JP6469303B1 - Wind power generation system - Google Patents

Wind power generation system Download PDF

Info

Publication number
JP6469303B1
JP6469303B1 JP2018192603A JP2018192603A JP6469303B1 JP 6469303 B1 JP6469303 B1 JP 6469303B1 JP 2018192603 A JP2018192603 A JP 2018192603A JP 2018192603 A JP2018192603 A JP 2018192603A JP 6469303 B1 JP6469303 B1 JP 6469303B1
Authority
JP
Japan
Prior art keywords
wind power
propeller
power generator
type wind
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018192603A
Other languages
Japanese (ja)
Other versions
JP2020060145A (en
Inventor
鈴木 政彦
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Energy Co Ltd
Original Assignee
Global Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Energy Co Ltd filed Critical Global Energy Co Ltd
Priority to JP2018192603A priority Critical patent/JP6469303B1/en
Application granted granted Critical
Publication of JP6469303B1 publication Critical patent/JP6469303B1/en
Priority to PCT/JP2019/021481 priority patent/WO2020075338A1/en
Priority to TW108119948A priority patent/TWI697618B/en
Publication of JP2020060145A publication Critical patent/JP2020060145A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

【課題】 本発明は、風況の良い立地に設置されている大型のプロペラ式風力発電装置における、ブレードよりも下域の空間に小型の縦軸風車式風力発電装置を風留堰状に配設し、上昇する気流でプロペラ式風力発電装置を効率良く稼働させるとともに、縦軸風車式風力発電装置においても発電させようとするものである。
【解決手段】 立設されたプロペラ式風力発電装置1の支柱1Aの周囲に、上端がプロペラ式風力発電装置1のブレード1Bと接触しないように、かつプロペラ式風力発電装置1の支柱1Aの周囲を、風が通過しにくくなる風留ダム状に小型の風車2、3を配設し、小型の風車2、3に当って生じる上昇気流を、プロペラ式風力発電装置1のブレード1Bに当てて回転効率を高めるようにした。
【選択図】 図1
PROBLEM TO BE SOLVED: To arrange a small vertical wind turbine type wind power generator in a windbreak weir shape in a space below a blade in a large propeller type wind power generator installed in a location with good wind conditions. The propeller-type wind turbine generator is efficiently operated with the rising airflow, and the vertical axis wind turbine-type wind turbine generator is also allowed to generate power.
SOLUTION: A propeller-type wind power generator 1 has a support 1A around a column 1A so that its upper end does not come into contact with a blade 1B of the propeller-type wind power generator 1, and around the column 1A of the propeller-type wind power generator 1. The small windmills 2 and 3 are disposed in a wind dam shape that makes it difficult for the wind to pass, and the rising airflow generated by hitting the small windmills 2 and 3 is applied to the blade 1B of the propeller-type wind power generator 1. Increased rotation efficiency.
[Selection] Figure 1

Description

本発明は、風況の良い土地をより有効に利用して、効率の良い風力発電を行うことができるようにした風力発電システムに関する。   The present invention relates to a wind power generation system capable of performing efficient wind power generation by using land with good wind conditions more effectively.

風を効率良く利用するために、風車を集合させて配置することは、例えば特許文献1に記載されている。これは、幅の広い支持枠体に、多段式の羽根車を、複数並列して支持したものである。   For example, Patent Document 1 discloses that wind turbines are assembled and arranged in order to efficiently use wind. In this structure, a plurality of multistage impellers are supported in parallel on a wide support frame.

特開2005−207355JP 2005-207355 A

特許文献1に記載の発明においては、支持枠体を左右前後で複数に区画し、各区画ごとに縦主軸を支持し、その各縦主軸に、縦長ブレードを支持腕で垂直に固定したもので、いずれの方向から風が吹いても、各縦長ブレードに気流が当り、回転するものである。
本発明は、高さ数10mにも及ぶ大型のプロペラ式風力発電装置の支柱の周囲に、小型の風車を複数、風留ダム状に配設して上昇気流を生じさせ、その気流をプロペラ式風力発電装置に利用して回転効率を高めるとともに、プロペラ式風力発電装置の支柱の間を通過する気流を利用して、小型の風車も、縦主軸風車式風力発電装置等を使用し、風力発電を効果的にする風力発電システムを提供することを目的としている。
In the invention described in Patent Document 1, the support frame is divided into a plurality of sections on the left and right sides, and the vertical main shaft is supported for each section, and a vertical blade is vertically fixed to each vertical main shaft by a support arm. Even if wind blows from any direction, airflow hits each of the vertically long blades and rotates.
In the present invention, a plurality of small windmills are arranged in a wind dam shape around a prop of a large propeller-type wind power generation device having a height of several tens of meters to generate an updraft, and the airflow is propeller-type. Wind turbines can be used in wind power generators to increase rotational efficiency, and small wind turbines can also use vertical mains wind turbine wind turbines, etc., using the airflow passing between the props of propeller wind turbines. It aims to provide a wind power generation system that makes it effective.

本発明は、前記課題を解決するために、次のような技術的手段を講じたものである。   The present invention takes the following technical means in order to solve the above problems.

(1) 立設されたプロペラ式風力発電装置の支柱の周囲に、上端がプロペラ式風力発立設されたプロペラ式風力発電装置の支柱の周囲に、上端がプロペラ式風力発電機のブレードと接触しないように、かつプロペラ式風力発電装置の支柱の周囲を、風が通過しにくくなる風留ダム状に小型の風車を配設し、小型の風車に当たって生じる上昇気流を、プロペラ式風力発電装置のブレードに当てて、回転効率を高めるようにし、
前記小型の風車は、縦長ブレードを備える縦軸風車式風力発電装置であり、縦長ブレードの回転により遮られる気流をプロペラ式風力発電装置のブレードに当て、縦軸風車式風力発電装置自身も風力発電するようにした風力発電システム。
(1) Around the prop of the propeller type wind power generator installed upright, the upper end is around the prop of the propeller type wind power generator installed upright and the upper end contacts the blade of the propeller type wind power generator A small windmill in the form of a wind dam that makes it difficult for wind to pass around the prop of the propeller-type wind power generator so that the rising airflow generated by hitting the small windmill Hit the blade to increase the rotation efficiency,
The small wind turbine is a vertical axis wind turbine type wind power generator having a vertical blade, and the vertical wind turbine type wind power generator itself is also a wind generator by applying an air flow blocked by the rotation of the vertical blade to the blade of the propeller type wind power generator. A wind power generation system designed to be used .

(2) 前記縦軸風車式風力発電装置は、縦長ブレードの主部の上下から縦主軸方向へ突出する内向曲傾部の先端部を、それぞれ縦主軸に固定するものである前記(1)に記載の風力発電システム。   (2) The vertical axis wind turbine type wind power generator is configured to fix the tip part of the inwardly inclined portion protruding in the vertical main axis direction from the top and bottom of the main part of the vertically long blade to the vertical main axis. The described wind power generation system.

(3) 前記風留ダム状に配設する小型の風車は、小型のプロペラ式風力発電装置であり、プロペラの回転により遮られる気流を大型のプロペラ式風力発電機のブレードに当て、小型のプロペラ式風力発電装置自身も、風力発電するようにした前記(1)に記載の風力発電システム。   (3) The small windmill disposed in the wind dam shape is a small propeller-type wind power generator, and applies the airflow blocked by the rotation of the propeller to the blades of the large propeller-type wind power generator. The wind power generation system according to (1), in which the wind turbine generator itself also generates wind power.

(4)前記小型のプロペラ式風力発電装置の風車におけるプロペラのブレードは、側面視で、主部の先に前向曲成部が大きく突出形成され、前向曲成部の前向先端面は回転軸心線と直交状とし、かつその正面は略魚形とし、その前縁端と後縁端は、同一の回転円弧上にある前記(3)に記載の風力発電システム。   (4) The blade of the propeller in the wind turbine of the small-sized propeller type wind power generator has a front bent portion that protrudes from the main portion in a side view, and the front end surface of the front bent portion is The wind power generation system according to (3), wherein the wind power generation system is orthogonal to the rotation axis, has a substantially fish-shaped front surface, and has a front edge and a rear edge on the same rotation arc.

(5) 前記大型のプロペラ式風力発電装置の支柱の周囲において、該支柱を中心として前後方向と45度で交差する、右傾線と左傾線との各交点上に、前記小型の風車を配置し、該小型の風車は、横列方向に、高さの高いものと低いものとを交互に配設し、前後の横列方向では、その順番を1っずつずらした前記(1)〜(4)のいずれかに記載の風力発電システム。 (5) The small windmill is disposed around each of the props of the large propeller-type wind power generator at each intersection of a right tilt line and a left tilt line that intersects the front-rear direction at 45 degrees around the prop. In the row direction, the small wind turbines are alternately arranged with a high height and a low one, and in the front and rear row directions, the order is shifted one by one. The wind power generation system according to any one of the above.

本発明によると、次のような効果が奏せられる。   According to the present invention, the following effects can be obtained.

前記(1)に記載の発明においては、用地に立設された大型のプロペラ式風力発電装置の支柱の周囲に、上端がプロペラ式風力発電装置のブレードと接触しないように、かつプロペラ式風力発電装置の支柱の周囲を、風が通過しにくくなる風留ダム状に複数の小型の風車を配設すると、遮られた気流は上昇し、大型のプロペラ式風力発電装置のブレードに当るので、風流とは別に、下の風車に当たって上昇する気流も、プロペラ式風力発電装置のプロペラに当るため、効率良くプロペラ式風力発電装置を稼働させることができる。
また大型のプロペラ式風力発電装置の周囲に、所定の間隔を開けて複数の縦軸風車式風力発電装置を、風留ダム状に配設してあるので、風が吹くと、プロペラ式風力発電装置のブレードが回転して発電される。
このプロペラ式風力発電装置の支柱の周囲には、複数の風車として、縦軸風車式風力発電装置が配設されているので、これが風留ダム状の役割を果たし、これに当る気流は上昇気流となって上方に移動して、プロペラ式風力発電装置のブレードに当り、これを効率良く回転させる。
また縦軸風車式風力発電装置自体も、風況の良い場所に複数配設されることとなり、風力を効果的に利用して、効率のよい風力発電をすることが出来る。
In the invention described in (1) above, the propeller-type wind power generation is performed so that the upper end does not contact the blades of the propeller-type wind power generation device around the support of the large-scale propeller-type wind power generation device standing on the site. If a plurality of small wind turbines are installed in the wind dam shape that makes it difficult for the wind to pass around the column of the device, the blocked air flow rises and hits the blades of the large propeller wind power generator. Apart from that, the airflow rising upon hitting the lower windmill also hits the propeller of the propeller-type wind power generator, so that the propeller-type wind power generator can be operated efficiently.
In addition, a large number of vertical wind turbine type wind power generators are arranged around the large propeller type wind power generator at a predetermined interval in a wind dam shape, so that when the wind blows, the propeller type wind power generator The blades of the device rotate to generate electricity.
Around the prop of the propeller type wind turbine generator, a vertical wind turbine type wind turbine generator is arranged as a plurality of wind turbines. It moves upwards and hits the blade of the propeller type wind power generator and rotates it efficiently.
Also, a plurality of vertical axis wind turbine type wind power generators are arranged in a place with good wind conditions, and wind power can be effectively used to efficiently generate wind power.

前記(2)に記載の発明においては、前記縦軸風車式風力発電装置における縦軸風車は、縦長ブレードの主部の上下から縦主軸方向へ突出する内向曲傾部の先端部を、それぞれ縦主軸に固定したものであるので、剛性に優れている。また回転性に優れ、プロペラ式風力発電装置のプロペラが回転しない低風速の時においても、効率良く回転して発電するので、風力を有効に利用することができる。   In the invention described in (2) above, the vertical axis wind turbine in the vertical axis wind turbine type wind turbine generator is configured such that the tip end portion of the inwardly inclined portion projecting in the vertical main axis direction from the top and bottom of the main portion of the vertical blade is vertically Since it is fixed to the main shaft, it has excellent rigidity. In addition, the wind power can be effectively used because the power is efficiently rotated even when the propeller type wind power generator is excellent in rotation and the propeller of the propeller type wind power generator does not rotate.

前記(3)に記載の発明においては、前記小型のプロペラ式風力発電装置は、大型のプロペラ式風力発電装置の支柱周囲において、前後左右で定間隔に配設されているので、風向きが逆になった時においても、風留ダム状の役割を果たし、上昇気流を大型のプロペラ式風力発電装置に効率良く当てることが出来、かつ、複数の小型のプロペラ式風力発電装置の風車は、どの位置においても、風向きに関わりなく回転して、発電することができる。   In the invention described in (3) above, the small propeller-type wind power generators are arranged at regular intervals in the front, rear, left, and right around the props of the large propeller-type wind power generator, so the wind direction is reversed. Even when the wind turbines become wind-restraining dams, they can efficiently apply the updraft to the large propeller wind turbines, and the position of the wind turbines of multiple small propeller wind turbines However, it can rotate and generate electricity regardless of the wind direction.

前記(4)に記載の発明においては、前記小型のプロペラ式風力発電装置の風車におけるプロペラのブレードは、側面視で、主部の先に前向曲成部が大きく突出して形成され、前向曲成部の前向先端面は回転軸心線と直交状としてあるので、前向先端面の内側端部分が最大厚さを有して、ブレードが回転すると、回転遠心部分であるその部分に生じるコアンダ効果が最大となり、回転効率を高める。
前向先端面の正面は、回転軸心線に対して直交した状態であって、主部に対して大きく曲がって前方向に突出しており、ブレードの前面に当たる気流は、回転時に生じる遠心力により前向曲成部に当って遮られ、圧力を高めて前向曲成部を回転方向に強く押して通過し、回転効率を高める。通過した気流は、上昇して大型のプロペラ式発電装置のブレードに当り、風車を効率良く回転させる。
In the invention described in (4), the blade of the propeller in the wind turbine of the small propeller-type wind power generator is formed with a forward bent portion projecting greatly from the main portion in a side view, Since the front end surface of the bent portion is orthogonal to the axis of rotation, the inner end portion of the front end surface has the maximum thickness, and when the blade rotates, the portion that is the rotating centrifugal portion The resulting Coanda effect is maximized, increasing the rotational efficiency.
The front face of the front end face is perpendicular to the axis of rotation, and is bent forward with respect to the main part and protrudes forward, and the airflow hitting the front face of the blade is caused by centrifugal force generated during rotation. It is blocked by hitting the forward bent portion, and the pressure is increased to push the forward bent portion strongly in the rotational direction to pass through to increase the rotation efficiency. The airflow that has passed through rises and hits the blades of a large propeller-type power generator, and rotates the windmill efficiently.

前記(5)に記載の発明においては、前記小型の風車は、大型のプロペラ式風力発電装置の支柱の周囲において、前後左右で定間隔に配設されているので、風向きが逆になっても風車は回転し、かつ風留ダムの役割を果たすことが出来る。   In the invention described in (5), the small windmills are arranged at regular intervals in the front, rear, left, and right around the support of the large propeller type wind power generator, so that the wind direction is reversed. The windmill rotates and can act as a wind dam.

本発明の風力発電システムにおける発電装置の配列一部正面図である。It is a partial array front view of the power generation device in the wind power generation system of the present invention. 本発明の風力発電システムにおける発電装置の配列略示的平面図である。It is an arrangement schematic plan view of a power generator in a wind power generation system of the present invention. 本発明の風力発電システムの縦軸風車式風力発電装置の正面図である。It is a front view of the vertical-axis windmill type wind power generator of the wind power generation system of this invention. 小型プロペラ式風力発電装置の風車のプロペラを示す正面図である。It is a front view which shows the propeller of the windmill of a small propeller type wind power generator. 図4におけるVーV線断面図である。It is the VV sectional view taken on the line in FIG.

本発明の一実施形態を図面を参照して説明する。
図1は、本発明の風力発電システムにおいて使用される、プロペラ式風力発電装置1と、その周囲に、風溜ダムとして配設する、複数の小型の風車の、配設状況の一部を示す正面図で、図2はその配置状態を示す平面図であり、小型の風車として、小型の縦軸風車式風力発電装置2、3が使用されている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a part of an arrangement state of a propeller type wind power generator 1 used in the wind power generation system of the present invention and a plurality of small wind turbines arranged as wind dams around the propeller type wind power generator 1. FIG. 2 is a plan view showing the arrangement state, and small vertical wind turbine type wind turbine generators 2 and 3 are used as small wind turbines.

図1において、一般的な高寸のプロペラ式風力発電装置1、1が2基、所定の間隔を開けて配設されている。この配置間隔は、各ブレード1Bが回転する時に気流の干渉が近隣との間で生じることのない間隔であり、この各支柱1Aの間は、一般には気流が素通りしている。   In FIG. 1, two general high-sized propeller-type wind power generators 1 and 1 are arranged at a predetermined interval. This arrangement interval is an interval at which airflow interference does not occur between neighboring blades 1B when rotating, and airflow generally passes between the columns 1A.

本発明は、この素通りする気流を有効に利用しようとするもので、図1に示すように、大型のプロペラ式風力発電装置1の支柱1Aの側方に、適宜の間隔を開けて、高寸の縦軸風車式風力発電装置2と、やや低寸の縦軸風車式風力発電装置3とを、交互に複数配設してある。   The present invention intends to effectively use this passing air flow, and as shown in FIG. 1, a high dimension is provided at an appropriate interval on the side of the support 1A of the large propeller type wind power generator 1. A plurality of vertical wind turbine type wind power generators 2 and a slightly smaller vertical wind turbine type wind power generator 3 are arranged alternately.

これによって、同じ高さの発電装置を配列した場合に比して、風が何れの方向から吹いても、風下にある縦軸風車式風力発電装置2、3に対して、気流が均等に当り易くなる。   As a result, as compared with the case where the power generators of the same height are arranged, the airflow strikes the vertical wind turbine type wind power generators 2 and 3 in the leeward evenly regardless of the direction of the wind. It becomes easy.

縦軸風車式風力発電装置2、3同士の間隔は、その縦長ブレード4の回転直径の約3倍以上離してあるが、縦長ブレード4が縦主軸7を中心として回転すると、縦長ブレード4の回転軌跡内の空気は、遠心力によって外側へ導かれて、縦長ブレード4の内側が負圧になり、外部から入り込む気流は、縦長ブレード4の内側面に沿って上昇し、自然風と合流して、プロペラ式風力発電装置1のブレード1Bに当って、これを高効率に回転させる。   The distance between the vertical wind turbine type wind turbine generators 2 and 3 is about three times or more the rotational diameter of the vertical blade 4, but when the vertical blade 4 rotates about the vertical main shaft 7, the vertical blade 4 rotates. The air in the trajectory is guided to the outside by centrifugal force, the inside of the vertical blade 4 becomes negative pressure, and the airflow entering from the outside rises along the inner surface of the vertical blade 4 and merges with the natural wind. The blade 1B of the propeller-type wind power generator 1 is rotated with high efficiency.

前記縦長ブレード4の主部4Aの弦長は、主部4Aの回転半径の45%〜55%としてあり、その最大厚さは、最大弦長の20%〜35%としてあり、従来には見ることの出来ない厚さと弦長としてある。
この厚さが厚いため、回転時に生じる主部4Aにおけるコアンダ効果が高くなり、回転速度は高くなる。また弦長が長いため、回転遠心部における受風面積が大となり、回転速度が大となる効果がある。
The chord length of the main portion 4A of the longitudinal blade 4 is 45% to 55% of the rotation radius of the main portion 4A, and the maximum thickness is 20% to 35% of the maximum chord length. Thickness and chord length that cannot be done.
Since this thickness is thick, the Coanda effect in the main portion 4A generated during rotation is increased, and the rotation speed is increased. Moreover, since the chord length is long, the wind receiving area in the rotary centrifugal section is increased, and the rotation speed is increased.

図2は、本初明の風力発電システムの平面図を示し、左右2基のプロペラ式風力発電装置1、1それぞれの前後左右に、適宜の間隔を開けて、高さの高い縦軸風車式風力発電装置2と、高さの低い縦軸風車式風力発電装置3とが、交互に複数配設されている。   FIG. 2 shows a plan view of the wind power generation system of the first time. The vertical axis wind turbine type with a high height is provided with appropriate intervals on the front, rear, left and right of the two propeller-type wind power generators 1 and 1 respectively. A plurality of wind turbine generators 2 and low vertical wind turbine type wind turbine generators 3 are arranged alternately.

縦軸風車式風力発電装置2、3は、拡大正面図を図3に示すように、支柱5の中間部に発電機6が固定され、その上側における管柱5Aの上に、回転可能に嵌装された縦主軸7の下部は、管柱5A内に挿通されて、その下端は発電機6に連係されており、縦長ブレード4の回転により、発電機6が発電するようになっている。
縦主軸7には、3方向から縦長ブレード4のほぼ垂直な主部4Aの上下の内向曲傾部4B、4Bの先端が、固定片7Aを介して固定されている。
As shown in FIG. 3, an enlarged front view of the vertical axis wind turbine type wind turbine generators 2 and 3 includes a generator 6 fixed to the middle portion of the column 5 and rotatably fitted on the tube column 5A on the upper side. The lower part of the mounted vertical main shaft 7 is inserted into the tube pillar 5A, and the lower end thereof is linked to the generator 6. The generator 6 generates power by the rotation of the vertically long blade 4.
The vertical main shaft 7 is fixed at the tips of the upper and lower inwardly inclined portions 4B, 4B of the main portion 4A of the vertically long blade 4 from three directions via fixing pieces 7A.

風が吹くと、大型のプロペラ式風力発電装置1のブレード1Bは回転し、同時に小型の縦軸風車式風力発電装置2、3の縦長ブレード4が回転して、発電機6は発電をする。   When the wind blows, the blade 1B of the large propeller-type wind power generator 1 rotates, and at the same time, the vertical blades 4 of the small vertical wind turbine-type wind power generators 2, 3 rotate, and the generator 6 generates power.

この場合、縦軸風車式風力発電装置2、3の縦長ブレード4が回転すると、縦長ブレード4の回転円弧の内側の気流は、遠心力と圧力差によって外側へ導かれるため、回転円弧の内側の気圧は低下し、外側から入り込む気流は、更に外側へ導き出される中で、上部の内向曲傾部4Bの下面を回転方向へ押すので、縦長ブレード4は、風速による回転に加えて更に回転する。   In this case, when the vertical blade 4 of the vertical wind turbine type wind power generators 2 and 3 rotates, the airflow inside the rotating arc of the vertical blade 4 is guided to the outside due to the centrifugal force and the pressure difference. While the air pressure is reduced and the airflow entering from the outside is further guided to the outside, the lower blade of the upper inwardly inclined portion 4B is pushed in the rotation direction, so that the vertically long blade 4 further rotates in addition to the rotation by the wind speed.

そのため、前方から当たる気流は、縦軸風車式風力発電装置2、3の回転している縦長ブレード4の中を通過することができずに遮られて、上方へ移動し、縦長ブレード4の回転円弧の内側から上昇する気流と合流して、大型のプロペラ式風力発電装置1のブレード1Bに効果的に当り、これを効率良く回転させる。   Therefore, the airflow hitting from the front cannot pass through the rotating vertical blades 4 of the vertical wind turbine type wind power generators 2 and 3 but is blocked and moves upward, and the vertical blades 4 rotate. It merges with the air flow rising from the inside of the arc, effectively hits the blade 1B of the large propeller-type wind power generator 1, and efficiently rotates it.

すなわち、従来は、大型のプロペラ式風力発電装置1のブレード1Bの下域を通過していた気流が、縦軸風車式風力発電装置2、3の縦長ブレード4によって遮られて上昇し、プロペラ式風力発電装置1のブレード1Bに当る気流と合流して当るもので、気流を有効に利用することができる。   That is, conventionally, the airflow that has passed through the lower region of the blade 1B of the large propeller-type wind power generator 1 is blocked by the vertical blades 4 of the vertical-axis windmill-type wind power generators 2, 3 and rises. The airflow merges with the airflow hitting the blade 1B of the wind power generator 1, and the airflow can be used effectively.

縦軸風車式風力発電装置2、3の代わりに、構築物で風留堰状体を構築すると、それ以外に用途のない費用がかかるが、複数の縦軸風車式風力発電装置2、3を配設することによってダムのように風を留め、大型のプロペラ式風力発電装置1に供給することができ、加えて、風況の良い場所の風を、小型の縦軸風車式風力発電装置2、3で有効に利用して、余分に発電をすることができるものである。   If a wind turbine weir is constructed with a structure instead of the vertical wind turbine type wind power generators 2 and 3, there is a cost that is not otherwise used, but a plurality of vertical wind turbine type wind power generators 2 and 3 are arranged. By installing it, wind can be kept like a dam and supplied to the large propeller-type wind power generator 1, and in addition, wind in a favorable wind condition can be supplied to a small vertical wind turbine-type wind power generator 2, It can be used effectively in 3 to generate extra power.

なお、縦軸風車式風力発電装置2、3において、高さの高い方か、又は低い方のいずれかの縦長ブレード4の寸法を、異なるものとすることができる。
また縦長ブレード4の枚数は、図においては3枚が示されているが、2枚、もしくは4枚以上とすることができる。
In the vertical axis wind turbine type wind turbine generators 2 and 3, the dimension of the longitudinal blade 4 that is either higher or lower can be made different.
The number of the vertically long blades 4 is three in the figure, but can be two or four or more.

この縦長ブレード4は、図2におけるA矢示方向、B矢示方向、C矢示方向、D矢示方向の何れからの風でも、風向きの変化にかかわらず回転するので、風向きが変化しても、同じように回転し、その効果は変わらない。   The vertical blade 4 rotates in any direction from the direction indicated by the arrow A, the direction indicated by the arrow B, the direction indicated by the arrow C, and the direction indicated by the arrow D in FIG. However, it rotates in the same way and the effect remains the same.

図4は、小型のプロペラ式風力発電装置における風車のプロペラ8を示す正面図である。
小型のプロペラ式風力発電装置は、図示しない支柱上に、水平旋回可能に図示しないナセルが配設され、その内部の図示しない発電機から後部へ突出する回転軸の後部に、風車のプロペラ8が固定されている。
FIG. 4 is a front view showing the propeller 8 of the wind turbine in the small propeller type wind power generator.
In a small propeller type wind power generator, a nacelle (not shown) is disposed on a support (not shown) so as to be horizontally rotatable, and a propeller 8 of a windmill is provided at the rear of a rotating shaft projecting rearward from a generator (not shown) inside. It is fixed.

プロペラ8は、ハブ9の周面に均等間隔でブレード10の基部10Aが固定されている。正面視においてブレード10の前縁13は、翼端方向の中間まで、ほぼ直線状で、主部11の先部分から前向曲成部12の先端へかけて、後縁14方向へ弧曲状にほぼ同じ弦長で曲がっている。   In the propeller 8, the base portion 10 </ b> A of the blade 10 is fixed to the peripheral surface of the hub 9 at equal intervals. When viewed from the front, the leading edge 13 of the blade 10 is substantially straight up to the middle in the blade tip direction, and is arcuate in the direction of the trailing edge 14 from the tip portion of the main portion 11 to the tip of the forward bending portion 12. Are bent with almost the same string length.

ブレード10の後縁14部分は、正面視で前向曲成部12は、ほぼ同じ幅の弦長とし、前向先端面16の傾状と同じ断面としてあり、主部11は、基部10Aの近くで後縁部分が前縁方向へ深く湾入して湾入部15となり、その部分の後縁は前縁部分とほぼ同じように厚くなって、気流が通過しやすくなっている。   The rear bent portion 14 of the blade 10 has a chord length with substantially the same width as the front bent portion 12 when viewed from the front, and has the same cross section as the inclined shape of the front end face 16, and the main portion 11 is the base portion 10A. Nearby, the rear edge portion enters deeply into the front edge direction to form a bay portion 15, and the rear edge of that portion is almost as thick as the front edge portion, so that airflow can easily pass therethrough.

図5は、図4におけるVーV線断面図である。主部11の後面18は、基部10Aから前向曲成部12に至るまでほぼ垂直であり、前面17は、基部10Aから前向曲成部12にかけて、後面18方向に傾斜して、前向曲成部12へかけて厚さが次第に薄くなるように形成されている。   5 is a cross-sectional view taken along line VV in FIG. The rear surface 18 of the main portion 11 is substantially vertical from the base portion 10A to the forward curved portion 12, and the front surface 17 is inclined in the direction of the rear surface 18 from the base portion 10A to the forward curved portion 12, and is forwardly directed. It is formed so that the thickness gradually decreases toward the bent portion 12.

前向曲成部12は、主部12の端部から前方へ大きく屈曲して、前向先端面16を、基部10Aの厚さほど突出させて、その前向先端面16は、回転軸心線Sと直交するように形成され、図4に示すように、略魚形であり、前縁端13Aと後縁端14Aは同一の回転円弧T上に設定されている。また図5に示すように、前向先端面16は前縁よりも後縁の方がやや後面18方向へ傾斜している。   The forward bent portion 12 is largely bent forward from the end portion of the main portion 12, and the forward tip surface 16 protrudes by the thickness of the base portion 10 </ b> A. As shown in FIG. 4, the front edge end 13 </ b> A and the rear edge end 14 </ b> A are set on the same rotation arc T. Further, as shown in FIG. 5, the forward leading end face 16 is inclined slightly toward the rear face 18 at the rear edge rather than the front edge.

前向曲成部12の後面12Aの曲率半径は、前面12Bの曲率半径よりも大きく、前向先端面16の内側端16Aを通る軸心線Sと平行な最厚部線12C部分の厚さが、このブレード10において最大の厚さとなっている。ブレード10における前縁部分の厚さが厚いほど、コアンダ効果が高くて、回転効率があがる。   The radius of curvature of the rear surface 12A of the forward bent portion 12 is larger than the radius of curvature of the front surface 12B, and is the thickness of the thickest portion line 12C portion parallel to the axial center line S passing through the inner end 16A of the forward tip surface 16. However, this blade 10 has the maximum thickness. The thicker the leading edge portion of the blade 10, the higher the Coanda effect and the higher the rotation efficiency.

図5において、X矢示方向から気流が当ると、ブレード10の前面17は、前縁13から後縁方向へ傾斜しているので、ブレード10は前縁13方向へ押されて回転する。
また主部11の前面17は、基部10Aから先端方向へ傾斜しているので、この傾斜面を滑る気流は、前向曲成部12の前面12Bに移動し、この前面12Bに当たる気流と合流して囲いこまれ、ブレード10を回転方向に強く回転させる。
In FIG. 5, when the airflow hits in the direction indicated by the arrow X, the front surface 17 of the blade 10 is inclined from the front edge 13 toward the rear edge, so that the blade 10 is pushed in the direction of the front edge 13 and rotates.
Further, since the front surface 17 of the main portion 11 is inclined from the base portion 10A toward the distal end, the airflow that slides on the inclined surface moves to the front surface 12B of the forward bending portion 12, and merges with the airflow that hits the front surface 12B. The blade 10 is strongly rotated in the rotation direction.

ブレード10が回転すると、ブレード10の表面に生じるコアンダ効果は、翼端に近い前向先端面16の、前記内側端16Aを通る、軸心線Sと平行な最厚部線12Cの部分で最大となるが、ここは回転遠心部分であるため、その回転速度は大であり、回転に伴って生じる遠心力により、ブレード10の前面17に当る気流は、前向曲成部12の前面12Bでブレード10を回転方向に押し出し、更に回転効率を高め、効率のよい発電をする。   When the blade 10 rotates, the Coanda effect generated on the surface of the blade 10 is maximum at the portion of the thickest portion line 12C parallel to the axial center line S passing through the inner end 16A of the forward tip surface 16 near the blade tip. However, since this is a rotary centrifugal portion, the rotational speed thereof is high, and the airflow that strikes the front surface 17 of the blade 10 due to the centrifugal force generated by the rotation is generated on the front surface 12B of the forward bending portion 12. The blade 10 is pushed out in the rotation direction, and the rotation efficiency is further increased to generate power efficiently.

ブレード10を回転させて抜けた気流は上昇し、普通に当る気流と合流して、大型のプロペラ式発電装置1のブレード1Bに当り、これを効率良く回転させる。   The airflow that has escaped by rotating the blade 10 rises, merges with the normal airflow, hits the blade 1B of the large propeller type power generator 1, and efficiently rotates it.

風況の良い場所において、大型の風力発電装置の回転効率を高め、またその地において使用されなかった風力を、小型の風力発電装置で利用し、効率良く風力発電をすることができる。   In a place with good wind conditions, the rotation efficiency of the large-scale wind power generator can be increased, and wind power that has not been used in the ground can be used in the small wind power generator to efficiently generate wind power.

1.プロペラ式風力発電装置
1A.支柱
1B.ブレード
2、3.縦軸風車式風力発電装置
4.縦長ブレード
4A.主部
4B.内向曲傾部
5.支柱
5A.管柱
6.発電機
7.縦主軸
7A.固定片
8.小型のプロペラ式風力発電装置の風車のプロペラ
9.ハブ
10.ブレード
10A.基部
11.主部
12.前向曲成部
12A.後面
12B.前面
12C.最厚部線
13.前縁
13A.前縁端
14.後縁
14A.後縁端
15.湾入部
16.前向先端面
17.前面
18.後面
A、B、C、D.風向
S.軸心線
T.回転円弧
X.気流
1. Propeller type wind power generator
1A. Post 1B. Blades 2, 3. 3. Vertical axis wind turbine type wind power generator Vertical blade 4A. Main part 4B. 4. Inwardly inclined part Support 5A. Tube column 6. Generator 7. Longitudinal spindle 7A. Fixed piece 8. 8. Small propeller wind power generator windmill propeller Hub 10. Blade 10A. Base 11. Main part 12. Forward bending section 12A. Rear surface 12B. Front surface 12C. Thickest part line 13. Leading edge 13A. Leading edge 14. Trailing edge 14A. Trailing edge 15. Bay entrance 16. Forward-facing tip surface 17. Front 18. Rear A, B, C, D. Wind direction Axis T. Rotating arc X. air flow

Claims (5)

立設されたプロペラ式風力発電装置の支柱の周囲に、上端がプロペラ式風力発電機のブレードと接触しないように、かつプロペラ式風力発電装置の支柱の周囲を、風が通過しにくくなる風留ダム状に小型の風車を配設し、小型の風車に当たって生じる上昇気流を、プロペラ式風力発電装置のブレードに当てて、回転効率を高めるようにし、
前記小型の風車は、縦長ブレードを備える縦軸風車式風力発電装置であり、縦長ブレードの回転により遮られる気流をプロペラ式風力発電装置のブレードに当て、縦軸風車式風力発電装置自身も風力発電するようにしたことを特徴とする風力発電システム。
Wind field around the prop of the propeller type wind power generator so that the upper end does not come into contact with the blades of the propeller type wind power generator, and around the prop of the propeller type wind power generator. A small windmill is arranged in a dam shape, and the rising airflow generated by hitting the small windmill is applied to the blades of the propeller-type wind power generator so as to increase the rotation efficiency.
The small wind turbine is a vertical axis wind turbine type wind power generator having a vertical blade, and the vertical wind turbine type wind power generator itself is also a wind generator by applying an air flow blocked by the rotation of the vertical blade to the blade of the propeller type wind power generator. A wind power generation system characterized by that.
前記縦軸風車式風力発電装置は、縦長ブレードの主部の上下から縦主軸方向へ突出する内向曲傾部の先端部を、それぞれ縦主軸に固定するものであることを特徴とする請求項に記載の風力発電システム。 The vertical axis wind turbine type wind turbine generator, according to claim 1, characterized in that the tip of the inward song slanted portion protruding from the top and bottom of the main portion of the elongated blade to the longitudinal main axis direction, is to fix the respective vertical main axis Wind power generation system as described in. 前記風留ダム状に配設する小型の風車は、小型のプロペラ式風力発電装置であり、プロペラの回転により遮られる気流を大型のプロペラ式風力発電機のブレードに当て、小型のプロペラ式風力発電装置自身も、風力発電するようにしたことを特徴とする請求項に記載の風力発電システム。 The small windmill arranged in the wind dam shape is a small propeller-type wind power generator, and applies the airflow blocked by the rotation of the propeller to the blades of the large propeller-type wind power generator so that the small propeller-type wind power generator The wind power generation system according to claim 1 , wherein the apparatus itself also generates wind power. 前記小型のプロペラ式風力発電装置の風車におけるプロペラのブレードは、側面視で、主部の先に前向曲成部が大きく突出形成され、前向曲成部の前向先端面は回転軸心線と直交状とし、かつその正面は略魚形とし、その前縁端と後縁端は、同一の回転円弧上にあることを特徴とする請求項に記載の風力発電システム。 The blade of the propeller in the wind turbine of the small-sized propeller type wind power generator has a front bent portion that protrudes from the main portion in a side view, and the front tip surface of the front bent portion is the rotational axis. The wind power generation system according to claim 3 , wherein the wind power generation system is orthogonal to the line and has a substantially fish-shaped front surface, and the front edge and the rear edge are on the same rotating arc. 前記大型のプロペラ式風力発電装置の支柱の周囲において、該支柱を中心として前後方向と45度で交差する、右傾線と左傾線との各交点上に、前記小型の風車を配置し、該小型の風車は、横列方向に、高さの高いものと低いものとを交互に配設し、前後の横列方向では、その順番を1っずつずらしたことを特徴とする請求項1〜4のいずれかに記載の風力発電システム。 The small windmill is arranged around each of the right tilt line and the left tilt line that intersect the front and rear direction at 45 degrees around the support column of the large propeller type wind power generator , 5. The wind turbine according to claim 1, wherein high and low wind turbines are alternately arranged in a row direction, and the order is shifted one by one in the front and rear row directions. The wind power generation system described in Crab .
JP2018192603A 2018-10-11 2018-10-11 Wind power generation system Active JP6469303B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018192603A JP6469303B1 (en) 2018-10-11 2018-10-11 Wind power generation system
PCT/JP2019/021481 WO2020075338A1 (en) 2018-10-11 2019-05-30 Wind power generation system
TW108119948A TWI697618B (en) 2018-10-11 2019-06-10 Wind power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018192603A JP6469303B1 (en) 2018-10-11 2018-10-11 Wind power generation system

Publications (2)

Publication Number Publication Date
JP6469303B1 true JP6469303B1 (en) 2019-02-13
JP2020060145A JP2020060145A (en) 2020-04-16

Family

ID=65356131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192603A Active JP6469303B1 (en) 2018-10-11 2018-10-11 Wind power generation system

Country Status (3)

Country Link
JP (1) JP6469303B1 (en)
TW (1) TWI697618B (en)
WO (1) WO2020075338A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101372A1 (en) * 2022-11-10 2024-05-16 好高 河野 Wind-powered electricity generating device propeller, and wind-powered electricity generating device employing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3106660A1 (en) * 2015-06-15 2016-12-21 Senvion GmbH Method and computer program product for checking the alignment of wind turbines, and assembly of at least two wind turbines
WO2017110298A1 (en) * 2015-12-25 2017-06-29 株式会社日立製作所 Windmill system and wind farm

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223640A1 (en) * 2014-11-19 2016-05-19 Wobben Properties Gmbh Design of a wind energy plant
JP6762170B2 (en) * 2016-08-30 2020-09-30 株式会社日立製作所 How to control a wind farm or wind farm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3106660A1 (en) * 2015-06-15 2016-12-21 Senvion GmbH Method and computer program product for checking the alignment of wind turbines, and assembly of at least two wind turbines
WO2017110298A1 (en) * 2015-12-25 2017-06-29 株式会社日立製作所 Windmill system and wind farm

Also Published As

Publication number Publication date
TWI697618B (en) 2020-07-01
JP2020060145A (en) 2020-04-16
WO2020075338A1 (en) 2020-04-16
TW202014598A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP5785181B2 (en) Turbine
AU2013395801B2 (en) Wind power generation tower provided with gyromill type wind turbine
JP2012215148A (en) Lift-type vertical axis wind turbine
EP2258941A1 (en) Wind turbine
JP6469303B1 (en) Wind power generation system
JP2008082185A (en) Wind power generation device
KR102026980B1 (en) Wind collection apparatus for wind turbine generator
JP2005090332A (en) Darrieus wind turbine
KR102067026B1 (en) Vertical wind turbine with auxiliary blade
JP4728008B2 (en) Horizontal axis windmill
RU2642706C2 (en) The wind-generating tower
JP4892716B1 (en) Wind power generator
KR101503358B1 (en) Horizontal wind power generator
KR101566501B1 (en) Downwind Windpower Generating Apparatus having Swept Blade Tip
JP2004308550A (en) Wind mill power generating device
KR101943845B1 (en) Horizontal wind power generator
JP6904766B2 (en) Vertical axis wind turbines and wind power generators
KR101810872B1 (en) Apparatus for generating by wind power
JP2001082314A (en) Wind power generating device
KR20100118741A (en) Apparatus for generating by wind power
JP2005016479A (en) Blade of rotating wheel, and rotating wheel
CN112272736A (en) Horizontal shaft rotor
JP2008255977A (en) Wind power generator
JP6997580B2 (en) Vertical blade and vertical axis rotor
JP2013519018A (en) Wind turbine for vertical axis wind power generator with booster wing and booster wing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181024

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190115

R150 Certificate of patent or registration of utility model

Ref document number: 6469303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250