JP4173773B2 - Rotating wheel and rotating wheel - Google Patents

Rotating wheel and rotating wheel Download PDF

Info

Publication number
JP4173773B2
JP4173773B2 JP2003185255A JP2003185255A JP4173773B2 JP 4173773 B2 JP4173773 B2 JP 4173773B2 JP 2003185255 A JP2003185255 A JP 2003185255A JP 2003185255 A JP2003185255 A JP 2003185255A JP 4173773 B2 JP4173773 B2 JP 4173773B2
Authority
JP
Japan
Prior art keywords
blade
blades
rotating
wind
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003185255A
Other languages
Japanese (ja)
Other versions
JP2005016479A (en
Inventor
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Energy Co Ltd
Original Assignee
Global Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Energy Co Ltd filed Critical Global Energy Co Ltd
Priority to JP2003185255A priority Critical patent/JP4173773B2/en
Publication of JP2005016479A publication Critical patent/JP2005016479A/en
Application granted granted Critical
Publication of JP4173773B2 publication Critical patent/JP4173773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、回転車の羽根並びに回転車に係り、特に風車の回転体周部に配設される羽根であって、羽根の内外面に当たる追い風を効率良い回転推力とし、回転体の内部に入った風を、外方へ高速度で排出することによって、羽根の内側に造成される負圧を高めて、羽根の回転推力を高めるように構成された回転車とその羽根に関する。
【0002】
【従来の技術】
従来、風力発電機の風車は、横軸プロペラ式が使用され、風力回収率が35%程度と云われる縦軸風車は、実用性がないものとして使用されていないのが現状である。
また過去における縦軸風車の羽根は、羽根の外側に向けて揚力を得るような設定であるので、回転方向への推力が得にくいという難点がある。
加えて回転体の回転に伴い、遠心力が羽根の上下にかかるため、羽根には、外側に向けた揚力と、遠心力とが重なってかかるために、羽根の破損が生じやすく、破損を防止するために、羽根の剛性を持たせると重量が重くなり、回転効率が悪化するという難点がある。
【0003】
特に縦軸風車は、回転体の周部に羽根があり、回転に伴い羽根は向きを反転させることから、羽根に対する風の影響については予測が立たず、例えば飛行機の翼については、風の影響に関する学理は成立しているが、回転する羽根に対する風の影響に関する学術理論も研究されていない。
この発明者は、これに関して、受風羽根に生じる負圧を利用して回転推力を生じさせ、風速よりも早く回転する風車を開発し、例えば特許文献1,2で開示している。
【特許文献1】
特願2002−376879号
【特許文献2】
特願2003−143374号
【0004】
【発明が解決しようとする課題】
前記、文献の受風羽根も風力回収効果は高いが、回転体の周部に配設される羽根は、回転する時に、直径比の差によって、外側面が内側面よりも物理的に早い速度で回転している。
従って、羽根の回転時に、羽根の前部にあたって、羽根の内外側面に分かれて通過する風の速度は、物理的に、羽根の外側面に沿って通過する風の速度が早いことになる。
【0005】
羽根の内側面に回転推力を造成させる膨出部を形成すると、回転時に羽根の内側面に沿って通過する風の速度は早くなって、羽根の前端縁部域に負圧が生じ、羽根の外側面域から、内側面域の負圧部分に対して常圧気流が作用して、羽根を回転方向へ押すという回転推力が生じる。
【0006】
ところが、回転体の回転速度があがった場合、羽根の回転速度が早くなるために、羽根で囲まれた回転体の内側に入った風が、回転する羽根の回転方向へ追従して、外側に出にくくなり、内側に渦となって停滞する気流によって、前記羽根の内側面に沿って、高速で通過する風が外に抜けにくくなり、その分、回転推力を減退させる。
【0007】
この発明は、高速回転時にも、回転時に羽根の内側面に沿って通過する風を、より高速で外方へ通過させることができ、結果として強い回転推力が得られる回転車の羽根と、回転車を提供することを目的としている。
【0008】
【課題を解決するための手段】
この発明は、前記課題を解決し目的を達成するために、次のような技術的手段を講じた。
【0009】
(1) 回転車の主軸に直角に配設された回転体周部に、主軸に左側面を対面させて平行に配設され、左側面を内側として正面を前向きに回転する羽根であって、該羽根は主体部とその縦中央側面に形成された取付支持体とから構成され、該主体部の板厚は、縦中央部から上下端部方へ次第に薄くなるように設定され、羽根主体部の縦中央における横断平面は、前部の板厚が厚く後端部へかけて次第に薄く略魚形状とし、その端と後端を結ぶ中芯線(S)は、回転体に装着して回転する羽根の回転トラック(T)に沿うように湾曲され、主体部の側面は、縦中央部の前後幅(翼弦長)よりも上下端部は狭く形成されている回転車の羽根。
【0010】
(2) 前記主体部は、中央部における横断平面形が、前端部と後端部を結ぶ中芯線Sを境として右側面前端縁部の膨出部よりも、左側面前端縁部の膨出部が大きく設定され、その縦中央部における横断平面形状が、主体部の上下端部へかけて幅長さ(翼弦長)に対応して、次第に縮尺されている、前記(1)に記載された回転車の羽根。
【0011】
(3) 前記主体部の側面後部には、右側面膨出部の右側端と後端部とを結ぶ直線より内側に窪む凹成部が形成されている、前記(1)または(2)に記載された回転車の羽根。
【0012】
(4) 前記主体部は、縦中央部位から上下端部にかけて、左側方へ湾曲されている、前記(1)〜(3)のいずれかに記載された回転車の羽根。
【0013】
(5) 前記主体部は、縦中央部位から上下端部にかけて、右側方へ湾曲されている、前記(1)〜(3)のいずれかに記載された回転車の羽根。
【0014】
(6) 前記主体部は、縦中央部位から上下端部にかけて、右側方へ湾曲されて、その各先端部は左側方へ湾曲されている、前記(1)〜(3)のいずれかに記載された回転車の羽根。
【0015】
(7) 前記主体部は、縦中央部位から上下端部にかけて、左側方へ湾曲されて、その各先端部は右側方へ湾曲されている、前記(1)〜(3)のいずれかに記載された回転車の羽根。
【0016】
(8) 支持体に支持された主軸に、直角に支持された回転体の外周部に複数の羽根が、主軸に左側面を対面させて平行に配設され、左側面を内側として正面方へ回転させる構成において、該羽根は主体部とその縦中央側面に形成された取付支持体とから構成され、該主体部の板厚は、縦中央部から上下端部方へ次第に薄くなるように設定され、羽根主体部の縦中央における横断平面は、前部の板厚が厚く後端部へかけて次第に薄くした略魚形状とされ、その前端と後端を結ぶ中芯線(S)は、回転体に装着されて回転する羽根の、回転トラック(T)に沿うように湾曲され、該羽根は、主体部の上下先端部が羽根の左側方へ湾曲しているものを、回転体の外周部に配設してなる回転車。
【0017】
【発明の実施の形態】
本願発明の実施の形態例を、図面を参照して説明する。図1は本発明に係る回転車の羽根(以下単に羽根という)の正面図で、この正面を前にして回転される。図2は図1におけるA−A線横断平面図、図3は羽根の左側面図で、使用時において内側面である。図4は図1におけるBーB線横断平面図で、図の左側が内側面、右側が外側面である
【0018】
において羽根(1)は、主体部(2)と、その左側面(内側面)縦中央部に形成された取付支持体(3)とで構成されている。
主体部(2)は、図1において縦中央部は板厚が厚く、上下先端部にかけて、板厚は次第に薄くなるように設定されている。図4は図1におけるBーB線横断平面図である。このように羽根(1)の横断平面形状は、羽根(1)の上下端部に至るに従って次第に幅が縮尺される。
【0019】
羽根(1)の平面形は、図2に示すように、略魚形状に前部は板厚が厚く後端部へかけて次第に薄くなるように形成され、前端部と後端部を結ぶ中芯線(S)は、図8に示す回転体(5)に配設したときの、羽根(1)の回転トラック(T)に沿うように湾曲形成されている。
【0020】
図2に示すように、中芯線(S)を挟んで、主体部(2)の左右は厚さが異なっている。中芯線(S)の右側(外側)の膨出部(2a)は左側(内側)より薄く、内側には前縁部に外側より大きな、回転推力を造成する膨出部(2b)が形成されている。また外側面には、後部において、膨出部(2b)と後端部とを結ぶ直線よりも中に窪む凹成部(2c)が凹成されている。
【0021】
主体部(2)の左側面(内側面)の横幅(翼弦長)は、図3に示すように、縦中央部から上下端部にかけて、次第に狭くなるように形成されている。図2、図3に示す取付支持体(3)は、後記する図8に図示した回転体(5)の中心を通る放射線上に合わせて配設される。
【0022】
取付支持体(3)の位置が羽根(1)の前縁部にあるので、羽根(1)の前端部よりも後端部は内方(左側方)へ傾斜した状態で、取付支持体(3)が配設される。このことは、右側(外側)の膨出部(2a)の回転トラック(T1)よりも、中側に主体部(2)の後尾がある事になり、図1で判るように、右側面の膨出部(2a)は正面における風の当る面積が小さいので、回転時の抵抗は小さい。
【0023】
そして、図2に示す羽根(1)主体部(2)の左側面(内側面)は、回転推力を造成する膨出部(2b)から後部の左側面は、膨出部(2b)の回転トラック(T2)より外向きに傾斜している。
このことから、羽根(1)の回転時に、主体部(2)の内側面(左側面)に沿い、後外向きに通過する風は、主体部(2)の外側面を通過する風の速度より早くなり、羽根(1)の内側前縁部域に負圧が生じて、羽根(1)の回転推力が生じる。
【0024】
主体部(2)の内側面を、斜外向きに通過する高速の風は、外向きに傾斜した主体部(2)の、内側後部から外向きに抜ける。この場合、主体部(2)の後部は上下部で前からの長さが短いので、短時間で早く通過する。
【0025】
主体部(2)の外側面を通過する風は、凹成部(2c)で気圧が変化され、そのため、羽根の内側(左側)から後外向きに抜ける高速風は、羽根(1)の外側を通過しようとする風を巻き込んで、羽根(1)を後から押す作用をする。
【0026】
このように、回転時において、羽根(1)の内側面に沿って通過する風は、後斜め外に早く抜けるので、その後に通過する回転後位の羽根(1)に、影響を及ぼさない。また風が吹いて、羽根(1)の内側面に向かい風が当る場合、やはり羽根(1)の後斜め外に風が抜けるため、回転する羽根(1)で囲まれた回転体(5)の内側に風が滞りにくい。
【0027】
この羽根(1)の形状は、正面から見て上下部の板厚が薄く形成されているので、回転時における風の抵抗を受けにくい。羽根(1)の前後幅(翼弦長)を広くしても、回転時にその中芯線(S)が回転トラック(T)に沿っているために、風の抵抗を受けにくい。 加えて、羽根(1)の内側面後部が、外向きに傾斜していて、内側面に沿って通過する風を早く後外方へ抜けさせるので、後位置で追従する羽根に通過風の影響を与えない。
【0028】
このことから、羽根(1)の縦長さを長くしなくても、受風面積を充分確保することができる。特に羽根(1)は回転体と共に回転するので、常に半回転毎に反転するが、その切り返しの時点で、羽根(1)の後部が風の抵抗負担になる。
【0029】
そのため普通の羽根は、前後幅(翼弦長)を狭くせざるを得ないが、この羽根(1)は、上下先端部の横幅が縦中央部の前後幅よりも狭くされたことによって、切返し時における風圧抵抗の負担が軽くなり、結果として、前後幅(翼弦長)を広くする事ができ、受風面積を広くする事ができた。
【0030】
更に、主体部(2)の縦中央部の板厚が厚く、前後幅(翼弦長)が長いので、剛性強度に優れている。このことから、羽根の大きさは変えずに、図8に示すような回転体(5)の直径を大きくしたものに使用して、回転効率を上げることができる。なお、羽根(1)の側面において、主体部(2)の上下端部が、前後方向へ傾斜するように設定することができる。
【0031】
図5は羽根の第2実施例を示す正面図、図6は図5におけるA−A線横断平面図、図7は羽根の左側面図、図8は羽根を装着した回転車の平面図である。前例と同じ部位には同じ符号を付して説明を省略する。
【0032】
図5において、羽根(1)は主体部(2)の上下端部が、縦中央部からそれぞれ左側(内側)方へ次第に湾曲されている。該右側湾曲面は、この羽根(1)を配設する回転体(5)の、周曲面に近い湾曲面に合わせて設定させることができる。
【0033】
羽根(1)の左側面は、図7に示すように、縦長で、主体部(2)の高さは、例えば2.6m、中央部前後長さ50cmで、側面形は後部が三角状に後尖状に形成されている。この大きさは、後記する回転体(5)の直径が4mの場合に適しているが、これに限定されるものではない。
【0034】
図8において、回転車(4)の回転体(5)は、支持体(6)に垂直に支持された主軸(7)に、直角に装着されている。回転体(5)は、軸部(8)に複数の支持アーム(9)を介して環縁体
(10)が固定されている。該環縁体(10)の周部に所定間隔を開けて羽根(1)が複数、その内側面を主軸(7)方向に向けて縦長に配設される。該環縁体(10)は、回転慣性により回転を安定させるほか、羽根(1)の数が変化するときでも、容易に位置決めすることができる。また、該環縁体(10)から放射方向へ図示しないアームを突設させて、該アームの先端部に羽根(1)を装着するようにすることができ、すなわち羽根(1)の回転半径を大きく変化させることができる。
【0035】
上記構成の、風車として構成された回転車(4)において、羽根(1)にA矢示の風を受けると、回転体(5)がB矢示方向へ回転する。
この時、羽根(1)主体部(2)の中芯線(S)は、回転トラック(T)に沿って回転する。また回転に伴って羽根(1)の前部に当るC矢示の風は、羽根(1)の回転速度と同じであるが、羽根(1)の左右へ分岐して流れる。
【0036】
すなわち、図6において、外側の膨出部(2a)は、図5において取付支持体(3)の部位なので、縦方向では羽根(1)の縦長さの約半分で、正面では図5に示すように湾曲しているので、回転時に於ける当該外側膨出部(2a)は風抵抗が小さい。
【0037】
次に、図6における内側面(左側)の、回転推力を造成する膨出部(2b)は、図7における取付支持体(3)の部分の位置であるが、図5に示すように正面では膨出部 (2b) 高さの半分以上を占めるので、回転時の膨出部 (2b) における風抵抗は外側面より大きい。そのことは、抵抗を受けた風はその後部へと高速度で通過するために、該回転推力を造成する膨出部(2b)により負圧が作られて、羽根(1)の外側の常気圧が内側前部へ羽根(1)を押すので、回転推力が得られる。
【0038】
また、高速度で羽根(1)の内側面(左側面)に沿って後部へ抜ける風は、図6でよく判るように、羽根(1)の内側面後部が、中芯線(S)に対して外向きに傾斜しているために、羽根(1)の回転トラック(T)より外向きに出て行く事になる。そのことは、外側後部を通過する風を外方向へ巻き込んで、羽根(1)を前方へ押す力となる。
【0039】
羽根(1)の上下端縁部においても、図6に示す断面とほぼ同じなので、図5における上下端縁部の傾斜と直交する内方へ、D矢示のように外からの常気圧がかかる。また図6における羽根(1)の外側後部面に対して直角内方へ、E矢示方向の常気圧がかかる。これは羽根(1)の回転推力として作用する。
【0040】
図8において、A矢示方向の風が吹いていると、各羽根(1)はB矢示方向に回転する。この回転に伴ない、回転体(5)に近ずく風は、羽根(1)の回転方向へ引きずられる。図8における手前の羽根(1A)は、図5、図6における右方から向かい風を受けて、主体部(2)上下部の傾斜面を滑って上下方面に抜ける。
【0041】
そのことは、図5において、点QーRを通過する風の速度よりも、点PーRを滑って行く風の速度の方が早くなるため、図6における羽根(1)の後部外側面域が負圧になり、羽根(1)の内側面後部において、内側から外側にかけて常圧が押す力が働く。これによって、図8における羽根(1A)は、外側面に向かい風を受けても、回転推力が得られる。
【0042】
図8における左側手前の羽根(1B)は、外側面に追い風を受けて回転推力が得られる。この場合、羽根(1B)の上下端縁部における外側面は、内方へ湾曲しているので、羽根
(1B)の後部を押す。また羽根(1B)の内側面を回り込む風は、膨出部(2b)により速度を早められて、羽根(1B)の内側前縁部域に負圧を生じさせて、回転推力が得られる。
【0043】
図8における左方風下の羽根(1C)は、内側面にA矢示の追い風を受けて回転推力が得られる。図5における左方から追い風を受ける状態で、主体部(2)の上下部の傾斜面に当る風は中央部へ集まり、羽根(1C)を押すと共に、膨出部(2a)に当り、前方へ抜ける風はより高速化されて、回転速度よりも風速が早い場合は、羽根(1C)の内側前縁部域に強い負圧を生み回転推力を生じる。
【0044】
右風下の羽根(1D)は、A矢示方向の風が当たると、主体部(2)の上下部の傾斜部に当った風は、羽根(1D)を押しながら後方へと流れて、更に風は羽根(1D)の後外方向へ流れて羽根(1D)を前へと押し出す。
右前部の羽根(1E)は、A矢示の風を受けると、羽根(1E)の左側面に負圧を生じさせて、やはり回転推力が得られる。
【0045】
このように、どの方向を向く羽根(1A)〜(1E)も回転推力が得られる。そして、高速回転して前後の羽根同士の通過間隔が短くなり、羽根(1A)〜(1E)で囲まれた回転体(5)の中に入る風は、羽根に連れられながら、羽根の後部上下から外へ排出される。
【0046】
図9は第3実施例を示す羽根の正面図、図10は図9におけるAーA線横断平面図である。前例と同じ部位には同じ符号を付して説明を省略する。この実施例は、主体部(2)の上下端縁部が、外側方へ湾曲していることに特徴がある。
【0047】
この実施例において、第2実施例と異なる点は、主体部(2)の上下端部の向きが正反対である点であるが、図8で判るように、回転体(5)は回転するため、位置によって、羽根の湾曲している先が向いている方角は変化するので、羽根(1)の風を受ける作用は似ている。
また湾曲しているので、3次元の形状をしており、どの方角からの応力に対しても剛性に優れて、高速回転時に遠心力がかかっても破損しにくい。
【0048】
ただ、この図9、図10において、左方からA矢示の風が吹いた場合、主体部(2)の上下端縁部に当る風は、湾曲面に沿って早く通過する。
すなわち、図9において点PーQ間を直進する風よりも、点PーR間を滑って通過する風の速度が早くなる。
【0049】
その事から、図8における風下の羽根(1A)(1D)については、A矢示の風の通り抜けが遅いが、これと同じ位置で図10の羽根(1)は、A矢示の風を早く外方へ通過させることができる。
【0050】
図10において、C矢示の風は、羽根の内側面に沿って後斜外方へ抜ける時に、主体部(2)の上下端縁部の大きな抵抗を受けにくい。すなわち、羽根(1)で囲まれた回転体(5)の中側に入った風を、より早く外方へ排出させる事ができる。
【0051】
そのことは、回転する羽根(1)の内側面に沿って通過する高速風を、より早く通過させることが出来て、その高速風が早ければ早いほど、羽根(1)の内側面前部域に負圧を生じさせ、羽根(1)の回転推力を高めるからである。
【0052】
図11は第4実施例を示す羽根の正面図、図12は図11におけるAーA線横断平面図である。前例と同じ部位には同じ符号を付して説明を省略する。
この実施例は、正面において、その上下端縁部は、それぞれその中間部を右側へ湾曲させ、上下先端部は左側へ湾曲させたものである。
これは実施例2,3のそれぞれの良い点を加味させたもので、それに加えて、直線部のない3次元構造なので、剛性強度に優れている。
【0053】
図13は、第5実施例を示す羽根の正面図である。前例と同じ部位については同じ符号を付して説明を省略する。この実施例は、正面において、羽根(1)の主体部(2)における上下先端部が、縦中央部より右側に湾曲し、更に上下先端部は左側方に湾曲しているものである。これは図11のものと湾曲部が正反対になっているが、回転するときは、向きが逆転するので、作用効果は同じように現れる。
【0054】
図14は、回転車の平面図である。この回転車(4)は、図8に示すものとほぼ同じものであるが、回転体(5)に配設される羽根(1)に特徴がある。すなわち、羽根(1)の正面において、主体部(2)の上下端部が、左側方向きに湾曲した羽根(1F)と、右側方向に湾曲した羽根(1G)とを回転体(5)の周部に、交互に配設したことに特徴がある。
【0055】
図14では左側向き湾曲羽根3枚、右側向き湾曲羽根3枚であるが、これを4枚対4枚にすると、対向面で逆向きの羽根を配設することができる。
このように湾曲の向きの異なる羽根(1F)(1G)を交互に配設するとき、回転体(5)は回転するので、回転時における羽根(1F)(1G)による風圧変化が、後位置で追従して回転する羽根に影響を及ぼしにくい。
【0056】
本発明の羽根は、風力発電用風車に使用する他、水車の羽根に使用することができる。例えば図8の回転車(4)の羽根に、A矢示方向から水圧をかけることによって、回転車(4)を安定して回転させることができる。
またこの回転車(4)の主軸(7)を水平として、羽根を水路に沈める。水流は羽根を押すことにより、回転させることができ、羽根の水からの抜け出しがよい。
【0057】
【発明の効果】
以上説明したように、この発明は、次のような優れた効果を有している。
【0058】
(1) 請求項1に記載された発明の羽根は、羽根主体部の縦中央における横断平面は、略魚形状とし、その先端と後端とを結ぶ中芯線は、回転体に装着して回転する羽根の、回転トラックに沿うように湾曲されているので、羽根の前後幅が長くても、回転時に風の抵抗が小さいという効果がある。その結果、羽根の縦長さを長くしなくても、受風面積を広くすることができる効果がある。
また主体部の側面形は、縦中央部に対して上下先端部は、側面横幅が次第に狭く形成されているため、回転に伴い向きが反転する切り返し時点において、風圧抵抗の負担が小さいため、失速原因がなくなる効果がある。
【0059】
(2) 請求項2に記載された発明の羽根は、横断平面における、中芯線より外側の膨出部よりも、内側面の回転推力を造成する膨出部は大きく前端縁部に設定されているので、羽根の回転時に羽根の外側面に沿って通過する風の速度より、内側面に沿って通過する風の速度が早くなり、羽根の内側前端縁部の空気密度が希薄となり負圧が生じることから、羽根に自走回転推力が得られる効果がある。
また内側膨出部から後端部に至る後部内側面は、後外向きに傾斜されているので、羽根の内側面に沿って通過する高速の風は、羽根の後斜め外方へ抜けるため、羽根の回転トラックより外に抜ける事になり、そのことは後位置で追従回転する羽根に対して、この高速風の影響を与えることがない、という効果がある。
また後斜め外に抜ける高速風は、羽根の外側面に沿って通過する風を外方へ押すことから、外側にある常気圧の風が外後方から羽根を押すことになり、自走回転推力にプラスとなる。
更に、羽根が高速回転をすると、羽根で囲まれた回転体の内部に入った風は、羽根の回転方向へ引きずられて渦流を生じる。この渦流をそのままにしておくと、前記羽根の内側面に沿って通過する風流が回転体の中で停滞するため、その結果は回転推力を減退させるが、この発明においては、前記羽根の内側面後部が外後斜めに傾斜しているために、これらの風流を速やかに、羽根の回転トラック外へ排出させるので、前記渦流の発生が生じない効果がある。
羽根は中央部から上下方向へかけて幅を薄く設定されて、羽根の縦中央部における横断面形状は、ほぼ同じ形状で主体部の上下端部へかけて幅長さに対応して次第に縮尺されているので、正面において、回転時の風抵抗が小さいが、前記効果が羽根の上下において同様に得られる。また羽根の縦中央部が厚いので剛性強度に優れている効果がある。
【0060】
(3) 請求項3に記載された発明の羽根は、前記主体部の外側面後部に、外膨出部と後端部とを結ぶ直線より中に窪む凹成部が形成されているため、羽根の前面から外側面に沿って通過する風は、凹成部で気圧変化現象を生じ、羽根の内側面を通過して後外方へ抜ける風と相俟って、羽根を後部から押す効果がある。
【0061】
(4) 請求項4に記載された発明の羽根は、前記主体部は、中央部位から上下端部にかけて、内側方へ湾曲されているので、羽根の外側面に受ける向かい風に対しては、抵抗を少なくし、また羽根の内側面に追風を受けるときは、風を抱え込むようにして風力を得ると共に、風を後方へ早く排出させる効果がある。また湾曲により3次元形状となり、どちらからの応力に対しても剛性に優れて、高速風、高速回転時の遠心力に対しても破損しにくい効果がある。
【0062】
(5) 請求項5に記載された発明の羽根は、前記主体部は、中央部位から上下端部にかけて、外側方へ湾曲されているので、高速回転時において、羽根で囲まれた回転体の内部に入り込んだ風を、主体部内側面の湾曲面により、効率良く外部へ排出させることができる効果がある。また全体の湾曲により3次元形状となり、どちらからの応力に対しても剛性に優れて、高速風、高速回転時の遠心力に対しても破損しにくい効果がある。
【0063】
(6) 請求項6に記載された発明の羽根は、前記主体部は、正面において上下端縁部が右側方へ湾曲されて、その各先端部は左側方へ湾曲されているので、主体部の上下端部が左方あるいは右方へ湾曲したものの、それぞれの良い点を具備している効果がある。また左右への湾曲により3次元形状となり、どちらからの応力に対しても剛性強度に優れて、高速風、高速回転時の遠心力に対しても破損しにくい効果がある。
【0064】
(7) 請求項7に記載された発明の羽根は、前記主体部は、正面において上下端縁部が左側方へ湾曲されて、その各先端部は右側方へ湾曲されているので、主体部の上下端部が左方あるいは右方へ湾曲したものの、それぞれの良い点を具備している効果がある。また左右への湾曲により3次元形状となり、どちらからの応力に対しても剛性強度に優れて、高速風、高速回転時の遠心力に対しても破損しにくい効果がある。
【0065】
(8) 請求項8に記載された回転車は、回転体の周部に配設された羽根が、上下先端部を左側方向へ湾曲した羽根と、右側方向へ湾曲した羽根とを交互に配設してあるので、受風のバランスがよく、また回転時において羽根による気流の変化が後位に追従して回転する羽根に影響を及ぼさない効果がある。
【図面の簡単な説明】
【図1】 本発明羽根の正面図である。
【図2】 図1におけるA−A線横断平面図である。
【図3】 本発明羽根の左側面図である。
【図4】 図1におけるBーB線横断平面図である。
【図5】 第2実施例を示す羽根の正面図である。
【図6】 図5におけるAーA線横断平面図である。
【図7】 第2実施例の羽根左側面図である。
【図8】 羽根を配設した回転車の平面図である。
【図9】 第3実施例を示す羽根の正面図である。
【図10】 図9におけるA−A線横断平面図である。
【図11】 第4実施例を示す羽根の正面図である。
【図12】 図10におけるA−A線横断平面図である。
【図13】 第5実施例を示す羽根の正面図である。
【図14】 回転車の平面図である。
【符号の説明】
(1)羽根
(1A)(1B)(1C)(1D)(1E)(1F)(1G)羽根
(2)主体部
(2a)外側の膨出部
(2b)回転推力造成用膨出部
(3)取付支持体
(3a)ネジ孔
(4)回転車
(5)回転体
(6)主軸
(7)ケース体
(8)軸部
(9)支持アーム
(10)環縁体
(T)主体部の回転トラック
(T1)外膨出部の回転トラック
(T2)内膨出部の回転トラック
(S)中芯線
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a blade of a rotating wheel and a rotating wheel, and more particularly to a blade disposed around a rotating body of a windmill, and a tailwind hitting the inner and outer surfaces of the blade is used as an efficient rotational thrust to enter the rotating body. The present invention relates to a rotating wheel and its blades configured to increase the negative thrust generated on the inside of the blades by discharging the wind at a high speed outward, thereby increasing the rotational thrust of the blades.
[0002]
[Prior art]
  Conventionally, a wind turbine of a wind power generator uses a horizontal axis propeller type, and a vertical axis wind turbine having a wind power recovery rate of about 35% is not used because it is not practical.
  Further, since the blades of the vertical wind turbine in the past are set so as to obtain lift toward the outside of the blades, there is a difficulty that it is difficult to obtain thrust in the rotational direction.
  In addition, since centrifugal force is applied to the top and bottom of the blade as the rotating body rotates, the lift is applied to the blade and the centrifugal force overlaps, so the blade is easily damaged and prevents damage. For this reason, if the rigidity of the blades is given, the weight becomes heavy and the rotational efficiency is deteriorated.
[0003]
  In particular, the vertical axis wind turbine has blades on the periphery of the rotating body, and the direction of the blades is reversed with rotation, so the effect of the wind on the blades is unpredictable. Theories have been established, but no academic theory on wind effects on rotating blades has been studied.
  In this regard, the inventor has developed a wind turbine that generates a rotational thrust by using the negative pressure generated in the wind receiving blades and rotates faster than the wind speed, and is disclosed in Patent Documents 1 and 2, for example.
[Patent Document 1]
          Japanese Patent Application No. 2002-376879
[Patent Document 2]
          Japanese Patent Application No. 2003-143374
[0004]
[Problems to be solved by the invention]
  Although the wind receiving blades of the above-mentioned literature have a high wind recovery effect, the blades disposed on the periphery of the rotating body are physically faster on the outer surface than the inner surface due to the difference in diameter ratio when rotating. It is rotating at.
  Therefore, when the blade rotates, the speed of the wind that passes separately on the inner and outer surfaces of the blade at the front of the blade is physically higher than the speed of the wind that passes along the outer surface of the blade.
[0005]
  When the bulging part that creates rotational thrust is formed on the inner surface of the blade, the speed of the wind passing along the inner surface of the blade during rotation increases, negative pressure is generated in the front edge region of the blade, and the blade A normal pressure airflow acts on the negative pressure portion of the inner side surface region from the outer side surface region, and a rotational thrust is generated in which the blades are pushed in the rotation direction.
[0006]
  However, when the rotational speed of the rotating body increases, the rotational speed of the blades increases, so the wind that enters the rotating body surrounded by the blades follows the rotational direction of the rotating blades and moves outward. The airflow that is difficult to come out and stagnates as a vortex on the inside makes it difficult for the wind passing at high speed along the inner surface of the blade to escape to the outside, thereby reducing the rotational thrust.
[0007]
  The present invention allows the wind passing along the inner surface of the blade during rotation to pass outward at a higher speed even during high-speed rotation, and as a result, the blade of the rotating wheel that provides strong rotational thrust, and rotation The purpose is to provide a car.
[0008]
[Means for Solving the Problems]
  In order to solve the problems and achieve the object, the present invention takes the following technical means.
[0009]
  (1) of rotating carVerticalRotating body arranged at right angles to the main axisOutsideIn the periphery,VerticalOn the spindleFace the left sideArranged in parallel,Rotate the front side forward with the left side as the insideA blade, the blade being a main part and its longitudinal centerleftA mounting support formed on a side surface of the main body.Thickness is, Up and down from the vertical centeredgeThe transverse plane in the longitudinal center of the blade main body is set to become thinner graduallyformIsThe front plate is thicker and gradually thinner toward the rear end.The shape of the fishin frontCenter wire connecting the end and the end(S)Is a rotating track of blades mounted on a rotating body and rotating(T)Curved along the side of the main bodyformIs the front-rear width of the vertical center(Wing chord length)Than the upper and lower endsNarrowlyThe rotating wheel blades that are formed.
[0010]
  (2) The main part isVerticalCenterIn the departmentTransverse planeShapeThe core wire connecting the front and rear endsFrom S,Of the front edge of the right sideThan the bulgeOf the left side front edgeThe bulge is set large and itsIn the vertical centerThe cross-sectional shape extends to the upper and lower ends of the main part.sideWidth Length(Wing chord length)The blades of the rotating wheel described in the above (1), which are gradually reduced in size.
[0011]
  (3) of the main partrightAfter the sideedgeIn the departmentright sideRight side of bulgeSuddenFrom the straight line connecting the end and the rear endInsideThe blade of the rotating wheel according to (1) or (2), wherein a recessed portion that is recessed is formed.
[0012]
  (4) The blade of the rotating wheel according to any one of (1) to (3), wherein the main body portion is curved leftward from a longitudinal center portion to upper and lower end portions.
[0013]
  (5) The blade of the rotating wheel according to any one of (1) to (3), wherein the main body portion is curved rightward from a longitudinal center portion to upper and lower end portions.
[0014]
  (6) The main body part is curved to the right side from the longitudinal center part to the upper and lower end parts, and each tip part thereof is curved to the left side, according to any one of (1) to (3). Rotating car blades.
[0015]
  (7) The main body is curved leftward from the longitudinal center portion to the upper and lower ends, and each tip is curved rightward, according to any one of (1) to (3). Rotating car blades.
[0016]
  (8) Rotating body supported at right angles to the main shaft supported by the supporting bodyOutsideSeveral blades around the circumferenceFace the left sideArranged in parallel,Rotate to the front with the left side as the insideIn the configuration, the blade is a main part and its longitudinal center.leftA mounting support formed on a side surface of the main body.ThicknessIs up and down from the vertical centeredgeThe transverse plane in the longitudinal center of the blade main body is set to become thinner graduallyformIsThe plate thickness at the front is thicker and gradually reduced toward the rear edge.A core wire that is shaped like a fish and connects its front and rear ends(S)Is a rotating track of blades mounted on a rotating body and rotating(T)The blades are curved so that the top and bottom tips of the main body areTo the left side of the featherA curved object that rotatesThe outer periphery ofA rotating wheel arranged in
[0017]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view of a rotating wheel blade (hereinafter simply referred to as a blade) according to the present invention.So, this front is rotated forward. 2 is a cross-sectional plan view taken along line AA in FIG. 1, and FIG. 3 is a left side view of the blade.In use, it is the inside surface. 4 is a cross-sectional view taken along the line BB in FIG.The left side of the figure is the inner side and the right side is the outer side.
[0018]
  Figure1The blade (1) is composed of a main body (2) and a mounting support (3) formed on the left side (inner side) of the longitudinal center.
  The main part (2)In FIG.The vertical center isThicknessIs thick, and it extends to the top and bottom tips.Thickness isIt is set to become thinner gradually. 4 is a cross-sectional plan view taken along the line BB in FIG. In this way the feather (1)CrossingThe width of the surface shape is gradually reduced as it reaches the upper and lower ends of the blade (1).
[0019]
  The plane shape of the wing (1) is approximately fish-shaped as shown in FIG.The front is thick and the rear edgeGradually to the departmentThinlyThe middle core line (S) connecting the front end portion and the rear end portion is formed so as to be along the rotation track (T) of the blade (1) when disposed on the rotating body (5) shown in FIG. Is curved.
[0020]
  As shown in FIG. 2, the core wire (S)AcrossThe left and right sides of the main part (2) are different in thickness. The bulging part (2b) on the right side (outer side) of the core wire (S) is thinner than the left side (inner side), and the bulging part (2b) is formed on the inner side. ing. In addition, a concave portion (2c) that is recessed inward from a straight line connecting the bulging portion (2b) and the rear end portion is formed in the outer surface at the rear portion.
[0021]
  On the left side (inner side) of the main part (2)Width (wing chord length)As shown in FIG. 3, gradually from the vertical center to the upper and lower ends.NarrowlyIt is formed to become. The mounting support (3) shown in FIGS. 2 and 3 is arranged on the radiation passing through the center of the rotating body (5) shown in FIG.
[0022]
  Since the position of the mounting support (3) is at the front edge of the blade (1), the rear end is more inward than the front end of the blade (1).(Left side)The mounting support (3) is disposed in a state inclined to the front. This is on the rightsurfaceAs shown in FIG. 1, the bulging portion (2a on the right side) is located on the inner side of the rotating track (T1) of the bulging portion (2a) on the outer side. ) Is the wind at the frontHitSince the area is small, the resistance during rotation is small.
[0023]
  AndAs shown in FIG.The left side surface (inner side surface) of the blade (1) main body (2) extends from the bulge (2b) that creates the rotational thrust.leftThe surface is inclined outward from the rotating track (T2) of the bulging portion (2b).
  Therefore, when the blade (1) rotates, the inner surface of the main part (2)(The left side)The wind that passes rearward and outward is faster than the speed of the wind passing through the outer surface of the main body (2), and negative pressure is generated in the inner front edge area of the blade (1), and the blade (1 ) Is generated.
[0024]
  The high-speed wind that passes obliquely outward through the inner surface of the main body portion (2) escapes outward from the inner rear portion of the main body portion (2) inclined outward. In this case, the rear part of the main body part (2) is an upper and lower part, and the length from the front is short, so it passes quickly in a short time.
[0025]
  The wind passing through the outer surface of the main part (2) is changed in atmospheric pressure in the recessed part (2c), so the high-speed wind that exits rearward outward from the inside (left side) of the blade is outside the blade (1). Involves the wind that tries to pass through and pushes the blade (1) later.
[0026]
  In this way, during rotation, the wind passing along the inner surface of the blade (1) quickly escapes obliquely outward, so that it does not affect the subsequent rotated blade (1) that passes thereafter. Also, if the wind blows and the wind hits the inner surface of the blade (1), the wind will also go out diagonally after the blade (1),RotateThe wind is less likely to stay inside the rotating body (5) surrounded by the blades (1).
[0027]
  The shape of this blade (1) isPlate thicknessIs formed thin, it is difficult to receive wind resistance during rotation. Front and rear width of feather (1)(Wing chord length)WidenWhen rotatingSince the core wire (S) is along the rotating track (T), it is difficult to receive wind resistance. In addition, the rear part of the inner surface of the blade (1) is inclined outward, and the wind passing along the inner surface is quickly removed to the rear and outside, so the influence of the passing wind on the blade that follows in the rear position Not give.
[0028]
  From this, it is possible to ensure a sufficient wind receiving area without increasing the longitudinal length of the blade (1). In particular, since the blade (1) rotates together with the rotating body, it always reverses every half rotation.endPart becomes wind resistance burden.
[0029]
  Therefore, normal blades are(Wing chord length)However, this blade (1) has a horizontal width at the top and bottom ends that is larger than the front and rear width at the vertical center.NarrowlyAs a result, the load of wind pressure resistance at the time of turning is reduced.(Wing chord length)It was possible to widen the wind receiving area.
[0030]
  Furthermore, the thickness of the central part of the main part (2) is thick and the front-rear width(Wing chord length)Since it is long, it has excellent rigidity and strength. Therefore, the rotational efficiency can be increased by using the rotating body (5) having a larger diameter as shown in FIG. 8 without changing the size of the blade. In addition, on the side surface of the blade (1), the upper and lower end portions of the main body portion (2) can be set to be inclined in the front-rear direction.
[0031]
  5 is a front view showing a second embodiment of the blade, FIG. 6 is a cross-sectional plan view taken along line AA in FIG. 5, FIG. 7 is a left side view of the blade, and FIG. 8 is a plan view of a rotating vehicle equipped with the blade. is there. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted.
[0032]
  In FIG. 5, the upper and lower end portions of the blade (1) of the blade (1) are gradually curved from the longitudinal center portion toward the left side (inner side). The right curved surface of the rotating body (5) on which the blade (1) is disposed,OutsideIt can be set according to the curved surface close to the circumferential curved surface.
[0033]
  As shown in FIG. 7, the left side surface of the blade (1) is vertically long, the height of the main body (2) is, for example, 2.6 m, and the center front and rear length is 50 cm.Side shape isThe rear part is formed in a triangular shape in the shape of a back point. This size is suitable when the diameter of the rotating body (5) described later is 4 m, but is not limited to this.
[0034]
  In FIG. 8, the rotating body (5) of the rotating wheel (4) is vertically supported by the support body (6).VerticalThe main shaft (7) is mounted at a right angle. The rotating body (5) is an annular body via a plurality of support arms (9) on the shaft portion (8).
(10) is fixed. A plurality of blades (1) are provided at predetermined intervals around the periphery of the ring body (10), and the inner surface of the blade (1) is arranged vertically in the direction of the main shaft (7). The ring body (10) can be positioned easily even when the number of blades (1) changes, in addition to stabilizing the rotation by the rotational inertia. Further, it is possible to project an arm (not shown) from the annular body (10) in the radial direction and attach the blade (1) to the tip of the arm, that is, the rotation radius of the blade (1). Can be greatly changed.
[0035]
  In the rotating wheel (4) configured as a windmill having the above-described configuration, when the blade (1) receives the wind indicated by the arrow A, the rotating body (5) rotates in the direction indicated by the arrow B.
  At this time, the core (S) of the blade (1) main body (2) rotates along the rotating track (T). In addition, the wind indicated by the arrow C that hits the front of the blade (1) with rotation is the same as the rotation speed of the blade (1), but branches and flows to the left and right of the blade (1).
[0036]
  That is, in FIG. 6, the outer bulging portion (2a) is a part of the mounting support (3) in FIG. 5, and therefore is about half the vertical length of the blade (1) in the vertical direction and shown in FIG. Therefore, the outer bulge portion (2a) during rotation is small in wind resistance.
[0037]
  Next, the bulging portion (2b) on the inner side surface (left side) in FIG. 6 that forms the rotational thrust is the position of the portion of the mounting support (3) in FIG. 7, but as shown in FIG. ThenBulge (2b) IsBecause it occupies more than half of the height,Bulge (2b) InWind resistance is greater than the outer surface. This is because the wind subjected to resistance passes to the rear part at a high speed, so that a negative pressure is created by the bulging part (2b) that creates the rotational thrust, and a normal pressure outside the blade (1) is generated. Since the atmospheric pressure pushes the blade (1) to the inner front, a rotational thrust is obtained.
[0038]
  In addition, as can be clearly seen in FIG. 6, the wind that passes through the inner surface (left side surface) of the blade (1) at a high speed to the rear portion of the blade (1) Since it is inclined outward, it goes out outward from the rotating track (T) of the blade (1). This is a force that winds the wind passing through the outer rear part outward and pushes the blade (1) forward.
[0039]
  Since the upper and lower edges of the blade (1) are almost the same as the cross section shown in FIG. 6, the atmospheric pressure from the outside as indicated by the arrow D inwardly intersects with the inclination of the upper and lower edges in FIG. Take it. Further, the atmospheric pressure in the direction indicated by the arrow E is applied inward and perpendicular to the outer rear surface of the blade (1) in FIG. This acts as a rotational thrust of the blade (1).
[0040]
  In FIG. 8, when the wind in the direction of arrow A is blowing, each blade (1) rotates in the direction of arrow B. With this rotation, the wind approaching the rotating body (5) is dragged in the direction of rotation of the blade (1). The front blade (1A) in FIG. 8 receives the head wind from the right side in FIGS. 5 and 6 and slides on the inclined surfaces of the upper and lower parts of the main body (2) to the upper and lower surfaces.
[0041]
  That is because in FIG. 5, the speed of the wind that passes through the point PR is faster than the speed of the wind that passes through the point QR, so that the rear outer surface of the blade (1) in FIG. The area becomes negative pressure, and at the rear side of the inner surface of the blade (1), a force is applied to press the normal pressure from the inside to the outside. As a result, even if the blade (1A) in FIG.
[0042]
  The blade (1B) on the left front side in FIG. 8 receives a tailwind on the outer surface to obtain a rotational thrust. In this case, the outer surface of the upper and lower edges of the blade (1B) is curved inward.
Press the back of (1B). Further, the wind that goes around the inner surface of the blade (1B) is accelerated in speed by the bulging portion (2b), and a negative pressure is generated in the inner front edge region of the blade (1B) to obtain a rotational thrust.
[0043]
  The blade (1C) on the left leeward side in FIG. 8 receives the tail wind indicated by the arrow A on the inner surface, and obtains rotational thrust. In a state where a tailwind is received from the left in FIG. 5, the wind hitting the upper and lower inclined surfaces of the main part (2) gathers to the center, pushes the blade (1C), hits the bulging part (2a), and moves forward. When the wind passing through is further accelerated and the wind speed is faster than the rotational speed, a strong negative pressure is generated in the inner front edge area of the blade (1C) to generate a rotational thrust.
[0044]
  When the wind in the direction of arrow A hits the blade (1D) under the right wind, the wind that hits the upper and lower inclined parts of the main body (2) flows backward while pushing the blade (1D), The wind flows rearward and outward from the blade (1D) and pushes the blade (1D) forward.
  When the right front blade (1E) receives the wind indicated by the arrow A, a negative pressure is generated on the left side surface of the blade (1E), and rotational thrust is also obtained.
[0045]
  Thus, the rotational thrust is obtained for the blades (1A) to (1E) facing in any direction. And the wind entering the rotating body (5) surrounded by the blades (1A) to (1E) is reduced by the high speed rotation and the passage distance between the front and rear blades is reduced. It is discharged from the top and bottom.
[0046]
  FIG. 9 is a front view of a blade showing the third embodiment, and FIG. 10 is a cross-sectional plan view taken along line AA in FIG. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted. This embodiment is characterized in that the upper and lower edges of the main body (2) are curved outward.
[0047]
  In this embodiment, the difference from the second embodiment is that the direction of the upper and lower ends of the main body (2) is opposite, but the rotating body (5) rotates as can be seen in FIG. Depending on the position, the direction in which the tip of the blade is curved changes, so that the action of the blade (1) receiving the wind is similar.
  In addition, since it is curved, it has a three-dimensional shape, is excellent in rigidity against stress from any direction, and is not easily damaged even if a centrifugal force is applied during high-speed rotation.
[0048]
  However, in FIGS. 9 and 10, when the wind indicated by the arrow A blows from the left, the wind hitting the upper and lower edges of the main body (2) passes quickly along the curved surface.
  That is, in FIG. 9, the speed of the wind that slides between the points P and R is faster than the wind that goes straight between the points P and Q.
[0049]
  Therefore, the leeward blades (1A) and (1D) in FIG. 8 are slow to pass through the wind indicated by the arrow A, but at the same position, the blade (1) in FIG. It can be quickly passed outward.
[0050]
  In FIG. 10, the wind indicated by the arrow C is less likely to receive large resistance at the upper and lower edge portions of the main body (2) when it escapes rearward and obliquely along the inner surface of the blade. That is, the wind that has entered the inside of the rotating body (5) surrounded by the blades (1) can be discharged to the outside more quickly.
[0051]
  This means that the high-speed wind passing along the inner surface of the rotating blade (1) can pass faster, and the faster the high-speed wind, the faster the front surface of the inner surface of the blade (1). This is because a negative pressure is generated and the rotational thrust of the blade (1) is increased.
[0052]
  FIG. 11 is a front view of a blade showing the fourth embodiment, and FIG. 12 is a cross-sectional plan view taken along line AA in FIG. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted.
  In this embodiment, at the front, the upper and lower end edge portions are each bent at the middle portion to the right side and the upper and lower end portions are bent to the left side.
  This is a combination of the good points of Examples 2 and 3, and in addition to this, since it has a three-dimensional structure with no straight portion, it has excellent rigidity and strength.
[0053]
  FIG. 13 is a front view of a blade showing the fifth embodiment. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted. In this embodiment, at the front, the top and bottom tips of the main body (2) of the blade (1) are curved to the right from the longitudinal center, and the top and bottom tips are curved to the left. In this case, the curved portion is opposite to that of FIG. 11, but when rotating, the direction is reversed, so the effect appears in the same way.
[0054]
  FIG. 14 is a plan view of the rotating wheel. This rotating wheel (4) is substantially the same as that shown in FIG. 8, but is characterized by the blade (1) disposed on the rotating body (5). That is, on the front surface of the blade (1), the upper and lower ends of the main body (2) have a blade (1F) curved in the left direction and a blade (1G) curved in the right direction of the rotating body (5). It is characterized by being alternately arranged on the periphery.
[0055]
  In FIG. 14, there are three leftward-facing curved blades and three rightward-facing curved blades. However, when these are four to four, oppositely facing blades can be disposed on the opposing surface.
  When the blades (1F) (1G) having different curvature directions are alternately arranged in this way, the rotating body (5) rotates, so that the wind pressure change due to the blades (1F) (1G) during rotation is It is less likely to affect the blades that follow and rotate.
[0056]
  In addition to being used for wind turbines for wind power generation, the blades of the present invention can be used for blades of water turbines. For example, by applying water pressure from the direction indicated by the arrow A to the blades of the rotating wheel (4) in FIG. 8, the rotating wheel (4) can be stably rotated.
  Further, the main shaft (7) of the rotating wheel (4) is made horizontal, and the blades are submerged in the water channel. The water flow can be rotated by pushing the blades, and the blades can escape from the water.
[0057]
【The invention's effect】
  As described above, the present invention has the following excellent effects.
[0058]
  (1) In the blade of the invention described in claim 1, the transverse plane in the longitudinal center of the blade main body is substantially fish-shaped, and the core wire connecting the tip and the rear end is attached to the rotating body and rotated. Since the blades are curved along the rotating track, there is an effect that the wind resistance is small during rotation even if the front and rear widths of the blades are long. As a result, there is an effect that the wind receiving area can be widened without increasing the longitudinal length of the blades.
  Also, the side shape of the main part is the top and bottom tip part with respect to the vertical center part.Side width gradually narrowsSince it is formed, the burden of wind resistance is small at the turning point when the direction reverses with rotation, so that the cause of the stall is eliminated.
[0059]
  (2) In the blade according to the second aspect of the present invention, the bulging portion that creates the rotational thrust of the inner surface is set largely at the front end edge portion, rather than the bulging portion outside the central core line in the transverse plane. Therefore, the speed of the wind passing along the inner surface is faster than the speed of the wind passing along the outer surface of the blade during the rotation of the blade, and the air density at the inner front edge of the blade is dilute and negative pressure is reduced. As a result, the blade has an effect of obtaining a self-propelled rotational thrust.
  Moreover, since the rear inner side surface extending from the inner bulge portion to the rear end portion is inclined rearward and outward, the high-speed wind passing along the inner side surface of the blade escapes diagonally outward from the blade, The blades come out of the rotating track of the blades, and this has the effect that the high-speed wind does not affect the blades that follow and rotate at the rear position.
  In addition, the high-speed wind that exits diagonally outward pushes the wind that passes along the outer surface of the blades outward, so the atmospheric pressure wind on the outside pushes the blades from the outside rear, and self-propelled rotational thrust It is a plus.
  Furthermore, when the blades rotate at high speed, the wind that enters the rotating body surrounded by the blades is dragged in the direction of rotation of the blades to generate a vortex. If this vortex is left as it is, the wind flow passing along the inner surface of the blades stagnates in the rotating body, and as a result, the rotational thrust is reduced. Since the rear part is inclined obliquely rearward and rearward, these airflows are promptly discharged out of the rotating track of the blades, so that the vortex is not generated.
  The blades are set to be thin from the center to the top and bottom, and the cross-sectional shape of the blades in the vertical center is approximately the same shape, and gradually scales to correspond to the width and length from the upper and lower ends of the main part. Therefore, in the front, wind resistance during rotation is small, but the above effect can be obtained in the same manner above and below the blades. Moreover, since the vertical center part of a blade | wing is thick, there exists an effect excellent in rigidity strength.
[0060]
  (3) Since the blade of the invention described in claim 3 is formed with a recessed portion recessed inward from the straight line connecting the outer bulging portion and the rear end portion at the rear portion of the outer surface of the main body portion. The wind that passes along the outer surface from the front surface of the blade causes a pressure change phenomenon in the recessed portion, and pushes the blade from the rear side in combination with the wind that passes through the inner surface of the blade and exits rearward and outward. effective.
[0061]
  (4) In the blade according to the invention described in claim 4, the main body portion is curved inward from the central portion to the upper and lower end portions, so that it resists against the head wind received on the outer surface of the blade. In addition, when the wind is applied to the inner surface of the blade, wind force is obtained by holding the wind, and the wind is quickly discharged backward. Moreover, it becomes a three-dimensional shape by bending, and is excellent in rigidity against stress from either, and has an effect that it is difficult to be damaged by high-speed wind and centrifugal force during high-speed rotation.
[0062]
  (5) In the blade according to the invention described in claim 5, since the main body portion is curved outward from the central portion to the upper and lower ends, the rotating body surrounded by the blade during high-speed rotation There is an effect that the wind that has entered inside can be efficiently discharged to the outside by the curved surface of the inner surface of the main body. Moreover, it becomes a three-dimensional shape due to the entire curvature, and is excellent in rigidity against stress from either, and has an effect of being difficult to break against high-speed wind and centrifugal force during high-speed rotation.
[0063]
  (6) In the blade according to the invention described in claim 6, since the main body portion has upper and lower end edge portions bent to the right side and front end portions thereof are bent to the left side in the front surface. Although the upper and lower end portions are curved to the left or right, there is an effect that each has good points. Moreover, it becomes a three-dimensional shape by bending to the left and right, has excellent rigidity strength against stress from either, and has the effect of being difficult to break against high-speed wind and centrifugal force during high-speed rotation.
[0064]
  (7) In the blade according to the invention described in claim 7, since the main body portion has the upper and lower end edge portions bent in the left direction on the front surface, and each tip portion thereof is bent in the right side. Although the upper and lower end portions are curved to the left or right, there is an effect that each has a good point. Moreover, it becomes a three-dimensional shape by bending to the left and right, has excellent rigidity strength against stress from either, and has the effect of being difficult to break against high-speed wind and centrifugal force during high-speed rotation.
[0065]
  (8) In the rotary wheel described in claim 8, the blades disposed on the periphery of the rotating body are alternately arranged with blades whose upper and lower tips are curved leftward and blades curved rightward. Therefore, the balance of wind reception is good, and there is an effect that the change of the airflow by the blades does not affect the blades rotating following the rear position during rotation.
[Brief description of the drawings]
FIG. 1 is a front view of a blade according to the present invention.
FIG. 2 is a cross-sectional plan view taken along line AA in FIG.
FIG. 3 is a left side view of the blade of the present invention.
4 is a cross-sectional plan view taken along line BB in FIG. 1. FIG.
FIG. 5 is a front view of a blade showing a second embodiment.
FIG. 6 is a cross-sectional plan view taken along line AA in FIG.
FIG. 7 is a left side view of a blade according to the second embodiment.
FIG. 8 is a plan view of a rotating wheel provided with blades.
FIG. 9 is a front view of a blade showing a third embodiment.
FIG. 10 is a cross-sectional plan view taken along line AA in FIG.
FIG. 11 is a front view of a blade showing a fourth embodiment.
12 is a cross-sectional plan view taken along line AA in FIG.
FIG. 13 is a front view of a blade showing a fifth embodiment.
FIG. 14 is a plan view of a rotating wheel.
[Explanation of symbols]
(1) Feather
(1A) (1B) (1C) (1D) (1E) (1F) (1G) blade
(2) Main part
(2a) Outer bulge
(2b) Rotating part for generating rotational thrust
(3) Mounting support
(3a) Screw hole
(4) Rotating wheel
(5) Rotating body
(6) Spindle
(7) Case body
(8) Shaft
(9) Support arm
(10) Ring body
(T) Rotating track of main part
(T1) Rotating track of the outer bulge
(T2) Rotating track of the inner bulge
(S) Core wire

Claims (8)

回転車の主軸に直角に配設された回転体周部に、主軸に左側面を対面させて平行に配設され、正面を前向きに回転する羽根であって、該羽根は主体部とその縦中央側面に形成された取付支持体とから構成され、該主体部の板厚は、縦中央部から上下端部方へ次第に薄くなるように設定され、羽根主体部の縦中央部における横断平面は、前部の板厚が厚く後端部へかけて次第に薄く略魚形状とし、その端と後端を結ぶ中芯線(S)は、回転体に装着して回転する羽根の回転トラック(T)に沿うように湾曲され、主体部の側面は、縦中央部の前後幅(翼弦長)よりも上下端部は狭く形成されていること、を特徴とする回転車の羽根。The rotary body outer peripheral portion disposed at right angles to the longitudinal main axis of the rotating wheel, the vertical main shaft so as to face the left side are arranged in parallel, a blade of forward rotation of the front, the vane is main part and its longitudinal center left consists mounting support and which is formed on the side surface, the plate thickness of the main body portion is set from a longitudinal central portion becomes gradually thinner toward the upper and lower ends, the longitudinal central portion of the blade main body portion wing cross-sectional plan form, the plate thickness of the front portion over the thicker rear portion and gradually thinned substantially fish-shaped core wire in connecting the front end and the rear end (S) is to be rotated is mounted to the rotating body in the are curved along the rotational track (T), the side surface shape of the main portion, the upper and lower end portions than longitudinal width (chord length) of the longitudinal central portion is formed narrow, rotating wheel, wherein Feathers. 前記主体部は、中央部における横断平面形が、前端部と後端部を結ぶ中芯線Sを境として右側面前端縁部の膨出部よりも、左側面前端縁部の膨出部が大きく設定され、その縦中央部における横断平面形状が、主体部の上下端部へかけて幅長さ(翼弦長)に対応して、次第に縮尺されていることを特徴とする、請求項1に記載された回転車の羽根。The main body has a bulging portion on the left side front end edge rather than a bulging portion on the right side front end edge with a center line S connecting the front end portion and the rear end portion as a transverse plane shape in the vertical center portion. Is set to be large, and the transverse plane shape in the longitudinal center portion thereof is gradually scaled corresponding to the lateral width length (chord chord length) toward the upper and lower end portions of the main body portion. Item 1. A rotating wheel blade according to item 1. 前記主体部の側面後部には、右側面膨出部の右側端と後端部とを結ぶ直線より内側に窪む凹成部が形成されていること、を特徴とする請求項1または2に記載された回転車の羽根。Claim wherein the rear right side edge of the main portion, which the凹成portion recessed from a straight line connecting the right collision end and the rear end portion of the right side bulged portion on the inner side is formed, characterized by The blade | wing of the rotary wheel described in 1 or 2. 前記主体部は、縦中央部位から上下端部にかけて、左側方へ湾曲されていることを特徴とする、請求項1〜3のいずれかに記載された回転車の羽根。  The blade of the rotating wheel according to any one of claims 1 to 3, wherein the main body portion is curved leftward from a longitudinal center portion to upper and lower end portions. 前記主体部は、縦中央部位から上下端部にかけて、右側方へ湾曲されていること、を特徴とする請求項1〜3のいずれかに記載された回転車の羽根。  The blade of the rotating wheel according to any one of claims 1 to 3, wherein the main body portion is curved rightward from a longitudinal center portion to upper and lower end portions. 前記主体部は、縦中央部位から上下端部にかけて、右側方へ湾曲されて、その各先端部は左側方へ湾曲されていること、を特徴とする請求項1〜3のいずれかに記載された回転車の羽根。  The said main-body part is curved to the right side from the vertical center site | part to the upper-lower end part, The each front-end | tip part is curved to the left side, It is described in any one of Claims 1-3 characterized by the above-mentioned. Rotating car blades. 前記主体部は、縦中央部位から上下端部にかけて、左側方へ湾曲されて、その各先端部は右側方へ湾曲されていること、を特徴とする請求項1〜3のいずれかに記載された回転車の羽根。  The said main-body part is curved to the left side from the vertical center part to the upper-lower-end part, and each front-end | tip part is curved to the right side, It is described in any one of Claims 1-3 characterized by the above-mentioned. Rotating car blades. 支持体に支持された主軸に、直角に支持された回転体の外周部に複数の羽根が、主軸に左側面を対面させて平行に配設され、正面を前向きに回転させる構成において、該羽根は主体部とその縦中央側面に形成された取付支持体とから構成され、該主体部の板厚は、縦中央部から上下端部方へ次第に薄くなるように設定され、羽根主体部の縦中央部における横断平面は、前部の板厚が厚く後端部へかけて次第に薄くした略魚形状とされ、その前端と後端を結ぶ中芯線(S)は、回転体に装着されて回転する羽根の、回転トラック(T)に沿うように湾曲され、該羽根は、主体部の上下先端部が羽根の左側方へ湾曲しているものを、回転体の外周部に配設してなる事を特徴とする回転車。The supported by the support member main shaft, in the configuration in which a plurality of blades on the outer circumferential portion of the right angle supported rotating body, are arranged in parallel so as to face the left side to the main shaft, to forward rotate the front, the blade is composed of a main body portion and the mounting support formed on the longitudinal center left side, the plate thickness of the main body portion is set from a longitudinal central portion becomes gradually thinner toward the upper and lower ends, the blade main body portion The transverse plane shape at the longitudinal center of the plate is substantially fish-shaped with a thick plate at the front and progressively thinner toward the rear end, and the core (S) connecting the front and rear ends is attached to the rotating body. The rotating blades are curved along the rotation track (T), and the blades are arranged on the outer periphery of the rotating body, with the upper and lower ends of the main body curved to the left side of the blades. A rotating car characterized by
JP2003185255A 2003-06-27 2003-06-27 Rotating wheel and rotating wheel Expired - Fee Related JP4173773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185255A JP4173773B2 (en) 2003-06-27 2003-06-27 Rotating wheel and rotating wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185255A JP4173773B2 (en) 2003-06-27 2003-06-27 Rotating wheel and rotating wheel

Publications (2)

Publication Number Publication Date
JP2005016479A JP2005016479A (en) 2005-01-20
JP4173773B2 true JP4173773B2 (en) 2008-10-29

Family

ID=34184782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185255A Expired - Fee Related JP4173773B2 (en) 2003-06-27 2003-06-27 Rotating wheel and rotating wheel

Country Status (1)

Country Link
JP (1) JP4173773B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133238A (en) * 2013-03-05 2013-06-05 常熟市强盛电力设备有限责任公司 Generator rotor
CN103133239A (en) * 2013-03-26 2013-06-05 易兵 Vane and turbine generator using vane
JP2019073993A (en) * 2017-10-13 2019-05-16 BS・Tech株式会社 Wind mill and wind-receiving blade of wind mill
JP2022146320A (en) * 2021-03-22 2022-10-05 Ntn株式会社 Wind turbine and wind power generator

Also Published As

Publication number Publication date
JP2005016479A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US7726934B2 (en) Vertical axis wind turbine
JP4174473B2 (en) Improved turbine
US10578076B2 (en) Fluid-redirecting structure
JP6067130B2 (en) Wind power generator
JP2006283713A (en) Lift/drag combined type vertical shaft windmill
JP2015031227A (en) Wind mill
JP2012224140A (en) Blade of rotor for fluid equipment
JP4173727B2 (en) Wind turbine blades
JP2008520894A (en) Vertical axis turbine equipment
JP4173773B2 (en) Rotating wheel and rotating wheel
JP2005090332A (en) Darrieus wind turbine
JP4382120B2 (en) Turbine fin with duct
JPS5928754B2 (en) Vertical axis wind turbine blade
JP2012251448A (en) Configurational form for blade noise reduction for propeller-type wind power generator of 10 m or larger diameter
JP2006249985A (en) Rotation propulsion blade
JP6800030B2 (en) Wings and windmills using them
JP6469303B1 (en) Wind power generation system
EP3805552B1 (en) Horizontal axis rotor
JP3987960B2 (en) Fluid machinery
JP2022085636A (en) Vortex generator for wind turbine blade, wind turbine blade, and wind power generator
WO2018168744A1 (en) Vertical axis wind turbine, blade thereof, and wind power generation device
JP4097020B2 (en) Rotor blade
KR20110008789A (en) Blade for wind power generation and device for wind power generation
JP7497260B2 (en) Vertical axis wind turbines and vertical axis wind power generation equipment
JP2004183531A (en) Wind receiving blade for vertical axis wind turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Ref document number: 4173773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees