WO2018168288A1 - 超音波ホモジナイザー用振動先端工具 - Google Patents

超音波ホモジナイザー用振動先端工具 Download PDF

Info

Publication number
WO2018168288A1
WO2018168288A1 PCT/JP2018/004757 JP2018004757W WO2018168288A1 WO 2018168288 A1 WO2018168288 A1 WO 2018168288A1 JP 2018004757 W JP2018004757 W JP 2018004757W WO 2018168288 A1 WO2018168288 A1 WO 2018168288A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip tool
ultrasonic homogenizer
ceramic material
zirconia
vibration tip
Prior art date
Application number
PCT/JP2018/004757
Other languages
English (en)
French (fr)
Inventor
保宏 三井
Original Assignee
三井電気精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井電気精機株式会社 filed Critical 三井電気精機株式会社
Priority to JP2019505781A priority Critical patent/JPWO2018168288A1/ja
Publication of WO2018168288A1 publication Critical patent/WO2018168288A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles

Definitions

  • the present invention relates to an ultrasonic homogenizer having a metal base, an intermediate layer having a stepwise gradient of the composition of metal and ceramics on one end surface thereof, and a surface layer on which materials having various functions are arranged and formed.
  • the present invention relates to a vibration tip tool.
  • composite materials combining ceramic materials having various functions that cannot be obtained with metal materials and metal materials.
  • composite materials have been used for parts that need to have various functions from various viewpoints such as equipment with advanced functions and added value, and reduction of manufacturing costs.
  • Such composite parts are used for, for example, a vibration tip tool of an ultrasonic homogenizer.
  • Ultrasonic homogenizers are used to disperse and mix ceramic powders, pigments, magnetic powder materials, etc. in liquids and crush and cut bacteria and viruses using the shock wave of cavitation energy generated by ultrasonic waves. Is.
  • FIG. 4 shows an example of a general ultrasonic homogenizer.
  • the ultrasonic homogenizer 30 is provided with a vibration tip tool 33 made of a step horn 32, a titanium alloy, stainless steel, or the like below the vibrator 31.
  • An ultrasonic oscillator 35 is connected to the side of the vibrator 31 opposite to the vibration tip tool 33, and the tip portion of the vibration tip tool 33 is placed in a water tank 37 such as a beaker or a tank.
  • the vibrator 31 is operated to be vibrated at, for example, 20 kHz
  • the vibration tip tool 33 vibrates via the step horn 32, and the ceramic powder, pigment, and magnetic powder material put into the water tank 37 as described above.
  • the ultrasonic homogenizer 30 is often used in such a water tank 37.
  • a dispersion holder is disposed in the middle of a piping line in a plant and used for the purpose of continuous dispersion there.
  • vibration tip tools 33 there are currently two types of vibration tip tools 33, one made of titanium material and the other made by joining a zirconia plate to the tip of the titanium material by brazing, both of which are distributed as consumables.
  • the zirconia plate of the vibration tip tool 33 is not sufficiently bonded to the titanium material, when the vibration amplitude of the ultrasonic homogenizer 30 increases, stress concentrates on the interface of the different material, and the titanium material and the zirconia plate There existed a problem that peeling of a junction part generate
  • the present applicant has used powder sintering technology to improve the durability and performance of a conventional zirconia-titanium joint that does not depend on the mechanical properties of brazing.
  • the proposed method for manufacturing a vibrating tip tool for an ultrasonic homogenizer was proposed.
  • the composition of a two-component mixture of zirconia powder and titanium powder is sequentially layered in a stepwise manner, and sintered while being pressed by, for example, a discharge plasma sintering method (hereinafter referred to as SPS method).
  • SPS method discharge plasma sintering method
  • the tip surface of the tip tool thus obtained is excellent in strength, but when ultrasonic vibration is applied, a fretting (minute relative sliding vibration) phenomenon occurs in the screwed portion over time, and the tip tool vibrates. This also adversely affects the vibration of the tool, and the performance as a vibration tip tool may be reduced.
  • the tip side of the vibrating tip tool in the liquid is exposed to a high-speed gas-liquid two-phase flow, so there is a concern about erosion on the tip surface of the vibrating tip tool. Therefore, a material having high strength characteristics and excellent erosion resistance is required.
  • a composite material excellent in strength and erosion resistance is naturally required not only for the above-mentioned vibration tip tool, but also for devices and parts thereof that come into contact with a high-speed two-phase flow. It is desired.
  • the present invention provides a vibration tip tool for an ultrasonic homogenizer that has been obtained through extensive studies in view of the above circumstances, and that is manufactured using the SPS method and has high strength and excellent durability and erosion resistance. For the purpose.
  • the object is to form a metal base material part and a composition of a metal material of the same kind as the base material part and at least one ceramic material formed on one end surface thereof. Is formed of at least one layer on the outermost surface of the intermediate layer portion, and the metal material of the base material portion is formed so as to be gradually reduced with respect to the latter. It is achieved by a vibration tip tool for an ultrasonic homogenizer, wherein a surface layer portion containing as a main component the ceramic material not containing sinter is integrally sintered while being pressed by a discharge plasma sintering method.
  • the surface layer portion may have a mixed composition of the ceramic material and at least one kind of ceramic material different from the ceramic material.
  • the surface layer portion may have a multi-layer gradient composition structure in which the composition of the ceramic material and at least one kind of ceramic material different from the ceramic material is inclined.
  • the substrate includes a base portion, an intermediate layer portion having a gradient composition structure formed on one end surface thereof, and at least one layer formed on the outermost surface thereof. Since the surface layer part is sintered and integrated by pressing with the SPS method, various characteristics of the material of the surface layer part can be utilized, and an ultrasonic homogenizer having high strength and excellent durability and erosion resistance. A vibration tip tool can be obtained.
  • this ultrasonic homogenizer vibration tip tool does not peel off the brazed part like the conventional tip tool by brazing, has excellent erosion resistance, has a stable and uniform shape, and oscillates for a long time, for example In addition, it does not suffer from performance degradation due to fretting phenomenon that can withstand vibrations and affect ultrasonic vibration.
  • FIG. 1 shows an embodiment of a vibrating tip tool for an ultrasonic homogenizer according to this embodiment.
  • the ultrasonic tip tool for ultrasonic homogenizer shown in this figure includes a base material part 2, an intermediate layer part 3, and a surface layer part 4.
  • the base part 2 is made of metal.
  • a metal material used for the base material part 2 For example, magnesium, copper, zinc, aluminum, titanium, zirconium, hafnium, tin, lead, vanadium, niobium, tantalum, chromium, tungsten, molybdenum, manganese, iron In addition to simple substances such as cobalt, nickel and platinum, these alloys are also included.
  • alloys in addition to alloys composed of metals such as titanium alloy and brass, in the present invention, alloys such as stainless steel, carbon steel, and low alloy items containing a small amount of non-metal such as carbon are conventionally used. Can be used.
  • the metal material of the base material portion 2 can be appropriately selected from among these, for example, titanium, depending on the use of the finally obtained vibration tip tool for an ultrasonic homogenizer of the present invention.
  • the outer diameter shape of the base material portion 2 has a circular cross section in a direction orthogonal to the length direction (axial direction), a constant diameter over the entire length, and end faces at both ends in the axial direction.
  • the present invention is not limited to this, and as long as at least one end face is provided, an appropriate outer shape can be adopted depending on the use of the vibration tip tool for ultrasonic homogenizer of the present invention.
  • the base material portion 2 may have a suitable position in the axial direction protruding in a radial direction in a bowl shape, or a shape such as a substantially conical shape, a substantially prismatic shape, a substantially pyramid shape, or a combination thereof. The shape which consists of may be sufficient.
  • the size of the base material part 2 is not particularly limited, and can be set as appropriate according to the application of the vibration tip tool for an ultrasonic homogenizer of the present invention and the required function.
  • the intermediate layer portion 3 is composed of a composition of the same metal material as the metal of the base material portion 2 and at least one ceramic material.
  • Ceramic materials include aluminum oxide (alumina), zirconium oxide (zirconia), titanium oxide (titania), silicon dioxide (silica), magnesium oxide (magnesia), cerium oxide (ceria) oxides, tungsten carbide, carbonized Examples thereof include carbides such as silicon, boron carbide, and titanium carbide, borides such as titanium boride, tantalum boride, and hafnium boride, and nitrides such as silicon nitride, titanium nitride, and aluminum nitride. These ceramic materials can be used alone or in combination of two or more in consideration of the application and required functions of the finally obtained vibration tip tool for ultrasonic homogenizer.
  • a preventive measure in order to prevent phase transition and stabilize the crystal structure of zirconia, a small amount of a low-valent metal oxide is added to zirconia as a stabilizer. Examples of such a stabilizer include calcium oxide, magnesium oxide, yttrium oxide and the like.
  • the amount of stabilizer added depends on the type of stabilizer, but in the case of stabilized zirconia, it can usually be set to about 1 to 10% (molar ratio). For example, when yttrium oxide is used as a stabilizer within the above addition range, if the addition amount is set large, the crystal structure of zirconia can be completely stabilized, and if the addition amount is set small (1-5% (moles) Ratio) degree), instead of stabilizing the crystal structure of a part of zirconia, a partially stabilized zirconia having a higher viscosity and higher toughness is obtained.
  • the ceramic material in the present invention includes (fully) stabilized zirconia or partially stabilized zirconia containing such a stabilizer.
  • the intermediate layer portion 3 is configured so that the composition of the metal material and the ceramic material of the same type as the metal of the base material portion 2 is reduced stepwise from the former (metal material) relative to the latter (at least one kind of ceramic material). It has a graded composition structure of a plurality of graded layers (3a to 3d).
  • the intermediate layer 3 is shown in a four-layer structure of 3a to 3d as described above. The number of layers can be set within a common sense range.
  • the lowermost layer 3a in contact with the base material part 2 in the gradient composition structure can be composed of only the same metal material as the metal of the base material part 2.
  • the composition ratio of the ceramic material is set so that the layer 3a made of the metal material has affinity so as to give affinity to each other adjacent to each other as follows.
  • the second graded composition layer 3c in which the ceramic material and the metal material are set to an equivalent composition ratio so as to give affinity to the first graded composition layer 3b and the first graded composition layer 3b set smaller than the first graded composition layer 3b
  • a third graded composition layer 3d in which the composition ratio of the ceramic material is set larger than that of the metal material is sequentially laminated from the substrate part 2 side.
  • the third gradient composition layer 3d in the example shown in FIG. 1 has an affinity for the surface layer portion 4 formed thereon (as will be described later, when the surface layer portion 4 is formed of a plurality of layers, the lowermost layer).
  • the ceramic material used in the intermediate layer part 3 is set to be the same type as the main component of the ceramic material used in the surface layer part 4.
  • Such a ceramic material can be selected according to the use of the vibration tip tool for an ultrasonic homogenizer of the present invention finally obtained and the required function (function of the ceramic material).
  • zirconia or stabilized zirconia can be used as a ceramic material having high strength and high toughness and having excellent thermal characteristics, chemical resistance and ionic conductivity.
  • the composition of the layer 3a is 100% by weight of titanium and the composition of the layer 3b is, for example, 80% by weight of titanium:
  • the composition of 20% by weight of zirconia, the composition of the layer 3c can be set, for example, 50% by weight of titanium: 50% by weight of zirconia, and the composition of the layer 3d can be, for example, 30% by weight of titanium: 70% by weight of zirconia.
  • composition ratio of titanium and zirconia in each of the layers 3b to 3d is appropriately within the range of ⁇ 5% of each value (for example, in the case of the layer 3b, titanium is 75 to 85% by weight: zirconia is in the range of 15 to 25% by weight). It is possible to set.
  • the ceramic material as the main component is the same material as that used in the intermediate layer portion 3.
  • the term “main component” means a state in which the ceramic material of the intermediate layer portion 3 occupies at least 50% by weight or more of the total amount of the material constituting the surface layer portion 4. Including the case where the total amount of.
  • the ceramic material as the main component of the surface layer portion 4 can be appropriately selected from various known materials including those exemplified above according to the functions required for the ceramic material. In the present invention, since zirconia or stabilized zirconia has high strength and high toughness, zirconia or stabilized sirconia can be used as a ceramic material in the intermediate layer portion 3.
  • the main component ceramic material At least one metal material or a different kind of ceramic material can be contained.
  • the metal material and the different ceramic material can be selected from various known materials including those exemplified above.
  • the surface layer part 4 stabilized zirconia as a main component (using yttrium oxide as a stabilizer) and alumina as a different ceramic material are used in combination, and the composition ratio of the two is 50 to 95% by weight (preferably Is 60 to 90% by weight, more preferably 70 to 85% by weight) and alumina is 10 to 50% by weight (preferably 10 to 40% by weight, more preferably 15 to 30% by weight).
  • the erosion resistance of the portion 4 is remarkably improved.
  • the vibration tip tool for an ultrasonic homogenizer according to the present invention has not only high strength and high toughness but also extremely high durability and erosion resistance as a function. ) Can be used effectively in areas where there is concern.
  • the vibration tip tool for an ultrasonic homogenizer of the present invention is also considered to be applicable to a part where physical erosion is a concern, such as a part that comes into contact with a slurry flow or a pipe that easily causes cavitation.
  • the total length of the vibration tip tool for ultrasonic homogenizer is approximately equal to the length obtained from the sound speed and the resonance frequency inherent to the substrate. It is preferable to set them equally. Specifically, the length obtained here is a value corresponding to 1 ⁇ 2 wavelength obtained by sound velocity / (2 ⁇ resonance frequency). Further, “substantially equivalent” means to allow and include a range corresponding to ⁇ 10% with respect to the obtained length, in other words, a range of 90 to 110% of the obtained length. By setting the overall length in this way, it is possible to reliably output the vibration of the ultrasonic vibrator into the liquid.
  • the composition of the ceramic material having the surface layer portion 4 as the main component and the different ceramic material is graded stepwise.
  • a mixture of 30% alumina powder: 70% stabilized zirconia powder is first filled on the layer 3d (titanium 30%: zirconia 70% in the intermediate layer portion 3 in the above example.
  • a second layer may be formed by filling a mixture of 20% alumina powder and 80% stabilized zirconia powder thereon. If necessary, a gradient composition structure of three layers or four layers may be used.
  • the vibration tip tool for an ultrasonic homogenizer of the present invention can be manufactured by, for example, the SPS method using the discharge plasma sintering apparatus 5 illustrated in FIG. 2, but is not limited to this method.
  • this discharge plasma sintering apparatus 5 has features such as rapid sintering, fine structure controlled sintering, temperature gradient sintering, and solid phase sintering. Therefore, it has become an effective means for developing metal solid solutions, composite ceramics, and functionally gradient materials.
  • the discharge plasma sintering apparatus 5 shown in FIG. 2 includes a water-cooled vacuum chamber-6, and an upper punch electrode 8 is mounted on an upper frame 7 of the water-cooled vacuum chamber-6 and a lower portion of the water-cooled vacuum chamber-6.
  • a lower punch electrode 10 is attached to the frame 9.
  • an upper punch 11 is provided below the upper punch electrode 8, and a base material portion 2 is disposed above the lower punch electrode 10 so as to serve also as a lower punch.
  • the lower part of the upper punch 11 and the base material part 2 are mounted in the sintering die 13.
  • the intermediate layer portion 3 and the surface layer portion 4 to be sintered and integrated with the base material portion 2 can be arranged in this order between the lower surface of the upper punch 9 in the sintering die 12 and the upper surface of the base material portion 2. It is configured.
  • the sintered die 12 has a thermocouple 13 inserted and fixed on the outer surface thereof, whereby the heating temperature inside the sintered die 12 can be detected. Further, instead of this thermocouple 13 or in addition to this thermocouple 13, an infrared radiation thermometer may be arranged outside the sintering die 12, and the heating temperature may be detected.
  • the sintering die 12 has a cylindrical shape in which an insertion hole through which the base material portion 2 passes is vertically penetrated. A portion near the upper end of the cylindrical shape is formed to have a relatively smaller diameter than the lower side. The relatively small-diameter portion and the other portions may be formed by combining separate cylindrical bodies, or may be integrally formed. Further, the insertion hole of the sintering die 12 can be changed so that the shape thereof is in close contact with the peripheral surface of the base material portion 2.
  • the upper punch electrode 8 and the lower punch electrode 10 are connected to a sintering power source (pulse power source) 19 together with the pressurizing mechanism 15. Further, the pressurization mechanism 15, the position measurement mechanism 19, the atmosphere control mechanism 20, and the water cooling mechanism 21 are connected to the control device 23.
  • a sintering power source pulse power source
  • the base material portion 2 inserted into the sintering die 12 from the lower side instead of the lower punch.
  • a metal powder of the same kind as the metal of the base material part 2 is filled to form the layer 3a, and a mixture in which both components are mixed so that the composition ratio of the ceramic powder becomes smaller than the composition ratio of the metal powder.
  • a layer 3c is formed by filling the layer 3b with a mixture in which both components are mixed so that the composition ratio of the ceramic powder and the metal powder is substantially equal, and the composition ratio of the ceramic powder is on the layer 3b.
  • a layer 3d is formed by filling a mixture of both components so as to be larger than that of the metal powder.
  • the ceramic powder is filled on the layer 3d to form the surface layer portion 4, and sintering is performed by increasing the sintering temperature while pressing under a predetermined pressing condition.
  • the pressurization condition and sintering temperature at this time can be set in consideration of the type of metal material of the base material part 2, the type of ceramic material to be used, the outer shape of the vibration tip tool for ultrasonic homogenizer to be manufactured, and the like. it can.
  • titanium powder and zirconia powder are used for a titanium base material
  • the manufacturing method is specifically as follows. Titanium powder layer 3a made of 100% titanium powder, first gradient composition layer 3b made of 20% by weight of zirconia powder, and 50% by weight of titanium powder: zirconia powder on base material portion 2 made of titanium
  • a second gradient composition layer 3c composed of 50% by weight and a titanium powder 30% by weight: a third gradient composition layer 3d composed of 70% by weight of zirconia powder are sequentially laminated to form an intermediate layer portion 3 having a gradient composition structure. Further, the intermediate layer portion 3 is filled with zirconia powder to form the surface layer portion 4 made of 100% zirconia powder.
  • a vibrating tip tool 1 for an ultrasonic homogenizer in which an intermediate layer portion 3 made of titanium and zirconia and a surface layer portion 4 made of zirconia are integrated with one end of a base material portion 2 made of titanium.
  • the sintering conditions of the discharge plasma sintering apparatus 5 can be set as follows, for example. Heating temperature 1300 °C Applied pressure 30MPa Holding time 3min Temperature rise Sintering pattern Atmosphere Vacuum
  • the heating temperature can be appropriately set within the range of 1100 to 1400 ° C., and the applied pressure within the range of 30 to 40 MPa. At the heating temperature and pressure outside the range of the heating temperature and the applied pressure, the result of the experiment conducted so far has not yielded a good ultrasonic tip tool for an ultrasonic homogenizer.
  • an intermediate layer having a gradient composition structure is formed on a titanium base material portion from titanium powder and zirconia powder, and at least one surface layer portion made of stabilized zirconia and alumina is formed thereon.
  • the manufacturing method including the sintering conditions of the discharge plasma sintering apparatus 5 is generally as described above.
  • Example 1 The intermediate layer part 3 and the surface layer part 4 were sintered and integrated with a cylindrical titanium base material in the following manner to produce a vibrating tip tool for an ultrasonic homogenizer of the present invention.
  • Example 1 On the intermediate layer portion 3 thus filled, 5 g of zirconia powder was filled to form the surface layer portion 4. Thereafter, the substrate portion and the upper punch are pressed by the SPS method (pressure 30 MPa) and heated in a predetermined sintering pattern (heating temperature 1300 ° C.) to sinter the substrate portion, the intermediate layer portion, and the surface layer portion. An integrated test body of Example 1 was obtained.
  • Example 2 In the same manner as in Example 1, after the titanium and zirconia gradient composition structure was filled on the upper end surface of the titanium base material portion, yttrium oxide 3% (molar ratio) was added to zirconia. A surface layer portion 4 was formed by filling 5 g of a mixed powder of 80% by weight of yttria-stabilized zirconia and 20% by weight of alumina. Then, the test body of Example 2 in which the base material part, the intermediate layer part, and the surface layer part were sintered and integrated was obtained by applying pressure and heating in the same manner as in Example 1.
  • Comparative Example 1 The titanium base material was used as a test sample of Comparative Example 1.
  • the erosion weight loss values increased linearly with the passage of time for the test bodies of Examples 1 and 2 and Comparative Example 1, and the erosion weight loss after the lapse of 48 hours was compared.
  • the test body of Example 1 is 0.202 g
  • the test body of Example 1 has a small erosion weight loss and high erosion resistance
  • the test body of Example 2 has a very small erosion weight loss and remarkably superior erosion resistance. I understand that. In both Examples 1 and 2, no erosion was observed visually, and no phenomenon such as cracking or peeling of the sintered portion was observed.
  • an eddy current displacement sensor was attached to the tip surface of the tip tool, and the oscillation amplitude of the tip surface in water was measured to confirm the generation of mechanical energy.
  • the resonance frequency of the tip was 19.23 kHz, and it was confirmed that the performance could be maintained within an allowable range of 20 kHz ⁇ 1 kHz.
  • the tip tool of the present invention is obtained by sintering and integrating the inclined material portion with the base material portion, the fretting phenomenon that affects the ultrasonic vibration occurs even if this is vibrated for a long time at 20 kHz. Is obviously not allowed.
  • the ultrasonic homogenizer vibration tip tool in which the base material portion, the intermediate layer portion, and the surface layer portion are sintered and integrated is stable without cracks and peeling, and has high strength and high toughness.
  • the vibration tip tool for ultrasonic homogenizer of the present invention when it is used as a vibration tip tool for an ultrasonic homogenizer, has extremely excellent durability without occurrence of fretting phenomenon that adversely affects ultrasonic vibration. Is obtained.
  • the vibration tip tool for ultrasonic homogenizer of the present invention and the manufacturing method thereof are parts that are exposed to, for example, a high-speed gas-liquid two-phase flow that requires high erosion resistance in addition to high strength and high toughness,
  • the present invention can be applied to plants in various technical fields such as a site where cavitation occurs and a site where it comes into contact with slurry.
  • Vibrating tool for ultrasonic homogenizer Base material 3 Intermediate layer (gradient composition) 4 Surface Layer 5 Discharge Plasma Sintering Apparatus 6 Water-cooled Vacuum Chamber 7 Upper Frame 8 Upper Punch Electrode 9 Lower Frame 10 Lower Punch Electrode 11 Upper Punch 12 Sintering Die 13 Thermocouple 15 Pressing Mechanism 17 Sintering Power Source (Pulse Power Source) 19 Position Measurement Mechanism 20 Atmosphere Control Mechanism 21 Water Cooling Mechanism 23 Control Device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

【課題】 SPS法を用いた、高強度で耐久性及び耐エロージョン性に優れる超音波ホモジナイザー用振動先端工具を提供する。 【解決手段】 本発明の超音波ホモジナイザー用振動先端工具は、金属製の基材部と、その一端面上に形成され、前記基材部と同種の金属材料と少なくとも1種のセラミックス材料との組成を前者が後者に対して段階的に減少するように傾斜させた複数層の傾斜組成構造を有する中間層部と、当該中間層部の最外面上に少なくとも1層形成され、前記基材部の金属材料を含まない前記セラミックス材料を主成分とする表層部と、を放電プラズマ焼結法により加圧しつつ一体的に焼結させたものである。特にチタン製の基材部に、チタンとジルコニアとからなる中間層及び安定化ジルコニアとアルミナとからなる表層部を焼結一体化することで、高強度、高靱性でかつ耐エロージョン性に優れたものとなる。

Description

超音波ホモジナイザー用振動先端工具
 本発明は、金属製の基材と、その一端面に金属とセラミックスとの組成に段階的に傾斜をつけた中間層と、さらに種々の機能をもたらす材料を配置形成する表層を有する超音波ホモジナイザー用振動先端工具に関する。
 金属材料では得られない種々の機能を持つセラミックス材料と、金属材料とを組み合わせた複合材料についてはこれまで多くの提案がなされてきた。近年は、高度な機能や付加価値を備えた機器や製造コストの低減など種々の観点から、種々の機能を持たせる必要のある部品に複合材料が用いられるようになっている。
 このような部品の複合材料化は、例えば超音波ホモジナイザーの振動先端工具などに利用されている。超音波ホモジナイザーは、超音波によって生み出されるキャビテーション(空洞現象)エネルギーの衝撃波を利用して液中のセラミックス粉、顔料、磁粉材料などの分散、混合や、バクテリア、ウイルスなどの破砕、切断に使用されるものである。
 図4に、一般的な超音波ホモジナイザーの一例を示す。この図に示すように、超音波ホモジナイザー30は、振動子31の下部にステップホーン32やチタン合金やステンレスなどからなる振動先端工具33が取り付けられる。振動子31の振動先端工具33とは反対側には超音波発振器35が接続されており、振動先端工具33の先端部分がビーカやタンクなどの水槽37内に入れられて、超音波発振器35を作動させて振動子31に例えば20kHzの振動が与えられることで、ステップホーン32を介して振動先端工具33が振動し、前記のように水槽37内に投入されているセラミックス粉、顔料、磁粉材料などの分散、混合や、バクテリア、ウイルスなどの破砕又は切断が行われる。超音波ホモジナイザー30は、このような水槽37での使用が多いが、近年は、プラントにおける配管ラインの途中に分散ホルダーを配置し、そこで連続分散の目的で用いるケースもある。
 振動先端工具33には、現在、チタン素材で形成されたものとチタン素材の先端にジルコニア板をロウ付けによって接合して形成されたものとがあり、いずれも消耗品として流通している。しかしながら、振動先端工具33のジルコニア板がチタン素材との間の接合が十分でないため、超音波ホモジナイザー30の振動の振幅が大きくなると異材質の界面に応力が集中し、チタン素材とジルコニア板との接合部の剥離が発生するという問題があり、工具としての信頼性に乏しいという課題があった。
 この課題を解決すべく、本出願人は、かつて粉末焼結技術を用いて、従来のジルコニアとチタンとの接合部がロウ付けの機械的性質に依存しない、新規な耐久性と性能の向上を図った超音波ホモジナイザー用振動先端工具の製造方法に関し提案した。この製造方法は、ジルコニア粉末とチタン粉末との2成分混合物の組成に段階的に傾斜をつけて順次積層し、例えば放電プラズマ焼結法(以下、SPS法という。)により加圧しつつ焼結することで一体化した傾斜機能を得、これをチタン製の基材部の軸心方向に直交する先端面に螺合により接合して振動先端工具を形成するものである。
 こうして得られる先端工具の先端面は強度的には優れるものであるが、超音波振動を印加した場合に、経時により螺合部分においてフレッティング(微小な相対滑り振動)現象が生じ、振動先端工具の振動にも悪影響を及ぼし、振動先端工具としての性能が低下することがあった。
 また、超音波ホモジナイザーを作動させると、液中での振動先端工具の先端側は高速の気液二相流に晒されることになるため、振動先端工具の先端面におけるエロージョンが懸念される。よって、高い強度特性を有しつつ、耐エロージョン性にも優れる材料が要求される。そして、強度及び耐エロージョン性に優れる複合材料は、前記した振動先端工具のみならず、高速二相流に接することになる機器やその部品にも当然に必要とされるものであり、その開発が望まれている。
特開2004-33948号公報
 本発明は、前記事情に鑑み鋭意検討を重ねた結果なし得たものであり、SPS法を用いて製造される高強度で耐久性及び耐エロージョン性に優れる超音波ホモジナイザー用振動先端工具を提供することを目的とする。
 前記目的は、本発明の一局面によれば、金属製の基材部と、その一端面上に形成され、前記基材部と同種の金属材料と少なくとも1種のセラミックス材料との組成を前者が後者に対して段階的に減少するように傾斜させた複数層の傾斜組成構造を有する中間層部と、当該中間層部の最外面上に少なくとも1層形成され、前記基材部の金属材料を含まない前記セラミックス材料を主成分とする表層部と、を放電プラズマ焼結法により加圧しつつ一体的に焼結させてなることを特徴とする超音波ホモジナイザー用振動先端工具によって達成される。
 前記表層部は、前記セラミックス材料とこれとは異種の少なくとも1種のセラミックス材料との混合組成とすることができる。また前記表層部は、前記セラミックス材料と、これとは異種のセラミックス材料の少なくとも1種との組成を傾斜させた複数層の傾斜組成構造とすることができる。
 本発明の超音波ホモジナイザー用振動先端工具によれば、基材部と、その一端面に形成される傾斜組成構造を備える中間層部と、さらにその最外面上に形成される少なくとも1層からなる表層部とをSPS法により加圧しつつ焼結一体化することとしたので、表層部の材料の種々の特性を活かすことができ、高強度で優れた耐久性及び耐エロージョン性を備える超音波ホモジナイザー用振動先端工具が得られる。そして、この超音波ホモジナイザー用振動先端工具は、従来のロウ付けによる先端工具のようなロウ付け部分の剥離がなく、耐エロージョン性に優れ、安定した均一な形状を持つと共に、例えば長時間の発振にも耐えられさらに超音波振動に影響するフレッティング現象による性能低下が生じない。
本発明の超音波ホモジナイザー用振動先端工具の一実施形態を模式的に示す図である。 本発明の超音波ホモジナイザー用振動先端工具を製造するための放電プラズマ焼結装置の一例の概略正面断面図である。 超音波振動に晒された場合の時間経過に伴うエロージョン減量特性を示す図である。 超音波ホモジナイザーの一例の概略を示した正面図である。
 以下、添付の図1を参照しながら、本発明の超音波ホモジナイザー用振動先端工具の一実施形態について詳細に説明する。図1は、本実施形態の超音波ホモジナイザー用振動先端工具の一実施形態を示している。この図に示す超音波ホモジナイザー用振動先端工具は、基材部2、中間層部3及び表層部4の各部を備えている。
 本実施形態において、基材部2としては、金属製のものが使用される。基材部2に用いられる金属材料としては特に制限はなく、例えばマグネシウム、銅、亜鉛、アルミニウム、チタン、ジルコニウム、ハフニウム、錫、鉛、バナジウム、ニオブ、タンタル、クロム、タングステン、モリブデン、マンガン、鉄、コバルト、ニッケル、白金などの単体のほか、これらの合金が挙げられる。合金としては、チタン合金、黄銅などの金属同士からなる合金のほか、本発明においては炭素などの非金属を少量含有するステンレス鋼、炭素鋼、低合金項などの合金従来から多用されている公知の各種のものを使用できる。基材部2の金属材料は、最終的に得られる本発明の超音波ホモジナイザー用振動先端工具の用途などによってこれらのうちから、例えばチタンのように適宜選定できる。
 基材部2の外径形状は、本実施形態では、その長さ方向(軸心方向)に直交する方向の断面が円形であり全長にわたり一定の直径を有し、軸心方向両端にそれぞれ端面を有する円柱状で示しているが、これに限定されず、少なくとも1つの端面を備えていれば、本発明の超音波ホモジナイザー用振動先端工具の用途などに応じて適宜の外形形状を採り得る。例えば、基材部2は、その軸心方向適宜の位置が鍔状に半径方向に突出していてもよく、又はそれ自体が略円錐状、略角柱状、略角錐状などの形状若しくはこれらの組み合わせからなる形状であってもよい。また、基材部2のサイズも特に限定されず、本発明の超音波ホモジナイザー用振動先端工具の用途や要求される機能などに応じて適宜設定可能である。
 基材部2の一端面上には、中間層部3が形成される。中間層部3は、基材部2の金属と同種の金属材料と少なくとも1種のセラミックス材料との組成からなる。セラミックス材料としては、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化チタン(チタニア)、二酸化ケイ素(シリカ)、酸化マグネシウム(マグネシア)、酸化セリウム(セリア)などの酸化物系、炭化タングステン、炭化ケイ素、炭化ホウ素、炭化チタンなどの炭化物系、ホウ化チタニウム、ホウ化タンタル,ホウ化ハフニウムなどのホウ化物系、窒化ケイ素、窒化チタン、窒化アルミニウムなどの窒化物系などが挙げられる。これらのセラミックス材料は、最終的に得られる超音波ホモジナイザー用振動先端工具の用途や要求される機能などを考慮して、単体でまたは2種以上を混合して使用できる。
 前記セラミックス材料のなかには、焼結温度の上昇により相転移を起こし結晶構造が変化するものがある。主に、ジルコニアである。ジルコニアは1440K(ケルビン)にて単斜晶から正方晶に、2640Kにて正方晶から立方晶に相転移することが知られている。特に、1440Kでの相転移では約4%の体積収縮を生じるため、焼結体の破壊を誘発することがある。その防止策として相転移が生じないようにしジルコニアの結晶構造を安定化させるために、低原子価の金属酸化物を安定化剤としてジルコニアに少量添加することが行われている。このような安定化剤としては、例えば酸化カルシウム、酸化マグネシウム、酸化イットリウムなどが挙げられる。安定化剤の添加量は、その種類にもよるが、安定化ジルコニアの場合、通常、1~10%(モル比)程度に設定できる。例えば、安定化剤として酸化イットリウムを前記添加範囲内で用いる場合、添加量を多く設定すると、ジルコニアの結晶構造を完全に安定させることができ、添加量を少なく設定すると(1~5%(モル比)程度)、ジルコニアの一部の結晶構造が安定化されない代わりに、より粘りのある高い靭性を示す部分安定化ジルコニアが得られる。なお、本発明におけるセラミックス材料には、このような安定化剤を含む(完全)安定化ジルコニア又は部分安定化ジルコニアなどが含まれるものとする。
 中間層部3は、前記した基材部2の金属と同種の金属材料及びセラミックス材料の組成を前者(金属材料)が後者(少なくとも1種のセラミックス材料)に対して段階的に減少するように傾斜させた複数層(3a~3d)の傾斜組成構造を有する。ここで、図1に示す例では、中間層3を前記のように3a~3dの4層構造で示すが、本発明において、用語「複数層」は、3層以上であれば特に制限はなく、常識的な範囲内で層数を設定できる。このとき、傾斜組成構造において基材部2と接する最下層3aは、当該基材部2の金属と同種の金属材料のみで構成することができる。
 傾斜組成構造(3b~3d)は、互いに隣接する相互に親和性を持たせるように、以下のように、金属材料からなる層3aに親和性をもたせるように、セラミックス材料の組成比を金属材料のそれよりも小さく設定した第1傾斜組成層3b、第1傾斜組成層3bに親和性をもたせるように、セラミックス材料と金属材料とを同等の組成比に設定した第2傾斜組成層3c、第2傾斜組成層3cに親和性をもたせるべく、セラミックス材料の組成比を金属材料のそれよりも大きく設定した第3傾斜組成層3dが基材部2側より順次積層されている。
 図1に示す例における第3傾斜組成層3dは、この上に形成される表層部4(後述するように、表層部4が複数層から形成される場合には、その最下層)に親和性を持たせるようにする。そのため、中間層部3で用いるセラミックス材料は、表層部4で用いられるセラミックス材料の主成分と同種となるように設定される。このようなセラミックス材料は、最終的に得られる本発明の超音波ホモジナイザー用振動先端工具の用途や要求される機能(当該セラミックス材料が備える機能)に応じて選定することができる。例えば高強度及び高靭性を有し、優れた熱的特性、耐薬品性及びイオン電導性を備えるセラミックス材料として、例えばジルコニアや安定化ジルコニアを用いることができる。
 傾斜組成構造3a~3dについて、基材部2がチタン製で中間層部3のセラミックス材料としてジルコニアを用いる場合、層3aの組成はチタン100重量%、層3bの組成は例えばチタン80重量%:ジルコニア20重量%、層3cの組成は例えばチタン50重量%:ジルコニア50重量%、層3dの組成は例えばチタン30重量%:ジルコニア70重量%などとそれぞれ設定できる。なお、層3b~3dの各層におけるチタン及びジルコニアの組成比はそれぞれの値±5%の範囲(例えば、層3bの場合、チタン75~85重量%:ジルコニア15~25重量%の範囲)で適宜設定することが可能である。
 中間層部(3a~3d)の最表面(層3dの表面)上には、前記基材部の金属材料を含まないセラミックス材料を主成分とする少なくとも1層の表層部4が形成される。この主成分となるセラミックス材料は、前記したように、中間層部3で用いられるものと同種の材料とされる。ここで、用語「主成分」とは、中間層部3のセラミックス材料が、表層部4を構成する材料の全量の少なくとも50重量%以上を占めている状態をいい、表層部4を構成する材料の全量である場合を含んでいる。表層部4の主成分となるセラミックス材料は、これに要求される機能に応じて、前記例示したものを含む公知の各種のものの中から適宜選択できる。本発明においては、ジルコニア又は安定化ジルコニアが高強度及び高靭性を備えていることから、ジルコニア又は安定化シルコニアを中間層部3におけるセラミックス材料として用いることができる。
 本発明においては、例えば主成分のセラミックス材料の持つ機能以外の機能が表層部4、さらに最終的に得られる超音波ホモジナイザー用振動先端工具に要求されるなどの場合、主成分のセラミックス材料にさらに少なくとも1種の金属材料や異種のセラミックス材料を含有させることができる。ここで、金属材料や異種のセラミックス材料は、例えば前記例示のものを含む公知の各種のものの中から選択できる。
 表層部4において、主成分としての安定化ジルコニア(安定化剤として酸化イットリウムを使用)と異種のセラミックス材料としてのアルミナを組み合せて用い、両者の組成比として安定化ジルコニア50~95重量%(好ましくは60~90重量%、より好ましくは70~85重量%)、アルミナ10~50重量%(好ましくは10~40重量%、より好ましくは15~30重量%)の範囲に設定することで、表層部4の耐エロージョン性が著しく向上する利点がある。
 本発明の超音波ホモジナイザー用振動先端工具は、これが高強度及び高靱性のほか、著しく高い耐久性及び耐エロージョン性を機能として備えることで、例えば高速の気液二相流に晒されエロージョン(浸食)が懸念されるような部位に有効に使用できるようになる。本発明の超音波ホモジナイザー用振動先端工具はまた、物理的な浸食が懸念される例えばスラリー流と接触するような部位やキャビテーションを起こしやすい配管などの部位への応用も可能と考える。
 本発明の超音波ホモジナイザー用振動先端工具を超音波ホモジナイザー用振動先端工具として用いる場合、超音波ホモジナイザー用振動先端工具の全長を音速と基材部に固有の共振周波数とから求められた長さと略同等に設定するのが好ましい。ここで求められる長さは、具体的には音速/(2x共振周波数)で求められる1/2波長に相当する値である。また、「略同等」とは、前記求められた長さに対し±10%に相当する範囲、換言すれば前記求められた長さの90~110%の範囲を許容し含める意味である。このように全長を設定することで、超音波振動子の振動を確実に液中に出力できるようになる。
 また、表層部4を主成分としてのセラミックス材料と異種のセラミックス材料との組成に段階的に傾斜をつけた複数層の傾斜組成構造として構成することもできる。例えば、前記の例における中間層部3における層3d(チタン30%:ジルコニア70%)の上に、例えばまずアルミナ粉末30%:安定化ジルコニア粉末70%からなる混合物を充填し第1の層とし、その上にアルミナ粉末20%:安定化ジルコニア粉末80%からなる混合物を充填し第2の層を形成するようにしてもよい。必要であれば、さらに3層又は4層の傾斜組成構造として構成してもよい。
 本発明の超音波ホモジナイザー用振動先端工具は、例えば図2に例示する放電プラズマ焼結装置5を用いたSPS法にて製造できるが、この方法に限定されない。この放電プラズマ焼結装置5は、従来の焼結法に比べ、迅速焼結が可能、微細組織構造制御焼結が可能、温度傾斜焼結が可能、固相焼結が容易、などの特徴を有することから、金属固溶や複合セラミックス、さらには傾斜機能材料の開発に有効な手段となっている。
 図2に示す放電プラズマ焼結装置5は、水冷真空チャンバ-6を備えており、この水冷真空チャンバ-6の上部フレーム7には上部パンチ電極8が装着されると共に水冷真空チャンバ-6の下部フレーム9には下部パンチ電極10が装着されている。水冷真空チャンバ-6内にあって、上部パンチ電極8の下側に上部パンチ11が設けられ、下部パンチ電極10の上側には下部パンチを兼ねて基材部2が配置されている。上部パンチ11の下部と基材部2とは、焼結ダイ13内に装着されている。
 この焼結ダイ12内の上部パンチ9の下面と基材部2の上面との間に基材部2に焼結一体化させることになる中間層部3及び表層部4をこの順に配置できるように構成されている。焼結ダイ12は、その外面に熱電対13が差し込み固定でき、これにより焼結ダイ12内部の加熱温度が検出可能とされている。また、この熱電対13に代え、又はこの熱電対13に加え更に焼結ダイ12の外側に赤外線放射温度計を配置し、加熱温度を検出するようにしてもよい。
 焼結ダイ12は、図2に示す例では、軸心に基材部2が挿通する挿通穴が上下に貫通する円筒形状を呈している。その円筒形の上端寄りの部分がそれよりも下側よりも相対的に小径に形成されている。この相対的に小径の部分とそれ以外の部分とはそれぞれ、別体の円筒体を組み合わせて形成されていてもよく、一体に成形されていてもよい。また、焼結ダイ12の挿通穴は、その形状を基材部2の周面に密着するように変更することができる。
 上部パンチ電極8と下部パンチ電極10とはそれぞれ、加圧機構15と共に焼結電源(パルス電源)19に接続されている。また、加圧機構15、位置計測機構19、雰囲気制御機構20および水冷却機構21が制御装置23にそれぞれ接続されている。
 このような構成の放電プラズマ焼結装置5において、図1に示す超音波ホモジナイザー用振動先端工具を製造する場合、焼結ダイ12内に下側から下部パンチに代えて挿入した基材部2の上に、基材部2の金属と同種の金属粉末のみを充填し層3aを形成し、その上に、セラミックス粉末の組成比が金属粉末の組成比より小さくなるように両成分を混合した混合物を充填し層3bを形成する。続いて、この層3bの上に、セラミックス粉末及び金属粉末の組成比が略同等となるように両成分を混合した混合物を充填し層3cを形成し、その上に、セラミックス粉末の組成比が金属粉末のそれよりも大きくなるように両成分を混合した混合物を充填し層3dを形成する。
 さらに、層3dの上に、前記セラミックス粉末を充填し表層部4となし、所定の加圧条件で加圧しつつ焼結温度を上昇させ焼結を行う。このときの加圧条件や焼結温度は、基材部2の金属材料の種類、使用するセラミックス材料の種類、製造する超音波ホモジナイザー用振動先端工具の外形形状などを考慮して設定することができる。
 例えば、チタン製の基材部に、チタン粉末とジルコニア粉末とを用いる場合、その製造方法は具体的に以下のようになる。チタン製の基材部2の上に、チタン粉末100%からなるチタン粉末層3a、チタン粉末80重量%:ジルコニア粉末20重量%よりなる第1傾斜組成層3b、チタン粉末50重量%:ジルコニア粉末50重量%よりなる第2傾斜組成層3c、チタン粉末30重量%:ジルコニア粉末70重量%よりなる第3傾斜組成層3dを順次積層し、傾斜組成構造を有する中間層部3を形成する。さらに、中間層部3の上にジルコニア粉末を充填しジルコニア粉末100%からなる表層部4を形成する。
 そうして、このセラミックス粉末層3eの上に上部パンチ11の下端面が当接するように配置し、この上部パンチ11と基材部2とによって傾斜材料部3を加圧すると同時に両者間に通電して傾斜材料層3を加熱焼結により一体化する。こうして、図1に示すような、チタンからなる基材部2の一端にチタンとジルコニアとからなる中間層部3及びジルコニアからなる表層部4が一体化された超音波ホモジナイザー用振動先端工具1を得ることができる。
 セラミックス粉末にジルコニア粉末を用いた場合、放電プラズマ焼結装置5の焼結条件は例えば以下のように設定できる。
              加熱温度            1300℃
              加圧力                30MPa
           保持時間            3min
              昇温                    焼結パターン
              雰囲気                真空
 また、加熱温度は1100~1400℃の範囲、加圧力は30~40MPaの範囲で適宜設定することが可能である。この加熱温度および加圧力の範囲外の加熱温度、加圧力では、今まで実験した結果では良好な超音波ホモジナイザー用振動先端工具が得られなかった。
 なお、チタン製の基材部に、チタン粉末とジルコニア粉末とから傾斜組成構造を有する中間層を形成し、その上に安定化ジルコニアとアルミナとからなる少なくとも1層の表層部を形成する場合も、放電プラズマ焼結装置5の焼結条件を含め、その製造方法は概ね前記の通りとなる。
実施例1
 円柱状のチタン製基材部に以下の要領にて中間層部3及び表層部4を焼結一体化させて本発明の超音波ホモジナイザー用振動先端工具を製造した。まず、焼結ダイの軸心方向略中央に基材部の上端面が位置するように当該基材部を焼結ダイ中にセットした上で、(a)チタン粉末のみ1.5g、(b)組成比がチタン粉末80重量%、ジルコニア粉末20重量%の混合物1.5g、(c)組成比がチタン粉末50重量%、ジルコニア粉末50重量%の混合物1.5g、(d)組成比がチタン粉末30重量%、ジルコニア粉末70重量%の混合物1.5gを順次充填してチタン、ジルコニア傾斜組成構造を持つ中間層部を形成した。こうして充填した中間層部3の上にジルコニア粉末5gを充填し表層部4を形成した。その後、SPS法により基材部と上パンチとで加圧しつつ(加圧力30MPa)所定の焼結パターンにて加熱し(加熱温度1300℃)、基材部、中間層部及び表層部を焼結一体化させた実施例1の試験体を得た。
実施例2
 実施例1と同様に、チタン製基材部の上端面の上に実施例1と同様にチタン、ジルコニア傾斜組成構造を充填した上で、その上にジルコニアに酸化イットリウム3%(モル比)を添加したイットリア安定化ジルコニア80重量%、アルミナ20重量%の混合粉末5gを充填して表層部4を形成した。その後、実施例1と同様に加圧しつつ加熱して基材部、中間層部及び表層部を焼結一体化させた実施例2の試験体を得た。
比較例1
 チタン製の基材部を比較例1の試験体とした。
測定方法
 ジルコニア及び安定化ジルコニアは、強度特性(靭性)に優れる点などは一般的であることから、耐エロージョン性のみについて調べた。耐エロージョン性試験は、超音波ホモジナイザー(商品名UX-300型)に実施例1及び2の焼結体、並びに比較例1の基材部を振動用。以下の方法実施例1及び2、並びに比較例1の各試験体をそれぞれ超音波ホモジナイザー用の振動先端工具として超音波発振機の振動子に取付け、純水中に浸し48時間の連続発振試験を行い、時間経過に伴う試験体のエロージョンによる重量減量及び体積減量を調べた。その結果を表1及び図3に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図3によれば、実施例1及び2、並びに比較例1の試験体はいずれも時間経過に伴いエロージョン減量値が直線的に増加し、48時間経過後のエロージョン減量については、比較例1の試験体が0.202gであるところ、
実施例1の試験体では0.122gで比較例1の値の約60%であり、
実施例2の試験体では約0.014gと推定され、比較例1の値の約7%であった。このように、比較例1の試験体よりも、実施例1の試験体はエロージョン減量が小さく耐エロージョン性が高く、実施例2の試験体はエロージョン減量が非常に小さく耐エロージョン性に著しく優れていることがわかる。そして、実施例1及び2はいずれも目視で浸食が観察できず、焼結部分の亀裂、剥離などの現象も認められなかった。
 また、先端工具の先端面に向けて渦電流式変位センサーを取り付けて、当該先端面の水中での発振振幅を測定し、機械エネルギーの発生を確認した。その結果、入力電圧と変位との間に良好な比例関係が得られることも分かった。また、先端チップの共振周波数は19.23kHzで、20kHz±1kHzの許容範囲内で性能は維持できていることを確認した。さらに、本発明の先端工具は傾斜材料部を基材部に焼結一体化されたものであるので、これを20kHzで長時間振動させても、超音波振動に影響を及ぼすフレッティング現象の発生は当然に認められない。
 本発明によれば、基材部、中間層部及び表層部が焼結一体化した超音波ホモジナイザー用振動先端工具は、亀裂、剥離などがなく安定しており、高強度及び高靱性であり、しかも、高い耐エロージョン性を有することから耐久性にも優れる機能を備えることになる。また、本発明の超音波ホモジナイザー用振動先端工具は、これを超音波補のホモジナイザー用の振動先端工具に用いた場合、超音波振動に悪影響を及ぼすフレッティング現象の発生がなく著しく優れた耐久性が得られる。
 なお、本発明の超音波ホモジナイザー用振動先端工具及びその製造方法は、高強度、高靱性のほか、優れた耐エロージョン性が要求される例えば高速の気液二相流に晒されるような部位、キャビテーションを生じる部位、スラリーと接触するような部位など、各種技術分野のプラントなどにおいて応用可能である。
1 超音波ホモジナイザー用振動先端工具
2 基材部
3 中間層部(傾斜組成構造)
4 表層部
5 放電プラズマ焼結装置
6 水冷真空チャンバ
7 上部フレーム
8 上部パンチ電極
9 下部フレーム
10 下部パンチ電極
11 上部パンチ
12 焼結ダイ
13 熱電対
15 加圧機構
17 焼結電源(パルス電源)
19 位置計測機構
20 雰囲気制御機構
21 水冷却機構
23 制御装置

 

Claims (11)

  1.  金属製の基材部と、
    その一端面上に形成され、前記基材部と同種の金属材料と少なくとも1種のセラミックス材料との組成を前者が後者に対して段階的に減少するように傾斜させた複数層の傾斜組成構造を有する中間層部と、
    当該中間層部の最外面上に少なくとも1層形成され、前記基材部の金属材料を含まない前記セラミックス材料を主成分とする表層部と、
    を放電プラズマ焼結法により加圧しつつ一体的に焼結させてなることを特徴とする超音波ホモジナイザー用振動先端工具。
  2.  前記表層部は、前記セラミックス材料とこれとは異種の少なくとも1種のセラミックス材料との混合組成を有するものである請求項1に記載の超音波ホモジナイザー用振動先端工具。
  3.  前記表層部は、前記セラミックス材料と、これとは異種のセラミックス材料の少なくと も1種との組成を傾斜させた複数層の傾斜組成構造を有する請求項2に記載の超音波ホモジナイザー用振動先端工具。
  4.  前記基材部の金属及び前記中間層部における金属粉末はチタンである請求項1~3のいずれか1項に記載の超音波ホモジナイザー用振動先端工具。
  5.  前記中間層部に用いられるセラミックス材料は、ジルコニア又は安定化ジルコニアである請求項1~4のいずれか1項に記載の超音波ホモジナイザー用振動先端工具。
  6.  前記表層部に用いられるセラミックス材料は、ジルコニア又は安定化ジルコニアである請求項1~5のいずれか1項に記載の超音波ホモジナイザー用振動先端工具。
  7.  前記表層部における前記安定化ジルコニアが使用される場合、ジルコニアを安定させるために添加される安定化剤は酸化イットリウムである請求項6に記載の超音波ホモジナイザー用振動先端工具。
  8.  前記安定化剤は、前記安定化ジルコニアの全量に対して0.1~5モル%含有されてなる請求項5~7のいずれか1項に記載の超音波ホモジナイザー用振動先端工具。
  9.  前記表層部における前記異種のセラミックスはアルミナである請求項2~8のいずれか1項に記載の超音波ホモジナイザー用振動先端工具。
  10.  前記表層部における安定化ジルコニアとアルミナとの混合比は、安定化ジルコニア50~90重量部、アルミナ10~50重量部である請求項9に記載の超音波ホモジナイザー用振動先端工具。
  11.  前記焼結体の全長は、音速と前記基材部に固有の共振周波数とにより求められた長さと略同等に設定されてなる請求項11に記載の超音波ホモジナイザー用振動先端工具。

     
PCT/JP2018/004757 2017-03-17 2018-02-11 超音波ホモジナイザー用振動先端工具 WO2018168288A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505781A JPWO2018168288A1 (ja) 2017-03-17 2018-02-11 超音波ホモジナイザー用振動先端工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017053761 2017-03-17
JP2017-053761 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168288A1 true WO2018168288A1 (ja) 2018-09-20

Family

ID=63523729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004757 WO2018168288A1 (ja) 2017-03-17 2018-02-11 超音波ホモジナイザー用振動先端工具

Country Status (2)

Country Link
JP (1) JPWO2018168288A1 (ja)
WO (1) WO2018168288A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291051A (ja) * 1985-06-15 1986-12-20 超音波工業株式会社 粉体粉砕用超音波振動ホ−ン
JPH11128836A (ja) * 1997-10-30 1999-05-18 Ngk Spark Plug Co Ltd 超音波ホーン
JP2000153230A (ja) * 1998-11-18 2000-06-06 Ngk Spark Plug Co Ltd インサートホーン
JP2001212898A (ja) * 2000-02-01 2001-08-07 Sumitomo Coal Mining Co Ltd 応力緩和型傾斜機能材料及びその製造方法
US6652992B1 (en) * 2002-12-20 2003-11-25 Sulphco, Inc. Corrosion resistant ultrasonic horn
JP2004033948A (ja) * 2002-07-04 2004-02-05 Mitsui Denki Seiki Kk 超音波分散機用振動先端工具およびその製造方法
JP2006522562A (ja) * 2003-03-31 2006-09-28 スリーエム イノベイティブ プロパティズ カンパニー 超音波エネルギシステムおよびセラミックホーンを備える方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291051A (ja) * 1985-06-15 1986-12-20 超音波工業株式会社 粉体粉砕用超音波振動ホ−ン
JPH11128836A (ja) * 1997-10-30 1999-05-18 Ngk Spark Plug Co Ltd 超音波ホーン
JP2000153230A (ja) * 1998-11-18 2000-06-06 Ngk Spark Plug Co Ltd インサートホーン
JP2001212898A (ja) * 2000-02-01 2001-08-07 Sumitomo Coal Mining Co Ltd 応力緩和型傾斜機能材料及びその製造方法
JP2004033948A (ja) * 2002-07-04 2004-02-05 Mitsui Denki Seiki Kk 超音波分散機用振動先端工具およびその製造方法
US6652992B1 (en) * 2002-12-20 2003-11-25 Sulphco, Inc. Corrosion resistant ultrasonic horn
JP2006522562A (ja) * 2003-03-31 2006-09-28 スリーエム イノベイティブ プロパティズ カンパニー 超音波エネルギシステムおよびセラミックホーンを備える方法

Also Published As

Publication number Publication date
JPWO2018168288A1 (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
Pinc et al. Spark plasma joining of ZrB2–SiC composites using zirconium–boron reactive filler layers
EP2300366B1 (en) Method of forming a sintered polycrystalline ultra hard material by pulsed electrical field assisted or spark plasma sintering
JP6477968B2 (ja) セラミックス積層体、セラミックス絶縁基板、及びセラミックス積層体の製造方法
JP5552543B2 (ja) 接合体
He et al. Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature–high pressure method
Zhang et al. Active brazing of C/C composite to copper by AgCuTi filler metal
Radwan et al. Fabrication of crack-free SUS316L/Al 2 O 3 functionally graded materials by spark plasma sintering
Li et al. Microstructure and mechanical properties of the AlON/Ti6Al4V active element brazing joint
Xu et al. Soldering porous ceramics through ultrasonic-induced capillary action and cavitation
WO2018168288A1 (ja) 超音波ホモジナイザー用振動先端工具
Salem et al. Effect of the matrix and reinforcement sizes on the microstructure, the physical and mechanical properties of Al-SiC composites
US10655631B2 (en) Pump housing made from at least three different sinterable materials
Dourandish et al. Pressureless Sintering of 3Y‐TZP/Stainless‐Steel Composite Layers
JP2010089223A (ja) 立方晶窒化硼素焼結体工具
Babalola et al. The fabrication and characterization of spark plasma sintered nickel based binary alloy at different heating rate
Tiwari et al. Comparison of nickel nanoparticle-assisted diffusion brazing of stainless steel to conventional diffusion brazing and bonding processes
Su et al. Al 2 O 3/SUS304 brazing via AgCuTi-W composite as active filler
JP5485117B2 (ja) 接合体
Zhong et al. Liquid phase sintering-based diffusion bonding of Ti (C, N)-based cermet and steel
Sinnamon et al. Wetting and mechanical performance of zirconia brazed with silver/copper oxide and silver/vanadium oxide alloys
Sechi et al. Effect of composition of titanium in silver-copper-titanium braze alloy on dissimilar laser brazing of binder-less cubic boron nitride and tungsten carbide
Ye et al. Microstructure and shear strength of the brazed joint of Ti (C, N)-based cermet to steel
Yeheskel et al. Effect of initial particle and agglomerate size on the elastic moduli of porous yttria (Y2O3)
ES2968617T3 (es) Sistema de ultrasonidos para el procesamiento de metales y sus aleaciones y procedimiento para el procesamiento de metales líquidos y sus aleaciones
Jie et al. Microstructure and mechanical properties of TC4/0Cr18Ni9 joint prepared by transient liquid phase diffusion bonding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767898

Country of ref document: EP

Kind code of ref document: A1