JP2005016479A - Blade of rotating wheel, and rotating wheel - Google Patents

Blade of rotating wheel, and rotating wheel Download PDF

Info

Publication number
JP2005016479A
JP2005016479A JP2003185255A JP2003185255A JP2005016479A JP 2005016479 A JP2005016479 A JP 2005016479A JP 2003185255 A JP2003185255 A JP 2003185255A JP 2003185255 A JP2003185255 A JP 2003185255A JP 2005016479 A JP2005016479 A JP 2005016479A
Authority
JP
Japan
Prior art keywords
blade
main body
rotating
wind
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003185255A
Other languages
Japanese (ja)
Other versions
JP4173773B2 (en
Inventor
Masahiko Suzuki
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FJC KK
Original Assignee
FJC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FJC KK filed Critical FJC KK
Priority to JP2003185255A priority Critical patent/JP4173773B2/en
Publication of JP2005016479A publication Critical patent/JP2005016479A/en
Application granted granted Critical
Publication of JP4173773B2 publication Critical patent/JP4173773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blade of a rotating wheel for increasing self-propelled rotary thrust of the blade, by using following wind hitting agains inside and outside faces of the blade as efficient rotary thrust, and discharging the wind entering into a rotor to the outside at high speed, and thereby increasing negative pressure generated inside the impeller, and to provide the rotating wheel. <P>SOLUTION: The impeller 1 is disposed to a peripheral part of the rotor 5 which is arranged to a main shaft of the rotary wheel at a right angle, so that the the impeller 1 is in parallel with the main shaft. The impeller 1 is constituted of a main body part 2, and a mounting support body 3 formed at the center in a longitudinal direction of the inside face of the main body part 2. The front face of the main body part is set to be gradually thin toward an upper and lower directions from the center part in the longitudinal direction. A cross-sectional flat face at the center in the longitudinal direction of the impeller main body part 2 is in a fish-like shape, and a center line S connecting the front edge with the rear edge is curved along a rotating track T of the impeller 1 rotated with being installed to the rotor 5. Upper and lower end parts of a side face of the main body part 2 are formed thinner than front and rear widths of the center part in the longitudinal direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、回転車の羽根並びに回転車に係り、特に風車の回転体周部に配設される羽根であって、羽根の内外面に当たる追い風を効率良い回転推力とし、回転体の内部に入った風を、外方へ高速度で排出することによって、羽根の内側に造成される負圧を高めて、羽根の回転推力を高めるように構成された回転車とその羽根に関する。
【0002】
【従来の技術】
従来、風力発電機の風車は、横軸プロペラ式が使用され、風力回収率が35%程度と云われる縦軸風車は、実用性がないものとして使用されていないのが現状である。
また過去における縦軸風車の羽根は、羽根の外側に向けて揚力を得るような設定であるので、回転方向への推力が得にくいという難点がある。
加えて回転体の回転に伴い、遠心力が羽根の上下にかかるため、羽根には、外側に向けた揚力と、遠心力とが重なってかかるために、羽根の破損が生じやすく、破損を防止するために、羽根の剛性を持たせると重量が重くなり、回転効率が悪化するという難点がある。
【0003】
特に縦軸風車は、回転体の周部に羽根があり、回転に伴い羽根は向きを反転させることから、羽根に対する風の影響については予測が立たず、例えば飛行機の翼については、風の影響に関する学理は成立しているが、回転する羽根に対する風の影響に関する学術理論も研究されていない。
この発明者は、これに関して、受風羽根に生じる負圧を利用して回転推力を生じさせ、風速よりも早く回転する風車を開発し、例えば特許文献1,2で開示している。
【特許文献1】
特願2002−376879号
【特許文献2】
特願2003−143374号
【0004】
【発明が解決しようとする課題】
前記、文献の受風羽根も風力回収効果は高いが、回転体の周部に配設される羽根は、回転する時に、直径比の差によって、外側面が内側面よりも物理的に早い速度で回転している。
従って、羽根の回転時に、羽根の前部にあたって、羽根の内外側面に分かれて通過する風の速度は、物理的に、羽根の外側面に沿って通過する風の速度が早いことになる。
【0005】
羽根の内側面に回転推力を造成させる膨出部を形成すると、回転時に羽根の内側面に沿って通過する風の速度は早くなって、羽根の前端縁部域に負圧が生じ、羽根の外側面域から、内側面域の負圧部分に対して常圧気流が作用して、羽根を回転方向へ押すという回転推力が生じる。
【0006】
ところが、回転体の回転速度があがった場合、羽根の回転速度が早くなるために、羽根で囲まれた回転体の内側に入った風が、回転する羽根の回転方向へ追従して、外側に出にくくなり、内側に渦となって停滞する気流によって、前記羽根の内側面に沿って、高速で通過する風が外に抜けにくくなり、その分、回転推力を減退させる。
【0007】
この発明は、高速回転時にも、回転時に羽根の内側面に沿って通過する風を、より高速で外方へ通過させることができ、結果として強い回転推力が得られる回転車の羽根と、回転車を提供することを目的としている。
【0008】
【課題を解決するための手段】
この発明は、前記課題を解決し目的を達成するために、次のような技術的手段を講じた。
【0009】
(1) 回転車の主軸に直角に配設された回転体周部に、主軸と平行に配設される羽根であって、該羽根は主体部とその縦中央内側面に形成された取付支持体とから構成され、該主体部の正面は、縦中央部から上下方へ次第に薄くなるように設定されている羽根において、羽根主体部の縦中央における横断平面は、略魚形状とし、その先端と後端を結ぶ中芯線は、回転体に装着して回転する羽根の回転トラックに沿うように湾曲され、主体部の側面は、縦中央部の前後幅より上下端部は細く形成されている回転車の羽根。
【0010】
(2) 前記主体部は、中央横断平面における、中芯線より外側の膨出部よりも、内側面の回転推力を造成する膨出部は、大きく前端縁部に設定され、内側膨出部から後端部に至る後内側面は、後外向きに傾斜され、その横断平面形状が、主体部の上下端部へかけて幅長さに対応して次第に縮尺されている、前記(1)に記載された回転車の羽根。
【0011】
(3) 前記主体部の外側面後部には、外膨出部と後端部とを結ぶ直線より中に窪む凹成部が形成されている、前記(1)(2)のいずれかに記載された回転車の羽根。
【0012】
(4) 前記主体部は、正面において縦中央部位から上下端部にかけて、左側方へ湾曲されている、前記(1)〜(3)のいずれかに記載された回転車の羽根。
【0013】
(5) 前記主体部は、正面において縦中央部位から上下端部にかけて、右側方へ湾曲されている、前記(1)〜(3)のいずれかに記載された回転車の羽根。
【0014】
(6) 前記主体部は、正面において縦中央部位から上下端部にかけて、右側方へ湾曲されて、その各先端部は左側方へ湾曲されている、前記(1)〜(3)のいずれかに記載された回転車の羽根。
【0015】
(7) 前記主体部は、正面において縦中央部位から上下端部にかけて、左側方へ湾曲されて、その各先端部は右側方へ湾曲されている、前記(1)〜(3)のいずれかに記載された回転車の羽根。
【0016】
(8) 支持体に支持された主軸に回転体を直角に支持し、回転体周部に複数の羽根を主軸に平行に配設する構成において、
該羽根は主体部とその縦中央内側面に形成された取付支持体とから構成され、該主体部の正面は、縦中央部から上下方へ次第に薄くなるように設定され、羽根主体部の縦中央における横断平面は、略魚形状とし、その先端と後端を結ぶ中芯線は、回転体に装着して回転する羽根の回転トラックに沿うように湾曲され、該羽根は主体部の上下先端部が、正面において左方に湾曲しているものと、右方に湾曲しているものとを、交互に配設してなる回転車。
【0017】
【発明の実施の形態】
本願発明の実施の形態例を、図面を参照して説明する。図1は本発明に係る回転車の羽根(以下単に羽根という)の正面図、図2は図1におけるA−A線横断面図、図3は羽根の左側面図、図4は図1におけるBーB線横断平面図である。
【0018】
図において羽根(1)は、正面において、主体部(2)と、その左側面(内側面)縦中央部に形成された取付支持体(3)とで構成されている。
主体部(2)は、正面において、縦中央部は厚みが厚く、上下先端部にかけて、次第に薄くなるように設定されている。図4は図1におけるBーB線断面図である。このように羽根(1)の断面形状は、羽根(1)の上下端部に至るに従って次第に幅が縮尺される。
【0019】
羽根(1)の平面形は、図2に示めすように、縦中央部においては、略魚形状に後部へかけて次第に細くなるように形成され、前端部と後端部を結ぶ中芯線(S)は、図8に示す回転体(5)に配設したときの、羽根(1)の回転トラック(T)に沿うように湾曲形成されている。
【0020】
図2に示すように、中芯線(S)に対して、主体部(2)の左右は厚さが異なっている。中芯線(S)の右側(外側)の膨出部(2a)は左側(内側)より薄く、内側には前縁部に外側より大きな、回転推力を造成する膨出部(2b)が形成されている。また外側面には、後部において、膨出部(2b)と後端部とを結ぶ直線よりも中に窪む凹成部(2c)が凹成されている。
【0021】
主体部(2)の左側面(内側面)は、図3に示すように、縦中央部から上下端部にかけて、次第に細くなるように形成されている。図2、図3に示す取付支持体(3)は、後記する図8に図示した回転体(5)の中心を通る放射線上に合わせて配設される。図中符号(3a)はネジ孔である。
【0022】
取付支持体(3)の位置が羽根(1)の前縁部にあるので、平面において羽根(1)の前端部よりも後端部は内方へ傾斜した状態で、取付支持体(3)が配設される。このことは、右側(外側)の膨出部(2a)の回転トラック(T1)よりも、中側に主体部(2)の後尾がある事になり、図1で判るように、右側の膨出部(2a)は正面における面積が小さいので、回転時の抵抗は小さい。
【0023】
そして、羽根(1)主体部(2)の左側面(内側面)は、回転推力を造成する膨出部(2b)から後部の面は、膨出部(2b)の回転トラック(T2)より外向きに傾斜している。
このことから、羽根(1)の回転時に、主体部(2)の内側面に沿い、後外向きに通過する風は、主体部(2)の外側面を通過する風の速度より早くなり、羽根(1)の内側前縁部域に負圧が生じて、羽根(1)の回転推力が生じる。
【0024】
主体部(2)の内側面を、斜外向きに通過する高速の風は、外向きに傾斜した主体部(2)の、内側後部から外向きに抜ける。この場合、主体部(2)の後部は上下部で前からの長さが短いので、短時間で早く通過する。
【0025】
主体部(2)の外側面を通過する風は、凹成部(2c)で気圧が変化され、そのため、内側から後外向きに抜ける高速風は、羽根(1)の外側を通過しようとする風を巻き込んで、羽根(1)を後から押す作用をする。
【0026】
このように、回転時において、羽根(1)の内側面に沿って通過する風は、後斜め外に早く抜けるので、その後に通過する回転後位の羽根(1)に、影響を及ぼさない。また風が吹いて、羽根(1)の内側面に向かい風が当たる場合、やはり羽根(1)の後斜め外に風が抜けるため、羽根(1)で囲まれた回転体(5)の内側に風が滞りにくい。
【0027】
この羽根(1)の形状は、正面から見て上下部が薄く形成されているので、回転時における風の抵抗を受けにくい。羽根(1)の前後幅を広くしても、平面でその中芯線(S)が回転トラック(T)に沿っているために、風の抵抗を受けにくい。 加えて、羽根(1)の内側面後部が、外向きに傾斜していて、内側面に沿って通過する風を早く後外方へ抜けさせるので、後位置で追従する羽根に通過風の影響を与えない。
【0028】
このことから、羽根(1)の縦長さを長くしなくても、受風面積を充分確保することができる。特に羽根(1)は回転体と共に回転するので、常に半回転毎に反転するが、その切り返しの時点で、羽根(1)の後部が風の抵抗負担になる。
【0029】
そのため普通の羽根は、前後幅を狭くせざるを得ないが、この羽根(1)は、上下先端部縦中央部野前後幅よりも細くしたことによって、切返し時における風圧抵抗の負担が軽くなり、結果として、前後幅を広くする事ができ、受風面積を広くする事ができた。
【0030】
更に、主体部(2)の縦中央部の厚味が厚く、前後幅が長いので、剛性強度に優れている。このことから、羽根の大きさは変えずに、図8に示すような回転体(5)の直径を大きくしたものに使用して、回転効率を上げることができる。なお、羽根(1)の側面において、主体部(2)の上下端部が、前後方向へ傾斜するように設定することができる。
【0031】
図5は羽根の第2実施例を示す正面図、図6は図5におけるA−A線横断面図、図7は羽根の左側面図、図8は羽根を装着した回転車の平面図である。前例と同じ部位には同じ符号を付して説明を省略する。
【0032】
図5において、羽根(1)は、正面において、主体部(2)の上下部は、縦中央部からそれぞれ左側(内側)方へ次第に湾曲されている。該右側湾曲面は、この羽根(1)を配設する回転体(5)の、周曲面に近い湾曲面に合わせて設定させることができる。
【0033】
羽根(1)の左側面は、図7に示すように、縦長で、主体部(2)の高さは、例えば2.6m、中央部前後長さ50cmで、後部が三角状に後尖状に形成されている。この大きさは、後記する回転体(5)の直径が4mの場合に適しているが、これに限定されるものではない。
【0034】
図8において、回転車(4)の回転体(5)は、支持体(6)に垂直に支持された主軸(7)に、直角に装着されている。回転体(5)は、軸部(8)に複数の支持アーム(9)を介して環縁体(10)が固定されている。該環縁体(10)の周部に所定間隔を開けて羽根(1)が複数、その内側面を主軸(7)方向に向けて縦長に配設される。該環縁体(10)は、回転慣性により回転を安定させるほか、羽根(1)の数が変化するときでも、容易に位置決めすることができる。また、該環縁体(10)から放射方向へ図示しないアームを突設させて、該アームの先端部に羽根(1)を装着するようにすることができ、すなわち羽根(1)の回転半径を大きく変化させることができる。
【0035】
上記構成の、風車として構成された回転車(4)において、羽根(1)にA矢示の風を受けると、回転体(5)がB矢示方向へ回転する。
この時、羽根(1)主体部(2)の中芯線(S)は、回転トラック(T)に沿って回転する。また回転に伴って羽根(1)の前部に当たるC矢示の風は、羽根(1)の回転速度と同じであるが、羽根(1)の左右へ分岐して流れる。
【0036】
すなわち、図6において、外側の膨出部(2a)は、図5において取付支持体(3)の部位なので、縦方向では羽根(1)の縦長さの約半分で、正面では図5に示すように湾曲しているので、回転時に於ける当該外側膨出部(2a)は風抵抗が小さい。
【0037】
次に、図6における内側面の、回転推力を造成する膨出部(2b)は、図7における取付支持体(3)の部分の位置であるが、図5に示すように正面では高さの半分以上を占めるので、回転時の風抵抗は外側より大きい。そのことは、抵抗を受けた風はその後部へと高速度で通過するために、該回転推力を造成する膨出部(2b)により負圧が作られて、羽根(1)の外側の常気圧が内側前部へ羽根(1)を押すので、回転推力が得られる。
【0038】
また、高速度で羽根(1)の内側面に沿って後部へ抜ける風は、図6でよく判るように、羽根(1)の内側面後部が、中芯線(S)に対して外向きに傾斜しているために、羽根(1)の回転トラック(T)より外向きに出て行く事になる。そのことは、外側後部を通過する風を外方向へ巻き込んで、羽根(1)を前方へ押す力となる。
【0039】
羽根(1)の上下端縁部においても、図6に示す断面とほぼ同じなので、図5における上下端縁部の傾斜と直交する内方へ、D矢示のように外からの常気圧がかかる。また図6における羽根(1)の外側後部面に対して直角内方へ、E矢示方向の常気圧がかかる。これは羽根(1)の回転推力として作用する。
【0040】
図8において、A矢示方向の風が吹いていると、各羽根(1)はB矢示方向に回転する。この回転に伴ない、回転体(5)に近ずく風は、羽根(1)の回転方向へ引きずられる。図8における手前の羽根(1A)は、図5、図6における右方から向かい風を受けて、主体部(2)上下部の傾斜面を滑って上下方面に抜ける。
【0041】
そのことは、図5において、点QーRを通過する風の速度よりも、点PーRを滑って行く風の速度の方が早くなるため、図6における羽根(1)の後部外側面域が負圧になり、羽根(1)の内側面後部において、内側から外側にかけて常圧が押す力が働く。これによって、図8における羽根(1A)は、外側面に向かい風を受けても、回転推力が得られる。
【0042】
図8における左側手前の羽根(1B)は、外側面に追い風を受けて回転推力が得られる。この場合、羽根(1B)の上下端縁部における外側面は、内方へ湾曲しているので、羽根(1B)の後部を押す。また羽根(1B)の内側面を回り込む風は、膨出部(2b)により速度を早められて、羽根(1B)の内側前縁部域に負圧を生じさせて、回転推力が得られる。
【0043】
図8における左方風下の羽根(1C)は、内側面に追い風を受けて回転推力が得られる。図5における左方から追い風を受ける状態で、主体部(2)の上下部の傾斜面)に当たる風は中央部へ集まり、羽根(1C)を押すと共に、膨出部(2a)に当り、前方へ抜ける風はより高速化されて、回転速度よりも風速が早い場合は、羽根(1C)の内側前縁部域に強い負圧を生み回転推力を生じる。
【0044】
右風下の羽根(1D)は、A矢示方向の風が当たると、主体部(2)の上下部の傾斜部に当った風は、羽根(1D)を押しながら後方へと流れて、更に風は羽根(1D)の後外方向へ流れて羽根(1D)を前へと押し出す。
右前部の羽根(1E)は、A矢示の風を受けると、羽根(1E)の左側面に負圧を生じさせて、やはり回転推力が得られる。
【0045】
このように、どの方向を向く羽根(1A)〜(1E)も回転推力が得られる。そして、高速回転して前後の羽根同士の通過間隔が短くなり、羽根(1A)〜(1E)で囲まれた回転体(5)の中に入る風は、羽根に連れられながら、羽根の後部上下から外へ排出される。
【0046】
図9は第3実施例を示す羽根の正面図、図10は図9におけるAーA線横断平面図である。前例と同じ部位には同じ符号を付して説明を省略する。この実施例は、主体部(2)の上下端縁部が、外側方へ湾曲していることに特徴がある。
【0047】
この実施例において、第2実施例と異なる点は、主体部(2)の上下端部の向きが正反対である点であるが、図8で判るように、回転体(5)は回転するため、位置によって、羽根の湾曲している先が向いている方角は変化するので、羽根(1)の風を受ける作用は似ている。
また湾曲しているので、3次元の形状をしており、どの方角からの応力に対しても剛性に優れて、高速回転時に遠心力がかかっても破損しにくい。
【0048】
ただ、この図9、図10において、左方からA矢示の風が吹いた場合、主体部(2)の上下端縁部に当る風は、湾曲面に沿って早く通過する。
すなわち、図9において点PーQ間を直進する風よりも、点PーR間を滑って通過する風の速度が早くなる。
【0049】
その事から、図8における風下の羽根(1A)(1D)については、A矢示の風の通り抜けが遅いが、これと同じ位置で図10の羽根(1)は、A矢示の風を早く外方へ通過させることができる。
【0050】
図10において、C矢示の風は、羽根の内側面に沿って後斜外方へ抜ける時に、主体部(2)の上下端縁部の大きな抵抗を受けにくい。すなわち、羽根(1)で囲まれた回転体(5)の中側に入った風を、より早く外方へ排出させる事ができる。
【0051】
そのことは、回転する羽根(1)の内側面に沿って通過する高速風を、より早く通過させることが出来て、その高速風が早ければ早いほど、羽根(1)の内側面前部域に負圧を生じさせ、羽根(1)の回転推力を高めるからである。
【0052】
図11は第4実施例を示す羽根の正面図、図12は図11におけるAーA線横断平面図である。前例と同じ部位には同じ符号を付して説明を省略する。
この実施例は、正面において、その上下端縁部は、それぞれその中間部を右側へ湾曲させ、上下先端部は左側へ湾曲させたものである。
これは実施例2,3のそれぞれの良い点を加味させたもので、それに加えて、直線部のない3次元構造なので、剛性強度に優れている。
【0053】
図13は、第5実施例を示す羽根の正面図である。前例と同じ部位については同じ符号を付して説明を省略する。この実施例は、正面において、羽根(1)の主体部(2)における上下先端部が、縦中央部より右側に湾曲し、更に上下先端部は左側方に湾曲しているものである。これは図11のものと湾曲部が正反対になっているが、回転するときは、向きが逆転するので、作用効果は同じように現れる。
【0054】
図14は、回転車の平面図である。この回転車(4)は、図8に示すものとほぼ同じものであるが、回転体(5)に配設される羽根(1)に特徴がある。すなわち、羽根(1)の正面において、主体部(2)の上下端部が、左側方向きに湾曲した羽根(1F)と、右側方向に湾曲した羽根(1G)とを回転体(5)の周部に、交互に配設したことに特徴がある。
【0055】
図14では左側向き湾曲羽根3枚、右側向き湾曲羽根3枚であるが、これを4枚対4枚にすると、対向面で逆向きの羽根を配設することができる。
このように湾曲の向きの異なる羽根(1F)(1G)を交互に配設するとき、回転体(5)は回転するので、回転時における羽根(1F)(1G)による風圧変化が、後位置で追従して回転する羽根に影響を及ぼしにくい。
【0056】
本発明の羽根は、風力発電用風車に使用する他、水車の羽根に使用することができる。例えば図8の回転車(4)の羽根に、A矢示方向から水圧をかけることによって、回転車(4)を安定して回転させることができる。
またこの回転車(4)の主軸(7)を水平として、羽根を水路に沈める。水流は羽根を押すことにより、回転させることができ、羽根の水からの抜け出しがよい。
【0057】
【発明の効果】
以上説明したように、この発明は、次のような優れた効果を有している。
【0058】
(1) 請求項1に記載された発明の羽根は、羽根主体部の縦中央における横断平面は、略魚形状とし、その先端と後端とを結ぶ中芯線は、回転体に装着して回転する羽根の、回転トラックに沿うように湾曲されているので、羽根の前後幅が長くても、回転時に風の抵抗が小さいという効果がある。その結果、羽根の縦長さを長くしなくても、受風面積を広くすることができる効果がある。
また主体部の側面形は、縦中央部に対して上下先端部は次第に細く形成されているため、回転に伴い向きが反転する切り返し時点において、風圧抵抗の負担が小さいため、失速原因がなくなる効果がある。
【0059】
(2) 請求項2に記載された発明の羽根は、横断平面における、中芯線より外側の膨出部よりも、内側面の回転推力を造成する膨出部は大きく前端縁部に設定されているので、羽根の回転時に羽根の外側面に沿って通過する風の速度より、内側面に沿って通過する風の速度が早くなり、羽根の内側前端縁部の空気密度が希薄となり負圧が生じることから、羽根に自走回転推力が得られる効果がある。
また内側膨出部から後端部に至る後部内側面は、後外向きに傾斜されているので、羽根の内側面に沿って通過する高速の風は、羽根の後斜め外方へ抜けるため、羽根の回転トラックより外に抜ける事になり、そのことは後位置で追従回転する羽根に対して、この高速風の影響を与えることがない、という効果がある。
また後斜め外に抜ける高速風は、羽根の外側面に沿って通過する風を外方へ押すことから、外側にある常気圧の風が外後方から羽根を押すことになり、自走回転推力にプラスとなる。
更に、羽根が高速回転をすると、羽根で囲まれた回転体の内部に入った風は、羽根の回転方向へ引きずられて渦流を生じる。この渦流をそのままにしておくと、前記羽根の内側面に沿って通過する風流が回転体の中で停滞するため、その結果は回転推力を減退させるが、この発明においては、前記羽根の内側面後部が外後斜めに傾斜しているために、これらの風流を速やかに、羽根の回転トラック外へ排出させるので、前記渦流の発生が生じない効果がある。
羽根は中央部から上下方向へかけて幅を薄く設定されて、羽根の縦中央部における横断面形状は、ほぼ同じ形状で主体部の上下端部へかけて幅長さに対応して次第に縮尺されているので、正面において、回転時の風抵抗が小さいが、前記効果が羽根の上下において同様に得られる。また羽根の縦中央部が厚いので剛性強度に優れている効果がある。
【0060】
(3) 請求項3に記載された発明の羽根は、前記主体部の外側面後部に、外膨出部と後端部とを結ぶ直線より中に窪む凹成部が形成されているため、羽根の前面から外側面に沿って通過する風は、凹成部で気圧変化現象を生じ、羽根の内側面を通過して後外方へ抜ける風と相俟って、羽根を後部から押す効果がある。
【0061】
(4) 請求項4に記載された発明の羽根は、前記主体部は、中央部位から上下端部にかけて、内側方へ湾曲されているので、羽根の外側面に受ける向かい風に対しては、抵抗を少なくし、また羽根の内側面に追風を受けるときは、風を抱え込むようにして風力を得ると共に、風を後方へ早く排出させる効果がある。また湾曲により3次元形状となり、どちらからの応力に対しても剛性に優れて、高速風、高速回転時の遠心力に対しても破損しにくい効果がある。
【0062】
(5) 請求項5に記載された発明の羽根は、前記主体部は、中央部位から上下端部にかけて、外側方へ湾曲されているので、高速回転時において、羽根で囲まれた回転体の内部に入り込んだ風を、主体部内側面の湾曲面により、効率良く外部へ排出させることができる効果がある。また全体の湾曲により3次元形状となり、どちらからの応力に対しても剛性に優れて、高速風、高速回転時の遠心力に対しても破損しにくい効果がある。
【0063】
(6) 請求項6に記載された発明の羽根は、前記主体部は、正面において上下端縁部が右側方へ湾曲されて、その各先端部は左側方へ湾曲されているので、主体部の上下端部が左方あるいは右方へ湾曲したものの、それぞれの良い点を具備している効果がある。また左右への湾曲により3次元形状となり、どちらからの応力に対しても剛性強度に優れて、高速風、高速回転時の遠心力に対しても破損しにくい効果がある。
【0064】
(7) 請求項7に記載された発明の羽根は、前記主体部は、正面において上下端縁部が左側方へ湾曲されて、その各先端部は右側方へ湾曲されているので、主体部の上下端部が左方あるいは右方へ湾曲したものの、それぞれの良い点を具備している効果がある。また左右への湾曲により3次元形状となり、どちらからの応力に対しても剛性強度に優れて、高速風、高速回転時の遠心力に対しても破損しにくい効果がある。
【0065】
(8) 請求項8に記載された回転車は、回転体の周部に配設された羽根が、上下先端部を左側方向へ湾曲した羽根と、右側方向へ湾曲した羽根とを交互に配設してあるので、受風のバランスがよく、また回転時において羽根による気流の変化が後位に追従して回転する羽根に影響を及ぼさない効果がある。
【図面の簡単な説明】
【図1】本発明羽根の正面図である。
【図2】図1におけるA−A線横断平面図である。
【図3】本発明羽根の左側面図である。
【図4】図1におけるBーB線横断平面図である。
【図5】第2実施例を示す羽根の正面図である。
【図6】図5におけるAーA線横断平面図である。
【図7】第2実施例の羽根左側面図である。
【図8】羽根を配設した回転車の平面図である。
【図9】第3実施例を示す羽根の正面図である。
【図10】図9におけるA−A線横断平面図である。
【図11】第4実施例を示す羽根の正面図である。
【図12】図10におけるA−A線横断平面図である。
【図13】第5実施例を示す羽根の正面図である。
【図14】回転車の平面図である。
【符号の説明】
(1)羽根
(1A)(1B)(1C)(1D)(1E)(1F)(1G)羽根
(2)主体部
(2a)外側の膨出部
(2b)回転推力造成用膨出部
(3)取付支持体
(3a)ネジ孔
(4)回転車
(5)回転体
(6)主軸
(7)ケース体
(8)軸部
(9)支持アーム
(10)環縁体
(T)主体部の回転トラック
(T1)外膨出部の回転トラック
(T2)内膨出部の回転トラック
(S)中芯線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blade of a rotating wheel and a rotating wheel, and more particularly to a blade disposed around a rotating body of a wind turbine, and a tailwind that strikes the inner and outer surfaces of the blade is used as an efficient rotational thrust and enters the inside of the rotating body. The present invention relates to a rotating wheel and its blades configured to increase the negative thrust generated on the inside of the blades by discharging the wind at a high speed outward, thereby increasing the rotational thrust of the blades.
[0002]
[Prior art]
Conventionally, a wind turbine of a wind power generator uses a horizontal axis propeller type, and a vertical axis wind turbine having a wind power recovery rate of about 35% is not used because it is not practical.
Further, since the blades of the vertical wind turbine in the past are set so as to obtain lift toward the outside of the blades, there is a difficulty that it is difficult to obtain thrust in the rotational direction.
In addition, since centrifugal force is applied to the top and bottom of the blade as the rotating body rotates, the lift is applied to the blade and the centrifugal force overlaps, so the blade is easily damaged and prevents damage. For this reason, if the rigidity of the blades is given, the weight becomes heavy and the rotational efficiency is deteriorated.
[0003]
In particular, the vertical axis wind turbine has blades on the periphery of the rotating body, and the direction of the blades is reversed with rotation, so the effect of the wind on the blades is unpredictable. Theories have been established, but no academic theory on wind effects on rotating blades has been studied.
In this regard, the inventor has developed a wind turbine that generates a rotational thrust by using the negative pressure generated in the wind receiving blades and rotates faster than the wind speed, and is disclosed in Patent Documents 1 and 2, for example.
[Patent Document 1]
Japanese Patent Application No. 2002-376879
[Patent Document 2]
Japanese Patent Application No. 2003-143374
[0004]
[Problems to be solved by the invention]
Although the wind receiving blades of the above-mentioned literature have a high wind recovery effect, the blades disposed on the periphery of the rotating body are physically faster on the outer surface than the inner surface due to the difference in diameter ratio when rotating. It is rotating at.
Therefore, when the blade rotates, the speed of the wind that passes separately on the inner and outer surfaces of the blade at the front of the blade is physically higher than the speed of the wind that passes along the outer surface of the blade.
[0005]
When the bulging part that creates rotational thrust is formed on the inner surface of the blade, the speed of the wind passing along the inner surface of the blade during rotation increases, negative pressure is generated in the front edge region of the blade, and the blade A normal pressure airflow acts on the negative pressure portion of the inner side surface region from the outer side surface region, and a rotational thrust is generated in which the blades are pushed in the rotation direction.
[0006]
However, when the rotational speed of the rotating body increases, the rotational speed of the blades increases, so the wind that enters the rotating body surrounded by the blades follows the rotational direction of the rotating blades and moves outward. The airflow that is difficult to come out and stagnates as a vortex on the inside makes it difficult for the wind passing at high speed along the inner surface of the blade to escape to the outside, thereby reducing the rotational thrust.
[0007]
The present invention allows the wind passing along the inner surface of the blade during rotation to pass outward at a higher speed even during high-speed rotation, and as a result, the blade of the rotating wheel that provides strong rotational thrust, and rotation The purpose is to provide a car.
[0008]
[Means for Solving the Problems]
In order to solve the problems and achieve the object, the present invention takes the following technical means.
[0009]
(1) A blade disposed in parallel with the main shaft on a rotating body peripheral portion disposed at right angles to the main shaft of the rotating wheel, the blade being attached to the main body and the longitudinal central inner surface And the front surface of the main body portion is set to be gradually thinner from the vertical center portion upward and downward, and the transverse plane in the vertical center of the blade main body portion is substantially fish-shaped, and its tip The core wire connecting the rear end and the rear end is curved so as to follow the rotating track of the blade that is attached to the rotating body and rotates, and the side surface of the main body portion is formed so that the upper and lower end portions are narrower than the longitudinal width of the vertical center portion Rotating car blades.
[0010]
(2) In the central transverse plane, the bulging portion that creates the rotational thrust of the inner surface is larger at the front end edge than the bulging portion outside the center line in the central transverse plane, The rear inner surface that reaches the rear end portion is inclined rearward and outward, and the transverse plane shape is gradually reduced in accordance with the width length from the upper and lower end portions of the main body portion to (1). The described rotating wheel blades.
[0011]
(3) In any one of the above (1) and (2), a concave portion that is recessed inward from a straight line connecting the outer bulge portion and the rear end portion is formed in the rear portion of the outer surface of the main body portion. The described rotating wheel blades.
[0012]
(4) The blade of the rotating vehicle according to any one of (1) to (3), wherein the main body portion is curved leftward from the vertical center portion to the upper and lower end portions in the front.
[0013]
(5) The blade of the rotating vehicle according to any one of (1) to (3), wherein the main body portion is curved rightward from the vertical center portion to the upper and lower end portions in the front.
[0014]
(6) Any one of (1) to (3), wherein the main body portion is curved to the right side from the longitudinal center portion to the upper and lower end portions in the front, and each tip portion thereof is curved to the left side. Rotating wheel blade described in 1.
[0015]
(7) Any one of the above (1) to (3), wherein the main body portion is curved leftward from the longitudinal center portion to the upper and lower end portions in the front, and each tip portion is curved rightward. Rotating wheel blade described in 1.
[0016]
(8) In the configuration in which the rotating body is supported at a right angle on the main shaft supported by the support body, and a plurality of blades are arranged in parallel to the main shaft on the periphery of the rotating body.
The blade is composed of a main body portion and a mounting support formed on the inner surface of the vertical center, and the front surface of the main body portion is set so as to gradually become thinner upward and downward from the vertical central portion. The transverse plane in the center is substantially fish-shaped, and the core wire connecting the tip and the rear end is curved along the rotating track of the blade that is attached to the rotating body and rotates. However, a rotating wheel in which the one that is curved to the left and the one that is curved to the right are arranged alternately.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. 1 is a front view of a blade (hereinafter simply referred to as a blade) of a rotating wheel according to the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, FIG. 3 is a left side view of the blade, and FIG. It is a BB line crossing top view.
[0018]
In the drawing, the blade (1) is composed of a main body portion (2) and a mounting support body (3) formed on the left side surface (inner side surface) of the vertical center portion on the front side.
The main body portion (2) is set so that, in the front, the longitudinal center portion is thick and gradually becomes thinner toward the top and bottom tips. 4 is a cross-sectional view taken along line BB in FIG. Thus, the cross-sectional shape of the blade (1) is gradually reduced in width as it reaches the upper and lower ends of the blade (1).
[0019]
As shown in FIG. 2, the plane shape of the blade (1) is formed in the longitudinal center portion so as to be gradually thinned toward the rear portion in a substantially fish shape, and a core line connecting the front end portion and the rear end portion ( S) is curved so as to follow the rotating track (T) of the blade (1) when it is disposed on the rotating body (5) shown in FIG.
[0020]
As shown in FIG. 2, the left and right sides of the main portion (2) are different in thickness from the core wire (S). The bulging portion (2b) on the right side (outside) of the core wire (S) is thinner than the left side (inside), and a bulging portion (2b) that forms a rotational thrust larger than the outside is formed on the inner side. ing. Further, a concave portion (2c) that is recessed inward from a straight line connecting the bulging portion (2b) and the rear end portion is formed in the outer side surface.
[0021]
As shown in FIG. 3, the left side surface (inner side surface) of the main body portion (2) is formed so as to become gradually thinner from the vertical center portion to the upper and lower end portions. The mounting support (3) shown in FIGS. 2 and 3 is arranged on the radiation passing through the center of the rotating body (5) shown in FIG. Reference numeral (3a) in the figure denotes a screw hole.
[0022]
Since the position of the mounting support (3) is located at the front edge of the blade (1), the mounting support (3) is in a state where the rear end of the blade (1) is inclined inward from the front end of the blade (1) in a plane. Is disposed. This means that there is a tail of the main part (2) on the inner side of the rotating track (T1) of the right (outer) bulge part (2a), and as shown in FIG. Since the projecting portion (2a) has a small area at the front, the resistance during rotation is small.
[0023]
The left side surface (inner side surface) of the blade (1) main body portion (2) is from the bulging portion (2b) that creates the rotational thrust, and the rear surface is from the rotating track (T2) of the bulging portion (2b). Inclined outward.
From this, during the rotation of the blade (1), the wind passing rearward and outward along the inner surface of the main body (2) becomes faster than the speed of the wind passing through the outer surface of the main body (2), Negative pressure is generated in the inner front edge region of the blade (1), and rotational thrust of the blade (1) is generated.
[0024]
High-speed wind that passes obliquely outward through the inner surface of the main body (2) escapes outward from the inner rear part of the main body (2) inclined outward. In this case, the rear part of the main part (2) is an upper part and a lower part, and the length from the front is short.
[0025]
The wind passing through the outer surface of the main part (2) is changed in atmospheric pressure in the concave part (2c), so that the high-speed wind that escapes rearward outward from the inside tends to pass outside the blade (1). It winds in and acts to push the blade (1) later.
[0026]
Thus, during rotation, the wind that passes along the inner surface of the blade (1) quickly escapes obliquely outward, so that it does not affect the later-rotated blade (1) that passes thereafter. In addition, when wind blows and wind strikes the inner surface of the blade (1), the wind also passes obliquely outside the blade (1), so that the wind (1) is surrounded by the rotor (5). The wind is not stagnant.
[0027]
Since the shape of the blade (1) is thin at the top and bottom when viewed from the front, it is difficult to receive wind resistance during rotation. Even if the front and rear width of the blade (1) is widened, it is difficult to receive wind resistance because its core (S) is flat and along the rotating track (T). In addition, since the rear side of the inner surface of the blade (1) is inclined outwardly, the wind passing along the inner surface is quickly released to the rear and outside, so the influence of the passing wind on the blade that follows at the rear position Not give.
[0028]
From this, it is possible to ensure a sufficient wind receiving area without increasing the longitudinal length of the blade (1). In particular, since the blade (1) rotates together with the rotating body, the blade (1) is always reversed every half rotation, but at the time of turning back, the rear portion of the blade (1) becomes a wind resistance burden.
[0029]
For this reason, the normal blade must be narrowed in the front-rear width, but this blade (1) is thinner than the front-rear width in the vertical center of the top and bottom tips, which reduces the burden of wind pressure resistance when turning over. As a result, the front and rear width could be widened and the wind receiving area could be widened.
[0030]
Furthermore, since the thickness of the longitudinal center part of the main body part (2) is thick and the front-rear width is long, the rigidity strength is excellent. Therefore, the rotational efficiency can be increased by using the rotating body (5) having a larger diameter as shown in FIG. 8 without changing the size of the blade. In addition, in the side surface of a blade | wing (1), it can set so that the upper-lower-end part of a main-body part (2) may incline in the front-back direction.
[0031]
5 is a front view showing a second embodiment of the blade, FIG. 6 is a cross-sectional view taken along line AA in FIG. 5, FIG. 7 is a left side view of the blade, and FIG. 8 is a plan view of a rotating vehicle equipped with the blade. is there. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted.
[0032]
In FIG. 5, the blade (1) is gradually curved from the longitudinal central portion toward the left side (inner side) on the front surface of the blade (1). The right curved surface can be set according to the curved surface close to the circumferential curved surface of the rotating body (5) on which the blade (1) is disposed.
[0033]
As shown in FIG. 7, the left side surface of the blade (1) is vertically long, the height of the main body (2) is, for example, 2.6 m, the length of the front and rear of the center portion is 50 cm, and the rear portion has a triangular back shape. Is formed. This size is suitable when the diameter of the rotating body (5) described later is 4 m, but is not limited to this.
[0034]
In FIG. 8, the rotating body (5) of the rotating wheel (4) is mounted at a right angle on the main shaft (7) supported perpendicularly to the support (6). As for a rotary body (5), the ring body (10) is being fixed to the axial part (8) via the some support arm (9). A plurality of blades (1) are provided at predetermined intervals around the periphery of the annular body (10), and the inner surface of the blade (1) is arranged vertically in the direction of the main shaft (7). The ring body (10) can be easily positioned even when the number of blades (1) changes, in addition to stabilizing the rotation by the rotational inertia. Further, it is possible to project an arm (not shown) from the ring body (10) in the radial direction and attach the blade (1) to the tip of the arm, that is, the radius of rotation of the blade (1). Can be greatly changed.
[0035]
In the rotating wheel (4) configured as a windmill having the above configuration, when the blade (1) receives the wind indicated by the arrow A, the rotating body (5) rotates in the direction indicated by the arrow B.
At this time, the core (S) of the blade (1) main body (2) rotates along the rotating track (T). In addition, the wind indicated by the arrow C hitting the front of the blade (1) with rotation is the same as the rotation speed of the blade (1), but branches and flows to the left and right of the blade (1).
[0036]
That is, in FIG. 6, the outer bulging portion (2a) is a part of the mounting support (3) in FIG. 5, and therefore is about half the vertical length of the blade (1) in the vertical direction and shown in FIG. Thus, the outer bulge portion (2a) during rotation has a low wind resistance.
[0037]
Next, the bulging portion (2b) on the inner surface in FIG. 6 that creates the rotational thrust is the position of the portion of the mounting support (3) in FIG. Wind resistance during rotation is greater than the outside. This is because the wind subjected to resistance passes to the rear part at a high speed, so that a negative pressure is generated by the bulging part (2b) that creates the rotational thrust, and the normal pressure outside the blade (1) is constantly generated. Since the atmospheric pressure pushes the blade (1) to the inner front, rotational thrust is obtained.
[0038]
In addition, as can be seen in FIG. 6, the wind that escapes to the rear part along the inner surface of the blade (1) at a high speed is such that the rear surface of the inner surface of the blade (1) faces outward with respect to the core wire (S). Since it is inclined, it will go out outward from the rotating track (T) of the blade (1). That is the force that winds the wind passing through the outer rear part outward and pushes the blade (1) forward.
[0039]
The upper and lower edges of the blade (1) are almost the same as the cross section shown in FIG. 6, so that the atmospheric pressure from the outside is inward as shown by the arrow D, inwardly perpendicular to the inclination of the upper and lower edges in FIG. Take it. Further, the atmospheric pressure in the direction indicated by the arrow E is applied inward and perpendicular to the outer rear surface of the blade (1) in FIG. This acts as a rotational thrust of the blade (1).
[0040]
In FIG. 8, when the wind in the direction indicated by the arrow A is blowing, each blade (1) rotates in the direction indicated by the arrow B. With this rotation, the wind approaching the rotating body (5) is dragged in the direction of rotation of the blade (1). The front blade (1A) in FIG. 8 receives the head wind from the right side in FIGS. 5 and 6 and slides on the inclined surfaces of the upper and lower portions of the main body (2) to the upper and lower surfaces.
[0041]
That is because in FIG. 5, the speed of the wind that passes through the point PR is faster than the speed of the wind that passes through the point QR, so that the rear outer surface of the blade (1) in FIG. The area becomes negative pressure, and at the rear side of the inner surface of the blade (1), a force is applied to press the normal pressure from the inside to the outside. As a result, even if the blade (1A) in FIG. 8 receives a wind toward the outer surface, a rotational thrust is obtained.
[0042]
The blade (1B) on the left front side in FIG. 8 receives a tailwind on the outer surface to obtain a rotational thrust. In this case, since the outer side surfaces at the upper and lower edge portions of the blade (1B) are curved inward, the rear portion of the blade (1B) is pushed. Moreover, the wind which goes around the inner surface of a blade | wing (1B) is accelerated by the bulging part (2b), a negative pressure is produced in the inner front edge part area | region of a blade | wing (1B), and a rotational thrust is obtained.
[0043]
The blade (1C) on the left leeward side in FIG. 8 receives a tailwind on the inner surface to obtain a rotational thrust. In the state where the tailwind is received from the left in FIG. 5, the wind hitting the upper and lower inclined surfaces) of the main part (2) gathers to the center, pushes the blade (1C), hits the bulging part (2a), and moves forward. When the wind passing through is further increased in speed and the wind speed is higher than the rotation speed, a strong negative pressure is generated in the inner front edge area of the blade (1C) to generate a rotational thrust.
[0044]
When the wind in the direction indicated by arrow A hits the blade (1D) under the right wind, the wind that hits the upper and lower inclined portions of the main body (2) flows backward while pushing the blade (1D). The wind flows rearward and outward in the blade (1D) and pushes the blade (1D) forward.
When the right front blade (1E) receives the wind indicated by the arrow A, a negative pressure is generated on the left side surface of the blade (1E), and rotational thrust is also obtained.
[0045]
Thus, the rotational thrust is obtained for the blades (1A) to (1E) facing in any direction. And the wind which goes into the rotary body (5) enclosed by blade | wing (1A)-(1E) and the blade | wing (1A)-(1E) which is rotated at high speed becomes short, and the rear part of a blade | wing is taken. It is discharged from the top and bottom.
[0046]
FIG. 9 is a front view of a blade showing the third embodiment, and FIG. 10 is a cross-sectional plan view taken along line AA in FIG. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted. This embodiment is characterized in that the upper and lower edges of the main body (2) are curved outward.
[0047]
In this embodiment, the difference from the second embodiment is that the orientation of the upper and lower ends of the main body (2) is opposite, but the rotating body (5) rotates as can be seen in FIG. Depending on the position, the direction in which the tip of the blade is curved changes, so that the action of the blade (1) receiving the wind is similar.
In addition, since it is curved, it has a three-dimensional shape, is excellent in rigidity against stress from any direction, and is not easily damaged even if a centrifugal force is applied during high-speed rotation.
[0048]
However, in FIGS. 9 and 10, when the wind indicated by the arrow A blows from the left, the wind hitting the upper and lower edge portions of the main portion (2) passes quickly along the curved surface.
That is, in FIG. 9, the speed of the wind that slides between the points P and R is faster than the wind that goes straight between the points P and Q.
[0049]
Therefore, for the leeward blades (1A) and (1D) in FIG. 8, the wind of the arrow A is slow, but at the same position, the blade (1) of FIG. It can be quickly passed outward.
[0050]
In FIG. 10, the wind indicated by the arrow C is less likely to receive a large resistance at the upper and lower end edges of the main body (2) when it escapes rearward and obliquely along the inner surface of the blade. That is, the wind that has entered the inside of the rotating body (5) surrounded by the blades (1) can be discharged to the outside more quickly.
[0051]
This means that high-speed wind passing along the inner surface of the rotating blade (1) can be passed faster, and the faster the high-speed wind, the faster the front surface of the inner surface of the blade (1). This is because a negative pressure is generated to increase the rotational thrust of the blade (1).
[0052]
FIG. 11 is a front view of a blade showing the fourth embodiment, and FIG. 12 is a cross-sectional plan view taken along line AA in FIG. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted.
In this embodiment, at the front, the upper and lower end edge portions are each bent at the middle portion to the right side and the upper and lower end portions are bent to the left side.
This is a combination of the good points of Examples 2 and 3, and in addition to this, since it has a three-dimensional structure with no straight portion, it has excellent rigidity and strength.
[0053]
FIG. 13 is a front view of a blade showing the fifth embodiment. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted. In this embodiment, in the front, the top and bottom tips of the main body (2) of the blade (1) are curved to the right from the longitudinal center, and the top and bottom tips are further curved to the left. In this case, the curved portion is opposite to that of FIG. 11, but when rotating, the direction is reversed, so the effect appears in the same way.
[0054]
FIG. 14 is a plan view of the rotating wheel. This rotating wheel (4) is substantially the same as that shown in FIG. 8, but is characterized by the blade (1) disposed on the rotating body (5). That is, on the front surface of the blade (1), the upper and lower end portions of the main body (2) are formed of a blade (1F) curved in the left direction and a blade (1G) curved in the right direction of the rotating body (5). It is characterized by being alternately arranged on the periphery.
[0055]
In FIG. 14, there are three leftward-facing curved blades and three rightward-facing curved blades. However, when these are four to four, oppositely facing blades can be disposed on the opposing surface.
When the blades (1F) (1G) having different curvature directions are alternately arranged in this way, the rotating body (5) rotates, so that the wind pressure change by the blades (1F) (1G) during the rotation is changed to the rear position. It is less likely to affect the blades that follow and rotate.
[0056]
In addition to being used for wind turbines for wind power generation, the blades of the present invention can be used for blades of water turbines. For example, the rotating wheel (4) can be stably rotated by applying water pressure to the blades of the rotating wheel (4) in FIG. 8 from the direction indicated by the arrow A.
Further, the main shaft (7) of the rotating wheel (4) is made horizontal, and the blades are submerged in the water channel. The water flow can be rotated by pushing the blades, and the blades can escape from the water.
[0057]
【The invention's effect】
As described above, the present invention has the following excellent effects.
[0058]
(1) In the blade according to the first aspect of the present invention, the transverse plane in the longitudinal center of the blade main body portion has a substantially fish shape, and the core wire connecting the leading end and the trailing end is attached to the rotating body and rotated. Since the blades are curved along the rotating track, there is an effect that the wind resistance is small during rotation even if the front and rear widths of the blades are long. As a result, there is an effect that the wind receiving area can be widened without increasing the longitudinal length of the blades.
In addition, the side shape of the main part is formed so that the top and bottom tips are gradually narrowed with respect to the vertical center part, so that the burden of wind pressure resistance is small at the turning point when the direction reverses with rotation, eliminating the cause of stalling There is.
[0059]
(2) In the blade according to the second aspect of the present invention, the bulging portion that creates the rotational thrust on the inner surface is set to be largely at the front end edge portion, rather than the bulging portion outside the center line in the transverse plane. Therefore, the speed of the wind passing along the inner surface is faster than the speed of the wind passing along the outer surface of the blade during the rotation of the blade, and the air density at the inner front edge of the blade is dilute and negative pressure is reduced. As a result, the blade has an effect of obtaining a self-propelled rotational thrust.
Moreover, since the rear inner side surface extending from the inner bulge portion to the rear end portion is inclined rearward and outward, the high-speed wind passing along the inner side surface of the blade escapes diagonally outward from the blade, The blades come out of the rotating track of the blades, and this has the effect that the high-speed wind does not affect the blades that follow and rotate at the rear position.
In addition, the high-speed wind that exits diagonally outward pushes the wind that passes along the outer surface of the blades outward, so the atmospheric pressure wind on the outside pushes the blades from the outside rear, and self-propelled rotational thrust It is a plus.
Furthermore, when the blades rotate at high speed, the wind that enters the rotating body surrounded by the blades is dragged in the direction of rotation of the blades to generate a vortex. If this vortex is left as it is, the wind flow passing along the inner surface of the blades stagnates in the rotating body, and as a result, the rotational thrust is reduced. Since the rear part is inclined obliquely rearward and rearward, these airflows are promptly discharged out of the rotating track of the blades, so that the vortex is not generated.
The blades are set to be thin from the center to the top and bottom, and the cross-sectional shape of the blades in the vertical center is approximately the same shape, and gradually scales to correspond to the width and length from the upper and lower ends of the main part. Therefore, in the front, wind resistance during rotation is small, but the above effect can be obtained in the same manner above and below the blades. Moreover, since the vertical center part of a blade | wing is thick, there exists an effect excellent in rigidity strength.
[0060]
(3) Since the blade of the invention described in claim 3 is formed with a recessed portion that is recessed inward from the straight line connecting the outer bulging portion and the rear end portion at the rear portion of the outer surface of the main body portion. The wind that passes along the outer surface from the front surface of the blade causes a pressure change phenomenon in the recessed portion, and pushes the blade from the rear side in combination with the wind that passes through the inner surface of the blade and exits rearward and outward. effective.
[0061]
(4) In the blade according to the invention described in claim 4, since the main body portion is curved inward from the central portion to the upper and lower end portions, it resists against the head wind received on the outer surface of the blade. In addition, when the wind is applied to the inner surface of the blade, wind force is obtained by holding the wind, and the wind is quickly discharged backward. Moreover, it becomes a three-dimensional shape by bending, and is excellent in rigidity against stress from either, and has an effect that it is difficult to be damaged by high-speed wind and centrifugal force during high-speed rotation.
[0062]
(5) In the blade according to the invention described in claim 5, since the main body portion is curved outward from the central portion to the upper and lower ends, the rotating body surrounded by the blade during high-speed rotation There is an effect that the wind that has entered inside can be efficiently discharged to the outside by the curved surface of the inner surface of the main body. Moreover, it becomes a three-dimensional shape due to the entire curvature, and is excellent in rigidity against stress from either, and has an effect of being difficult to break against high-speed wind and centrifugal force during high-speed rotation.
[0063]
(6) In the blade according to the invention described in claim 6, since the main body portion has upper and lower end edge portions bent to the right side in the front surface, and each tip portion thereof is bent to the left side. Although the upper and lower end portions are curved to the left or right, there is an effect that each has good points. Moreover, it becomes a three-dimensional shape by bending to the left and right, has excellent rigidity strength against stress from either, and has the effect of being difficult to break against high-speed wind and centrifugal force during high-speed rotation.
[0064]
(7) In the blade according to the invention described in claim 7, since the main body portion has the upper and lower end edge portions bent to the left side in the front, and the respective tip portions thereof are bent to the right side. Although the upper and lower end portions are curved to the left or right, there is an effect that each has good points. Moreover, it becomes a three-dimensional shape by bending to the left and right, has excellent rigidity strength against stress from either, and has the effect of being difficult to break against high-speed wind and centrifugal force during high-speed rotation.
[0065]
(8) In the rotating wheel described in claim 8, the blades disposed on the periphery of the rotating body alternately arrange the blades whose upper and lower tip portions are bent in the left direction and the blades bent in the right direction. Therefore, the balance of wind reception is good, and there is an effect that the change of the airflow by the blades does not affect the blades rotating following the rear position during rotation.
[Brief description of the drawings]
FIG. 1 is a front view of a blade according to the present invention.
FIG. 2 is a cross-sectional plan view taken along line AA in FIG.
FIG. 3 is a left side view of the blade of the present invention.
4 is a cross-sectional view taken along line BB in FIG. 1. FIG.
FIG. 5 is a front view of a blade showing a second embodiment.
FIG. 6 is a cross-sectional plan view taken along line AA in FIG.
FIG. 7 is a left side view of a blade according to the second embodiment.
FIG. 8 is a plan view of a rotating wheel provided with blades.
FIG. 9 is a front view of a blade showing a third embodiment.
10 is a cross-sectional plan view taken along the line AA in FIG. 9. FIG.
FIG. 11 is a front view of a blade showing a fourth embodiment.
12 is a plan view taken along line AA in FIG.
FIG. 13 is a front view of a blade showing a fifth embodiment.
FIG. 14 is a plan view of a rotating wheel.
[Explanation of symbols]
(1) Feather
(1A) (1B) (1C) (1D) (1E) (1F) (1G) blade
(2) Main part
(2a) Outside bulge
(2b) Rotating portion for generating rotational thrust
(3) Mounting support
(3a) Screw hole
(4) Rotating wheel
(5) Rotating body
(6) Spindle
(7) Case body
(8) Shaft
(9) Support arm
(10) Ring body
(T) Rotating track of main part
(T1) Rotating track of the outer bulge
(T2) Rotating track of the inner bulge
(S) Core wire

Claims (8)

回転車の主軸に直角に配設された回転体周部に、主軸と平行に配設される羽根であって、該羽根は主体部とその縦中央内側面に形成された取付支持体とから構成され、該主体部の正面は、縦中央部から上下方へ次第に薄くなるように設定されている羽根において、羽根主体部の縦中央における横断平面は、略魚形状とし、その先端と後端を結ぶ中芯線は、回転体に装着して回転する羽根の回転トラックに沿うように湾曲され、主体部の側面は、縦中央部の前後幅より上下端部は細く形成されている事を特徴とする回転車の羽根。A blade disposed parallel to the main shaft on a rotating body circumferential portion disposed at right angles to the main shaft of the rotating wheel, the blade being formed from a main body and an attachment support formed on the inner surface of the longitudinal center The front surface of the main body is configured so that the front surface of the main body is gradually thinned upward and downward from the vertical center, and the transverse plane in the vertical center of the main body is substantially fish-shaped, and its front and rear ends The core wire connecting the two is curved so as to follow the rotating track of the rotating blade mounted on the rotating body, and the upper and lower end portions of the side surface of the main body portion are narrower than the longitudinal width of the longitudinal center portion. Rotating car blades. 前記主体部は、中央横断平面における、中芯線より外側の膨出部よりも、内側面の回転推力を造成する膨出部は大きく前端縁部に設定され、内側膨出部から後端部に至る後内側面は、後外向きに傾斜され、その横断平面形状が、主体部の上下端部へかけて幅長さに対応して、次第に縮尺されていることを特徴とする、請求項1に記載された回転車の羽根。In the central transverse plane, the bulging portion for creating the rotational thrust of the inner surface is set to be larger at the front end edge than the bulging portion outside the center line in the central transverse plane, and from the inner bulging portion to the rear end portion. The rear inner side surface is inclined rearward and outward, and its transverse plane shape is gradually reduced in accordance with the width length from the upper and lower ends of the main part. Rotating wheel blade described in 1. 前記主体部の外側面後部には、外膨出部と後端部とを結ぶ直線より中に窪む凹成部が、形成されていることを特徴とする、請求項1,2のいずれかに記載された回転車の羽根。The recessed portion recessed inward from the straight line connecting the outer bulge portion and the rear end portion is formed at the rear portion of the outer surface of the main body portion. Rotating wheel blade described in 1. 前記主体部は、正面において、縦中央部位から上下端部にかけて、左側方へ湾曲されていることを特徴とする、請求項1〜3のいずれかに記載された回転車の羽根。The blade of the rotating wheel according to any one of claims 1 to 3, wherein the main body portion is curved leftward from the longitudinal center portion to the upper and lower end portions in the front. 前記主体部は、正面において、縦中央部位から上下端部にかけて、右側方へ湾曲されていることを特徴とする、請求項1〜3のいずれかに記載された回転車の羽根。The blade of the rotating wheel according to any one of claims 1 to 3, wherein the main body portion is curved rightward from the longitudinal center portion to the upper and lower end portions in the front. 前記主体部は、正面において、縦中央部位から上下端部にかけて、右側方へ湾曲されて、その各先端部は左側方へ湾曲されている事を特徴とする、請求項1〜3のいずれかに記載された回転車の羽根。4. The main body according to any one of claims 1 to 3, wherein the main body portion is curved to the right side from the longitudinal center portion to the upper and lower end portions, and each tip portion thereof is curved to the left side. Rotating wheel blade described in 1. 前記主体部は、正面において、縦中央部位から上下端部にかけて、左側方へ湾曲されて、その各先端部は右側方へ湾曲されている事を特徴とする、請求項1〜3のいずれかに記載された回転車の羽根。4. The main body according to any one of claims 1 to 3, wherein the main body portion is curved leftward from the longitudinal center portion to the upper and lower end portions, and each tip portion thereof is curved rightward. Rotating wheel blade described in 1. 支持体に支持された主軸に回転体を直角に支持し、回転体周部に複数の羽根を主軸に平行に配設する構成において、
該羽根は主体部とその縦中央内側面に形成された取付支持体とから構成され、該主体部の正面は、縦中央部から上下方へ次第に薄くなるように設定され、羽根主体部の縦中央における横断平面は、略魚形状とし、その先端と後端を結ぶ中芯線は、回転体に装着して回転する羽根の回転トラックに沿うように湾曲され、該羽根は、主体部の上下先端部が正面において左方に湾曲しているものと、右方に湾曲しているものとを、交互に回転体に配設してなる事を特徴とする回転車。
In the configuration in which the rotating body is supported at a right angle on the main shaft supported by the support body, and a plurality of blades are disposed in parallel to the main shaft on the periphery of the rotating body.
The blade is composed of a main body portion and a mounting support formed on the inner surface of the vertical center, and the front surface of the main body portion is set so as to gradually become thinner upward and downward from the vertical central portion. The transverse plane in the center is substantially fish-shaped, and the core wire connecting the tip and the rear end is curved along the rotating track of the blade that is attached to the rotating body and rotates. A rotating vehicle characterized in that a portion is curved leftward and a portion curved rightward in the front are alternately arranged on a rotating body.
JP2003185255A 2003-06-27 2003-06-27 Rotating wheel and rotating wheel Expired - Fee Related JP4173773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185255A JP4173773B2 (en) 2003-06-27 2003-06-27 Rotating wheel and rotating wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185255A JP4173773B2 (en) 2003-06-27 2003-06-27 Rotating wheel and rotating wheel

Publications (2)

Publication Number Publication Date
JP2005016479A true JP2005016479A (en) 2005-01-20
JP4173773B2 JP4173773B2 (en) 2008-10-29

Family

ID=34184782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185255A Expired - Fee Related JP4173773B2 (en) 2003-06-27 2003-06-27 Rotating wheel and rotating wheel

Country Status (1)

Country Link
JP (1) JP4173773B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133239A (en) * 2013-03-26 2013-06-05 易兵 Vane and turbine generator using vane
CN103133238A (en) * 2013-03-05 2013-06-05 常熟市强盛电力设备有限责任公司 Generator rotor
JP2019073993A (en) * 2017-10-13 2019-05-16 BS・Tech株式会社 Wind mill and wind-receiving blade of wind mill
WO2022202488A1 (en) * 2021-03-22 2022-09-29 Ntn株式会社 Wind turbine and wind power generation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133238A (en) * 2013-03-05 2013-06-05 常熟市强盛电力设备有限责任公司 Generator rotor
CN103133239A (en) * 2013-03-26 2013-06-05 易兵 Vane and turbine generator using vane
JP2019073993A (en) * 2017-10-13 2019-05-16 BS・Tech株式会社 Wind mill and wind-receiving blade of wind mill
WO2022202488A1 (en) * 2021-03-22 2022-09-29 Ntn株式会社 Wind turbine and wind power generation apparatus

Also Published As

Publication number Publication date
JP4173773B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
KR100637297B1 (en) Windmill for wind power generation
JP4740580B2 (en) Horizontal axis wind turbine blades and horizontal axis wind turbine
WO2002059464A1 (en) Fluid machinery
EP2592265B1 (en) Power producing spinner for a wind turbine
US10578076B2 (en) Fluid-redirecting structure
JP2015031227A (en) Wind mill
JP2012224140A (en) Blade of rotor for fluid equipment
JP2008082185A (en) Wind power generation device
JP4382120B2 (en) Turbine fin with duct
JP4173727B2 (en) Wind turbine blades
JP4173773B2 (en) Rotating wheel and rotating wheel
JP2012251448A (en) Configurational form for blade noise reduction for propeller-type wind power generator of 10 m or larger diameter
JP2006226148A (en) Horizontal-shaft windmill and propeller
JP6426869B1 (en) Horizontal axis rotor
JP3987960B2 (en) Fluid machinery
KR20110008789A (en) Blade for wind power generation and device for wind power generation
JP4097020B2 (en) Rotor blade
WO2018168744A1 (en) Vertical axis wind turbine, blade thereof, and wind power generation device
JP6469303B1 (en) Wind power generation system
JP5805913B1 (en) Wind turbine blade and wind power generator equipped with the same
WO2022054800A1 (en) Vertical-axis wind turbine and vertical-axis wind turbine power generator
JP6948094B1 (en) Rotor blade
JP2004183531A (en) Wind receiving blade for vertical axis wind turbine
JP6794926B2 (en) Wind power generator
JP2007205359A (en) Thin wing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Ref document number: 4173773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees