されている。
A hollow front end portion 4A and a rear end portion 4B of the wind turbine housing 4 are fixedly supported on the upper portion of the rotary support 3 with a predetermined gap therebetween. The wind turbine housing 4 has a front end 4A fixedly supported on the front rod 3C of the rotary support 3 and a rear end 4B fixedly supported on the rear rod 3D of the rotary support 3. Inside the front end portion 4A and the rear end portion 4B, as shown in FIG. 4, generators 4C and 4D of the same type are installed concentrically with the tips of rotating shafts 4E and 4F opposed to each other. It is
前記風車筐体4の中央部は横軸ロータ5のハブ5Aとされ、該ハブ5Aの前後の中心の回転軌跡Rは、図2に示すように前記支柱2の中心軸線U上に設定されている。前記ハブ5Aの内部には、図4に断面図を示すように、回転軸5B、5Cが前後に長く、かつその前後端部を前記風車筐体4の前後に配設した発電機4C、4Dの前後を向く回転軸4E、4Fの対向する先端に、同心状に接続具5D、5Dを介して連結されている。
The central portion of the wind turbine housing 4 is a hub 5A of the horizontal shaft rotor 5, and the rotational locus R of the center of the front and rear of the hub 5A is set on the central axis line U of the support column 2 as shown in FIG. there is Inside the hub 5A, as shown in the sectional view of FIG. are concentrically connected to opposite ends of rotating shafts 4E and 4F facing forward and backward through connectors 5D and 5D.
図4において、前記前部の発電機4Cの後向きに突出された回転軸4Eと、後部の発電機4Dの前向きに突出する回転軸4Fの対向間には、前記横軸ロータ5のハブ5Aの前向き回転軸5Bと後向きの回転軸5Cのそれぞれの先端部が、接続具5D、5Dを介して同心に回転可能に連結されている。
In FIG. 4, the hub 5A of the horizontal shaft rotor 5 is positioned between the rearwardly protruding rotating shaft 4E of the front generator 4C and the forwardly protruding rotating shaft 4F of the rear generator 4D. Respective tip portions of the forward rotating shaft 5B and the rearward rotating shaft 5C are concentrically rotatably connected via connectors 5D, 5D.
この前後の発電機4C、4Dは同じ型式のものであり、回転軸4E、4Fの突出する方向だけを前後に変更されている。従って前後の発電機4C、4Dは前記横軸ロータ5の回転によって同じ方向に回転されて、それぞれ均等な発電をする。
The front and rear generators 4C and 4D are of the same type, and only the direction in which the rotating shafts 4E and 4F protrude is changed. Therefore, the front and rear generators 4C and 4D are rotated in the same direction by the rotation of the horizontal shaft rotor 5, and generate power equally.
前記前後の発電機4C、4Dにより発電された電気は、前記回転支持体3の前記前杆3Cと後杆3D内部を通る図示しないコードが、下の支柱2内に配設された図示しない蓄電池に接続されていて、該蓄電池に蓄電されたり、他所に配電されるようになっている。
Electricity generated by the front and rear generators 4C and 4D is supplied to a storage battery (not shown) provided in the lower column 2 by a cord (not shown) passing inside the front rod 3C and the rear rod 3D of the rotary support 3. to be stored in the storage battery or distributed elsewhere.
前記横軸ロータ5は、そのハブ5Aの前後に反対側へ突出する各回転軸5B、5Cが、軸受により支持されていないので軸受による摩擦抵抗がかからず、直接に前後の発電機4C、4Dの回転軸4E、4Fに同心状に直結されているため、ブレが生じにくく、風力を発電機4C、4Dに直接伝えて発電する効率が高まる。
In the horizontal shaft rotor 5, the respective rotating shafts 5B and 5C protruding to the opposite sides in the front and rear of the hub 5A are not supported by bearings, so that frictional resistance by the bearings is not applied, and the front and rear generators 4C, 4C and 5C are directly connected to each other. Since it is concentrically directly connected to the rotation shafts 4E and 4F of 4D, it is difficult to cause blurring, and the efficiency of generating power by directly transmitting the wind power to the generators 4C and 4D increases.
また同じ発電量を得るにも、大型の発電機では低風速の時に始動しにくく時間的ロスが生じるが、同じ発電量を2台の小型発電機を使用することにより、低風速でも始動が早くなり、風は風速が一定ではなく停止もするので、その繰り返しの中で一定時間内での発電量は、小型発電機の方が始動の早さによりトータル的に発電量が多くなり発電効率が高まる。
In addition, even if the same amount of power is generated, a large generator is difficult to start at low wind speeds, resulting in a time loss. Because the wind speed is not constant and stops, the amount of power generated within a certain period of time in the repetition is greater for the small generator due to the faster start-up, and the power generation efficiency is lower. increase.
前記風車筐体4の後端部4Bの上面には、方向舵7が前後に長く垂直に立設されており、後端部4Bの下面には、前記回転支持体3の前記後杆3Dに接するように、下部方向舵8が前後に長く垂直に配設されている。
これにより、風向きの変化にも瞬時に前記回転支持体3が回転して、前記横軸ロータ5の正面を常に風上に向けて風力を揚力型ブレード6の正面に受けて、効率の高い発電をさせることが出来る。
A rudder 7 is erected vertically on the upper surface of the rear end portion 4B of the wind turbine housing 4, and the lower surface of the rear end portion 4B is in contact with the rear rod 3D of the rotation support 3. , the lower rudder 8 is arranged vertically long in the front-to-rear direction.
As a result, the rotary support 3 instantly rotates even when the direction of the wind changes, and the front of the horizontal shaft rotor 5 is always turned upwind to receive the wind force in front of the lift blades 6, thereby generating electricity with high efficiency. can be made
前記横軸ロータ5は、ハブ5Aの周面に正面視で均等間隔に8枚の揚力型ブレード6が配設されている。ただしこの枚数に限定されるものではなく、この揚力型ブレード6は、従来のブレードと異なって、形状が特種なために、多数配設しても回転前後の各揚力型ブレードの間を通過する気流に生じる干渉が生じにくく、その結果として低風速でも回転トルクの高い回転をすることができる。
The horizontal shaft rotor 5 has eight lifting blades 6 arranged at regular intervals on the peripheral surface of the hub 5A in a front view. However, the number of lift blades 6 is not limited to this number, and unlike conventional blades, the lift blades 6 have a special shape, so even if a large number of lift blades are arranged, they pass between the lift blades before and after rotation. Interference with air currents is less likely to occur, and as a result, rotation with high rotational torque can be achieved even at low wind speeds.
すなわち、図6に平面を示すように、前記揚力型ブレード6の前記翼先端面6Dは、後縁端6cが前記ハブ5Aの前後の中心の回転軌跡R上にあり、前記翼先端面6Dの前縁6Bは、前記ハブ5Aの前端面5Eよりも正面前方へ斜めに突出しているため、前記回転後面6Fに沿って通過する気流は、前記揚力型ブレード6の回転後方向でなく、横軸ロータ6の背面方向に、風車筐体4の後端部4Bの周面に沿うように抜けるため、各揚力型ブレード6の間を通過する気流の干渉が生じにくい。
That is, as shown in a plan view in FIG. 6, the trailing edge 6c of the tip surface 6D of the lift blade 6 is on the locus of rotation R of the center of the front and rear of the hub 5A. Since the front edge 6B projects obliquely forward from the front end surface 5E of the hub 5A, the airflow passing along the rotation rear surface 6F is directed not in the rotation rearward direction of the lift blades 6, but in the horizontal axis direction. Since the rotor 6 passes along the peripheral surface of the rear end portion 4B of the wind turbine housing 4 in the rearward direction, the air currents passing between the lift blades 6 are less likely to interfere with each other.
前記揚力型ブレード6の正面は、図4に示すように、ハブ4の中心を通るブレード中心線Sに対して、前縁6Bは正面を向いて平行であるが、翼端へかけて大きく回転後方向へ屈曲していて、後縁6Cは基部6Aから翼端方向へかけて次第に回転後方向へ傾斜して、翼先端面6Dは、前部の幅が広く後部へかけて弧を描いて鳥の嘴のように細く横長に正面を向いて形成されている。
As shown in FIG. 4, the front surface of the lift blade 6 is parallel to the blade centerline S passing through the center of the hub 4, and the leading edge 6B faces the front and is parallel to the blade tip. The trailing edge 6C is bent in the rearward direction, and the trailing edge 6C is gradually inclined in the rotationally rearward direction from the base 6A toward the blade tip. It is shaped like a bird's beak and is thin and oblong facing the front.
図5において、前記翼先端面6Dの前記前縁6Bの厚さの中心の前縁端6Eの回転軌跡Vよりも、前記翼先端面6Dの後縁端6cは外側にあるので、揚力型ブレード6の、前記回転後面6Fに沿って基部6Aから翼先端面6D方向へ通過する気流は、後縁端6cで背面の外向きに通過する。すなわち図2における風車筐体4の周面に平行に沿って後端部4Bの背後方向へ通過する。
In FIG. 5, the trailing edge 6c of the wing tip surface 6D is outside the rotational locus V of the leading edge 6E at the center of the thickness of the leading edge 6B of the wing tip surface 6D. 6, the airflow passing from the base 6A toward the blade tip surface 6D along the rotating rear surface 6F passes outward at the trailing edge 6c. That is, it passes in the rearward direction of the rear end portion 4B along parallel to the peripheral surface of the wind turbine housing 4 in FIG.
また図2に示すように、前記翼先端面6Dの前記前縁6Bの回転軌跡Tは、前記ハブ5Aの先端面5Eの回転軌跡Xよりも正面前方に位置しているが、前記翼先端面6Dの後縁端6cの回転軌跡Rは、前記ハブ5Aの前後の中心の回転軌跡Rと重なる位置となっている。
Further, as shown in FIG. 2, the locus of rotation T of the leading edge 6B of the tip surface 6D of the blade is located in front of the locus of rotation X of the tip surface 5E of the hub 5A. The rotational trajectory R of the trailing edge 6c of 6D overlaps the rotational trajectory R of the front and rear center of the hub 5A.
このことは、前記翼先端面6Dが平面視における前記基部6Aの中心よりも正面方向へ出ている事を示し、前記翼先端面6Dに近い前記回転後面6Fに当る気流は、枠で囲い込まれるようになって前記回転後面6Fの後縁6Cから背面方向へ通過して回転効率を高める。
This indicates that the blade tip surface 6D protrudes in the front direction from the center of the base portion 6A in plan view, and the airflow hitting the rotation rear surface 6F near the blade tip surface 6D is enclosed by the frame. It passes from the trailing edge 6C of the rotating rear surface 6F to the rear direction to increase the rotation efficiency.
前記揚力型ブレード6の基部6Aの回転方向に対しての前記回転後面6F(図1及び図5では正面に現われている)は、図3に示すように、前記風車筐体4の軸心線Wに対して平行にハブ4に固定されているが、図3の前記軸心線Wの位置に符号31で示す横断面は、図5における31ー31線断面を示しており、風車筐体4の前記軸心線Wに対する揚力型ブレード6の回転後面6Fは、その後縁6Cが回転後方向へ38度~40度の範囲で傾斜している。
The rear surface 6F of the lift blade 6 with respect to the rotation direction of the base 6A (appearing on the front in FIGS. 1 and 5) is the axis of the wind turbine housing 4, as shown in FIG. It is fixed to the hub 4 parallel to W, and the cross section indicated by reference numeral 31 at the position of the axial center line W in FIG. The rear edge 6C of the rear edge 6C of the lifting blade 6 with respect to the axis W of 4 is inclined in the range of 38 degrees to 40 degrees in the rear rotation direction.
図3における符号32で示す横断面は、図5における32-32線断面を示しており、その回転後面6Fは、風車筐体4の軸心線Wに対して28度~30度の範囲で後縁6Cを内側に向けて傾斜させている。
The cross section indicated by reference numeral 32 in FIG. 3 shows the 32-32 line cross section in FIG. The trailing edge 6C is slanted inward.
すなわち前記揚力型ブレード6は、基部6Aの回転後面6Fは風車筐体4の軸心線Wに対して平行であるが、翼端方向へ行くに従って、次第に後縁6Cを前縁6Bよりも回転後方向へ傾斜させて、翼先端面6Dにおいては、その後縁端6cをハブ5Aの前後の中心の回転軌跡Rまで正面方向に傾斜させている。
That is, in the lift blade 6, the rear surface 6F of the base 6A is parallel to the axis W of the wind turbine housing 4, but the trailing edge 6C rotates more than the leading edge 6B toward the tip of the blade. Inclining in the rearward direction, the trailing edge 6c of the blade tip surface 6D is inclined in the frontward direction to the rotational locus R of the center of the front and rear of the hub 5A.
その結果、正面から前記揚力型ブレード6に当る気流は、基部6Aにおいては風車筐体4の軸心線Wに沿う後方向へ流れ、翼端の方へ行くに従って前記後縁6Cが風車筐体4の軸心線W方へ寄り、かつ前記支柱2の軸心線Uに近づいている。
As a result, the airflow impinging on the lift blades 6 from the front flows rearward along the axis W of the wind turbine housing 4 at the base 6A, and the trailing edge 6C moves toward the wind turbine housing as it goes toward the tip of the blade. 4 and approach the axis U of the support 2 .
また前記揚力型ブレード6の回転前方に対面する回転前面6Gは、図3の揚力型ブレード6の断面でよくわかるように、前縁6Bから弦の中央部へかけて大きく膨らんでいるため、この回転前面6Gに沿う気流は、コアンダ効果によって高速で風車筐体4の軸心線Wの背面方向へ抜けるため、揚力型ブレード6は回転前面6Gに生じる気圧が回転後面6Fに生じる気圧より低く、この気圧の差によって、回転前面方向へ引寄せられて高速回転する。
As can be clearly seen in the cross section of the lift blade 6 in FIG. 3, the rotation front face 6G facing the rotation front of the lift blade 6 swells greatly from the front edge 6B to the center of the chord. Since the airflow along the rotating front surface 6G passes at high speed toward the rear side of the axis W of the wind turbine housing 4 due to the Coanda effect, the air pressure generated on the rotating front surface 6G is lower than the pressure generated on the rotating rear surface 6F. Due to this air pressure difference, it is pulled toward the front of the rotation and rotates at high speed.
また揚力型ブレード6の回転前面6Gに沿う気流が高速で通過するため、揚力型ブレード6の枚数が多くても、回転時の前後の揚力型ブレード6の回転により生じる気流の干渉が生じにくく、低風速の時においても回転効率が高く、ロータ5の回転トルクが強い特徴がある。
In addition, since the airflow along the rotation front surface 6G of the lift type blade 6 passes at high speed, even if the number of the lift type blades 6 is large, the airflow generated by the front and rear rotation of the lift type blade 6 during rotation is unlikely to interfere with each other. Rotational efficiency is high even when the wind speed is low, and the rotational torque of the rotor 5 is strong.
図6に平面を示すように、揚力型ブレード6は翼端部を上向きにした状態で、基部6Aはハブ5Aの中心にあるが、翼端の後縁端6cは前記基部6Aの中心から回転後方へ大きく離れていることは、従来の前向き傾斜部を形成した縦長ブレードとは大きく異なっている。
As shown in plan in FIG. 6, the lift blades 6 are tipped upward, the base 6A is centered on the hub 5A, but the trailing edge 6c of the tip rotates from the center of said base 6A. The large rearward separation is very different from the conventional longitudinal blades that form a forward bevel.
従って、従来の前向傾斜部を有する縦長ブレードの前向傾斜部と異なって、翼端における翼先端面6Dが、正面視で水平横長に形成され、平面視で、翼先端面6Dの前縁6Bが基部6Aより回転後方で、かつハブ5Aの正面5Aよりも正面前方に突出しており、平面視で翼先端面6Dの後縁端6cが基部6Aの中心の回転軌跡R上にあり、回転後面6Fの後縁6Cが背面方向へ傾斜している分、後縁6Cの長さの中間が、基部6Aの背面よりも大きく背面方向へ突出して、翼端へかけて、翼先端面6Dの後縁端6cが正面方向へ出ている。
Therefore, unlike the forward inclined portion of a conventional vertically elongated blade having a forward inclined portion, the blade tip surface 6D at the blade tip is horizontally elongated in a front view, and the leading edge of the blade tip surface 6D is formed in a plan view. 6B is behind the base portion 6A and protrudes frontward from the front surface 5A of the hub 5A, and in a plan view, the trailing edge 6c of the blade tip surface 6D is on the rotation locus R of the center of the base portion 6A, and is rotated. Since the trailing edge 6C of the trailing surface 6F is inclined in the rearward direction, the middle of the length of the trailing edge 6C protrudes in the rearward direction more than the rear surface of the base portion 6A, and extends toward the tip of the blade tip surface 6D. The trailing edge 6c protrudes in the front direction.
このように、揚力型ブレード6は長さの中間までは、全体が前縁6Bから後縁6Cへかけて背面方向へ傾斜しており、揚力型ブレード6の長さの中間から屈曲して翼端へかけては次第に正面の回転後部寄りに伸びて、翼先端面6Dがその前縁6Bをハブ5Aの前面5Eよりも正面前方へ突出させて、揚力型ブレード6の長さの半分以上、翼端へかけての部分が、正面に当る気流を包みこむようにして、回転後方の翼端の背面方向へ気流を纏めて通過させるので、低風速でも回転効率と発電効率を高くする事が出来る。
In this way, the lift blade 6 is inclined in the rearward direction from the leading edge 6B to the trailing edge 6C until the middle of its length, and bends from the middle of the length of the lift blade 6 to form a wing. To the end, it gradually extends toward the rear of the front rotation, and the tip surface 6D of the wing projects the front edge 6B forward from the front surface 5E of the hub 5A, more than half the length of the lift blade 6, The part extending to the tip of the wing envelops the airflow hitting the front and allows the airflow to pass collectively in the direction behind the tip of the wing behind the rotation, so it is possible to increase the rotation efficiency and power generation efficiency even at low wind speeds.
この発明にかかる横軸風車、横軸ロータ及びロータブレードは、低風速でも回転効率が高く、回転トルクも高いので、風力発電装置に利用される。また横軸ロータやロータブレードは、水力発電装置用に利用することができる。
INDUSTRIAL APPLICABILITY The horizontal axis wind turbine, horizontal axis rotor, and rotor blades according to the present invention have high rotational efficiency and high rotational torque even at low wind speeds, and are therefore used in wind turbine generators. Horizontal shaft rotors and rotor blades can also be used for hydroelectric power plants.
1.横軸風車
2.支柱
3.回転支持体
3A.軸部
3B.基部
3C.前杆
3D.後杆
4.風車筐体
4A.前端部
4B.後端部
4C.前部発電機
4D.後部発電機
4E.後向回転軸
4F.前向回転軸
5. 横軸ロータ
5A.ハブ
5B.前向回転軸
5C.後向回転軸
5D.接続具
5E. 前端面
6.揚力型ブレード
6A.基部
6B.前縁
6C.後縁
6D.翼先端面
6E.回転前端
6F.回転後面
6G.回転前面
7.方向舵
8.下部方向舵
R.ハブの中心回転軌跡(翼端面後縁回転軌跡)
S.ブレード中心線
T.翼端面前縁中心回転軌跡
U.支柱軸心線
V.翼先端面前縁端回転軌跡
W.風車筐体軸心線
X.ハブの前端面回転軌跡
Y.ハブの後端面回転軌跡
1. Horizontal axis wind turbine2. struts3. Rotating support 3A. Axle 3B. Base 3C. Front rod 3D. rear rod4. Wind turbine housing 4A. front end 4B. rear end 4C. Forward generator 4D. rear generator 4E. Rear rotation shaft 4F. forward rotating shaft 5 . Lateral shaft rotor 5A. Hub 5B. Forward rotating shaft 5C. Backward rotating shaft 5D. Connector 5E. Front end face6. Lifting blades 6A. Base 6B. leading edge 6C. trailing edge 6D. Blade tip surface 6E. Rotating front end 6F. After rotation surface 6G. 7. Rotating front face. Rudder
8. Lower rudder R. Hub center rotation trajectory (blade tip trailing edge rotation trajectory)
S. blade centerline T.D. Leading edge center rotation trajectory of blade tip face U. strut axis V. Rotational trajectory of leading edge of blade tip surface W. Wind turbine housing axis X. Rotation locus of front end face of hub Y. Rear end face rotation locus of hub
本発明は、回転時に通過する気流の干渉が生じにくく、回転性能に優れ、低風速でも回転トルクの高い横軸風車、横軸ロータ及びロータブレードに関する。
TECHNICAL FIELD The present invention relates to a horizontal-axis wind turbine, a horizontal-axis rotor, and rotor blades, which are less susceptible to interference of airflows passing during rotation, have excellent rotation performance, and have high rotational torque even at low wind speeds.
横軸風車の横軸ロータは、例えば特許文献1に記載されている。
A horizontal axis rotor of a horizontal axis wind turbine is described, for example, in Patent Document 1.
特開2018-40304号JP 2018-40304
特許文献1に記載の横軸ロータは、ブレードの正面形状が、縦長方向の中間部が最大弦長部とされ、最大弦長部から翼端にかけて回転後方向へ大きく屈曲させた横向傾斜部とされ、該横向傾斜部は側面視で前記最大弦長部から翼端へかけて正面方向へ前向傾斜させてあるものである。その結果、ブレードの正面に当る気流は、最大弦長部に集まり、ロータの回転後方向へ通過し回転効率を高めるものとされている。この気流の通過方向では、ブレードが多いと干渉が生じるので低風速域では効率を高くすることが困難である。
本発明は、ブレードの数を多くしても各ブレード間を通過する気流の干渉が生じにくく、低風速でも回転効率と回転トルクの高い横軸風車、横軸ロータ及びロータブレードを提供することを目的としている。
In the horizontal shaft rotor described in Patent Document 1, the front shape of the blade has a maximum chord length portion in the middle portion in the longitudinal direction, and a laterally inclined portion that is greatly bent in the post-rotation direction from the maximum chord length portion to the blade tip. The laterally inclined portion is inclined forward from the maximum chord length portion to the tip of the blade in a side view. As a result, the airflow that hits the front of the blade gathers at the maximum chord length and passes in the backward rotation direction of the rotor, increasing the rotation efficiency. If there are many blades in this air flow passage direction, interference occurs, so it is difficult to increase the efficiency in a low wind speed region.
The present invention is to provide a horizontal-axis wind turbine, a horizontal-axis rotor, and rotor blades, which have high rotational efficiency and high rotational torque even at low wind speeds, with little interference of airflows passing between the blades even if the number of blades is increased. purpose.
本発明は前記課題を解決するために、次のような技術的手段を講じた。
In order to solve the above problems, the present invention has taken the following technical measures.
(1) 支柱2上に回転可能に配設した回転支持体3で、風車筐体4を水平に支持する構成において、前杆3Cと後杆3Dを立設した前記回転支持体3における前記前杆3Cで前記風車筐体4の先端部4Aを水平に支持し、前記後杆3Dで前記風車筐体の後端部4Bを水平に支持し、前記風車筐体4の前記先端部4Aと前記後端部4Bの間に、横軸ロータ5をそのハブ5Aの前後及び幅の中心が、前記支柱2の支柱軸心線Uと重なるように配設し、前記風車筐体4の前記先端部4Aと前記後端部4Bにはそれぞれ発電機4C、4Dを、その各回転軸4E、4Fが同一軸線上になるように配設するとともに、当該前後の回転軸4E、4Fの間に前記横軸ロータ5のハブ5A中心に固定した回転軸5B、5Cの前後端部を連結して前記横軸ロータ5を同軸回転可能とし、前記横軸ロータ5は、前記回転軸5B、5Cを前後に向けた状態で、前記ハブ5Aの周面に複数の揚力型ブレード6を定間隔に放射方向に向けて固定し、前記揚力型ブレード6の翼端を上向きとした正面視で、前記揚力型ブレード6の基部6Aは、その前縁6Bの厚さの中心が前記ハブ5Aの軸心を通るブレード中心線Sに沿い、前記前縁6Bの回転前面6Gは前記ブレード中心線Sと平行に形成され、かつ翼長の中間から翼端へかけて前記回転前面6Gは回転後方向へ大きく屈曲して、前記前縁6Bが厚く後縁端6Cへかけて細く尖る翼先端面6Dを正面横長に見えるようにし、前記基部6Aから翼端へかけての後縁6Cは、次第に回転後方向へ傾斜して前記翼先端面6Dに近づくに従って急激に屈曲して、前記翼先端面6Dの前縁端6Eの回転軌跡Vよりも前記翼先端面6Dにおける前記後縁端6cが外側になるように形成し、かつ前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは正面から見えるようにし、前記翼先端面6Dにおける前記後縁端6cの回転軌跡は、前記支柱2の支柱軸心線Uに重なる位置になるように形成されてなる横軸風車。
(1) In a configuration in which the wind turbine housing 4 is horizontally supported by the rotating support 3 rotatably disposed on the column 2, the front rod 3C and the rear rod 3D of the rotating support 3 are erected. The front end portion 4A of the wind turbine housing 4 is horizontally supported by the rod 3C, and the rear end portion 4B of the wind turbine housing is horizontally supported by the rear rod 3D. Between the rear end portions 4B, the horizontal rotor 5 is disposed so that the center of the front and rear and the width of the hub 5A overlaps the support shaft center line U of the support 2, and the front end portion of the wind turbine housing 4 Generators 4C and 4D are arranged at 4A and the rear end portion 4B, respectively, so that their respective rotation shafts 4E and 4F are on the same axis, and the horizontal rotation shafts 4E and 4F are arranged between the front and rear rotation shafts 4E and 4F. The front and rear ends of rotary shafts 5B and 5C fixed to the center of the hub 5A of the shaft rotor 5 are connected to make the horizontal shaft rotor 5 coaxially rotatable. A plurality of lift type blades 6 are fixed to the peripheral surface of the hub 5A at regular intervals in a radial direction, and in a front view with the wing tips of the lift type blades 6 facing upward, the lift type blades 6, the center of the thickness of the front edge 6B is along the blade center line S passing through the axis of the hub 5A, and the rotation front surface 6G of the front edge 6B is formed parallel to the blade center line S. and the rotating front surface 6G is greatly bent in the rotation rearward direction from the middle of the blade length to the blade tip, and the leading edge 6B is thick and the blade tip surface 6D, which is thin and sharp toward the trailing edge 6C, is elongated in the front side. The trailing edge 6C from the base portion 6A to the tip of the blade gradually inclines in the backward direction of rotation and bends sharply as it approaches the tip surface 6D of the blade. The trailing edge 6c of the blade tip surface 6D is formed so as to be outside the rotation locus V of 6E, and the rotation rear surface 6F from the base 6A to the blade tip surface 6D is visible from the front, A horizontal axis wind turbine formed so that the locus of rotation of the trailing edge 6c on the blade tip surface 6D overlaps the support axis U of the support 2.
(2) 前記揚力型ブレード6の前記翼先端面6Dにおける前記前縁端6Eの前記回転軌跡Vは、前記横軸ロータ5の前記ハブ5Aにおける前記前端面5Eの平面視における回転軌跡Xよりも正面前方に位置するように形成され、前記揚力型ブレード6の前記翼先端面6Dにおける前記後縁端6cの回転軌跡は前記ロータ5の前記ハブ5Aにおける前後の中心の回転軌跡Rと重なるように前記揚力型ブレード6が形成されている前記(1)に記載の横軸風車。
(2) The rotational trajectory V of the leading edge 6E of the blade tip surface 6D of the lift blade 6 is longer than the rotational trajectory X of the front end surface 5E of the hub 5A of the horizontal shaft rotor 5 in plan view. The locus of rotation of the trailing edge 6c of the blade tip surface 6D of the lift blade 6 overlaps with the locus of rotation R of the hub 5A of the rotor 5 in the front-rear direction. The horizontal axis wind turbine according to (1) above, in which the lift blades 6 are formed.
(3) 横軸ロータ5の前記ハブ5Aの回転軸5B、5Cの前後端部を、それぞれ前後に突出させる前記ハブ5Aの周面に、前記揚力型ブレード6を複数枚定間隔で放射方向へ向けて固定し、各揚力型ブレード6の基部6Aの平面視の基端面は、前縁部が厚く後端にかけて次第に薄くした形状として、該基部6Aの前後を前記ハブ5Aの前後を向く軸線に沿うように設定し、前記揚力型ブレード6の翼端を上向きとした正面視で、該揚力型ブレード6の前記基部6Aの前縁6Bの厚さ中心を、前記ハブ5Aの軸心を通るブレード中心線Sに沿わせた状態で、前記前縁6Bの回転方向に対面する回転前面6Gを前記ブレード中心線Sと平行に形成し、かつ前記揚力型ブレード6の長さの中間から翼端へかけて回転後方向へ大きく屈曲させて前記揚力型ブレード6の翼先端面6Dを正面に向けてほぼ水平に形成し、前記翼先端面6Dは、前記前縁6B部分が厚く後縁端6cへかけて先尖りとし、前記翼先端面6Dにおける前縁端6Eの回転軌跡Vよりも前記翼先端面6Dにおける後縁端6cが外側になるようにし、前記揚力型ブレード6の基部6Aから前記翼先端面6Dへかけての、回転方向の後方である回転後面6F全部が正面から見えるようにしてなる横軸ロータ。
(3) A plurality of lifting blades 6 are arranged radially at regular intervals on the peripheral surface of the hub 5A from which the front and rear ends of the rotary shafts 5B and 5C of the hub 5A of the horizontal shaft rotor 5 protrude forward and backward. The base end surface of the base 6A of each lifting blade 6 in plan view has a shape in which the front edge is thick and gradually becomes thinner toward the rear end, and the front and rear of the base 6A are aligned with the front and rear axis of the hub 5A. In a front view with the wing tip of the lift blade 6 facing upward, the thickness center of the front edge 6B of the base portion 6A of the lift blade 6 is set so as to pass through the axis of the hub 5A. A rotating front surface 6G facing the rotating direction of the leading edge 6B is formed parallel to the blade centerline S along the centerline S, and from the middle of the length of the lift type blade 6 to the tip of the blade. The blade tip surface 6D of the lift blade 6 is formed substantially horizontally toward the front by greatly bending in the rearward direction of rotation, and the blade tip surface 6D is thick at the leading edge 6B portion and extends to the trailing edge end 6c. so that the trailing edge 6c of the blade tip surface 6D is outside the rotational trajectory V of the leading edge 6E of the blade tip surface 6D, and the base 6A of the lift blade 6 A horizontal shaft rotor in which the entire rotation rear face 6F, which is the rear in the direction of rotation, is visible from the front to the tip face 6D.
(4) 前記横軸ロータ5は、前後に長い風車筐体4の先端部と後端部の中間に、ハブ5Aにおける前後の回転軸5B、5Cを前後に向けて支持されるものとし、前記ハブの中心から前後に向けて突出する前後の回転軸5B、5C先端部を、前記風車筐体の先端部4Aと後端部4Bに内装した前後の発電機4C、4Dの前後を向く回転軸5B、5Cの先端に、接続具5D、5Dを介して同心状に連結するようにしてなる前記(3)に記載の横軸ロータ。
(4) The horizontal shaft rotor 5 is supported between the front end and the rear end of the wind turbine housing 4 that is long in the front-rear direction, with the front and rear rotation shafts 5B and 5C of the hub 5A facing forward and backward. Front and rear rotating shafts 4C and 4D of the front and rear generators 4C and 4D, in which front and rear rotating shafts 5B and 5C protruding forward and backward from the center of the hub are mounted inside the front end portion 4A and the rear end portion 4B of the wind turbine housing. The horizontal shaft rotor according to (3) above, which is concentrically connected to the ends of 5B and 5C via connecting tools 5D and 5D.
(5) 横軸ロータ5における揚力型ブレード6であって、ハブ5Aに固定して翼端を垂直に上向きとした状態の正面視において、前記揚力型ブレード6の基部6Aの厚さの中央を通るブレード中心線Sをハブ5Aの軸心を通るものとし、前記揚力型ブレード6の前縁6Bを正面に向け、その回転時の回転前面6Gが前記ブレード中心線Sに平行に回転前方に設定されて、後縁6Cが翼端へ向かって斜めに立ち上がり、翼長の中間から翼端へかけては、大きく回転後方向へ屈曲されて、翼先端面6Dが水平横長に正面に現れ、該翼先端面6Dにおける前縁6Bの前縁端6Eの回転軌跡Vよりも、該翼先端面6Dにおける後縁端6cが外側になるように形成され、前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは、全体が正面から見えるように形成し、前記揚力型ブレード6の平面視は、前記回転前面6Gが後部が広がる半円形で、これに続く後縁端6cにかけて先尖りとされ、前記翼先端面6Dにおける前記前縁6Bの回転軌跡Tは、前記ハブ5Aの前端面5Eの回転軌跡Xよりも正面前方に突出されているロータブレード。
(5) The lift blade 6 in the horizontal shaft rotor 5 is fixed to the hub 5A, and in a front view with the blade tip facing vertically upward, the center of the thickness of the base 6A of the lift blade 6 is The blade centerline S passing through is set to pass through the axis of the hub 5A, the front edge 6B of the lift type blade 6 is directed to the front, and the rotation front surface 6G at the time of rotation is parallel to the blade centerline S and set to the front of rotation. As a result, the trailing edge 6C rises obliquely toward the tip of the blade, and from the middle of the blade length to the tip of the blade, it is greatly bent in the backward rotation direction, and the tip surface 6D of the blade appears horizontally and horizontally in front. The trailing edge 6c of the blade tip surface 6D is formed so as to be outside the rotational locus V of the leading edge 6E of the leading edge 6B of the blade tip surface 6D, and from the base portion 6A to the blade tip surface 6D. The rotation rear surface 6F is formed so that the whole can be seen from the front, and the plane view of the lifting blade 6 is such that the rotation front surface 6G has a semi-circular shape with a wide rear portion and a trailing edge 6c that is pointed. A rotor blade in which a rotational trajectory T of the leading edge 6B on the blade tip surface 6D protrudes frontward from a rotational trajectory X of the front end surface 5E of the hub 5A.
本発明によると、次のような効果が奏せられる。
ADVANTAGE OF THE INVENTION According to this invention, the following effects are exhibited.
前記(1)に記載の発明においては、横軸ロータ5がその回転軸5B、5Cを前後に突出させて前後の回転軸5B、5Cが風車筐体4の先端部4Aと後端部4Bの中間に両持ちで支持されているので、横軸ロータ5が振動しにくく安定して回転することが出来る。
横軸ロータ5は、複数の揚力型ブレード6をハブ5Aの周面に配設されているので受風面積が広く、低風速でも回転効率が高く、回転トルクも高い。
複数の揚力型ブレード6を配設すると、横軸ロータ5の回転に伴い各揚力型ブレード6間に生じる通過気流の干渉が生じて回転効率が低下し、或いは騒音が生じ易いが、本発明では揚力型ブレード6の形状が前例のない特種形に形成されているので、それが解消されている。
すなわち、風上を向く正面で、翼端を上向きとした揚力型ブレード6は、基部6Aが前後方向へ長く向いており、その厚みの中央に、ハブ5Aの軸心を通るブレード中心線Sが垂直に形成されている。揚力型ブレード6の正面に見える前縁6Bにおける回転方向に対面する回転前面6Gは、前記ブレード中心線Sに平行に形成され、翼端へ向かって長さの中間から大きく回転後方向に屈曲し、正面に翼先端面6Dが横長に見えるように形成されている。回転時に遠心部で高速に回転する揚力型ブレード6の翼端に近い部分では、風の抵抗がかかりにくく、かつコアンダ効果によって通過する気流は高速となり、その結果として負圧になって通過するので、ハブ5A周面における回転前後の揚力型ブレード6の配置間隔が狭くても通過気流の干渉障害が生じにくい特長がある。
前記揚力型ブレード6は前記基部6Aから前記翼先端面6Dにかけての、回転時に、回転する後方向にある回転後面6Fは、正面から見えるように形成されている。すなわち横軸ロータ5の正面に当る気流は、前記揚力型ブレード6の回転後面6Fにあたって、その斜めの表面を滑って回転後方向へ斜めに通過するとともに、揚力型ブレード6を回転方向に押し出すことにより横軸ロータ5を回転させる。この場合、揚力型ブレード6の前記基部6Aから遠心方向へ移動する気流は、正面方向へ突出している前記翼先端面6Dの後縁端6c部分で回転軸5B方向の背面方向へ斜めに通過して、反作用で揚力型ブレード6の回転遠心部において揚力型ブレード6を前縁6B方向に強く押し出して回転させる。
In the invention described in (1) above, the horizontal rotor 5 protrudes its rotary shafts 5B and 5C forward and backward, and the front and rear rotary shafts 5B and 5C are arranged between the front end portion 4A and the rear end portion 4B of the wind turbine housing 4. Since both sides are supported in the middle, the horizontal shaft rotor 5 is less likely to vibrate and can be stably rotated.
Since the horizontal shaft rotor 5 has a plurality of lifting blades 6 arranged on the peripheral surface of the hub 5A, it has a large wind receiving area, high rotational efficiency even at low wind speeds, and high rotational torque.
When a plurality of lift blades 6 are arranged, interference of air currents generated between the lift blades 6 occurs as the horizontal shaft rotor 5 rotates, resulting in reduced rotational efficiency or noise. Since the shape of the lift blade 6 is formed into an unprecedented special shape, it is eliminated.
That is, the lift type blade 6 has a front face facing upwind and a base portion 6A facing upward in the front-to-back direction. formed vertically. A front edge 6B of the lifting blade 6 facing in the rotational direction is formed parallel to the center line S of the blade, and is bent in the backward direction from the middle of the length toward the tip of the blade. , the wing tip surface 6D is formed so as to look oblong in the front. In the portion near the tip of the lift blade 6 that rotates at high speed in the centrifugal portion during rotation, wind resistance is less likely to be applied, and the passing airflow becomes high speed due to the Coanda effect, and as a result, it passes with negative pressure. , even if the arrangement interval of the lift blades 6 before and after the rotation on the peripheral surface of the hub 5A is narrow, interference of passing air currents is unlikely to occur.
The lift-type blade 6 is formed so that a rotation rear surface 6F, which rotates in the rearward direction during rotation from the base portion 6A to the blade tip surface 6D, can be seen from the front. That is, the airflow that hits the front of the horizontal shaft rotor 5 hits the rear rotation surface 6F of the lift blade 6, slides on the oblique surface, passes obliquely in the rear rotation direction, and pushes the lift blade 6 in the rotation direction. to rotate the horizontal shaft rotor 5 . In this case, the airflow moving in the centrifugal direction from the base portion 6A of the lift blade 6 obliquely passes in the rearward direction in the direction of the rotation axis 5B at the trailing edge 6c portion of the blade tip surface 6D projecting in the frontward direction. As a result, the lift type blade 6 is strongly pushed in the direction of the front edge 6B at the centrifugal portion of the lift type blade 6 to rotate.
前記(2)に記載の発明においては、前記揚力型ブレード6の前記翼先端面6Dにおける前記前縁端6Eの前記回転軌跡Vは、前記横軸ロータ5の前記ハブ5Aにおける前記前端面5Eの平面視における回転軌跡Xよりも正面前方に位置するように形成され、前記翼先端面6Dにおける前記後縁端6cの回転軌跡Rは前記横軸ロータ5の前記ハブ5Aにおける前後の中心の回転軌跡Rと重なるように前記揚力型ブレード6が形成されているので、正面視で正面に見える前記翼先端面6Dは、ハブ5Aの前後の中心の回転軌跡Rより前方に張出していると同時に、平面視で前記翼先端面6Dは、その前縁端6Eから後縁端6cへかけて背後方向へ傾斜していて、前記揚力型ブレード6の翼端部における回転後面6Fに当る気流を、後に続く揚力型ブレード6の回転前面6Gに沿つて高速で通過する気流に沿うように通過させて回転効率を高める。
In the invention described in (2) above, the rotational trajectory V of the leading edge 6E of the blade tip surface 6D of the lift blade 6 is the same as that of the front end surface 5E of the hub 5A of the horizontal shaft rotor 5. The trailing edge 6c of the blade tip surface 6D is formed so as to be located forward in front of the rotational locus X in plan view, and the rotational locus R of the trailing edge 6c of the blade tip surface 6D is the rotational locus of the horizontal shaft rotor 5 at the front-rear center of the hub 5A. Since the lift blade 6 is formed so as to overlap R, the wing tip surface 6D, which is visible in front when viewed from the front, protrudes forward from the locus of rotation R at the center of the front and rear of the hub 5A, and at the same time, is flat. As can be seen, the tip surface 6D of the blade is inclined rearward from the leading edge 6E to the trailing edge 6c, and follows the airflow hitting the rotating rear surface 6F at the tip of the lift blade 6. Rotational efficiency is enhanced by passing along the airflow passing at high speed along the rotation front face 6G of the lift type blade 6. - 特許庁
前記(3)に記載の発明においては、横軸ロータ5の前記ハブ5Aの回転軸5B、5Cの前後端部を、それぞれ前後に突出させる前記ハブ5Aの周面に、揚力型ブレード6を複数枚定間隔で放射方向へ向けて固定し、各揚力型ブレード6の基部6Aの平面視の基端面は、前縁部が厚く後縁端にかけて次第に薄くした形状として、該基部6Aの前後をハブ5Aの前後を向く軸線Wに沿うように設定してあるので、前記基部6Aは前後に長く、正面からの気流は抵抗が少なく通過することができ、回転効率が高まる。
前記揚力型ブレード6の翼端を上向きとした正面視で、該揚力型ブレードの前記基部6Aの前縁6Bの厚さ中心を、前記ハブ5Aの軸心を通るブレード中心線Sに沿わせた状態で、前記前縁6Bの回転方向に対面する回転前面6Gをブレード中心線Sと平行に形成し、かつ揚力型ブレード6の長さの中間から翼端へかけて回転後方向へ大きく屈曲させて、揚力型ブレード6の翼先端面6Dを正面に向けてほぼ水平横長に形成してあるので、揚力型ブレード6の正面視は、回転前面6Gは垂直で、前記後縁6Cは基部6Aから翼端方へ回転後方向へ傾斜しており、回転後面6Fは翼端方向へ広がって受風面積が遠心部で広いので、回転トルクが高くなる。
前記翼先端面6Dは、前縁6B部分が厚く後縁端6cへかけて先尖りとし、前記翼先端面6Dにおける前縁端6Eの回転軌跡Vよりも翼先端面6Dにおける後縁端6cが外側になるようにしてあるので、前記回転後面6Fに当る気流は翼先端面6Dの後縁端6cで外側へ抜けて、反動で翼先端面6Dの前縁端6E方向へ押し出す。揚力型ブレード6の基部6Aから翼先端面6Dへかけての回転方向の後方である回転後面6F全部が正面から見えるようにしてあるので、正面から揚力型ブレード6に当る気流は、ほとんどが回転後面6Fに当り、斜め背後に通過して、反作用として揚力型ブレード6を回転させるので、回転効率が高いものとなる。
In the invention described in the above (3), a plurality of lift blades 6 are provided on the peripheral surface of the hub 5A from which the front and rear ends of the rotation shafts 5B and 5C of the hub 5A of the horizontal shaft rotor 5 protrude forward and backward. The bases 6A of the lifting blades 6 are fixed in the radial direction at regular intervals, and the bases 6A of the lift blades 6 have a shape in which the leading edge is thick and gradually becomes thinner toward the trailing edge. Since it is set along the longitudinal axis W of 5A, the base portion 6A is longitudinally long, allowing the airflow from the front to pass through with little resistance, thereby increasing the rotation efficiency.
In a front view with the tip of the lift blade 6 facing upward, the thickness center of the leading edge 6B of the base portion 6A of the lift blade 6 is aligned with the blade center line S passing through the axis of the hub 5A. In this state, the rotation front surface 6G facing the rotation direction of the leading edge 6B is formed parallel to the blade center line S, and the lift type blade 6 is bent greatly in the rotation rearward direction from the middle of the length of the lift type blade 6 to the wing tip. Since the wing tip surface 6D of the lift blade 6 is formed to face the front and is substantially horizontally oblong, when viewed from the front, the front surface 6G of rotation of the lift blade 6 is vertical, and the trailing edge 6C extends from the base 6A. Since it is inclined toward the tip of the blade in the post-rotation direction, and the post-rotation surface 6F spreads toward the tip of the blade, the wind receiving area is wide at the centrifugal portion, so the rotational torque increases.
The leading edge 6B portion of the blade tip surface 6D is thick and pointed toward the trailing edge 6c. Since it is designed to be on the outside, the airflow that hits the rear surface 6F escapes to the outside at the trailing edge 6c of the blade tip surface 6D and is pushed toward the front edge 6E of the blade tip surface 6D by reaction. Since the entire rear rotation surface 6F, which is the rear in the rotation direction from the base 6A of the lift blade 6 to the wing tip surface 6D, is visible from the front, most of the airflow that hits the lift blade 6 from the front is rotating. Since it hits the rear surface 6F, passes obliquely behind, and rotates the lift blade 6 as a reaction, the rotation efficiency is high.
前記(4)に記載の発明における横軸ロータ6は、前後に長い風車筐体4の先端部4Aと後端部4Bの中間に、ハブ5Aにおける回転軸5B、5Cを前後に向けて、前記ハブ5Aが両持ちで支持されるので、振動しにくく回転安定性が高まる。前記ハブ5Aの軸心部から前後に向けて突出する前後の回転軸5B、5C先端部を、前記風車筐体4の先端部4Aと後端部4Bにそれぞれ内装した、前後の同型の発電機4C、4Dの回転軸4E、4Fの先端に、接続具5D、5Dを介して同心状に連結するようにしたので、ブレが生じにくく、かつハブ5Aの前後の回転軸5B、5C先にかかる前記発電機4C、4Dの負荷が均等で、円滑な回転により回転効率に伴う発電効率が高まる。
The horizontal rotor 6 in the invention described in (4) above is arranged between the front end portion 4A and the rear end portion 4B of the wind turbine housing 4 that is long in the front-rear direction, with the rotating shafts 5B and 5C of the hub 5A facing front-rear. Since the hub 5A is supported on both sides, it is less likely to vibrate and the rotational stability is improved. Front and rear generators of the same type in which front and rear rotation shafts 5B and 5C protruding forward and backward from the hub 5A are internally mounted in the front and rear ends 4A and 4B of the wind turbine housing 4, respectively. Since the ends of the rotating shafts 4E and 4F of 4C and 4D are concentrically connected via connecting tools 5D and 5D, shaking is less likely to occur and they are applied to the front and rear rotating shafts 5B and 5C of the hub 5A. The load of the generators 4C and 4D is even, and the smooth rotation increases the power generation efficiency associated with the rotation efficiency.
前記(5)に記載の発明における横軸ロータ5における揚力型ブレード6は、翼端を垂直に上向きとした状態の正面視において、揚力型ブレード6の基部6Aの厚さの中央を通るブレード中心線Sをハブ5Aの軸心を通るものとし、前記揚力型ブレード6の前縁6Bを正面に向け、その回転時の回転前面6Gが前記ブレード中心線Sに平行に回転前方に設定されて、後縁6Cが翼端の回転後方向へ向かって斜めに立ち上がり、翼長の中間から翼端へかけては、大きく回転後方向へ屈曲されており、翼先端面6Dが水平横長に正面に現れ、該翼先端面6Dにおける前縁6Bの前縁端6Eの回転軌跡Vよりも、該翼先端面6Dにおける後縁端6cが外側になるように形成されているので、側面視では翼先端面6Dの前縁6Bが正面前方へ突出して、正面に受ける気流を包みこむようにして捕らえることができ、気流は回転後方向の背面外側を向く後縁端6cから外方へ通過する。
前記基部6Aから前記翼先端面6Dにかけての回転後面6Fは、全体が正面から見えるように形成されているので、正面から当る気流はこの回転後面6Fで受けることになり、基部6Aから翼端へ移動し、横長に前方へ突出している前記翼先端面6Dに当って後縁6Cから斜め後方へ通過して反作用として揚力型ブレード6を回転させる。
前記揚力型ブレード6の平面視は、前記回転前面6Gが回転後方へ広がる半円形で、これに続く後縁端6cにかけて先尖りとされ、前記翼先端面6Dにおける前記前縁6Bの回転軌跡Tは、前記ハブ5Aの前端面5Eの回転軌跡Xよりも正面方向に突出されているので、前記基部6Aの中心より正面方向にある前記回転後面6Fが、正面に当る気流を抱えこむようにして回転後方向へ気流を通過させて回転効率を高める。
The lift type blade 6 in the horizontal shaft rotor 5 in the invention described in (5) has a blade center passing through the center of the thickness of the base 6A of the lift type blade 6 in a front view with the blade tip facing vertically upward. The line S passes through the axis of the hub 5A, the front edge 6B of the lift blade 6 faces the front, and the rotation front surface 6G during rotation is parallel to the blade center line S and is set forward in rotation, The trailing edge 6C rises obliquely toward the rear rotation direction of the blade tip, and is greatly bent in the rear rotation direction from the middle of the blade length to the blade tip, and the blade tip surface 6D appears horizontally and horizontally in front. , the trailing edge 6c of the blade tip surface 6D is formed to be outside the rotational locus V of the leading edge 6E of the leading edge 6B of the blade tip surface 6D. A front edge 6B of 6D protrudes forward in the front direction so as to envelop and capture the airflow received in the front direction, and the airflow passes outward from the rear edge end 6c facing the outside of the rear surface in the rear rotation direction.
Since the rear rotation surface 6F extending from the base 6A to the blade tip surface 6D is formed so that the whole can be seen from the front, the airflow that hits from the front is received by this rotation rear surface 6F, and flows from the base 6A to the blade tip. As it moves, it strikes the wing tip surface 6D protruding forward in a horizontal direction, passes obliquely rearward from the trailing edge 6C, and rotates the lift blade 6 as a reaction.
In a plan view of the lift blade 6, the front surface 6G of rotation is a semi-circular shape that spreads toward the rear of the rotation, and is sharpened toward the trailing edge 6c following the front surface 6G. , protrudes in the front direction beyond the locus of rotation X of the front end face 5E of the hub 5A. Increases rotation efficiency by allowing airflow to pass in the direction.
本発明の横軸風車の実施例1の正面図である。1 is a front view of Example 1 of a horizontal axis wind turbine of the present invention; FIG.
図1の側面図で左方が正面である。The left side in the side view of FIG. 1 is the front.
図1の平面図で左方が正面である。The left side in the plan view of FIG. 1 is the front.
図3における風車筐体の一部断面図である。FIG. 4 is a partial cross-sectional view of the wind turbine housing in FIG. 3;
図1における揚力型ブレードの拡大正面図である。FIG. 2 is an enlarged front view of the lifting blade in FIG. 1;
図5における揚力型ブレードの平面図である。FIG. 6 is a plan view of the lifting blade in FIG. 5;
本発明の一実施形態を、図面を参照して説明する。図において、横軸風車1は、支柱2の上部に回転支持体3を回転可能に支持している。回転支持体3は、軸部3Aの上に側面視で前後に長い基部3Bと、前後端部で上向きに立上がる前杆3Cと後杆3Dとで略U字形に形成してある。前記前杆3Cと後杆3Dは、横断面形を、前部は厚く後端へ向かって薄くした略魚形状に形成されている。これによって、正面から前記前杆3Cと後杆3Dに当る気流は抵抗が小さく通過する。
One embodiment of the present invention will be described with reference to the drawings. In the figure, a horizontal axis wind turbine 1 rotatably supports a rotation support 3 on the top of a column 2 . The rotary support 3 is formed in a substantially U shape by a base portion 3B which is long in the front-rear direction in a side view on the shaft portion 3A, and a front rod 3C and a rear rod 3D which rise upward at the front and rear ends. The front rod 3C and the rear rod 3D are formed in a substantially fish-like cross-sectional shape in which the front portion is thicker and the rear end is thinner. As a result, the airflow that strikes the front rod 3C and the rear rod 3D from the front passes through with little resistance.
前記回転支持体3の上部には、風車筐体4の空洞の前端部4Aと後端部4Bが所定の間隔を置いてそれぞれ固定支持されている。前記風車筐体4は、前端部4Aは前記回転支持体3の前杆3C上に固定支持され、後端部4Bは前記回転支持体3の前記後杆3D上に固定支持されており、前記前端部4Aと前記後端部4Bの内部には、それぞれ図4に示すように、同型式の発電機4C、4Dが回転軸4E、4Fの先端を前後で対向させ、かつ同心状に内設されている。
A hollow front end portion 4A and a rear end portion 4B of the wind turbine housing 4 are fixedly supported on the upper portion of the rotary support 3 with a predetermined gap therebetween. The wind turbine housing 4 has a front end 4A fixedly supported on the front rod 3C of the rotary support 3 and a rear end 4B fixedly supported on the rear rod 3D of the rotary support 3. Inside the front end portion 4A and the rear end portion 4B, as shown in FIG. 4, generators 4C and 4D of the same type are installed concentrically with the tips of rotating shafts 4E and 4F opposed to each other. It is
前記風車筐体4の中央部は横軸ロータ5のハブ5Aとされ、該ハブ5Aの前後の中心の回転軌跡Rは、図2に示すように前記支柱2の中心軸線U上に設定されている。前記ハブ5Aの内部には、図4に断面図を示すように、回転軸5B、5Cが前後に長く、かつその前後端部を前記風車筐体4の前後に配設した発電機4C、4Dの前後を向く回転軸4E、4Fの対向する先端に、同心状に接続具5D、5Dを介して連結されている。
The central portion of the wind turbine housing 4 is a hub 5A of the horizontal shaft rotor 5, and the rotational locus R of the center of the front and rear of the hub 5A is set on the central axis line U of the support column 2 as shown in FIG. there is Inside the hub 5A, as shown in the sectional view of FIG. are concentrically connected to opposite ends of rotating shafts 4E and 4F facing forward and backward through connectors 5D and 5D.
図4において、前記前部の発電機4Cの後向きに突出された回転軸4Eと、後部の発電機4Dの前向きに突出する回転軸4Fの対向間には、前記横軸ロータ5のハブ5Aの前向き回転軸5Bと後向きの回転軸5Cのそれぞれの先端部が、接続具5D、5Dを介して同心に回転可能に連結されている。
In FIG. 4, the hub 5A of the horizontal shaft rotor 5 is positioned between the rearwardly protruding rotating shaft 4E of the front generator 4C and the forwardly protruding rotating shaft 4F of the rear generator 4D. Respective tip portions of the forward rotating shaft 5B and the rearward rotating shaft 5C are concentrically rotatably connected via connectors 5D, 5D.
この前後の発電機4C、4Dは同じ型式のものであり、回転軸4E、4Fの突出する方向だけを前後に変更されている。従って前後の発電機4C、4Dは前記横軸ロータ5の回転によって同じ方向に回転されて、それぞれ均等な発電をする。
The front and rear generators 4C and 4D are of the same type, and only the direction in which the rotating shafts 4E and 4F protrude is changed. Therefore, the front and rear generators 4C and 4D are rotated in the same direction by the rotation of the horizontal shaft rotor 5, and generate power equally.
前記前後の発電機4C、4Dにより発電された電気は、前記回転支持体3の前記前杆3Cと後杆3D内部を通る図示しないコードが、下の支柱2内に配設された図示しない蓄電池に接続されていて、該蓄電池に蓄電されたり、他所に配電されるようになっている。
Electricity generated by the front and rear generators 4C and 4D is supplied to a storage battery (not shown) provided in the lower column 2 by a cord (not shown) passing inside the front rod 3C and the rear rod 3D of the rotary support 3. to be stored in the storage battery or distributed elsewhere.
前記横軸ロータ5は、そのハブ5Aの前後に反対側へ突出する各回転軸5B、5Cが、軸受により支持されていないので軸受による摩擦抵抗がかからず、直接に前後の発電機4C、4Dの回転軸4E、4Fに同心状に直結されているため、ブレが生じにくく、風力を発電機4C、4Dに直接伝えて発電する効率が高まる。
In the horizontal shaft rotor 5, the respective rotating shafts 5B and 5C protruding to the opposite sides in the front and rear of the hub 5A are not supported by bearings, so that frictional resistance by the bearings is not applied, and the front and rear generators 4C, 4C and 5C are directly connected to each other. Since it is concentrically directly connected to the rotation shafts 4E and 4F of 4D, it is difficult to cause blurring, and the efficiency of generating power by directly transmitting the wind power to the generators 4C and 4D increases.
また同じ発電量を得るにも、大型の発電機では低風速の時に始動しにくく時間的ロスが生じるが、同じ発電量を2台の小型発電機を使用することにより、低風速でも始動が早くなり、風は風速が一定ではなく停止もするので、その繰り返しの中で一定時間内での発電量は、小型発電機の方が始動の早さによりトータル的に発電量が多くなり発電効率が高まる。
In addition, even if the same amount of power is generated, a large generator is difficult to start at low wind speeds, resulting in a time loss. Because the wind speed is not constant and stops, the amount of power generated within a certain period of time in the repetition is greater for the small generator due to the faster start-up, and the power generation efficiency is lower. increase.
前記風車筐体4の後端部4Bの上面には、方向舵7が前後に長く垂直に立設されており、後端部4Bの下面には、前記回転支持体3の前記後杆3Dに接するように、下部方向舵8が前後に長く垂直に配設されている。
これにより、風向きの変化にも瞬時に前記回転支持体3が回転して、前記横軸ロータ5の正面を常に風上に向けて風力を揚力型ブレード6の正面に受けて、効率の高い発電をさせることが出来る。
A rudder 7 is erected vertically on the upper surface of the rear end portion 4B of the wind turbine housing 4, and the lower surface of the rear end portion 4B is in contact with the rear rod 3D of the rotation support 3. , the lower rudder 8 is arranged vertically long in the front-to-rear direction.
As a result, the rotary support 3 instantly rotates even when the direction of the wind changes, and the front of the horizontal shaft rotor 5 is always turned upwind to receive the wind force in front of the lift blades 6, thereby generating electricity with high efficiency. can be made
前記横軸ロータ5は、ハブ5Aの周面に正面視で均等間隔に8枚の揚力型ブレード6が配設されている。ただしこの枚数に限定されるものではなく、この揚力型ブレード6は、従来のブレードと異なって、形状が特種なために、多数配設しても回転前後の各揚力型ブレードの間を通過する気流に生じる干渉が生じにくく、その結果として低風速でも回転トルクの高い回転をすることができる。
The horizontal shaft rotor 5 has eight lifting blades 6 arranged at regular intervals on the peripheral surface of the hub 5A in a front view. However, the number of lift blades 6 is not limited to this number, and unlike conventional blades, the lift blades 6 have a special shape, so even if a large number of lift blades are arranged, they pass between the lift blades before and after rotation. Interference with air currents is less likely to occur, and as a result, rotation with high rotational torque can be achieved even at low wind speeds.
すなわち、図6に平面を示すように、前記揚力型ブレード6の前記翼先端面6Dは、後縁端6cが前記ハブ5Aの前後の中心の回転軌跡R上にあり、前記翼先端面6Dの前縁6Bは、前記ハブ5Aの前端面5Eよりも正面前方へ斜めに突出しているため、前記回転後面6Fに沿って通過する気流は、前記揚力型ブレード6の回転後方向でなく、横軸ロータ6の背面方向に、風車筐体4の後端部4Bの周面に沿うように抜けるため、各揚力型ブレード6の間を通過する気流の干渉が生じにくい。
That is, as shown in a plan view in FIG. 6, the trailing edge 6c of the tip surface 6D of the lift blade 6 is on the locus of rotation R of the center of the front and rear of the hub 5A. Since the front edge 6B projects obliquely forward from the front end surface 5E of the hub 5A, the airflow passing along the rotation rear surface 6F is directed not in the rotation rearward direction of the lift blades 6, but in the horizontal axis direction. Since the rotor 6 passes along the peripheral surface of the rear end portion 4B of the wind turbine housing 4 in the rearward direction, the air currents passing between the lift blades 6 are less likely to interfere with each other.
前記揚力型ブレード6の正面は、図4に示すように、ハブ4の中心を通るブレード中心線Sに対して、前縁6Bは正面を向いて平行であるが、翼端へかけて大きく回転後方向へ屈曲していて、後縁6Cは基部6Aから翼端方向へかけて次第に回転後方向へ傾斜して、翼先端面6Dは、前部の幅が広く後部へかけて弧を描いて鳥の嘴のように細く横長に正面を向いて形成されている。
As shown in FIG. 4, the front surface of the lift blade 6 is parallel to the blade centerline S passing through the center of the hub 4, and the leading edge 6B faces the front and is parallel to the blade tip. The trailing edge 6C is bent in the rearward direction, and the trailing edge 6C is gradually inclined in the rotationally rearward direction from the base 6A toward the blade tip. It is shaped like a bird's beak and is thin and oblong facing the front.
図5において、前記翼先端面6Dの前記前縁6Bの厚さの中心の前縁端6Eの回転軌跡Vよりも、前記翼先端面6Dの後縁端6cは外側にあるので、揚力型ブレード6の、前記回転後面6Fに沿って基部6Aから翼先端面6D方向へ通過する気流は、後縁端6cで背面の外向きに通過する。すなわち図2における風車筐体4の周面に平行に沿って後端部4Bの背後方向へ通過する。
In FIG. 5, the trailing edge 6c of the wing tip surface 6D is outside the rotational locus V of the leading edge 6E at the center of the thickness of the leading edge 6B of the wing tip surface 6D. 6, the airflow passing from the base 6A toward the blade tip surface 6D along the rotating rear surface 6F passes outward at the trailing edge 6c. That is, it passes in the rearward direction of the rear end portion 4B along parallel to the peripheral surface of the wind turbine housing 4 in FIG.
また図2に示すように、前記翼先端面6Dの前記前縁6Bの回転軌跡Tは、前記ハブ5Aの先端面5Eの回転軌跡Xよりも正面前方に位置しているが、前記翼先端面6Dの後縁端6cの回転軌跡Rは、前記ハブ5Aの前後の中心の回転軌跡Rと重なる位置となっている。
Further, as shown in FIG. 2, the locus of rotation T of the leading edge 6B of the tip surface 6D of the blade is located in front of the locus of rotation X of the tip surface 5E of the hub 5A. The rotational trajectory R of the trailing edge 6c of 6D overlaps the rotational trajectory R of the front and rear center of the hub 5A.
このことは、前記翼先端面6Dが平面視における前記基部6Aの中心よりも正面方向へ出ている事を示し、前記翼先端面6Dに近い前記回転後面6Fに当る気流は、枠で囲い込まれるようになって前記回転後面6Fの後縁6Cから背面方向へ通過して回転効率を高める。
This indicates that the blade tip surface 6D protrudes in the front direction from the center of the base portion 6A in plan view, and the airflow hitting the rotation rear surface 6F near the blade tip surface 6D is enclosed by the frame. It passes from the trailing edge 6C of the rotating rear surface 6F to the rear direction to increase the rotation efficiency.
前記揚力型ブレード6の基部6Aの回転方向に対しての前記回転後面6F(図1及び図5では正面に現われている)は、図3に示すように、前記風車筐体4の軸心線Wに対して平行にハブ4に固定されているが、図3の前記軸心線Wの位置に符号31で示す横断面は、図5における31ー31線断面を示しており、風車筐体4の前記軸心線Wに対する揚力型ブレード6の回転後面6Fは、その後縁6Cが回転後方向へ38度~40度の範囲で傾斜している。
The rear surface 6F of the lift blade 6 with respect to the rotation direction of the base 6A (appearing on the front in FIGS. 1 and 5) is the axis of the wind turbine housing 4, as shown in FIG. It is fixed to the hub 4 parallel to W, and the cross section indicated by reference numeral 31 at the position of the axial center line W in FIG. The rear edge 6C of the rear edge 6C of the lifting blade 6 with respect to the axis W of 4 is inclined in the range of 38 degrees to 40 degrees in the rear rotation direction.
図3における符号32で示す横断面は、図5における32-32線断面を示しており、その回転後面6Fは、風車筐体4の軸心線Wに対して28度~30度の範囲で後縁6Cを内側に向けて傾斜させている。
The cross section indicated by reference numeral 32 in FIG. 3 shows the 32-32 line cross section in FIG. The trailing edge 6C is slanted inward.
すなわち前記揚力型ブレード6は、基部6Aの回転後面6Fは風車筐体4の軸心線Wに対して平行であるが、翼端方向へ行くに従って、次第に後縁6Cを前縁6Bよりも回転後方向へ傾斜させて、翼先端面6Dにおいては、その後縁端6cをハブ5Aの前後の中心の回転軌跡Rまで正面方向に傾斜させている。
That is, in the lift blade 6, the rear surface 6F of the base 6A is parallel to the axis W of the wind turbine housing 4, but the trailing edge 6C rotates more than the leading edge 6B toward the tip of the blade. Inclining in the rearward direction, the trailing edge 6c of the blade tip surface 6D is inclined in the frontward direction to the rotational locus R of the center of the front and rear of the hub 5A.
その結果、正面から前記揚力型ブレード6に当る気流は、基部6Aにおいては風車筐体4の軸心線Wに沿う後方向へ流れ、翼端の方へ行くに従って前記後縁6Cが風車筐体4の軸心線W方へ寄り、かつ前記支柱2の軸心線Uに近づいている。
As a result, the airflow impinging on the lift blades 6 from the front flows rearward along the axis W of the wind turbine housing 4 at the base 6A, and the trailing edge 6C moves toward the wind turbine housing as it goes toward the tip of the blade. 4 and approach the axis U of the support 2 .
また前記揚力型ブレード6の回転前方に対面する回転前面6Gは、図3の揚力型ブレード6の断面でよくわかるように、前縁6Bから弦の中央部へかけて大きく膨らんでいるため、この回転前面6Gに沿う気流は、コアンダ効果によって高速で風車筐体4の軸心線Wの背面方向へ抜けるため、揚力型ブレード6は回転前面6Gに生じる気圧が回転後面6Fに生じる気圧より低く、この気圧の差によって、回転前面方向へ引寄せられて高速回転する。
As can be clearly seen in the cross section of the lift blade 6 in FIG. 3, the rotation front face 6G facing the rotation front of the lift blade 6 swells greatly from the front edge 6B to the center of the chord. Since the airflow along the rotating front surface 6G passes at high speed toward the rear side of the axis W of the wind turbine housing 4 due to the Coanda effect, the air pressure generated on the rotating front surface 6G is lower than the pressure generated on the rotating rear surface 6F. Due to this air pressure difference, it is pulled toward the front of the rotation and rotates at high speed.
また揚力型ブレード6の回転前面6Gに沿う気流が高速で通過するため、揚力型ブレード6の枚数が多くても、回転時の前後の揚力型ブレード6の回転により生じる気流の干渉が生じにくく、低風速の時においても回転効率が高く、ロータ5の回転トルクが強い特徴がある。
In addition, since the airflow along the rotation front surface 6G of the lift type blade 6 passes at high speed, even if the number of the lift type blades 6 is large, the airflow generated by the front and rear rotation of the lift type blade 6 during rotation is unlikely to interfere with each other. Rotational efficiency is high even when the wind speed is low, and the rotational torque of the rotor 5 is strong.
図6に平面を示すように、揚力型ブレード6は翼端部を上向きにした状態で、基部6Aはハブ5Aの中心にあるが、翼端の後縁端6cは前記基部6Aの中心から回転後方へ大きく離れていることは、従来の前向き傾斜部を形成した縦長ブレードとは大きく異なっている。
As shown in plan in FIG. 6, the lift blades 6 are tipped upward, the base 6A is centered on the hub 5A, but the trailing edge 6c of the tip rotates from the center of said base 6A. The large rearward separation is very different from the conventional longitudinal blades that form a forward bevel.
従って、従来の前向傾斜部を有する縦長ブレードの前向傾斜部と異なって、翼端における翼先端面6Dが、正面視で水平横長に形成され、平面視で、翼先端面6Dの前縁6Bが基部6Aより回転後方で、かつハブ5Aの正面5Aよりも正面前方に突出しており、平面視で翼先端面6Dの後縁端6cが基部6Aの中心の回転軌跡R上にあり、回転後面6Fの後縁6Cが背面方向へ傾斜している分、後縁6Cの長さの中間が、基部6Aの背面よりも大きく背面方向へ突出して、翼端へかけて、翼先端面6Dの後縁端6cが正面方向へ出ている。
Therefore, unlike the forward inclined portion of a conventional vertically elongated blade having a forward inclined portion, the blade tip surface 6D at the blade tip is horizontally elongated in a front view, and the leading edge of the blade tip surface 6D is formed in a plan view. 6B is behind the base portion 6A and protrudes frontward from the front surface 5A of the hub 5A, and in a plan view, the trailing edge 6c of the blade tip surface 6D is on the rotation locus R of the center of the base portion 6A, and is rotated. Since the trailing edge 6C of the trailing surface 6F is inclined in the rearward direction, the middle of the length of the trailing edge 6C protrudes in the rearward direction more than the rear surface of the base portion 6A, and extends toward the tip of the blade tip surface 6D. The trailing edge 6c protrudes in the front direction.
このように、揚力型ブレード6は長さの中間までは、全体が前縁6Bから後縁6Cへかけて背面方向へ傾斜しており、揚力型ブレード6の長さの中間から屈曲して翼端へかけては次第に正面の回転後部寄りに伸びて、翼先端面6Dがその前縁6Bをハブ5Aの前面5Eよりも正面前方へ突出させて、揚力型ブレード6の長さの半分以上、翼端へかけての部分が、正面に当る気流を包みこむようにして、回転後方の翼端の背面方向へ気流を纏めて通過させるので、低風速でも回転効率と発電効率を高くする事が出来る。
In this way, the lift blade 6 is inclined in the rearward direction from the leading edge 6B to the trailing edge 6C until the middle of its length, and bends from the middle of the length of the lift blade 6 to form a wing. To the end, it gradually extends toward the rear of the front rotation, and the tip surface 6D of the wing projects the front edge 6B forward from the front surface 5E of the hub 5A, more than half the length of the lift blade 6, The part extending to the tip of the wing envelops the airflow hitting the front and allows the airflow to pass collectively in the direction behind the tip of the wing behind the rotation, so it is possible to increase the rotation efficiency and power generation efficiency even at low wind speeds.
この発明にかかる横軸風車、横軸ロータ及びロータブレードは、低風速でも回転効率が高く、回転トルクも高いので、風力発電装置に利用される。また横軸ロータやロータブレードは、水力発電装置用に利用することができる。
INDUSTRIAL APPLICABILITY The horizontal axis wind turbine, horizontal axis rotor, and rotor blades according to the present invention have high rotational efficiency and high rotational torque even at low wind speeds, and are therefore used in wind turbine generators. Horizontal shaft rotors and rotor blades can also be used for hydroelectric power plants.
1.横軸風車
2.支柱
3.回転支持体
3A.軸部
3B.基部
3C.前杆
3D.後杆
4.風車筐体
4A.前端部
4B.後端部
4C.前部発電機
4D.後部発電機
4E.後向回転軸
4F.前向回転軸
5. 横軸ロータ
5A.ハブ
5B.前向回転軸
5C.後向回転軸
5D.接続具
5E. 前端面
6.揚力型ブレード
6A.基部
6B.前縁
6C.後縁
6c.後縁端
6D.翼先端面
6E.前縁端
6F.回転後面
6G.回転前面
7.方向舵
8.下部方向舵
R.ハブの中心回転軌跡(翼端面後縁回転軌跡)
S.ブレード中心線
T.翼端面前縁中心回転軌跡
U.支柱軸心線
V.翼先端面前縁端回転軌跡
W.風車筐体軸心線
X.ハブの前端面回転軌跡
Y.ハブの後端面回転軌跡
1. Horizontal axis wind turbine2. struts3. Rotating support 3A. Axle 3B. Base 3C. Front rod 3D. rear rod4. Wind turbine housing 4A. front end 4B. rear end 4C. Forward generator 4D. rear generator 4E. Rear rotation shaft 4F. forward rotating shaft 5 . Lateral shaft rotor 5A. Hub 5B. Forward rotating shaft 5C. Backward rotating shaft 5D. Connector 5E. Front end face6. Lifting blades 6A. Base 6B. leading edge 6C. trailing edge 6c. trailing edge 6D. Blade tip surface 6E. Leading edge 6F. Rotating back surface 6G. 7. Rotating front face. Rudder
8. Lower rudder R. Hub center rotation trajectory (blade tip trailing edge rotation trajectory)
S. blade centerline T.D. Leading edge center rotation trajectory of blade tip face U. strut axis V. Rotational trajectory of leading edge of blade tip surface W. Wind turbine housing axis X. Rotation locus of front end face of hub Y. Rear end face rotation locus of hub