WO2018168647A1 - フレキソ版用ブロック共重合体組成物 - Google Patents

フレキソ版用ブロック共重合体組成物 Download PDF

Info

Publication number
WO2018168647A1
WO2018168647A1 PCT/JP2018/009004 JP2018009004W WO2018168647A1 WO 2018168647 A1 WO2018168647 A1 WO 2018168647A1 JP 2018009004 W JP2018009004 W JP 2018009004W WO 2018168647 A1 WO2018168647 A1 WO 2018168647A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
aromatic vinyl
flexographic
composition
copolymer composition
Prior art date
Application number
PCT/JP2018/009004
Other languages
English (en)
French (fr)
Inventor
亮二 小田
雄太 石井
浩輔 磯部
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019505941A priority Critical patent/JPWO2018168647A1/ja
Publication of WO2018168647A1 publication Critical patent/WO2018168647A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a block copolymer composition for flexographic plates comprising a block copolymer composition comprising a block copolymer having a conjugated diene polymer block and an aromatic vinyl polymer block.
  • a block copolymer for flexographic plates that has fine printing characteristics, can provide a flexographic plate excellent in ink swelling resistance and abrasion resistance, has good transparency and flexibility, and has low anisotropy. Relates to the composition.
  • Flexographic printing is widely used as a printing method for labels, plastic containers, cartons, plastic bags, boxes and envelopes.
  • a photosensitive flexographic composition formed of an elastomer, a polymerizable ethylenically unsaturated monomer, and a photopolymerization initiator is frequently used.
  • the composition for photosensitive flexographic plates is usually formed into a sheet, a sheet having a multilayer structure in which a flexible sheet serving as a support is provided on one side and a protective film is provided on the other side. Supplied as Light is irradiated from the support side of the multilayer sheet to cure to a specific thickness of the photosensitive flexographic composition layer. Next, the protective film is peeled off, the negative film is brought into close contact with the surface, and then light is irradiated from above the negative film.
  • the composition for photosensitive flexographic plates where the light is transmitted is cured, and the uncured portion is removed with an organic solvent or an aqueous solvent to form a flexographic plate having an uneven structure.
  • thermoplastic elastomers having excellent processability are widely used.
  • aromatic vinyl-conjugated diene-aromatic vinyl block copolymers such as styrene-isoprene-styrene block copolymer (SIS) and styrene-butadiene-styrene block copolymer (SBS) are rich in rubber elasticity. Since it has flexibility and rebound resilience suitable for constituting a flexographic plate, it is awarded as an elastomer for constituting a composition for photosensitive flexographic plates.
  • the photosensitive flexographic composition is also required to have abrasion resistance, transparency, ink swell resistance, etc. in order to enable high-definition printing. For this reason, various studies have been conducted on improvement of an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer used for constituting a composition for photosensitive flexographic plates.
  • Patent Document 1 includes an aromatic vinyl-conjugated diene block copolymer, an aromatic vinyl compound content of 10 to 40% by weight, a toluene insoluble content of 30 ppm or less, a type A hardness of 85 or less, a conjugated diene.
  • Block copolymer for photosensitive printing plate material in which vinyl bond content in polymer block is 50% or less, and block copolymer weight for photosensitive printing plate material containing this block copolymer for photosensitive printing plate material A coalescence composition and a photosensitive elastomer composition are disclosed.
  • This block copolymer for photosensitive printing plate material has a small amount of gel and is said to be excellent in processing stability, image developability and printability.
  • Patent Document 2 discloses a photopolymerizable composition for flexographic plates containing a mixture of SIS and SBS. This photopolymerizable composition is said to have high wear resistance and excellent flexibility without excessive hardness. In addition, this photopolymerizable composition does not exhibit anisotropy due to molecular orientation that occurs during melt molding, and has an adverse effect on printing that occurs when a flexographic plate made of an anisotropic material is used. It is said that it can be avoided.
  • Patent Document 3 discloses a photopolymerizable composition for a flexographic plate containing an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer in which the conjugated diene polymer block is a random copolymer block of isoprene and butadiene. Things are disclosed. This photopolymerizable composition is said to be excellent in transparency.
  • Patent Document 4 discloses a block copolymer composition for flexographic plates containing a tri-branched aromatic vinyl-conjugated diene block copolymer obtained by using a specific coupling agent.
  • This block copolymer composition for flexographic plates is excellent in smoothness, flow resistance (property to be deformed before being cured by photosensitivity), and fine line reproducibility when a flexographic plate is formed.
  • the aromatic vinyl-conjugated diene-aromatic vinyl block copolymer increases mechanical strength and improves properties such as wear resistance by increasing the proportion of the aromatic vinyl monomer unit contained therein. It is known to be done. However, if the ratio of the aromatic vinyl monomer unit is increased to such an extent that sufficient abrasion resistance can be imparted for use as a flexographic plate, there is a problem that the polymer loses rubber elasticity.
  • Patent Document 2 when SIS and SBS are mixed as described in Patent Document 2, since SIS and SBS are generally incompatible, there is a problem of poor transparency. Furthermore, although the composition described in Patent Document 3 includes a random copolymer block of isoprene and butadiene, the transparency is improved, but both flexibility and wear resistance are achieved as described above. It was difficult.
  • the present invention can provide a flexographic plate having high-definition printing characteristics, excellent ink swelling resistance and abrasion resistance, good transparency and flexibility, and low anisotropy.
  • An object of the present invention is to provide a block copolymer composition.
  • the present inventors include two types of block copolymers each having a specific configuration and having a conjugated diene polymer block and an aromatic vinyl polymer block, and
  • the block copolymer composition having a type A hardness, light transmittance and anisotropy index within a predetermined range is a balance between wear resistance and rubber elasticity even when the proportion of the aromatic vinyl monomer unit is increased.
  • the use of this block copolymer composition provides high-definition printing characteristics and excellent ink swell resistance and abrasion resistance. I found that I can get a version. The present invention has been completed based on this finding.
  • the block copolymer A represented by the following general formula (A) and the block copolymer B represented by the following general formula (B) are included.
  • the ratio of the aromatic vinyl monomer units to the total monomer units constituting the polymer component in the copolymer composition is 18 to 70% by weight, the type A hardness is 25 to 65, 25
  • a block copolymer composition for flexographic plates having a light transmittance at a wavelength of 360 nm of 50% or more and an anisotropy index of 2.0 or less when a weight% toluene solution is used.
  • Ar1 a -D a -Ar2 a (A) (Ar b -D b ) n -X (B)
  • Ar 1 a and Ar b are aromatic vinyl polymer blocks having a weight average molecular weight of 6000 to 20000, respectively, and Ar 2 a has a weight average molecular weight of 40000 to 400,000.
  • an aromatic vinyl polymer block the ratio of the weight average molecular weight of the aromatic vinyl polymer block Ar @ 2 a and an aromatic vinyl polymer block Ar1 weight average molecular weight of a (Mw (Ar2 a) / Mw (Ar1 a))
  • Mw (Ar2 a) / Mw (Ar1 a) There is a 2 ⁇ 12
  • D a and D b are each a vinyl bond content is a conjugated diene polymer block of 1 to 20 mol%
  • X is the residue of a single bond or a coupling agent
  • the ratio of the aromatic vinyl monomer unit to the total monomer units constituting the polymer component in the block copolymer composition for flexographic plate is 20 to It is preferably 70% by weight.
  • the weight ratio (A / B) between the block copolymer A and the block copolymer B is preferably 36/64 to 85/15.
  • block copolymer composition for flexographic plates further comprises a block copolymer C represented by the following general formula (C).
  • Ar c -D c (C) (In the general formula (C), Ar c is an aromatic vinyl polymer block having a weight average molecular weight of 6000 to 20000, and D c is a conjugated diene polymer block having a vinyl bond content of 1 to 20 mol%. is there.)
  • the block copolymer B couples a compound having at least one functional group selected from an alkoxyl group, an ester group and an epoxy group in one molecule. It is preferable that it was obtained by using as an agent.
  • composition for a photosensitive flexographic plate comprising the above-mentioned block copolymer composition for a flexographic plate, an ethylenically unsaturated compound having a molecular weight of 5000 or less, and a photopolymerization initiator. Is done.
  • a flexographic plate comprising the above-described photosensitive flexographic plate composition.
  • a flexographic plate having high-definition printing characteristics, excellent ink swelling resistance and wear resistance, good transparency and flexibility, and low anisotropy.
  • a block copolymer composition for flexographic plates can be obtained.
  • the block copolymer composition for flexographic plates of the present invention comprises at least two block copolymers.
  • the block copolymer A which is one of the two block copolymers constituting the block copolymer for flexographic plates of the present invention, has a weight average molecular weight different from each other represented by the following general formula (A).
  • Ar1 a is an aromatic vinyl polymer block having a weight average molecular weight of 6000 ⁇ 20000, Ar2 a, the weight average molecular weight of an aromatic vinyl polymer block of from 40000 to 400000
  • the ratio of the weight average molecular weight of the aromatic vinyl polymer block Ar2 a to the weight average molecular weight of the aromatic vinyl polymer block Ar1 a (Mw (Ar2 a ) / Mw (Ar1 a )) is 2 to 12
  • D a is a conjugated diene polymer block having a vinyl bond content of 1 to 20 mol%.
  • the block copolymer B which is the other of the two block copolymers constituting the block copolymer composition for flexographic plates of the present invention, is an aromatic vinyl represented by the following general formula (B): Conjugated diene-aromatic vinyl block copolymer.
  • Ar b is an aromatic vinyl polymer block having a weight average molecular weight of 6000 to 20000
  • D b is a conjugated diene polymer block having a vinyl bond content of 1 to 20 mol%.
  • X is a single bond or a residue of a coupling agent, and n is an integer of 2 or more.
  • the block copolymer composition for flexographic plates of the present invention includes an aromatic vinyl-conjugated diene block copolymer represented by the following general formula (C) in addition to the block copolymer A and the block copolymer B. It may comprise a block copolymer C which is a coalescence.
  • Ar c is an aromatic vinyl polymer block having a weight average molecular weight of 6000 to 20000
  • D c is a conjugated diene polymer block having a vinyl bond content of 1 to 20 mol%. It is.
  • the aromatic vinyl polymer blocks (Ar1 a , Ar2 a , Ar b , Ar c ) of the block copolymers A to C are polymer blocks composed of aromatic vinyl monomer units.
  • the aromatic vinyl monomer used for constituting the aromatic vinyl monomer unit of the aromatic vinyl polymer block is not particularly limited as long as it is an aromatic vinyl compound, but styrene, ⁇ -methylstyrene, 2 -Methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4-bromostyren
  • aromatic vinyl monomers can be used alone or in combination of two or more in each aromatic vinyl polymer block. Further, in each aromatic vinyl polymer block, the same aromatic vinyl monomer may be used, or different aromatic vinyl monomers may be used.
  • Each of the aromatic vinyl polymer blocks (Ar1 a , Ar2 a , Ar b , Ar c ) of the block copolymers A to C may contain a monomer unit other than the aromatic vinyl monomer unit.
  • Monomers constituting monomer units other than aromatic vinyl monomer units that can be included in the aromatic vinyl polymer block include 1,3-butadiene and isoprene (2-methyl-1,3-butadiene). Examples thereof include conjugated diene monomers such as ⁇ , ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
  • the content of monomer units other than aromatic vinyl monomer units in each aromatic vinyl polymer block is preferably 20% by weight or less, more preferably 10% by weight or less, and substantially Particularly preferred is 0% by weight.
  • the conjugated diene polymer blocks (D a , D b , D c ) of the block copolymers A to C are polymer blocks composed of conjugated diene monomer units.
  • the conjugated diene used for constituting the conjugated diene monomer unit of the conjugated diene polymer block is not particularly limited as long as it is a conjugated diene compound.
  • the obtained block copolymer composition for flexographic plates is rich in flexibility, and a flexographic plate having excellent flexibility can be obtained.
  • conjugated diene monomers can be used alone or in combination of two or more in each conjugated diene polymer block. In each conjugated diene polymer block, the same conjugated diene monomer may be used, or different conjugated diene monomers may be used. Furthermore, you may perform hydrogenation reaction with respect to a part of unsaturated bond of each conjugated diene polymer block.
  • the conjugated diene polymer blocks (D a , D b , D c ) of the block copolymers A to C may each contain a monomer unit other than the conjugated diene monomer unit.
  • Monomers constituting monomer units other than the conjugated diene monomer unit that can be included in the conjugated diene polymer block include aromatic vinyl monomers such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated monomers, and the like. Examples include saturated nitrile monomers, unsaturated carboxylic acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
  • the content of monomer units other than the conjugated diene monomer unit in each conjugated diene polymer block is preferably 20% by weight or less, more preferably 10% by weight or less, and substantially 0% by weight. % Is particularly preferred.
  • the block copolymer A constituting the block copolymer composition for flexographic plates of the present invention is an aromatic vinyl polymer block having a relatively small weight average molecular weight (as represented by the general formula (A)) ( Ar1 a ), a conjugated diene polymer block (D a ) having a specific vinyl bond content, and an aromatic vinyl polymer block (Ar2 a ) having a relatively large weight average molecular weight are arranged in this order.
  • the aromatic vinyl polymer block (Ar1 a ) having a relatively small weight average molecular weight has a weight average molecular weight (Mw (Ar1 a )) of 6000 to 20000, preferably 7000 to 18000, preferably 8000 to 16000. More preferably. When Mw (Ar1 a) is out of this range, the rubber elasticity of flexographic plates for block copolymer composition obtained may be insufficient.
  • the aromatic vinyl polymer block (Ar2 a ) having a relatively large weight average molecular weight has a weight average molecular weight (Mw (Ar2 a )) of 40,000 to 400,000, preferably 42,000 to 370000, and preferably 45,000 to More preferably, it is 350,000.
  • the weight average molecular weight of a polymer or a polymer block shall be calculated
  • the ratio (Mw (Ar2 a ) / Mw (Ar1 a )) to the weight average molecular weight (Mw (Ar1 a )) of the combined block (Ar1 a ) is 2 to 12, and preferably 4 to 12, More preferably, it is 4.5-12.
  • the vinyl bond content of the conjugated diene polymer block (D a ) of the block copolymer A is 1 ⁇ 20 mol%, preferably 2 to 15 mol%, more preferably 3 to 10 mol%.
  • this vinyl bond content is too high, the resulting block copolymer composition for flexographic plates may be too hard and may have poor flexibility.
  • the weight average molecular weight (Mw (D a )) of the conjugated diene polymer block (D a ) of the block copolymer A is not particularly limited, but is usually from 40,000 to 200,000, preferably from 42,000 to 180,000, and 45,000. More preferably, it is ⁇ 150,000.
  • Mw (D a ) is not particularly limited, but is usually from 40,000 to 200,000, preferably from 42,000 to 180,000, and 45,000. More preferably, it is ⁇ 150,000.
  • the content of the aromatic vinyl monomer unit with respect to the total monomer units of the block copolymer A is not particularly limited, but is preferably 41% by weight or more, more preferably 43 to 87% by weight. 45 to 85% by weight is particularly preferable.
  • the resulting block copolymer composition for flexographic printing plate has wear resistance and ink swelling resistance. It is because it becomes an excellent thing.
  • the weight average molecular weight of the block copolymer A as a whole is not particularly limited, but is usually 90000 to 500000, preferably 100000 to 450,000, and more preferably 110,000 to 400000.
  • the block copolymer B constituting the block copolymer composition for flexographic plates of the present invention is an aromatic vinyl polymer block (Ar) having a specific weight average molecular weight as represented by the general formula (B). b ) and a conjugated diene polymer block (D b ) having a specific vinyl bond content, two or more diblock bodies (Ar b -D b ), a direct single bond or a coupling agent It is a block copolymer comprised by couple
  • the weight average molecular weight (Mw (Ar b )) of the aromatic vinyl polymer block (Ar b ) constituting the block copolymer B is 6000 to 20000, preferably 7000 to 18000, preferably 8000 to 16000. More preferably. If Mw (Ar b ) is too small, the resulting flexographic block copolymer composition may be inferior in wear resistance, and if it is too large, the flexibility and rubber elasticity may be inferior. is there.
  • the weight average molecular weights (Mw (Ar b )) of the aromatic vinyl polymer blocks that the block copolymer B has may be equal or different from each other as long as they are within the above range. Good, but preferably substantially equal.
  • the weight average molecular weight (Mw (Ar b )) of these aromatic vinyl polymer blocks is the weight average of the aromatic vinyl polymer block (Ar 1 a ) having a relatively small weight average molecular weight of the block copolymer A. molecular weight (Mw (Ar1 a)), and more preferably substantially equal.
  • the vinyl bond content of the conjugated diene polymer block (D b ) of the block copolymer B is 1 to 20 mol%, preferably 2 to 15 mol%, and preferably 3 to 10 mol%. More preferred. When this vinyl bond content is too high, the resulting block copolymer composition for flexographic plates may be too hard and may have poor flexibility.
  • the vinyl bond content of the conjugated diene polymer block (D b ) of the block copolymer B is substantially equal to the vinyl bond content of the conjugated diene polymer block (D a ) of the block copolymer A. Is preferred.
  • the block copolymer B, aromatic vinyl polymer block (Ar b) a conjugated diene polymer block (D b) and formed by bonding diblock body (Ar b -D b) is a direct single bond, Alternatively, they are bonded via a residue of a coupling agent.
  • the coupling agent which comprises the residue of a coupling agent is not specifically limited, It is arbitrary coupling agents more than bifunctional.
  • bifunctional coupling agent examples include bifunctional halogenated silanes such as dichlorosilane, monomethyldichlorosilane, and dimethyldichlorosilane; bifunctional alkoxysilanes such as diphenyldimethoxysilane and diphenyldiethoxysilane; dichloroethane and dibromoethane.
  • Bifunctional halogenated alkanes such as dichloromethylene, dibromomethane
  • bifunctional tin halides such as dichlorotin, monomethyldichlorotin, dimethyldichlorotin, monoethyldichlorotin, diethyldichlorotin, monobutyldichlorotin, dibutyldichlorotin Dibromobenzene, benzoic acid, carbon monoxide, 2-chloropropene and the like
  • the trifunctional coupling agent include trifunctional halogenated alkanes such as trichloroethane and trichloropropane; trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane; methyltrimethoxysilane, phenyltrimethoxysilane, And trifunctional alkoxysilanes such as phenyltriethoxysilane; Examples of the
  • pentafunctional or higher functional coupling agent examples include 1,1,1,2,2-pentachloroethane, perchloroethane, pentachlorobenzene, perchlorobenzene, octabromodiphenyl ether, decabromodiphenyl ether, and the like. These coupling agents may be used alone or in combination of two or more.
  • the block copolymer B among these coupling agents, at least one functional group selected from an alkoxyl group, an ester group and an epoxy group is used as a functional group that reacts with the active terminal of the polymer. It is preferable to use a compound having two or more in one molecule, and it is particularly preferable to use an alkoxysilane compound having two or more alkoxy groups bonded directly to a silicon atom per molecule. That is, the block copolymer B constituting the block copolymer composition for flexographic plates of the present invention has at least two functional groups selected from an alkoxyl group, an ester group and an epoxy group in one molecule.
  • the compound is preferably obtained by using a compound as a coupling agent, and is obtained by using an alkoxysilane compound having two or more alkoxy groups per molecule directly bonded to a silicon atom as a coupling agent. It is particularly preferred.
  • a coupling agent By using such a coupling agent, it is possible to make the block copolymer composition for flexographic plates excellent in transparency, and flexographic plates in which elaborate printing patterns are formed from the obtained photosensitive flexographic composition. It becomes easy to obtain a plate.
  • the number of diblock bodies (Ar b -D b ) to be bonded (that is, n in the general formula (B)) is not particularly limited as long as it is 2 or more.
  • the block copolymer B bonded with may be mixed.
  • N in the general formula (B) is not particularly limited as long as it is an integer of 2 or more, but is usually an integer of 2 to 8, preferably an integer of 2 to 4.
  • at least a part of the block copolymer B is a diblock body (Ar b -D b ) in which 3 or more are bonded via a coupling agent (that is, n in the general formula (B) is 3 or more) ) Is particularly preferred.
  • the block copolymer composition for flexographic plates of the present invention is a mechanical property that is homogeneous in all directions even when a molding method such as extrusion molding is applied to produce a flexographic plate.
  • the diblock body (Ar b -D b ) is 3 or more via a coupling agent as at least a part of the block copolymer B. This is because by including the bonded one, a flexographic plate that is particularly isotropic and hardly causes printing defects can be obtained.
  • the weight average molecular weight (Mw (D b )) of the conjugated diene polymer block (D b ) of the block copolymer B is not particularly limited, but is usually 40,000 to 200,000, preferably 42,000 to 180,000, and 45,000. More preferably, it is ⁇ 150,000.
  • Mw (D b ) is usually 40,000 to 200,000, preferably 42,000 to 180,000, and 45,000. More preferably, it is ⁇ 150,000.
  • the weight average molecular weight (Mw (D b )) of the conjugated diene polymer block (D b ) of the block copolymer B is the weight average molecular weight of the conjugated diene polymer block (D a ) of the block copolymer A ( Mw (D a )) is preferably substantially equal.
  • the conjugated diene polymer block contained therein is all a single monomer. The body unit is directly bonded, and cannot be said to be actually composed of two conjugated diene polymer blocks (D b ).
  • conjugated diene polymer block is conceptually one in which two conjugated diene polymer blocks (D b ) having substantially the same weight average molecular weight are bonded by a single bond. As such, it shall be handled. Therefore, for example, in block copolymer B which is an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer produced without using a coupling agent, the conjugated diene polymer block as a whole has a weight average molecular weight of 100,000. , The Mw (D b ) shall be handled as being 50000.
  • the content of the aromatic vinyl monomer unit with respect to the total monomer units of the block copolymer B is not particularly limited, but is usually 10 to 35% by weight, preferably 12 to 32% by weight, More preferably, it is ⁇ 30% by weight.
  • the weight average molecular weight of the block copolymer B as a whole is not particularly limited, but is usually from 52,000 to 800,000, preferably from 70,000 to 600,000, and more preferably from 100,000 to 400,000.
  • the block copolymer C that can be included in the block copolymer composition for flexographic plates of the present invention is an aromatic vinyl polymer block having a specific weight average molecular weight (as represented by the general formula (C)) ( Ar c ) and a conjugated diene polymer block (D c ) having a specific vinyl bond content.
  • C specific weight average molecular weight
  • Ar c specific weight average molecular weight
  • D c conjugated diene polymer block
  • the weight average molecular weight (Mw (Ar c )) of the aromatic vinyl polymer block (Ar c ) constituting the block copolymer C is 6000 to 20000, preferably 7000 to 18000, preferably 8000 to 16000. More preferably.
  • the weight average molecular weight (Mw (Ar c )) of the aromatic vinyl polymer block (Ar c ) of the block copolymer C is an aromatic vinyl polymer having a relatively small weight average molecular weight of the block copolymer A.
  • the weight average molecular weight of the block (Ar1 a) (Mw (Ar1 a)) and at least one substantially in weight average molecular weight of the aromatic vinyl polymer block (Ar b) of the block copolymer B (Mw (Ar b)) And more preferably substantially equal to both of these.
  • the vinyl bond content of the conjugated diene polymer block (D c ) of the block copolymer C is 1 to 20 mol%, preferably 2 to 15 mol%, and preferably 3 to 10 mol%. More preferred.
  • the vinyl bond content of the conjugated diene polymer block (D c ) of the block copolymer C is such that the conjugated diene polymer block (D a ) of the block copolymer A and the conjugated diene polymer of the block copolymer B It is preferred that the vinyl bond content of at least one of the blocks (D b ) is substantially equal, and it is more preferred that both of these vinyl bond contents are substantially equal.
  • the weight average molecular weight (Mw (D c )) of the conjugated diene polymer block (D c ) of the block copolymer C is not particularly limited, but is usually from 40,000 to 200,000, preferably from 42,000 to 180,000, preferably 45,000. More preferably, it is ⁇ 150,000. By setting Mw (D c ) within this range, the resulting flex copolymer block copolymer composition has excellent rubber elasticity.
  • the weight average molecular weight (Mw (D c )) of the conjugated diene polymer block (D c ) of the block copolymer C is the weight average molecular weight of the conjugated diene polymer block (D a ) of the block copolymer A ( Mw (D a )) and the weight average molecular weight (Mw (D b )) of the conjugated diene polymer block (D b ) of the block copolymer B are preferably substantially equal to both It is more preferable that they are equal.
  • the content of the aromatic vinyl monomer unit with respect to the total monomer units of the block copolymer C is not particularly limited, but is usually 10 to 35% by weight, preferably 12 to 32% by weight, More preferably, it is ⁇ 30% by weight.
  • the content of the aromatic vinyl monomer unit relative to the total monomer units of the block copolymer C is substantially equal to the content of the aromatic vinyl monomer unit relative to the total monomer units of the block copolymer B.
  • the weight average molecular weight of the block copolymer C as a whole is not particularly limited, but is usually 46,000 to 200,000, preferably 50,000 to 180,000, and more preferably 55,000 to 160000.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of each polymer block constituting the block copolymers A to C is not particularly limited. Usually, it is 1.1 or less, preferably 1.05 or less.
  • the weight ratio (A / B) of the block copolymer A and the block copolymer B contained in the block copolymer composition for flexographic plates of the present invention is not particularly limited, but is 36/64 to 85/15. Is preferable, 38/62 to 80/20 is more preferable, and 40/60 to 75/25 is particularly preferable.
  • the obtained block copolymer composition for flexographic plates is excellent in abrasion resistance while maintaining sufficient rubber elasticity. It will be a thing.
  • the amount of the block copolymer C that can be contained in the block copolymer composition for flexographic plates of the present invention is not particularly limited, but is a weight ratio (C / C) to the total weight of the block copolymer A and the block copolymer B. (A + B)) is preferably 0/100 to 50/50, more preferably 5/95 to 40/60, and particularly preferably 10/90 to 30/70.
  • the block copolymer C By containing the block copolymer C at such a ratio, the balance of abrasion resistance and rubber elasticity of the block copolymer composition for flexographic plates becomes particularly excellent.
  • the block copolymer composition for flexographic plates of the present invention may contain only block copolymers A to C as polymer components, but contains polymer components other than block copolymers A to C. It may be.
  • Examples of the polymer component other than the block copolymers A to C that can be included in the block copolymer composition for flexographic plates of the present invention include aromatic vinyl-conjugated dienes other than the block copolymer A and the block copolymer B.
  • thermoplastic elastomers such as polyurethane thermoplastic elastomers, polyamide thermoplastic elastomers, polyester thermoplastic elastomers, polyethylene, polypropylene, polyvinyl chloride, acrylonitrile-styrene copolymers, Acrylonitrile-butadiene-styrene copolymer, poly And thermoplastic resins such as Eniren'eteru the like.
  • the content of polymer components other than the block copolymers A to C is preferably 20% by weight or less based on the total polymer components. More preferably, it is less than or equal to weight percent.
  • the block copolymer composition for flexographic plates of the present invention has a ratio of the aromatic vinyl monomer units to the total monomer units constituting the polymer component (in the following description, the entire aromatic vinyl unit). Is sometimes 18 to 70% by weight, preferably 20 to 70% by weight, more preferably 22 to 60% by weight, and 25 to 50% by weight. It is particularly preferred. If the total aromatic vinyl monomer unit content is too small, the flexographic block copolymer composition may be inferior in wear resistance and ink swelling resistance, and the total aromatic vinyl unit amount If the body unit content is too large, the block copolymer composition for flexographic plates may lose the rubber elasticity required for flexographic plates.
  • the total aromatic vinyl monomer unit content is determined by the block copolymers A to C constituting the block copolymer composition for flexographic plates, the other polymer components, and the respective aromatic vinyl monomer units. It is possible to adjust easily by adjusting the compounding amount in consideration of the content of.
  • all the polymer components constituting the block copolymer composition for flexographic plates are composed only of an aromatic vinyl monomer unit and a conjugated diene monomer unit
  • Rubber Chem. Technol. 45, 1295 (1972) ozonolysis of the polymer component of the block copolymer composition for flexographic plates, followed by reduction with lithium aluminum hydride, results in a conjugated diene monomer unit moiety. Since it is decomposed and only the aromatic vinyl monomer unit portion can be taken out, the entire aromatic vinyl monomer unit content can be easily measured.
  • the weight average molecular weight of the whole polymer component constituting the block copolymer composition for flexographic plates of the present invention is not particularly limited, but is usually 50,000 to 500,000, preferably 60000 to 450,000, preferably 70000 to 400,000. More preferably.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the whole polymer component constituting the block copolymer composition for flexographic plates of the present invention is: Although not particularly limited, it is usually 1.01 to 10, preferably 1.03 to 5, and more preferably 1.05 to 3.
  • the block copolymer composition for flexographic plates of the present invention has a type A hardness of 25 to 65, preferably 26 to 64, and more preferably 27 to 63. Even if the type A hardness is in the above range, the block copolymer composition for flexographic plates has a high ratio of aromatic vinyl monomer units and is excellent in wear resistance. The elasticity can be maintained.
  • the type A hardness is a value measured using a durometer hardness tester (type A) in accordance with JIS K6253.
  • the block copolymer composition for flexographic plates of the present invention has a light transmittance at a wavelength of 360 nm of 50% or more, preferably 55% or more, and preferably 60% or more when a 25 wt% toluene solution is used. It is more preferable that
  • the light transmittance is a value measured with an optical path length of 10 mm and a wavelength of 360 nm with a 25 wt% toluene solution of the block copolymer composition for flexographic plates.
  • the flex copolymer block copolymer composition of the present invention has an anisotropy index of 2.0 or less, preferably 1.8 or less, and more preferably 1.5 or less.
  • anisotropy index is in the above range, anisotropy is hardly exhibited even in the case of applying a molding method that easily causes molecular orientation such as extrusion molding in producing a flexographic plate. And a flexographic plate that is difficult to cause printing defects can be obtained.
  • the anisotropy index is obtained by melt-extrusion molding the block copolymer composition for flexographic plates to produce a sheet, and using two of the obtained sheets, along the melt flow direction at the time of molding.
  • the tensile modulus was measured, and the other was measured along the vertical direction of the melt flow at the time of molding, and the tensile modulus was obtained by the ratio of (tensile elastic modulus in the melt flow direction / tensile elastic modulus in the vertical direction of the melt flow). Value.
  • the method for obtaining the block copolymer composition for flexographic plates of the present invention is not particularly limited.
  • block copolymer A and block copolymer B are produced separately, and if necessary, block copolymer C and other polymer components are blended.
  • they can be produced by mixing them according to conventional methods such as kneading and solution mixing.
  • the following production method is preferred.
  • the block copolymer composition for flexographic plates of the present invention is preferably produced using a production method comprising the following steps (1) to (5).
  • Step 5 for forming block copolymer A step of recovering the block copolymer composition for flexographic plates from the solution obtained in step (4) above
  • an aromatic vinyl monomer is polymerized using a polymerization initiator in a solvent.
  • the polymerization initiator used is generally an organic alkali metal compound, an organic alkaline earth metal compound known to have anionic polymerization activity for an aromatic vinyl monomer and a conjugated diene monomer, Organic lanthanoid series rare earth metal compounds and the like can be used.
  • an organic lithium compound having one or more lithium atoms in the molecule is particularly preferably used.
  • Specific examples thereof include ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, Organic monolithium compounds such as sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, stilbenelithium, dialkylaminolithium, diphenylaminolithium, ditrimethylsilylaminolithium, methylenedilithium, tetramethylenedilithium, hexamethylene
  • Organic dilithium compounds such as dilithium, isoprenyl dilithium and 1,4-dilithio-ethylcyclohexane, and organic trilithium compounds such as 1,3,5-trilithiobenzene, etc. It is.
  • an organic monolithium compound is particularly preferably used.
  • organic alkaline earth metal compound used as the polymerization initiator examples include n-butylmagnesium bromide, n-hexylmagnesium bromide, ethoxycalcium, calcium stearate, t-butoxystrontium, ethoxybarium, isopropoxybarium, ethyl mercaptobarium, Examples thereof include t-butoxybarium, phenoxybarium, diethylaminobarium, barium stearate, and ethylbarium.
  • polymerization initiators include lanthanoid series rare earth metal compounds containing neodymium, samarium, gadolinium, etc./alkylaluminum/alkylaluminum halides / alkylaluminum hydrides, titanium, vanadium, samarium, gadolinium.
  • examples thereof include those having a uniform system in an organic solvent such as a metallocene-type catalyst containing a living polymer and the like and having living polymerizability.
  • these polymerization initiators may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the amount of the polymerization initiator used may be determined according to the molecular weight of each target block copolymer, and is not particularly limited, but is usually 0.01 to 20 mmol, preferably 100 g per 100 g of all monomers used. Is 0.05 to 15 mmol, more preferably 0.1 to 10 mmol.
  • the solvent used for the polymerization is not particularly limited as long as it is inert to the polymerization initiator.
  • a chain hydrocarbon solvent, a cyclic hydrocarbon solvent, or a mixed solvent thereof is used.
  • the chain hydrocarbon solvent includes n-butane, isobutane, 1-butene, isobutylene, trans-2-butene, cis-2-butene, 1-pentene, trans-2-pentene, cis-2-pentene, n- Examples thereof include linear alkanes and alkenes having 4 to 6 carbon atoms such as pentane, isopentane, neo-pentane, and n-hexane.
  • cyclic hydrocarbon solvent examples include aromatic compounds such as benzene, toluene and xylene; alicyclic hydrocarbon compounds such as cyclopentane and cyclohexane. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used for the polymerization is not particularly limited, but the concentration of the entire block copolymer in the solution after the polymerization reaction is usually 5 to 60% by weight, preferably 10 to 55% by weight, more preferably 20 to 50% by weight. Set to%.
  • a Lewis base compound may be added to a reactor used for polymerization in order to control the structure of each polymer block of each block copolymer.
  • the Lewis base compound include ethers such as tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether and diethylene glycol dibutyl ether; tetramethylethylenediamine, trimethylamine, triethylamine, pyridine, quinuclidine and the like.
  • Tertiary amines such as potassium-t-amyl oxide and potassium-t-butyl oxide; phosphines such as triphenylphosphine; and the like.
  • These Lewis base compounds are used alone or in combination of two or more, and are appropriately selected within a range not impairing the object of the present invention.
  • the timing of adding the Lewis base compound during the polymerization reaction is not particularly limited, and may be appropriately determined according to the structure of each target block copolymer. For example, it may be added in advance before the polymerization is started, or may be added after polymerizing a part of the polymer block. You may add further, after superposing
  • the polymerization reaction temperature is usually 10 to 150 ° C., preferably 30 to 130 ° C., more preferably 40 to 90 ° C.
  • the time required for polymerization varies depending on the conditions, but is usually within 48 hours, preferably 0.5 to 10 hours.
  • the polymerization pressure is not particularly limited as long as it is carried out within a range of pressure sufficient to maintain the monomer and solvent in the liquid phase within the above polymerization temperature range.
  • a solution containing an aromatic vinyl polymer having an active terminal can be obtained by polymerizing an aromatic vinyl monomer using a polymerization initiator in a solvent.
  • the aromatic vinyl polymer having an active end is composed of an aromatic vinyl polymer block (Ar1 a ) having a relatively small weight average molecular weight of the block copolymer A and a block copolymer. It constitutes the vinyl polymer block (Ar b ) of the union B. Therefore, the amount of the aromatic vinyl monomer used at this time is determined according to the target weight average molecular weight of these polymer blocks.
  • the next step is a step of adding a conjugated diene monomer to a solution containing an aromatic vinyl polymer having an active end obtained as described above.
  • a conjugated diene polymer chain is formed from the active end, and a solution containing an aromatic vinyl-conjugated diene block copolymer (diblock) having an active end is obtained.
  • the amount of the conjugated diene monomer used here is determined so that the resulting conjugated diene polymer chain has the weight average molecular weight of the conjugated diene polymer block (D b ) of the target block copolymer B. .
  • the functional group is less than 1 molar equivalent with respect to the active terminal.
  • the amount of the coupling agent added is determined according to the ratio of the block copolymer A and the block copolymer B constituting the block copolymer composition.
  • the amount is not particularly limited as long as the functional group of the ring agent is less than 1 molar equivalent, but usually the range in which the functional group of the coupling agent is 0.10 to 0.90 molar equivalent with respect to the active terminal of the polymer. It is preferably in the range of 0.15 to 0.70 molar equivalent.
  • the coupling reaction conditions are not particularly limited and are usually selected from the range of the polymerization reaction conditions described above.
  • coupling is performed in a solution containing an aromatic vinyl-conjugated diene block copolymer having an active end (diblock body) in such an amount that the functional group is less than 1 molar equivalent with respect to the active end.
  • an agent is added, in some copolymers of an aromatic vinyl-conjugated diene block copolymer having an active end (diblock body), the conjugated diene polymer blocks pass through the residue of the coupling agent.
  • the block copolymer B of the block copolymer composition is formed.
  • the remaining part of the aromatic vinyl-conjugated diene block copolymer having an active terminal (diblock body) remains in the solution without being reacted.
  • an aromatic vinyl monomer is added to the solution obtained as described above.
  • an aromatic vinyl monomer is added to the solution, the aromatic vinyl polymer from the end of the aromatic vinyl-conjugated diene block copolymer (diblock) having an active terminal remaining without reacting with the coupling agent A chain is formed.
  • the aromatic vinyl polymer chain constitutes an aromatic vinyl polymer block (Ar2 a ) having a relatively large weight average molecular weight of the block copolymer A constituting the flexographic block copolymer composition. It will be. Therefore, the amount of the aromatic vinyl monomer used at this time is determined in accordance with the target weight average molecular weight of the aromatic vinyl polymer block (Ar2 a ).
  • an asymmetric aromatic vinyl-conjugated diene-aromatic vinyl block copolymer constituting the block copolymer A is formed.
  • the block copolymer is formed.
  • a solution containing the polymer A and the block copolymer B is obtained.
  • a solution containing an aromatic vinyl-conjugated diene block copolymer having an active terminal that did not react with the coupling agent (diblock body) was conjugated.
  • a diene monomer may be added before the step of adding the aromatic vinyl monomer.
  • the weight average molecular weight of the conjugated diene polymer block (D a ) of the block copolymer A can be increased as compared with the case where the conjugated diene monomer is not added.
  • the active terminal that has not reacted with the coupling agent is added for the purpose of the block copolymer composition for flexographic plate to be obtained containing the block copolymer C.
  • a polymerization terminator water, methanol, ethanol, propanol, hydrochloric acid, citric acid, etc.
  • diblock aromatic vinyl-conjugated diene block copolymer having an amount less than the equivalent of the active terminal.
  • the active terminal of the aromatic vinyl-conjugated diene block copolymer (diblock body) is deactivated, and the resulting aromatic vinyl-conjugated diene block copolymer (diblock) Can be contained in the block copolymer composition for flexographic plates as block copolymer C.
  • this step it is necessary to add in such an amount that the total amount of functional groups of the coupling agent and the polymerization terminator is less than 1 molar equivalent with respect to the active terminal of the aromatic vinyl-conjugated diene block copolymer. There is.
  • the block copolymer composition for flexographic plates is recovered from the solution containing the block copolymer A and the block copolymer B obtained as described above.
  • the recovery method may be any conventional method and is not particularly limited.
  • a polymerization terminator such as water, methanol, ethanol, propanol, hydrochloric acid, citric acid is added, and if necessary, an additive such as an antioxidant is added.
  • the solution can be recovered by directly applying a known method such as a drying method or steam stripping to the solution.
  • the block copolymer composition When the block copolymer composition is recovered as a slurry by applying steam stripping or the like, it is dewatered using an arbitrary dehydrator such as an extruder-type squeezer, and a crumb having a moisture content of a predetermined value or less.
  • the crumb may be dried using any dryer such as a band dryer or an expansion extrusion dryer.
  • the block copolymer composition for flexographic plates obtained as described above may be used after being processed into pellets according to a conventional method.
  • the block copolymer A and the block copolymer B can be obtained continuously in the same reaction vessel, when each block copolymer is produced and mixed individually, In contrast, the desired flexographic block copolymer composition can be obtained with extremely excellent productivity. Moreover, the resulting composition has a particularly desirable balance as the weight average molecular weight of each polymer block of each block copolymer as a block copolymer composition for flexographic plates. A block copolymer composition for flexographic plates having an excellent balance of rubber elasticity can be obtained.
  • an alkoxysilane compound having two or more alkoxy groups bonded directly to silicon atoms per molecule when used as a coupling agent, it differs from any of the block copolymers A to C.
  • the polymer component having an aromatic vinyl polymer block and a conjugated diene polymer block may be contained in the block copolymer composition for flexographic plates.
  • the content of the aromatic vinyl monomer unit with respect to the total monomer units is intermediate between that of the block copolymer A and that of the block copolymer B, and its weight average
  • the molecular weight is equivalent to about 3 times the weight average molecular weight of the block copolymer A.
  • Ar2 a , Ar b , and D b are the same as those in the general formula (A) and the general formula (B), X is a residue of the coupling agent, and n is It is an integer of 2 or more.
  • the block copolymer composition for flexographic plates is particularly excellent in the balance of wear resistance and rubber elasticity, and is extrusion molded. Even when a molding method in which molecular orientation is likely to occur is applied, anisotropy is hardly exhibited and the isotropic property is excellent. Therefore, when the block copolymer composition for flexographic plates of the present invention is produced by the production method described above, an alkoxysilane compound having two or more alkoxy groups directly bonded to silicon atoms as a coupling agent per molecule. It is particularly preferable to use
  • the block copolymer composition for flexographic plates of the present invention as described above has a highly superior wear resistance compared to conventional polymer compositions for flexographic plates while maintaining sufficient rubber elasticity. In addition, the transparency is good and the anisotropy is small. Therefore, by using the block copolymer composition for flexographic plates of the present invention, a flexographic plate having a high balance of abrasion resistance and flexibility, high-definition printing characteristics, and excellent ink swelling resistance. Obtainable.
  • the method for obtaining a flexographic plate using the block copolymer composition for flexographic plates of the present invention is not particularly limited, but after forming a photosensitive composition, the flexographic plate is formed by exposing the sheet to a sheet. The technique to obtain is common.
  • the composition for photosensitive flexographic plates of the present invention comprises the block copolymer composition for flexographic plates of the present invention, an ethylenically unsaturated compound having a molecular weight of 5000 or less, and a photopolymerization initiator. is there.
  • the amount of the block copolymer composition for flexographic plates used is preferably 40 to 95% by weight, more preferably 50 to 95%, based on the total amount of the block copolymer composition for flexographic plates and the ethylenically unsaturated compound. % By weight.
  • Examples of the ethylenically unsaturated compound having a molecular weight of 5000 or less include dihydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, 1,4-butanediol, and 1,6-hexanediol.
  • the amount of the ethylenically unsaturated compound used is preferably 5 to 60% by weight, more preferably 5 to 50% by weight, based on the total amount of the flexographic block copolymer composition and the ethylenically unsaturated compound. .
  • the total amount of the block copolymer composition for flexographic plates and the ethylenically unsaturated compound is preferably 50% by weight or more, more preferably 60% by weight or more, particularly preferably based on the total amount of the photosensitive flexographic plate composition. 70% by weight or more.
  • photopolymerization initiator examples include methyl hydroquinone, benzophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, ⁇ -methylbenzoin, ⁇ -methylbenzoin methyl ether, ⁇ -methoxybenzoin methyl ether.
  • examples thereof include phenone, 2,2-diethoxyacetophenone, and pipeloin. These may be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator used is preferably 0.1 to 5% by weight based on the total amount of the block copolymer composition for flexographic plates and the ethylenically unsaturated compound.
  • components other than those described above can be added to the photosensitive flexographic composition as necessary.
  • Such components include, for example, plasticizers, thermal polymerization inhibitors, antioxidants, ozone cracking inhibitors, dyes, pigments, fillers, additives exhibiting photochromism, reducing agents, agents that improve the relief structure, and crosslinking. Agents, flow improvers, mold release agents, and the like.
  • the plasticizer is usually used for the purpose of facilitating the production and molding of the composition for the photosensitive flexographic plate, promoting the removal of the unexposed part, and adjusting the hardness of the exposed and hardened part.
  • the plasticizer include hydrocarbon oils such as naphthenic oil and paraffin oil; liquid 1,2-polybutadiene, liquid 1,4-polybutadiene and hydroxides or carboxylates thereof; liquid acrylonitrile-butadiene copolymer and This carboxylated product; liquid styrene-butadiene copolymer and this carboxylated product; low molecular weight polystyrene having a molecular weight of 3,000 or less, ⁇ -methylstyrene-vinyltoluene copolymer, petroleum resin, polyacrylate resin, polyester resin, polyterpene resin, etc. Is given. These may be used alone or in combination of two or more.
  • the plasticizer is usually added in the range of 2 to 50% by weight in the
  • the thermal polymerization inhibitor is used for the purpose of preventing unintended thermal polymerization of an ethylenically unsaturated compound when preparing a composition for a photosensitive flexographic plate.
  • thermal polymerization inhibitors include phenols such as hydroquinone, p-methoxyphenol, pt-butylcatechol, 2,6-di-t-butyl-p-cresol, pyrogallol; benzoquinone, p-toluquinone, p -Quinones such as xyloquinone; and amines such as phenyl- ⁇ -naphthylamine. These may be used alone or in combination of two or more.
  • the amount of the thermal polymerization inhibitor used is usually 0.001 to 2% by weight in the photosensitive flexographic composition.
  • the method for producing the composition for photosensitive flexographic plates of the present invention is not particularly limited.
  • the components constituting the composition are kneaded using a kneader, roll mill, Banbury, single-screw or multi-screw extruder, and the like. Can be manufactured.
  • the obtained composition is usually formed into a sheet-like molded article having a desired thickness by using a molding machine such as a single-screw or multi-screw extruder, a compression molding machine, or a calendar molding machine.
  • a single-screw or multi-screw extruder is used, the preparation of the photosensitive flexographic composition and the forming into a sheet-like molded product can be performed simultaneously.
  • the components constituting the photosensitive flexographic composition are dissolved in a suitable solvent such as chloroform, carbon tetrachloride, trichloroethane, diethyl ketone, methyl ethyl ketone, benzene, toluene, tetrahydrofuran, and this solution is placed in a frame.
  • a suitable solvent such as chloroform, carbon tetrachloride, trichloroethane, diethyl ketone, methyl ethyl ketone, benzene, toluene, tetrahydrofuran
  • the thickness of the sheet is usually 0.1 to 20 mm, preferably 1 to 10 mm.
  • the sheet-shaped photosensitive flexographic composition is transparent on the surface made of a resin such as polypropylene, polyethylene, or polyethylene terephthalate.
  • a sheet or film can be provided as a base sheet layer or a protective film layer.
  • a thin coating material rich in flexibility in order to suppress the adhesiveness of the surface of the composition and to enable reuse of the negative film after light irradiation.
  • a layer may be provided.
  • the coating material layer usually, soluble polyamide, cellulose derivative and the like are frequently used.
  • the flexographic plate of the present invention can be obtained by exposing the above-mentioned composition for photosensitive flexographic plates of the present invention.
  • the flexographic plate is usually manufactured according to the following steps.
  • a solvent is usually used.
  • the solvent include n-hexane, n-heptane, octane, petroleum ether, naphtha, limonene, terpene, toluene, xylene, ethylbenzene, isopropylbenzene, and other aliphatic or aromatic hydrocarbons; acetone, methyl ethyl ketone, and the like.
  • Ketones such as di-n-butyl ether and di-t-butyl ether; esters such as methyl acetate and ethyl acetate; halogens such as methylene chloride, chloroform, trichloroethane, tetrachloroethylene, dichlorotetrafluoroethane, and trichlorotrifluoroethane And hydrocarbons. These may be used alone or in combination of two or more. Furthermore, a desired amount of alcohol such as methanol, ethanol, isopropanol, n-butanol, etc. may be added to the solvent. The development can be speeded up by applying a mechanical force using a brush or the like in the presence of the solvent.
  • the flexographic plate of the present invention has sufficient flexibility, has excellent abrasion resistance, and is excellent in ink swelling resistance. Therefore, by using the flexographic plate of the present invention, repeated printing can be performed many times even under severe conditions, and flexographic printing can be performed with excellent image transfer and excellent image quality.
  • a to-be-printed object of flexographic printing it can apply to various things, such as paper, corrugated board, wood, a metal, a polyethylene film, a polyethylene sheet, a polypropylene film, a polypropylene sheet, for example.
  • the apparatus is an HLC8220 manufactured by Tosoh Corporation, the column is a combination of three Shodex KF-404HQ manufactured by Showa Denko (column temperature 40 ° C.), the detector is a differential refractometer and an ultraviolet detector, and the molecular weight is calibrated by a polymer laboratory. The test was carried out using 12 standard polystyrenes (500 to 3 million).
  • reaction was completed by introducing a gas flowing out of the reaction vessel into the potassium iodide aqueous solution.
  • 50 ml of diethyl ether and 470 mg of lithium aluminum hydride were charged into another reaction vessel purged with nitrogen, and the solution reacted with ozone was slowly added dropwise to the reaction vessel while cooling the reaction vessel with ice water.
  • the reaction vessel was placed in a water bath, gradually heated, and refluxed at 40 ° C. for 30 minutes. Thereafter, dilute hydrochloric acid was added dropwise to the reaction vessel little by little while stirring the solution, and the addition was continued until almost no generation of hydrogen was observed.
  • the solid product formed in the solution was filtered off, and the solid product was extracted with 100 ml of diethyl ether for 10 minutes.
  • the extract and the filtrate obtained by filtration were combined and the solvent was distilled off to obtain a solid sample.
  • the weight average molecular weight was measured according to the above-described method for measuring the weight average molecular weight, and the value was taken as the weight average molecular weight of the styrene polymer block.
  • Type A hardness of block copolymer composition Type A hardness was measured using a durometer hardness tester (type A) in accordance with JIS K6253.
  • the block copolymer composition was dissolved in dehydrated toluene to make a 25 wt% solution. With respect to this toluene solution, a light transmittance at a wavelength of 360 nm was measured using a Hitachi spectrophotometer U-3010 manufactured by Hitachi High-Technologies Corporation as a measuring device and a 10 mm cell made of quartz as a cell.
  • the tensile elastic modulus was measured along the melt flow direction at the time of molding on one side, and the tensile elastic modulus was measured along the vertical direction of the melt flow at the time of molding on the other side.
  • the measurement procedure is as follows. Using a Tensilon universal tester RTC-1210 manufactured by ORIENTEC Co., Ltd., it was stretched to 100% at a tensile speed of 300 mm / min, and the tensile stress at 100% elongation in the process was measured, and the tensile elasticity of the sheet at 100% elongation The rate was determined. The closer the ratio of (tensile elastic modulus in the melt flow direction / tensile elastic modulus in the direction perpendicular to the melt flow) to 1, the smaller the anisotropy and the more isotropic.
  • the obtained sheet is exposed to actinic rays for 10 minutes using an exposure machine equipped with a 20 W ultraviolet fluorescent lamp (JE-A3-SS, manufactured by JEOL Ltd.), and then heated with a 60 ° C. hot air dryer. Dry for 30 minutes.
  • JE-A3-SS ultraviolet fluorescent lamp
  • the tensile elastic modulus was measured along the melt flow direction during molding for one of the sheets, and the tensile elastic modulus was measured along the vertical direction of the melt flow during molding for the other.
  • the measurement procedure is as follows.
  • a sheet in which the photosensitive flexographic composition was exposed was obtained by the same method as that used for measuring the tensile modulus. Next, using a Haydon abrasion tester (manufactured by Shinto Chemical Co., Ltd.), the obtained sheet and No. 1000 water-resistant paper were reciprocally rubbed under the conditions of a load of 100 g and a speed of 6000 mm / sec, and the abrasion amount of the sheet surface after 1000 cycles was measured.
  • index is shown with the index
  • Example 1 100 parts of the block copolymer composition of Production Example 1, 10 parts of liquid polybutadiene (NISSO-PB-B-1000: manufactured by Nippon Soda Co., Ltd.), and 2 parts of 2,6-di-t-butyl-p-cresol was kneaded at 170 ° C. using a kneader kneader.
  • NISSO-PB-B-1000 liquid polybutadiene
  • the kneading temperature is lowered to 130 ° C., and 5 parts of 1,4-butanediol diacrylate, 5 parts of 1,6-hexanediol dimethacrylate, 0.01 part of methylhydroquinone and 0.8 part of benzoin isopropyl ether are added. And kneaded to obtain the composition for photosensitive flexographic plate of Example 1.
  • the composition for photosensitive flexographic plate was measured for tensile modulus, permanent elongation, abrasion resistance and ink swelling resistance. The results are shown in Table 3.
  • Example 2 A photosensitive flexographic composition of Example 2 was obtained in the same manner as in Example 1 except that the block copolymer composition used was changed to the block copolymer composition of Production Example 2. With respect to the composition for photosensitive flexographic plate of Example 2, tensile modulus, permanent elongation, abrasion resistance and ink swelling resistance were measured. The results are shown in Table 3.
  • Comparative Examples 1 to 4 The compositions for photosensitive flexographic plates of Comparative Examples 1 to 4 were obtained in the same manner as in Example 1 except that the block copolymer composition used was changed to the block copolymer compositions of Production Examples 3 to 6. It was. With respect to the compositions for photosensitive flexographic plates of Comparative Examples 1 to 4, the tensile elastic modulus, permanent elongation, abrasion resistance, and ink swelling resistance were measured. The results are shown in Table 3.
  • the block copolymer composition for flexographic plates of the present invention (Production Examples 1 and 2) has good flexibility and transparency, small anisotropy, and the block copolymer composition for flexographic plates of the present invention.
  • the composition for photosensitive flexographic plates of the present invention obtained from the product has both low permanent elongation and high wear resistance, and is excellent in rubber elasticity and wear resistance, and also in ink swelling resistance and isotropy. Excellent (Examples 1 and 2).
  • the block copolymer compositions (Production Examples 3 to 6) that do not correspond to the block copolymer composition for flexographic plates of the present invention have sufficient flexibility, transparency, and anisotropy. However, when these block copolymer compositions were used, the balance between rubber elasticity and wear resistance was inferior and anisotropy was exhibited (Comparative Examples 1 to 4).

Abstract

高精細な印刷特性を有し、耐インク膨潤性および耐摩耗性に優れたフレキソ版を提供可能であり、透明性および柔軟性が良好であり、さらに異方性が小さいフレキソ版用ブロック共重合体組成物を提供する。 それぞれ特定の構造を有する芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体であるブロック共重合体Aおよびブロック共重合体Bを含んでなり、フレキソ版用ブロック共重合体組成物中の重合体成分をなす全単量体単位に対して芳香族ビニル単量体単位が占める割合が18~70重量%であり、タイプA硬度が25~65であり、25重量%トルエン溶液の波長360nmの光線透過率が50%以上であり、異方性指標が2.0以下であるフレキソ版用ブロック共重合体組成物。

Description

フレキソ版用ブロック共重合体組成物
 本発明は、共役ジエン重合体ブロックおよび芳香族ビニル重合体ブロックを有するブロック共重合体を含んでなるブロック共重合体組成物からなるフレキソ版用ブロック共重合体組成物に関し、さらに詳しくは、高精細な印刷特性を有し、耐インク膨潤性および耐摩耗性に優れたフレキソ版を提供可能であり、透明性および柔軟性が良好であり、さらに異方性が小さいフレキソ版用ブロック共重合体組成物に関する。
 ラベル、プラスチック容器、カートン、ビニール袋、箱および封筒などに対する印刷方法として、フレキソ印刷が広く用いられている。このフレキソ印刷に使用するフレキソ版としては、エラストマー、重合性のエチレン性不飽和単量体および光重合開始剤からなる感光性フレキソ版用組成物を感光して形成したものが多用されている。
 感光性フレキソ版用組成物は、通常、シート状に成形され、その片方の面に支持体となる可撓性シートを設け、もう一方の面に保護フィルムを設けた、複層構造を有するシートとして供給される。この複層シートの支持体の側から、光を照射して、感光性フレキソ版用組成物層の特定の厚みまで硬化させる。次いで、保護フィルムを剥がし、その面にネガフィルムを密着させた後、該ネガフィルム上から光を照射する。光が透過した部分の感光性フレキソ版用組成物は硬化し、未硬化の部分は、有機溶剤または水性溶剤などで除去することにより、凹凸の構造を有するフレキソ版が形成される。
 感光性フレキソ版用組成物を構成するために用いられるエラストマーとしては、加工性に優れる熱可塑性エラストマーが広く用いられている。なかでも、スチレン-イソプレン-スチレンブロック共重合体(SIS)やスチレン-ブタジエン-スチレンブロック共重合体(SBS)などの芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体が、ゴム弾性に富み、フレキソ版を構成するために好適な柔軟性と反発弾性を有することから、感光性フレキソ版用組成物を構成するためのエラストマーとして賞用されている。また、感光性フレキソ版用組成物には、高精細な印刷を可能とするために、耐摩耗性、透明性、耐インク膨潤性なども要求される。そのため、感光性フレキソ版用組成物を構成するために用いられる芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体の改良について、種々の研究が行なわれている。
 例えば、特許文献1には、芳香族ビニル-共役ジエンブロック共重合体からなり、芳香族ビニル化合物含有量が10~40重量%、トルエン不溶分が30ppm以下、タイプA硬度が85以下、共役ジエン重合体ブロック中のビニル結合含有量が50%以下である感光性印刷版材用ブロック共重合体、ならびに、この感光性印刷版材用ブロック共重合体を含む感光性印刷版材用ブロック共重合体組成物および感光性エラストマー組成物が開示されている。この感光性印刷版材用ブロック共重合体は、ゲル量が少なく、加工安定性、画像現像性、印刷性に優れたものであるとされている。
 また、特許文献2には、SISとSBSとの混合物を含むフレキソ版用の光重合性組成物が開示されている。この光重合性組成物は、高い耐摩耗性を有し、しかも、過度の硬度を有さない柔軟性に優れたものであるとされている。また、この光重合性組成物は、溶融成形時に生じる分子配向に起因する異方性を発現しないものであり、異方性を有する材料で構成したフレキソ版を用いた場合に生じる印刷への悪影響を避けられるものであるとされている。
 また、特許文献3には、共役ジエン重合体ブロックがイソプレンおよびブタジエンのランダムな共重合体ブロックである芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体を含むフレキソ版用の光重合性組成物が開示されている。この光重合性組成物は、透明性に優れたものであるとされている。
 さらに、特許文献4には、特定のカップリング剤を使用して得られる3分岐型の芳香族ビニル-共役ジエンブロック共重合体を含むフレキソ版用ブロック共重合体組成物が開示されている。このフレキソ版用ブロック共重合体組成物は、フレキソ版を構成した場合の平滑性や耐フロー性(感光による硬化前に変形し難い性質)、細線の再現性に優れるものである。
 しかしながら、特許文献1~4に記載された組成物を用いた場合であっても、耐摩耗性、柔軟性、透明性などにおいてバランスの良い組成物を得ることは困難であった。
 すなわち、芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体は、それに含まれる芳香族ビニル単量体単位の割合を高くすることにより、機械的強度が増し、耐摩耗性などの特性が改良されることは知られている。しかし、フレキソ版として用いるために十分な耐摩耗性を付与できる程度までに芳香族ビニル単量体単位の割合を高くすると、重合体がゴム弾性を失ってしまうという問題があった。
 また、特許文献2に記載されているようにSISおよびSBSを混合する場合、一般にSISおよびSBSは非相溶であるため、透明性に劣るという問題があった。さらに、特許文献3に記載された組成物では、イソプレンおよびブタジエンのランダムな共重合体ブロックが含まれているため透明性は改善されるものの、上述のように柔軟性および耐摩耗性を両立するのは困難であった。
特開2006-104359号公報 特開2002-72457号公報 特表2006-514338号公報 国際公開第2005/031459号パンフレット
 本発明は、高精細な印刷特性を有し、耐インク膨潤性および耐摩耗性に優れたフレキソ版を提供可能であり、透明性および柔軟性が良好であり、さらに異方性が小さいフレキソ版用ブロック共重合体組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究した結果、それぞれ特定の構成を有する、共役ジエン重合体ブロックおよび芳香族ビニル重合体ブロックを有する2種類のブロック共重合体を含み、かつ、タイプA硬度、光線透過率および異方性指標が所定の範囲であるブロック共重合体組成物は、芳香族ビニル単量体単位の割合を高くしても、耐摩耗性およびゴム弾性のバランスに優れており、さらに透明性が良好で、異方性が小さく、このブロック共重合体組成物を用いることにより、高精細な印刷特性を有し、耐インク膨潤性、耐摩耗性に優れるフレキソ版を得ることができることを見出した。本発明は、この知見に基づいて完成するに至ったものである。
 かくして、本発明によれば、下記の一般式(A)で表されるブロック共重合体Aおよび下記の一般式(B)で表されるブロック共重合体Bを含んでなり、フレキソ版用ブロック共重合体組成物中の重合体成分をなす全単量体単位に対して芳香族ビニル単量体単位が占める割合が18~70重量%であり、タイプA硬度が25~65であり、25重量%トルエン溶液としたときの波長360nmの光線透過率が50%以上であり、異方性指標が2.0以下であるフレキソ版用ブロック共重合体組成物が提供される。
Ar1-D-Ar2 (A)
(Ar-D-X (B)
(一般式(A)および(B)において、Ar1およびArは、それぞれ、重量平均分子量が6000~20000の芳香族ビニル重合体ブロックであり、Ar2は、重量平均分子量が40000~400000の芳香族ビニル重合体ブロックであり、芳香族ビニル重合体ブロックAr2の重量平均分子量と芳香族ビニル重合体ブロックAr1の重量平均分子量との比(Mw(Ar2)/Mw(Ar1))が2~12であり、DおよびDは、それぞれ、ビニル結合含有量が1~20モル%の共役ジエン重合体ブロックであり、Xは単結合またはカップリング剤の残基であり、nは2以上の整数である。)
 上記のフレキソ版用ブロック共重合体組成物は、フレキソ版用ブロック共重合体組成物中の重合体成分をなす全単量体単位に対して芳香族ビニル単量体単位が占める割合が20~70重量%であることが好ましい。
 上記のフレキソ版用ブロック共重合体組成物は、ブロック共重合体Aとブロック共重合体Bとの重量比(A/B)が36/64~85/15であることが好ましい。
 上記のフレキソ版用ブロック共重合体組成物は、さらに、下記の一般式(C)で表わされるブロック共重合体Cを含んでなることが好ましい。
Ar-D (C)
(一般式(C)において、Arは、重量平均分子量が6000~20000の芳香族ビニル重合体ブロックであり、Dは、ビニル結合含有量が1~20モル%の共役ジエン重合体ブロックである。)
 上記のフレキソ版用ブロック共重合体組成物は、ブロック共重合体Bが、アルコキシル基、エステル基およびエポキシ基から選ばれる少なくとも1種の官能基を1分子中に2個以上有する化合物をカップリング剤として用いて得られたものであることが好ましい。
 また、本発明によれば、上記のフレキソ版用ブロック共重合体組成物と、分子量5000以下のエチレン性不飽和化合物と、光重合開始剤とを含んでなる感光性フレキソ版用組成物が提供される。
 さらに、本発明によれば、上記の感光性フレキソ版用組成物を用いてなるフレキソ版が提供される。
 本発明によれば、高精細な印刷特性を有し、耐インク膨潤性および耐摩耗性に優れたフレキソ版を提供可能であり、透明性および柔軟性が良好であり、さらに異方性が小さいフレキソ版用ブロック共重合体組成物を得ることができる。
 本発明のフレキソ版用ブロック共重合体組成物は、少なくとも2種のブロック共重合体を含んでなるものである。本発明のフレキソ版用ブロック共重合体を構成する2種のブロック共重合体の一方であるブロック共重合体Aは、下記の一般式(A)で表される、互いに異なる重量平均分子量を持つ2つの芳香族ビニル重合体ブロックを有する芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体である。
 Ar1-D-Ar2 (A)
 上記の一般式(A)において、Ar1は、重量平均分子量が6000~20000の芳香族ビニル重合体ブロックであり、Ar2は、重量平均分子量が40000~400000の芳香族ビニル重合体ブロックであり、芳香族ビニル重合体ブロックAr2の重量平均分子量と芳香族ビニル重合体ブロックAr1の重量平均分子量との比(Mw(Ar2)/Mw(Ar1))が2~12であり、Dは、ビニル結合含有量が1~20モル%の共役ジエン重合体ブロックである。
 また、本発明のフレキソ版用ブロック共重合体組成物を構成する2種のブロック共重合体の他方であるブロック共重合体Bは、下記の一般式(B)で表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体である。
 (Ar-D-X (B)
 上記の一般式(B)において、Arは、重量平均分子量が6000~20000の芳香族ビニル重合体ブロックであり、Dは、ビニル結合含有量が1~20モル%の共役ジエン重合体ブロックであり、Xは単結合またはカップリング剤の残基であり、nは2以上の整数である。
 本発明のフレキソ版用ブロック共重合体組成物は、ブロック共重合体Aおよびブロック共重合体Bに加え、さらに、下記の一般式(C)で表される芳香族ビニル-共役ジエンブロック共重合体である、ブロック共重合体Cを含んでなるものであっても良い。
 Ar-D (C)
 上記の一般式(C)において、Arは、重量平均分子量が6000~20000の芳香族ビニル重合体ブロックであり、Dは、ビニル結合含有量が1~20モル%の共役ジエン重合体ブロックである。
 ブロック共重合体A~Cの芳香族ビニル重合体ブロック(Ar1,Ar2,Ar,Ar)は、芳香族ビニル単量体単位により構成される重合体ブロックである。芳香族ビニル重合体ブロックの芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル単量体としては、芳香族ビニル化合物であれば特に限定されないが、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、2,4-ジブロモスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、スチレンを用いることが好ましい。これらの芳香族ビニル単量体は、各芳香族ビニル重合体ブロックにおいて、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。また、各芳香族ビニル重合体ブロックにおいて、同じ芳香族ビニル単量体を用いても良いし、異なる芳香族ビニル単量体を用いても良い。
 ブロック共重合体A~Cの芳香族ビニル重合体ブロック(Ar1,Ar2,Ar,Ar)は、それぞれ、芳香族ビニル単量体単位以外の単量体単位を含んでいても良い。芳香族ビニル重合体ブロックに含まれ得る芳香族ビニル単量体単位以外の単量体単位を構成する単量体としては、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)などの共役ジエン単量体、α,β-不飽和ニトリル単量体、不飽和カルボン酸または酸無水物単量体、不飽和カルボン酸エステル単量体、非共役ジエン単量体が例示される。各芳香族ビニル重合体ブロックにおける芳香族ビニル単量体単位以外の単量体単位の含有量は、20重量%以下であることが好ましく、10重量%以下であることがより好ましく、実質的に0重量%であることが特に好ましい。
 ブロック共重合体A~Cの共役ジエン重合体ブロック(D,D,D)は、共役ジエン単量体単位により構成される重合体ブロックである。共役ジエン重合体ブロックの共役ジエン単量体単位を構成するために用いられる共役ジエンとしては、共役ジエン化合物であれば特に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどが挙げられる。これらの中でも、1,3-ブタジエンおよび/またはイソプレンを用いることが好ましく、イソプレンを用いることが特に好ましい。共役ジエン重合体ブロックをイソプレン単位で構成することにより、得られるフレキソ版用ブロック共重合体組成物が柔軟性に富んだものとなり、柔軟性に優れるフレキソ版を与えることができる。これらの共役ジエン単量体は、各共役ジエン重合体ブロックにおいて、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。また、各共役ジエン重合体ブロックにおいて、同じ共役ジエン単量体を用いても良いし、異なる共役ジエン単量体を用いることもできる。さらに、各共役ジエン重合体ブロックの不飽和結合の一部に対し、水素添加反応を行っても良い。
 ブロック共重合体A~Cの共役ジエン重合体ブロック(D,D,D)は、それぞれ、共役ジエン単量体単位以外の単量体単位を含んでいても良い。共役ジエン重合体ブロックに含まれ得る共役ジエン単量体単位以外の単量体単位を構成する単量体としては、スチレン、α-メチルスチレンなどの芳香族ビニル単量体、α,β-不飽和ニトリル単量体、不飽和カルボン酸または酸無水物単量体、不飽和カルボン酸エステル単量体、非共役ジエン単量体が例示される。各共役ジエン重合体ブロックにおける共役ジエン単量体単位以外の単量体単位の含有量は、20重量%以下であることが好ましく、10重量%以下であることがより好ましく、実質的に0重量%であることが特に好ましい。
 本発明のフレキソ版用ブロック共重合体組成物を構成するブロック共重合体Aは、上記一般式(A)で表されるように、比較的小さい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar1)、特定のビニル結合含有量を有する共役ジエン重合体ブロック(D)および比較的大きい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar2)が、この順で連なって構成される非対称な芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体である。
 比較的小さい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar1)の重量平均分子量(Mw(Ar1))は、6000~20000であり、7000~18000であることが好ましく、8000~16000であることがより好ましい。Mw(Ar1)がこの範囲を外れると、得られるフレキソ版用ブロック共重合体組成物のゴム弾性が不十分となるおそれがある。また、比較的大きい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar2)の重量平均分子量(Mw(Ar2))は、40000~400000であり、42000~370000であることが好ましく、45000~350000であることがより好ましい。Mw(Ar2)が小さすぎると、得られるフレキソ版用ブロック共重合体組成物が、耐摩耗性に劣り、異方性を発現しやすいものとなるおそれがあり、Mw(Ar2)が大きすぎるブロック共重合体Aは、製造が困難である場合がある。
 なお、本発明において、重合体や重合体ブロックの重量平均分子量は、高速液体クロマトグラフィの測定による、ポリスチレン換算の値に基づいて求めるものとする。
 ブロック共重合体Aにおいて、比較的大きい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar2)の重量平均分子量(Mw(Ar2))と、比較的小さい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar1)の重量平均分子量(Mw(Ar1))との比(Mw(Ar2)/Mw(Ar1))は、2~12であり、4~12であることが好ましく、4.5~12であることがより好ましい。ブロック共重合体Aをこのように構成することによって、得られるフレキソ版用ブロック共重合体組成物が、芳香族ビニル単量体単位の割合を高くして耐摩耗性に優れるものとした場合であっても、ゴム弾性を維持できるものとなる。
 ブロック共重合体Aの共役ジエン重合体ブロック(D)のビニル結合含有量(全共役ジエン単量体単位において、1,2-ビニル結合と3,4-ビニル結合が占める割合)は、1~20モル%であり、2~15モル%であることが好ましく、3~10モル%であることがより好ましい。このビニル結合含有量が高すぎると、得られるフレキソ版用ブロック共重合体組成物が硬質すぎるものとなり、柔軟性に劣るものとなるおそれがある。
 ブロック共重合体Aの共役ジエン重合体ブロック(D)の重量平均分子量(Mw(D))は、特に限定されないが、通常40000~200000であり、42000~180000であることが好ましく、45000~150000であることがより好ましい。Mw(D)をこの範囲にすることにより、得られるフレキソ版用ブロック共重合体組成物が、芳香族ビニル単量体単位の割合を高くして耐摩耗性に優れるものとした場合であっても、ゴム弾性を維持しやすいものとなる。
 ブロック共重合体Aの全単量体単位に対する芳香族ビニル単量体単位の含有量は、特に限定されないが、41重量%以上であることが好ましく、43~87重量%であることがより好ましく、45~85重量%であることが特に好ましい。ブロック共重合体Aの全単量体単位に対する芳香族ビニル単量体単位の含有量をこの範囲にすることにより、得られるフレキソ版用ブロック共重合体組成物が耐摩耗性および耐インク膨潤性に優れたものとなるからである。
 ブロック共重合体A全体としての重量平均分子量は、特に限定されないが、通常90000~500000であり、100000~450000であることが好ましく、110000~400000であることがより好ましい。
 本発明のフレキソ版用ブロック共重合体組成物を構成するブロック共重合体Bは、上記一般式(B)で表されるように、特定の重量平均分子量を有する芳香族ビニル重合体ブロック(Ar)と特定のビニル結合含有量を有する共役ジエン重合体ブロック(D)とが結合してなるジブロック体(Ar-D)が、2個以上、直接単結合でもしくはカップリング剤の残基を介して結合することにより構成されるブロック共重合体である。
 ブロック共重合体Bを構成する芳香族ビニル重合体ブロック(Ar)の重量平均分子量(Mw(Ar))は、6000~20000であり、7000~18000であることが好ましく、8000~16000であることがより好ましい。Mw(Ar)が小さすぎると、得られるフレキソ版用ブロック共重合体組成物が耐摩耗性に劣るものとなるおそれがあり、大きすぎると、柔軟性やゴム弾性に劣るものとなるおそれがある。ブロック共重合体Bが複数有する芳香族ビニル重合体ブロックの重量平均分子量(Mw(Ar))は、上記の範囲内であれば、それぞれ等しいものであっても、互いに異なるものであっても良いが、実質的に等しいものであることが好ましい。また、これらの芳香族ビニル重合体ブロックの重量平均分子量(Mw(Ar))は、ブロック共重合体Aの比較的小さい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar1)の重量平均分子量(Mw(Ar1))と、実質的に等しいことがより好ましい。
 ブロック共重合体Bの共役ジエン重合体ブロック(D)のビニル結合含有量は、1~20モル%であり、2~15モル%であることが好ましく、3~10モル%であることがより好ましい。このビニル結合含有量が高すぎると、得られるフレキソ版用ブロック共重合体組成物が硬質すぎるものとなり、柔軟性に劣るものとなるおそれがある。また、ブロック共重合体Bの共役ジエン重合体ブロック(D)のビニル結合含有量は、ブロック共重合体Aの共役ジエン重合体ブロック(D)のビニル結合含有量と実質的に等しいことが好ましい。
 ブロック共重合体Bは、芳香族ビニル重合体ブロック(Ar)と共役ジエン重合体ブロック(D)とが結合してなるジブロック体(Ar-D)が、直接単結合で、またはカップリング剤の残基を介して、結合してなるものである。なお、カップリング剤の残基を構成するカップリング剤は、特に限定されず、2官能以上の任意のカップリング剤である。2官能のカップリング剤としては、例えば、ジクロロシラン、モノメチルジクロロシラン、ジメチルジクロロシランなどの2官能性ハロゲン化シラン;ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどの2官能性アルコキシシラン;ジクロロエタン、ジブロモエタン、メチレンクロライド、ジブロモメタンなどの2官能性ハロゲン化アルカン;ジクロロスズ、モノメチルジクロロスズ、ジメチルジクロロスズ、モノエチルジクロロスズ、ジエチルジクロロスズ、モノブチルジクロロスズ、ジブチルジクロロスズなどの2官能性ハロゲン化スズ;ジブロモベンゼン、安息香酸、一酸化炭素、2-クロロプロペンなどが挙げられる。3官能のカップリング剤としては、例えば、トリクロロエタン、トリクロロプロパンなどの3官能性ハロゲン化アルカン;メチルトリクロロシラン、エチルトリクロロシランなどの3官能性ハロゲン化シラン;メチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどの3官能性アルコキシシラン;などが挙げられる。4官能のカップリング剤としては、例えば、四塩化炭素、四臭化炭素、テトラクロロエタンなどの4官能性ハロゲン化アルカン;テトラクロロシラン、テトラブロモシランなどの4官能性ハロゲン化シラン;テトラメトキシシラン、テトラエトキシシランなどの4官能性アルコキシシラン;テトラクロロスズ、テトラブロモスズなどの4官能性ハロゲン化スズ;などが挙げられる。5官能以上のカップリング剤としては、例えば、1,1,1,2,2-ペンタクロロエタン,パークロロエタン、ペンタクロロベンゼン、パークロロベンゼン、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテルなどが挙げられる。これらのカップリング剤は、1種を単独で用いても良いし、2種以上を組み合わせて用いることもできる。
 また、ブロック共重合体Bを得るにあたっては、これらのカップリング剤の中でも、重合体の活性末端と反応する官能基として、アルコキシル基、エステル基およびエポキシ基から選ばれる少なくとも1種の官能基を1分子中に2個以上有する化合物を用いることが好ましく、ケイ素原子に直接結合したアルコキシ基を1分子あたり2個以上有するアルコキシシラン化合物を用いることが特に好ましい。すなわち、本発明のフレキソ版用ブロック共重合体組成物を構成するブロック共重合体Bは、アルコキシル基、エステル基およびエポキシ基から選ばれる少なくとも1種の官能基を1分子中に2個以上有する化合物をカップリング剤として用いて得られたものであることが好ましく、ケイ素原子に直接結合したアルコキシ基を1分子あたり2個以上有するアルコキシシラン化合物をカップリング剤として用いて得られたものであることが特に好ましい。このようなカップリング剤を用いることにより、フレキソ版用ブロック共重合体組成物を透明性に優れるものとすることができ、得られる感光性フレキソ版用組成物から精巧な印刷パターンを形成したフレキソ版を得ることが容易となる。
 ブロック共重合体Bにおいて、ジブロック体(Ar-D)が結合する数(すなわち、一般式(B)におけるn)は、2以上であれば特に限定されず、異なる数でジブロック体が結合したブロック共重合体Bが混在していても良い。一般式(B)におけるnは、2以上の整数であれば特に限定されないが、通常2~8の整数であり、好ましくは2~4の整数である。また、ブロック共重合体Bの少なくとも一部として、ジブロック体(Ar-D)がカップリング剤を介して3以上結合したもの(すなわち、一般式(B)におけるnが3以上のもの)が存在することが特に好ましい。本発明のフレキソ版用ブロック共重合体組成物は、フレキソ版を製造するにあたり、押出成形などの分子配向が起こり易い成形法を適用した場合であっても、全ての方向にわたって均質な力学的性質を有する、等方性が高いフレキソ版を与えることができるものであるが、ブロック共重合体Bの少なくとも一部として、ジブロック体(Ar-D)がカップリング剤を介して3以上結合したものが含まれることにより、特に等方性が高く、印刷不良を生じ難いフレキソ版が得られるからである。
 ブロック共重合体Bの共役ジエン重合体ブロック(D)の重量平均分子量(Mw(D))は、特に限定されないが、通常40000~200000であり、42000~180000であることが好ましく、45000~150000であることがより好ましい。Mw(D)をこの範囲にすることにより、得られるフレキソ版用ブロック共重合体組成物が芳香族ビニル単量体単位の割合を高くして耐摩耗性に優れるものとした場合であっても、ゴム弾性を維持しやすいものとなる。また、ブロック共重合体Bの共役ジエン重合体ブロック(D)の重量平均分子量(Mw(D))は、ブロック共重合体Aの共役ジエン重合体ブロック(D)の重量平均分子量(Mw(D))と実質的に等しいことが好ましい。なお、ブロック共重合体Bとして、カップリング剤を使用せずに製造した芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体を用いる場合、それに含まれる共役ジエン重合体ブロックは全ての単量体単位が直接結合したものとなり、実体上、2つの共役ジエン重合体ブロック(D)からなるものであるとは言えない。但し、本発明では、そのような共役ジエン重合体ブロックであっても、概念上、実質的に等しい重量平均分子量を有する2つの共役ジエン重合体ブロック(D)が単結合で結合されたものであるとして、取扱うものとする。したがって、例えば、カップリング剤を使用せずに製造した芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体であるブロック共重合体Bにおいて、共役ジエン重合体ブロックが全体として100000の重量平均分子量を有する場合、そのMw(D)は、50000であるとして取扱うものとする。
 ブロック共重合体Bの全単量体単位に対する芳香族ビニル単量体単位の含有量は、特に限定されないが、通常10~35重量%であり、12~32重量%であることが好ましく、15~30重量%であることがより好ましい。また、ブロック共重合体B全体としての重量平均分子量も、特に限定されないが、通常52000~800000であり、70000~600000であることが好ましく、100000~400000であることがより好ましい。
 本発明のフレキソ版用ブロック共重合体組成物に含まれうるブロック共重合体Cは、上記一般式(C)で表されるように、特定の重量平均分子量を有する芳香族ビニル重合体ブロック(Ar)と特定のビニル結合含有量を有する共役ジエン重合体ブロック(D)とが結合して構成されるブロック共重合体である。このブロック共重合体Cが含まれることにより、フレキソ版用ブロック共重合体組成物の耐摩耗性およびゴム弾性のバランスが特に優れたものとなる。
 ブロック共重合体Cを構成する芳香族ビニル重合体ブロック(Ar)の重量平均分子量(Mw(Ar))は、6000~20000であり、7000~18000であることが好ましく、8000~16000であることがより好ましい。また、ブロック共重合体Cの芳香族ビニル重合体ブロック(Ar)の重量平均分子量(Mw(Ar))は、ブロック共重合体Aの比較的小さい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar1)の重量平均分子量(Mw(Ar1))およびブロック共重合体Bの芳香族ビニル重合体ブロック(Ar)の重量平均分子量(Mw(Ar))の少なくとも一方と実質的に等しいことが好ましく、これらの両方と実質的に等しいことがより好ましい。
 ブロック共重合体Cの共役ジエン重合体ブロック(D)のビニル結合含有量は、1~20モル%であり、2~15モル%であることが好ましく、3~10モル%であることがより好ましい。また、ブロック共重合体Cの共役ジエン重合体ブロック(D)のビニル結合含有量は、ブロック共重合体Aの共役ジエン重合体ブロック(D)およびブロック共重合体Bの共役ジエン重合体ブロック(D)の少なくとも一方のビニル結合含有量と実質的に等しいことが好ましく、これらの両方のビニル結合含有量と実質的に等しいことがより好ましい。
 ブロック共重合体Cの共役ジエン重合体ブロック(D)の重量平均分子量(Mw(D))は、特に限定されないが、通常40000~200000であり、42000~180000であることが好ましく、45000~150000であることがより好ましい。Mw(D)をこの範囲にすることにより、得られるフレキソ版用ブロック共重合体組成物がゴム弾性に優れたものとなる。また、ブロック共重合体Cの共役ジエン重合体ブロック(D)の重量平均分子量(Mw(D))は、ブロック共重合体Aの共役ジエン重合体ブロック(D)の重量平均分子量(Mw(D))およびブロック共重合体Bの共役ジエン重合体ブロック(D)の重量平均分子量(Mw(D))の少なくとも一方と実質的に等しいことが好ましく、これらの両方と実質的に等しいことがより好ましい。
 ブロック共重合体Cの全単量体単位に対する芳香族ビニル単量体単位の含有量は、特に限定されないが、通常10~35重量%であり、12~32重量%であることが好ましく、15~30重量%であることがより好ましい。また、ブロック共重合体Cの全単量体単位に対する芳香族ビニル単量体単位の含有量は、ブロック共重合体Bの全単量体単位に対する芳香族ビニル単量体単位の含有量と実質的に等しいことが好ましい。ブロック共重合体C全体としての重量平均分子量も、特に限定されないが、通常46000~200000であり、50000~180000であることが好ましく、55000~160000であることがより好ましい。
 ブロック共重合体A~Cを構成する各重合体ブロックの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、特に限定されないが、それぞれ、通常1.1以下であり、好ましくは1.05以下である。
 本発明のフレキソ版用ブロック共重合体組成物に含有されるブロック共重合体Aとブロック共重合体Bとの重量比(A/B)は、特に限定されないが、36/64~85/15であることが好ましく、38/62~80/20であることがより好ましく、40/60~75/25であることが特に好ましい。このような比でブロック共重合体Aおよびブロック共重合体Bが含有されることにより、得られるフレキソ版用ブロック共重合体組成物が、十分なゴム弾性を維持しながら、耐摩耗性に優れるものとなる。
 本発明のフレキソ版用ブロック共重合体組成物に含有されうるブロック共重合体Cの量は、特に限定されないが、ブロック共重合体Aおよびブロック共重合体Bの合計重量に対する重量比(C/(A+B))として、0/100~50/50であることが好ましく、5/95~40/60であることがより好ましく、10/90~30/70であることが特に好ましい。このような比でブロック共重合体Cが含有されることにより、フレキソ版用ブロック共重合体組成物の耐摩耗性およびゴム弾性のバランスが特に優れたものとなる。
 本発明のフレキソ版用ブロック共重合体組成物は、ブロック共重合体A~Cのみを重合体成分として含むものであって良いが、ブロック共重合体A~C以外の重合体成分を含むものであっても良い。本発明のフレキソ版用ブロック共重合体組成物に含まれ得るブロック共重合体A~C以外の重合体成分としては、ブロック共重合体Aおよびブロック共重合体B以外の芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体、ブロック共重合体C以外の芳香族ビニル-共役ジエンブロック共重合体、芳香族ビニル単独重合体、共役ジエン単独重合体、芳香族ビニル-共役ジエンランダム共重合体、およびこれらの分岐型重合体、あるいは、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマーなどの熱可塑性エラストマーや、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリフェニレンエーテルなどの熱可塑性樹脂などが挙げられる。本発明のフレキソ版用ブロック共重合体組成物において、ブロック共重合体A~C以外の重合体成分の含有量は、重合体成分全体に対して、20重量%以下であることが好ましく、10重量%以下であることがより好ましい。
 本発明のフレキソ版用ブロック共重合体組成物は、その重合体成分をなす全単量体単位に対して芳香族ビニル単量体単位が占める割合(以下の記載において、全体の芳香族ビニル単量体単位含有量ということがある)が、18~70重量%であり、20~70重量%であることが好ましく、22~60重量%であることがより好ましく、25~50重量%であることが特に好ましい。全体の芳香族ビニル単量体単位含有量が小さすぎると、フレキソ版用ブロック共重合体組成物が耐摩耗性や耐インク膨潤性に劣るものとなるおそれがあり、全体の芳香族ビニル単量体単位含有量が大きすぎると、フレキソ版用ブロック共重合体組成物がフレキソ版として必要なゴム弾性を失うおそれがある。この全体の芳香族ビニル単量体単位含有量は、フレキソ版用ブロック共重合体組成物を構成するブロック共重合体A~Cおよびこれら以外の重合体成分、それぞれの芳香族ビニル単量体単位の含有量を勘案し、それらの配合量を調節することにより、容易に調節することが可能である。なお、フレキソ版用ブロック共重合体組成物を構成する全ての重合体成分が、芳香族ビニル単量体単位および共役ジエン単量体単位のみにより構成されている場合であれば、Rubber Chem. Technol.,45,1295(1972)に記載された方法に従って、フレキソ版用ブロック共重合体組成物の重合体成分をオゾン分解し、次いで水素化リチウムアルミニウムにより還元すれば、共役ジエン単量体単位部分が分解され、芳香族ビニル単量体単位部分のみを取り出せるので、容易に全体の芳香族ビニル単量体単位含有量を測定することができる。
 本発明のフレキソ版用ブロック共重合体組成物を構成する重合体成分全体の重量平均分子量は、特に限定されないが、通常50000~500000であり、60000~450000であることが好ましく、70000~400000であることがより好ましい。また、本発明のフレキソ版用ブロック共重合体組成物を構成する重合体成分全体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、特に限定されないが、通常1.01~10であり、1.03~5であることが好ましく、1.05~3であることがより好ましい。
 本発明のフレキソ版用ブロック共重合体組成物は、タイプA硬度が25~65であり、26~64であることが好ましく、27~63であることがより好ましい。タイプA硬度が上記範囲であることにより、フレキソ版用ブロック共重合体組成物が、芳香族ビニル単量体単位の割合を高くして耐摩耗性に優れるものとした場合であっても、ゴム弾性を維持できるものとなる。
 ここで、タイプA硬度は、JIS K6253に従い、デュロメータ硬さ試験機(タイプA)を用いて測定した値である。
 また、本発明のフレキソ版用ブロック共重合体組成物は、25重量%トルエン溶液としたときの波長360nmの光線透過率が50%以上であり、55%以上であることが好ましく、60%以上であることがより好ましい。
 ここで、光線透過率は、フレキソ版用ブロック共重合体組成物を25重量%トルエン溶液とし、光路長10mm、波長360nmにて測定した値である。
 また、本発明のフレキソ版用ブロック共重合体組成物は、異方性指標が2.0以下であり、1.8以下であることが好ましく、1.5以下であることがより好ましい。異方性指標が上記範囲であることにより、フレキソ版を製造するにあたり、押出成形などの分子配向が起こり易い成形法を適用した場合であっても、異方性が発現し難く、等方性が高く、印刷不良を生じ難いフレキソ版を得ることができる。
 ここで、異方性指標は、フレキソ版用ブロック共重合体組成物を溶融押出成形してシートを作製し、得られたシートを2枚用いて、一方について成形時の溶融流れ方向に沿って引張弾性率を測定し、他方を成形時の溶融流れ垂直方向に沿って引張弾性率を測定して、(溶融流れ方向の引張弾性率/溶融流れ垂直方向の引張弾性率)の比率によって求めた値である。(溶融流れ方向の引張弾性率/溶融流れ垂直方向の引張弾性率)の比が1に近いものほど異方性が小さく、等方性に優れる。
 本発明のフレキソ版用ブロック共重合体組成物を得る方法は特に限定されない。例えば、従来のブロック共重合体の製法に従って、ブロック共重合体Aとブロック共重合体Bとをそれぞれ別個に製造し、必要に応じて、ブロック共重合体Cや他の重合体成分などを配合した上で、それらを混練や溶液混合などの常法に従って混合することにより、製造することができる。ただし、特に望ましい構成を有するブロック共重合体組成物をより生産性よく得る観点からは、次に述べる製造方法が好適である。
 すなわち、本発明のフレキソ版用ブロック共重合体組成物は、下記の(1)~(5)の工程からなる製造方法を用いて製造することが好ましい。
(1):溶媒中で重合開始剤を用いて、芳香族ビニル単量体を重合する工程
(2):上記(1)の工程で得られる活性末端を有する芳香族ビニル重合体を含有する溶液に、共役ジエン単量体を添加する工程
(3):上記(2)の工程で得られる活性末端を有する芳香族ビニル-共役ジエンブロック共重合体を含有する溶液に、その活性末端に対して官能基が1モル当量未満となる量で、カップリング剤を添加し、ブロック共重合体Bを形成する工程
(4):上記(3)の工程で得られる溶液に、芳香族ビニル単量体を添加し、ブロック共重合体Aを形成する工程
(5):上記(4)の工程で得られる溶液から、フレキソ版用ブロック共重合体組成物を回収する工程
 上記のフレキソ版用ブロック共重合体組成物の製造方法では、まず、溶媒中で重合開始剤を用いて、芳香族ビニル単量体を重合する。用いられる重合開始剤としては、一般的に芳香族ビニル単量体と共役ジエン単量体とに対し、アニオン重合活性があることが知られている有機アルカリ金属化合物、有機アルカリ土類金属化合物、有機ランタノイド系列希土類金属化合物などを用いることができる。
 有機アルカリ金属化合物としては、分子中に1個以上のリチウム原子を有する有機リチウム化合物が特に好適に用いられ、その具体例としては、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム、ジアルキルアミノリチウム、ジフェニルアミノリチウム、ジトリメチルシリルアミノリチウムなどの有機モノリチウム化合物や、メチレンジリチウム、テトラメチレンジリチウム、ヘキサメチレンジリチウム、イソプレニルジリチウム、1,4-ジリチオ-エチルシクロヘキサンなどの有機ジリチウム化合物、さらには、1,3,5-トリリチオベンゼンなどの有機トリリチウム化合物などが挙げられる。これらのなかでも、有機モノリチウム化合物が特に好適に用いられる。
 重合開始剤として用いる有機アルカリ土類金属化合物としては、例えば、n-ブチルマグネシウムブロミド、n-ヘキシルマグネシウムブロミド、エトキシカルシウム、ステアリン酸カルシウム、t-ブトキシストロンチウム、エトキシバリウム、イソプロポキシバリウム、エチルメルカプトバリウム、t-ブトキシバリウム、フェノキシバリウム、ジエチルアミノバリウム、ステアリン酸バリウム、エチルバリウムなどが挙げられる。
 また、他の重合開始剤の具体例としては、ネオジム、サマリニウム、ガドリニウムなどを含むランタノイド系列希土類金属化合物/アルキルアルミニウム/アルキルアルミニウムハライド/アルキルアルミニウムハイドライドからなる複合触媒や、チタン、バナジウム、サマリニウム、ガドリニウムなどを含むメタロセン型触媒などの有機溶媒中で均一系となり、リビング重合性を有するものなどが挙げられる。
 なお、これらの重合開始剤は、1種類を単独で使用してもよいし、2種以上を混合して使用してもよい。
 重合開始剤の使用量は、目的とする各ブロック共重合体の分子量に応じて決定すればよく、特に限定されないが、使用する全単量体100gあたり、通常、0.01~20ミリモル、好ましくは、0.05~15ミリモル、より好ましくは、0.1~10ミリモルである。
 重合に用いる溶媒は、重合開始剤に不活性なものであれば特に限定されるものではなく、例えば、鎖状炭化水素溶媒、環式炭化水素溶媒またはこれらの混合溶媒が使用される。鎖状炭化水素溶媒としては、n-ブタン、イソブタン、1-ブテン、イソブチレン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、トランス-2-ペンテン、シス-2-ペンテン、n-ペンタン、イソペンタン、neo-ペンタン、n-ヘキサンなどの、炭素数4~6の鎖状アルカンおよびアルケンを例示することができる。また、環式炭化水素溶媒の具体例としては、ベンゼン、トルエン、キシレンなどの芳香族化合物;シクロペンタン、シクロヘキサンなどの脂環式炭化水素化合物;を挙げることができる。これらの溶媒は、1種類を単独で使用しても2種以上を混合して使用してもよい。
 重合に用いる溶媒の量は、特に限定されないが、重合反応後の溶液における全ブロック共重合体の濃度が、通常5~60重量%、好ましくは10~55重量%、より好ましくは20~50重量%になるように設定する。
 フレキソ版用ブロック共重合体組成物を得る際に、各ブロック共重合体の各重合体ブロックの構造を制御するために、重合に用いる反応器にルイス塩基化合物を添加してもよい。このルイス塩基化合物としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテルなどのエーテル類;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジンなどの第三級アミン類;カリウム-t-アミルオキシド、カリウム-t-ブチルオキシドなどのアルカリ金属アルコキシド類;トリフェニルホスフィンなどのホスフィン類;などが挙げられる。これらのルイス塩基化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いられ、本発明の目的を損なわない範囲で適宜選択される。
 また、重合反応時にルイス塩基化合物を添加する時期は特に限定されず、目的とする各ブロック共重合体の構造に応じて適宜決定すれば良い。例えば、重合を開始する前に予め添加しても良いし、一部の重合体ブロックを重合してから添加しても良く、さらには、重合を開始する前に予め添加した上で一部の重合体ブロックを重合した後さらに添加しても良い。
 重合反応温度は、通常10~150℃、好ましくは30~130℃、より好ましくは40~90℃である。重合に要する時間は条件によって異なるが、通常、48時間以内、好ましくは0.5~10時間である。重合圧力は、上記重合温度範囲で単量体および溶媒を液相に維持するに充分な圧力の範囲で行えばよく、特に限定されない。
 以上のような条件で、溶媒中で重合開始剤を用いて、芳香族ビニル単量体を重合することにより、活性末端を有する芳香族ビニル重合体を含有する溶液を得ることができる。この活性末端を有する芳香族ビニル重合体は、ブロック共重合体組成物を構成する、ブロック共重合体Aの比較的小さい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar1)とブロック共重合体Bのビニル重合体ブロック(Ar)とを構成することとなるものである。したがって、この際用いる芳香族ビニル単量体の量は、これらの重合体ブロックの目的とする重量平均分子量に応じて決定される。
 次の工程は、以上のようにして得られる活性末端を有する芳香族ビニル重合体を含有する溶液に、共役ジエン単量体を添加する工程である。この共役ジエン単量体の添加により、活性末端から共役ジエン重合体鎖が形成され、活性末端を有する芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)を含有する溶液が得られる。この際用いる共役ジエン単量体の量は、得られる共役ジエン重合体鎖が、目的とするブロック共重合体Bの共役ジエン重合体ブロック(D)の重量平均分子量を有するように決定される。
 次の工程では、以上のようにして得られる活性末端を有する芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)を含有する溶液に、その活性末端に対して官能基が1モル当量未満となる量で、カップリング剤を添加する。この際添加するカップリング剤の例は、前述したとおりである。また、添加されるカップリング剤の量は、ブロック共重合体組成物を構成するブロック共重合体Aとブロック共重合体Bとの比に応じて決定され、重合体の活性末端に対してカップリング剤の官能基が1モル当量未満となる量であれば特に限定されないが、通常、重合体の活性末端に対してカップリング剤の官能基が0.10~0.90モル当量となる範囲であり、0.15~0.70モル当量となる範囲であることが好ましい。なお、カップリング反応の条件は、特に制限はなく、通常、前述の重合反応条件の範囲から選択される。
 以上のように、活性末端を有する芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)を含有する溶液に、その活性末端に対して官能基が1モル当量未満となる量で、カップリング剤を添加すると、活性末端を有する芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)のうちの一部の共重合体において、共役ジエン重合体ブロック同士がカップリング剤の残基を介して結合され、その結果、ブロック共重合体組成物のブロック共重合体Bが形成される。そして、活性末端を有する芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)の残り一部は、未反応のまま溶液中に残ることとなる。
 次の工程では、以上のようにして得られる溶液に、芳香族ビニル単量体を添加する。溶液に芳香族ビニル単量体を添加すると、カップリング剤と反応せずに残った活性末端を有する芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)の末端から、芳香族ビニル重合体鎖が形成される。この芳香族ビニル重合体鎖は、フレキソ版用ブロック共重合体組成物を構成する、ブロック共重合体Aの比較的大きい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar2)を構成することとなるものである。したがって、この際用いる芳香族ビニル単量体の量は、芳香族ビニル重合体ブロック(Ar2)の目的とする重量平均分子量に応じて決定される。この芳香族ビニル単量体を添加する工程により、ブロック共重合体Aを構成することとなる、非対称な芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体が形成され、その結果、ブロック共重合体Aおよびブロック共重合体Bを含有する溶液が得られる。なお、この芳香族ビニル単量体を添加する工程の前に、カップリング剤と反応しなかった活性末端を有する芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)を含む溶液に、共役ジエン単量体を添加しても良い。このように共役ジエン単量体を添加すると、添加しない場合に比べて、ブロック共重合体Aの共役ジエン重合体ブロック(D)の重量平均分子量を大きくすることができる。
 また、芳香族ビニル単量体を添加する工程の前に、得られるフレキソ版用ブロック共重合体組成物がブロック共重合体Cを含むものとする目的で、カップリング剤と反応しなかった活性末端を有する芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)を含む溶液に、活性末端の当量より少ない量で重合停止剤(水、メタノール、エタノール、プロパノール、塩酸、クエン酸など)を添加する工程を設けてよい。このように重合停止剤を添加すると、芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)の活性末端が失活し、それにより得られる芳香族ビニル-共役ジエンブロック共重合体(ジブロック体)を、ブロック共重合体Cとしてフレキソ版用ブロック共重合体組成物に含有させることができる。なお、この工程を設ける場合は、芳香族ビニル-共役ジエンブロック共重合体の活性末端に対してカップリング剤と重合停止剤の官能基の合計量が1モル当量未満となる量で添加する必要がある。
 次の工程では、以上のようにして得られるブロック共重合体Aおよびブロック共重合体Bを含有する溶液から、フレキソ版用ブロック共重合体組成物を回収する。回収の方法は、常法に従えばよく、特に限定されない。例えば、反応終了後に、必要に応じて、水、メタノール、エタノール、プロパノール、塩酸、クエン酸などの重合停止剤を添加し、さらに必要に応じて、酸化防止剤などの添加剤を添加してから、溶液に直接乾燥法やスチームストリッピングなどの公知の方法を適用することにより、回収することができる。スチームストリッピングなどを適用して、ブロック共重合体組成物がスラリーとして回収される場合は、押出機型スクイザーなどの任意の脱水機を用いて脱水して、所定値以下の含水率を有するクラムとし、さらにそのクラムをバンドドライヤーあるいはエクスパンション押出乾燥機などの任意の乾燥機を用いて乾燥すればよい。以上のようにして得られるフレキソ版用ブロック共重合体組成物は、常法に従い、ペレットなどに加工してから、使用に供しても良い。
 以上の製造方法によれば、ブロック共重合体Aとブロック共重合体Bとを同じ反応容器内で連続して得ることができるので、それぞれのブロック共重合体を個別に製造し混合する場合に比して、極めて優れた生産性で目的のフレキソ版用ブロック共重合体組成物を得ることができる。しかも、得られる組成物は、各ブロック共重合体の各重合体ブロックの重量平均分子量が、フレキソ版用ブロック共重合体組成物として特に望ましいバランスを有するものとなるので、特に、耐摩耗性およびゴム弾性のバランスに優れたフレキソ版用ブロック共重合体組成物を得ることができる。
 なお、以上の製造方法において、カップリング剤として、ケイ素原子に直接結合したアルコキシ基を1分子あたり2個以上有するアルコキシシラン化合物を用いた場合には、ブロック共重合体A~Cのいずれとも異なる、芳香族ビニル重合体ブロックおよび共役ジエン重合体ブロックを有してなる重合体成分がフレキソ版用ブロック共重合体組成物に含有される場合がある。この重合体成分は、その全単量体単位に対する芳香族ビニル単量体単位の含有量が、ブロック共重合体Aのそれとブロック共重合体Bのそれとの中間程度であり、また、その重量平均分子量は、ブロック共重合体Aの重量平均分子量に対して同等ないし3倍程度である。この重合体成分の構造は必ずしも明確ではないが、カップリングブロック共重合体が形成される際に、カップリング剤のアルコキシシリル基全てに、活性末端を有する芳香族ビニル-共役ジエンブロック共重合体が反応しないために、一部のアルコキシシリル基が未反応で残り、その後、活性末端を有する芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体が形成された際に、その活性末端がカップリング剤の未反応のアルコキシシリル基に反応するという機構により生じうる、下記の一般式(D)で表されるブロック共重合体Dであると推測される。
(Ar-Dn-1-X-Ar2-D-Ar1 (D)
 一般式(D)において、Ar2、Ar、およびDは、一般式(A)および一般式(B)におけるものと同じものであり、Xはカップリング剤の残基であり、nは2以上の整数である。
 以上のようなブロック共重合体Dであると推測される重合体成分が含まれることにより、フレキソ版用ブロック共重合体組成物が、特に、耐摩耗性およびゴム弾性のバランスに優れ、押出成形などの分子配向が起こり易い成形法を適用した場合であっても異方性が発現し難い、等方性に優れるものとなる。したがって、本発明のフレキソ版用ブロック共重合体組成物を上述の製造方法により製造する場合には、カップリング剤として、ケイ素原子に直接結合したアルコキシ基を1分子あたり2個以上有するアルコキシシラン化合物を用いることが特に好ましい。
 以上述べたような本発明のフレキソ版用ブロック共重合体組成物は、十分なゴム弾性を維持しながら、従来のフレキソ版用重合体組成物に比して高度に優れる耐摩耗性を備えており、また透明性が良好であり、異方性が小さいものである。したがって、本発明のフレキソ版用ブロック共重合体組成物を用いることにより、耐摩耗性および柔軟性が高度にバランスされ、高精細な印刷特性を有し、耐インク膨潤性に優れたフレキソ版を得ることができる。本発明のフレキソ版用ブロック共重合体組成物を用いてフレキソ版を得る手法は特に限定されないが、感光性の組成物としてから、シート状に成形し、このシートを感光させることによりフレキソ版を得る手法が一般的である。
 すなわち、本発明の感光性フレキソ版用組成物は、本発明のフレキソ版用ブロック共重合体組成物と、分子量5000以下のエチレン性不飽和化合物と、光重合開始剤とを含んでなるものである。フレキソ版用ブロック共重合体組成物の使用量は、フレキソ版用ブロック共重合体組成物およびエチレン性不飽和化合物の合計量に対して、好ましくは40~95重量%、より好ましくは50~95重量%である。
 分子量5000以下のエチレン性不飽和化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールなどの2価アルコールのジアクリレートまたはジメタアクリレート;トリメチロールプロパンのトリアクリレートまたはトリメタクリレート;ペンタエリスリトールのテトラアクリレートまたはテトラメタクリレート;N,N’-ヘキサメチレンビスアクリルアミド、N,N’-ヘキサメチレンビスメタクリルアミド、ジアセトンアクリルアミド、ジアセトンメタクリルアミド、スチレン、ビニルトルエン、ジビニルベンゼン、ジアリルフタレート、トリアリルシアヌレートなどが挙げられる。これらは、単独でも使用しても、2種以上を組み合わせて使用してもよい。
 エチレン性不飽和化合物の使用量は、フレキソ版用ブロック共重合体組成物およびエチレン性不飽和化合物の合計量に対して、好ましくは5~60重量%、より好ましくは5~50重量%である。
 フレキソ版用ブロック共重合体組成物およびエチレン性不飽和化合物の合計量は、感光性フレキソ版用組成物全量に対して、好ましくは50重量%以上、より好ましくは60重量%以上、特に好ましくは70重量%以上である。
 光重合開始剤としては、例えば、メチルハイドロキノン、ベンゾフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、α-メチルベンゾイン、α-メチルベンゾインメチルエーテル、α-メトキシベンゾインメチルエーテル、ベンゾインフエニルエーテル、α-t-ブチルベンゾイン、アントラキノン、ベンズアントラキノン、2-エチルアントラキノン、2-クロルアントラキノン、2-2’-ジメトキジフエニルアセトフエノン、2,2-ジエトキシフエニルアセトフエノン、2,2-ジエトキシアセトフエノン、ピパロインなどが挙げられる。これらは、単独で使用しても、2種以上を組み合わせて使用してもよい。光重合開始剤の使用量は、フレキソ版用ブロック共重合体組成物およびエチレン性不飽和化合物の合計量に対して、好ましくは0.1~5重量%である。
 本発明においては、上記以外の成分も必要に応じて感光性フレキソ版用組成物中に添加することができる。このような成分としては、例えば、可塑剤、熱重合抑制剤、酸化防止剤、オゾン亀裂防止剤、染料、顔料、充填剤、フォトクロミズムを示す添加剤、還元剤、レリーフ構造を改善する薬剤、架橋剤、流れ改良剤、離型剤、などが挙げられる。
 可塑剤は、通常、感光性フレキソ版用組成物の製造および成形をし易くしたり、未露光部分の除去を促進させたり、露光硬化部分の硬さを調節したりする目的で用いられる。可塑剤としては、例えば、ナフテン油やパラフィン油のような炭化水素油;液状1,2-ポリブタジエン、液状1,4-ポリブタジエン及びこれらの水酸化物またはカルボキシル化物;液状アクリロニトリル-ブタジエン共重合体及びこのカルボキシル化物;液状スチレン-ブタジエン共重合体およびこのカルボキシル化物;分子量3,000以下の低分子量ポリスチレン、α-メチルスチレン-ビニルトルエン共重合体、石油樹脂、ポリアクリレート樹脂、ポリエステル樹脂、ポリテルペン樹脂などがあげられる。これらは、単独で使用しても、2種以上を組み合わせて使用してもよい。可塑剤は、目標とする特性に応じて、通常、感光性フレキソ版用組成物中に2~50重量%の範囲で添加される。
 熱重合抑制剤は、感光性フレキソ版用組成物を調製する際に、意図しないエチレン性不飽和化合物の熱重合を防止する目的で用いられる。熱重合抑制剤としては、例えば、ヒドロキノン、p-メトキシフェノール、p-t-ブチルカテコール、2,6-ジ-t-ブチル-p-クレゾール、ピロガロールなどのフェノール類;ベンゾキノン、p-トルキノン、p-キシロキノンなどのキノン類;フェニル-α-ナフチルアミンなどのアミン類などが挙げられる。これらは、単独で使用しても、2種以上を組み合わせて使用してもよい。熱重合抑制剤の使用量は、通常、感光性フレキソ版用組成物中、0.001~2重量%である。
 本発明の感光性フレキソ版用組成物の製造方法は、特に限定されないが、例えば、ニーダー、ロールミル、バンバリー、単軸または多軸の押出機などを用いて、該組成物を構成する成分を混練することにより製造できる。得られた組成物は、通常、単軸または多軸の押出機、圧縮成形機、カレンダー成形機などの成形機を用いて、所望の厚さを有するシート状成形物に成形される。なお、単軸または多軸の押出機を用いた場合には、感光性フレキソ版用組成物の調製とシート状成形物への成形を同時に行なうこともできる。また、感光性フレキソ版用組成物を構成する成分を、クロロホルム、四塩化炭素、トリクロロエタン、ジエチルケトン、メチルエチルケトン、ベンゼン、トルエン、テトラヒドロフランなどの適当な溶媒に溶解し、この溶液を枠型の中に注入し溶媒を蒸発させることにより、シート状の感光性フレキソ版用組成物を製造することもできる。
 シートの厚みは、通常、0.1~20mm、好ましくは1~10mmである。
 シート状の感光性フレキソ版用組成物は、貯蔵または操作時における、感光性フレキソ版用組成物の汚染や損傷を防止するために、その表面にポリプロピレン、ポリエチレン、ポリエチレンテレフタレートなどの樹脂からなる透明なシートまたはフィルムを、ベースシート層または保護フィルム層として設けることができる。
 シート状の感光性フレキソ版用組成物の表面には、該組成物表面の粘着性を抑え、光照射後のネガフィルムの再利用を可能にするために、可撓性に富んだ薄い被覆材層を設けてもよい。この場合、感光性フレキソ版用組成物の露光を完了した後、未露光部分を溶剤で除去する際に、該被覆材層も同時に除去されなければならない。該被覆材層としては、通常、可溶性ポリアミド、セルロース誘導体などが多用される。
 本発明のフレキソ版は、上記本発明の感光性フレキソ版用組成物を感光することにより得ることができる。
 フレキソ版の製造は、通常、以下の工程に従い行なわれる。
(i):保護フィルム、シート状の感光性フレキソ版用組成物層およびベースシートからなる複層シートのベースシート側から、光を照射して、感光性フレキソ版用組成物層の特定の厚みに達するまで硬化させる。
(ii):保護フィルムを剥がし、ネガフィルムを密着させ、ネガフィルム上から、波長230~450nm、好ましくは350~450nmの光を照射して、感光性フレキソ版用組成物層を露光する。この露光により、感光性フレキソ版用組成物層の光が透過した部分が硬化する。
(iii):感光性フレキソ版用組成物層の未露光部は未硬化の状態であるので、その部分を除去する(現像)。
(iv):(iii)において、通常、溶剤を用いて未硬化の部分を除去するので、フレキソ版中に残存する溶剤を乾燥させる。
(v):所望により、後露光する。
 前記(iii)の現像(未露光部分の除去)工程では、通常、溶剤が用いられる。溶剤としては、例えば、n-ヘキサン、n-ヘプタン、オクタン、石油エーテル、ナフサ、リモネン、テルペン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼンなどの脂肪族炭化水素または芳香族炭化水素;アセトン、メチルエチルケトンなどのケトン類;ジ-n-ブチルエーテル、ジ-t-ブチルエーテルなどのエーテル類;メチルアセテート、エチルアセテートなどのエステル類;塩化メチレン、クロロホルム、トリクロロエタン、テトラクロロエチレン、ジクロロテトラフルオロエタン、トリクロロトリフルオロエタンなどのハロゲン化炭化水素などが挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。さらに、上記溶剤に、メタノール、エタノール、イソプロパノール、n-ブタノールなどのアルコールを所望量添加して使用することもできる。なお、上記溶剤の存在下に、ブラシなどを用いて機械的な力を加えることにより、現像の迅速化を図ることもできる。
 本発明のフレキソ版は、十分な柔軟性を有し、高度に優れる耐摩耗性を備えており、また耐インク膨潤性に優れるものである。したがって、本発明のフレキソ版を用いることにより厳しい条件下でも多数回の繰り返し印刷が可能となり、しかも、印刷時のインキ移送に優れ、優れた画質でフレキソ印刷を行なうことができる。なお、フレキソ印刷の被印刷物としては、例えば、紙、段ボール、木材、金属、ポリエチレンフィルム、ポリエチレンシート、ポリプロピレンフィルム、ポリプロピレンシートなど種々のものに適用できる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の部および%は、特に断りのない限り、重量基準である。
 各種の測定については、以下の方法に従って行った。
〔ブロック共重合体およびブロック共重合体組成物の重量平均分子量〕
 流速0.35ml/分のテトラヒドロフランをキャリアとする高速液体クロマトグラフィによりポリスチレン換算分子量として求めた。装置は、東ソー社製HLC8220、カラムは昭和電工社製Shodex KF-404HQを3本連結したもの(カラム温度40℃)、検出器は示差屈折計および紫外検出器を用い、分子量の較正はポリマーラボラトリー社製の標準ポリスチレン(500から300万)の12点で実施した。
〔各ブロック共重合体の重量比〕
 上記の高速液体クロマトグラフィにより得られたチャートの各ブロック共重合体に対応するピークの面積比から求めた。
〔スチレン重合体ブロックの重量平均分子量〕
 Rubber Chem. Technol.,45,1295(1972)に記載された方法に従い、ブロック共重合体をオゾンと反応させ、水素化リチウムアルミニウムで還元することにより、ブロック共重合体のイソプレン重合体ブロックを分解した。具体的には、以下の手順で行なった。すなわち、モレキュラーシーブで処理したジクロロメタン100mlを入れた反応容器に、試料を300mg溶解した。この反応容器を冷却槽に入れ-25℃としてから、反応容器に170ml/minの流量で酸素を流しながら、オゾン発生器により発生させたオゾンを導入した。反応開始から30分経過後、反応容器から流出する気体をヨウ化カリウム水溶液に導入することにより、反応が完了したことを確認した。次いで、窒素置換した別の反応容器に、ジエチルエーテル50mlと水素化リチウムアルミニウム470mgを仕込み、氷水で反応容器を冷却しながら、この反応容器にオゾンと反応させた溶液をゆっくり滴下した。そして、反応容器を水浴に入れ、徐々に昇温して、40℃で30分間還流させた。その後、溶液を撹拌しながら、反応容器に希塩酸を少量ずつ滴下し、水素の発生がほとんど認められなくなるまで滴下を続けた。この反応の後、溶液に生じた固形の生成物をろ別し、固形の生成物は、100mlのジエチルエーテルで10分間抽出した。この抽出液と、ろ別した際のろ液とをあわせ、溶媒を留去することにより、固形の試料を得た。このようにして得られた試料につき、上記の重量平均分子量の測定法に従い、重量平均分子量を測定し、その値をスチレン重合体ブロックの重量平均分子量とした。
〔共役ジエン重合体ブロックの重量平均分子量〕
 それぞれ上記のようにして求められた、ブロック共重合体の重量平均分子量から、対応するスチレン重合体ブロックの重量平均分子量を引き、その計算値に基づいて、共役ジエン重合体ブロック(イソプレン重合体ブロックまたはブタジエン重合体ブロック)の重量平均分子量を求めた。
〔ブロック共重合体のスチレン単位含有量〕
 上記の高速液体クロマトグラフィの測定における、示差屈折計と紫外検出器との検出強度比に基づいて求めた。なお、予め、異なるスチレン単位含有量を有する共重合体を用意し、それらを用いて、検量線を作成した。
〔ブロック共重合体組成物のスチレン単位含有量〕
 プロトンNMRの測定に基づき求めた。
〔共役ジエン重合体ブロックのビニル結合含有量〕
 プロトンNMRの測定に基づき求めた。
〔ブロック共重合体組成物のタイプA硬度〕
 タイプA硬度は、JIS K6253に従い、デュロメータ硬さ試験機(タイプA)を用いて測定した。
〔ブロック共重合体組成物の光線透過率〕
 ブロック共重合体組成物を脱水トルエンに溶解して、25重量%溶液とした。このトルエン溶液について、測定装置として株式会社日立ハイテクノロジーズ社製「日立分光光度計U-3010」を用い、セルとして石英製10mmセルを用いて、波長360nmの光線透過率を測定した。
〔ブロック共重合体組成物の異方性指標〕
 フレキソ版用ブロック共重合体組成物をT-ダイを装着した二軸押出機を用いて、150℃で加熱溶融し、連続して押し出すことにより、厚さ2mmのシートに成形した。なお、シートの成形条件の詳細は、以下の通りである。
 組成物処理速度    :25kg/hr
 引き取り速度     :1.0m/min
 押出機温度      :投入口140℃、T-ダイ160℃に調整
 スクリュー      :フルフライト
 押出機L/D     :20
 T-ダイ       :幅200mm、リップ2.5mm
 得られたシートを2枚用いて、一方について成形時の溶融流れ方向に沿って引張弾性率を測定し、他方を成形時の溶融流れ垂直方向に沿って引張弾性率を測定した。測定手順は以下の通りである。ORIENTEC社製のテンシロン万能試験機RTC-1210を用いて、引張速度300mm/minで100%まで伸張させ、その過程における100%伸張時の引張応力を測定し、100%伸張時におけるシートの引張弾性率を求めた。(溶融流れ方向の引張弾性率/溶融流れ垂直方向の引張弾性率)の比が1に近いものほど異方性が小さく、等方性に優れる。
〔感光性フレキソ版用組成物の引張弾性率〕
 感光性フレキソ版用組成物をT-ダイを装着した二軸押出機を用いて、150℃で加熱溶融し、連続して押し出すことにより、厚さ2mmのシートに成形した。なお、シートの成形条件の詳細は、以下の通りである。
 組成物処理速度    :25kg/hr
 引き取り速度     :1.0m/min
 押出機温度      :投入口140℃、T-ダイ160℃に調整
 スクリュー      :フルフライト
 押出機L/D     :20
 T-ダイ       :幅200mm、リップ2.5mm
 得られたシートを20Wの紫外線蛍光灯を装着した露光機(日本電子精機製型式JE-A3-SS)を用いて、10分間活性光線を照射して感光させ、60℃の温風乾燥機で30分間乾燥した。この感光させたシートを2枚用いて、一方について成形時の溶融流れ方向に沿って引張弾性率を測定し、他方を成形時の溶融流れ垂直方向に沿って引張弾性率を測定した。測定手順は以下の通りである。ORIENTEC社製のテンシロン万能試験機RTC-1210を用いて、引張速度300mm/minで100%まで伸張させ、その過程における100%伸張時の引張応力を測定し、100%伸張時におけるシートの引張弾性率を求めた。(溶融流れ方向の引張弾性率/溶融流れ垂直方向の引張弾性率)の比が1に近いものほど異方性が小さく、等方性に優れる。
〔感光性フレキソ版用組成物の永久伸び〕
 引張弾性率の測定に用いる場合と同様の方法により、感光性フレキソ版用組成物を感光させたシートを得た。このシートについて、ASTM 412に準拠して上記のテンシロン万能試験機を用いて永久伸びを測定した。具体的には、サンプル形状はDieAを使用し、伸張前の標線間距離を40mmとしてシートを伸び率200%で伸張させ、そのままの状態で10分間保持した後、はね返させることなく急に収縮させて、10分間放置後、標線間距離を測定し、下式に基づいて永久伸びを求めた。永久伸びの値が低いほど、ゴム弾性に優れる。
    永久伸び(%)=(L1-L0)/L0×100
      L0:伸張前の標線間距離(mm)
      L1:収縮させて10分間放置後の標線間距離(mm)
なお、この測定では、2枚のシートを用いて、一方を成形時の溶融流れ方向に沿って測定し、他方を成形時の溶融流れ垂直方向に沿って測定し、それぞれの値を記録した。
〔感光性フレキソ版用組成物の耐摩耗性〕
 引張弾性率の測定に用いる場合と同様の方法により、感光性フレキソ版用組成物を感光させたシートを得た。次いで、ヘイドン摩耗試験機(新東化学社製)を用い、得られたシートと1000番耐水ペーパーとを荷重100g、速度6000mm/secの条件で往復摩擦させ、1000サイクル後のシート表面の摩耗量を測定した。なお、この指標は、比較例1を100とする指数で示す。指数が大きいほど耐摩耗性に優れる。
〔感光性フレキソ版用組成物の耐インク膨潤性〕
 引張弾性率の測定に用いる場合と同様の方法により、感光性フレキソ版用組成物を感光させたシートを得た。次いで、イソプロピルアルコール中にあらかじめ重量を測定したシートを入れた。60分後に取り出し、余分なイソプロピルアルコールを拭き取ってから重量を測定した。その重量比率(試験後シート重量/試験前シート重量)にて耐インク膨潤性を測定した。この指標は、100%に近いほど耐インク膨潤性に優れる。
〔製造例1〕
 耐圧反応器に、シクロヘキサン23.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(以下、TMEDAと称する)2.5ミリモルおよびスチレン1.33kgを添加し、40℃で攪拌しているところに、n-ブチルリチウム166.7ミリモルを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、反応器にイソプレン7.00kgを1時間にわたり連続的に添加した。イソプレンの添加を完了した後、さらに1時間重合した。イソプレンの重合転化率は100%であった。次いで、カップリング剤としてテトラメトキシシラン30.5ミリモルを添加して2時間カップリング反応を行い、ブロック共重合体Bとなるスチレン-イソプレン-スチレンブロック共重合体を形成させた。次いで、反応器にメタノール31.7ミリモルを添加することにより、一部のスチレン-イソプレンブロック共重合体の活性末端を失活させた。この後、50~60℃を保つように温度制御しながら、スチレン1.67kgを1時間にわたり連続的に添加した。スチレンの添加を完了した後、さらに1時間重合し、ブロック共重合体Aとなるスチレン-イソプレン-スチレンブロック共重合体を形成させた。スチレンの重合転化率は100%であった。この後、重合停止剤としてメタノール333.4ミリモルを添加してよく混合し反応を停止した。なお、反応に用いた各試剤の量は、表1にまとめた。得られた反応液の一部を取り出し、各ブロック共重合体およびブロック共重合体組成物の重量平均分子量、各スチレン重合体ブロックの重量平均分子量、各イソプレン重合体ブロックの重量平均分子量、各ブロック共重合体のスチレン単位含有量、ブロック共重合体組成物のスチレン単位含有量、イソプレン重合体ブロックのビニル結合含有量、ならびに各ブロック共重合体の重量比を求めた。これらの値は、表2に示した。以上のようにして得られた反応液100部(重合体成分を30部含有)に、酸化防止剤として、2,6-ジ-tert-ブチル-p-クレゾール0.3部を加えて混合し、混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶媒を揮発させて析出物を得て、この析出物を粉砕し、85℃で熱風乾燥することにより、製造例1のブロック共重合体組成物を回収した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
〔製造例2〕
 スチレン、n-ブチルリチウム、イソプレン、テトラメトキシシラン、およびメタノールの量を、それぞれ表1に示すように変更したこと以外は製造例1と同様にして、製造例2のブロック共重合体組成物を回収した。製造例2のブロック共重合体組成物については、製造例1と同様の測定を行った。その結果を表2に示す。
〔製造例3〕
 耐圧反応器に、シクロヘキサン23.3kg、TMEDA1.9ミリモルおよびスチレン1.50kgを添加し、40℃で攪拌しているところに、n-ブチルリチウム128.8ミリモルを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、反応器にイソプレン7.00kgを1時間にわたり連続的に添加した。イソプレンの添加を完了した後、さらに1時間重合した。イソプレンの重合転化率は100%であった。この後、50~60℃を保つように温度制御しながら、スチレン1.50kgを1時間にわたり連続的に添加した。スチレンの添加を完了した後、さらに1時間重合し、スチレン-イソプレン-スチレンブロック共重合体を形成させた。スチレンの重合転化率は100%であった。この後、重合停止剤としてメタノール257.6ミリモルを添加してよく混合し反応を停止した。得られた反応液の一部を取り出し、製造例1と同様の測定を行なった。これらの値は、表2に示した。以下の操作は、製造例1と同様にして、製造例3のブロック共重合体組成物を回収した。
〔製造例4~5〕
 スチレン、n-ブチルリチウム、TMEDA、イソプレン、およびメタノールの量を、それぞれ表1に示すように変更したこと以外は製造例3と同様にして、製造例4~5のブロック共重合体組成物を回収した。製造例4~5のブロック共重合体組成物については、製造例1と同様の測定を行った。その結果を表2に示す。
〔製造例6〕
 イソプレン7.00kgに代えて、ブタジエン7.50kgを用い、スチレン、n-ブチルリチウム、TMEDA、およびメタノールの量を、それぞれ表1に示すように変更したこと以外は製造例3と同様にして、製造例6のブロック共重合体組成物を回収した。製造例6のブロック共重合体組成物については、製造例1と同様の測定を行った。その結果を表2に示す。
〔実施例1〕
 製造例1のブロック共重合体組成物100部、液状ポリブタジエン(NISSO-PB-B-1000:日本曹達(株)製)10部、および2,6-ジ-t-ブチル-p-クレゾール2部を、ニーダ-混練機を用いて、170℃で混練した。引き続き、混練温度を130℃に降温し、1,4-ブタンジオールジアクリレート5部、1,6-ヘキサンジオールジメタクリレート5部、メチルハイドロキノン0.01部およびベンゾインイソプロピルエーテル0.8部を添加して混練して、実施例1の感光性フレキソ版用組成物を得た。この感光性フレキソ版用組成物について、引張弾性率、永久伸び、耐摩耗性および耐インク膨潤性を測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
〔実施例2〕
 用いるブロック共重合体組成物を製造例2のブロック共重合体組成物に変更すること以外は、実施例1と同様にして、実施例2の感光性フレキソ版用組成物を得た。この実施例2の感光性フレキソ版用組成物について、引張弾性率、永久伸び、耐摩耗性および耐インク膨潤性を測定した。その結果を表3に示す。
〔比較例1~4〕
 用いるブロック共重合体組成物を製造例3~6のブロック共重合体組成物に変更すること以外は、実施例1と同様にして、比較例1~4の感光性フレキソ版用組成物を得た。この比較例1~4の感光性フレキソ版用組成物について、引張弾性率、永久伸び、耐摩耗性および耐インク膨潤性を測定した。その結果を表3に示す。
 表2および表3から、以下のようなことが分かる。すなわち、本発明のフレキソ版用ブロック共重合体組成物(製造例1~2)は、柔軟性および透明性が良好であり、異方性が小さく、本発明のフレキソ版用ブロック共重合体組成物から得られる本発明の感光性フレキソ版用組成物は、低い永久伸びと高い耐摩耗性とを兼ね備え、ゴム弾性と耐摩耗性に優れるといえ、また耐インク膨潤性および等方性にも優れていた(実施例1~2)。これに対して、本発明のフレキソ版用ブロック共重合体組成物に相当しないブロック共重合体組成物(製造例3~6)は、柔軟性、透明性および異方性の少なくともいずれかが十分ではなく、これらのブロック共重合体組成物を用いた場合は、ゴム弾性と耐摩耗性のバランスに劣り、また異方性を発現するものであった(比較例1~4)。

Claims (7)

  1.  下記の一般式(A)で表されるブロック共重合体Aおよび下記の一般式(B)で表されるブロック共重合体Bを含んでなり、フレキソ版用ブロック共重合体組成物中の重合体成分をなす全単量体単位に対して芳香族ビニル単量体単位が占める割合が18~70重量%であり、タイプA硬度が25~65であり、25重量%トルエン溶液としたときの波長360nmの光線透過率が50%以上であり、異方性指標が2.0以下であるフレキソ版用ブロック共重合体組成物。
    Ar1-D-Ar2 (A)
    (Ar-D-X (B)
    (一般式(A)および(B)において、Ar1およびArは、それぞれ、重量平均分子量が6000~20000の芳香族ビニル重合体ブロックであり、Ar2は、重量平均分子量が40000~400000の芳香族ビニル重合体ブロックであり、芳香族ビニル重合体ブロックAr2の重量平均分子量と芳香族ビニル重合体ブロックAr1の重量平均分子量との比(Mw(Ar2)/Mw(Ar1))が2~12であり、DおよびDは、それぞれ、ビニル結合含有量が1~20モル%の共役ジエン重合体ブロックであり、Xは単結合またはカップリング剤の残基であり、nは2以上の整数である。)
  2.  前記フレキソ版用ブロック共重合体組成物中の重合体成分をなす全単量体単位に対して芳香族ビニル単量体単位が占める割合が20~70重量%である請求項1に記載のフレキソ版用ブロック共重合体組成物。
  3.  前記ブロック共重合体Aと前記ブロック共重合体Bとの重量比(A/B)が36/64~85/15である請求項1または請求項2に記載のフレキソ版用ブロック共重合体組成物。
  4.  さらに、下記の一般式(C)で表わされるブロック共重合体Cを含んでなる請求項1から請求項3までのいずれかに記載のフレキソ版用ブロック共重合体組成物。
    Ar-D (C)
    (一般式(C)において、Arは、重量平均分子量が6000~20000の芳香族ビニル重合体ブロックであり、Dは、ビニル結合含有量が1~20モル%の共役ジエン重合体ブロックである。)
  5.  前記ブロック共重合体Bが、アルコキシル基、エステル基およびエポキシ基から選ばれる少なくとも1種の官能基を1分子中に2個以上有する化合物をカップリング剤として用いて得られたものである請求項1から請求項4までのいずれかに記載のフレキソ版用ブロック共重合体組成物。
  6.  請求項1から請求項5までのいずれかに記載のフレキソ版用ブロック共重合体組成物と、分子量5000以下のエチレン性不飽和化合物と、光重合開始剤とを含んでなる感光性フレキソ版用組成物。
  7.  請求項6に記載の感光性フレキソ版用組成物を用いてなるフレキソ版。
PCT/JP2018/009004 2017-03-14 2018-03-08 フレキソ版用ブロック共重合体組成物 WO2018168647A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505941A JPWO2018168647A1 (ja) 2017-03-14 2018-03-08 フレキソ版用ブロック共重合体組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017048964 2017-03-14
JP2017-048964 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018168647A1 true WO2018168647A1 (ja) 2018-09-20

Family

ID=63522071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009004 WO2018168647A1 (ja) 2017-03-14 2018-03-08 フレキソ版用ブロック共重合体組成物

Country Status (2)

Country Link
JP (1) JPWO2018168647A1 (ja)
WO (1) WO2018168647A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188604A1 (ja) * 2018-03-28 2019-10-03 日本ゼオン株式会社 フレキソ版用ブロック共重合体組成物
JP2021047322A (ja) * 2019-09-19 2021-03-25 旭化成株式会社 フレキソ印刷原版、及びブロック共重合体組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496684A (en) * 1993-09-17 1996-03-05 Chase Elastomer Corporation Photosensitive compositions and elements for flexographic printing
JP2000181060A (ja) * 1998-12-15 2000-06-30 Asahi Chem Ind Co Ltd フレキソ印刷用感光性エラストマー組成物
JP2002519465A (ja) * 1998-06-29 2002-07-02 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 光硬化性ポリマー組成物および光硬化性ポリマー組成物を含有するフレキソ印刷版
JP2006104359A (ja) * 2004-10-06 2006-04-20 Kraton Jsr Elastomers Kk 感光性印刷版材用ブロック共重合体およびその組成物およびそれを用いた感光性エラストマー組成物
WO2010098356A1 (ja) * 2009-02-27 2010-09-02 日本ゼオン株式会社 フレキソ版用ブロック共重合体組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496684A (en) * 1993-09-17 1996-03-05 Chase Elastomer Corporation Photosensitive compositions and elements for flexographic printing
JP2002519465A (ja) * 1998-06-29 2002-07-02 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 光硬化性ポリマー組成物および光硬化性ポリマー組成物を含有するフレキソ印刷版
JP2000181060A (ja) * 1998-12-15 2000-06-30 Asahi Chem Ind Co Ltd フレキソ印刷用感光性エラストマー組成物
JP2006104359A (ja) * 2004-10-06 2006-04-20 Kraton Jsr Elastomers Kk 感光性印刷版材用ブロック共重合体およびその組成物およびそれを用いた感光性エラストマー組成物
WO2010098356A1 (ja) * 2009-02-27 2010-09-02 日本ゼオン株式会社 フレキソ版用ブロック共重合体組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188604A1 (ja) * 2018-03-28 2019-10-03 日本ゼオン株式会社 フレキソ版用ブロック共重合体組成物
US20210040308A1 (en) * 2018-03-28 2021-02-11 Zeon Corporation Block copolymer composition for flexographic plate
JPWO2019188604A1 (ja) * 2018-03-28 2021-04-22 日本ゼオン株式会社 フレキソ版用ブロック共重合体組成物
JP7173132B2 (ja) 2018-03-28 2022-11-16 日本ゼオン株式会社 フレキソ版用ブロック共重合体組成物
JP2021047322A (ja) * 2019-09-19 2021-03-25 旭化成株式会社 フレキソ印刷原版、及びブロック共重合体組成物
JP7339825B2 (ja) 2019-09-19 2023-09-06 旭化成株式会社 フレキソ印刷原版、及びブロック共重合体組成物

Also Published As

Publication number Publication date
JPWO2018168647A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5403048B2 (ja) フレキソ版用ブロック共重合体組成物
EP1743218B1 (en) Photocurable compositions and flexographic printing plates comprising the same
KR100699610B1 (ko) 광중합성 조성물 및 이로부터 유도한 플렉소그래피 인쇄판
WO2018168647A1 (ja) フレキソ版用ブロック共重合体組成物
JP4782580B2 (ja) フレキソ印刷用感光性樹脂組成物
EP1677147A1 (en) Block copolymer composition for photosensitive flexographic plate
US7432037B2 (en) Curable resin composition and flexographic plate material using the same
JP7105240B2 (ja) 耐摩耗性に優れた感光性印刷版材用ブロック共重合体及びその製造方法
WO2006120935A1 (ja) 感光性樹脂組成物
JP7173132B2 (ja) フレキソ版用ブロック共重合体組成物
WO2021065623A1 (ja) 水添ブロック共重合体組成物、その製造方法およびフィルム
WO2023026928A1 (ja) パターン形成用感光性組成物およびフレキソ版
JP2006284615A (ja) 感光性エラストマー組成物の製造方法
JP2021042282A (ja) 柔軟性と耐摩耗性を両立した感光性印刷版材用ブロック共重合体及びその製造方法
JPH0577067B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505941

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767647

Country of ref document: EP

Kind code of ref document: A1