WO2017110298A1 - Windmill system and wind farm - Google Patents

Windmill system and wind farm Download PDF

Info

Publication number
WO2017110298A1
WO2017110298A1 PCT/JP2016/083625 JP2016083625W WO2017110298A1 WO 2017110298 A1 WO2017110298 A1 WO 2017110298A1 JP 2016083625 W JP2016083625 W JP 2016083625W WO 2017110298 A1 WO2017110298 A1 WO 2017110298A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
rotor
wind
windmill
tower
Prior art date
Application number
PCT/JP2016/083625
Other languages
French (fr)
Japanese (ja)
Inventor
向井 寛
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017110298A1 publication Critical patent/WO2017110298A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a windmill system or a wind farm.
  • Wind turbine systems have been put into practical use in recent years, and are becoming widespread all over the world as the fourth power generation means following thermal power, hydropower, and nuclear power.
  • a windmill system is a device that receives kinetic energy of airflow with a blade, converts it into rotational energy of a rotor, and further generates electrical energy by a generator. Since the power generation amount of the system increases in proportion to the third power of the wind speed, the power generation amount increases remarkably even if the wind speed reaching the blade is slightly increased. For this reason, some ideas have been proposed to increase the amount of power generation by actively guiding the airflow around the windmill to the blade.
  • the wind diverter disclosed in Patent Document 1 is a flow around the ground surface that does not contribute to conventional power generation by constructing a fixed height base that surrounds the windmill tower and forming a slope from the ground surface to the top of the base. The purpose of this is to increase the amount of power generation by speeding up the airflow that drives the blades by guiding them to the vicinity of the blades.
  • the wind diverter has a slope and a flat part to guide the airflow upstream of the windmill system to the vicinity of the blades, and further includes a guide vane to prevent a lateral deviation of the airflow.
  • the windmill described in Patent Document 2 includes a wind direction converter below the support column, and converts the wind blown toward the support column into an upward flow along the support column by a plurality of guide vanes extending radially from the tower at regular intervals. . It is described that a vertical axis wind turbine rotates a generator by receiving an upward flow. Accordingly, it is an object of the present invention to effectively suppress the generated power caused by a decrease in the wind force of the wind acting on the windmill as compared with the conventional technology that generates power only with the rotational power of the windmill.
  • the airflow is raised vertically from the lower side of the rotor, and no vertical airflow is induced with respect to the rotating surface of the rotor.
  • the second generator is provided between the wind direction changer and the blade, and it is difficult to contribute to an increase in the wind speed to the blade.
  • the blade and the wind direction changer are provided, it is difficult to contribute to an increase in the wind speed to the blade, and it is difficult to contribute to an improvement in power generation amount.
  • an object of the present invention is to provide a windmill system or a wind farm that takes into account the improvement in the amount of power generation.
  • a windmill system is a horizontal axis type windmill system including a rotor that rotates by receiving wind, a nacelle that allows the rotor to rotate, and a tower, the windmill system comprising: A resistor that blocks wind from the outside of the system toward the rotor, the resistor being disposed at a position lower than the lower end of the rotor, and including a position farthest from the tower in the rotation plane of the rotor At least a portion is disposed between the axis and the tower.
  • Typical schematic configuration diagram showing a wind turbine system of a comparative example Typical schematic configuration diagram showing a wind turbine system of a comparative example
  • the block diagram (oblique projection figure) of the windmill system concerning 1st Example of this invention The block diagram which looked at the windmill system concerning 1st Example of this invention from the side.
  • Explanatory drawing expressing the flow of the air current around the wind turbine system according to the first embodiment of the present invention
  • the block diagram which looked at the windmill system concerning 1st Example of this invention from right above Arrangement example of resistor 9 Flow analysis result showing the effect of the wind turbine system according to the first embodiment of the present invention
  • FIG. 10 is an embodiment of the upwind wind turbine according to the fifth embodiment of the present invention.
  • FIG. 1 shows a specific structure of a windmill system having a truncated cone 21 below the tower 3 of the windmill.
  • the windmill system in FIG. 1 is a downwind type windmill system in which a rotor faces downwind.
  • the blade 1 is moved by receiving an air current, and a set of three blades constitutes a rotor.
  • the nacelle 2 to which the rotor is attached includes a speed increaser and a generator inside, and the kinetic energy of the blade 1 is finally converted into electric energy by the generator.
  • the tower 3 is installed on the ground, for example, and supports the load of the rotor and the nacelle 2.
  • the tower 3 supports the nacelle 3 in a rotatable manner in accordance with the wind direction, and can increase the efficiency of power generation.
  • the truncated cone 21 is located below the tower 3, and the slope 5 of the truncated cone 21 connects the flat portion 4 and the ground with a slope.
  • FIG. 2 is an example of a windmill system provided with guide vanes 6 for guiding the wind to the tower 3 of the windmill system.
  • the guide vanes 6 are provided on the slope 5 of the truncated cone 21.
  • the guide blade 6 is for inducing an air flow.
  • the guide vanes 6 can prevent the lateral deviation of the airflow.
  • the natural wind 7 is changed by the guide vanes 6 and the truncated cone 21 into an air flow 8 that is guided upward.
  • the guide vanes 6 can be taken in and out of the truncated cone 21, and the upstream guide vanes 6 can be taken out according to the wind direction so that the air flow can be guided to the lower side of the rotor more efficiently than the truncated cone 21 shown in FIG.
  • the configuration of FIG. 2 is also limited to the induction of the airflow to the lower side of the rotor.
  • the windmill system in a present Example is a downwind type windmill system which a rotor faces leeward.
  • the windmill system shown in FIG. 3 is a horizontal axis windmill in which the rotor rotates approximately in a horizontal plane, and the blade 1 moves by receiving an airflow to form a rotor in a set of three.
  • the nacelle 2 includes a speed increaser and a generator, and has a function of finally converting the kinetic energy of the blade 1 into electric energy by the generator.
  • the tower 3 is installed on the ground, for example, and supports the load of the rotor and the nacelle 2.
  • the tower 3 supports the nacelle 2 in a rotatable manner in accordance with the wind direction, and can increase the efficiency of power generation.
  • the resistor 9 is a flat object made of a rigid body such as concrete or steel, and a plurality of pieces (six in this embodiment) are arranged in the vertical vertical direction so as to surround the tower 3. Has been. By arranging in the vertical vertical direction, the effect of blocking the wind can be expected from any direction in the horizontal plane.
  • FIG. 4 shows the height of the resistor 9.
  • the height of the resistor 9 is determined by the height of the tower 3 and the size of the rotating surface of the rotor.
  • the top of the resistor 9 is located below the lowest end of the rotor. It is desirable to be located.
  • it is desirable that at least a part of the resistor 9 is disposed at a position that is less than half the distance ⁇ D between the lower end of the rotor and the foundation that supports the wind turbine system.
  • Fig. 5 shows the movement of airflow around the windmill.
  • the natural wind 7 is assumed to be an airflow that goes from the left front toward the right back.
  • the wind 20 flowing near the ground flows over the resistor 9 while colliding with the resistor 9 and flows to the leeward side facing the rotor.
  • the windward side of the resistor 9 becomes positive pressure (high pressure region).
  • the leeward side of the resistor 9 has a negative pressure (low pressure region) compared to the leeward side of the resistor 9 due to the wind being blocked by the resistor 9.
  • a vortex 10 is generated on the downstream side of the wind 20, that is, on the back side of the resistor with respect to the wind direction.
  • the wind speed of the wind 20 passing through the vicinity of the vortex 10 is increased by the generated vortex 10. Therefore, the effect of increasing the flow velocity with respect to the rotating surface of the rotor is obtained.
  • the negative pressure (low pressure region) generated by the resistor 9 also induces airflow passing above the rotor rotation surface to the rotor rotation surface, which contributes to an improvement in the amount of power generation. This is different from that shown in the comparative example described above.
  • the resistor in the present embodiment is completely different from the guide member that changes the wind direction along its own shape. Further, no vertical axis wind turbine is provided between the resistor 9 and the rotor of the horizontal axis wind turbine, so that the increased wind speed directly hits the horizontal axis wind turbine.
  • the resistor 9 forms a low-pressure region on the rear side of the rotor rotation surface with respect to the wind direction in any wind direction, and the nacelle 2 corresponds to the wind direction with respect to the tower 3. Even when rotating, the presence of the resistor 9 makes it possible to guide the accelerated wind to the rotor.
  • the resistors 9 are arranged symmetrically with respect to the tower 3. Accordingly, even when the nacelle 2 rotates with respect to the tower 3 in accordance with the wind direction, it is possible to guide the wind speed from the wind direction evenly to the left and right with respect to the rotation surface of the rotor.
  • At least a part of the resistor is arranged between the vertical axis including the position farthest from the tower 3 and the tower 3 in the rotation plane of the rotor as shown in FIG.
  • a negative pressure region can be provided behind the rotating surface of the rotor, and the contribution of wind accelerated by the resistor 9 to the rotor can be increased.
  • the resistor 9 is provided so as to be shifted from the vertical plane including the rotation axis of the rotor, and the partial resistor 9 is positioned to be shifted from the vertical plane including the rotation axis of the rotor.
  • the wind speed can be supplemented to the tower shadow located behind the resistor 9 with respect to the wind direction, and the difference in wind speed between the tower shadow and a portion other than the tower shadow can be reduced. . Therefore, reliability and product life can be improved by reducing the fluctuating load on the rotor.
  • the resistor 9 is arranged asymmetrically with respect to the tower 3 as viewed from the upstream side. Specifically, when viewed from above the tower 3, the resistor 9 is rotationally symmetric with respect to the tower 3 as a center. Is arranged.
  • the resistor 9 since the blade 1 exists on the downstream side of the tower 3, if the low speed region on the downstream side of the tower 3 is large, unsteady fluid force acting on the blade 1 increases. However, large fluctuations occur.
  • the present embodiment is an example of the countermeasure, and the resistor 9 forms a vortex 10 on the downstream side, and a flow that circulates to the rear side of the tower due to an asymmetric effect.
  • the generation of the low speed region on the side can be mitigated.
  • the resistor 9 since the resistor 9 is arranged rotationally symmetrically with respect to the tower 3, no matter which direction the wind blows from any direction of 360 degrees in the horizontal plane, Since it functions to block the wind, it can compensate for the decrease in wind in the tower shadow.
  • FIG. 8 shows the results of evaluating the flow velocity around the wind turbine by numerical analysis.
  • the left figure in FIG. 8 shows the case without the resistor 9, and the right figure shows the case with the resistor 9.
  • the speed of natural wind is zero on the surface of the earth, and increases exponentially toward the sky.
  • a circle 22 represents the trajectory of the blade 1, the average flow velocity at the height of the nacelle 2 when the resistor 9 is not present is defined as V, and the velocity distribution at the rotor position is indicated by contour lines in the circle 22. .
  • the speed increases to 0.8V, 1.0V, and 1.2V.
  • the downstream side of the tower 3 there is a tower shadow whose speed is extremely reduced. Comparing the effect of the presence or absence of the resistor 9, the contour lines of 0.8 V, 1.0 V, and 1.2 V move vertically downward when the resistor 9 is present. This is caused by the overall increase in the wind speed at the rotor rotation surface.
  • FIG. 9 shows the rated output of the power generation amount at each wind speed between the present method in which the resistor 9 is installed and the conventional method in which the resistor 9 is not installed. When this method is adopted, an increase in output at a low wind speed can be confirmed as compared with the conventional method.
  • FIG. 10 shows an example of the configuration of the resistor 9, which is an example in which the fluid resistance of the resistor 9 is made variable by a multi-blade structure.
  • the wing 12 has a horizontal axis (rod axis) for driving, and is a rectangular rigid body that is not deformed by wind force.
  • one resistor 9 is constituted by ten blades 12.
  • the column 13 is a structure that supports the load of the wing 12 and is fixed to the ground, for example, and supports the wing 12 in a movable state. Therefore, the support column 13 has a drive mechanism 14 for driving (rotating) the horizontal axis of the blade 12.
  • FIG. 10 shows an example of the configuration of the resistor 9, which is an example in which the fluid resistance of the resistor 9 is made variable by a multi-blade structure.
  • the wing 12 has a horizontal axis (rod axis) for driving, and is a rectangular rigid body that is not deformed by wind force.
  • one resistor 9 is constituted by ten
  • FIG. 10 shows a state in which the blades are vertically aligned. In this case, the airflow is blocked by the blades 9, and the fluid resistance by the resistor 9 is maximized.
  • FIG. 11 shows a case where all the blades 12 are horizontally aligned by the drive mechanism 14. In this case, the airflow can freely pass between the blades, and the fluid resistance by the resistor 9 is minimized. That is, in this configuration, the fluid resistance can be freely adjusted by the drive mechanism 14. For example, there is a case where it is not desired to increase the flow velocity around the rotor during a storm such as a typhoon.
  • FIG. 12 shows an example of the configuration of the resistor 9, in which the resistor 9 is formed by the canvas 15.
  • the canvas 15 is variable and also generates air resistance.
  • the hanging member 16 of the canvas 15 is, for example, a wire rope.
  • the canvas 15 is fixed in a state of being suspended at a plurality of locations by the suspension member 16.
  • the support column 17 that supports the suspension member 16 is fixed to the ground, for example.
  • the canvas 15 is also fixed to the support column 17 at one place or a plurality of places.
  • FIG. 13 shows a state in which the canvas 15 is spread. At this time, the fluid resistance of the resistor 9 is maximized.
  • FIG. 13 shows an example of a state in which the sail is folded.
  • FIG. 14 shows an example of application of the present invention to an offshore wind turbine.
  • a floating body 18 is moored on the sea floor or the coast and supports the wind turbine.
  • the resistor floating body 19 is anchored to the floating body 18 so as to surround the floating body 18 so as to maintain a distance from the floating body 18.
  • Any of the forms shown in the above embodiments can be applied to the resistor 9.
  • FIG. 15 shows another form of the resistor 9, which is an example in which the support 9 of the resistor floating body 19 is omitted for the purpose of reducing the manufacturing cost and the resistor 9 of the third embodiment is configured.
  • the sail has a shape close to a triangle, the effect of inducing wind accelerated on the rotating surface of the rotor as in the first embodiment can be obtained.
  • a fifth embodiment of the present invention will be described with reference to FIG.
  • the present embodiment is characterized in that the resistor 9 is arranged in a state of being separated from the tower 3 by a certain distance (having a gap between the resistor 9 and the tower 3).
  • the flow velocity decreases, and is lowest particularly at the position of the tower 3 at the center of the resistor 9. If this low speed region is large, when constructing a wind farm in which a plurality of wind turbines are arranged, it is conceivable that the wind speed of the downstream wind turbine decreases due to the low speed region created by the upstream wind turbine and the power generation amount decreases.
  • the present embodiment is an example of the countermeasure, and a gap is provided between the resistor 9 and the tower 3. As a result, a high-speed flow field passing through the gap is formed, and the influence of the low-speed region can be mitigated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The objective is to provide a windmill system and a wind farm that take into account an improvement in the wind speed with respect to the rotor. This horizontal-axis-type windmill system is equipped with a rotor that rotates when wind is received, a nacelle that enables the rotor to rotate, and a tower 3, and is characterized by being equipped with drag bodies 9 which block wind moving from the outside of the windmill system toward the rotor, the drag bodies 9 being arranged at a position lower than the lower end of the rotor, and at least of a portion of the drag bodies being arranged between the tower 3 and a vertical axis line that includes the position farthest from the tower 3 in the rotational plane of the rotor.

Description

風車システムまたはウィンドファームWindmill system or wind farm
 本発明は、風車システムまたはウィンドファームに関するものである。 The present invention relates to a windmill system or a wind farm.
 風車システムは近年実用化が進んでおり、火力、水力、原子力に続く第4の発電手段として、世界中に広く普及しつつある。風車システムは、気流の運動エネルギをブレードで受け、ロータの回転エネルギに変換し、さらに発電機により電気エネルギを生成する装置である。システムの発電量は、風速の3乗に比例して増大するため、ブレードに達する風速が僅かに増加するのみでも発電量は顕著に増大する。このため、風車周囲の気流を積極的にブレードに誘導し、発電量を増大するアイデアが幾つか提案されている。 Wind turbine systems have been put into practical use in recent years, and are becoming widespread all over the world as the fourth power generation means following thermal power, hydropower, and nuclear power. A windmill system is a device that receives kinetic energy of airflow with a blade, converts it into rotational energy of a rotor, and further generates electrical energy by a generator. Since the power generation amount of the system increases in proportion to the third power of the wind speed, the power generation amount increases remarkably even if the wind speed reaching the blade is slightly increased. For this reason, some ideas have been proposed to increase the amount of power generation by actively guiding the airflow around the windmill to the blade.
 例えば、特許文献1に示されたウィンドダイバータは、風車タワーの周囲を取り囲む一定高さの台を構築し、地表から台上までのスロープを形成する事で、従来発電に寄与しない地表付近の流れをブレード付近まで誘導することでブレードを駆動する気流を増速し、発電量の増加を目的としている。ウィンドダイバータは、風車システム上流側の気流をブレード付近まで誘導するために、スロープおよび平坦部を有し、さらに気流の横ずれを防ぐためにガイドベーンを設けている。 For example, the wind diverter disclosed in Patent Document 1 is a flow around the ground surface that does not contribute to conventional power generation by constructing a fixed height base that surrounds the windmill tower and forming a slope from the ground surface to the top of the base. The purpose of this is to increase the amount of power generation by speeding up the airflow that drives the blades by guiding them to the vicinity of the blades. The wind diverter has a slope and a flat part to guide the airflow upstream of the windmill system to the vicinity of the blades, and further includes a guide vane to prevent a lateral deviation of the airflow.
 また、特許文献2に記載の風車は支柱の下方に風向変換器を備え、タワーから一定間隔で放射状に延びる複数の案内羽根によって、支柱に向けて吹き付ける風を支柱に沿った上昇流に変換する。垂直軸風車は上昇流を受けることによって発電機を回転駆動させることが記載されている。これに伴い、風車の回転動力のみで発電を行う従来技術に比較して風車に作用する風の風力低下に起因する発電電力を効果的に抑制することを目的としている。 Moreover, the windmill described in Patent Document 2 includes a wind direction converter below the support column, and converts the wind blown toward the support column into an upward flow along the support column by a plurality of guide vanes extending radially from the tower at regular intervals. . It is described that a vertical axis wind turbine rotates a generator by receiving an upward flow. Accordingly, it is an object of the present invention to effectively suppress the generated power caused by a decrease in the wind force of the wind acting on the windmill as compared with the conventional technology that generates power only with the rotational power of the windmill.
特表2011-522160号公報Special table 2011-522160 gazette 特開2014-15899号公報JP 2014-15899 A
 しかし、特許文献1のウィンドダイバータに関しては、ロータの下側への気流の誘導だけに留まる。よって、ロータ回転面全体に対して風量は増加しておらず、発電量の向上という観点からは寄与しにくい。 However, with regard to the wind diverter of Patent Document 1, only the induction of airflow to the lower side of the rotor is limited. Therefore, the air volume does not increase with respect to the entire rotor rotation surface, and it is difficult to contribute from the viewpoint of improving the power generation amount.
 また、特許文献2に記載されている風向変換機では、ロータの下側から気流を鉛直上下方向に上昇させており、ロータの回転面に対しての垂直方向の気流の誘導は伴わない。さらに、風向変換機とブレードとの間に第2の発電機が設けられており、ブレードへの風速の増加に寄与しにくい。またブレードと風向変換機が設けられていることからもブレードへの風速の増加に寄与しにくく、発電量の向上には寄与しにくい。 Further, in the wind direction changer described in Patent Document 2, the airflow is raised vertically from the lower side of the rotor, and no vertical airflow is induced with respect to the rotating surface of the rotor. Furthermore, the second generator is provided between the wind direction changer and the blade, and it is difficult to contribute to an increase in the wind speed to the blade. In addition, since the blade and the wind direction changer are provided, it is difficult to contribute to an increase in the wind speed to the blade, and it is difficult to contribute to an improvement in power generation amount.
 そこで本発明では、発電量の向上を考慮した風車システムまたはウィンドファームを提供することを目的とする。 Therefore, an object of the present invention is to provide a windmill system or a wind farm that takes into account the improvement in the amount of power generation.
 以上の課題を解決するために本発明にかかる風車システムは、風を受けて回転するロータと、前記ロータを回転可能にするナセルと、タワーを備える水平軸型の風車システムであって、前記風車システムの外側から前記ロータ側に向かう風を遮る抵抗体を備え、前記抵抗体は前記ロータの下端よりも低い位置に配置され、かつ前記ロータの回転面内で前記タワーから最も遠い位置を含む鉛直軸線と前記タワーの間に少なくとも一部が配置されることを特徴とする。 In order to solve the above problems, a windmill system according to the present invention is a horizontal axis type windmill system including a rotor that rotates by receiving wind, a nacelle that allows the rotor to rotate, and a tower, the windmill system comprising: A resistor that blocks wind from the outside of the system toward the rotor, the resistor being disposed at a position lower than the lower end of the rotor, and including a position farthest from the tower in the rotation plane of the rotor At least a portion is disposed between the axis and the tower.
 本発明によれば、発電量の向上を考慮した風車システムまたはウィンドファームを提供することが可能となる。 According to the present invention, it is possible to provide a windmill system or a wind farm that takes into account the improvement in power generation.
比較例の風車システムを示す代表的な概略構成図Typical schematic configuration diagram showing a wind turbine system of a comparative example 比較例の風車システムを示す代表的な概略構成図Typical schematic configuration diagram showing a wind turbine system of a comparative example 本発明の第一の実施例にかかる風車システムの構成図(斜投影図)The block diagram (oblique projection figure) of the windmill system concerning 1st Example of this invention 本発明の第一の実施例にかかる風車システムを真横から見た構成図The block diagram which looked at the windmill system concerning 1st Example of this invention from the side. 本発明の第一の実施例にかかる風車システムの周囲の気流の流れを表現した説明図Explanatory drawing expressing the flow of the air current around the wind turbine system according to the first embodiment of the present invention 本発明の第一の実施例にかかる風車システムを真上から見た構成図The block diagram which looked at the windmill system concerning 1st Example of this invention from right above 抵抗体9の配置例Arrangement example of resistor 9 本発明の第一の実施例にかかる風車システムの効果を表した流れ解析結果Flow analysis result showing the effect of the wind turbine system according to the first embodiment of the present invention 本発明の第一の実施例にかかる風車システムの風速と出力電力の関係を表した図The figure showing the relationship between the wind speed of the windmill system concerning 1st Example of this invention, and output electric power. 実施例2にかかる抵抗体9の1構成例(流体抵抗可変:最大)One configuration example of the resistor 9 according to the second embodiment (variable fluid resistance: maximum) 実施例2にかかる抵抗体9の1構成例(流体抵抗可変:最小)One configuration example of the resistor 9 according to the second embodiment (variable fluid resistance: minimum) 実施例3にかかる抵抗体9の1構成例(流体抵抗可変:最大)One configuration example of the resistor 9 according to the third embodiment (variable fluid resistance: maximum) 実施例3にかかる抵抗体9の1構成例(流体抵抗可変:最小)One configuration example of the resistor 9 according to the third embodiment (variable fluid resistance: minimum) 実施例4にかかる本発明にかかる浮体風車の1実施例One Example of a Floating Windmill According to the Present Invention According to Example 4 実施例4にかかる本発明にかかる浮体風車の1実施例One Example of a Floating Windmill According to the Present Invention According to Example 4 実施例5にかかる抵抗体9の配置例Example of arrangement of resistor 9 according to example 5 実施例5にかかる本発明のアップウィンド型風車における実施例。FIG. 10 is an embodiment of the upwind wind turbine according to the fifth embodiment of the present invention.
(比較例)
 図1に風車のタワー3の下方に円錐台21を備えた風車システムの具体的な構造を示す。図1における風車システムは風下にロータが面しているダウンウィンド型風車システムである。ブレード1は気流を受けて運動し、3枚一組でロータを構成している。ロータを取り付けるナセル2は、増速機や発電機を内部に備え、ブレード1の運動エネルギを発電機で最終的に電気エネルギに変換する。タワー3は例えば地上に設置され、ロータ及びナセル2の荷重を支持する。ここでタワー3は風向きに応じてナセル3を回転可能に支持しており、発電の効率を上げることを可能としている。本比較例における円錐台21の頂上には平坦部4がある。円錐台21はタワー3の下方に位置し、円錐台21のスロープ5は平坦部4と地上とを斜面によって連結する。この構造により、自然風7の地上付近の気流は円錐台21のスロープ5を経て平坦部上4まで導かれるが、ロータの下側への気流の誘導だけに留まる。
(Comparative example)
FIG. 1 shows a specific structure of a windmill system having a truncated cone 21 below the tower 3 of the windmill. The windmill system in FIG. 1 is a downwind type windmill system in which a rotor faces downwind. The blade 1 is moved by receiving an air current, and a set of three blades constitutes a rotor. The nacelle 2 to which the rotor is attached includes a speed increaser and a generator inside, and the kinetic energy of the blade 1 is finally converted into electric energy by the generator. The tower 3 is installed on the ground, for example, and supports the load of the rotor and the nacelle 2. Here, the tower 3 supports the nacelle 3 in a rotatable manner in accordance with the wind direction, and can increase the efficiency of power generation. There is a flat portion 4 on the top of the truncated cone 21 in this comparative example. The truncated cone 21 is located below the tower 3, and the slope 5 of the truncated cone 21 connects the flat portion 4 and the ground with a slope. With this structure, the airflow in the vicinity of the ground surface of the natural wind 7 is guided to the upper flat portion 4 through the slope 5 of the truncated cone 21, but is only guided to the airflow to the lower side of the rotor.
 図2は、風を風車システムのタワー3へガイドする案内羽根6を備えた風車システムの1例であり、図1と異なり案内羽根6を円錐台21のスロープ5に設ける。案内羽根6は気流を誘導するためのものである。案内羽根6によって気流の横ずれを防ぐことができる。自然風7は案内羽根6および円錐台21によって、上部に誘導される気流8に変更される。案内羽根6は円錐台21での出し入れが可能であり、風向に従い上流側の案内羽根6を出す事で、図1に示す円錐台21よりも効率良く気流をロータの下側に誘導できると思われるが、図2の形態についてもロータの下側への気流の誘導だけに留まる。 FIG. 2 is an example of a windmill system provided with guide vanes 6 for guiding the wind to the tower 3 of the windmill system. Unlike FIG. 1, the guide vanes 6 are provided on the slope 5 of the truncated cone 21. The guide blade 6 is for inducing an air flow. The guide vanes 6 can prevent the lateral deviation of the airflow. The natural wind 7 is changed by the guide vanes 6 and the truncated cone 21 into an air flow 8 that is guided upward. The guide vanes 6 can be taken in and out of the truncated cone 21, and the upstream guide vanes 6 can be taken out according to the wind direction so that the air flow can be guided to the lower side of the rotor more efficiently than the truncated cone 21 shown in FIG. However, the configuration of FIG. 2 is also limited to the induction of the airflow to the lower side of the rotor.
 以下、本発明の実施例について図を用いて説明する。なお本実施例における風車システムは風下にロータが面しているダウンウィンド型風車システムである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the windmill system in a present Example is a downwind type windmill system which a rotor faces leeward.
 本実施例では、本発明の風車システムに関し、図3ないし図7を用いて動作を説明する。図3に示す風車システムは、ロータがおよそ水平面内を回転する水平軸風車であり、ブレード1は気流を受けて運動し、3枚一組でロータを構成している。ナセル2は増速機や発電機を備え、ブレード1の運動エネルギを発電機で最終的に電気エネルギに変換する機能を有する。タワー3は例えば地上に設置され、ロータ及びナセル2の荷重を支持する。ここでタワー3は風向きに応じてナセル2を回転可能に支持しており、発電の効率を上げることを可能としている。 In this embodiment, the operation of the wind turbine system of the present invention will be described with reference to FIGS. The windmill system shown in FIG. 3 is a horizontal axis windmill in which the rotor rotates approximately in a horizontal plane, and the blade 1 moves by receiving an airflow to form a rotor in a set of three. The nacelle 2 includes a speed increaser and a generator, and has a function of finally converting the kinetic energy of the blade 1 into electric energy by the generator. The tower 3 is installed on the ground, for example, and supports the load of the rotor and the nacelle 2. Here, the tower 3 supports the nacelle 2 in a rotatable manner in accordance with the wind direction, and can increase the efficiency of power generation.
 本実施例にかかる抵抗体9は例えばコンクリートや鉄鋼等の剛体で作られた平板状の物体であり、タワー3の周辺を囲むように複数枚(本実施例では6枚)鉛直上下方向に配置されている。鉛直上下方向に配置されることで水平面内でどの方向から風が吹いても風を遮る効果を期待できる。図4には抵抗体9の高さについて示す。抵抗体9の高さは、タワー3の高さとロータの回転面の大きさによって決まる。ロータの回転位置と、抵抗体9の高さによっては衝突を回避する必要があり、ロータの位置によらず衝突を回避する上では、抵抗体9の頂上はロータの最下端よりも下側に位置することが望ましい。また、ロータの下端と風車システムを支持する基礎との間の距離ΔDの1/2未満の距離の位置に抵抗体9の少なくとも一部が配置されていることが望ましい。 The resistor 9 according to the present embodiment is a flat object made of a rigid body such as concrete or steel, and a plurality of pieces (six in this embodiment) are arranged in the vertical vertical direction so as to surround the tower 3. Has been. By arranging in the vertical vertical direction, the effect of blocking the wind can be expected from any direction in the horizontal plane. FIG. 4 shows the height of the resistor 9. The height of the resistor 9 is determined by the height of the tower 3 and the size of the rotating surface of the rotor. Depending on the rotational position of the rotor and the height of the resistor 9, it is necessary to avoid a collision. In order to avoid a collision regardless of the position of the rotor, the top of the resistor 9 is located below the lowest end of the rotor. It is desirable to be located. In addition, it is desirable that at least a part of the resistor 9 is disposed at a position that is less than half the distance ΔD between the lower end of the rotor and the foundation that supports the wind turbine system.
 図5に風車周囲の気流の動きを示す。自然風7は本実施例では、左手前より右奥に向かう気流であると仮定している。自然風7の中でも地上付近を流れる風20は抵抗体9に衝突しながら抵抗体9を乗り越えるようにしてロータの面する風下側へと流れる。この時、風20が衝突することにより抵抗体9の風上側は正圧(高圧領域)となる。一方で抵抗体9の風下側は抵抗体9に風が遮られることで抵抗体9の風上側に比べて負圧(低圧領域)となる。その際に抵抗体9の影響により、風20の下流側、即ち風向きに対して抵抗体の裏側に渦10が発生する。発生した渦10によって渦10の付近を通過する風20の風速は増速される。よってロータの回転面に対する流速が増速する効果が得られる。更に、抵抗体9によって生じた負圧(低圧領域)により、ロータ回転面の上側を通過する気流についてもロータ回転面に誘導され、発電量の向上に寄与する。この点で前述の比較例に示したものと異なる。即ち、本実施例における抵抗体は、風向きを自身の形状に沿って変更するガイド状部材とは一線を画している。また、抵抗体9と水平軸風車のロータの間に垂直軸風車を設けておらず、増速した風速が直接水平軸風車に当たる様にしている。 Fig. 5 shows the movement of airflow around the windmill. In the present embodiment, the natural wind 7 is assumed to be an airflow that goes from the left front toward the right back. Among the natural winds 7, the wind 20 flowing near the ground flows over the resistor 9 while colliding with the resistor 9 and flows to the leeward side facing the rotor. At this time, when the wind 20 collides, the windward side of the resistor 9 becomes positive pressure (high pressure region). On the other hand, the leeward side of the resistor 9 has a negative pressure (low pressure region) compared to the leeward side of the resistor 9 due to the wind being blocked by the resistor 9. At that time, due to the influence of the resistor 9, a vortex 10 is generated on the downstream side of the wind 20, that is, on the back side of the resistor with respect to the wind direction. The wind speed of the wind 20 passing through the vicinity of the vortex 10 is increased by the generated vortex 10. Therefore, the effect of increasing the flow velocity with respect to the rotating surface of the rotor is obtained. Further, the negative pressure (low pressure region) generated by the resistor 9 also induces airflow passing above the rotor rotation surface to the rotor rotation surface, which contributes to an improvement in the amount of power generation. This is different from that shown in the comparative example described above. In other words, the resistor in the present embodiment is completely different from the guide member that changes the wind direction along its own shape. Further, no vertical axis wind turbine is provided between the resistor 9 and the rotor of the horizontal axis wind turbine, so that the increased wind speed directly hits the horizontal axis wind turbine.
 また、タワー3に対して放射状に取り囲むことによって、抵抗体9はいずれの風向きでも低圧領域を風向きに対してロータの回転面の後ろ側に形成し、タワー3に対してナセル2が風向きに応じて回転する際も、抵抗体9の存在により、増速した風をロータに誘導することが可能になる。 Further, by surrounding the tower 3 radially, the resistor 9 forms a low-pressure region on the rear side of the rotor rotation surface with respect to the wind direction in any wind direction, and the nacelle 2 corresponds to the wind direction with respect to the tower 3. Even when rotating, the presence of the resistor 9 makes it possible to guide the accelerated wind to the rotor.
 さらに、タワー3に対して抵抗体9を軸対称に配置されていることが望ましい。これに伴い、タワー3に対してナセル2が風向きに応じて回転する際にも、風向きからロータの回転面に対して左右均等に風速を誘導することが可能である。 Furthermore, it is desirable that the resistors 9 are arranged symmetrically with respect to the tower 3. Accordingly, even when the nacelle 2 rotates with respect to the tower 3 in accordance with the wind direction, it is possible to guide the wind speed from the wind direction evenly to the left and right with respect to the rotation surface of the rotor.
 さらに、図6のようにロータの回転面内でタワー3から最も遠い位置を含む鉛直軸線とタワー3の間に少なくとも抵抗体の一部が配置されていることが望ましい。これに伴い、ロータの回転面の後ろに負圧領域を設けることができ、抵抗体9によって増速された風のロータへの寄与を大きくすることが出来る。 Furthermore, it is desirable that at least a part of the resistor is arranged between the vertical axis including the position farthest from the tower 3 and the tower 3 in the rotation plane of the rotor as shown in FIG. Along with this, a negative pressure region can be provided behind the rotating surface of the rotor, and the contribution of wind accelerated by the resistor 9 to the rotor can be increased.
 本実施例では、タワー3に円錐台21などを設ける必要性もなく、抵抗体9を設けることで簡単にロータの回転面に対する風を増速させることが可能である。 In this embodiment, it is not necessary to provide the truncated cone 21 or the like in the tower 3, and by providing the resistor 9, it is possible to easily increase the wind speed with respect to the rotor rotation surface.
 また、ダウンウィンド型風車システムはタワー3よりも風下にロータが位置することから、風向きに対してタワー3の後流に死水域(タワーシャドウ)が発生する。これに伴い、タワーシャドウをロータが通過する際、タワーシャドウとタワーシャドウ以外の箇所とで風速が異なる。よって、ブレードがタワーシャドウを通過するタイミングでブレードに作用する流体力が変動し、ロータへの変動荷重が増大する事が知られている。本実施例のように抵抗体9をロータの回転軸を含む鉛直面からずれて位置する様に設け、当該一部の抵抗体9がロータの回転軸を含む鉛直面からずれて位置する様に配置されていることによって、風向きに対して抵抗体9の後ろ側に位置するタワーシャドウにも風速の補完が可能となり、タワーシャドウとタワーシャドウ以外の箇所とで風速の差を小さくすることができる。よって、ロータへの変動荷重が減少する事で、信頼性や製品寿命の向上も期待できる。 Also, in the downwind type windmill system, since the rotor is located leeward than the tower 3, a dead water area (tower shadow) is generated in the downstream of the tower 3 with respect to the wind direction. Accordingly, when the rotor passes through the tower shadow, the wind speed differs between the tower shadow and a portion other than the tower shadow. Therefore, it is known that the fluid force acting on the blade fluctuates at the timing when the blade passes the tower shadow, and the fluctuating load on the rotor increases. As in the present embodiment, the resistor 9 is provided so as to be shifted from the vertical plane including the rotation axis of the rotor, and the partial resistor 9 is positioned to be shifted from the vertical plane including the rotation axis of the rotor. By being arranged, the wind speed can be supplemented to the tower shadow located behind the resistor 9 with respect to the wind direction, and the difference in wind speed between the tower shadow and a portion other than the tower shadow can be reduced. . Therefore, reliability and product life can be improved by reducing the fluctuating load on the rotor.
 ダウンウィンド型風車システムにおける抵抗体9の別の形態を図7を用いて説明する。本実施例では、抵抗体9を、上流側から見てタワー3を中心として左右非対称に配置しており、具体的にはタワー3上方から見れば、抵抗体9はタワー3を中心に回転対称に配置されている。本実施例で示しているダウンウィンド型風車では、タワー3の下流側にブレード1が存在するため、タワー3下流側の低速領域が大きいと、ブレード1に作用する非定常的な流体力が増大し、大きな変動が生じる。本実施例はその対策の1例であり、抵抗体9により、下流側に渦10が形成されるとともに、非対称とした効果により、タワー後ろ側に回り込む流れが形成されることで、タワー3下流側の低速領域の発生を緩和することが出来る。また本実施例では、抵抗体9をタワー3に対して回転対称に配置しているため、水平面内で360度いずれの方向から風が吹いても、いずれかの抵抗体9が同じ様に風を遮る機能を果たすので、タワーシャドウにおける風の減少分を補うことができる。 Another form of the resistor 9 in the downwind type windmill system will be described with reference to FIG. In this embodiment, the resistor 9 is arranged asymmetrically with respect to the tower 3 as viewed from the upstream side. Specifically, when viewed from above the tower 3, the resistor 9 is rotationally symmetric with respect to the tower 3 as a center. Is arranged. In the downwind type wind turbine shown in this embodiment, since the blade 1 exists on the downstream side of the tower 3, if the low speed region on the downstream side of the tower 3 is large, unsteady fluid force acting on the blade 1 increases. However, large fluctuations occur. The present embodiment is an example of the countermeasure, and the resistor 9 forms a vortex 10 on the downstream side, and a flow that circulates to the rear side of the tower due to an asymmetric effect. The generation of the low speed region on the side can be mitigated. In this embodiment, since the resistor 9 is arranged rotationally symmetrically with respect to the tower 3, no matter which direction the wind blows from any direction of 360 degrees in the horizontal plane, Since it functions to block the wind, it can compensate for the decrease in wind in the tower shadow.
 図8は数値解析により風車周囲の流速を評価した結果である。図8中の左図は抵抗体9の無い場合、右図は抵抗体9を有する場合である。一般に、自然風の速度は地表でゼロであり、上空に向かうに従い指数関数的に増大する。円22は、ブレード1の軌跡を表しており、抵抗体9が無い時のナセル2の高さの平均流速をVと定義して、ロータ位置での速度分布を円22に等高線で示している。下から上に向かうに従い、0.8V、1.0V、1.2Vと速度が増大している。また、タワー3の下流側では、極端に速度が低下するタワーシャドウが存在している。抵抗体9の有無の効果を見比べると、0.8V、1.0V、1.2Vの等高線ともに、抵抗体9が存在する場合は等高線の位置は鉛直下方に移動している。これはロータ回転面における風速が全体的に増速したことによって生じる。 Fig. 8 shows the results of evaluating the flow velocity around the wind turbine by numerical analysis. The left figure in FIG. 8 shows the case without the resistor 9, and the right figure shows the case with the resistor 9. In general, the speed of natural wind is zero on the surface of the earth, and increases exponentially toward the sky. A circle 22 represents the trajectory of the blade 1, the average flow velocity at the height of the nacelle 2 when the resistor 9 is not present is defined as V, and the velocity distribution at the rotor position is indicated by contour lines in the circle 22. . As it goes from bottom to top, the speed increases to 0.8V, 1.0V, and 1.2V. Further, on the downstream side of the tower 3, there is a tower shadow whose speed is extremely reduced. Comparing the effect of the presence or absence of the resistor 9, the contour lines of 0.8 V, 1.0 V, and 1.2 V move vertically downward when the resistor 9 is present. This is caused by the overall increase in the wind speed at the rotor rotation surface.
 以上の結果より、抵抗体9の設置により同じ自然風の速度の下でも発電量を増大できる。図9に抵抗体9を設置した本方式と設置しない従来方式との各風速における発電量の定格出力が表される。本方式を採用した場合には、従来方式と比べ低風速時の出力の増大が確認できる。 From the above results, the amount of power generation can be increased by installing the resistor 9 even under the same natural wind speed. FIG. 9 shows the rated output of the power generation amount at each wind speed between the present method in which the resistor 9 is installed and the conventional method in which the resistor 9 is not installed. When this method is adopted, an increase in output at a low wind speed can be confirmed as compared with the conventional method.
 本発明の第2の実施例を、図10および図11を用いて説明する。図10は抵抗体9の1構成例であり、多翼構造により抵抗体9の流体抵抗を可変とさせる例である。翼12は、本実施例では駆動用の水平軸(棒軸)を有し、風力で変形が生じないような長方形の剛体である。本実施例では、10本の翼12で1枚の抵抗体9を構成する。支柱13は翼12の荷重を支持し、例えば地上に固定され翼12を可動状態で支持する構造体である。そのため翼12の水平軸を(回転)駆動するための駆動機構14を支柱13は有する。図10は各翼が垂直に整列している状態を表しており、この場合、気流は翼9により阻止され、抵抗体9による流体抵抗は最大となる。一方、図11は駆動機構14により、すべての翼12を水平に整列させたケースである。この場合、気流は翼間を自在に通過する事が可能で、抵抗体9による流体抵抗は最小となる。すなわち、本構成において、駆動機構14により流体抵抗を自在に調整可能となる。例えば、台風などの暴風時にロータ周囲の流速を上昇させたくない場合がある。また、抵抗体9自身も暴風の影響による破壊を防止するため、流体抵抗を下げる必要が想定され、受風面積を調整することが可能な本構成が有効であるといえる。なお、本実施例では、支柱13を2本設けているが、片側の支柱をタワー3と一体化することにより、支柱1本でも同様な抵抗体を構成可能である。無論、翼12の本数や方向、駆動のさせ方はここで示した例に限定されない。 A second embodiment of the present invention will be described with reference to FIGS. FIG. 10 shows an example of the configuration of the resistor 9, which is an example in which the fluid resistance of the resistor 9 is made variable by a multi-blade structure. In this embodiment, the wing 12 has a horizontal axis (rod axis) for driving, and is a rectangular rigid body that is not deformed by wind force. In this embodiment, one resistor 9 is constituted by ten blades 12. The column 13 is a structure that supports the load of the wing 12 and is fixed to the ground, for example, and supports the wing 12 in a movable state. Therefore, the support column 13 has a drive mechanism 14 for driving (rotating) the horizontal axis of the blade 12. FIG. 10 shows a state in which the blades are vertically aligned. In this case, the airflow is blocked by the blades 9, and the fluid resistance by the resistor 9 is maximized. On the other hand, FIG. 11 shows a case where all the blades 12 are horizontally aligned by the drive mechanism 14. In this case, the airflow can freely pass between the blades, and the fluid resistance by the resistor 9 is minimized. That is, in this configuration, the fluid resistance can be freely adjusted by the drive mechanism 14. For example, there is a case where it is not desired to increase the flow velocity around the rotor during a storm such as a typhoon. In addition, in order to prevent the resistor 9 itself from being destroyed by the influence of the storm, it is assumed that the fluid resistance needs to be lowered, and it can be said that the present configuration capable of adjusting the wind receiving area is effective. In this embodiment, two struts 13 are provided. However, by integrating a strut on one side with the tower 3, a similar resistor can be configured with a single strut. Of course, the number and direction of the blades 12 and how to drive them are not limited to the example shown here.
 本発明の第3の実施例を、図12および図13を用いて説明する。図12は抵抗体9の1構成例であり、帆布15により抵抗体9を成す例である。帆布15は、可変性があり、尚且つ空気抵抗を生じさせる。帆布15の吊り下げ用部材16は、例えばワイヤーロープである。帆布15は、吊り下げ用部材16により、複数箇所で吊り下げられた状態で固定される。吊り下げ用部材16を支持する支柱17は、例えば地上に固定される。帆布15は1箇所または複数個所で支柱17にも固定される。図13は帆布15を広げた状態を表したもので、この時、抵抗体9の流体抵抗は最大となる。図13は帆を畳んだ状態の1例である。例えば、台風などの暴風時にロータ周囲の流速を上昇させたくない場合がある。また、抵抗体9自身も暴風の影響による破壊を防止するため、流体抵抗を下げる必要が想定され、本構成が有効であるといえる。なお、本実施例では、支柱17を2本設けているが、片側の支柱17をタワー3と一体化することにより、支柱1本でも同様な抵抗体9を構成可能である。 A third embodiment of the present invention will be described with reference to FIGS. FIG. 12 shows an example of the configuration of the resistor 9, in which the resistor 9 is formed by the canvas 15. The canvas 15 is variable and also generates air resistance. The hanging member 16 of the canvas 15 is, for example, a wire rope. The canvas 15 is fixed in a state of being suspended at a plurality of locations by the suspension member 16. The support column 17 that supports the suspension member 16 is fixed to the ground, for example. The canvas 15 is also fixed to the support column 17 at one place or a plurality of places. FIG. 13 shows a state in which the canvas 15 is spread. At this time, the fluid resistance of the resistor 9 is maximized. FIG. 13 shows an example of a state in which the sail is folded. For example, there is a case where it is not desired to increase the flow velocity around the rotor during a storm such as a typhoon. Moreover, in order to prevent the resistor 9 itself from being destroyed by the influence of the storm, it is assumed that the fluid resistance needs to be lowered, and it can be said that this configuration is effective. In this embodiment, two struts 17 are provided, but by integrating the strut 17 on one side with the tower 3, the same resistor 9 can be configured with a single strut.
 本発明の第4の実施例を、図14および図15を用いて説明する。図14は本発明の洋上風車への適用例を示したもので、浮体18は、海底もしくは海岸に係留され、風車を支持する。抵抗体用浮体19は、浮体18を囲むような形で、浮体18との距離を保つように浮体18に係留される。抵抗体9は、前記各実施例に示す形態のいずれも適用できる。図15は抵抗体9の別な形態であり、製造コストを抑える目的で抵抗体用浮体19の支柱を省略し、実施例3の抵抗体9を構成した例である。帆は3角形に近い形状となるが、実施例1のような、ロータの回転面に増速された風を誘導する効果は得られる。 A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 14 shows an example of application of the present invention to an offshore wind turbine. A floating body 18 is moored on the sea floor or the coast and supports the wind turbine. The resistor floating body 19 is anchored to the floating body 18 so as to surround the floating body 18 so as to maintain a distance from the floating body 18. Any of the forms shown in the above embodiments can be applied to the resistor 9. FIG. 15 shows another form of the resistor 9, which is an example in which the support 9 of the resistor floating body 19 is omitted for the purpose of reducing the manufacturing cost and the resistor 9 of the third embodiment is configured. Although the sail has a shape close to a triangle, the effect of inducing wind accelerated on the rotating surface of the rotor as in the first embodiment can be obtained.
 本発明の第5の実施例を、図16を用いて説明する。本実施例では、抵抗体9をタワー3より一定距離離した(抵抗体9とタワー3との間に隙間を有する)状態で配置している点に特徴がある。実施例1に示した抵抗体9下流側では、流速が低下し、特に抵抗体9中心のタワー3の位置で最低となる。この低速領域が大きいと、風車を複数台配置するウィンドファームを構築する場合、上流側風車の作った低速領域の影響で下流側風車の風速が低下し、発電量が低下することが考えられる。本実施例はその対策の1例であり、抵抗体9とタワー3との間に間隙を設けている。この結果、前記間隙を通り抜ける高速な流れ場が形成されて、低速領域の影響を緩和することができる。 A fifth embodiment of the present invention will be described with reference to FIG. The present embodiment is characterized in that the resistor 9 is arranged in a state of being separated from the tower 3 by a certain distance (having a gap between the resistor 9 and the tower 3). On the downstream side of the resistor 9 shown in the first embodiment, the flow velocity decreases, and is lowest particularly at the position of the tower 3 at the center of the resistor 9. If this low speed region is large, when constructing a wind farm in which a plurality of wind turbines are arranged, it is conceivable that the wind speed of the downstream wind turbine decreases due to the low speed region created by the upstream wind turbine and the power generation amount decreases. The present embodiment is an example of the countermeasure, and a gap is provided between the resistor 9 and the tower 3. As a result, a high-speed flow field passing through the gap is formed, and the influence of the low-speed region can be mitigated.
 以上、本発明の実施例について説明してきたが、上記に示した実施例はあくまでも例に過ぎず、本発明を限定するものではない。例えば相対的にダウンウィンド型風車システムほどではないものの、図17のようにロータがタワー3の上流側にあるアップウィンド型風車システムにおいても、タワーシャドウに伴うブレード1に対する非定常流体力は生じる。すなわち、風に対して一定の投影面積を有するタワー3が回転するブレード1のすぐ下流側にあることによって、その部分の風の流れがせき止められ、ブレード1への変動荷重や、ロータのトルク脈動の要因となり得る。抵抗体9の下流に生じた低速領域を避ける方向にフローパタンが変化して、上空の流速が上昇する。それに伴い、上流側のフローパタンにも干渉し、アップウィンド型風車でもロータに対する風速向上の効果は得られる。 The embodiments of the present invention have been described above. However, the above-described embodiments are merely examples, and do not limit the present invention. For example, although not as much as a downwind type windmill system, an unsteady fluid force is generated on the blade 1 due to the tower shadow even in an upwind type windmill system in which the rotor is upstream of the tower 3 as shown in FIG. That is, the tower 3 having a fixed projection area with respect to the wind is located immediately downstream of the rotating blade 1, so that the flow of the wind in that portion is blocked, and the load on the blade 1 and the torque pulsation of the rotor are reduced. Can be a factor. The flow pattern changes in a direction to avoid the low speed region generated downstream of the resistor 9, and the flow velocity in the sky increases. Accordingly, it interferes with the upstream flow pattern, and the wind speed improvement effect on the rotor can be obtained even in an upwind wind turbine.
1・・・ブレード
2・・・ロータ及びナセル
3・・・タワー
4・・・円錐台の平坦部
5・・・円錐台のスロープ
6・・・円錐台のガイドベーン
7・・・自然風を模式的に示した矢印
8・・・円錐台の気流を模式的に示した矢印
9・・・抵抗体
10・・・抵抗体の影響で生成された渦を模式的に表した矢印
11・・・渦によって生じた低圧領域に向かう流れを表した矢印
12・・・翼
13・・・支柱
14・・・駆動機構
15・・・帆布
16・・・吊り下げ機構
17・・・支柱
18・・・浮体
19・・・抵抗体用浮体
20・・・地上付近を流れる気流を模式的に示した矢印
21・・・円錐台
22・・・ブレードの軌跡
DESCRIPTION OF SYMBOLS 1 ... Blade 2 ... Rotor and nacelle 3 ... Tower 4 ... Flat part 5 of a truncated cone 5 ... Slope 6 of a truncated cone 6 ... Guide vane 7 of a truncated cone An arrow 8 schematically showing an arrow 9 showing an air flow in a truncated cone 9 an resistor 10 an arrow 11 schematically showing a vortex generated by the influence of the resistor An arrow 12 representing the flow toward the low pressure region generated by the vortex 12 ... the wing 13 ... the support 14 ... the drive mechanism 15 ... the canvas 16 ... the suspension mechanism 17 ... the support 18 ... -Floating body 19 ... Resistor floating body 20 ... Arrow 21 schematically showing airflow flowing near the ground 22 ... Frustum 22 ... Blade trajectory

Claims (14)

  1.  風を受けて回転するロータと、
     前記ロータを回転可能にするナセルと、
     タワーを備える水平軸型の風車システムであって、
     前記風車システムの外側から前記ロータ側に向かう風を遮る抵抗体を備え、
     前記抵抗体は前記ロータの下端よりも低い位置に配置され、かつ前記ロータの回転面内で前記タワーから最も遠い位置を含む鉛直軸線と前記タワーの間に少なくとも一部が配置されることを特徴とする風車システム。
    A rotor that rotates in response to the wind;
    A nacelle that allows the rotor to rotate;
    A horizontal axis windmill system including a tower,
    A resistor that blocks wind from the outside of the wind turbine system toward the rotor;
    The resistor is disposed at a position lower than a lower end of the rotor, and at least a part of the resistor is disposed between a vertical axis including a position farthest from the tower in a rotation plane of the rotor and the tower. Windmill system.
  2.  請求項1に記載の風車システムであって、
     高さ方向で、前記ロータの下端から、前記ロータの下端と前記風車システムを支持する基礎との間の距離の1/2未満の距離の位置に前記抵抗体の少なくとも一部が配置されていることを特徴とする風車システム。
    The windmill system according to claim 1,
    In the height direction, at least a part of the resistor is disposed at a position less than ½ of the distance between the lower end of the rotor and the foundation supporting the wind turbine system from the lower end of the rotor. A windmill system characterized by that.
  3.  請求項2に記載の風車システムであって、
     前記抵抗体は鉛直上下方向に形成されることを特徴とする風車システム。
    It is a windmill system of Claim 2, Comprising:
    The wind turbine system according to claim 1, wherein the resistor is formed in a vertical vertical direction.
  4.  請求項2または3に記載の風車システムであって、
     前記抵抗体は受風面積を変更可能であることを特徴とする風車システム。
    The windmill system according to claim 2 or 3,
    The wind turbine system according to claim 1, wherein the resistor has a changeable wind receiving area.
  5.  請求項2または3に記載の風車システムであって、
     前記抵抗体は板状部材であることを特徴とする風車システム。
    The windmill system according to claim 2 or 3,
    The wind turbine system according to claim 1, wherein the resistor is a plate member.
  6.  請求項4に記載の風車システムであって、
     前記各板材は棒軸で支持され、前記棒軸を中心に前記板材を回転制御させて受風面積を異ならせる駆動装置を有することを特徴とする風車システム。
    It is a windmill system of Claim 4, Comprising:
    Each of the plate members is supported by a rod shaft, and the wind turbine system includes a drive device that controls the rotation of the plate member around the rod shaft to vary the wind receiving area.
  7.  請求項4に記載の風車システムであって、
     前記抵抗体は帆布で構成されることを特徴とする風車システム。
    It is a windmill system of Claim 4, Comprising:
    The wind turbine system according to claim 1, wherein the resistor is made of canvas.
  8.  請求項4に記載の風車システムであって、
     前記抵抗体が風向きに対して三角形状であることを特徴とする風車システム。
    It is a windmill system of Claim 4, Comprising:
    The wind turbine system according to claim 1, wherein the resistor has a triangular shape with respect to a wind direction.
  9.  請求項5に記載の風車システムであって、
     前記抵抗体は前記タワーに対して放射状に配置されていることを特徴とする風車システム。
    It is a windmill system of Claim 5, Comprising:
    The wind turbine system according to claim 1, wherein the resistors are arranged radially with respect to the tower.
  10.  請求項5に記載の風車システムであって、
     前記抵抗体は、前記タワーを中心に回転対称に配置されていることを特徴とする風車システム。
    It is a windmill system of Claim 5, Comprising:
    The said resistor is arrange | positioned rotationally symmetrically centering | focusing on the said tower, The windmill system characterized by the above-mentioned.
  11. 請求項5ないし9のいずれか1項に記載の風車システムであって、
    前記抵抗体は、前記タワーに対して軸対称に配置されていることを特徴とする風車システム。
    It is a windmill system of any one of Claims 5 thru | or 9, Comprising:
    The said resistor is arrange | positioned axially symmetrically with respect to the said tower, The windmill system characterized by the above-mentioned.
  12.  請求項9ないし11のいずれか1項に記載の風車システムであって、
     前記ロータは、発電運転時に風下に配置されるダウンウィンド型ロータであり、
     水平面内でいずれの風向きに対しても、少なくとも一部の前記抵抗体が、前記ロータよりも風上に位置する様に配置され、かつ当該一部の抵抗体が前記ロータの回転軸を含む鉛直面からずれて位置する様に配置されていることを特徴とする風車システム。
    The windmill system according to any one of claims 9 to 11,
    The rotor is a downwind rotor that is disposed leeward during power generation operation,
    In any horizontal direction, at least a part of the resistors are arranged so as to be located on the windward side of the rotor, and the part of the resistors includes a rotation axis of the rotor. A windmill system characterized by being arranged so as to be displaced from the surface.
  13.  請求項1ないし12のいずれか1項に記載の風車システムであって、
     前記抵抗体を水上で支持する浮体を更に備え、
     前記抵抗体が前記浮体上に配置されていることを特徴とする風車システム。
    The windmill system according to any one of claims 1 to 12,
    A floating body that supports the resistor on water;
    The wind turbine system, wherein the resistor is disposed on the floating body.
  14.  請求項1ないし13に記載の複数の風車システムから構成されるウィンドファームであって、
     各風車システムが有する前記抵抗体は、当該風車システムにおけるタワーと離れて配置されていることを特徴とするウィンドファーム。
    A wind farm comprising a plurality of wind turbine systems according to claim 1,
    The wind farm characterized by the said resistor which each windmill system has arrange | positions away from the tower in the said windmill system.
PCT/JP2016/083625 2015-12-25 2016-11-14 Windmill system and wind farm WO2017110298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252800A JP2019060237A (en) 2015-12-25 2015-12-25 Windmill system and wind farm
JP2015-252800 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110298A1 true WO2017110298A1 (en) 2017-06-29

Family

ID=59089282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083625 WO2017110298A1 (en) 2015-12-25 2016-11-14 Windmill system and wind farm

Country Status (2)

Country Link
JP (1) JP2019060237A (en)
WO (1) WO2017110298A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469303B1 (en) * 2018-10-11 2019-02-13 株式会社グローバルエナジー Wind power generation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391262B1 (en) 2021-08-26 2022-07-19 Aeromine Technologies, Inc. Systems and methods for fluid flow based renewable energy generation
US11879435B1 (en) 2023-06-21 2024-01-23 Aeromine Technologies, Inc. Systems and methods for cold-climate operation of a fluid-flow based energy generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049761A (en) * 2001-08-02 2003-02-21 Kanki Kenzo Support shaft and wind power generator
JP2004100665A (en) * 2002-09-13 2004-04-02 Toyota Motor Corp Vehicular engine warming-up device
US20130094964A1 (en) * 2011-10-15 2013-04-18 John Andrew Nelsen Automatically adjusting wind energy paddlewheel
JP2014206110A (en) * 2013-04-15 2014-10-30 株式会社日立製作所 Wind power generation equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049761A (en) * 2001-08-02 2003-02-21 Kanki Kenzo Support shaft and wind power generator
JP2004100665A (en) * 2002-09-13 2004-04-02 Toyota Motor Corp Vehicular engine warming-up device
US20130094964A1 (en) * 2011-10-15 2013-04-18 John Andrew Nelsen Automatically adjusting wind energy paddlewheel
JP2014206110A (en) * 2013-04-15 2014-10-30 株式会社日立製作所 Wind power generation equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469303B1 (en) * 2018-10-11 2019-02-13 株式会社グローバルエナジー Wind power generation system
WO2020075338A1 (en) * 2018-10-11 2020-04-16 株式会社グローバルエナジー Wind power generation system
TWI697618B (en) * 2018-10-11 2020-07-01 日商全球能源股份有限公司 Wind power system

Also Published As

Publication number Publication date
JP2019060237A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US7802967B2 (en) Vertical axis self-breaking wind turbine
US9512817B2 (en) Diffuser augmented wind turbines
US10138866B2 (en) Fluid power generation method and fluid power generation device
JP5544356B2 (en) Wind diverter
US20120099977A1 (en) Fluid directing system for turbines
JP2019060345A (en) Wind power generation tower comprising gyro-mill type wind turbine
WO2017110298A1 (en) Windmill system and wind farm
EP2762719B1 (en) Omnidirectional turbine
GB2466209A (en) Wind turbine wake expansion device
EA023719B1 (en) Wind-driven plant for power generation and method for power generation using wind-driven plant
EP3597900B1 (en) Wind turbine
EP3879093A1 (en) Wind turbine comprising variable swept area and method of controlling a wind turbine
JP2011012588A (en) Straight blade multiple orbit arrangement vertical shaft type turbine and power generating apparatus
RU2642706C2 (en) The wind-generating tower
KR20210020124A (en) A rotor assembly and a windmill comprising the rotor assembly
KR100979177B1 (en) Wind-turbine apparatus
KR20090051669A (en) Wind-collecting type windmill for wind power generation
WO2014174654A1 (en) Wind power generation device
RU71707U1 (en) ROTARY WIND ENGINE
JP2010270721A (en) Hybrid vertical shaft type high efficiency turbine and power generator
EP4123164B1 (en) Vertical axis wind turbine
KR101418674B1 (en) Louver guided wind turbine
KR20110085667A (en) The wind and water power generator of blade
US20240068369A1 (en) Fluid turbine
JP2016217151A (en) Power generation system and control method of power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP