WO2018168101A1 - 感震センサ及び地震判定方法 - Google Patents

感震センサ及び地震判定方法 Download PDF

Info

Publication number
WO2018168101A1
WO2018168101A1 PCT/JP2017/042600 JP2017042600W WO2018168101A1 WO 2018168101 A1 WO2018168101 A1 WO 2018168101A1 JP 2017042600 W JP2017042600 W JP 2017042600W WO 2018168101 A1 WO2018168101 A1 WO 2018168101A1
Authority
WO
WIPO (PCT)
Prior art keywords
earthquake
determination
acceleration
value
period
Prior art date
Application number
PCT/JP2017/042600
Other languages
English (en)
French (fr)
Inventor
宏之 三野
直亜 上田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP17901116.8A priority Critical patent/EP3598179B1/en
Priority to US16/489,893 priority patent/US11422272B2/en
Publication of WO2018168101A1 publication Critical patent/WO2018168101A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/162Details
    • G01V1/164Circuits therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/123Passive source, e.g. microseismics
    • G01V2210/1232Earthquakes

Definitions

  • the present invention relates to a seismic sensor and an earthquake determination method.
  • a seismic sensor using a microcontroller can obtain an index value for evaluating the magnitude of an earthquake by a calculation process, while a mechanical seismic sensor that is energized by vibration that has been used in the past. Compared to this, the power consumption tends to increase. Further, depending on the environment in which the apparatus is installed, noise due to vehicle traffic or construction is measured, and the degree of noise measured varies. If such environmental noise is repeatedly erroneously detected as an earthquake, the power consumption of the seismic sensor increases.
  • the determination whether the vibration measured by the seismic sensor is an earthquake or noise has been made based on the vibration immediately after the sensor shifts from the power saving mode to the measurement mode.
  • the vibration of a certain magnitude or more continues for a certain period even if it is noise.
  • an external device that cooperates with the seismic sensor may determine that the vibration intensity is above a certain level, and erroneously output a signal for cutting off the supply of energy such as gas or electricity.
  • the present invention has been made in view of the above problems, and an object thereof is to reduce erroneous determination of noise as an earthquake in a seismic sensor.
  • the seismic sensor according to the present invention operates in the power saving mode and the measurement mode in which the power consumption is larger than the power saving mode.
  • the seismic sensor moves from the power saving mode to the measurement mode when the acceleration measured by the measurement unit and the acceleration measured by the measurement unit exceed a predetermined threshold, and the earthquake is detected based on the acceleration measured in the measurement mode.
  • An earthquake determination unit that determines whether or not an earthquake has occurred, and an index calculation unit that calculates an index value indicating the magnitude of the earthquake when the earthquake determination unit determines that an earthquake has occurred.
  • the earthquake determination unit switches from the measurement mode to the power saving mode without performing processing in the subsequent determination period when it is determined that an earthquake has not occurred in any of the determination periods. You may make it transfer. Power consumption can be suppressed by not performing processing in a later period.
  • the index calculation unit calculates the index value without performing processing in the subsequent determination period. May be performed. In the case of an earthquake with high vibration intensity, a shutoff output is output, and electricity and gas can be shut off. In addition, by omitting the processing in the later determination period at the timing when it is determined that an earthquake has occurred, a signal for promptly shutting off the supply of energy when it is determined that the earthquake is larger than a predetermined scale Can be output.
  • the earthquake determination unit determines that an earthquake has occurred when the number of determination periods satisfying the condition among a plurality of determination periods exceeds a predetermined threshold value, and if not, power is saved from the measurement mode. You may make it transfer to mode. In this way, the conditions for earthquake determination can be determined in more detail, and at the time when it can be determined whether or not it is an earthquake, it is possible to promptly shift to subsequent processing.
  • the earthquake determination unit determines that an earthquake has occurred when the number of determination periods that continuously satisfy a condition among a plurality of determination periods exceeds a predetermined threshold, and otherwise, the measurement mode May be shifted to the power saving mode. Even with such a configuration, it is possible to determine the conditions for earthquake determination in more detail, and it is possible to promptly shift to subsequent processing when it is possible to determine whether or not the earthquake is an earthquake.
  • condition in a part of the plurality of judgment periods may be different from the condition in another judgment period. Even with such a configuration, the conditions for earthquake determination can be determined in more detail.
  • the conditions are the difference between the maximum and minimum values based on acceleration, the average value, the sum of the average value and the variance value, the variance value, the integrated value, the rate of change, the spectral intensity, the integral value, SI (Spectrum Intensity )
  • SI Standard Intensity
  • a plurality of sub-conditions constituting the condition are determined for at least one of the plurality of determination periods, and the earthquake determination unit satisfies the above condition when a predetermined number of sub-conditions among the plurality of sub-conditions are satisfied. You may make it judge that it satisfy
  • the earthquake determination unit may be executed from the determination period immediately after the transition to the measurement mode. In this way, for example, even when the second noise is detected before the first noise converges, the earthquake determination can be performed appropriately.
  • FIG. 1 is an apparatus configuration diagram illustrating an example of a seismic sensor according to the present embodiment.
  • the seismic sensor 1 includes an acceleration sensor 11, a microcontroller 12, a storage unit 13, an output unit 14, and an input unit 15.
  • the acceleration sensor 11 is, for example, an acceleration sensor using a piezoelectric element or an acceleration sensor that detects capacitance between electrodes.
  • the acceleration measured by the acceleration sensor 11 (also referred to as “sampling”) is output to the microcontroller 12.
  • the microcontroller 12 is, for example, a general-purpose integrated circuit, acquires acceleration measured by the acceleration sensor 11 at a predetermined cycle, detects the occurrence of an earthquake based on the acceleration, and calculates an index value indicating the magnitude of the earthquake. To do.
  • the microcontroller 12 operates in a different form such as an active mode or a sleep mode depending on the situation.
  • the microcontroller 12 operates with limited functions such as stopping the execution of instructions while accepting interrupts or stopping the supply of clocks, thereby reducing power consumption compared to the active mode. This is the operation mode to be performed.
  • the microcontroller 12 determines whether the detected vibration is an earthquake or noise, or calculates an index value indicating the magnitude of the earthquake.
  • the storage unit 13 is a temporary storage unit such as a RAM (Random Access Memory) or a non-volatile memory such as an EPROM (Erasable Programmable Read Only Memory), and holds, for example, measured acceleration, threshold values used for earthquake determination, and the like.
  • the storage unit 13 may be a memory built in the acceleration sensor 11 or the microcontroller 12.
  • the output unit 14 is an output terminal included in the microcontroller 12, for example. For example, when the microcontroller 12 determines that an earthquake has occurred, the microcontroller 12 outputs information indicating the occurrence of the earthquake and the scale thereof to another device via the output unit 14.
  • the input unit 15 is an input terminal included in the microcontroller 12.
  • the microcontroller 12 may receive, for example, a switch operation (not shown) or a command input from another device via the input unit 15.
  • a high-pass filter (not shown) may be provided between the acceleration sensor 11 and the microcontroller 12 to remove the gravity component. Further, the microcontroller 12 may handle the acceleration measured by the acceleration sensor 11 by converting it into an absolute value of acceleration with a predetermined offset as a reference.
  • FIG. 2 is a functional block diagram illustrating an example of the seismic sensor 1.
  • the seismic sensor 1 includes an acceleration measurement unit 101, an acceleration storage unit 102, an activation determination unit 103, a reference value storage unit 104, an earthquake determination unit 105, an evaluation index calculation unit 106, an output unit 107, and an offset.
  • the adjustment unit 108, the determination storage unit 109, and the filtering unit 110 are included.
  • the acceleration measurement unit 101, the activation determination unit 103, the earthquake determination unit 105, the evaluation index calculation unit 106, the offset adjustment unit 108, and the filtering unit 110 are stored in a predetermined program by the acceleration sensor 11 or the microcontroller 12 shown in FIG. This is realized by operating based on the above.
  • the acceleration storage unit 102, the reference value storage unit 104, and the determination storage unit 109 are realized by the storage unit 13 in FIG. At least the earthquake determination unit 105 and the evaluation index calculation unit 106 are realized when the microcontroller 12 operates in the active mode. Further, the output unit 107 is realized by the microcontroller 12 and the output unit 14 of FIG. 1 operating based on a predetermined program.
  • Acceleration measuring unit 101 measures acceleration at a predetermined cycle.
  • the acceleration measuring unit 101 normally repeats the measurement of acceleration at a relatively low speed (that is, a relatively large measurement period, also referred to as “first period”).
  • first period a relatively large measurement period
  • the microcontroller 12 When performing such low-speed sampling, the microcontroller 12 basically operates in the sleep mode.
  • Such an operation state with low power consumption is also referred to as a “power saving mode” or a “standby state”.
  • the “power saving mode” is an operation state in which low-speed sampling is performed. At this time, the microcontroller 12 operates in a sleep mode with a limited function, and thus power consumption is suppressed.
  • the acceleration measurement unit 101 detects a vibration larger than a threshold value set in advance in the reference value storage unit 104, the acceleration measurement unit 101 has a higher speed than a low-speed sampling (that is, a relatively small cycle, both “second cycle”). Repeat the measurement of acceleration.
  • the microcontroller 12 When performing such high-speed sampling, the microcontroller 12 operates in a sleep mode or an active mode. When the earthquake determination unit 105 or the evaluation index calculation unit 106 performs processing, the microcontroller 12 operates in the active mode.
  • Such an operation state during high-speed sampling is also referred to as “measurement mode”, and the transition of the operation state from the power saving mode to the measurement mode is also referred to as “startup”.
  • the “measurement mode” is an operation state in which high-speed sampling is performed.
  • the microcontroller 12 may operate in a sleep mode with a limited function, or may operate with the maximum calculation capability. It may also operate in active mode. In the measurement mode, the power consumption is larger than that in the power saving mode because the sampling period is shortened and the microcontroller 12 is switched from the sleep mode to the active mode.
  • the filtering unit 110 performs a filtering process on the acceleration value measured by the acceleration measuring unit 101 and causes the acceleration storage unit 102 to store the filtered acceleration.
  • the filtering unit 110 functions as a so-called digital filter.
  • An existing technique can be adopted as a specific method of filtering.
  • the filtering unit 110 functions as a low-pass filter, for example, by calculating a moving average of absolute values of acceleration.
  • the acceleration storage unit 102 holds the acceleration value measured by the acceleration measuring unit 101 or the acceleration value filtered by the filtering unit 110.
  • the activation determination unit 103 compares the acceleration value measured by the acceleration measurement unit 101 with the activation threshold value stored in the reference value storage unit 104. If the acceleration value exceeds the activation threshold value, the activation determination unit 103 performs measurement from the power saving mode. Start into mode.
  • the earthquake determination unit 105 determines whether the measured acceleration indicates an earthquake or noise using the acceleration measured by the acceleration measurement unit 101 in the measurement mode and the threshold value preset in the reference value storage unit 104. To do. In this embodiment, the earthquake determination unit 105 divides the period after the activation determination unit 103 detects acceleration exceeding the activation threshold into units of a plurality of determination periods, and performs processing for each determination period.
  • the evaluation index calculation unit 106 calculates an evaluation index indicating the magnitude of the earthquake. For example, an SI (Spectrum Intensity) value is calculated as an earthquake evaluation index. Then, the output unit 107 outputs the calculated SI value to an external device. Further, in the case of an external device, when it is determined that the earthquake is of a predetermined magnitude or more based on the SI value, for example, a process of cutting off the supply of energy such as gas or electricity may be performed.
  • SI Standard Intensity
  • the offset adjustment unit 108 performs so-called offset adjustment.
  • the amount of change in the measured value that accompanies a change in the sensor over time the amount of change in the measured value that accompanies a change in temperature, and the gravity of the sensor when the orientation of the installed sensor is tilted for some reason.
  • a noise component included in the measured acceleration such as the amount of change in the measured value caused by the change in the direction of acceleration, is called an offset component.
  • the offset adjustment unit 108 calculates, for example, the median value of the maximum and minimum values of acceleration determined to be noise or the average value of acceleration as an offset component.
  • FIG. 3 is a diagram for explaining the acceleration, the offset component, and the threshold value measured in the present embodiment.
  • the vertical axis indicates the magnitude of acceleration
  • the horizontal axis indicates the passage of time.
  • the offset component can be obtained as an average value of acceleration as indicated by a one-dot chain line, for example.
  • the calculated offset component is stored in the reference value storage unit 104 and is used for activation determination performed by the activation determination unit 103 and earthquake determination performed by the earthquake determination unit 105.
  • the threshold value is defined as a relative value to the offset component as indicated by a broken line.
  • FIG. 4 is a process flow diagram illustrating an example of the seismic processing according to the first embodiment.
  • the acceleration measuring unit 101 of the seismic sensor 1 measures acceleration in the power saving mode (FIG. 4: S1).
  • the acceleration measuring unit 101 performs low-speed sampling.
  • the activation determination unit 103 of the seismic sensor 1 determines whether to start (that is, shift to the measurement mode) (S2).
  • startup threshold also referred to as “startup threshold”
  • the process transitions to S1 and continues the power saving mode (low-speed sampling). To do.
  • the activation threshold is a value representing acceleration such as 50 gal, for example, and is stored in the reference value storage unit 104 in advance.
  • the acceleration measuring unit 101 shifts to the measurement mode.
  • the activation threshold is a relative value based on the offset. In the measurement mode, the acceleration measurement unit 101 performs high-speed sampling.
  • the acceleration measurement unit 101 measures acceleration by high-speed sampling in the measurement mode, and the filtering unit 110 performs the above-described filtering processing on the measured acceleration, and stores the resultant value in the acceleration storage unit 102.
  • the evaluation index calculation unit 106 starts calculating a predetermined evaluation index (S3).
  • the filtering may be executed by the microcontroller 12 shifting to the active mode, or the microcontroller 12 may be executed by the acceleration sensor 11 while in the sleep mode. Note that the filtering in S3 is not essential.
  • the SI value is an example of an earthquake evaluation index, and is a value that is recognized to be correlated with the degree of damage to the building.
  • the output unit 107 of the seismic sensor 1 outputs the calculated evaluation index to another device in a later step.
  • the SI value can be obtained by the following equation (1).
  • the SI value is an index representing the destructive force of ground motion by the average of the velocity response spectrum integral values between 0.1 seconds and 2.5 seconds, which is the natural period of a highly rigid structure.
  • Sv is a velocity response spectrum
  • T is a period
  • h is an attenuation constant.
  • the earthquake determination unit 105 of the seismic sensor 1 determines whether a predetermined period has elapsed since the occurrence of vibration (S4). In the present embodiment, it is determined whether the detected vibration is an earthquake or noise by performing predetermined processing for a plurality of determination periods. In S4, it is determined whether one determination period has elapsed. When it is determined that the predetermined period has not elapsed (S4: NO), the earthquake determination unit 105 repeats the determination of S4 and waits for the predetermined period to elapse. At this time, the measurement of acceleration and the calculation of the evaluation index started in S3 are continued.
  • the earthquake determination unit 105 performs processing associated with each of the plurality of determination periods (S5). It is assumed that predetermined processing is associated in advance with the first determination period, the second determination period, and the like. For example, the difference between the maximum value and the minimum value of acceleration measured in the determination period may be calculated, or a moving average (also referred to as “filter value”) of the absolute value of acceleration is used, for example, for a predetermined period. The difference between the maximum value and the minimum value of the filter value in (for example, 1 second) may be calculated.
  • the first determination period may be 1.0 second from the occurrence of vibration, and the second determination period may be approximately 1.0 to 2.5 seconds.
  • Different processing may be performed in each of the plurality of determination periods, and processing for earthquake determination may not be performed in some determination periods.
  • the earthquake determination unit 105 determines whether it is a predetermined timing for performing the earthquake determination (S6). For example, it is assumed that a timing such as after each of a plurality of judgment periods or after a predetermined judgment period among the plurality of judgment periods is set in advance as the timing for performing the earthquake judgment. When it is determined that it is not the timing of the earthquake determination (S6: NO), the earthquake determination unit 105 returns to S4 and repeats the process.
  • the earthquake determination unit 105 determines whether a predetermined condition is satisfied (S7). Specifically, the earthquake determination unit 105 determines whether the detected acceleration is due to an earthquake or noise based on the results of processing performed in each determination period. For example, when the difference between the maximum value and the minimum value of the acceleration measured in the determination period and a predetermined threshold value have a predetermined magnitude relationship, it may be determined that an earthquake has occurred.
  • FIG. 5 is a diagram for explaining the earthquake determination according to the first embodiment.
  • S4 to S7 of FIG. 4 processing as shown in FIG. 5 is performed.
  • FIG. 5 arrows from left to right indicate the passage of time, and each rectangle indicates a process executed by the seismic sensor 1.
  • the seismic sensor 1 operating in the power saving mode measures acceleration by low-speed sampling in S1 of FIG. 4 (FIG. 5: standby). Thereafter, using the measured acceleration, activation determination is performed in S2 of FIG. 4 (FIG. 5: activation determination), and activation is performed when the acceleration exceeds the activation threshold. Then, when it is determined that the first predetermined period has elapsed in S4 of FIG. 4, the earthquake determination unit 105 performs processing for each determination period in S5. As shown in FIG.
  • the evaluation index calculation unit 106 of the seismic sensor 1 calculates an evaluation index indicating the magnitude of the earthquake (S8).
  • the microcontroller 12 operates in the active mode.
  • the evaluation index can be calculated by the above formula (1).
  • the offset adjusting unit 108 of the seismic sensor 1 adjusts the offset (S9).
  • an offset for example, an average value of acceleration indicated by a one-dot chain line in FIG. In this way, the threshold reference is adjusted.
  • FIG. 6 is a diagram for explaining the effect of the seismic processing 1.
  • “Waveform A” in FIG. 6 shows an example of schematic measurement data when noise in a relatively short time occurs.
  • “Waveform B” shows an example of schematic measurement data when noise that lasts for a relatively long time occurs.
  • “Waveform C” shows an example of schematic measurement data when an earthquake occurs.
  • the process performed by the comparative example and the seismic processing 1 at each time is shown under each waveform.
  • the comparative example there is one determination period, and it is determined whether it is an earthquake or noise based on the acceleration immediately after startup.
  • the first embodiment as shown in FIG. 5, there are two determination periods after activation, and the acceleration measured in the second period is not performed in the first determination period without performing the process for earthquake determination. Based on the earthquake judgment. As described above, it is possible to set detailed conditions for earthquake determination by determining whether or not an earthquake has occurred with each determination period divided into a plurality of processing units.
  • the acceleration is measured in the determination period immediately after the start, so that the earthquake determination value such as the difference between the maximum value and the minimum value of the acceleration exceeds a predetermined threshold value, for example. Therefore, it is determined as an earthquake.
  • a predetermined threshold value for example. Therefore, it is determined as an earthquake.
  • an evaluation index such as an SI value is calculated, it operates for a relatively long time (for example, 3 minutes) in a measurement mode with high power consumption.
  • the evaluation index exceeds a predetermined threshold value, and an energy cutoff signal is output. In other words, a cut-off output is generated in spite of noise, not an earthquake.
  • the seismic processing 1 described above since the difference between the maximum value and the minimum value of the acceleration measured in the second determination period does not exceed a predetermined threshold, it is determined that the earthquake is not an earthquake. As described above, for example, a relatively long vibration whose acceleration is continuously measured for 1 second or more can be determined as noise. Thus, according to the present embodiment, it is possible to shift to the sleep mode more quickly than in the comparative example, and power consumption can be suppressed. In the case of the present embodiment, it is also possible to suppress the occurrence of a cutoff output due to noise.
  • the acceleration is measured in the determination period immediately after the start-up, so that the earthquake determination value such as the difference between the maximum value and the minimum value of the acceleration has a predetermined threshold value. Because it exceeds, it is determined to be an earthquake.
  • the seismic processing 1 described above since the difference between the maximum value and the minimum value of the acceleration measured in the second determination period exceeds a predetermined threshold, it is determined as an earthquake.
  • FIG. 7 is a process flow diagram illustrating an example of a seismic process according to the second embodiment.
  • it is determined whether or not to end the earthquake determination in the determination period.
  • symbol is attached
  • S7 S7: YES
  • the earthquake determination unit 105 determines whether or not to end the earthquake determination (S11). If it is determined to end the earthquake determination (S11: YES), the process proceeds to S8. On the other hand, when it is determined not to end the earthquake determination (S11: NO), the process returns to S4.
  • the earthquake determination unit 105 determines whether or not to end the earthquake determination (S12). When it is determined to end the earthquake determination (S12: YES), the process proceeds to S9. On the other hand, when it is determined not to end the earthquake determination (S12: NO), the process returns to S4.
  • the earthquake determination is terminated in S12. You may make it judge that. That is, in each of the first period and the second period, it is determined whether an earthquake has occurred based on the acceleration, and when it is determined that no earthquake has occurred in at least any period, the measurement mode To the power saving mode.
  • FIG. 8 is a diagram for explaining the effect of the seismic processing 2. Waveforms A to C in FIG. 8 are the same as those in FIG. In the case of the waveform A, in the earthquake determination 1 according to the second embodiment, it is determined that the difference between the maximum value and the minimum value of acceleration exceeds a predetermined threshold, and the earthquake determination is terminated. If it does in this way, when it determines with it not being an earthquake, it can transfer to a power saving mode from a measurement mode, without performing the process which concerns on a later judgment period, and can suppress power consumption.
  • the earthquake determination may not be ended until it is determined in a plurality of determination periods. For example, when there are four determination periods and it is determined three times that the predetermined condition is satisfied in S7, it may be determined that the earthquake determination is ended in S11. That is, it is determined that an earthquake has occurred when the number of times that a predetermined determination condition determined based on acceleration exceeds a predetermined threshold among a plurality of periods, and the predetermined threshold is not exceeded for the remaining periods.
  • the measurement mode may be shifted to the power saving mode.
  • FIG. 9 is a diagram for explaining the effect of the seismic processing 2.
  • the example of FIG. 9 includes each process of earthquake determination 1 to earthquake determination 4 executed in four determination periods. For example, when it is determined that a predetermined condition is satisfied in any three of the four determination periods, it is determined that an earthquake has occurred. In this way, the conditions for earthquake determination can be determined in more detail, and at the time when it can be determined whether or not it is an earthquake, it is possible to promptly shift to subsequent processing.
  • the earthquake determination may not be ended until it is continuously determined in a plurality of determination periods. For example, when there are four determination periods and it is determined twice in succession that the predetermined condition is satisfied in S7, it may be determined that the earthquake determination is ended in S11. That is, it is determined that an earthquake has occurred when the number of times that a predetermined determination condition determined based on acceleration exceeds a predetermined threshold among a plurality of periods, and a predetermined threshold is set for the remaining periods. You may make it transfer to the said power saving mode from the said measurement mode when it turns out that it does not exceed.
  • the earthquake judgment value mentioned above is the average of the acceleration measured during a given period or its filter value, the sum of the average value and the variance value (or standard deviation value), the variance value , Integrated value, rate of change, frequency, spectrum, integral value, SI value, maximum acceleration value, response speed value, maximum speed value, and maximum displacement may be used. That is, various values corresponding to the acceleration measured in each determination period can be adopted. And it determines with it being an earthquake when the calculated
  • the integrated value may be a value obtained by adding accelerations measured at a predetermined sampling period or a value obtained by adding absolute values of accelerations.
  • the frequency for example, it may be determined whether the peak frequency is a predetermined frequency (for example, 1 Hz or the like).
  • the spectrum may be determined to be an earthquake when the spectrum intensity of a predetermined period band and a predetermined threshold satisfy a predetermined magnitude relationship. Further, for example, a value obtained by combining two or more of the above-described values by addition / subtraction / division / division may be used.
  • a plurality of predetermined conditions used in at least one of a plurality of determination periods may be provided. That is, a plurality of conditions (also referred to as “sub-conditions”) for determining whether or not an earthquake has occurred in at least one of a plurality of determination periods, and the earthquake determination unit 105 If a predetermined number of sub-conditions are satisfied, it may be determined that the predetermined condition is satisfied.
  • FIG. 10 is a diagram for explaining an example of setting a plurality of sub-conditions for the determination period. For example, six determination periods are provided, one condition is defined for each of the first and second determination periods in chronological order, and two subconditions are defined for each of the third to sixth determination periods. For example, in the third to sixth determination periods, the difference between the maximum value and the minimum value of acceleration is greater than 100 gal as the first sub condition, and the maximum acceleration in the previous determination period is the second sub condition. A condition is set such that the difference between the maximum value and the minimum value of acceleration in the current determination period is 40 gal or more larger than the difference between the value and the minimum value.
  • the conditions used for the determination can be defined in detail, and the power consumed in determining whether it is an earthquake or noise can be reduced. Further, by quickly determining an earthquake even during an earthquake determination, it is possible to output a shut-off output quickly and shut off electricity and gas when the earthquake has a large vibration intensity. In other words, whether it can be determined as an earthquake or not as an earthquake, determination processing in a later determination period can be omitted. At this time, not only the power consumption related to the subsequent processing can be reduced, but also the index value can be quickly calculated, and when it is determined that the earthquake is larger than the predetermined scale, the supply of energy is immediately cut off. It is possible to output a signal for making it happen.
  • FIG. 11 is a diagram for explaining another example in which a plurality of sub-conditions are set for the determination period.
  • a plurality of determination periods are provided, one condition is defined for the first determination period in chronological order, and two subconditions are defined for the second determination period and thereafter.
  • the difference between the maximum acceleration value and the minimum value is greater than 100 gal as the first subcondition, and the maximum acceleration in the previous determination period is the second subcondition.
  • a condition is set such that the difference between the maximum value and the minimum value of acceleration in the current determination period is greater than 10 gal than the difference between the value and the minimum value.
  • the difference between the maximum value and the minimum value of acceleration is greater than 100 gal as the first sub condition, and the maximum value of acceleration in the previous determination period is the third sub condition.
  • a condition is set such that the difference between the maximum value and the minimum value of the acceleration in the current determination period is 40 gal or more larger than the difference from the minimum value.
  • at least part of the conditions and sub-conditions may be different for each period.
  • the process returns to the power saving mode, and if the condition is satisfied, the process proceeds to a later determination period.
  • the first sub-condition is not satisfied, it is determined to be noise, and if the first sub-condition is satisfied after returning to the power saving mode, the subsequent determination period Move on to processing.
  • the second to third determination periods if both sub-conditions are satisfied, it is determined that the earthquake is an earthquake, and the process proceeds to calculation of an evaluation index without performing processing in the subsequent determination period.
  • the fourth determination period if the first sub-condition is not satisfied, it is determined as noise and the process returns to the power saving mode. After the fourth determination period, when the first and third sub-conditions are satisfied, the process returns to the first determination period.
  • FIG. 12 is a diagram for explaining the effect of the example of setting a plurality of subconditions shown in FIG.
  • the acceleration waveform shown in FIG. 12 schematically shows a case where the second noise occurs before the first noise converges.
  • the difference between the maximum value and the minimum value of the acceleration in the previous determination period is larger than the difference between the maximum value and the minimum value in the current determination period.
  • the process returns to the first determination period. That is, in the case where some acceleration is detected, if acceleration due to another earthquake or noise is detected before determining whether it is an earthquake or noise, the processing returns to the first determination period. That is, after the fourth determination period, if an acceleration greater than a predetermined threshold value is detected than the previous determination period, it is determined that a new vibration has occurred, and the earthquake determination can be performed again.
  • the second noise occurs before the first noise converges, and it is determined that the first and third sub-conditions are satisfied in the first earthquake determination 5 (fifth determination period).
  • the earthquake determination is performed again from earthquake determination 1 (processing in the first determination period).
  • the second noise does not satisfy both the first and third subconditions in the second earthquake determination 5 (fifth determination period) and can be finally determined as noise. .
  • increase in power consumption and interruption of energy supply due to erroneous determination can be reduced.
  • FIG. 13 is a diagram for explaining another example in which a plurality of subconditions are set for the determination period.
  • a plurality of determination periods are provided, three sub-conditions are defined in the first to sixth determination periods in chronological order, and two sub-conditions are determined after the seventh determination period.
  • the first subcondition in all the determination periods is that the difference between the maximum value and the minimum value of acceleration is greater than 100 gal in the three most recent determination periods including the current determination period.
  • the second sub-condition in the first to sixth determination periods is the maximum and minimum acceleration values in the sixth determination period, rather than the difference between the maximum and minimum acceleration values in the third to fifth determination periods. And the difference is 10 gal or more.
  • the third subcondition in the first to sixth determination periods is that the difference between the maximum and minimum acceleration values in the current determination period is greater than the difference between the maximum and minimum acceleration values in the previous determination period.
  • the direction is larger than 10 gal.
  • the fourth subcondition after the seventh determination period is that the difference between the maximum value and the minimum value of the acceleration in the current determination period is more than the difference between the maximum value and the minimum value of the acceleration in the previous determination period. Is greater than 40 gal.
  • the process determines whether the noise is not an earthquake, and the process returns to the power saving mode. If the first sub-condition is satisfied and at least one of the second and third sub-conditions is satisfied, it is determined as an earthquake, and the process proceeds to calculation of an evaluation index. In other cases, the process proceeds to a later determination period. Even after the seventh determination period, if the first sub-condition is not satisfied, it is determined as noise and the process returns to the power saving mode. In addition, after the seventh determination period, if the fourth sub-condition is satisfied, the process returns to the process of the first determination period, and otherwise, the process proceeds to the next determination period.
  • the conditions and subconditions may be determined in detail according to the case.
  • the processing after the seventh determination period when an acceleration greater than a predetermined threshold value is detected in comparison with the previous determination period, it is determined that a new vibration has occurred and the earthquake determination can be performed again.
  • the output unit 107 not only directly outputs the evaluation index, but also generates a predetermined pulse pattern when the evaluation index exceeds a predetermined threshold, or generates On / Off or High.
  • a binary signal such as / Low may be output to notify an external device that an earthquake of a predetermined magnitude or greater has occurred. If the seismic sensor 1 outputs an evaluation index, outputs a pulse pattern or the like, or is switched depending on the setting, a seismic sensor having compatibility with a conventional device can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Acoustics & Sound (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)

Abstract

感震センサにおいてノイズを地震と誤判定することを低減させる。感震センサは、省電力モード、及び当該省電力モードよりも消費電力の大きい測定モードで動作する。感震センサは、加速度を測定する測定部と、測定部が測定した加速度が所定の閾値を超えた場合に、省電力モードから測定モードへ移行し、測定モードにおいて測定された加速度に基づいて地震が発生したか否か判定する地震判定部と、地震が発生したと地震判定部が判定した場合に、地震の規模を示す指標値を算出する指標算出部とを備え、地震判定部は、測定モードに移行した後の期間を複数に分割した各々の判断期間を処理単位として、少なくとも1つの判断期間において、当該判断期間において測定された加速度に基づいて判断される所定の条件を満たすか否かにより、地震が発生したか否かを判定し、地震が発生していないと判定された場合に、測定モードから省電力モードに移行する。

Description

感震センサ及び地震判定方法
 本発明は、感震センサ及び地震判定方法に関する。
 地震の発生時にガスや電気を遮断するために用いられる感震センサのように、例えばメータボックス等に設けられ電池駆動するような装置の場合、特に待機電力を低減させることが望ましい。しかしながら、マイクロコントローラを用いた感震センサは、演算処理によって地震の規模を評価するための指標値を得ることができる一方、従来利用されていた振動によって通電するような機械式の感震センサと比較して消費電力が大きくなりがちである。また、装置を設置する環境によっては、車両の通行や工事等によるノイズも測定されるとともに、測定されるノイズの程度も様々となる。そして、このような環境ノイズを地震であると繰り返し誤検知すると、感震センサの電力消費は増大することになる。
 従来、省電力モードから測定モードへの移行後に地震判定を行い、地震ではないと判定した場合には省電力モードに戻る感震センサにおいて、測定された加速度に対しフィルタリングを行い、ノイズ成分を除去することで判定の精度を向上させる技術が提案されている(例えば、特許文献1)。
特開2017-15604号公報
 従来、感震センサが測定した揺れが地震であるかノイズであるかの判定は、センサが省電力モードから測定モードに移行した直後の振動に基づいて行われていた。しかしながら、センサの設置場所の性質やノイズの性質によっては、ノイズであってもある程度の期間、一定以上の大きさの揺れが継続する場合があった。例えば、比較的長い配管や、剛性の低い壁面にセンサを設置する場合は、何らかの衝撃がセンサに与えられたとき、揺れが長期化して地震であると誤検知することがあった。また、感震センサと連携する外部装置は、一定以上の振動強度と判断し、ガスや電気等のエネルギーの供給を遮断するための信号を誤って出力する事があった。
 本発明は、上記のような問題に鑑みてなされたものであり、感震センサにおいてノイズを地震と誤判定することを低減させることを目的とする。
 本発明に係る感震センサは、省電力モード、及び当該省電力モードよりも消費電力の大きい測定モードで動作する。感震センサは、加速度を測定する測定部と、測定部が測定した加速度が所定の閾値を超えた場合に、省電力モードから測定モードへ移行し、測定モードにおいて測定された加速度に基づいて地震が発生したか否か判定する地震判定部と、地震が発生したと地震判定部が判定した場合に、地震の規模を示す指標値を算出する指標算出部とを備え、地震判定部は、測定モードに移行した後の期間を複数に分割した各々の判断期間を処理単位として、少なくとも1つの判断期間において、当該判断期間において測定された加速度に基づいて判断される所定の条件を満たすか否かにより、地震が発生したか否かを判定し、地震が発生していないと判定された場合に、測定モードから省電力モードに移行する。
 測定モードに移行した後の期間を複数に区切ることで、地震が発生したか否かの判定を行うための細かな条件を定めることができる。すなわち、ノイズを地震と誤判定することを低減させることができる。
 また、地震判定部は、複数の判断期間のうち、いずれかの判断期間において地震が発生していないと判定された場合に、後の判断期間における処理を行わずに測定モードから省電力モードに移行するようにしてもよい。後の期間における処理を行わないことで、消費電力を抑制することができる。
 また、地震判定部は、複数の判断期間のうち、いずれかの判断期間において、地震が発生したと判定された場合に、後の判断期間における処理を行わず、指標算出部が指標値の算出を行うようにしてもよい。振動強度が大きい地震である場合は遮断出力を出力し、電気やガスを遮断する事が可能となる。また、地震が発生したと判定されたタイミングで後の判断期間における処理を省略することで、所定の規模よりも大きい地震であると判断されたときは速やかにエネルギーの供給を遮断させるための信号を出力することができるようになる。
 また、地震判定部は、複数の判断期間のうち、条件を満たした判断期間の数が所定の閾値を超えた場合に、地震が発生したと判定し、そうでない場合は、測定モードから省電力モードに移行するようにしてもよい。このようにすれば、地震判定の条件を、より詳細に定めることができるとともに、地震であるか否か判定できた時点で速やかに後の処理に移行することができる。
 また、地震判定部は、複数の判断期間のうち、条件を連続して満たした判断期間の数が所定の閾値を超えた場合に、地震が発生したと判断し、そうでない場合は、測定モードから省電力モードに移行するようにしてもよい。このような構成によっても、地震判定の条件を、より詳細に定めることができるとともに、地震であるか否か判定できた時点で速やかに後の処理に移行することができる。
 また、複数の判断期間の一部における前記条件と、他の判断期間における前記条件とが異なるようにしてもよい。このような構成によっても、地震判定の条件を、より詳細に定めることができる。
 また、条件は、加速度に基づく値の最大値と最小値との差、平均値、平均値と分散値との和、分散値、積算値、変化率、スペクトル強度、積分値、SI(Spectrum Intensity)値、最大値、応答速度値、及び加速度から算出された最大速度値若しくは最大変位量のいずれかと、所定の閾値とが所定の大小関係にある場合、又はピーク周波数が所定の周波数である場合に満たすと判断されるようにしてもよい。具体的には、地震であるか否かの判定に、加速度に応じた様々な値を用いることができる。
 また、複数の判断期間のうち少なくともいずれかに対し、条件を構成する副条件が複数定められ、地震判定部は、複数の副条件のうち所定数以上の副条件を満たす場合に、前記条件を満たすと判断するようにしてもよい。このような構成によっても、地震判定の条件を、より詳細に定めることができる。
 前記複数の判断期間のうち所定の判断期間においては、当該判断期間において測定された加速度に応じた値が、当該判断期間よりも前の期間において測定された加速度に応じた値よりも大きい場合に、地震判定部は、測定モードに移行した直後の判断期間の処理から実行するようにしてもよい。このようにすれば、例えば1つ目のノイズが収束する前に2つ目のノイズが検知された場合にも、適切に地震判定を行うことができる。
 なお、課題を解決するための手段に記載の内容は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。また、本発明は、上述の感震センサが行う地震判定方法として捉えることもできる。
 感震センサにおいてノイズを地震と誤判定することを低減させることができる。
感震センサの一例を示す装置構成図である。 感震センサの一例を示す機能ブロック図である。 本実施形態で測定される加速度と閾値を説明するための図である。 実施形態1に係る感震処理の一例を示す処理フロー図である。 第1の実施形態に係る地震判定について説明するための図である。 第1の実施形態に係る効果を説明するための図である。 第2の実施形態に係る感震処理の一例を示す処理フロー図である。 第2の実施形態に係る地震判定について説明するための図である。 第2の実施形態に係る地震判定について説明するための図である。 判断期間に対し、複数の副条件を設定する一例を説明するための図である。 判断期間に対し複数の副条件を設定する他の例を説明するための図である。 判断期間に対し複数の副条件を設定する他の例を説明するための図である。 判断期間に対し複数の副条件を設定する他の例を説明するための図である。
 以下、本発明の実施形態に係る感震センサについて、図面を参照しながら説明する。ただし、以下に説明する実施形態は、感震センサの一例を示すものであって、本発明に係る感震センサは、以下の構成には限定されない。
<装置構成>
 図1は、本実施形態に係る感震センサの一例を示す装置構成図である。感震センサ1は、加速度センサ11と、マイクロコントローラ12と、記憶部13と、出力部14と、入力部15とを有する。加速度センサ11は、例えば圧電素子を用いた加速度センサや、電極間の静電容量を検出する加速度センサである。なお、加速度センサ11が測定(「サンプリング」とも呼ぶ)した加速度は、マイクロコントローラ12に出力される。マイクロコントローラ12は、例えば汎用的な集積回路であり、所定の周期で加速度センサ11が測定する加速度を取得し、加速度に基づいて地震の発生を検知したり、地震の規模を示す指標値を算出したりする。また、マイクロコントローラ12は、状況に応じてアクティブモード又はスリープモードという異なる形式で動作する。スリープモードとは、マイクロコントローラ12が、割り込みを受け付けつつ命令の実行を停止したり、クロックの供給を停止する等、機能を制限して動作することにより、アクティブモードと比較して消費電力を低減させる動作形式である。マイクロコントローラ12は、アクティブモードにおいて、検知した振動が地震かノイズかの判定処理を行ったり、地震の規模を示す指標値を算出したりする。記憶部13は、RAM(Random Access Memory)等の一時記憶手段や、EPROM(Erasable Programmable Read Only Memory)等の不揮発性メモリであり、例えば測定された加速度や地震判定に用いる閾値等を保持する。なお、記憶部13は、加速度センサ11やマイクロコントローラ12が内蔵するメモリであってもよい。また、出力部14は、例えばマイクロコントローラ12が有する出力端子である。マイクロコントローラ12は、例えば地震が発生したと判定した場合、出力部14を介して他の装置に地震の発生やその規模を示す情報を出力する。また、入力部15は、マイクロコントローラ12が有する入力端子である。マイクロコントローラ12は、入力部15を介して、例えば図示していないスイッチの操作や他の装置からのコマンドの入力等を受けるようにしてもよい。なお、加速度センサ11とマイクロコントローラ12との間には図示していないハイパスフィルタを設けて重力成分を取り除くようにしてもよい。また、マイクロコントローラ12は、加速度センサ11が測定する加速度を、所定のオフセットを基準とした加速度の絶対値に変換して扱うようにしてもよい。
<機能構成>
 図2は、感震センサ1の一例を示す機能ブロック図である。感震センサ1は、加速度測定部101と、加速度記憶部102と、起動判定部103と、基準値記憶部104と、地震判定部105と、評価指標算出部106と、出力部107と、オフセット調整部108と、判定記憶部109と、フィルタリング部110とを有する。なお、加速度測定部101、起動判定部103、地震判定部105、評価指標算出部106、オフセット調整部108及びフィルタリング部110は、図1に示した加速度センサ11又はマイクロコントローラ12が所定のプログラムに基づいて動作することにより実現される。また、加速度記憶部102、基準値記憶部104及び判定記憶部109は、図1の記憶部13によって実現される。なお、少なくとも地震判定部105や評価指標算出部106は、マイクロコントローラ12がアクティブモードで動作することにより実現される。また、出力部107は、図1のマイクロコントローラ12及び出力部14が所定のプログラムに基づいて動作することにより実現される。
 加速度測定部101は、所定の周期で加速度を測定する。なお、加速度測定部101は、通常、比較的低速(すなわち、比較的大きな測定周期。「第1の周期」とも呼ぶ)で加速度の測定を繰り返す。なお、このような低速サンプリングを行う場合、マイクロコントローラ12は基本的にスリープモードで動作する。このような消費電力の小さい動作状態を、「省電力モード」又は「待機状態」とも呼ぶものとする。換言すれば、「省電力モード」とは、低速サンプリングを行う動作状態であり、このときマイクロコントローラ12は、機能が制限されたスリープモードで動作するため、電力消費が抑制される。また、加速度測定部101は、基準値記憶部104に予め設定されている閾値よりも大きな振動を検知した場合、低速サンプリング時よりも高速(すなわち、比較的小さな周期。「第2の周期」とも呼ぶ)で加速度の測定を繰り返す。このような高速サンプリングを行うとき、マイクロコントローラ12はスリープモード又はアクティブモードで動作する。なお、地震判定部105や評価指標算出部106が処理を行う場合は、マイクロコントローラ12がアクティブモードで動作する。このような高速サンプリング時の動作状態を、「測定モード」とも呼び、省電力モードから測定モードへの、動作状態の移行を「起動」とも呼ぶものとする。換言すれば、「測定モード」とは、高速サンプリングを行う動作状態であり、このときマイクロコントローラ12は、機能が制限されたスリープモードで動作する場合もあれば、最大限の計算能力で動作し得るアクティブモードで動作する場合もある。測定モードにおいては、サンプリング周期が短くなること、また、マイクロコントローラ12がスリープモードからアクティブモードに切り替わることにより、省電力モードよりも消費電力が大きくなる。
 フィルタリング部110は、加速度測定部101が測定した加速度の値に対し、フィルタリング処理を行い、フィルタリングされた加速度を加速度記憶部102に保持させる。本実施形態では、フィルタリング部110はいわゆるデジタルフィルタとして働く。フィルタリングの具体的な手法は、既存の技術を採用することができる。フィルタリング部110は、例えば加速度の絶対値の移動平均を算出することで、ローパスフィルタとして機能する。
 また、加速度記憶部102は、加速度測定部101が測定した加速度の値、又はフィルタリング部110がフィルタリングした加速度の値を保持する。起動判定部103は、加速度測定部101が測定した加速度の値と、基準値記憶部104に保持されている起動閾値とを比較し、加速度の値が起動閾値を超える場合、省電力モードから測定モードへ起動させる。また、地震判定部105は、加速度測定部101が測定モードで測定した加速度と、基準値記憶部104に予め設定された閾値とを用いて、測定した加速度が地震を示すかノイズであるか判定する。本実施形態では、地震判定部105は、起動判定部103が起動閾値を超える加速度を検知した後の期間を複数の判断期間という単位に切り分け、判断期間ごとの処理を行う。
 地震判定部105が地震であると判定した場合、評価指標算出部106は、地震の規模を示す評価指標を算出する。例えば、地震評価指標として、SI(Spectrum Intensity)値を算出するものとする。そして、出力部107は、算出されたSI値を外部の装置へ出力する。また、外部の装置においては、SI値に基づいて所定以上の規模の地震であると判定される場合には、例えばガスや電気のようなエネルギーの供給を遮断する処理を行ってもよい。
 一方、地震判定部105が振動はノイズであると判定した場合、オフセット調整部108は、いわゆるオフセット調整を行う。本実施形態では、センサの経時的変化に伴い発生する測定値の変化量や、温度変化に伴って生ずる測定値の変化量、設置されたセンサの姿勢が何らかの原因で傾いた場合にセンサに対する重力加速度の方向が変化することで生ずる測定値の変化量等、測定される加速度に含まれるノイズ成分をオフセット成分と呼ぶ。オフセット調整部108は、例えばノイズであると判定された加速度の最大値及び最小値の中央値や、加速度の平均値をオフセット成分として算出する。
 図3は、本実施形態で測定される加速度とオフセット成分及び閾値を説明するための図である。図3のグラフは、縦軸が加速度の大きさを示し、横軸が時間の経過を示す。図3(1)のように、太い実線で示す振動が測定された場合、オフセット成分は、例えば一点鎖線で示すような加速度の平均値として求めることができる。算出したオフセット成分は、基準値記憶部104に格納され、起動判定部103が実行する起動判定や、地震判定部105が実行する地震判定に用いられる。また、図3(2)、(3)のように、太い実線で示す振動が測定された場合、破線で示すように閾値はオフセット成分との相対的な値として規定される。
<感震処理1>
 図4は、第1の実施形態に係る感震処理の一例を示す処理フロー図である。まず、感震センサ1の加速度測定部101は、省電力モードで加速度を測定する(図4:S1)。省電力モードにおいては、加速度測定部101は低速サンプリングを行う。また、感震センサ1の起動判定部103は、起動する(すなわち、測定モードへ移行する)か否かの判定を行う(S2)。本ステップでは、S1で測定された加速度が図3に示した閾値(「起動閾値」とも呼ぶ)以下の場合(S2:NO)、処理はS1に遷移し、省電力モード(低速サンプリング)を継続する。起動閾値は、例えば50galのような加速度を表す値であり、予め基準値記憶部104に保持されている。一方、S1で測定された加速度が図3に示した閾値よりも大きい場合(S2:YES)、加速度測定部101は測定モードに移行する。なお、図3(2)、(3)に示したように、起動閾値は、オフセットを基準とした相対的な値である。また、測定モードにおいては、加速度測定部101は高速サンプリングを行う。
 その後、加速度測定部101は、測定モードにおいて高速サンプリングで加速度を測定し、フィルタリング部110が、測定された加速度に対して上述のフィルタリング処理を行い、結果の値を加速度記憶部102に記憶させると共に、評価指標算出部106が所定の評価指標の算出を開始する(S3)。なお、フィルタリングは、マイクロコントローラ12がアクティブモードへ移行して実行するようにしてもよいし、マイクロコントローラ12はスリープモードのまま加速度センサ11が実行するようにしてもよい。なお、S3のフィルタリングは必須ではない。
 また、評価指標として、例えばSI値の算出を開始する。SI値とは、地震評価指標の一例であり、建物が受ける被害の程度との相関が認められている値である。なお、感震センサ1の出力部107は、算出した評価指標を後のステップにおいて他の装置へ出力する。具体的には、次の式(1)によりSI値を求めることができる。
Figure JPOXMLDOC01-appb-M000001

上記のSI値は、剛性の高い構造物の固有周期である0.1秒~2.5秒の間の速度応答スペクトル積分値の平均によって地震動の破壊力を表す指標としたものである。なお、Svは速度応答スペクトル、Tは周期、hは減衰定数である。
 また、感震センサ1の地震判定部105は、振動の発生から所定期間が経過したか判断する(S4)。本実施形態では、複数の判断期間について所定の処理を行うことにより、検知した振動が地震であるかノイズであるか判定する。S4においては、1つの判断期間が経過したか判断する。なお、地震判定部105は、所定期間が経過していないと判断された場合(S4:NO)、S4の判断を繰り返して所定期間が経過するのを待つ。このとき、S3において開始した加速度の測定及び評価指標の算出は継続される。
 一方、S4において所定期間が経過したと判断された場合(S4:YES)、地震判定部105は、複数の判断期間の各々に対応づけられた処理を行う(S5)。なお、1回目の判断期間、2回目の判断期間等には予め所定の処理が対応付けられているものとする。例えば、判断期間において測定された加速度の最大値と最小値との差を算出するようにしてもよいし、加速度の絶対値の移動平均(「フィルタ値」とも呼ぶ)を用いて、例えば所定期間(例えば1秒)におけるフィルタ値の最大値と最小値との差を算出するようにしてもよい。また、例えば第1の判断期間を、振動の発生から1.0秒間、第2の判断期間を1.0~2.5秒程度としてもよい。複数の判断期間の各々においては、異なる処理を行うようにしてもよく、一部の判断期間においては地震判定のための処理を行わないようにしてもよい。
 また、S5において判断期間に対応する処理を行った後、地震判定部105は、地震判定を行う所定のタイミングであるか判断する(S6)。例えば、地震判定を行うタイミングとして、複数の判断期間の各々の後や、複数の判断期間のうち所定の判断期間の後といったタイミングが予め定められているものとする。地震判定のタイミングでないと判断された場合(S6:NO)、地震判定部105はS4に戻って処理を繰り返す。
 一方、S6において地震判定のタイミングであると判断された場合(S6:YES)、地震判定部105は所定の条件を満たすか判断する(S7)。具体的には、地震判定部105は、各判断期間に行った処理の結果に基づいて、検知された加速度が地震によるものであるかノイズであるか判断する。例えば、判断期間において測定された加速度の最大値と最小値との差と、所定の閾値とが所定の大小関係である場合、地震と判断するようにしてもよい。
 図5は、第1の実施形態に係る地震判定について説明するための図である。図4のS4~S7においては、図5に示すような処理が行われる。図5においては、左から右へ向かう矢印が時間の経過を表し、各長方形は感震センサ1が実行する処理を示している。省電力モードで動作する感震センサ1は、図4のS1において低速サンプリングで加速度を測定する(図5:待機)。その後、測定した加速度を用いて、図4のS2において起動判定を行い(図5:起動判定)、加速度が起動閾値を超える場合は起動する。そして、地震判定部105は、図4のS4において第1の所定期間が経過したと判断された場合、S5において判断期間ごとの処理を行う。図5に示すように、第1の実施形態では2つの判断期間を含み、それぞれ地震判定1及び地震判定2という処理を行う。地震判定1においては、地震であるか否かの判定を行わず、1つ目の判断期間に測定された加速度については無視する処理を行うものとする。そして、第1の判断期間の後は、図4のS6において地震判定のタイミングではないと判断する。図4のS4において第2の所定期間が経過したと判断された場合、S5において図5に示す地震判定2を行う。第2の判断期間においては、当該期間において加速度測定部101が測定した加速度の最大値と最小値との差を求める。また、第2の判断期間の後は、図4のS6において地震判定のタイミングであると判断する。そして、図4のS7においては、第2の判断期間において測定された加速度の最大値と最小値との差が所定の閾値である100galを超える場合、地震が発生したと判定する。
 また、S7において地震が発生したと判定された場合(S7:YES)、感震センサ1の評価指標算出部106は、地震の規模を示す評価指標を算出する(S8)。なお、評価指標の算出を行う際、マイクロコントローラ12はアクティブモードで動作する。評価指標は、上述した式(1)によって算出することができる。
 一方、S7において地震でないと判定された場合(S7:NO)、感震センサ1のオフセット調整部108は、オフセットを調整する(S9)。本ステップでは、オフセットとして、例えば図3(1)に一点鎖線で示す加速度の平均値を求める。このようにして、閾値の基準が調整される。
<効果>
 図6は、感震処理1の効果を説明するための図である。図6の「波形A」は比較的短時間のノイズが発生した場合の模式的な測定データの一例を示している。「波形B」は比較的長時間継続するノイズが発生した場合の模式的な測定データの一例を示している。「波形C」は地震が発生した場合の模式的な測定データの一例を示している。また、各波形の下には、各時点において比較例及び感震処理1で実行される処理を示している。
 比較例では、判断期間を1つ有し、起動直後の加速度に基づいて地震であるかノイズであるかの判定を行う。一方、実施形態1では、図5に示したように起動後に2つの判断期間を有し、第1の判断期間においては地震判定のための処理を行わず、第2の期間において測定された加速度に基づいて地震判定を行う。このように、複数に分割した各々の判断期間を処理単位として地震が発生したか否かを判定することで、地震判定のための詳細な条件を設定することができるようになる。
 波形Aのように例えば1秒に満たない短時間のノイズを検知した場合、比較例に係る地震判定処理においても加速度を検知することはなく、地震でないと判定される。一方、上述した感震処理1の場合も、第2の判断期間において測定された加速度の最大値と最小値との差が所定の閾値を超えないため、地震でないと判定される。
 波形Bの場合、比較例に係る地震判定処理においては、起動直後の判断期間に加速度が測定されるため、例えば加速度の最大値と最小値との差等の地震判定値が所定の閾値を超えるため、地震であると判定される。この場合、SI値のような評価指標を算出するため、消費電力の高い測定モードで比較的長時間(例えば3分間)動作することになる。また、第1の判断期間及び第2の判断期間に測定された加速度値の大きさによっては評価指標が所定の閾値を超え、エネルギーの遮断信号を出力することになる。つまり、地震ではなくノイズであるのにも関わらず、遮断出力が発生してしまう。一方、上述した感震処理1の場合は、第2の判断期間において測定された加速度の最大値と最小値との差が所定の閾値を超えないため、地震でないと判定される。このように、例えば1秒以上継続して加速度が測定されるような比較的長い振動についても、ノイズであると判定することができる。このように、本実施形態によれば、比較例よりも速やかにスリープモードに移行でき、消費電力を抑えることができる。また、本実施形態の場合は、ノイズによる遮断出力の発生も抑えることができる。
 波形Cの場合は、比較例に係る地震判定処理においては、起動直後の判断期間に加速度が測定されるため、例えば加速度の最大値と最小値との差等の地震判定値が所定の閾値を超えるため、地震であると判定される。一方、上述した感震処理1の場合は、第2の判断期間において測定された加速度の最大値と最小値との差が所定の閾値を超えるため、地震であると判定される。
<感震処理2>
 図7は、第2の実施形態に係る感震処理の一例を示す処理フロー図である。本実施形態では、判断期間において、地震判定を終了するか否か判断する。なお、第1の実施形態に係る図4の処理と同一の処理には同一の符号を付し、説明を省略する。図7においては、S7において条件を満たすと判断された場合(S7:YES)、地震判定部105は地震判定を終了するか否か判断する(S11)。地震判定を終了すると判断された場合(S11:YES)、S8の処理に移行する。一方、地震判定を終了しないと判断された場合(S11:NO)、S4の処理に戻る。
 また、S7において条件を満たさないと判断された場合(S7:NO)にも、地震判定部105は地震判定を終了するか否か判断する(S12)。地震判定を終了すると判断された場合(S12:YES)、S9の処理に移行する。一方、地震判定を終了しないと判断された場合(S12:NO)、S4の処理に戻る。
 例えば、各判断期間において測定された加速度の最大値と最小値との差が所定の閾値を超えないと判断された場合、S7において所定の条件を満たさない判断するとともにS12においては地震判定を終了すると判断するようにしてもよい。すなわち、第1の期間及び第2の期間の各々において、加速度に基づいて地震が発生したか否かを判定し、少なくともいずれかの期間において地震が発生していないと判定された場合、測定モードから前記省電力モードに移行するようにしてもよい。
 図8は、感震処理2の効果を説明するための図である。図8の波形A~波形Cは、図6と同じである。波形Aの場合、実施形態2に係る地震判定1においては加速度の最大値と最小値との差が所定の閾値を超えると判断されるとともに、地震判定を終了する。このようにすれば、地震でないと判定された場合に後の判断期間に係る処理を行うことなく測定モードから省電力モードに移行することができ、消費電力を抑制することができる。
 また、加速度の最大値と最小値との差が所定の閾値を超えたと、複数の判断期間において判断されるまで地震判定を終了しないようにしてもよい。例えば、4つの判断期間を有し、S7において所定の条件を満たしたと3回判断された場合に、S11においては地震判定を終了すると判断するようにしてもよい。すなわち、複数の期間のうち、加速度に基づいて判断する所定の判断条件を満たした回数が所定の閾値を超えた時点で地震が発生したと判定し、残りの期間では所定の閾値を超えないことがわかった時点で前記測定モードから前記省電力モードに移行するようにしてもよい。
 図9は、感震処理2の効果を説明するための図である。図9の例では、4つの判断期間において実行される地震判定1~地震判定4の各処理を含む。そして、例えば4つの判断期間のうちいずれか3つの判断期間において所定の条件を満たすと判断された場合、地震が発生したと判定する。このようにすれば、地震判定の条件を、より詳細に定めることができるとともに、地震であるか否か判定できた時点で速やかに後の処理に移行することができる。
 また、加速度の最大値と最小値との差が所定の閾値を超えたと、連続して複数の判断期間において判断されるまで地震判定を終了しないようにしてもよい。例えば、4つの判断期間を有し、S7において所定の条件を満たしたと連続して2回判断された場合に、S11においては地震判定を終了すると判断するようにしてもよい。すなわち、複数の期間のうち、加速度に基づいて判断する所定の判断条件を連続して満たした回数が所定の閾値を超えた時点で地震が発生したと判定し、残りの期間では所定の閾値を超えないことが分かった時点で前記測定モードから前記省電力モードに移行するようにしてもよい。
 例えば図9の例において、4つの判断期間のうち連続する2つの判断期間において所定の条件を満たすと判断された場合、地震が発生したと判定する。このような構成によっても、地震判定の条件を、より詳細に定めることができるとともに、地震であるか否か判定できた時点で速やかに後の処理に移行することができる。
<地震判定値の変形例>
 上述した地震判定値は、最大値と最小値との差のほか、所定期間に測定された加速度又はそのフィルタ値の平均値、平均値と分散値(又は標準偏差値)との和、分散値、積算値、変化率、周波数、スペクトル、積分値、SI値、最大加速度値、応答速度値、最大速度値、最大変位量を用いるようにしてもよい。すなわち、各判断期間において測定された加速度に応じた様々な値を採用することができる。そして、求めた値と所定の閾値とが所定の大小関係を満たす場合に地震であると判定する。また、平均値と分散値との和を採用する場合は、例えば、標準偏差をσとしたときに、σに所定の係数を乗じた値を分散値として扱ってもよい。このようにすれば、正規分布に従うノイズ成分を検出してしまう場合に、ノイズによる起動を抑制することができる。なお、積算値は、所定のサンプリング周期で測定した加速度を足し合わせた値や、加速度の絶対値を足し合わせた値としてもよい。周波数は、例えばピーク周波数が、所定の周波数(例えば、1Hz等)であるか否かを求めるようにしてもよい。スペクトルは、所定の周期帯のスペクトル強度と所定の閾値とが所定の大小関係を満たす場合に地震であると判定するようにしてもよい。また、例えば2以上の上述した値を、加減乗除によって組み合わせた値であってもよい。
<地震判定の条件の数の変形例>
 複数の判断期間の少なくともいずれかにおいて用いる所定の条件を複数有するようにしてもよい。すなわち、複数の判断期間のうち少なくともいずれかにおいて、地震であるか否かを判定するための複数の条件(「副条件」とも呼ぶ)が定められ、地震判定部105は、複数の副条件のうち所定数以上の副条件を満たす場合、所定の条件を満たすと判断するようにしてもよい。
 図10は、判断期間に対し、複数の副条件を設定する一例を説明するための図である。例えば6つの判断期間を設け、時系列順に第1、第2の判断期間にはそれぞれ1つの条件を定め、第3~第6の判断期間にはそれぞれ2つの副条件を定める。例えば、第3~第6の判断期間には、第1の副条件として加速度の最大値と最小値との差が100galよりも大きいこと、第2の副条件として前の判断期間における加速度の最大値と最小値との差よりも、現在の判断期間における加速度の最大値と最小値との差の方が40gal以上大きいことのような条件が定められる。
 各判断期間において1つも条件又は副条件を満たさない場合には地震でなくノイズであると判定し、省電力モードに戻る。また、第1、第2の判断期間においては、所定の条件を満たす場合、後の判断期間の処理に移行する。第3~第6の判断期間においては、いずれか一方の副条件を満たす場合には、後の判断期間の処理に移行する。また、第3~第6の判断期間においては、両方の副条件を満たす場合には地震であると判定し、後の判断期間の処理は行わずに評価指標の算出に移行する。なお、最後の判断期間においては、一方の副条件を満たす場合にも地震であると判定するようにしてもよい。また、第1の判断期間に測定された加速度については、地震であるか否かの判定に用いないようにしてもよい。
 このようにすれば、判定に用いる条件を詳細に定めることができ、地震であるかノイズであるかの判定で消費される電力を低減させ得る。また、地震判定の途中でも速やかに地震と判定することにより、振動強度が大きい地震である場合は速やかに遮断出力を出力し、電気やガスを遮断する事が可能となる。すなわち、地震と判定できる場合にも、地震でないと判断できる場合も、後の判断期間における判断処理を省略できる。このとき、後の処理に係る消電力を低減させられるだけでなく、速やかに指標値の算出に移行し、所定の規模よりも大きい地震であると判断されたときは速やかにエネルギーの供給を遮断させるための信号を出力することができるようになる。
 図11は、判断期間に対し、複数の副条件を設定する他の例を説明するための図である。例えば複数の判断期間を設け、時系列順に第1の判断期間には1つの条件を定め、第2の判断期間以降にはそれぞれ2つの副条件を定める。また、第2~第3の判断期間には、第1の副条件として加速度の最大値と最小値との差が100galよりも大きいこと、第2の副条件として前の判断期間における加速度の最大値と最小値との差よりも、現在の判断期間における加速度の最大値と最小値との差の方が10gal以上大きいことのような条件が定められる。また、第4の判断期間以降には、第1の副条件として加速度の最大値と最小値との差が100galよりも大きいこと、第3の副条件として前の判断期間における加速度の最大値と最小値との差よりも、現在の判断期間における加速度の最大値と最小値との差の方が40gal以上大きいことのような条件が定められる。このように、条件や副条件の少なくとも一部は期間ごとに異なってもよい。
 また、第1の判断期間において条件を満たさない場合には地震でなくノイズであると判定し、省電力モードに戻り、条件を満たす場合にはのちの判断期間に移行する。第2~第3の判断期間においては、第1の副条件を満たさない場合にはノイズであると判定し、省電力モードに戻り、第1の副条件を満たす場合には、後の判断期間の処理に移行する。また、第2~第3の判断期間においては、両方の副条件を満たす場合には地震であると判定し、後の判断期間の処理は行わずに評価指標の算出に移行する。第4の判断期間以降においても、第1の副条件を満たさない場合にはノイズであると判定し、省電力モードに戻る。また、第4の判断期間以降においては、第1及び第3の副条件を満たす場合には第1の判断期間の処理に戻る。
 図12は、図11に示した複数の副条件を設定する例の効果を説明するための図である。図12に示す加速度の波形は、1つ目のノイズが収束する前に2つ目のノイズが発生した場合を模式的に表している。図11に示した条件によれば、第4の判断期間以降において、前の判断期間における加速度の最大値と最小値との差よりも、現在の判断期間における加速度の最大値と最小値との差の方が40gal以上大きいことという第3の副条件を第1の副条件に加えてさらに満たす場合に、第1の判断期間の処理に戻る。すなわち、何らかの加速度を検知した場合において、地震かノイズかを判定する前にさらに別の地震又はノイズによる加速度を検知すると、第1の判断期間の処理に戻るようになる。すなわち、第4の判断期間以降においては、前の判断期間よりも所定の閾値以上大きな加速度を検知した場合には、新たな振動が発生したと判断して、地震判定をやり直すことができる。
 例えば図12の例では、1つ目のノイズに対し、1つ目の地震判定2~4(第2~第4の判断期間)においては第1の副条件のみを満たすと判断されたとする。また、1つ目のノイズが収束する前に2つ目のノイズが発生し、1つ目の地震判定5(第5の判断期間)において第1及び第3の副条件を満たすと判断され、後に検知したノイズについては地震判定1(第1の判断期間の処理)から地震判定をやり直す。また、2つ目のノイズについては、2回目の地震判定5(第5の判断期間)において第1及び第3の副条件をいずれも満たさず、最終的にノイズであると判定することができる。このように、ノイズが連続する場合に、誤判定による消費電力の増大やエネルギー供給の遮断を低減することができるようになる。
 図13は、判断期間に対し、複数の副条件を設定する他の例を説明するための図である。例えば複数の判断期間を設け、時系列順に第1~第6の判断期間には3つの副条件を定め、第7の判断期間以降にはそれぞれ2つの副条件を定める。また、全判断期間における、第1の副条件は、現在の判断期間を含む直近の3つの判断期間において加速度の最大値と最小値との差が100galよりも大きいこととする。第1~第6の判断期間における第2の副条件は、第3~5の判断期間における加速度の最大値と最小値との差よりも、第6の判断期間における加速度の最大値と最小値との差が10gal以上大きいこととする。第1~第6の判断期間における第3の副条件は、前の判断期間における加速度の最大値と最小値との差よりも、現在の判断期間における加速度の最大値と最小値との差の方が10gal以上大きいこととする。また、第7の判断期間以降における、第4の副条件は、前の判断期間における加速度の最大値と最小値との差よりも、現在の判断期間における加速度の最大値と最小値との差の方が40gal以上大きいこととする。
 また、第1~第6の判断期間においては、第1の副条件を満たさない場合には地震でなくノイズであると判定し、省電力モードに戻る。また、第1の副条件を満たし、且つ第2及び第3の副条件の少なくともいずれかを満たす場合は、地震と判定し、評価指標の算出に移行する。それ以外の場合は、後の判断期間に移行する。第7の判断期間以降においても、第1の副条件を満たさない場合にはノイズであると判定し、省電力モードに戻る。また、第7の判断期間以降においては、第4の副条件を満たす場合には第1の判断期間の処理に戻り、それ以外の場合は、次の判断期間に移行する。このように、条件や副条件を詳細に場合分けして判断するようにしてもよい。特に第7の判断期間以降の処理において、前の判断期間よりも所定の閾値以上大きな加速度を検知した場合には、新たな振動が発生したと判断して、地震判定をやり直すことができる。
<その他>
 上述したオフセットの動的な調整や、測定値のフィルタリングについては実行しないようにしてもよい。
 また、上述のS8において、出力部107は、評価指標を直接出力するだけでなく,評価指標が所定の閾値を上回った場合に、所定のパルスパターンを発生するようにしたり、On/OffやHigh/Lowといった2値信号を出力するようにしたりして、所定の大きさ以上の地震が発生したことを外部機器に通知するようにしても良い。感震センサ1が評価指標を出力するか、パルスパターン等を出力するか、設定により切り替えられるようにすれば、従来の装置との互換性を有する感震センサを提供できる。
1  感震センサ
11  加速度センサ
12  マイクロコントローラ
13  記憶部
14  出力部
15  入力部
101  加速度測定部
102  加速度記憶部
103  起動判定部
104  基準値記憶部
105  地震判定部
106  評価指標算出部
107  出力部
108  オフセット調整部
109  判定記憶部
110  フィルタリング部

Claims (10)

  1.  省電力モード、及び当該省電力モードよりも消費電力の大きい測定モードで動作する感震センサであって、
     加速度を測定する測定部と、
     前記測定部が測定した加速度が所定の閾値を超えた場合に、前記省電力モードから前記測定モードへ移行し、前記測定モードにおいて測定された前記加速度に基づいて地震が発生したか否か判定する地震判定部と、
     地震が発生したと前記地震判定部が判定した場合に、地震の規模を示す指標値を算出する指標算出部と、
     を備え、
     前記地震判定部は、前記測定モードに移行した後の期間を複数に分割した各々の判断期間を処理単位として、少なくとも1つの判断期間において、当該判断期間に測定された加速度に基づいて判断される所定の条件を満たすか否かにより、地震が発生したか否かを判定し、地震が発生していないと判定された場合に、前記測定モードから前記省電力モードに移行する
     感震センサ。
  2.  前記地震判定部は、複数の前記判断期間のうち、いずれかの判断期間において、地震が発生していないと判定された場合に、後の判断期間における処理を行わずに前記測定モードから前記省電力モードに移行する
     請求項1に記載の感震センサ。
  3.  前記地震判定部は、複数の前記判断期間のうち、いずれかの判断期間において、地震が発生したと判定された場合に、後の判断期間における処理を行わず、前記指標算出部が前記指標値の算出を行う
     請求項1又は2に記載の感震センサ。
  4.  前記地震判定部は、複数の前記判断期間のうち、前記条件を満たした判断期間の数が所定の閾値を超えた場合に、地震が発生したと判定し、そうでない場合は、前記測定モードから前記省電力モードに移行する
     請求項1から3のいずれか一項に記載の感震センサ。
  5.  前記地震判定部は、複数の前記判断期間のうち、前記条件を連続して満たした判断期間の数が所定の閾値を超えた場合に、地震が発生したと判定し、そうでない場合は、前記測定モードから前記省電力モードに移行する
     請求項1から3のいずれか一項に記載の感震センサ。
  6.  複数の前記判断期間の一部における前記条件と、他の判断期間における前記条件とが異なる
     請求項1から5のいずれか一項に記載の感震センサ。
  7.  加速度に基づく値の最大値と最小値との差、平均値、平均値と分散値との和、分散値、積算値、変化率、スペクトル強度、積分値、SI(Spectrum Intensity)値、最大値、応答速度値、及び加速度から算出された最大速度値若しくは最大変位量のいずれかと、所定の閾値とが所定の大小関係にある場合、又はピーク周波数が所定の周波数である場合に、前記条件が満たされると判断される
     請求項1から6のいずれか一項に記載の感震センサ。
  8.  複数の前記判断期間のうち少なくともいずれかに対し、前記条件を構成する副条件が複数定められ、前記地震判定部は、複数の前記副条件のうち所定数以上の副条件を満たす場合に、前記条件を満たすと判断する
     請求項1から7のいずれか一項に記載の感震センサ。
  9.  複数の前記判断期間のうち所定の判断期間においては、当該判断期間において測定された加速度に応じた値が、当該判断期間よりも前の期間において測定された加速度に応じた値よりも大きい場合に、前記地震判定部は、前記測定モードに移行した直後の判断期間の処理から実行する
     請求項1から8のいずれか一項に記載の感震センサ。
  10.  省電力モード、及び当該省電力モードよりも消費電力の大きい測定モードで動作する感震センサが実行する地震判定方法であって、
     加速度を測定する測定ステップと、
     前記測定ステップにおいて測定した加速度が所定の閾値を超えた場合に、前記省電力モードから前記測定モードへ移行し、前記測定モードにおいて測定された前記加速度に基づいて地震が発生したか否か判定する地震判定ステップと、
     地震が発生したと前記地震判定ステップにおいて判定した場合に、地震の規模を示す指標値を算出する指標算出ステップと、
     を備え、
     前記地震判定ステップにおいて、前記測定モードに移行した後の期間を複数に分割した各々の判断期間を処理単位として、少なくとも1つの判断期間において、当該判断期間において測定された加速度に基づいて判断される所定の条件を満たすか否かにより、地震が発生したか否かを判定し、地震が発生していないと判定された場合に、前記測定モードから前記省電力モードに移行する
     地震判定方法。
PCT/JP2017/042600 2017-03-14 2017-11-28 感震センサ及び地震判定方法 WO2018168101A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17901116.8A EP3598179B1 (en) 2017-03-14 2017-11-28 Seismic sensor and earthquake determination method
US16/489,893 US11422272B2 (en) 2017-03-14 2017-11-28 Seismic sensor and earthquake determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-048485 2017-03-14
JP2017048485A JP6737211B2 (ja) 2017-03-14 2017-03-14 感震センサ及び地震判定方法

Publications (1)

Publication Number Publication Date
WO2018168101A1 true WO2018168101A1 (ja) 2018-09-20

Family

ID=63523612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042600 WO2018168101A1 (ja) 2017-03-14 2017-11-28 感震センサ及び地震判定方法

Country Status (4)

Country Link
US (1) US11422272B2 (ja)
EP (1) EP3598179B1 (ja)
JP (1) JP6737211B2 (ja)
WO (1) WO2018168101A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046395A (ja) * 2018-09-21 2020-03-26 オムロン株式会社 感震センサ及びセンサ制御方法
US20210302602A1 (en) * 2020-03-31 2021-09-30 Omron Corporation Seismic sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737211B2 (ja) * 2017-03-14 2020-08-05 オムロン株式会社 感震センサ及び地震判定方法
US11435489B2 (en) 2017-06-30 2022-09-06 Omron Corporation Seismic sensor and earthquake determination method
JP2020091167A (ja) * 2018-12-05 2020-06-11 パナソニックIpマネジメント株式会社 感震センサ
US11293167B2 (en) * 2019-09-05 2022-04-05 Caterpillar Inc. Implement stall detection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162032A (ja) * 1998-12-01 2000-06-16 Sensor Gijutsu Kenkyusho:Kk 地震検出装置
JP2001059761A (ja) * 1999-08-25 2001-03-06 Sensor Gijutsu Kenkyusho:Kk 遮断弁を有するガスメータ
US20030184445A1 (en) * 2002-04-02 2003-10-02 Chung-Chu Chen Strong shaking judgment device and method
JP2017015604A (ja) 2015-07-02 2017-01-19 東京瓦斯株式会社 感震センサ及び地震判定方法
JP2017015603A (ja) * 2015-07-02 2017-01-19 オムロン株式会社 感震センサ及び閾値調整方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182867B2 (ja) * 2013-01-11 2017-08-23 オムロン株式会社 振動強度測定装置およびその制御方法
JP6737211B2 (ja) * 2017-03-14 2020-08-05 オムロン株式会社 感震センサ及び地震判定方法
US11435489B2 (en) * 2017-06-30 2022-09-06 Omron Corporation Seismic sensor and earthquake determination method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162032A (ja) * 1998-12-01 2000-06-16 Sensor Gijutsu Kenkyusho:Kk 地震検出装置
JP2001059761A (ja) * 1999-08-25 2001-03-06 Sensor Gijutsu Kenkyusho:Kk 遮断弁を有するガスメータ
US20030184445A1 (en) * 2002-04-02 2003-10-02 Chung-Chu Chen Strong shaking judgment device and method
JP2017015604A (ja) 2015-07-02 2017-01-19 東京瓦斯株式会社 感震センサ及び地震判定方法
JP2017015603A (ja) * 2015-07-02 2017-01-19 オムロン株式会社 感震センサ及び閾値調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598179A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046395A (ja) * 2018-09-21 2020-03-26 オムロン株式会社 感震センサ及びセンサ制御方法
WO2020059384A1 (ja) * 2018-09-21 2020-03-26 オムロン株式会社 感震センサ及びセンサ制御方法
TWI716987B (zh) * 2018-09-21 2021-01-21 日商歐姆龍股份有限公司 地震感測器及感測器控制方法
CN112639419A (zh) * 2018-09-21 2021-04-09 欧姆龙株式会社 测震传感器以及传感器控制方法
JP7139823B2 (ja) 2018-09-21 2022-09-21 オムロン株式会社 感震センサ及びセンサ制御方法
US20210302602A1 (en) * 2020-03-31 2021-09-30 Omron Corporation Seismic sensor
US11635534B2 (en) * 2020-03-31 2023-04-25 Omron Corporation Seismic sensor

Also Published As

Publication number Publication date
JP6737211B2 (ja) 2020-08-05
JP2018151290A (ja) 2018-09-27
EP3598179A4 (en) 2021-01-13
US11422272B2 (en) 2022-08-23
US20200012003A1 (en) 2020-01-09
EP3598179B1 (en) 2024-02-14
EP3598179A1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
WO2018168101A1 (ja) 感震センサ及び地震判定方法
WO2017002946A1 (ja) 感震センサ及び地震判定方法
US10613240B2 (en) Seismic sensor and threshold adjusting method
US11635535B2 (en) Seismic sensor and earthquake determination method
JP6879368B2 (ja) 感震センサ及び地震判定方法
JP6118988B2 (ja) モータ駆動装置
JP2021162461A (ja) 感震センサ
KR100942128B1 (ko) 고속카운터를 이용한 단위시간당 회전수 산출 방법
JP7246051B2 (ja) 脱調判定装置及び脱調判定方法
JP2016101786A (ja) 異常揺動判定装置、異常揺動判定システムおよび異常揺動判定方法
US20230314642A1 (en) Seismic sensor, earthquake detection method, and earthquake detection program
JP2023147459A (ja) 感震センサおよび地震検知方法、地震検知プログラム
JP2008249592A (ja) 燃料判別装置
JP2006211871A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017901116

Country of ref document: EP

Effective date: 20191014