WO2018167936A1 - Exposure device, lithographic method, and device manufacturing method - Google Patents

Exposure device, lithographic method, and device manufacturing method Download PDF

Info

Publication number
WO2018167936A1
WO2018167936A1 PCT/JP2017/010823 JP2017010823W WO2018167936A1 WO 2018167936 A1 WO2018167936 A1 WO 2018167936A1 JP 2017010823 W JP2017010823 W JP 2017010823W WO 2018167936 A1 WO2018167936 A1 WO 2018167936A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
openings
target
exposure
wafer
Prior art date
Application number
PCT/JP2017/010823
Other languages
French (fr)
Japanese (ja)
Inventor
真路 佐藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2017/010823 priority Critical patent/WO2018167936A1/en
Priority to TW107107540A priority patent/TW201837983A/en
Publication of WO2018167936A1 publication Critical patent/WO2018167936A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to an exposure apparatus, a lithography method, and a device manufacturing method, and more particularly, an exposure apparatus that irradiates a target by irradiating a charged particle beam, a lithography method that cuts a line pattern using the exposure apparatus, and a lithography method.
  • the present invention relates to a device manufacturing method including a lithography process in which exposure of a target is performed.
  • complementary lithography using, for example, an immersion exposure technique using an ArF light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) has been proposed.
  • a simple line and space pattern (hereinafter, abbreviated as an L / S pattern as appropriate) is formed by using double patterning or the like in immersion exposure using an ArF light source.
  • a line pattern is cut or a via is formed through exposure using an electron beam.
  • a charged particle beam exposure apparatus equipped with a multi-beam optical system can be suitably used (for example, see Patent Documents 1 and 2).
  • a Coulomb force Coulomb interaction
  • the on / off states of each of the plurality of beams are freely changeable and change from moment to moment according to the target pattern.
  • the interaction between the beams is also variable and changes every moment.
  • an exposure apparatus that irradiates a target by irradiating a charged particle beam, the first direction in a predetermined plane parallel to the surface of the target and the first direction in the predetermined plane.
  • a beam shaping member having a plurality of openings arranged along the intersecting second direction; and an optical system for irradiating the target with the charged particle beam respectively passing through the plurality of openings.
  • an exposure apparatus that is determined in consideration of positional information of the charged particle beam resulting from the Coulomb force acting between the charged particle beams.
  • the target is exposed by an exposure apparatus to form a line and space pattern on the target, and the line and space pattern is configured using the exposure apparatus according to the first aspect.
  • a line pattern cutting is provided.
  • a device manufacturing method including a lithography process, wherein in the lithography process, a device manufacturing method is performed in which exposure to a target is performed by the lithography method according to the second aspect.
  • FIG. 5A is a plan view showing the beam shaping aperture plate
  • FIG. 5B is an enlarged view of the inside of a circle C in FIG. 5A.
  • 6A and 6B show the basis for determining the pitch px of the opening 28a in the X-axis direction and the pitch in the direction inclined by a predetermined angle with respect to the opening 28aX axis (interval between adjacent openings 28a). It is a figure for demonstrating. It is a perspective view which shows the state by which the wafer shuttle was mounted
  • FIGS. 11A and 11B are diagrams (No. 1 and No. 2) for explaining the configuration of the first measurement system. It is a block diagram which shows the input / output relationship of the main controller which comprises the control system of an electron beam exposure apparatus.
  • FIG. 13A is a diagram showing a state in which all the beams of the optical system column are simultaneously irradiated on the L / S pattern in complementary lithography
  • FIG. 13B is a diagram showing a predetermined number of line patterns. It is a figure which shows the state in which the cut pattern was formed in the same Y position.
  • FIGS. 14A and 14B are diagrams for explaining a series of flows when a cut pattern is formed at the same Y position on a predetermined number of continuous line patterns (No. 1 and No. 2). It is.
  • FIGS. 15A and 15B are diagrams for explaining a series of flows when a cut pattern is formed at the same Y position on a predetermined number of continuous line patterns (No. 3 and No. 4). It is. It is FIG. (5) for demonstrating a series of flows in the case of forming a cut pattern in the same Y position on the continuous predetermined number of line patterns.
  • FIGS. 17A and 17B are diagrams for explaining other arrangement examples of the openings on the beam shaping aperture plate.
  • FIGS. 18 (A) and 18 (B) show an exposure apparatus according to the first modification that controls the irradiation position on the L / S pattern of the main beam by using the sub beam that passes through the auxiliary opening of the beam shaping aperture plate. It is a figure for demonstrating the exposure method.
  • FIGS. 19A and 19B are views for explaining a beam shaping aperture plate provided in the exposure apparatus according to the second modification.
  • FIGS. 20A, 20B, and 20C are diagrams for explaining the principle of correcting the X shift amount of the beam using the discarded cut beam in the exposure apparatus according to the second modification. is there. It is a flowchart for demonstrating one Embodiment of a device manufacturing method.
  • FIG. 1 schematically shows a configuration of an electron beam exposure apparatus 100 according to an embodiment.
  • the electron beam exposure apparatus 100 includes an electron beam optical system as will be described later, hereinafter, the Z axis is taken in parallel to the optical axis of the electron beam optical system, and exposure will be described later in a plane perpendicular to the Z axis.
  • the scanning direction in which the wafer W is moved is the Y-axis direction
  • the direction orthogonal to the Z-axis and the Y-axis is the X-axis direction
  • the rotation (tilt) directions around the X-axis, Y-axis, and Z-axis are ⁇ x and ⁇ y, respectively.
  • the ⁇ z direction will be described.
  • a configuration using an electron beam will be described as an example of a charged particle beam.
  • the charged particle beam is not limited to an electron beam, and a beam using charged particles such as an ion beam may be used.
  • the electron beam exposure apparatus 100 includes a vacuum chamber 80 and an exposure system 82 housed in an exposure chamber 81 defined by the vacuum chamber 80.
  • FIG. 2 shows a perspective view of the exposure system 82.
  • the exposure system 82 includes a stage device 83 and an electron beam irradiation device 92 as shown in FIGS.
  • the electron beam irradiation device 92 includes a cylindrical barrel 93 shown in FIG. 2 and an electron beam optical system inside the barrel 93.
  • the stage device 83 includes a coarse / fine movement stage 85 on which a wafer shuttle 10 that can hold and move a wafer is detachably mounted.
  • the electron beam irradiation device 92 is a wafer shuttle mounted on the coarse / fine movement stage 85. In this configuration, the wafer W held by 10 is exposed to an electron beam.
  • the wafer shuttle 10 is a holding member (or table) that holds the wafer by electrostatic adsorption.
  • the holding member is transported while holding the wafer, and a plurality of exposure chambers including the exposure chamber 81 (for exposure chambers other than the exposure chamber 81, starting from a measurement chamber (not shown) in which predetermined pre-measurement is performed. Reciprocate back and forth. Therefore, in this embodiment, this holding member is called a wafer shuttle.
  • the stage device 83 includes a surface plate 84, a coarse / fine movement stage 85 that moves on the surface plate 84, a drive system that drives the coarse / fine movement stage 85, and positional information of the coarse / fine movement stage 85. And a position measurement system for measuring. Details of the configuration of the stage device 83 will be described later.
  • the lens barrel 93 of the electron beam irradiation apparatus 92 is lowered by a metrology frame 94 made of an annular plate member having three convex portions formed at intervals of a central angle of 120 degrees on the outer peripheral portion. It is supported from. More specifically, the lowermost end portion of the lens barrel 93 is a small-diameter portion whose diameter is smaller than the portion above it, and the boundary portion between the small-diameter portion and the portion above it is a stepped portion. Yes.
  • the lens barrel 93 is moved from below by the metrology frame 94. It is supported.
  • the metrology frame 94 has three suspension support mechanisms 95a, 95b, and 95c (flexible structure connecting members) each having a lower end connected to each of the three convex portions described above. It is supported in a suspended state from the top plate (ceiling wall) of the vacuum chamber 80 that partitions the exposure chamber 81 (see FIG. 1). That is, in this way, the electron beam irradiation apparatus 92 is supported by being suspended from the vacuum chamber 80 at three points.
  • the three suspension support mechanisms 95a, 95b, and 95c are, as representatively shown for the suspension support mechanism 95a in FIG. (Vibration proof part) It has the wire 97 which consists of steel materials which each one end was connected to the lower end of 96, and the other end was connected to the metrology frame 94.
  • the anti-vibration pads 96 are fixed to the top plate of the vacuum chamber 80 and each include an air damper or a coil spring.
  • vibration isolation pad 96 In the present embodiment, among vibrations such as floor vibration transmitted from the outside to the vacuum chamber 80, most of vibration components in the Z-axis direction parallel to the optical axis of the electron beam optical system are absorbed by the vibration isolation pad 96. Therefore, high vibration isolation performance can be obtained in a direction parallel to the optical axis of the electron beam optical system.
  • the natural frequency of the suspension support mechanism is lower in the direction perpendicular to the optical axis than in the direction parallel to the optical axis of the electron beam optical system.
  • the vibration isolation performance in the direction perpendicular to the optical axis (floor vibration transmitted from the outside to the vacuum chamber 80)
  • the length of the three suspension support mechanisms 95a, 95b, and 95c (the length of the wire 97) is set to be sufficiently long so that the vibration (such as the ability to prevent vibrations from being transmitted to the electron beam irradiation device 92) is sufficiently high. is doing.
  • a non-contact type positioning device 98 (not shown in FIGS. 1 and 2; see FIG. 12) is provided. Yes.
  • the positioning device 98 can be configured to include a 6-axis acceleration sensor and a 6-axis actuator, as disclosed in, for example, International Publication No. 2007/077920.
  • the positioning device 98 is controlled by the main controller 50 (see FIG. 12).
  • the relative positions of the electron beam irradiation device 92 with respect to the vacuum chamber 80 in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the relative rotation angles around the X-axis, Y-axis, and Z-axis are constant (predetermined). The state is maintained.
  • the electron beam irradiation device 92 includes an electron beam optical system including a lens barrel 93 and m (m is 100, for example) optical system columns 20 arranged in an array on the XY plane in the lens barrel 93. I have.
  • Each optical system column 20 includes a multi-beam optical system that can irradiate n beams (n is, for example, 5000) that can be individually turned on / off and can be deflected.
  • the multi-beam optical system is referred to as a multi-beam optical system 20, an optical system column (multi-beam optical system) 20, or a multi-beam optical system (optical system column) 20, using the same reference numerals as those of the optical system column. write.
  • FIG. 4 shows the configuration of the optical system column (multi-beam optical system) 20.
  • the optical system column (multi-beam optical system) 20 includes a cylindrical housing (column cell) 21, an electron gun 22 and an optical system 23 housed in the column cell 21.
  • the optical system 23 includes a first aperture plate 24, a primary beam shaping plate 26, a beam shaping aperture plate 28, a blanker plate 30, and a final aperture 32 arranged in a predetermined positional relationship below the electron gun 22 from top to bottom. Is provided. Among these, the beam shaping aperture plate 28 and the blanker plate 30 are arranged close to each other.
  • An asymmetric illumination optical system 34 is disposed between the first aperture plate 24 and the primary beam shaping plate 26.
  • Electromagnetic lenses 36A and 36B are arranged between the primary beam shaping plate 26 and the beam shaping aperture plate 28 at a predetermined interval in the vertical direction.
  • Electromagnetic lenses 38A and 38B are arranged between the blanker plate 30 and the final aperture 32 at a predetermined interval in the vertical direction. Further, below the final aperture 32, electromagnetic lenses 38C and 38D are arranged at a predetermined interval in the vertical direction. Inside the electromagnetic lens 38D, a stage feedback deflector 40 is disposed at a somewhat higher position and substantially concentric with the electromagnetic lens 38D.
  • the electron gun 22 emits an electron beam EB 0 having a predetermined acceleration voltage (for example, 50 keV).
  • the electron beam EB 0 is, by passing through the opening 24a of the first aperture plate 24 is formed into symmetrical circular cross section around the optical axis AX1.
  • the asymmetric illumination optical system 34 is an electron beam obtained by transforming an electron beam EB 0 formed into a circular cross section into a vertically long cross-sectional shape that is long in one direction (for example, the X-axis direction) and short in the other direction (for example, the Y-axis direction).
  • EB 1 is generated.
  • the asymmetric illumination optical system 34 can be configured by, for example, an electrostatic quadrupole lens group that generates an electrostatic quadrupole field near the optical axis AX1. Section by appropriately adjusting the electrostatic quadrupole field generated by an asymmetric illumination optical system 34 can be molded to the electron beam EB 1 portrait.
  • the electron beam EB 1 is applied to a region including a slit-shaped opening 26 a long in the X-axis direction formed at the center of the disk-shaped primary beam shaping plate 26 in the Y-axis direction.
  • the electron beam EB 1 passes through the opening 26a of the primary beam shaping plate 26 to be shaped into the electron beam EB 2 , and is imaged on the beam shaping aperture plate 28 by the electromagnetic lens 36A and the electromagnetic lens 36B. Irradiation is performed on an irradiation region extending in the X-axis direction corresponding to an arrangement region of an opening, which will be described later, of the shaping aperture plate 28.
  • the beam shaping aperture plate 28 is provided with a plurality of openings at positions corresponding to the openings 26 a of the primary beam shaping plate 26. More specifically, in the beam shaping aperture plate 28, as shown in the plan view of FIG. 5A, a large number of openings 28a are formed at predetermined intervals in a parallelogram region extending in the X-axis direction. Is formed.
  • the openings 28a are formed from a predetermined number (for example, 1000) of openings 28a arranged side by side in the X-axis direction at a predetermined pitch of 5 px, as shown in FIG. 5 rows of opening rows are arranged at a predetermined interval of 6 py in the Y-axis direction.
  • the openings 28a in the opening row adjacent to the ⁇ Y side are shifted by px in the + X direction so that the openings 28a do not overlap in the X-axis direction.
  • the dimension py in the Y-axis direction is p / 2 to p, for example, 4p / 7.
  • the distance between the closest openings 28a is about 3.57p
  • the shape of the opening 28a is a rectangle (rectangle).
  • py p may be satisfied, and at this time, the shape of the opening 28a is a square.
  • p is, for example, 0.5 ⁇ m to 2 ⁇ m, preferably 1 ⁇ m or 1.5 ⁇ m.
  • the basis for determining the pitch px of the openings 28a and the distance between the closest openings 28a (the pitch in the direction inclined by a predetermined angle with respect to the X axis) as described above will be described later.
  • a blanker plate 30 is disposed below the beam shaping aperture plate 28.
  • openings 30a are formed in portions corresponding to the plurality of openings 28a of the beam shaping aperture plate 28, respectively.
  • Each opening 30a is formed larger than the opening 28a, and an electron beam that has passed through the opening 28a can pass therethrough.
  • each blanking electrode is connected to a drive circuit via a wiring and a terminal.
  • the blanking electrode and the wiring are integrally formed by patterning a conductive film having a thickness of about several ⁇ m to several tens of ⁇ m on the main body of the blanker plate 30.
  • the blanking electrode is preferably formed on the surface of the blanker plate 30 (main body) on the downstream side of the electron beam in order to prevent damage due to irradiation of the electron beam.
  • the electron beam EB 3 having passed through the opening 30a is bent greatly.
  • the electron beam EB off bent by the blanking electrode is guided to the outside of the circular opening 32a of the final aperture 32 arranged below the blanker plate 30, and the final aperture. 32.
  • the opening 32 a is formed near the optical axis of the final aperture 32.
  • the electron beam EB 3 passes through the opening 32 a of the final aperture 32. That is, on / off of each electron beam EB 3 can be controlled by whether or not a voltage is applied to each blanking electrode.
  • Two electromagnetic lenses that is, a first electromagnetic lens 38A, a second electromagnetic lens 38B, a third electromagnetic lens 38C, and a fourth electromagnetic lens 38D are arranged above and below the final aperture 32, respectively.
  • the first to fourth electromagnetic lenses 38A to 38D images of many openings 28a of the beam shaping aperture plate 28 are reduced at a predetermined reduction magnification ⁇ and formed on the surface of the wafer W.
  • the beam shaping aperture plate 28 and the blanker plate 30 are collectively referred to as a blanking aperture array 29 as appropriate.
  • the stage feedback deflector 40 disposed below the final aperture 32 is an electrostatic deflector having a pair of electrode plates disposed so as to sandwich the optical axis AX1 from the same direction (X-axis direction) as the row of openings 28a. It is configured.
  • This stage feedback deflector 40 can be finely adjusting the irradiation position of the electron beam EB 3 in the X-axis direction.
  • the stage feedback deflector 40 is configured by an electrostatic deflector, but is not limited to this configuration.
  • the stage feedback deflector 40 may be composed of an electromagnetic type deflector that arranges at least a pair of coils so as to sandwich the optical axis and deflects a beam by a magnetic field generated by passing a current through these coils.
  • the components of the electron gun 22 and the optical system 23 described so far are controlled by the controller 64 based on instructions from the main controller 50 (see FIG. 12).
  • a pair of backscattered electron detectors 42 x1 and 42 x2 are provided below the fourth electromagnetic lens 38D on both sides in the X-axis direction. Although not shown in FIG. 4, actually, a pair of backscattered electron detectors 42 y1 and 42 y2 are provided on both sides in the Y-axis direction below the fourth electromagnetic lens 38D. (See FIG. 12).
  • Each of these backscattered electron detection devices is constituted by, for example, a semiconductor detector, and detects a backscattered electron detected by a reflected component generated from a detection target mark such as an alignment mark or a reference mark on the wafer, here a backscattered electron. Is sent to the signal processing device 62 (see FIG. 12).
  • the signal processing device 62 performs signal processing after amplifying the detection signals of the plurality of backscattered electron detection devices 42 by an amplifier (not shown), and sends the processing result to the main control device 50 (see FIG. 12).
  • the beams are, for example, in a parallelogram region (exposure region) of 100 ⁇ m ⁇ 50 nm.
  • a rectangular spot of an electron beam smaller than the resolution limit of the ultraviolet light exposure apparatus is simultaneously formed at 5000 points set in a positional relationship corresponding to the arrangement of 5000 openings 28a of the shaping aperture plate 28.
  • one optical system unit 70 is configured by the electron gun 22, the optical system 23, the backscattered electron detection device 42, the control unit 64, and the signal processing device 62 in the column cell 21.
  • the same number (100) of optical system units 70 as the multi-beam optical system (optical system column) 20 are provided (see FIG. 12).
  • the 100 multi-beam optical systems 20 correspond to, for example, approximately 100 shot areas formed on a 300 mm wafer (or formed from a shot map according to a shot map), for example, approximately 1: 1.
  • each of the 100 multi-beam optical systems 20 generates a large number (5000) of, for example, 20 nm ⁇ 11.43 nm rectangular electron beam spots that can be turned on / off. It arrange
  • region Exposure area
  • region Exposure area
  • E (R) ⁇ / (4 ⁇ 0 R) ⁇ sin ⁇ d ⁇ (1)
  • is the linear density of charge of the first linear current
  • ⁇ 0 is the dielectric constant of vacuum
  • is an angle formed with the z-axis when P is viewed from the charge of the first linear current, and the range of ⁇ is 0 ⁇ ⁇ ⁇ ⁇ when considering to infinity.
  • ⁇ x eE (R) / (2m) ⁇ t 2 (2)
  • m the mass of electrons
  • t the flight time of electrons.
  • the positional deviation ⁇ x caused by the inter-beam interaction is qualitatively inversely proportional to the distance between the openings 28a of the blanking aperture array 29 (more precisely, the beam shaping aperture plate 28).
  • the plurality of apertures 28a on the blanking aperture array 29 so that the irradiation position shift (corresponding to ⁇ x) on the target surface of the beam (corresponding to the first linear current) of the beam is equal to or less than an allowable value.
  • Arrangement is defined.
  • the arrangement (arrangement) of the plurality of openings 28a on the blanking aperture array 29 is based on the distance between the plurality of beams (corresponding to R described above) and the Coulomb force acting between the plurality of beams.
  • the relationship between the positional deviation of the beam in the ON state (corresponding to the above-mentioned ⁇ x), that is, the positional deviation ⁇ x caused by the above-mentioned beam-to-beam interaction is qualitatively determined.
  • a relationship inversely proportional to the distance between the apertures 28a of the aperture plate 28) (relation represented by the graph in FIG. 6B), and using another expression, can be obtained by changing the distance between the beams. It is determined in consideration of the positional information of the beam in the on-state caused by the Coulomb force acting on.
  • the plurality of openings 28a is 2p or more, which is twice the length p in the X-axis direction of the openings, that is, the above-described complementary lithography is performed using the electron beam exposure apparatus 100 according to the present embodiment, and line and The pitch is set to 2p or more of the line portion to be cut when the space pattern is cut.
  • the above-mentioned allowable value is determined and the positional deviation of the beam in the on state (corresponding to the above ⁇ x) )
  • the pitch in the X axis direction may be determined in consideration of the ability of the stage feedback deflector 40 to adjust the irradiation position of the electron beam EB 3 in the X axis direction.
  • FIG. 7 shows a perspective view of a state in which a wafer shuttle (hereinafter abbreviated as shuttle) 10 is mounted on the coarse / fine movement stage 85 of the stage device 83.
  • FIG. 8 is a perspective view of the coarse / fine movement stage 85 shown in FIG. 7 in a state in which the shuttle 10 is detached (removed).
  • the surface plate 84 provided in the stage device 83 is actually installed on the bottom wall of the vacuum chamber 80 that partitions the exposure chamber 81.
  • the coarse / fine movement stage 85 includes a coarse movement stage 85a and a fine movement stage 85b.
  • the coarse movement stage 85a is disposed at a predetermined interval in the Y-axis direction, includes a pair of quadrangular columnar portions extending in the X-axis direction, and is movable on the surface plate 84 in the X-axis direction with a predetermined stroke, for example, 50 mm. is there.
  • the fine movement stage 85b can move with respect to the coarse movement stage 85a in the Y-axis direction with a predetermined stroke, for example, 50 mm, and the remaining five degrees of freedom, that is, the X-axis direction, the Z-axis direction, and the rotation directions around the X-axis ( It is movable in a shorter stroke than the Y-axis direction in the ⁇ x direction), the rotation direction around the Y axis ( ⁇ y direction), and the rotation direction around the Z axis ( ⁇ z direction).
  • the pair of square columnar portions of the coarse movement stage 85a are actually connected by a connection member (not shown) in a state that does not prevent the movement of the fine movement stage 85b in the Y-axis direction. It is integrated.
  • the coarse movement stage 85a is driven by a coarse movement stage drive system 86 (see FIG. 12) with a predetermined stroke (for example, 50 mm) in the X axis direction (see the long arrow in the X axis direction in FIG. 10).
  • the coarse movement stage drive system 86 is constituted by a uniaxial drive mechanism that does not cause magnetic flux leakage in this embodiment, for example, a feed screw mechanism using a ball screw.
  • the coarse movement stage drive system 86 is arranged between one square columnar portion of the pair of square columnar portions of the coarse movement stage and the surface plate 84.
  • a screw shaft is attached to the surface plate 84, and a ball (nut) is attached to one square columnar portion.
  • bowl to the surface plate 84 and attaches a screw shaft to one square pillar-shaped part may be sufficient.
  • the other quadrangular columnar portion is configured to move along a guide surface (not shown) provided on the surface plate 84.
  • the screw shaft of the ball screw is driven to rotate by a stepping motor.
  • the magnetic field fluctuation caused by the magnetic flux leakage does not affect the positioning of the electron beam.
  • the coarse movement stage drive system 86 is controlled by the main controller 50 (see FIG. 12).
  • the fine movement stage 85 b is made of a member having an XZ cross-sectional rectangular frame shape penetrating in the Y-axis direction, and is placed on the surface plate 84 in the XY plane by the weight cancellation device 87. It is supported movably. A plurality of reinforcing ribs are provided on the outer surface of the side wall of fine movement stage 85b.
  • a yoke 88a having a rectangular frame shape in the XZ section and extending in the Y-axis direction, and a pair of magnet units 88b fixed to the upper and lower opposing surfaces of yoke 88a.
  • 88a and a pair of magnet units 88b constitute a mover 88 of a motor that drives fine movement stage 85b.
  • FIG. 10 shows a state in which a magnetic shield member (to be described later) indicated by fine movement stage 85b and reference numeral 91 is removed from FIG.
  • a stator 89 made of a coil unit is installed between a pair of square column portions of the coarse movement stage 85 a.
  • the mover 88 can be moved with respect to the stator 89 by a predetermined stroke, for example, 50 mm in the Y-axis direction, as indicated by arrows in each direction in FIG.
  • a closed magnetic field type and moving magnet type motor 90 that can be finely driven in the X axis direction, the Z axis direction, the ⁇ x direction, the ⁇ y direction, and the ⁇ z direction is configured.
  • a fine movement stage drive system that drives the fine movement stage 85b in the direction of six degrees of freedom by the motor 90 is configured.
  • the fine movement stage drive system is referred to as a fine movement stage drive system 90 using the same reference numerals as those of the motor.
  • Fine movement stage drive system 90 is controlled by main controller 50 (see FIG. 12).
  • the XZ cross-section reverse U is further applied while covering the upper surface of the motor 90 and both side surfaces in the X-axis direction.
  • a letter-shaped magnetic shield member 91 is installed. That is, the magnetic shield member 91 is formed so as to extend in a direction (Y-axis direction) intersecting with the direction in which the quadrangular prism portion extends, and on the upper surface of the motor 90 in a non-contact manner and on the side surface of the motor 90. And a side portion that faces each other in a non-contact manner.
  • the magnetic shield member 91 is inserted into the hollow portion of the fine movement stage 85b, and the lower surface of both end portions in the longitudinal direction (Y-axis direction) is the upper surface of the pair of quadrangular column portions of the coarse movement stage 85a. It is fixed to. Further, of the side surfaces of the magnetic shield member 91, the surfaces other than the lower surfaces of the both end portions are opposed to the bottom wall surface (lower surface) of the inner wall surface of the fine movement stage 85b without contact. That is, the magnetic shield member 91 is inserted into the hollow portion of the fine movement stage 85b in a state where the movement of the mover 88 relative to the stator 89 is not hindered.
  • the magnetic shield member 91 a laminated magnetic shield member composed of a plurality of layers of magnetic material films laminated with a predetermined gap (space) is used.
  • a magnetic shield member having a configuration in which films of two kinds of materials having different magnetic permeability are alternately laminated may be used. Since the magnetic shield member 91 covers the upper surface and the side surface of the motor 90 over the entire length of the moving stroke of the mover 88 and is fixed to the coarse movement stage 85a, the fine movement stage 85b and the coarse movement stage 85a. Leakage of magnetic flux upward (on the electron beam optical system side) can be prevented almost certainly over the entire moving range.
  • the weight canceling device 87 includes a metal bellows type air spring (hereinafter abbreviated as “air spring”) 87a whose upper end is connected to the lower surface of the fine movement stage 85b, and a lower end of the air spring 87a. And a base slider 87b made of a connected flat plate member.
  • the base slider 87b is provided with a bearing portion (not shown) that blows air inside the air spring 87a to the upper surface of the surface plate 84, and the bearing surface of the pressurized air ejected from the bearing portion and the upper surface of the surface plate 84 are provided.
  • the self-weight of the weight canceling device 87, fine movement stage 85b and mover 88 (including the shuttle 10 when the shuttle 10 is mounted on the coarse / fine movement stage 85) is supported by the static pressure (pressure in the gap).
  • the static pressure pressure in the gap
  • compressed air is supplied to the air spring 87a via a pipe (not shown) connected to the fine movement stage 85b.
  • the base slider 87b is supported in a non-contact manner on the surface plate 84 via a kind of differential exhaust type aerostatic bearing, and air blown from the bearing portion toward the surface plate 84 is surrounded by (exposure chamber). To prevent leakage.
  • three triangular pyramid groove members 12 are provided on the upper surface of fine movement stage 85b.
  • the triangular pyramidal groove member 12 is provided at the positions of three apexes of a regular triangle in plan view.
  • the triangular pyramid groove member 12 can be engaged with a sphere or hemisphere provided in the shuttle 10 described later, and constitutes a kinematic coupling together with the sphere or hemisphere.
  • FIG. 8 shows a triangular pyramid groove member 12 such as a petal composed of three plate members.
  • the triangular pyramid groove member 12 is a triangular pyramid that makes point contact with a sphere or a hemisphere, respectively. Since it has the same role as the groove, it is called a triangular pyramid groove member. Therefore, a single member in which a triangular pyramid groove is formed may be used instead of the triangular pyramid groove member 12.
  • three spheres or hemispheres (balls in the present embodiment) 14 are provided in the shuttle 10 corresponding to the three triangular pyramid groove members 12 as shown in FIG.
  • the shuttle 10 is formed in a hexagonal shape in which each vertex of an equilateral triangle is cut off in plan view. More specifically, the shuttle 10 has notches 10a, 10b, and 10c formed at the center of each of the three oblique sides in plan view, and covers the notches 10a, 10b, and 10c from the outside.
  • the leaf springs 16 are respectively attached. Balls 14 are fixed to the center of each leaf spring 16 in the longitudinal direction.
  • each ball 14 In a state before being engaged with the triangular pyramid groove member 12, each ball 14, when subjected to an external force, has a radial direction centered on the center of the shuttle 10 (substantially coincides with the center of the wafer W shown in FIG. 7). Only move to a minute.
  • the shuttle 10 After moving the shuttle 10 to a position where the three balls 14 substantially oppose the three triangular pyramidal groove members 12 above the fine movement stage 85b, respectively, the shuttle 10 is moved down so that each of the three balls 14 becomes The three triangular pyramid groove members 12 are individually engaged, and the shuttle 10 is mounted on the fine movement stage 85b. Even when the position of the shuttle 10 with respect to the fine movement stage 85b is deviated from the desired position at the time of mounting, when the ball 14 engages with the triangular pyramid groove member 12, the external force is received from the triangular pyramid groove member 12, and the aforementioned Move in the radial direction. As a result, the three balls 14 always engage with the corresponding triangular pyramidal groove members 12 in the same state.
  • the shuttle 10 can be easily detached (detached) from the fine movement stage 85b simply by moving the shuttle 10 upward and releasing the engagement between the ball 14 and the triangular pyramid groove member 12. That is, in this embodiment, a kinematic coupling is constituted by the set of three balls 14 and the triangular pyramid groove member 12, and the kinematic coupling always keeps the mounting state of the shuttle 10 to the fine movement stage 85b substantially the same. It can be set to the state. Therefore, no matter how many times it is removed, the shuttle 10 and the fine movement of the shuttle 10 can be moved by simply mounting the shuttle 10 on the fine movement stage 85b via the kinematic coupling (the set of three pairs of balls 14 and the triangular pyramid groove member 12). A certain positional relationship with the stage 85b can be reproduced.
  • a circular concave portion having a diameter slightly larger than that of the wafer W is formed at the center, and an electrostatic chuck (not shown) is provided in the concave portion.
  • the wafer W is electrostatically attracted and held by the chuck. In the holding state of the wafer W, the surface of the wafer W is substantially flush with the upper surface of the shuttle 10.
  • This position measurement system includes the first measurement system 52 that measures the position information of the shuttle 10 and the position information of the fine movement stage 85b in a state where the shuttle 10 is mounted on the fine movement stage 85b via the kinematic coupling described above. And a second measurement system 54 that directly measures (see FIG. 12).
  • Grating plates 72a, 72b, and 72c are provided in the vicinity of the three sides of the shuttle 10 except for the three oblique sides, as shown in FIG.
  • Each of the grating plates 72a, 72b, and 72c has a two-dimensional shape in which a radial direction centered on the center of the shuttle 10 (in the present embodiment, coincides with the center of a circular concave portion) and a direction orthogonal thereto are each a periodic direction.
  • Each lattice is formed.
  • the grating plate 72a is formed with a two-dimensional lattice having a periodic direction in the Y-axis direction and the X-axis direction.
  • the grating plate 72b is formed with a two-dimensional grating having a direction that is ⁇ 120 degrees with respect to the Y axis with respect to the center of the shuttle 10 (hereinafter referred to as ⁇ direction) and a direction perpendicular thereto as a periodic direction.
  • the grating plate 72c is formed with a two-dimensional grating having a direction that forms +120 degrees with respect to the Y axis with respect to the center of the shuttle 10 (hereinafter referred to as ⁇ direction) and a direction perpendicular thereto as a periodic direction.
  • a reflection type diffraction grating having a pitch of, for example, 1 ⁇ m is used in each periodic direction.
  • each of the three head portions 74a, 74b, and 74c is provided with a four-axis encoder head having a measurement axis indicated by four arrows in FIG. 11B.
  • the head portion 74a includes a first head housed in the same housing and having a measurement direction in the X-axis direction and the Z-axis direction, and a measurement direction in the Y-axis direction and the Z-axis direction. And a second head.
  • the first head (more precisely, the irradiation point on the grating plate 72a of the measurement beam emitted by the first head) and the second head (more precisely, the irradiation of the measurement beam emitted by the second head on the grating plate 72a).
  • the first head (more precisely, the irradiation point on the grating plate 72a of the measurement beam emitted by the first head) and the second head (more precisely, the irradiation of the measurement beam emitted by the second head on the grating plate 72a).
  • the first head and the second head of the head portion 74a are each a biaxial linear encoder that measures position information of the shuttle 10 in the X-axis direction and the Z-axis direction, and the Y-axis direction and the Z-axis direction using the grating plate 72a.
  • a two-axis linear encoder that measures the position information is configured.
  • the remaining head portions 74b and 74c are configured in the same manner as the head portion 74a including the first head and the second head, although the directions with respect to the respective metrology frames 94 are different (measurement directions in the XY plane are different). ing.
  • the first head and the second head of the head part 74b each use a grating plate 72b to measure the position information in the direction orthogonal to the ⁇ direction of the shuttle 10 in the XY plane and the position information in the Z-axis direction, and A two-axis linear encoder that measures position information in the ⁇ direction and the Z-axis direction is configured.
  • the first head and the second head of the head portion 74c each use a grating plate 72c, and a biaxial linear encoder that measures position information in a direction orthogonal to the ⁇ direction of the shuttle 10 in the XY plane and in the Z axis direction, and A two-axis linear encoder that measures position information in the ⁇ direction and the Z-axis direction is configured.
  • the encoder head of the structure similar to the displacement measurement sensor head disclosed by the US Patent 7,561,280, for example is used. Can be used.
  • An encoder system is configured by the three head portions 74a, 74b, and 74c that measure the position information of the shuttle 10 using the above-described three sets, that is, a total of six biaxial encoders, that is, three grating plates 72a, 72b, and 72c, respectively.
  • the first measurement system 52 (see FIG. 12) is configured by this encoder system. Position information measured by the first measurement system 52 is supplied to the main controller 50.
  • the three head portions 74a, 74b, and 74c each have four measurement degrees of freedom (measurement axes)
  • a total of 12 degrees of freedom can be measured. That is, in the three-dimensional space, since the maximum degree of freedom is 6, redundant measurement is actually performed for each of the 6 degrees of freedom directions, and two pieces of position information are obtained.
  • the main controller 50 uses the average value of the two pieces of position information for each degree of freedom as the measurement result in each direction. Therefore, it becomes possible to obtain
  • the second measurement system 54 can measure position information in the direction of 6 degrees of freedom of the fine movement stage 85b regardless of whether or not the shuttle 10 is mounted on the fine movement stage 85b.
  • the second measurement system 54 irradiates a reflection surface provided on the outer surface of the side wall of the fine movement stage 85b, receives the reflected light, and measures position information of the fine movement stage 85b in the 6-degree-of-freedom direction.
  • Each interferometer of the interferometer system may be suspended and supported on the metrology frame 94 via a support member (not shown), or may be fixed to the surface plate 84.
  • the second measurement system 54 Since the second measurement system 54 is provided in the exposure chamber 81 (in the vacuum space), there is no possibility of a decrease in measurement accuracy due to air fluctuation.
  • the second measurement system 54 mainly determines the position and orientation of the fine movement stage 85b when the shuttle 10 is not mounted on the fine movement stage 85b (including when the wafer is not exposed). Since it is used to maintain a desired state, the measurement accuracy may be lower than that of the first measurement system 52.
  • the position information measured by the second measurement system 54 is supplied to the main controller 50 (see FIG. 12).
  • you may comprise a 2nd measurement system not only by an interferometer system but by an encoder system or the combination of an encoder system and an interferometer system. In the latter case, position information in the direction of three degrees of freedom in the XY plane of 85b of the fine movement stage may be measured by the encoder system, and position information in the remaining three degrees of freedom direction may be measured by the interferometer system.
  • Measurement information by the first measurement system 52 and the second measurement system 54 is sent to the main control device 50, and the main control device 50 is based on measurement information by at least one of the first measurement system 52 and the second measurement system 54.
  • the coarse / fine movement stage 85 is controlled.
  • the main controller 50 uses the measurement information from the first measurement system 52 to control the stage feedback deflector 40 of each of the plurality of multi-beam optical systems 20 included in the electron beam irradiation device 92 of the exposure system 82 as necessary. Also used.
  • FIG. 12 is a block diagram showing the input / output relationship of the main controller 50 that mainly constitutes the control system of the electron beam exposure apparatus 100.
  • Main controller 50 includes a microcomputer and the like, and comprehensively controls each component of electron beam exposure apparatus 100 including each component shown in FIG.
  • the flow of processing for the wafer is as follows.
  • the pre-exposure the electron beam resist is coated wafer (for convenience, referred to as wafer W 1) is, within the measurement chamber (not shown), the shuttle (for convenience, referred to as the shuttle 10 1) to be placed, It is adsorbed by the shuttle 10 1 of the electrostatic chuck. Then, with respect to the wafer W 1, schematic (rough) position measurement with respect to the shuttle 10 1, the pre-measurement, such as flatness measurement, performed by the measurement chamber of the measurement system (not shown).
  • the shuttle 10 1 holding the wafer W 1 is, by a conveying system (not shown), is transported into the exposure chamber 81 through the load lock chamber provided in the chamber 80, the transport system in the exposure chamber 81 (not It is conveyed to a predetermined first standby position (for example, one of a plurality of storage shelves of a shuttle stocker (not shown)).
  • a shuttle exchange operation that is, a wafer exchange operation integrated with the shuttle is performed as follows.
  • Wafer exposed during loading of the shuttle 10 1 has been performed (for convenience, the wafer W is 0 hereinafter) when the exposure is completed, the transfer system, the shuttle to hold the exposed wafer W 0 (for convenience, the shuttle 10 0 Is removed from fine movement stage 85b and conveyed to a predetermined second standby position.
  • the second standby position is assumed to be another one of the plurality of storage shelves of the shuttle stocker described above.
  • the feedback control of the posture initiated by the main controller 50, then based on the first measurement information of the measurement system 52 (see FIG. 12), until the position control of the shuttle 10 1 integral with the fine movement stage 85b is started, the fine movement stage 85b
  • the position and orientation in the 6-degree-of-freedom direction are maintained in a predetermined reference state.
  • the transport system in the exposure chamber 81 the shuttle 10 1 is transported upward in the coarse and fine movement stage 85 is mounted on the fine movement stage 85b.
  • the shuttle 10 1 since the posture is maintained at the reference state, the shuttle 10 1, only attached to the fine movement stage 85b via the kinematic coupling, electronic positional relationship of the beam irradiation device 92 (the electron beam optics) and the shuttle 10 1 has a desired positional relationship.
  • the schematic position measurement with respect to the shuttle 10 1 of the wafer W 1 made in advance results in consideration of the position of 85b of fine movement stage by the fine adjustment, on the fine moving stage 85b the shuttle 10 1 attached to the each of the 100 shot areas formed on the wafer W 1 corresponding to at least each one of the alignment marks formed in the scribe line (street line), reliably irradiated with the electron beam from the electron beam optics It becomes possible. Therefore, reflected electrons from at least one alignment mark are detected by at least one of the reflected electron detectors 42 x1 , 42 x2 , 42 y1 , and 42 y2 , and all-point alignment measurement of the wafer W 1 is performed.
  • the plurality of shot areas on the wafer W 1 exposure to an electron beam irradiation device 92 is started.
  • a plurality of beams (electron beams) emitted from each multi-beam optical system 20 are used to form a cut pattern for a line and space pattern formed on the wafer W and having a periodic direction in the X-axis direction.
  • the irradiation timing (ON / OFF) of each beam is controlled while scanning the wafer W (fine movement stage 85b) in the Y-axis direction.
  • the shuttle 10 holding the pre-measurement was the next to be exposed ends wafer is carried into the exposure chamber, waiting in the first waiting position described above To do.
  • the exposure of the wafer W 1 is completed, it is performed exchanging operation of the wafer integral with the above-mentioned shuttle, following the same procedure as described above is repeated.
  • FIG. 13B shows a state in which cut patterns MB ′ are formed at the same Y position on a predetermined number of continuous line patterns as an example.
  • the wafer W fine movement stage 85b
  • the beam is irradiated at the timing when the cutting point on each line pattern to be cut is positioned at the beam irradiation position.
  • the irradiation timing (on / off) of each beam is controlled.
  • the cutting point on the L / S pattern LSP on the wafer W is moved to the blanking aperture while moving the wafer W (fine movement stage 85b) in the + Y direction indicated by the white arrow in FIG.
  • the beam MB passing through the opening 28a in the first row is irradiated onto the wafer.
  • the (1 + 5n) th row, the (2 + 5n) th row, and the (3 + 5n) th row is the opening in the fourth row of the blanking aperture array 29 (beam shaping aperture plate 28).
  • the beam MB reaching the position 28a and passing through the opening 28a in the fourth row is irradiated onto the wafer.
  • a cut pattern is formed on top.
  • a cut pattern is formed on top.
  • cut patterns MB ′ are formed at the same Y position on a predetermined number of continuous line patterns.
  • any of FIG. 14A, FIG. 14B, FIG. 15A, FIG. 15B, and FIG. 16 on every four line patterns of the L / S pattern LSP of the wafer W.
  • any beam (cut pattern) MB is not affected by the Coulomb force (Coulomb interaction) between the adjacent beams MB and the irradiation position is not shifted. Therefore, it is not necessary to correct the irradiation position deviation in the X-axis direction (the periodic direction of the line-and-space pattern LSP that is the target of line pattern cutting in complementary lithography).
  • the shuttle 10 that holds the wafer W the coarse / fine movement stage 85 on which the shuttle 10 is mounted, the fine movement stage drive system 90, and the coarse movement stage drive system 86,
  • a stage that holds and moves the target wafer W is configured.
  • the main control apparatus 50 performs a shuttle for holding the wafer with respect to the electron beam irradiation apparatus 92 (electron beam optical system). Scanning (moving) in the Y-axis direction of fine movement stage 85 b to which 10 is mounted is controlled via fine movement stage drive system 90 and coarse movement stage drive system 86.
  • the main controller 50 for each of m (for example, 100) optical column (multi-beam optical system) 20 of the electron beam irradiation device 92, n (for example, beam shaping aperture plates 28).
  • the irradiation state (on state and off state) of the n beams respectively passing through the (5000) openings 28a is changed for each opening 28a, and in particular, the irradiation position in the Y-axis direction of the beam to be turned on is changed.
  • the adjustment is performed by individually controlling the irradiation timings of the plurality of beams irradiated to the wafer from each of the multi-beam optical systems 20.
  • a cut pattern can be formed at a desired upper position (see FIG.
  • a plurality of beams on the blanking aperture array 29 are set such that the irradiation position shift (corresponding to ⁇ x above) on the wafer surface of the on-state beam (corresponding to the first linear current described above) due to force is less than an allowable value.
  • the arrangement of the openings 28a is determined.
  • the arrangement (arrangement) of the plurality of openings 28a on the blanking aperture array 29 is such that the positional deviation ⁇ x caused by the above-mentioned beam-to-beam interaction is qualitatively determined more accurately. Is determined in consideration of the relationship inversely proportional to the distance between the openings 28a of the beam shaping aperture plate 28) (the relationship represented by the graph in FIG. 6B). In other words, the arrangement (arrangement) of the plurality of apertures 28a on the blanking aperture array 29 is obtained by changing the distance between the beams, and the position of the beam in the on state caused by the Coulomb force acting between the beams. It is determined in consideration of information.
  • the arrangement of the openings 28a on the beam shaping aperture plate 28 described in the above embodiment is only an example.
  • 17A and 17B show a state where the beam MB that has passed through the opening 28a on the beam shaping aperture plate 28 is irradiated onto the L / S pattern.
  • the arrangement of the openings 28a corresponding to the arrangement of the beams MB in FIG. 17A is adopted, the area of the arrangement area of the openings on the beam shaping aperture plate 28 is set to the above embodiment (FIG. 5A and FIG. 5 (B)).
  • the arrangement of the beams MB 1 and MB 2 in FIG. 17B is an example of arrangement when each opening 28 has a backup opening corresponding to the beam MB 2 . In this case, two beams MB 1 and MB 2 that are vertically adjacent in FIG. 17B are not actually irradiated simultaneously.
  • the distance between adjacent openings 28a (or backup openings) on the beam shaping aperture plate 28 corresponding to the beam arrangement shown in FIGS. 17A and 17B is the X-axis direction of the openings 28a.
  • the length of p is at least 2.5 p. Therefore, the irradiation position of the beam does not shift due to the Coulomb action with other beams.
  • the positional deviation in the X-axis direction from the irradiation position on the beam design is not corrected, or is reduced by controlling the stage feedback deflector 40.
  • the positional deviation may be reduced as in the following two modifications.
  • ⁇ Modification 1 In the exposure apparatus and exposure method according to this modification, instead of the beam shaping aperture plate 28, as shown in FIG. 18A, the X axis direction of the opening 28a is arranged on both sides of the X axis direction of each opening 28a.
  • a beam shaping aperture plate having a pair of auxiliary openings 28b separated by the same distance p as the length is used.
  • the auxiliary opening 28b is an electron beam resist in which a dose amount (electron injection amount per unit area) of a beam that passes through the auxiliary opening 28b and is irradiated onto the wafer (target) is applied onto the wafer. For example, it has an area that is about 1/10 to 1/4 of the level to which the sensitivity is applied.
  • each auxiliary opening 28b is turned on / off in the same manner as the beam passing through the opening 28a, and the beam passes through the opening 28a by changing the duty ratio of the on / off.
  • the Coulomb action applied to the beam can be changed, thereby controlling the X shift amount of the beam. That is, the Coulomb effect is positively used for correction.
  • FIG. 18B a beam is simultaneously irradiated from all the openings 28a and auxiliary openings 28b existing in a partial region of the beam shaping aperture plate 28 so as to overlap the L / S pattern formed on the wafer. The state is shown. From FIG.
  • each main beam MB is accurately irradiated onto the line pattern of the L / S pattern LSP. I understand.
  • a beam shaping aperture plate 28B as shown in a plan view in FIG. 19A is used.
  • this beam shaping aperture plate 28B as shown in FIG. 19B by enlarging the inside of the circle D in FIG. 19A, the length in the X-axis direction is p and the length in the Y-axis direction is p.
  • Two aperture rows in which / 2 rectangular openings 128 are arranged in the X-axis direction at a pitch of 2p are formed apart by p / 2 in the Y-axis direction and shifted by p in the X-axis direction.
  • a beam corresponding to the cut pattern is irradiated.
  • a repulsive force acts between the beams passing through the openings 128 adjacent in the X-axis direction by a Coulomb action. Therefore, in FIG. 20B, the two beams shown in the upper row (beams that have passed through the corresponding openings 128) and the three beams shown in the lower row (each passed through the corresponding openings 128). It is expected that the irradiation positions of the beams at both ends of the beam) are shifted to the outside in the X-axis direction.
  • the opening 128 where the beam irradiation position shift is a problem when the position of the opening 128 where the beam irradiation position shift is a problem can be identified, for example, as shown in FIG. 20C, the opening 128 where the beam irradiation position shift is expected.
  • a dummy beam called a cut-off beam is irradiated through the opening 128 in the vicinity of.
  • the two beams shown in the upper row and the beams at both ends of the lower row are connected to the beams passing through the openings located on both sides in the X-axis direction. A repulsive force acts between them, and the occurrence of an irradiation position shift in the X-axis direction is prevented.
  • a discarded cut beam may be provided so as to reduce pattern unevenness.
  • the influence of the heat of irradiation on the wafer becomes more straightforward and correction becomes easier.
  • the X-axis direction of the beam that is turned on is considered.
  • the allowable value of the irradiation position deviation and the arrangement of the plurality of openings 128 of the beam shaping aperture plate 28B are determined.
  • the fine movement stage 85b that holds the wafer W via the shuttle 10 moves in the scanning direction (Y-axis direction) with respect to the electron beam irradiation device 92 (electron beam optical system), and uses the electron beam.
  • the electron beam irradiation device 92 electron beam optical system
  • the wafer is stationary. In this state, the wafer W may be scanned and exposed by the electron beam while moving the electron beam irradiation apparatus (electron beam optical system) in the Y-axis direction.
  • the scanning exposure of the wafer W by the electron beam may be performed while moving the wafer W and the electron beam irradiation apparatus in opposite directions.
  • the electron beam optical system included in the electron beam irradiation device 92 is configured by the m optical system columns 20 including the multi-beam optical system is described.
  • the system may be a single column type multi-beam optical system.
  • a method of turning on / off each beam is performed by generating a plurality of electron beams via a blanking aperture array having a plurality of apertures, and depending on a drawing pattern.
  • a method of drawing the pattern on the sample surface by individually turning on / off the electron beam may be adopted.
  • the blanking aperture array a configuration using a surface emission type electron beam source having a plurality of electron emission portions for emitting a plurality of electron beams may be used.
  • the electron beam exposure apparatus of the type in which the wafer W is transported while being held by the shuttle 10 has been described.
  • the present invention is not limited to this, and the stage (or table) for exposing the wafer W alone.
  • An electron beam exposure apparatus may be used. Even in such an electron beam exposure apparatus, as long as an electron beam optical system composed of a multi-beam optical system is provided, images of many apertures of the beam shaping aperture plate formed on the image surface of the multi-beam optical system described above.
  • the method for correcting the distortion irradiation position shift of each beam on the irradiation surface
  • the fine movement stage 85b is movable in the direction of 6 degrees of freedom with respect to the coarse movement stage 85a.
  • the present invention is not limited to this, and the fine movement stage can be moved only in the XY plane. May be.
  • the first measurement system 52 and the second measurement system 54 that measure the position information of the fine movement stage may also be able to measure the position information related to the three degrees of freedom direction in the XY plane.
  • the first measurement system 52 is configured by an encoder system.
  • the present invention is not limited thereto, and the first measurement system 52 may be configured by an interferometer system.
  • the electron beam irradiation device 92 is integrally supported with the metrology frame 94 and supported by being suspended from the top plate (ceiling wall) of the vacuum chamber via the three suspension support mechanisms 95a, 95b, and 95c.
  • the present invention is not limited to this, and the electron beam irradiation device 92 may be supported by a floor-standing body.
  • the case where the entire exposure system 82 is accommodated in the vacuum chamber 80 has been described.
  • the present invention is not limited to this, and the column 93 of the electron beam irradiation apparatus 92 in the exposure system 82 is not limited thereto. A portion other than the lower end may be exposed to the outside of the vacuum chamber 80.
  • the electron beam exposure apparatus 100 which concerns on this embodiment forms a fine pattern on a glass substrate, and manufactures a mask.
  • it can be suitably applied.
  • an exposure system for drawing a mask pattern on a rectangular glass plate or a silicon wafer an exposure system for manufacturing an organic EL, a thin film magnetic head, an image sensor (CCD, etc.), a micromachine, a DNA chip, etc.
  • an electron beam exposure apparatus using an electron beam as a charged particle beam has been described.
  • the above embodiment can also be applied to an exposure apparatus using an ion beam or the like as a charged particle beam for exposure. .
  • the exposure technology that constitutes complementary lithography is not limited to the combination of the immersion exposure technology using an ArF light source and the charged particle beam exposure technology.
  • the line and space pattern may be changed to other types such as an ArF light source and KrF. You may form by the dry exposure technique using a light source.
  • an electronic device such as a semiconductor element includes a step of designing the function and performance of the device, a step of manufacturing a wafer from a silicon material, an actual circuit on the wafer by lithography technology, etc.
  • the wafer is manufactured through a wafer processing step, a device assembly step (including a dicing process, a bonding process, and a packaging process), an inspection step, and the like.
  • the wafer processing step includes a lithography step (a step of applying a resist (sensitive material) on the wafer, exposure to the wafer by the electron beam exposure apparatus and the exposure method thereof according to the above-described embodiment) A step of performing (drawing), a step of developing the exposed wafer), an etching step for removing the exposed member other than the portion where the resist remains by etching, and a resist for removing the unnecessary resist after the etching. Including a removal step.
  • the wafer processing step may further include a pre-process (an oxidation step, a CVD step, an electrode formation step, an ion implantation step, etc.) prior to the lithography step.
  • the above-described exposure method By executing the above-described exposure method using the beam exposure apparatus 100, a device pattern is formed on the wafer, so that highly integrated microdevices can be manufactured with high productivity (yield).
  • the above-described complementary lithography is performed, and at that time, the above-described exposure method is executed using the electron beam exposure apparatus 100 of the above-described embodiment.
  • the device can be manufactured.
  • the exposure apparatus, the exposure method, the lithography method, and the device manufacturing method according to the present invention are suitable for manufacturing a micro device.

Abstract

This exposure device that irradiates and exposes a target (W) with an electron beam (EB3) is provided with an irradiation device (20) having: a blanking aperture array (29) having a plurality of openings (28a) which are arranged, on an X-Y plane parallel to a surface of a target (W), along an X-axis direction and a direction crossing the X-axis direction; and optical systems (38A, 38B, 38C, 38D) which irradiate the target (W) with electron beams (EB3) that have respectively passed through the plurality of openings (28a), wherein the plurality of openings (28a) are arranged so that the positional misalignment of the plurality of electron beams to be irradiated onto the target is less than an allowable value. The arrangement of the plurality of openings (28a) is determined by considering positional information about the beams to be irradiated onto the target, the positions of the beams being determined by a coulomb force that acts between the electron beams and obtained by varying the distances between the electron beams.

Description

露光装置及びリソグラフィ方法、並びにデバイス製造方法Exposure apparatus, lithography method, and device manufacturing method
 本発明は、露光装置及びリソグラフィ方法、並びにデバイス製造方法に係り、特に荷電粒子ビームを照射してターゲットを露光する露光装置、及び露光装置を用いてラインパターンの切断を行うリソグラフィ方法、並びにリソグラフィ方法によりターゲットに対する露光が行われるリソグラフィ工程を含むデバイス製造方法に関する。 The present invention relates to an exposure apparatus, a lithography method, and a device manufacturing method, and more particularly, an exposure apparatus that irradiates a target by irradiating a charged particle beam, a lithography method that cuts a line pattern using the exposure apparatus, and a lithography method. The present invention relates to a device manufacturing method including a lithography process in which exposure of a target is performed.
 近年、例えばArF光源を用いた液浸露光技術と、荷電粒子ビーム露光技術(例えば電子ビーム露光技術)とを相補的に利用するコンプリメンタリ・リソグラフィが、提案されている。コンプリメンタリ・リソグラフィでは、例えばArF光源を用いた液浸露光においてダブルパターニングなどを利用することで、単純なラインアンドスペースパターン(以下、適宜、L/Sパターンと略記する)を形成する。次いで、電子ビームを用いた露光を通じて、ラインパターンの切断、あるいはビアの形成を行う。 Recently, complementary lithography using, for example, an immersion exposure technique using an ArF light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) has been proposed. In complementary lithography, for example, a simple line and space pattern (hereinafter, abbreviated as an L / S pattern as appropriate) is formed by using double patterning or the like in immersion exposure using an ArF light source. Next, a line pattern is cut or a via is formed through exposure using an electron beam.
 コンプリメンタリ・リソグラフィではマルチビーム光学系を備えた荷電粒子ビーム露光装置を好適に用いることができる(例えば、特許文献1、2参照)。しかしながら、マルチビーム光学系から照射される複数のビーム間には、クーロン力(クーロン相互作用)が働く。これに加え、実際に露光を行う場合、目標パターンに応じて、複数のビームそれぞれのオン・オフ状態が変幻自在かつ時々刻々変化する。この結果、ビーム同士の相互作用も変幻自在かつ時々刻々変化してしまう。 In complementary lithography, a charged particle beam exposure apparatus equipped with a multi-beam optical system can be suitably used (for example, see Patent Documents 1 and 2). However, a Coulomb force (Coulomb interaction) works between a plurality of beams irradiated from the multi-beam optical system. In addition to this, when actually performing the exposure, the on / off states of each of the plurality of beams are freely changeable and change from moment to moment according to the target pattern. As a result, the interaction between the beams is also variable and changes every moment.
特開2015-133400号公報JP 2015-133400 A 米国特許出願公開第2015/0200074号明細書US Patent Application Publication No. 2015/0200074
 第1の態様によれば、荷電粒子ビームを照射してターゲットを露光する露光装置であって、前記ターゲットの面に平行な所定面内の第1方向及び前記第1方向に前記所定面内で交差する第2方向に沿って配列された複数の開口を有するビーム成形部材と、前記複数の開口をそれぞれ通過した前記荷電粒子ビームを前記ターゲットに照射する光学系とを有し、前記複数の開口は、前記ターゲットに照射される複数の前記荷電粒子ビームの位置ずれが許容値以下となるように配列される照射装置を備え、前記複数の開口の配列は、前記荷電粒子ビーム間の距離を変化させて得られる、前記荷電粒子ビーム間に働くクーロン力に起因する前記荷電粒子ビームの位置情報を考慮して定められている露光装置が、提供される。 According to the first aspect, there is provided an exposure apparatus that irradiates a target by irradiating a charged particle beam, the first direction in a predetermined plane parallel to the surface of the target and the first direction in the predetermined plane. A beam shaping member having a plurality of openings arranged along the intersecting second direction; and an optical system for irradiating the target with the charged particle beam respectively passing through the plurality of openings. Comprises an irradiation device arranged so that positional deviation of the plurality of charged particle beams irradiated to the target is less than an allowable value, and the arrangement of the plurality of openings changes the distance between the charged particle beams There is provided an exposure apparatus that is determined in consideration of positional information of the charged particle beam resulting from the Coulomb force acting between the charged particle beams.
 第2の態様によれば、ターゲットを露光装置で露光して前記ターゲット上にラインアンドスペースパターンを形成することと、第1の態様に係る露光装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むリソグラフィ方法が、提供される。 According to the second aspect, the target is exposed by an exposure apparatus to form a line and space pattern on the target, and the line and space pattern is configured using the exposure apparatus according to the first aspect. A line pattern cutting is provided.
 第3の態様によれば、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程では、第2の態様に係るリソグラフィ方法によりターゲットに対する露光が行われるデバイス製造方法が、提供される。 According to a third aspect, there is provided a device manufacturing method including a lithography process, wherein in the lithography process, a device manufacturing method is performed in which exposure to a target is performed by the lithography method according to the second aspect.
一実施形態に係る電子ビーム露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the electron beam exposure apparatus which concerns on one Embodiment. 図1の電子ビーム露光装置が備える露光システムを示す斜視図である。It is a perspective view which shows the exposure system with which the electron beam exposure apparatus of FIG. 1 is provided. 電子ビーム照射装置の一部を、ウエハシャトルが装着された粗微動ステージと共に示す図である。It is a figure which shows a part of electron beam irradiation apparatus with the coarse / fine movement stage with which the wafer shuttle was mounted | worn. 光学系カラム(マルチビーム光学系)の構成を示す図である。It is a figure which shows the structure of an optical system column (multi-beam optical system). 図5(A)は、ビーム成形アパーチャプレートを示す平面図、図5(B)は、図5(A)の円C内を拡大して示す図である。FIG. 5A is a plan view showing the beam shaping aperture plate, and FIG. 5B is an enlarged view of the inside of a circle C in FIG. 5A. 図6(A)及び図6(B)は、開口28aのX軸方向のピッチpx、開口28aX軸に対して所定角度傾斜した方向のピッチ(隣接する開口28a間の間隔)を決定する根拠について説明するための図である。6A and 6B show the basis for determining the pitch px of the opening 28a in the X-axis direction and the pitch in the direction inclined by a predetermined angle with respect to the opening 28aX axis (interval between adjacent openings 28a). It is a figure for demonstrating. 定盤上に載置された粗微動ステージに、ウエハシャトルが装着された状態を示す斜視図である。It is a perspective view which shows the state by which the wafer shuttle was mounted | worn to the coarse / fine movement stage mounted on the surface plate. 微動ステージからウエハシャトルが取り外された図7の粗微動ステージを示す斜視図である。It is a perspective view which shows the coarse / fine movement stage of FIG. 7 from which the wafer shuttle was removed from the fine movement stage. 定盤上に載置された微動ステージを拡大して示す図である。It is a figure which expands and shows the fine movement stage mounted on the surface plate. 図8に示される粗微動ステージから微動ステージ及び磁気シールド部材を取り去った状態を示す図である。It is a figure which shows the state which removed the fine movement stage and the magnetic-shielding member from the coarse / fine movement stage shown by FIG. 図11(A)及び図11(B)は、第1計測系の構成を説明するための図(その1及びその2)である。FIGS. 11A and 11B are diagrams (No. 1 and No. 2) for explaining the configuration of the first measurement system. 電子ビーム露光装置の制御系を構成する主制御装置の入出力関係を示すブロック図である。It is a block diagram which shows the input / output relationship of the main controller which comprises the control system of an electron beam exposure apparatus. 図13(A)は、コンプリメンタリ・リソグラフィにおいて、光学系カラムの全てのビームがL/Sパターン上に同時に照射された状態を示す図、図13(B)は、連続する所定本数のラインパターン上の同一のY位置にカットパターンが形成された状態を示す図である。FIG. 13A is a diagram showing a state in which all the beams of the optical system column are simultaneously irradiated on the L / S pattern in complementary lithography, and FIG. 13B is a diagram showing a predetermined number of line patterns. It is a figure which shows the state in which the cut pattern was formed in the same Y position. 図14(A)及び図14(B)は、連続する所定本数のラインパターン上の同一のY位置にカットパターンを形成する場合の一連の流れについて説明するための図(その1及びその2)である。14A and 14B are diagrams for explaining a series of flows when a cut pattern is formed at the same Y position on a predetermined number of continuous line patterns (No. 1 and No. 2). It is. 図15(A)及び図15(B)は、連続する所定本数のラインパターン上の同一のY位置にカットパターンを形成する場合の一連の流れについて説明するための図(その3及びその4)である。FIGS. 15A and 15B are diagrams for explaining a series of flows when a cut pattern is formed at the same Y position on a predetermined number of continuous line patterns (No. 3 and No. 4). It is. 連続する所定本数のラインパターン上の同一のY位置にカットパターンを形成する場合の一連の流れについて説明するための図(その5)である。It is FIG. (5) for demonstrating a series of flows in the case of forming a cut pattern in the same Y position on the continuous predetermined number of line patterns. 図17(A)及び図17(B)は、それぞれビーム成形アパーチャプレート上の開口の他の配置例について説明するための図である。FIGS. 17A and 17B are diagrams for explaining other arrangement examples of the openings on the beam shaping aperture plate. 図18(A)及び図18(B)は、ビーム成形アパーチャプレートの補助開口を通過するサブビームを用いてメインビームのL/Sパターン上の照射位置を制御する、変形例1に係る露光装置及び露光方法について説明するための図である。18 (A) and 18 (B) show an exposure apparatus according to the first modification that controls the irradiation position on the L / S pattern of the main beam by using the sub beam that passes through the auxiliary opening of the beam shaping aperture plate. It is a figure for demonstrating the exposure method. 図19(A)及び図19(B)は、変形例2に係る露光装置が備えるビーム成形アパーチャプレートについて説明するための図である。FIGS. 19A and 19B are views for explaining a beam shaping aperture plate provided in the exposure apparatus according to the second modification. 図20(A)、図20(B)及び図20(C)は、変形例2に係る露光装置において、捨てカットビームを用いてビームのXシフト量を補正する原理について説明するための図である。FIGS. 20A, 20B, and 20C are diagrams for explaining the principle of correcting the X shift amount of the beam using the discarded cut beam in the exposure apparatus according to the second modification. is there. デバイス製造方法の一実施形態を説明するためのフローチャートである。It is a flowchart for demonstrating one Embodiment of a device manufacturing method.
 以下、一実施形態について、図1~図16に基づいて説明する。図1には、一実施形態に係る電子ビーム露光装置100の構成が概略的に示されている。電子ビーム露光装置100は、後述するように電子ビーム光学系を備えているので、以下、電子ビーム光学系の光軸に平行にZ軸を取り、Z軸に垂直な平面内で後述する露光時にウエハWが移動される走査方向をY軸方向とし、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸及びZ軸回りの回転(傾斜)方向を、それぞれθx、θy及びθz方向として、説明を行う。 Hereinafter, an embodiment will be described with reference to FIGS. FIG. 1 schematically shows a configuration of an electron beam exposure apparatus 100 according to an embodiment. Since the electron beam exposure apparatus 100 includes an electron beam optical system as will be described later, hereinafter, the Z axis is taken in parallel to the optical axis of the electron beam optical system, and exposure will be described later in a plane perpendicular to the Z axis. The scanning direction in which the wafer W is moved is the Y-axis direction, the direction orthogonal to the Z-axis and the Y-axis is the X-axis direction, and the rotation (tilt) directions around the X-axis, Y-axis, and Z-axis are θx and θy, respectively. And the θz direction will be described.
 本実施形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。 In this embodiment, a configuration using an electron beam will be described as an example of a charged particle beam. However, the charged particle beam is not limited to an electron beam, and a beam using charged particles such as an ion beam may be used.
 電子ビーム露光装置100は、真空チャンバ80と、真空チャンバ80によって区画された露光室81の内部に収容された露光システム82とを備えている。図2には、露光システム82の斜視図が示されている。 The electron beam exposure apparatus 100 includes a vacuum chamber 80 and an exposure system 82 housed in an exposure chamber 81 defined by the vacuum chamber 80. FIG. 2 shows a perspective view of the exposure system 82.
 露光システム82は、図1及び図2に示されるように、ステージ装置83と、電子ビーム照射装置92とを備えている。電子ビーム照射装置92は、図2に示される円筒状の鏡筒93と、鏡筒93の内部の電子ビーム光学系とを含む。 The exposure system 82 includes a stage device 83 and an electron beam irradiation device 92 as shown in FIGS. The electron beam irradiation device 92 includes a cylindrical barrel 93 shown in FIG. 2 and an electron beam optical system inside the barrel 93.
 ステージ装置83は、ウエハを保持して移動可能なウエハシャトル10が着脱自在に装着される粗微動ステージ85を含む構成であり、電子ビーム照射装置92は、粗微動ステージ85に装着されたウエハシャトル10に保持されたウエハWに電子ビームを照射して露光する構成である。 The stage device 83 includes a coarse / fine movement stage 85 on which a wafer shuttle 10 that can hold and move a wafer is detachably mounted. The electron beam irradiation device 92 is a wafer shuttle mounted on the coarse / fine movement stage 85. In this configuration, the wafer W held by 10 is exposed to an electron beam.
 ここで、ウエハシャトル10は、詳しくは後述するが、ウエハを静電吸着して保持する保持部材(あるいはテーブル)である。この保持部材はウエハを保持した状態で搬送され、しかも所定の事前計測が行われる計測室(不図示)を起点として、露光室81を含む複数の露光室(露光室81以外の露光室については不図示)との間で繰り返し往復する。そのため、本実施形態では、この保持部材をウエハシャトルと称している。 Here, as will be described in detail later, the wafer shuttle 10 is a holding member (or table) that holds the wafer by electrostatic adsorption. The holding member is transported while holding the wafer, and a plurality of exposure chambers including the exposure chamber 81 (for exposure chambers other than the exposure chamber 81, starting from a measurement chamber (not shown) in which predetermined pre-measurement is performed. Reciprocate back and forth. Therefore, in this embodiment, this holding member is called a wafer shuttle.
 ステージ装置83は、図2に示されるように、定盤84と、定盤84上で移動する粗微動ステージ85と、粗微動ステージ85を駆動する駆動系と、粗微動ステージ85の位置情報を計測する位置計測系とを備えている。ステージ装置83の構成等の詳細は、後述する。 As shown in FIG. 2, the stage device 83 includes a surface plate 84, a coarse / fine movement stage 85 that moves on the surface plate 84, a drive system that drives the coarse / fine movement stage 85, and positional information of the coarse / fine movement stage 85. And a position measurement system for measuring. Details of the configuration of the stage device 83 will be described later.
 電子ビーム照射装置92の鏡筒93は、図2に示されるように、外周部に中心角120度の間隔で3つの凸部が形成された円環状の板部材から成るメトロロジーフレーム94によって下方から支持されている。より具体的には、鏡筒93の最下端部は、その上の部分に比べて直径が小さい小径部となっており、その小径部とその上の部分との境界部分は段部となっている。そして、その小径部が、メトロロジーフレーム94の円形の開口内に挿入され、段部の底面がメトロロジーフレーム94の上面に当接した状態で、鏡筒93が、メトロロジーフレーム94によって下方から支持されている。メトロロジーフレーム94は、図2に示されるように、前述の3つの凸部のそれぞれに下端が接続された3つの吊り下げ支持機構95a、95b、95c(柔構造の連結部材)を介して、露光室81を区画する真空チャンバ80の天板(天井壁)から吊り下げ状態で支持されている(図1参照)。すなわち、このようにして、電子ビーム照射装置92は、真空チャンバ80に対して3点で吊り下げ支持されている。 As shown in FIG. 2, the lens barrel 93 of the electron beam irradiation apparatus 92 is lowered by a metrology frame 94 made of an annular plate member having three convex portions formed at intervals of a central angle of 120 degrees on the outer peripheral portion. It is supported from. More specifically, the lowermost end portion of the lens barrel 93 is a small-diameter portion whose diameter is smaller than the portion above it, and the boundary portion between the small-diameter portion and the portion above it is a stepped portion. Yes. Then, with the small diameter portion inserted into the circular opening of the metrology frame 94 and the bottom surface of the stepped portion in contact with the upper surface of the metrology frame 94, the lens barrel 93 is moved from below by the metrology frame 94. It is supported. As shown in FIG. 2, the metrology frame 94 has three suspension support mechanisms 95a, 95b, and 95c (flexible structure connecting members) each having a lower end connected to each of the three convex portions described above. It is supported in a suspended state from the top plate (ceiling wall) of the vacuum chamber 80 that partitions the exposure chamber 81 (see FIG. 1). That is, in this way, the electron beam irradiation apparatus 92 is supported by being suspended from the vacuum chamber 80 at three points.
 3つの吊り下げ支持機構95a、95b、95cは、図2中で吊り下げ支持機構95aについて代表的に示されるように、それぞれの上端に設けられた受動型の防振パッド96と、防振パッド(防振部)96の下端にそれぞれの一端が接続され、他端がメトロロジーフレーム94に接続された鋼材より成るワイヤ97とを有する。防振パッド96は、真空チャンバ80の天板に固定され、それぞれエアダンパ又はコイルばねを含む。 The three suspension support mechanisms 95a, 95b, and 95c are, as representatively shown for the suspension support mechanism 95a in FIG. (Vibration proof part) It has the wire 97 which consists of steel materials which each one end was connected to the lower end of 96, and the other end was connected to the metrology frame 94. The anti-vibration pads 96 are fixed to the top plate of the vacuum chamber 80 and each include an air damper or a coil spring.
 本実施形態では、外部から真空チャンバ80に伝達された床振動などの振動のうちで、電子ビーム光学系の光軸に平行なZ軸方向の振動成分の大部分は防振パッド96によって吸収されるため、電子ビーム光学系の光軸に平行な方向において高い除振性能が得られる。また、吊り下げ支持機構の固有振動数は、電子ビーム光学系の光軸に平行な方向よりも光軸に垂直な方向で低くなっている。3つの吊り下げ支持機構95a、95b、95cは光軸に垂直な方向には振り子のように振動するため、光軸に垂直な方向の除振性能(真空チャンバ80に外部から伝達された床振動などの振動が電子ビーム照射装置92に伝わるのを防止する能力)が十分に高くなるように3つの吊り下げ支持機構95a、95b、95cの長さ(ワイヤ97の長さ)を十分に長く設定している。この構造では高い除振性能が得られるとともに機構部の大幅な軽量化が可能であるが、電子ビーム照射装置92と真空チャンバ80との相対位置が比較的低い周波数で変化するおそれがある。そこで、電子ビーム照射装置92と真空チャンバ80との相対位置を所定の状態に維持するために、非接触方式の位置決め装置98(図1及び図2では不図示、図12参照)が設けられている。この位置決め装置98は、例えば国際公開第2007/077920号などに開示されるように、6軸の加速度センサと、6軸のアクチュエータとを含んで構成することができる。位置決め装置98は、主制御装置50によって制御される(図12参照)。これにより、真空チャンバ80に対する電子ビーム照射装置92のX軸方向、Y軸方向、Z軸方向の相対位置、及びX軸、Y軸、Z軸の回りの相対回転角は、一定の状態(所定の状態)に維持される。 In the present embodiment, among vibrations such as floor vibration transmitted from the outside to the vacuum chamber 80, most of vibration components in the Z-axis direction parallel to the optical axis of the electron beam optical system are absorbed by the vibration isolation pad 96. Therefore, high vibration isolation performance can be obtained in a direction parallel to the optical axis of the electron beam optical system. The natural frequency of the suspension support mechanism is lower in the direction perpendicular to the optical axis than in the direction parallel to the optical axis of the electron beam optical system. Since the three suspension support mechanisms 95a, 95b, and 95c vibrate like a pendulum in the direction perpendicular to the optical axis, the vibration isolation performance in the direction perpendicular to the optical axis (floor vibration transmitted from the outside to the vacuum chamber 80) The length of the three suspension support mechanisms 95a, 95b, and 95c (the length of the wire 97) is set to be sufficiently long so that the vibration (such as the ability to prevent vibrations from being transmitted to the electron beam irradiation device 92) is sufficiently high. is doing. With this structure, high vibration isolation performance can be obtained and the mechanical unit can be significantly reduced in weight, but the relative position between the electron beam irradiation device 92 and the vacuum chamber 80 may change at a relatively low frequency. In order to maintain the relative position between the electron beam irradiation device 92 and the vacuum chamber 80 in a predetermined state, a non-contact type positioning device 98 (not shown in FIGS. 1 and 2; see FIG. 12) is provided. Yes. The positioning device 98 can be configured to include a 6-axis acceleration sensor and a 6-axis actuator, as disclosed in, for example, International Publication No. 2007/077920. The positioning device 98 is controlled by the main controller 50 (see FIG. 12). Thus, the relative positions of the electron beam irradiation device 92 with respect to the vacuum chamber 80 in the X-axis direction, the Y-axis direction, and the Z-axis direction, and the relative rotation angles around the X-axis, Y-axis, and Z-axis are constant (predetermined). The state is maintained.
 図3には、電子ビーム照射装置92の一部が、シャトル10が装着された粗微動ステージ85と共に示されている。図3では、メトロロジーフレーム94は図示が省略されている。電子ビーム照射装置92は、鏡筒93と、該鏡筒93内にXY平面内でアレイ状に配置されたm個(mは例えば100)の光学系カラム20から構成される電子ビーム光学系を備えている。各光学系カラム20は、個別にオン・オフ可能で、かつ偏向可能なn本(nは例えば5000)のビームを照射可能なマルチビーム光学系を含む。以下、便宜上、マルチビーム光学系を、光学系カラムと同一の符号を用いて、マルチビーム光学系20、光学系カラム(マルチビーム光学系)20、あるいはマルチビーム光学系(光学系カラム)20と表記する。 3 shows a part of the electron beam irradiation apparatus 92 together with the coarse / fine movement stage 85 on which the shuttle 10 is mounted. In FIG. 3, the illustration of the metrology frame 94 is omitted. The electron beam irradiation device 92 includes an electron beam optical system including a lens barrel 93 and m (m is 100, for example) optical system columns 20 arranged in an array on the XY plane in the lens barrel 93. I have. Each optical system column 20 includes a multi-beam optical system that can irradiate n beams (n is, for example, 5000) that can be individually turned on / off and can be deflected. Hereinafter, for convenience, the multi-beam optical system is referred to as a multi-beam optical system 20, an optical system column (multi-beam optical system) 20, or a multi-beam optical system (optical system column) 20, using the same reference numerals as those of the optical system column. write.
 図4には、光学系カラム(マルチビーム光学系)20の構成が示されている。光学系カラム(マルチビーム光学系)20は、円筒状の筐体(カラムセル)21と、該カラムセル21に収納された電子銃22及び光学系23と、を備えている。 FIG. 4 shows the configuration of the optical system column (multi-beam optical system) 20. The optical system column (multi-beam optical system) 20 includes a cylindrical housing (column cell) 21, an electron gun 22 and an optical system 23 housed in the column cell 21.
 光学系23は、電子銃22の下方に上から下に順に所定の位置関係で配置された第1アパーチャ板24、1次ビーム成形板26、ビーム成形アパーチャプレート28、ブランカープレート30及び最終アパーチャ32を、備えている。このうち、ビーム成形アパーチャプレート28とブランカープレート30とは、近接して配置されている。 The optical system 23 includes a first aperture plate 24, a primary beam shaping plate 26, a beam shaping aperture plate 28, a blanker plate 30, and a final aperture 32 arranged in a predetermined positional relationship below the electron gun 22 from top to bottom. Is provided. Among these, the beam shaping aperture plate 28 and the blanker plate 30 are arranged close to each other.
 第1アパーチャ板24と1次ビーム成形板26との間には、非対称照明光学系34が配置されている。また、1次ビーム成形板26とビーム成形アパーチャプレート28との間には、電磁レンズ36A、36Bが、上下方向に所定間隔隔てて配置されている。ブランカープレート30と最終アパーチャ32との間には、電磁レンズ38A、38Bが、上下方向に所定間隔隔てて配置されている。また、最終アパーチャ32の下方には、電磁レンズ38C、38Dが上下方向に所定間隔隔てて配置されている。電磁レンズ38Dの内側には、幾分高い位置に電磁レンズ38Dとほぼ同心で、ステージフィードバック偏向器40が配置されている。 An asymmetric illumination optical system 34 is disposed between the first aperture plate 24 and the primary beam shaping plate 26. Electromagnetic lenses 36A and 36B are arranged between the primary beam shaping plate 26 and the beam shaping aperture plate 28 at a predetermined interval in the vertical direction. Electromagnetic lenses 38A and 38B are arranged between the blanker plate 30 and the final aperture 32 at a predetermined interval in the vertical direction. Further, below the final aperture 32, electromagnetic lenses 38C and 38D are arranged at a predetermined interval in the vertical direction. Inside the electromagnetic lens 38D, a stage feedback deflector 40 is disposed at a somewhat higher position and substantially concentric with the electromagnetic lens 38D.
 電子銃22からは、所定の加速電圧(例えば50keV)の電子ビームEBが放出される。電子ビームEBは、第1アパーチャ板24の開口24aを通過することで、光軸AX1周りに対称な円形の断面に成形される。 The electron gun 22 emits an electron beam EB 0 having a predetermined acceleration voltage (for example, 50 keV). The electron beam EB 0 is, by passing through the opening 24a of the first aperture plate 24 is formed into symmetrical circular cross section around the optical axis AX1.
 非対称照明光学系34は、円形の断面に成形された電子ビームEBを一方向(例えばX軸方向)に長く、他方向(例えばY軸方向)に短い縦長の断面形状に変形させた電子ビームEBを生成させる。 The asymmetric illumination optical system 34 is an electron beam obtained by transforming an electron beam EB 0 formed into a circular cross section into a vertically long cross-sectional shape that is long in one direction (for example, the X-axis direction) and short in the other direction (for example, the Y-axis direction). EB 1 is generated.
 非対称照明光学系34は、例えば光軸AX1付近に静電四重極場を発生させる静電四重極レンズ群によって構成することができる。非対称照明光学系34によって発生される静電四重極場を適宜調整することで断面が縦長の電子ビームEBを成形できる。 The asymmetric illumination optical system 34 can be configured by, for example, an electrostatic quadrupole lens group that generates an electrostatic quadrupole field near the optical axis AX1. Section by appropriately adjusting the electrostatic quadrupole field generated by an asymmetric illumination optical system 34 can be molded to the electron beam EB 1 portrait.
 電子ビームEBは、円板状の1次ビーム成形板26のY軸方向の中心部に形成されたX軸方向に長いスリット状の開口26aを含む領域に照射される。電子ビームEBは、1次ビーム成形板26の開口26aを通過することで、電子ビームEBに成形され、電磁レンズ36A及び電磁レンズ36Bによって、ビーム成形アパーチャプレート28上に結像され、ビーム成形アパーチャプレート28の後述する開口の配置領域に対応するX軸方向に延びる照射領域に照射される。 The electron beam EB 1 is applied to a region including a slit-shaped opening 26 a long in the X-axis direction formed at the center of the disk-shaped primary beam shaping plate 26 in the Y-axis direction. The electron beam EB 1 passes through the opening 26a of the primary beam shaping plate 26 to be shaped into the electron beam EB 2 , and is imaged on the beam shaping aperture plate 28 by the electromagnetic lens 36A and the electromagnetic lens 36B. Irradiation is performed on an irradiation region extending in the X-axis direction corresponding to an arrangement region of an opening, which will be described later, of the shaping aperture plate 28.
 ビーム成形アパーチャプレート28には、1次ビーム成形板26の開口26aに対応する位置に、複数の開口が設けられている。これをさらに詳述すると、ビーム成形アパーチャプレート28には、図5(A)の平面図に示されるように、X軸方向に長く延びる平行四辺形の領域内に多数の開口28aが所定間隔で形成されている。開口28aは、図5(A)の円C内を拡大した図5(B)に示されるように、所定ピッチ5pxでX軸方向に並んで配置された所定数(例えば1000)の開口28aから成る開口列が、Y軸方向に所定間隔6pyで5列配置されている。ただし、複数の開口28a同士がX軸方向で重ならないように、-Y側に隣接する開口列の各開口28aが、+X方向にpxだけずれている。ここで、開口28aのX軸方向の寸法px=pとすると、Y軸方向の寸法pyは、p/2~p、例えば4p/7である。この場合、最も近い開口28a同士の距離は、約3.57pであり、開口28aの形状は長方形(矩形)となる。なお、py=pであっても良く、このとき、開口28aの形状は正方形となる。ここで、pは、例えば0.5μm~2μm、好ましくは1μm又は1.5μmである。なお、開口28aのピッチpx、最も近い開口28a同士の距離(X軸に対して所定角度傾斜した方向のピッチ)を、上記のように決定する根拠については、後述する。 The beam shaping aperture plate 28 is provided with a plurality of openings at positions corresponding to the openings 26 a of the primary beam shaping plate 26. More specifically, in the beam shaping aperture plate 28, as shown in the plan view of FIG. 5A, a large number of openings 28a are formed at predetermined intervals in a parallelogram region extending in the X-axis direction. Is formed. The openings 28a are formed from a predetermined number (for example, 1000) of openings 28a arranged side by side in the X-axis direction at a predetermined pitch of 5 px, as shown in FIG. 5 rows of opening rows are arranged at a predetermined interval of 6 py in the Y-axis direction. However, the openings 28a in the opening row adjacent to the −Y side are shifted by px in the + X direction so that the openings 28a do not overlap in the X-axis direction. Here, when the dimension px in the X-axis direction of the opening 28a is p = p, the dimension py in the Y-axis direction is p / 2 to p, for example, 4p / 7. In this case, the distance between the closest openings 28a is about 3.57p, and the shape of the opening 28a is a rectangle (rectangle). Note that py = p may be satisfied, and at this time, the shape of the opening 28a is a square. Here, p is, for example, 0.5 μm to 2 μm, preferably 1 μm or 1.5 μm. The basis for determining the pitch px of the openings 28a and the distance between the closest openings 28a (the pitch in the direction inclined by a predetermined angle with respect to the X axis) as described above will be described later.
 図4に戻り、ビーム成形アパーチャプレート28の下方には、ブランカープレート30が配置されている。ブランカープレート30には、ビーム成形アパーチャプレート28の複数の開口28aに対応する部分に開口30aがそれぞれ形成されている。各開口30aは、開口28aよりも大きく形成されており、開口28aを通過した電子ビームが通過可能となっている。 Returning to FIG. 4, a blanker plate 30 is disposed below the beam shaping aperture plate 28. In the blanker plate 30, openings 30a are formed in portions corresponding to the plurality of openings 28a of the beam shaping aperture plate 28, respectively. Each opening 30a is formed larger than the opening 28a, and an electron beam that has passed through the opening 28a can pass therethrough.
 そして、各開口30aのY軸方向の両側に、その開口30aから射出される電子ビームEBを偏向させるための一対のブランキング電極がそれぞれ設けられている。ブランキング電極のそれぞれは、不図示ではあるが、配線及び端子を介して駆動回路に接続されている。なお、ブランキング電極及び配線は、厚さ数μm~数十μm程度の導体膜を、ブランカープレート30の本体の上にパターニングすることで一体的に形成される。ブランキング電極は、電子ビームの照射による損傷を防ぐために、ブランカープレート30(の本体)の電子ビームの下流側の面に形成することが好ましい。 Then, on both sides of the Y-axis direction of each opening 30a, a pair of blanking electrodes for deflecting the electron beam EB 3 emitted from the opening 30a, respectively. Although not shown, each blanking electrode is connected to a drive circuit via a wiring and a terminal. The blanking electrode and the wiring are integrally formed by patterning a conductive film having a thickness of about several μm to several tens of μm on the main body of the blanker plate 30. The blanking electrode is preferably formed on the surface of the blanker plate 30 (main body) on the downstream side of the electron beam in order to prevent damage due to irradiation of the electron beam.
 ブランキング電極へ電圧を印可すると、開口30aを通過した電子ビームEBが大きく曲げられる。その結果、図4に示されるように、ブランキング電極で曲げられた電子ビームEBoffが、ブランカープレート30の下方に配置された最終アパーチャ32の円形の開口32aの外側に導かれて、最終アパーチャ32によって阻止される。開口32aは、最終アパーチャ32の光軸付近に形成されている。 When applying a voltage to the blanking electrode, the electron beam EB 3 having passed through the opening 30a is bent greatly. As a result, as shown in FIG. 4, the electron beam EB off bent by the blanking electrode is guided to the outside of the circular opening 32a of the final aperture 32 arranged below the blanker plate 30, and the final aperture. 32. The opening 32 a is formed near the optical axis of the final aperture 32.
 一方、ブランキング電極に電圧を印可しない場合には、電子ビームEBは最終アパーチャ32の開口32aを通過する。すなわち、個々のブランキング電極に対して電圧を印可するか否かによって、個々の電子ビームEBのオン・オフを制御できる。最終アパーチャ32を挟んで上下に各2つの電磁レンズ、すなわち第1電磁レンズ38A、第2電磁レンズ38B、第3電磁レンズ38C及び第4電磁レンズ38Dが配置されている。これらの第1~第4の電磁レンズ38A~38Dが協働することで、ビーム成形アパーチャプレート28の多数の開口28aの像が所定の縮小倍率γで縮小されてウエハWの表面に結像される。なお、以下では、ビーム成形アパーチャプレート28とブランカープレート30とをまとめて、適宜、ブランキングアパーチャアレイ29と称する。 On the other hand, when no voltage is applied to the blanking electrode, the electron beam EB 3 passes through the opening 32 a of the final aperture 32. That is, on / off of each electron beam EB 3 can be controlled by whether or not a voltage is applied to each blanking electrode. Two electromagnetic lenses, that is, a first electromagnetic lens 38A, a second electromagnetic lens 38B, a third electromagnetic lens 38C, and a fourth electromagnetic lens 38D are arranged above and below the final aperture 32, respectively. By the cooperation of the first to fourth electromagnetic lenses 38A to 38D, images of many openings 28a of the beam shaping aperture plate 28 are reduced at a predetermined reduction magnification γ and formed on the surface of the wafer W. The Hereinafter, the beam shaping aperture plate 28 and the blanker plate 30 are collectively referred to as a blanking aperture array 29 as appropriate.
 最終アパーチャ32の下方に配置されたステージフィードバック偏向器40は、開口28aの列と同じ方向(X軸方向)から光軸AX1を挟むように配置された一対の電極板を有する静電偏向器で構成されている。このステージフィードバック偏向器40により、電子ビームEBの照射位置をX軸方向に微調整できる。なお、本実施形態では、ステージフィードバック偏向器40を静電偏向器で構成しているが、この構成に限定されない。例えば、少なくとも一対のコイルを、光軸を挟むように配置し、これらのコイルに電流を流して生じる磁場によりビームを偏向する電磁タイプの偏向器でステージフィードバック偏向器40を構成しても良い。 The stage feedback deflector 40 disposed below the final aperture 32 is an electrostatic deflector having a pair of electrode plates disposed so as to sandwich the optical axis AX1 from the same direction (X-axis direction) as the row of openings 28a. It is configured. This stage feedback deflector 40, can be finely adjusting the irradiation position of the electron beam EB 3 in the X-axis direction. In the present embodiment, the stage feedback deflector 40 is configured by an electrostatic deflector, but is not limited to this configuration. For example, the stage feedback deflector 40 may be composed of an electromagnetic type deflector that arranges at least a pair of coils so as to sandwich the optical axis and deflects a beam by a magnetic field generated by passing a current through these coils.
 これまでに説明した電子銃22及び光学系23の構成各部は、主制御装置50の指示に基づき制御部64によって制御される(図12参照)。 The components of the electron gun 22 and the optical system 23 described so far are controlled by the controller 64 based on instructions from the main controller 50 (see FIG. 12).
 また、第4電磁レンズ38Dの下方には、X軸方向の両側に、一対の反射電子検出装置42x1、42x2が設けられている。また、図4では図示が省略されているが、実際には、第4電磁レンズ38Dの下方には、Y軸方向の両側に、一対の反射電子検出装置42y1、42y2が設けられている(図12参照)。これらの反射電子検出装置のそれぞれは、例えば半導体検出器によって構成され、ウエハ上のアライメントマーク、あるいは基準マーク等の検出対象マークから発生する反射成分、ここでは反射電子を検出し、検出した反射電子に対応する検出信号を信号処理装置62に送る(図12参照)。信号処理装置62は、複数の反射電子検出装置42の検出信号を不図示のアンプにより増幅した後に信号処理を行い、その処理結果を主制御装置50に送る(図12参照)。 A pair of backscattered electron detectors 42 x1 and 42 x2 are provided below the fourth electromagnetic lens 38D on both sides in the X-axis direction. Although not shown in FIG. 4, actually, a pair of backscattered electron detectors 42 y1 and 42 y2 are provided on both sides in the Y-axis direction below the fourth electromagnetic lens 38D. (See FIG. 12). Each of these backscattered electron detection devices is constituted by, for example, a semiconductor detector, and detects a backscattered electron detected by a reflected component generated from a detection target mark such as an alignment mark or a reference mark on the wafer, here a backscattered electron. Is sent to the signal processing device 62 (see FIG. 12). The signal processing device 62 performs signal processing after amplifying the detection signals of the plurality of backscattered electron detection devices 42 by an amplifier (not shown), and sends the processing result to the main control device 50 (see FIG. 12).
 光学系カラム(マルチビーム光学系)20の5000本のビームを全てオン状態(電子ビームがウエハに照射される状態)にしたとき、例えば100μm×50nmの平行四辺形領域(露光領域)内にビーム成形アパーチャプレート28の5000個の開口28aの配置に対応する位置関係で設定される5000点に同時に紫外光露光装置の解像限界よりも小さい電子ビームの矩形スポットが形成される。各スポットの大きさは、例えばX軸方向の寸法がγ・p=20nmで、Y軸方向の寸法が、4γp/7=11.43nmである。γは、光学系カラム20の倍率である。p=1μmとすると、γは1/50である。 When all 5000 beams of the optical system column (multi-beam optical system) 20 are turned on (a state in which an electron beam is irradiated on the wafer), the beams are, for example, in a parallelogram region (exposure region) of 100 μm × 50 nm. A rectangular spot of an electron beam smaller than the resolution limit of the ultraviolet light exposure apparatus is simultaneously formed at 5000 points set in a positional relationship corresponding to the arrangement of 5000 openings 28a of the shaping aperture plate 28. The size of each spot is, for example, the dimension in the X-axis direction is γ · p = 20 nm and the dimension in the Y-axis direction is 4γp / 7 = 11.43 nm. γ is the magnification of the optical system column 20. If p = 1 μm, γ is 1/50.
 本実施形態では、カラムセル21内の電子銃22、光学系23及び反射電子検出装置42、並びに制御部64及び信号処理装置62によって、1つの光学系ユニット70が構成されている。そして、この光学系ユニット70が、マルチビーム光学系(光学系カラム)20と同じ数(100)設けられている(図12参照)。 In the present embodiment, one optical system unit 70 is configured by the electron gun 22, the optical system 23, the backscattered electron detection device 42, the control unit 64, and the signal processing device 62 in the column cell 21. The same number (100) of optical system units 70 as the multi-beam optical system (optical system column) 20 are provided (see FIG. 12).
 100個のマルチビーム光学系20は、例えば300mmウエハ上に形成された(あるいはショットマップに従ってこれから形成される)例えば100個のショット領域にほぼ1:1で対応している。電子ビーム露光装置100では、100個のマルチビーム光学系20のそれぞれが、それぞれオン・オフ可能で、かつ偏向可能な多数(5000本)の例えば20nm×11.43nmの矩形の電子ビームのスポットを前述の平行四辺形領域(露光領域)内に配置している。この露光領域に対してウエハWを所定の走査方向(Y軸方向)に走査しながら、その多数の電子ビームの矩形スポットを偏向しながらオン・オフすることで、ウエハ上の100個のショット領域が露光され、パターンが形成される。したがって、300mmウエハの場合、露光に際してのウエハの移動ストロークは、多少の余裕を持たせても数十mm、例えば50mmあれば十分である。 The 100 multi-beam optical systems 20 correspond to, for example, approximately 100 shot areas formed on a 300 mm wafer (or formed from a shot map according to a shot map), for example, approximately 1: 1. In the electron beam exposure apparatus 100, each of the 100 multi-beam optical systems 20 generates a large number (5000) of, for example, 20 nm × 11.43 nm rectangular electron beam spots that can be turned on / off. It arrange | positions in the above-mentioned parallelogram area | region (exposure area | region). By scanning the wafer W in a predetermined scanning direction (Y-axis direction) with respect to this exposure area and turning on and off while deflecting the rectangular spots of the many electron beams, 100 shot areas on the wafer Are exposed to form a pattern. Therefore, in the case of a 300 mm wafer, it is sufficient that the movement stroke of the wafer at the time of exposure is several tens of mm, for example, 50 mm even with some margin.
 説明は前後したが、ここで、開口28aのX軸方向のピッチpx、最も近い開口28a同士の距離(X軸に対して所定角度傾斜した方向のピッチ)を、上記のように決定する根拠について説明する。 Although the explanation has been made before and after, here is the basis for determining the pitch px of the openings 28a in the X-axis direction and the distance between the closest openings 28a (the pitch in the direction inclined by a predetermined angle with respect to the X-axis) as described above. explain.
 図6(A)に示されるように、互いの距離がRである2本の直線電流を考える。マスクからウエハへの方向を+z方向とし、第1の直線電流に対して第2の直線電流の方向を+x方向とする。まず第1の直線電流が第2の直線電流上の1点Pに作る電場E(R)を考えると、次式(1)のようになる。 As shown in FIG. 6 (A), consider two linear currents whose distance is R. The direction from the mask to the wafer is the + z direction, and the direction of the second linear current with respect to the first linear current is the + x direction. First, considering the electric field E (R) created at one point P on the second linear current by the first linear current, the following equation (1) is obtained.
 E(R)=σ/(4πε0R)∫sinθdθ ……(1)
 ここで、σは第1の直線電流の電荷の線密度、ε0は真空の誘電率である。また、θは、第1の直線電流の電荷からPを見たときのz軸となす角度であり、無限遠まで考慮するときθの範囲は0≦θ≦πとなる。
E (R) = σ / (4πε 0 R) ∫sinθdθ (1)
Here, σ is the linear density of charge of the first linear current, and ε 0 is the dielectric constant of vacuum. Further, θ is an angle formed with the z-axis when P is viewed from the charge of the first linear current, and the range of θ is 0 ≦ θ ≦ π when considering to infinity.
 重要な点は、式(1)から明らかなように、電場E(R)がビーム間距離Rの1次に反比例することであり、この電場E(R)が点P上の電子に及ぼす力の大きさFは、
F=e E(R)
であるので、FもRに反比例する(なお、eは電子の電荷である)。
The important point is that the electric field E (R) is inversely proportional to the first order of the inter-beam distance R, as is clear from the equation (1), and the force exerted on the electrons on the point P by the electric field E (R). The size F of
F = e E (R)
Therefore, F is also inversely proportional to R (where e is the charge of electrons).
 マスクからウエハまで飛行する電子がx方向に力Fを受けた結果、第2の直線電流を構成する電子が、ウエハ面においてどれだけx方向にずれるか、すなわち位置ずれΔxを計算すると、
運動方程式F=e E(R)=m(d2x/dt2
より、次式(2)のようになる。
As a result of the electrons flying from the mask to the wafer receiving a force F in the x direction, how much the electrons constituting the second linear current are displaced in the x direction on the wafer surface, that is, calculating the positional deviation Δx,
Equation of motion F = e E (R) = m (d 2 x / dt 2 )
Thus, the following equation (2) is obtained.
 Δx=eE(R)/(2m)・t……(2)
ここで、mは電子の質量であり、tは電子の飛行時間である。
Δx = eE (R) / (2m) · t 2 (2)
Here, m is the mass of electrons, and t is the flight time of electrons.
 重要な点は、電場E(R)がビーム間距離Rの1次に反比例するので、図6(B)に示されるように、位置ずれΔxもビーム間距離Rの1次に反比例することである。 The important point is that since the electric field E (R) is inversely proportional to the first order of the inter-beam distance R, the positional deviation Δx is also inversely proportional to the first order of the inter-beam distance R as shown in FIG. is there.
 したがって、ビーム間相互作用により生じる位置ずれΔxは、定性的に、ブランキングアパーチャアレイ29(より正確には、ビーム成形アパーチャプレート28)の開口28a間の距離に反比例する、と考えられる。 Therefore, it is considered that the positional deviation Δx caused by the inter-beam interaction is qualitatively inversely proportional to the distance between the openings 28a of the blanking aperture array 29 (more precisely, the beam shaping aperture plate 28).
 そこで、本実施形態では、ブランキングアパーチャアレイ29の複数の開口28aをそれぞれ通過した複数のビーム(上記の第1の直線電流と第2の直線電流に相当)相互間に働くクーロン力によるオン状態のビーム(上記の第1の直線電流に相当)のターゲット面上での照射位置ずれ(上記Δxに相当)が許容値以下となるように、ブランキングアパーチャアレイ29上での複数の開口28aの配置が定められている。本実施形態では、ブランキングアパーチャアレイ29上での複数の開口28aの配置(配列)は、複数のビーム相互間の距離(上記のRに相当)と該複数のビーム相互間に働くクーロン力に起因するオン状態のビームの位置ずれ(上記Δxに相当)との関係、すなわち上記のビーム間相互作用により生じる位置ずれΔxが、定性的に、ブランキングアパーチャアレイ29(より正確には、ビーム成形アパーチャプレート28)の開口28a間の距離に反比例する関係(図6(B)のグラフで表される関係)、別の表現を用いれば、ビーム間の距離を変化させて得られる、該ビーム間に働くクーロン力に起因するオン状態のビームの位置情報を考慮して定められている。例えば、複数の開口28aは、開口のX軸方向の長さpの2倍である2p以上、すなわち本実施形態に係る電子ビーム露光装置100を用いて、前述したコンプリメンタリ・リソグラフィを行い、ラインアンドスペースパターンの切断を行う場合における切断対象となるライン部のピッチ2p以上に定められる。 Therefore, in the present embodiment, the ON state due to the Coulomb force acting between the plurality of beams (corresponding to the first linear current and the second linear current) that respectively pass through the plurality of openings 28a of the blanking aperture array 29. Of the plurality of apertures 28a on the blanking aperture array 29 so that the irradiation position shift (corresponding to Δx) on the target surface of the beam (corresponding to the first linear current) of the beam is equal to or less than an allowable value. Arrangement is defined. In the present embodiment, the arrangement (arrangement) of the plurality of openings 28a on the blanking aperture array 29 is based on the distance between the plurality of beams (corresponding to R described above) and the Coulomb force acting between the plurality of beams. The relationship between the positional deviation of the beam in the ON state (corresponding to the above-mentioned Δx), that is, the positional deviation Δx caused by the above-mentioned beam-to-beam interaction is qualitatively determined. A relationship inversely proportional to the distance between the apertures 28a of the aperture plate 28) (relation represented by the graph in FIG. 6B), and using another expression, can be obtained by changing the distance between the beams. It is determined in consideration of the positional information of the beam in the on-state caused by the Coulomb force acting on. For example, the plurality of openings 28a is 2p or more, which is twice the length p in the X-axis direction of the openings, that is, the above-described complementary lithography is performed using the electron beam exposure apparatus 100 according to the present embodiment, and line and The pitch is set to 2p or more of the line portion to be cut when the space pattern is cut.
 ただし、主制御装置50による制御部64を介したオン状態となるビームの照射位置の調整能力を考慮して、上記の許容値が定められるとともに、オン状態のビームの位置ずれ(上記Δxに相当)が定められた許容値以下となるように、ビーム成形アパーチャプレート28の複数の開口28aのX軸方向のピッチ及び最も近い開口28a同士の距離(X軸に対して所定角度傾斜した方向のピッチ)が、定められていても良い。例えば、X軸方向のピッチが、ステージフィードバック偏向器40による、電子ビームEBの照射位置のX軸方向の調整能力を考慮して、決められていても良い。 However, in consideration of the ability to adjust the irradiation position of the beam to be turned on via the control unit 64 by the main controller 50, the above-mentioned allowable value is determined and the positional deviation of the beam in the on state (corresponding to the above Δx) ) In the X-axis direction of the plurality of openings 28a of the beam shaping aperture plate 28 and the distance between the closest openings 28a (pitch in a direction inclined by a predetermined angle with respect to the X-axis) ) May be defined. For example, the pitch in the X axis direction may be determined in consideration of the ability of the stage feedback deflector 40 to adjust the irradiation position of the electron beam EB 3 in the X axis direction.
 次にステージ装置83の構成等について説明する。図7には、ステージ装置83の粗微動ステージ85に、ウエハシャトル(以下、シャトルと略記する)10が装着された状態の斜視図が示されている。図8には、シャトル10が離脱された(取り外された)状態の図7に示される粗微動ステージ85の斜視図が示されている。 Next, the configuration of the stage device 83 will be described. FIG. 7 shows a perspective view of a state in which a wafer shuttle (hereinafter abbreviated as shuttle) 10 is mounted on the coarse / fine movement stage 85 of the stage device 83. FIG. 8 is a perspective view of the coarse / fine movement stage 85 shown in FIG. 7 in a state in which the shuttle 10 is detached (removed).
 ステージ装置83が備える定盤84は、実際には、露光室81を区画する真空チャンバ80の底壁上に設置されている。粗微動ステージ85は、図7及び図8に示されるように粗動ステージ85aと微動ステージ85bと、を備えている。粗動ステージ85aはY軸方向に所定間隔を隔てて配置され、X軸方向にそれぞれ延びる一対の四角柱状の部分を含み、定盤84上でX軸方向に所定ストローク、例えば50mmで移動可能である。微動ステージ85bは、粗動ステージ85aに対してY軸方向に所定ストローク、例えば50mmで移動可能で、かつ残りの5自由度方向、すなわちX軸方向、Z軸方向、X軸周りの回転方向(θx方向)、Y軸周りの回転方向(θy方向)及びZ軸周りの回転方向(θz方向)にY軸方向に比べて短いストロークで可動である。なお、図示は省略されているが、粗動ステージ85aの一対の四角柱状の部分は、実際には、微動ステージ85bのY軸方向の移動を妨げない状態で不図示の連結部材によって連結され、一体化されている。 The surface plate 84 provided in the stage device 83 is actually installed on the bottom wall of the vacuum chamber 80 that partitions the exposure chamber 81. As shown in FIGS. 7 and 8, the coarse / fine movement stage 85 includes a coarse movement stage 85a and a fine movement stage 85b. The coarse movement stage 85a is disposed at a predetermined interval in the Y-axis direction, includes a pair of quadrangular columnar portions extending in the X-axis direction, and is movable on the surface plate 84 in the X-axis direction with a predetermined stroke, for example, 50 mm. is there. The fine movement stage 85b can move with respect to the coarse movement stage 85a in the Y-axis direction with a predetermined stroke, for example, 50 mm, and the remaining five degrees of freedom, that is, the X-axis direction, the Z-axis direction, and the rotation directions around the X-axis ( It is movable in a shorter stroke than the Y-axis direction in the θx direction), the rotation direction around the Y axis (θy direction), and the rotation direction around the Z axis (θz direction). Although not shown, the pair of square columnar portions of the coarse movement stage 85a are actually connected by a connection member (not shown) in a state that does not prevent the movement of the fine movement stage 85b in the Y-axis direction. It is integrated.
 粗動ステージ85aは、粗動ステージ駆動系86(図12参照)によって、X軸方向に所定ストローク(例えば50mm)で駆動される(図10のX軸方向の長い矢印参照)。粗動ステージ駆動系86は、本実施形態では磁束漏れが生じない一軸駆動機構、例えばボールねじを用いた送りねじ機構によって構成される。この粗動ステージ駆動系86は、粗動ステージの一対の四角柱状の部分のうち、一方の四角柱状の部分と定盤84との間に配置される。例えば、定盤84にねじ軸が取り付けられ、一方の四角柱状の部分にボール(ナット)が取り付けられる構成である。なお、定盤84にボールを取り付け、一方の四角柱状の部分にねじ軸を取り付ける構成であっても良い。 The coarse movement stage 85a is driven by a coarse movement stage drive system 86 (see FIG. 12) with a predetermined stroke (for example, 50 mm) in the X axis direction (see the long arrow in the X axis direction in FIG. 10). The coarse movement stage drive system 86 is constituted by a uniaxial drive mechanism that does not cause magnetic flux leakage in this embodiment, for example, a feed screw mechanism using a ball screw. The coarse movement stage drive system 86 is arranged between one square columnar portion of the pair of square columnar portions of the coarse movement stage and the surface plate 84. For example, a screw shaft is attached to the surface plate 84, and a ball (nut) is attached to one square columnar portion. In addition, the structure which attaches a ball | bowl to the surface plate 84 and attaches a screw shaft to one square pillar-shaped part may be sufficient.
 また、粗動ステージ85aの一対の四角柱状の部分のうち、他方の四角柱状の部分は、定盤84に設けられた不図示のガイド面に沿って移動する構成である。 Further, of the pair of quadrangular columnar portions of the coarse movement stage 85a, the other quadrangular columnar portion is configured to move along a guide surface (not shown) provided on the surface plate 84.
 ボールねじのねじ軸は、ステッピングモータによって回転駆動される。あるいは、粗動ステージ駆動系86を、駆動源として超音波モータを備えた一軸駆動機構によって構成しても良い。いずれにしても、磁束漏れに起因する磁場変動が電子ビームの位置決めに影響を与えることはない。粗動ステージ駆動系86は、主制御装置50によって制御される(図12参照)。 The screw shaft of the ball screw is driven to rotate by a stepping motor. Or you may comprise the coarse motion stage drive system 86 by the uniaxial drive mechanism provided with the ultrasonic motor as a drive source. In any case, the magnetic field fluctuation caused by the magnetic flux leakage does not affect the positioning of the electron beam. The coarse movement stage drive system 86 is controlled by the main controller 50 (see FIG. 12).
 微動ステージ85bは、図9の斜視図に拡大して示されるように、Y軸方向に貫通したXZ断面矩形枠状の部材から成り、重量キャンセル装置87によって、定盤84上でXY平面内で移動可能に支持されている。微動ステージ85bの側壁の外面には、補強用のリブが複数設けられている。 As shown in the enlarged perspective view of FIG. 9, the fine movement stage 85 b is made of a member having an XZ cross-sectional rectangular frame shape penetrating in the Y-axis direction, and is placed on the surface plate 84 in the XY plane by the weight cancellation device 87. It is supported movably. A plurality of reinforcing ribs are provided on the outer surface of the side wall of fine movement stage 85b.
 微動ステージ85bの中空部の内部には、XZ断面が矩形枠状でY軸方向に延びるヨーク88aと、ヨーク88aの上下の対向面に固定された一対の磁石ユニット88bとが設けられ、これらヨーク88aと一対の磁石ユニット88bによって、微動ステージ85bを駆動するモータの可動子88が構成されている。 Inside the hollow portion of fine movement stage 85b, there are provided a yoke 88a having a rectangular frame shape in the XZ section and extending in the Y-axis direction, and a pair of magnet units 88b fixed to the upper and lower opposing surfaces of yoke 88a. 88a and a pair of magnet units 88b constitute a mover 88 of a motor that drives fine movement stage 85b.
 図10には、図8から微動ステージ85b及び符号91で示される後述する磁気シールド部材を取り去った状態が示されている。図10に示されるように、可動子88に対応して、粗動ステージ85aの一対の四角柱部分の相互間には、コイルユニットから成る固定子89が架設されている。固定子89と前述の可動子88とによって、可動子88を固定子89に対して、図10に各方向の矢印で示されるように、Y軸方向に所定ストローク、例えば50mmで移動可能で、かつX軸方向、Z軸方向、θx方向、θy方向及びθz方向に微小駆動可能な閉磁界型かつムービングマグネット型のモータ90が構成されている。本実施形態では、モータ90によって微動ステージ85bを6自由度方向に駆動する微動ステージ駆動系が構成されている。以下、微動ステージ駆動系をモータと同一の符号を用いて、微動ステージ駆動系90と表記する。微動ステージ駆動系90は、主制御装置50によって制御される(図12参照)。 FIG. 10 shows a state in which a magnetic shield member (to be described later) indicated by fine movement stage 85b and reference numeral 91 is removed from FIG. As shown in FIG. 10, corresponding to the mover 88, a stator 89 made of a coil unit is installed between a pair of square column portions of the coarse movement stage 85 a. With the stator 89 and the above-described mover 88, the mover 88 can be moved with respect to the stator 89 by a predetermined stroke, for example, 50 mm in the Y-axis direction, as indicated by arrows in each direction in FIG. Further, a closed magnetic field type and moving magnet type motor 90 that can be finely driven in the X axis direction, the Z axis direction, the θx direction, the θy direction, and the θz direction is configured. In the present embodiment, a fine movement stage drive system that drives the fine movement stage 85b in the direction of six degrees of freedom by the motor 90 is configured. Hereinafter, the fine movement stage drive system is referred to as a fine movement stage drive system 90 using the same reference numerals as those of the motor. Fine movement stage drive system 90 is controlled by main controller 50 (see FIG. 12).
 粗動ステージ85aの一対の四角柱部分の相互間には、例えば図7及び図8などに示されるように、さらに、モータ90の上面及びX軸方向の両側面を覆う状態でXZ断面逆U字状の磁気シールド部材91が架設されている。すなわち、磁気シールド部材91は、四角柱部分が延びる方向に交差する方向(Y軸方向)に延びて形成されており、モータ90の上面に非接触で対向する上面部と、モータ90の側面に非接触で対向する側面部とを備える。この磁気シールド部材91は、微動ステージ85bの中空部内に挿入された状態で、側面部のうち、長手方向(Y軸方向)の両端部の下面が粗動ステージ85aの一対の四角柱部分の上面に固定されている。また、磁気シールド部材91の側面部のうち、上記両端部の下面以外は、微動ステージ85bの内壁面のうち、底壁面(下面)に対して、非接触で対向する。すなわち、磁気シールド部材91は、可動子88の固定子89に対する移動を妨げることがない状態で、微動ステージ85bの中空部内に挿入されている。 Between the pair of quadrangular column portions of the coarse movement stage 85a, as shown in FIGS. 7 and 8, for example, the XZ cross-section reverse U is further applied while covering the upper surface of the motor 90 and both side surfaces in the X-axis direction. A letter-shaped magnetic shield member 91 is installed. That is, the magnetic shield member 91 is formed so as to extend in a direction (Y-axis direction) intersecting with the direction in which the quadrangular prism portion extends, and on the upper surface of the motor 90 in a non-contact manner and on the side surface of the motor 90. And a side portion that faces each other in a non-contact manner. The magnetic shield member 91 is inserted into the hollow portion of the fine movement stage 85b, and the lower surface of both end portions in the longitudinal direction (Y-axis direction) is the upper surface of the pair of quadrangular column portions of the coarse movement stage 85a. It is fixed to. Further, of the side surfaces of the magnetic shield member 91, the surfaces other than the lower surfaces of the both end portions are opposed to the bottom wall surface (lower surface) of the inner wall surface of the fine movement stage 85b without contact. That is, the magnetic shield member 91 is inserted into the hollow portion of the fine movement stage 85b in a state where the movement of the mover 88 relative to the stator 89 is not hindered.
 磁気シールド部材91としては、所定の空隙(スペース)を隔てて積層された複数層の磁性材料のフィルムによって構成されるラミネートな磁気シールド部材が用いられている。この他、透磁率の異なる2種類の材料のフィルムが交互に積層された構成の磁気シールド部材を用いても良い。磁気シールド部材91は、モータ90の上面及び側面を、可動子88の移動ストロークの全長に渡って覆っており、かつ粗動ステージ85aに固定されているので、微動ステージ85b及び粗動ステージ85aの移動範囲の全域で、上方(電子ビーム光学系側)への磁束の漏れをほぼ確実に防止することができる。 As the magnetic shield member 91, a laminated magnetic shield member composed of a plurality of layers of magnetic material films laminated with a predetermined gap (space) is used. In addition, a magnetic shield member having a configuration in which films of two kinds of materials having different magnetic permeability are alternately laminated may be used. Since the magnetic shield member 91 covers the upper surface and the side surface of the motor 90 over the entire length of the moving stroke of the mover 88 and is fixed to the coarse movement stage 85a, the fine movement stage 85b and the coarse movement stage 85a. Leakage of magnetic flux upward (on the electron beam optical system side) can be prevented almost certainly over the entire moving range.
 重量キャンセル装置87は、図9に示されるように、微動ステージ85bの下面に上端が接続された金属製のベローズ型空気ばね(以下、空気ばねと略記する)87aと、空気ばね87aの下端に接続された平板状の板部材から成るベーススライダ87bと、を有している。ベーススライダ87bには、空気ばね87a内部の空気を、定盤84の上面に噴き出す軸受部(不図示)が設けられ、軸受部から噴出される加圧空気の軸受面と定盤84上面との間の静圧(隙間内圧力)により、重量キャンセル装置87、微動ステージ85b及び可動子88(シャトル10が粗微動ステージ85に装着された場合には、そのシャトル10等も含む)の自重が支持されている。なお、空気ばね87aには、微動ステージ85bに接続された不図示の配管を介して圧縮空気が供給されている。ベーススライダ87bは、一種の差動排気型の空気静圧軸受を介して定盤84上に非接触で支持され、軸受部から定盤84に向かって噴出された空気が、周囲に(露光室内に)漏れ出すことが防止されている。 As shown in FIG. 9, the weight canceling device 87 includes a metal bellows type air spring (hereinafter abbreviated as “air spring”) 87a whose upper end is connected to the lower surface of the fine movement stage 85b, and a lower end of the air spring 87a. And a base slider 87b made of a connected flat plate member. The base slider 87b is provided with a bearing portion (not shown) that blows air inside the air spring 87a to the upper surface of the surface plate 84, and the bearing surface of the pressurized air ejected from the bearing portion and the upper surface of the surface plate 84 are provided. The self-weight of the weight canceling device 87, fine movement stage 85b and mover 88 (including the shuttle 10 when the shuttle 10 is mounted on the coarse / fine movement stage 85) is supported by the static pressure (pressure in the gap). Has been. Note that compressed air is supplied to the air spring 87a via a pipe (not shown) connected to the fine movement stage 85b. The base slider 87b is supported in a non-contact manner on the surface plate 84 via a kind of differential exhaust type aerostatic bearing, and air blown from the bearing portion toward the surface plate 84 is surrounded by (exposure chamber). To prevent leakage.
 ここで、シャトル10を粗微動ステージ85、より正確には微動ステージ85bに着脱自在に装着するための構造について説明する。 Here, a structure for detachably attaching the shuttle 10 to the coarse / fine movement stage 85, more precisely, to the fine movement stage 85b will be described.
 微動ステージ85bの上面には、図8に示されるように、3つの三角錐溝部材12が設けられている。この三角錐溝部材12は、例えば、平面視でほぼ正三角形の3つの頂点の位置に設けられている。この三角錐溝部材12には、後述するシャトル10に設けられた球体又は半球体が係合可能であり、この球体又は半球体とともにキネマティックカップリングを構成する。なお、図8には、3つの板部材によって構成された花弁のような三角錐溝部材12が示されているが、この三角錐溝部材12は、球体又半球体にそれぞれ点接触する三角錐溝と同じ役割を有するので、三角錐溝部材と称している。したがって、三角錐溝が形成された単一の部材を、三角錐溝部材12の代わりに用いても良い。 As shown in FIG. 8, three triangular pyramid groove members 12 are provided on the upper surface of fine movement stage 85b. For example, the triangular pyramidal groove member 12 is provided at the positions of three apexes of a regular triangle in plan view. The triangular pyramid groove member 12 can be engaged with a sphere or hemisphere provided in the shuttle 10 described later, and constitutes a kinematic coupling together with the sphere or hemisphere. FIG. 8 shows a triangular pyramid groove member 12 such as a petal composed of three plate members. The triangular pyramid groove member 12 is a triangular pyramid that makes point contact with a sphere or a hemisphere, respectively. Since it has the same role as the groove, it is called a triangular pyramid groove member. Therefore, a single member in which a triangular pyramid groove is formed may be used instead of the triangular pyramid groove member 12.
 本実施形態では、3つの三角錐溝部材12に対応して、図7に示されるように、シャトル10に3つの球体又は半球体(本実施形態ではボール)14が設けられている。シャトル10は、平面視で正三角形の各頂点を切り落としたような六角形状で形成されている。これをさらに詳述すると、シャトル10には、平面視で3つの斜辺それぞれの中央部に切り欠き部10a、10b、10cが形成され、切り欠き部10a、10b、10cをそれぞれ外側から覆う状態で、板ばね16がそれぞれ取り付けられている。各板ばね16の長手方向の中央部にボール14がそれぞれ固定されている。三角錐溝部材12に係合される前の状態では、各ボール14は、外力を受けた場合、シャトル10の中心(図7に示されるウエハWの中心にほぼ一致)を中心とする半径方向にのみ微小移動する。 In this embodiment, three spheres or hemispheres (balls in the present embodiment) 14 are provided in the shuttle 10 corresponding to the three triangular pyramid groove members 12 as shown in FIG. The shuttle 10 is formed in a hexagonal shape in which each vertex of an equilateral triangle is cut off in plan view. More specifically, the shuttle 10 has notches 10a, 10b, and 10c formed at the center of each of the three oblique sides in plan view, and covers the notches 10a, 10b, and 10c from the outside. The leaf springs 16 are respectively attached. Balls 14 are fixed to the center of each leaf spring 16 in the longitudinal direction. In a state before being engaged with the triangular pyramid groove member 12, each ball 14, when subjected to an external force, has a radial direction centered on the center of the shuttle 10 (substantially coincides with the center of the wafer W shown in FIG. 7). Only move to a minute.
 微動ステージ85bの上方で3つの三角錐溝部材12に3つのボール14がそれぞれほぼ対向する位置に、シャトル10を移動させた後、シャトル10を降下させることにより、3つのボール14のそれぞれが、3つの三角錐溝部材12に個別に係合し、シャトル10が微動ステージ85bに装着される。この装着時に、シャトル10の微動ステージ85bに対する位置が所望の位置からずれていたとしても、ボール14が三角錐溝部材12に係合する際にその三角錐溝部材12から外力を受けて前述の如く半径方向に移動する。その結果、3つのボール14は対応する三角錐溝部材12に、常に同じ状態で係合する。一方、シャトル10を上方に移動させて、ボール14と三角錐溝部材12との係合を解除するだけで、シャトル10を微動ステージ85bから簡単に取り外す(離脱させる)ことができる。すなわち、本実施形態では3組のボール14と三角錐溝部材12との組によって、キネマティックカップリングが構成され、このキネマティックカップリングによって、シャトル10の微動ステージ85bに対する取り付け状態を常にほぼ同一状態に設定することができるようになっている。したがって、何度、取り外しても、再度、シャトル10をキネマティックカップリング(3組のボール14と三角錐溝部材12との組)を介して微動ステージ85bに装着するだけで、シャトル10と微動ステージ85bとの一定の位置関係を、再現することができる。 After moving the shuttle 10 to a position where the three balls 14 substantially oppose the three triangular pyramidal groove members 12 above the fine movement stage 85b, respectively, the shuttle 10 is moved down so that each of the three balls 14 becomes The three triangular pyramid groove members 12 are individually engaged, and the shuttle 10 is mounted on the fine movement stage 85b. Even when the position of the shuttle 10 with respect to the fine movement stage 85b is deviated from the desired position at the time of mounting, when the ball 14 engages with the triangular pyramid groove member 12, the external force is received from the triangular pyramid groove member 12, and the aforementioned Move in the radial direction. As a result, the three balls 14 always engage with the corresponding triangular pyramidal groove members 12 in the same state. On the other hand, the shuttle 10 can be easily detached (detached) from the fine movement stage 85b simply by moving the shuttle 10 upward and releasing the engagement between the ball 14 and the triangular pyramid groove member 12. That is, in this embodiment, a kinematic coupling is constituted by the set of three balls 14 and the triangular pyramid groove member 12, and the kinematic coupling always keeps the mounting state of the shuttle 10 to the fine movement stage 85b substantially the same. It can be set to the state. Therefore, no matter how many times it is removed, the shuttle 10 and the fine movement of the shuttle 10 can be moved by simply mounting the shuttle 10 on the fine movement stage 85b via the kinematic coupling (the set of three pairs of balls 14 and the triangular pyramid groove member 12). A certain positional relationship with the stage 85b can be reproduced.
 シャトル10の上面には、例えば図7に示されるように、中央にウエハWより僅かに直径が大きな円形の凹部が形成され、該凹部内に不図示の静電チャックが設けられ、該静電チャックによってウエハWが静電吸着され保持されている。このウエハWの保持状態では、ウエハWの表面は、シャトル10の上面とほぼ同一面となっている。 On the upper surface of the shuttle 10, for example, as shown in FIG. 7, a circular concave portion having a diameter slightly larger than that of the wafer W is formed at the center, and an electrostatic chuck (not shown) is provided in the concave portion. The wafer W is electrostatically attracted and held by the chuck. In the holding state of the wafer W, the surface of the wafer W is substantially flush with the upper surface of the shuttle 10.
 次に、粗微動ステージ85の位置情報を計測する位置計測系について説明する。この位置計測系は、シャトル10が微動ステージ85bに前述したキネマティックカップリングを介して装着された状態で、シャトル10の位置情報を計測する第1計測系52と、微動ステージ85bの位置情報を直接計測する第2計測系54と、を含む(図12参照)。 Next, a position measurement system that measures position information of the coarse / fine movement stage 85 will be described. This position measurement system includes the first measurement system 52 that measures the position information of the shuttle 10 and the position information of the fine movement stage 85b in a state where the shuttle 10 is mounted on the fine movement stage 85b via the kinematic coupling described above. And a second measurement system 54 that directly measures (see FIG. 12).
 まず、第1計測系52について説明する。シャトル10の前述の3つの斜辺を除く3つの辺それぞれの近傍には、図7に示されるように、グレーティングプレート72a、72b、72cがそれぞれ設けられている。グレーティングプレート72a、72b、72cのそれぞれには、シャトル10の中心(本実施形態では円形の凹部の中心に一致)を中心とする半径方向とこれに直交する方向のそれぞれを周期方向とする2次元格子がそれぞれ形成されている。例えば、グレーティングプレート72aには、Y軸方向及びX軸方向を周期方向とする2次元格子が形成されている。また、グレーティングプレート72bには、シャトル10の中心に関してY軸に対して-120度を成す方向(以下、α方向と称する)及びこれに直交する方向を周期方向とする2次元格子が形成され、グレーティングプレート72cには、シャトル10の中心に関してY軸に対して+120度を成す方向(以下、β方向と称する)及びこれに直交する方向を周期方向とする2次元格子が形成されている。2次元格子としては、それぞれの周期方向について、ピッチが例えば1μmの反射型の回折格子が用いられている。 First, the first measurement system 52 will be described. Grating plates 72a, 72b, and 72c are provided in the vicinity of the three sides of the shuttle 10 except for the three oblique sides, as shown in FIG. Each of the grating plates 72a, 72b, and 72c has a two-dimensional shape in which a radial direction centered on the center of the shuttle 10 (in the present embodiment, coincides with the center of a circular concave portion) and a direction orthogonal thereto are each a periodic direction. Each lattice is formed. For example, the grating plate 72a is formed with a two-dimensional lattice having a periodic direction in the Y-axis direction and the X-axis direction. The grating plate 72b is formed with a two-dimensional grating having a direction that is −120 degrees with respect to the Y axis with respect to the center of the shuttle 10 (hereinafter referred to as α direction) and a direction perpendicular thereto as a periodic direction. The grating plate 72c is formed with a two-dimensional grating having a direction that forms +120 degrees with respect to the Y axis with respect to the center of the shuttle 10 (hereinafter referred to as β direction) and a direction perpendicular thereto as a periodic direction. As the two-dimensional grating, a reflection type diffraction grating having a pitch of, for example, 1 μm is used in each periodic direction.
 図11(A)に示されるように、メトロロジーフレーム94の下面(-Z側の面)には、3つのグレーティングプレート72a、72b、72cのそれぞれに個別に対向可能な位置に、3つのヘッド部74a、74b、74cが固定されている。3つのヘッド部74a、74b、74cのそれぞれには、図11(B)中に各4本の矢印で示される計測軸を有する4軸エンコーダヘッドが設けられている。 As shown in FIG. 11A, on the lower surface (the surface on the −Z side) of the metrology frame 94, there are three heads at positions that can individually face the three grating plates 72a, 72b, 72c. The parts 74a, 74b, and 74c are fixed. Each of the three head portions 74a, 74b, and 74c is provided with a four-axis encoder head having a measurement axis indicated by four arrows in FIG. 11B.
 これをさらに詳述すると、ヘッド部74aは、同一の筐体の内部に収容された、X軸方向及びZ軸方向を計測方向とする第1ヘッドと、Y軸方向及びZ軸方向を計測方向とする第2ヘッドとを含む。第1ヘッド(より正確には、第1ヘッドが発する計測ビームのグレーティングプレート72a上の照射点)と、第2ヘッド(より正確には、第2ヘッドが発する計測ビームのグレーティングプレート72a上の照射点)とは、同一のX軸に平行な直線上に配置されている。ヘッド部74aの第1ヘッド及び第2ヘッドは、それぞれグレーティングプレート72aを用いて、シャトル10のX軸方向及びZ軸方向の位置情報を計測する2軸リニアエンコーダ、及びY軸方向及びZ軸方向の位置情報を計測する2軸リニアエンコーダを構成する。 More specifically, the head portion 74a includes a first head housed in the same housing and having a measurement direction in the X-axis direction and the Z-axis direction, and a measurement direction in the Y-axis direction and the Z-axis direction. And a second head. The first head (more precisely, the irradiation point on the grating plate 72a of the measurement beam emitted by the first head) and the second head (more precisely, the irradiation of the measurement beam emitted by the second head on the grating plate 72a). Are arranged on a straight line parallel to the same X axis. The first head and the second head of the head portion 74a are each a biaxial linear encoder that measures position information of the shuttle 10 in the X-axis direction and the Z-axis direction, and the Y-axis direction and the Z-axis direction using the grating plate 72a. A two-axis linear encoder that measures the position information is configured.
 残りのヘッド部74b、74cは、それぞれのメトロロジーフレーム94に対する向きが異なる(XY平面内における計測方向が異なる)が、第1ヘッドと第2ヘッドとを含んでヘッド部74aと同様に構成されている。ヘッド部74bの第1ヘッド及び第2ヘッドは、それぞれグレーティングプレート72bを用いて、シャトル10のα方向にXY平面内で直交する方向及びZ軸方向の位置情報を計測する2軸リニアエンコーダ、及びα方向及びZ軸方向の位置情報を計測する2軸リニアエンコーダを構成する。ヘッド部74cの第1ヘッド及び第2ヘッドは、それぞれグレーティングプレート72cを用いて、シャトル10のβ方向にXY平面内で直交する方向及びZ軸方向の位置情報を計測する2軸リニアエンコーダ、及びβ方向及びZ軸方向の位置情報を計測する2軸リニアエンコーダを構成する。 The remaining head portions 74b and 74c are configured in the same manner as the head portion 74a including the first head and the second head, although the directions with respect to the respective metrology frames 94 are different (measurement directions in the XY plane are different). ing. The first head and the second head of the head part 74b each use a grating plate 72b to measure the position information in the direction orthogonal to the α direction of the shuttle 10 in the XY plane and the position information in the Z-axis direction, and A two-axis linear encoder that measures position information in the α direction and the Z-axis direction is configured. The first head and the second head of the head portion 74c each use a grating plate 72c, and a biaxial linear encoder that measures position information in a direction orthogonal to the β direction of the shuttle 10 in the XY plane and in the Z axis direction, and A two-axis linear encoder that measures position information in the β direction and the Z-axis direction is configured.
 ヘッド部74a、74b、74cそれぞれが有する第1ヘッド及び第2ヘッドのそれぞれとしては、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドと同様の構成のエンコーダヘッドを用いることができる。 As each of the 1st head and 2nd head which each head part 74a, 74b, 74c has, the encoder head of the structure similar to the displacement measurement sensor head disclosed by the US Patent 7,561,280, for example is used. Can be used.
 上述した3組、合計6つの2軸エンコーダ、すなわち3つのグレーティングプレート72a、72b、72cをそれぞれ用いてシャトル10の位置情報を計測する3つのヘッド部74a、74b、74cによって、エンコーダシステムが構成され、このエンコーダシステムによって第1計測系52(図12参照)が構成されている。第1計測系52で計測される位置情報は、主制御装置50に供給される。 An encoder system is configured by the three head portions 74a, 74b, and 74c that measure the position information of the shuttle 10 using the above-described three sets, that is, a total of six biaxial encoders, that is, three grating plates 72a, 72b, and 72c, respectively. The first measurement system 52 (see FIG. 12) is configured by this encoder system. Position information measured by the first measurement system 52 is supplied to the main controller 50.
 第1計測系52は、3つのヘッド部74a、74b、74cがそれぞれ4つの計測自由度(計測軸)を有しているので、合計12自由度の計測が可能である。すなわち、3次元空間内では、自由度は最大で6であるから、実際には、6自由度方向のそれぞれについて、冗長計測が行われ、各2つの位置情報が得られることになる。 In the first measurement system 52, since the three head portions 74a, 74b, and 74c each have four measurement degrees of freedom (measurement axes), a total of 12 degrees of freedom can be measured. That is, in the three-dimensional space, since the maximum degree of freedom is 6, redundant measurement is actually performed for each of the 6 degrees of freedom directions, and two pieces of position information are obtained.
 したがって、主制御装置50は、第1計測系52で計測された位置情報に基づいて、それぞれの自由度について各2つの位置情報の平均値を、それぞれの方向の計測結果とする。これにより、平均化効果により、6自由度の全ての方向について、シャトル10及び微動ステージ85bの位置情報を、高精度に求めることが可能になる。 Therefore, based on the position information measured by the first measurement system 52, the main controller 50 uses the average value of the two pieces of position information for each degree of freedom as the measurement result in each direction. Thereby, it becomes possible to obtain | require the positional information on the shuttle 10 and the fine movement stage 85b with high precision about all the directions of 6 degrees of freedom by the averaging effect.
 次に、第2計測系54について説明する。第2計測系54は、シャトル10が微動ステージ85bに装着されているか否かを問わず、微動ステージ85bの6自由度方向の位置情報の計測が可能である。第2計測系54は、例えば微動ステージ85bの側壁の外面に設けられた反射面にビームを照射し、その反射光を受光して微動ステージ85bの6自由度方向の位置情報を計測する干渉計システムによって構成することができる。干渉計システムの各干渉計は、メトロロジーフレーム94に不図示の支持部材を介して吊り下げ支持しても良いし、あるいは定盤84に固定しても良い。第2計測系54は、露光室81内(真空空間内)に設けられるので、空気揺らぎに起因する計測精度の低下のおそれがない。また、第2計測系54は、本実施形態では、シャトル10が微動ステージ85bに装着されていないとき(ウエハの露光が行われないときを含む)に、主として、微動ステージ85bの位置、姿勢を所望の状態に維持するために用いられるので、第1計測系52に比べて計測精度は低くても良い。第2計測系54で計測される位置情報は、主制御装置50に供給される(図12参照)。なお、干渉計システムに限らず、エンコーダシステムにより、あるいはエンコーダシステムと干渉計システムとの組み合わせによって、第2計測系を構成しても良い。後者の場合、微動ステージの85bのXY平面内の3自由度方向の位置情報をエンコーダシステムで計測し、残りの3自由度方向の位置情報を干渉計システムで計測しても良い。 Next, the second measurement system 54 will be described. The second measurement system 54 can measure position information in the direction of 6 degrees of freedom of the fine movement stage 85b regardless of whether or not the shuttle 10 is mounted on the fine movement stage 85b. For example, the second measurement system 54 irradiates a reflection surface provided on the outer surface of the side wall of the fine movement stage 85b, receives the reflected light, and measures position information of the fine movement stage 85b in the 6-degree-of-freedom direction. Can be configured by the system. Each interferometer of the interferometer system may be suspended and supported on the metrology frame 94 via a support member (not shown), or may be fixed to the surface plate 84. Since the second measurement system 54 is provided in the exposure chamber 81 (in the vacuum space), there is no possibility of a decrease in measurement accuracy due to air fluctuation. In the present embodiment, the second measurement system 54 mainly determines the position and orientation of the fine movement stage 85b when the shuttle 10 is not mounted on the fine movement stage 85b (including when the wafer is not exposed). Since it is used to maintain a desired state, the measurement accuracy may be lower than that of the first measurement system 52. The position information measured by the second measurement system 54 is supplied to the main controller 50 (see FIG. 12). In addition, you may comprise a 2nd measurement system not only by an interferometer system but by an encoder system or the combination of an encoder system and an interferometer system. In the latter case, position information in the direction of three degrees of freedom in the XY plane of 85b of the fine movement stage may be measured by the encoder system, and position information in the remaining three degrees of freedom direction may be measured by the interferometer system.
 第1計測系52及び第2計測系54による計測情報は、主制御装置50に送られ、主制御装置50は、第1計測系52及び第2計測系54の少なくとも一方による計測情報に基づいて、粗微動ステージ85を制御する。また、主制御装置50は、第1計測系52による計測情報を、必要に応じ、露光システム82の電子ビーム照射装置92が有する複数のマルチビーム光学系20それぞれのステージフィードバック偏向器40の制御にも用いる。 Measurement information by the first measurement system 52 and the second measurement system 54 is sent to the main control device 50, and the main control device 50 is based on measurement information by at least one of the first measurement system 52 and the second measurement system 54. The coarse / fine movement stage 85 is controlled. Further, the main controller 50 uses the measurement information from the first measurement system 52 to control the stage feedback deflector 40 of each of the plurality of multi-beam optical systems 20 included in the electron beam irradiation device 92 of the exposure system 82 as necessary. Also used.
 図12には、電子ビーム露光装置100の制御系を主として構成する主制御装置50の入出力関係がブロック図にて示されている。主制御装置50は、マイクロコンピュータ等を含み、図12に示される各部を含む電子ビーム露光装置100の構成各部を統括的に制御する。 FIG. 12 is a block diagram showing the input / output relationship of the main controller 50 that mainly constitutes the control system of the electron beam exposure apparatus 100. Main controller 50 includes a microcomputer and the like, and comprehensively controls each component of electron beam exposure apparatus 100 including each component shown in FIG.
 本実施形態における、ウエハに対する処理の流れは、次の通りである。 In the present embodiment, the flow of processing for the wafer is as follows.
 まず、電子線レジストが塗布された露光前のウエハ(便宜上、ウエハWと表記する)が、計測室(不図示)内で、シャトル(便宜上、シャトル10と表記する)に載置され、シャトル10の静電チャックによって吸着される。そして、そのウエハWに対して、シャトル10に対する概略(ラフ)位置計測、フラットネス計測などの事前計測が、計測室内の計測システム(不図示)によって行われる。 First, the pre-exposure the electron beam resist is coated wafer (for convenience, referred to as wafer W 1) is, within the measurement chamber (not shown), the shuttle (for convenience, referred to as the shuttle 10 1) to be placed, It is adsorbed by the shuttle 10 1 of the electrostatic chuck. Then, with respect to the wafer W 1, schematic (rough) position measurement with respect to the shuttle 10 1, the pre-measurement, such as flatness measurement, performed by the measurement chamber of the measurement system (not shown).
 次いで、ウエハWを保持したシャトル10が、搬送システム(不図示)によって、チャンバ80に設けられたロードロック室を介して露光室81内に搬入され、露光室81内の搬送系(不図示)によって所定の第1待機位置(例えば不図示のシャトルストッカの複数段の収納棚のうちの1つ)に搬送される。 Then, the shuttle 10 1 holding the wafer W 1 is, by a conveying system (not shown), is transported into the exposure chamber 81 through the load lock chamber provided in the chamber 80, the transport system in the exposure chamber 81 (not It is conveyed to a predetermined first standby position (for example, one of a plurality of storage shelves of a shuttle stocker (not shown)).
 次いで、露光室81においては、シャトル交換動作、すなわちシャトルと一体でのウエハの交換動作が以下のようにして行われる。 Next, in the exposure chamber 81, a shuttle exchange operation, that is, a wafer exchange operation integrated with the shuttle is performed as follows.
 シャトル10の搬入時に露光が行われていたウエハ(便宜上、ウエハWと表記する)の露光が終了すると、搬送系により、露光済みのウエハWを保持するシャトル(便宜上、シャトル10と表記する)が、微動ステージ85bから取り外され、所定の第2待機位置に搬送される。第2待機位置は、前述したシャトルストッカの複数段の収納棚のうちの別の1つであるものとする。 Wafer exposed during loading of the shuttle 10 1 has been performed (for convenience, the wafer W is 0 hereinafter) when the exposure is completed, the transfer system, the shuttle to hold the exposed wafer W 0 (for convenience, the shuttle 10 0 Is removed from fine movement stage 85b and conveyed to a predetermined second standby position. The second standby position is assumed to be another one of the plurality of storage shelves of the shuttle stocker described above.
 なお、微動ステージ85bからシャトル10が取り外されるのに先立って、第2計測系54(図12参照)の計測情報に基づく、微動ステージ85bの6自由度方向の位置、姿勢のフィードバック制御が、主制御装置50によって開始され、次に第1計測系52(図12参照)の計測情報に基づく、シャトル10と一体の微動ステージ85bの位置制御が開始されるまでの間、微動ステージ85bの6自由度方向の位置、姿勢は所定の基準状態に維持される。 In advance to the shuttle 10 0 is removed from the fine movement stage 85b, based on the measurement information of the second measurement system 54 (see FIG. 12), in directions of six degrees of freedom position of the fine moving stage 85b, the feedback control of the posture, initiated by the main controller 50, then based on the first measurement information of the measurement system 52 (see FIG. 12), until the position control of the shuttle 10 1 integral with the fine movement stage 85b is started, the fine movement stage 85b The position and orientation in the 6-degree-of-freedom direction are maintained in a predetermined reference state.
 次いで、露光室81内の搬送系により、シャトル10が粗微動ステージ85の上方に向かって搬送され、微動ステージ85bに装着される。このとき、前述の如く、微動ステージ85bの6自由度方向の位置、姿勢は基準状態に維持されているので、シャトル10を、キネマティックカップリングを介して微動ステージ85bに装着するだけで、電子ビーム照射装置92(電子ビーム光学系)とシャトル10との位置関係が所望の位置関係となる。そして、事前に行われたウエハWのシャトル10に対する概略位置計測の結果を考慮して、微動ステージの85bの位置を微調整することで、微動ステージ85bに装着されたシャトル10上のウエハWに形成された100個のショット領域のそれぞれに対応してスクライブライン(ストリートライン)に形成された少なくとも各1つのアライメントマークに対して、電子ビーム光学系から電子ビームを確実に照射することが可能となる。したがって、少なくとも各1つのアライメントマークからの反射電子が反射電子検出装置42x1、42x2、42y1、42y2の少なくとも1つで検出され、ウエハWの全点アライメント計測が行われ、この全点アライメント計測の結果に基づいて、ウエハW上の複数のショット領域に対し、電子ビーム照射装置92を用いた露光が開始される。例えばコンプリメンタリ・リソグラフィの場合、ウエハW上に形成されたX軸方向を周期方向とするラインアンドスペースパターンに対するカットパターンを各マルチビーム光学系20から射出される多数のビーム(電子ビーム)を用いて形成する際に、ウエハW(微動ステージ85b)をY軸方向に走査しつつ、各ビームの照射タイミング(オン・オフ)を制御する。 Then, the transport system in the exposure chamber 81, the shuttle 10 1 is transported upward in the coarse and fine movement stage 85 is mounted on the fine movement stage 85b. At this time, as described above, directions of six degrees of freedom position of the fine moving stage 85b, since the posture is maintained at the reference state, the shuttle 10 1, only attached to the fine movement stage 85b via the kinematic coupling, electronic positional relationship of the beam irradiation device 92 (the electron beam optics) and the shuttle 10 1 has a desired positional relationship. Then, the schematic position measurement with respect to the shuttle 10 1 of the wafer W 1 made in advance results in consideration of the position of 85b of fine movement stage by the fine adjustment, on the fine moving stage 85b the shuttle 10 1 attached to the each of the 100 shot areas formed on the wafer W 1 corresponding to at least each one of the alignment marks formed in the scribe line (street line), reliably irradiated with the electron beam from the electron beam optics It becomes possible. Therefore, reflected electrons from at least one alignment mark are detected by at least one of the reflected electron detectors 42 x1 , 42 x2 , 42 y1 , and 42 y2 , and all-point alignment measurement of the wafer W 1 is performed. based on the results of the point alignment measurement, the plurality of shot areas on the wafer W 1, exposure to an electron beam irradiation device 92 is started. For example, in the case of complementary lithography, a plurality of beams (electron beams) emitted from each multi-beam optical system 20 are used to form a cut pattern for a line and space pattern formed on the wafer W and having a periodic direction in the X-axis direction. When forming, the irradiation timing (ON / OFF) of each beam is controlled while scanning the wafer W (fine movement stage 85b) in the Y-axis direction.
 上記の全点アライメント計測及び露光と並行して、第2待機位置にあるシャトル10の露光室81からの搬出及び前述の計測室への搬送が行われる。これについての詳細説明は省略する。 In parallel with all points alignment measurement and exposure described above, it is unloaded and conveyed to the above-mentioned measurement chamber from the shuttle 10 0 of the exposure chamber 81 in a second standby position is performed. Detailed description thereof will be omitted.
 露光室81内では、ウエハWに対する露光が行われている間に、事前計測が終了した次の露光対象のウエハを保持するシャトル10が露光室内に搬入され、前述の第1待機位置で待機する。そして、ウエハWに対する露光が終了すると、前述のシャトルと一体でのウエハの交換動作が行われ、以下、上述と同様の処理が繰り返される。 Within the exposure chamber 81, while the exposure of the wafer W 1 is being carried out, the shuttle 10 holding the pre-measurement was the next to be exposed ends wafer is carried into the exposure chamber, waiting in the first waiting position described above To do. When the exposure of the wafer W 1 is completed, it is performed exchanging operation of the wafer integral with the above-mentioned shuttle, following the same procedure as described above is repeated.
 ここで、実際のコンプリメンタリ・リソグラフィにおける、ビームの照射制御について説明する。 Here, beam irradiation control in actual complementary lithography will be described.
 コンプリメンタリ・リソグラフィにおいて、仮に各光学系カラム20の全てのビームが同時にオン状態となる場合、L/SパターンLSP上で複数のビーム(カットパターン用のビーム)MBが図13(A)に示されるような位置関係で照射されることになる。図13(A)から、いずれのビームMBも他のビームMBとの間のクーロン力(クーロン相互作用)の影響を受けず、ラインパターン上に正確に照射されていることがわかる。 In complementary lithography, if all the beams in each optical system column 20 are turned on simultaneously, a plurality of beams (cut pattern beams) MB on the L / S pattern LSP are shown in FIG. It is irradiated with such a positional relationship. From FIG. 13 (A), it can be seen that any beam MB is not affected by the Coulomb force (Coulomb interaction) with other beams MB and is accurately irradiated onto the line pattern.
 しかしながら、実際のコンプリメンタリ・リソグラフィでは、例えば、一部の所定本数のラインパターンを連続して、一本おきに、あるいは2本おきにY軸方向の同一位置でカットしたい場合がある。図13(B)には、一例として連続する所定本数のラインパターン上の同一のY位置にカットパターンMB’が形成された状態が示されている。このような場合、ウエハW(微動ステージ85b)がY軸方向に走査され、カッティングの対象となっている各ラインパターン上のカッティングポイントがビームの照射位置に位置したタイミングでビームが照射されるように、各ビームの照射タイミング(オン・オフ)が制御される。 However, in actual complementary lithography, there is a case where, for example, a predetermined number of line patterns are continuously cut every other line or every other line pattern at the same position in the Y-axis direction. FIG. 13B shows a state in which cut patterns MB ′ are formed at the same Y position on a predetermined number of continuous line patterns as an example. In such a case, the wafer W (fine movement stage 85b) is scanned in the Y-axis direction, and the beam is irradiated at the timing when the cutting point on each line pattern to be cut is positioned at the beam irradiation position. In addition, the irradiation timing (on / off) of each beam is controlled.
 ここで、一例として、図13(B)に示されるように、連続する所定本数のラインパターン上の同一のY位置にカットパターンMB’を形成する場合の一連の流れについて、説明する。 Here, as an example, as shown in FIG. 13B, a series of flows when the cut pattern MB ′ is formed at the same Y position on a predetermined number of continuous line patterns will be described.
 この場合、まず、ウエハW(微動ステージ85b)を図14(A)中に白抜き矢印で示される+Y方向に移動しつつウエハW上のL/SパターンLSP上のカッティングポイントが、ブランキングアパーチャアレイ29(ビーム成形アパーチャプレート28)の第1行目の開口28aの位置に到達したとき、その第1行目の開口28aを通過するビームMBがウエハ上に照射される。これにより、ウエハW上のL/SパターンLSPには、最も+X側に位置する第1列のラインパターンから4本置きのラインパターン(第(1+5n)列(n=0、1、2、……)のラインパターン)上にカットパターンが形成される。 In this case, first, the cutting point on the L / S pattern LSP on the wafer W is moved to the blanking aperture while moving the wafer W (fine movement stage 85b) in the + Y direction indicated by the white arrow in FIG. When the position of the opening 28a in the first row of the array 29 (beam shaping aperture plate 28) is reached, the beam MB passing through the opening 28a in the first row is irradiated onto the wafer. As a result, the L / S pattern LSP on the wafer W has four line patterns ((1 + 5n) columns (n = 0, 1, 2,...) From the first column line pattern located closest to the + X side. ...) is formed on the line pattern).
 そして、さらにウエハWが、白抜き矢印で示される+Y方向に所定距離移動すると、図14(B)に示されるように、第(1+5n)列(n=0、1、2、……)にカットパターンMB’が形成されたL/SパターンLSP上のカッティングポイントが、ブランキングアパーチャアレイ29(ビーム成形アパーチャプレート28)の第2行目の開口28aの位置に到達し、その第2行目の開口28aを通過するビームMBがウエハ上に照射される。これにより、ウエハW上のL/SパターンLSPには、第2列のラインパターンから4本置きのラインパターン(第(2+5n)列(n=0、1、2、……)のラインパターン)上にカットパターンが形成される。 Then, when the wafer W further moves a predetermined distance in the + Y direction indicated by the white arrow, as shown in FIG. 14B, in the (1 + 5n) th column (n = 0, 1, 2,...). The cutting point on the L / S pattern LSP on which the cut pattern MB ′ is formed reaches the position of the opening 28a in the second row of the blanking aperture array 29 (beam shaping aperture plate 28), and the second row The beam MB passing through the opening 28a is irradiated onto the wafer. As a result, every fourth line pattern (line pattern of (2 + 5n) th column (n = 0, 1, 2,...)) From the line pattern of the second column is included in the L / S pattern LSP on the wafer W. A cut pattern is formed on top.
 そして、さらにウエハWが、白抜き矢印で示される+Y方向に所定距離移動すると、図15(A)に示されるように、第(1+5n)列及び第(2+5n)列(n=0、1、2、……)にカットパターンMB’が形成されたL/SパターンLSP上のカッティングポイントが、ブランキングアパーチャアレイ29(ビーム成形アパーチャプレート28)の第3行目の開口28aの位置に到達し、その第3行目の開口28aを通過するビームMBがウエハ上に照射される。これにより、ウエハW上のL/SパターンLSPには、第3列のラインパターンから4本置きのラインパターン(第(3+5n)列(n=0、1、2、……)のラインパターン)上にカットパターンが形成される。 When the wafer W further moves a predetermined distance in the + Y direction indicated by the white arrow, as shown in FIG. 15A, the (1 + 5n) th column and the (2 + 5n) th column (n = 0, 1, 2), the cutting point on the L / S pattern LSP on which the cut pattern MB ′ is formed reaches the position of the opening 28a in the third row of the blanking aperture array 29 (beam shaping aperture plate 28). The beam MB passing through the opening 28a in the third row is irradiated onto the wafer. As a result, every fourth line pattern from the third line pattern (the (3 + 5n) th line (n = 0, 1, 2,...) Line pattern) is applied to the L / S pattern LSP on the wafer W. A cut pattern is formed on top.
 そして、さらにウエハWが、白抜き矢印で示される+Y方向に所定距離移動すると、図15(B)に示されるように、第(1+5n)列、第(2+5n)列及び第(3+5n)列(n=0、1、2、……)にカットパターンMB’が形成されたL/SパターンLSP上のカッティングポイントが、ブランキングアパーチャアレイ29(ビーム成形アパーチャプレート28)の第4行目の開口28aの位置に到達し、その第4行目の開口28aを通過するビームMBがウエハ上に照射される。これにより、ウエハW上のL/SパターンLSPには、第4列のラインパターンから4本置きのラインパターン(第(4+5n)列(n=0、1、2、……)のラインパターン)上にカットパターンが形成される。 When the wafer W further moves a predetermined distance in the + Y direction indicated by the white arrow, as shown in FIG. 15B, the (1 + 5n) th row, the (2 + 5n) th row, and the (3 + 5n) th row ( The cutting point on the L / S pattern LSP in which the cut pattern MB ′ is formed at n = 0, 1, 2,...) is the opening in the fourth row of the blanking aperture array 29 (beam shaping aperture plate 28). The beam MB reaching the position 28a and passing through the opening 28a in the fourth row is irradiated onto the wafer. As a result, every fourth line pattern from the fourth line pattern (the (4 + 5n) th line (n = 0, 1, 2,...) Line pattern) is included in the L / S pattern LSP on the wafer W. A cut pattern is formed on top.
 そして、さらにウエハWが、白抜き矢印で示される+Y方向に所定距離移動すると、図16に示されるように、第(1+5n)列、第(2+5n)列、第(3+5n)列及び第(4+5n)列(n=0、1、2、……)にカットパターンMB’が形成されたL/SパターンLSP上のカッティングポイントが、ブランキングアパーチャアレイ29(ビーム成形アパーチャプレート28)の第5行目の開口28aの位置に到達し、その第5行目の開口28aを通過するビームMBがウエハ上に照射される。これにより、ウエハW上のL/SパターンLSPには、第5列のラインパターンから4本置きのラインパターン(第(5+5n)列(n=0、1、2、……)のラインパターン)上にカットパターンが形成される。これにより、図13(B)に示されるように、連続する所定本数のラインパターン上の同一のY位置にカットパターンMB’が形成される。 Then, when the wafer W further moves a predetermined distance in the + Y direction indicated by the white arrow, as shown in FIG. 16, the (1 + 5n) th column, the (2 + 5n) th column, the (3 + 5n) th column and the (4 + 5n) th column. ) The cutting point on the L / S pattern LSP in which the cut pattern MB ′ is formed in the column (n = 0, 1, 2,...) Is the fifth row of the blanking aperture array 29 (beam shaping aperture plate 28). A beam MB that reaches the position of the eye opening 28a and passes through the opening 28a in the fifth row is irradiated onto the wafer. As a result, every fourth line pattern from the fifth column line pattern (the (5 + 5n) th column (n = 0, 1, 2,...) Line pattern) is included in the L / S pattern LSP on the wafer W. A cut pattern is formed on top. As a result, as shown in FIG. 13B, cut patterns MB ′ are formed at the same Y position on a predetermined number of continuous line patterns.
 ここで、図14(A)、図14(B)、図15(A)、図15(B)及び図16のいずれにおいても、ウエハWのL/SパターンLSPの4本置きのラインパターン上に、ピッチ5pでビームが照射されるので、いずれのビーム(カットパターン)MBも隣接するビームMBとの間のクーロン力(クーロン相互作用)の影響を受けて照射位置がずれることがない。したがって、X軸方向(コンプリメンタリ・リソグラフィにおけるラインパターンのカットの対象であるラインアンドスペースパターンLSPの周期方向)に関しては、照射位置ずれの補正が不要である。 Here, in any of FIG. 14A, FIG. 14B, FIG. 15A, FIG. 15B, and FIG. 16, on every four line patterns of the L / S pattern LSP of the wafer W. In addition, since the beams are irradiated at a pitch of 5p, any beam (cut pattern) MB is not affected by the Coulomb force (Coulomb interaction) between the adjacent beams MB and the irradiation position is not shifted. Therefore, it is not necessary to correct the irradiation position deviation in the X-axis direction (the periodic direction of the line-and-space pattern LSP that is the target of line pattern cutting in complementary lithography).
 これまでの説明から明らかなように、本実施形態では、ウエハWを保持するシャトル10と、該シャトル10が装着される粗微動ステージ85と、微動ステージ駆動系90及び粗動ステージ駆動系86とによって、ターゲットであるウエハWを保持して移動するステージが構成されている。 As is apparent from the above description, in this embodiment, the shuttle 10 that holds the wafer W, the coarse / fine movement stage 85 on which the shuttle 10 is mounted, the fine movement stage drive system 90, and the coarse movement stage drive system 86, Thus, a stage that holds and moves the target wafer W is configured.
 以上説明したように、本実施形態に係る電子ビーム露光装置100によると、実際のウエハの露光時には、主制御装置50は、電子ビーム照射装置92(電子ビーム光学系)に対する、ウエハを保持するシャトル10が装着された微動ステージ85bのY軸方向の走査(移動)を微動ステージ駆動系90及び粗動ステージ駆動系86を介して制御する。これと並行して、主制御装置50は、電子ビーム照射装置92のm個(例えば100個)の光学系カラム(マルチビーム光学系)20のそれぞれについて、ビーム成形アパーチャプレート28のn個(例えば5000個)の開口28aをそれぞれ通過したn本のビームの照射状態(オン状態とオフ状態)を開口28aごとにそれぞれ変化させるとともに、特に、オン状態とされるビームのY軸方向の照射位置を、マルチビーム光学系20それぞれからウエハに照射される複数のビームの照射タイミングを個別に制御することで調整する。これにより、例えばArF液浸露光装置を用いたダブルパターニングなどによりウエハ上の例えば100個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なラインアンドスペースパターンの所望のライン上の所望の位置にカットパターンを形成する(図13(B)参照)ことが可能になり、高精度かつ高スループットな露光が可能になる。本実施形態では、各マルチビーム光学系のブランキングアパーチャアレイ29の複数の開口28aをそれぞれ通過した複数のビーム(前述の第1の直線電流と第2の直線電流に相当)相互間に働くクーロン力によるオン状態のビーム(上記の第1の直線電流に相当)のウエハ面上での照射位置ずれ(上記Δxに相当)が許容値以下となるように、ブランキングアパーチャアレイ29上での複数の開口28aの配置が定められている。本実施形態では、ブランキングアパーチャアレイ29上での複数の開口28aの配置(配列)は、上記のビーム間相互作用により生じる位置ずれΔxが、定性的に、ブランキングアパーチャアレイ29(より正確には、ビーム成形アパーチャプレート28)の開口28a間の距離に反比例する関係(図6(B)のグラフで表される関係)を考慮して定められている。換言すれば、ブランキングアパーチャアレイ29上での複数の開口28aの配置(配列)は、ビーム間の距離を変化させて得られる、該ビーム間に働くクーロン力に起因するオン状態のビームの位置情報を考慮して定められている。 As described above, according to the electron beam exposure apparatus 100 according to the present embodiment, during actual wafer exposure, the main control apparatus 50 performs a shuttle for holding the wafer with respect to the electron beam irradiation apparatus 92 (electron beam optical system). Scanning (moving) in the Y-axis direction of fine movement stage 85 b to which 10 is mounted is controlled via fine movement stage drive system 90 and coarse movement stage drive system 86. In parallel with this, the main controller 50, for each of m (for example, 100) optical column (multi-beam optical system) 20 of the electron beam irradiation device 92, n (for example, beam shaping aperture plates 28). The irradiation state (on state and off state) of the n beams respectively passing through the (5000) openings 28a is changed for each opening 28a, and in particular, the irradiation position in the Y-axis direction of the beam to be turned on is changed. The adjustment is performed by individually controlling the irradiation timings of the plurality of beams irradiated to the wafer from each of the multi-beam optical systems 20. Thereby, for example, a desired line of a fine line-and-space pattern in which the X-axis direction is formed in advance in each of, for example, 100 shot regions on the wafer by double patterning using an ArF immersion exposure apparatus or the like. A cut pattern can be formed at a desired upper position (see FIG. 13B), and exposure with high accuracy and high throughput is possible. In the present embodiment, the Coulomb acting between a plurality of beams (corresponding to the first linear current and the second linear current described above) respectively passing through the plurality of openings 28a of the blanking aperture array 29 of each multi-beam optical system. A plurality of beams on the blanking aperture array 29 are set such that the irradiation position shift (corresponding to Δx above) on the wafer surface of the on-state beam (corresponding to the first linear current described above) due to force is less than an allowable value. The arrangement of the openings 28a is determined. In the present embodiment, the arrangement (arrangement) of the plurality of openings 28a on the blanking aperture array 29 is such that the positional deviation Δx caused by the above-mentioned beam-to-beam interaction is qualitatively determined more accurately. Is determined in consideration of the relationship inversely proportional to the distance between the openings 28a of the beam shaping aperture plate 28) (the relationship represented by the graph in FIG. 6B). In other words, the arrangement (arrangement) of the plurality of apertures 28a on the blanking aperture array 29 is obtained by changing the distance between the beams, and the position of the beam in the on state caused by the Coulomb force acting between the beams. It is determined in consideration of information.
 したがって、本実施形態に係る電子ビーム露光装置100を用いて、前述したコンプリメンタリ・リソグラフィを行い、ラインアンドスペースパターンの切断を行う場合に、電子ビーム照射装置92の各マルチビーム光学系で、ブランキングアパーチャアレイ29上での複数の開口28aのうち、いずれの開口28aを通過するビームがオン状態となる場合であっても、換言すればオン状態となるビームの組み合わせの如何を問わず、ウエハ上の例えば100個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なラインアンドスペースパターンのうちの所望のライン上の所望のX位置にカットパターンを形成することが可能になる。 Therefore, when performing the above-described complementary lithography using the electron beam exposure apparatus 100 according to the present embodiment and cutting the line and space pattern, blanking is performed in each multi-beam optical system of the electron beam irradiation apparatus 92. Even if the beam passing through any one of the plurality of apertures 28a on the aperture array 29 is turned on, in other words, regardless of the combination of the beams that are turned on, on the wafer For example, it is possible to form a cut pattern at a desired X position on a desired line in a fine line-and-space pattern having a periodic direction in the X-axis direction formed in each of 100 shot regions. Become.
 なお、上記実施形態で説明した、ビーム成形アパーチャプレート28上の開口28aの配置は、一例に過ぎない。例えば、図17(A)あるいは図17(B)などに示されるビームMBに対応する開口28aの配置を採用しても良い。図17(A)、図17(B)では、ビーム成形アパーチャプレート28上の開口28aを通過したビームMBが、L/Sパターン上に照射される状態が示されている。図17(A)のビームMBの配置に対応する開口28aの配置を採用する場合には、ビーム成形アパーチャプレート28上の開口の配置領域の面積を、上記実施形態(図5(A)及び図5(B)参照)に比べて小さくすることができる。図17(B)のビームMB、MBの配置は、ビームMBに対応するバックアップ用の開口を各開口28が有する場合の配置の一例である。この場合、図17(B)中で上下に隣接する2つのビームMB、MBは、実際には同時に照射されることはない。 The arrangement of the openings 28a on the beam shaping aperture plate 28 described in the above embodiment is only an example. For example, you may employ | adopt arrangement | positioning of the opening 28a corresponding to the beam MB shown by FIG. 17 (A) or FIG. 17 (B). 17A and 17B show a state where the beam MB that has passed through the opening 28a on the beam shaping aperture plate 28 is irradiated onto the L / S pattern. When the arrangement of the openings 28a corresponding to the arrangement of the beams MB in FIG. 17A is adopted, the area of the arrangement area of the openings on the beam shaping aperture plate 28 is set to the above embodiment (FIG. 5A and FIG. 5 (B)). The arrangement of the beams MB 1 and MB 2 in FIG. 17B is an example of arrangement when each opening 28 has a backup opening corresponding to the beam MB 2 . In this case, two beams MB 1 and MB 2 that are vertically adjacent in FIG. 17B are not actually irradiated simultaneously.
 図17(A)、図17(B)に示されるビームの配置に対応するビーム成形アパーチャプレート28上の隣接する開口28a(又はバックアップ用の開口)同士の間隔、は、開口28aのX軸方向の長さをpとして、少なくとも2.5p以上ある。したがって、ビームの照射位置が、他のビームとの間のクーロン作用により位置ずれすることがない。 The distance between adjacent openings 28a (or backup openings) on the beam shaping aperture plate 28 corresponding to the beam arrangement shown in FIGS. 17A and 17B is the X-axis direction of the openings 28a. The length of p is at least 2.5 p. Therefore, the irradiation position of the beam does not shift due to the Coulomb action with other beams.
 なお、上記実施形態では、ビームの設計上の照射位置からのX軸方向に関する位置ずれは、補正しない、あるいはステージフィードバック偏向器40を制御して低減するものとした。しかしながら、次の2つの変形例のようにして、その位置ずれを低減することとしても良い。 In the above embodiment, the positional deviation in the X-axis direction from the irradiation position on the beam design is not corrected, or is reduced by controlling the stage feedback deflector 40. However, the positional deviation may be reduced as in the following two modifications.
《変形例1》
 この変形例に係る露光装置及び露光方法では、ビーム成形アパーチャプレート28に代えて、図18(A)に示されるように、各開口28aのX軸方向の両側に、開口28aのX軸方向の長さと同じ距離pだけ離れて一対の補助開口28bが形成されたビーム成形アパーチャプレートが用いられる。補助開口28bは、当該補助開口28bを通過しウエハ(ターゲット)に照射されるビームのウエハ面上でのドーズ量(単位面積あたりの電子の注入量)が、ウエハ上に塗布された電子線レジストを感応させるレベルの例えば1/10~1/4程度になるような面積を有する。また、各補助開口28bを通過するビームのオン・オフは、開口28aを通過するビームと同様にして行われ、そのオン・オフのデューティ比を変更することで、そのビームが開口28aを通過するビームに与えるクーロン作用を変更でき、これによってビームのXシフト量を制御する。すなわち、クーロン効果を積極的に補正に使う。図18(B)には、ウエハ上の形成されたL/Sパターンに重ねて、ビーム成形アパーチャプレート28の一部の領域内に存在する全ての開口28a及び補助開口28bから同時にビームが照射された状態が示されている。この図18(B)から、各開口28aを介してウエハ上に照射されるビーム(便宜上メインビームと称する)MBのX軸方向の照射位置ずれが、一対の補助開口28bを介してウエハ上に照射される一対のビーム(便宜上サブビームと称する)SBそれぞれとメインビームMBとの間のクーロン作用により補正され、各メインビームMBがL/SパターンLSPのラインパターン上に正確に照射されていることがわかる。
<< Modification 1 >>
In the exposure apparatus and exposure method according to this modification, instead of the beam shaping aperture plate 28, as shown in FIG. 18A, the X axis direction of the opening 28a is arranged on both sides of the X axis direction of each opening 28a. A beam shaping aperture plate having a pair of auxiliary openings 28b separated by the same distance p as the length is used. The auxiliary opening 28b is an electron beam resist in which a dose amount (electron injection amount per unit area) of a beam that passes through the auxiliary opening 28b and is irradiated onto the wafer (target) is applied onto the wafer. For example, it has an area that is about 1/10 to 1/4 of the level to which the sensitivity is applied. The beam passing through each auxiliary opening 28b is turned on / off in the same manner as the beam passing through the opening 28a, and the beam passes through the opening 28a by changing the duty ratio of the on / off. The Coulomb action applied to the beam can be changed, thereby controlling the X shift amount of the beam. That is, the Coulomb effect is positively used for correction. In FIG. 18B, a beam is simultaneously irradiated from all the openings 28a and auxiliary openings 28b existing in a partial region of the beam shaping aperture plate 28 so as to overlap the L / S pattern formed on the wafer. The state is shown. From FIG. 18B, the irradiation position shift in the X-axis direction of a beam (referred to as a main beam for convenience) MB irradiated onto the wafer via each opening 28a is shifted onto the wafer via a pair of auxiliary openings 28b. Corrected by the Coulomb action between each of a pair of irradiated beams (referred to as sub-beams for convenience) SB and the main beam MB, each main beam MB is accurately irradiated onto the line pattern of the L / S pattern LSP. I understand.
《変形例2》
 この変形例2では、図19(A)に平面図が示されるようなビーム成形アパーチャプレート28Bが用いられる。このビーム成形アパーチャプレート28Bには、図19(A)の円D内を拡大して図19(B)に示されるように、X軸方向の長さがpでY軸方向の長さがp/2の矩形の開口128が、ピッチ2pでX軸方向に並んだ2つの開口列が、Y軸方向にp/2隔てて且つX軸方向にpだけずれて形成されている。
<< Modification 2 >>
In the second modification, a beam shaping aperture plate 28B as shown in a plan view in FIG. 19A is used. In this beam shaping aperture plate 28B, as shown in FIG. 19B by enlarging the inside of the circle D in FIG. 19A, the length in the X-axis direction is p and the length in the Y-axis direction is p. Two aperture rows in which / 2 rectangular openings 128 are arranged in the X-axis direction at a pitch of 2p are formed apart by p / 2 in the Y-axis direction and shifted by p in the X-axis direction.
 ここで、ビーム成形アパーチャプレート28Bを用いて、ウエハ上に形成されたL/Sパターン上に図20(A)に示されるようなカットパターンを形成するため、カットパターンに対応するビームを照射する場合を考える。この場合、図20(B)に示されるように、X軸方向に隣接する開口128を通過するビーム間にはクーロン作用によって、斥力が働く。このため、図20(B)中で上の列に示される2つのビーム(それぞれ対応する開口128を通過したビーム)、及び下の列に示される3つのビーム(それぞれ対応する開口128を通過したビーム)のうちの両端のビームの照射位置がX軸方向の外側にずれることが予想される。 Here, in order to form a cut pattern as shown in FIG. 20A on the L / S pattern formed on the wafer using the beam shaping aperture plate 28B, a beam corresponding to the cut pattern is irradiated. Think about the case. In this case, as shown in FIG. 20B, a repulsive force acts between the beams passing through the openings 128 adjacent in the X-axis direction by a Coulomb action. Therefore, in FIG. 20B, the two beams shown in the upper row (beams that have passed through the corresponding openings 128) and the three beams shown in the lower row (each passed through the corresponding openings 128). It is expected that the irradiation positions of the beams at both ends of the beam) are shifted to the outside in the X-axis direction.
 この場合のように、ビームの照射位置ずれが問題となる開口128の箇所が特定できる場合には、例えば図20(C)に示されるように、そのビームの照射位置ずれが予想される開口128の近傍の開口128を介して捨てカットビームと呼ばれるダミーのビームを照射する。これにより、図20(C)に示されるように、上の列に示される2つのビーム、及び下の列の両端のビームには、X軸方向の両側に位置する開口を通過したビームとの間に斥力が作用し、そのX軸方向に関する照射位置ずれの発生が防止される。このように、捨てカットビームとXシフトを補正したいビームとの間のクーロン力(クーロン相互作用)を利用して、そのビームのXシフト量を補正することが可能となる。この場合において、パターンムラが減るように捨てカットビームを設けることとしても良い。また、捨てカットビームを設定することで、パターンムラが解消される場合には、ウエハに対する照射熱の影響もより素直になり、補正がより容易になるという付随的効果もある。 In this case, when the position of the opening 128 where the beam irradiation position shift is a problem can be identified, for example, as shown in FIG. 20C, the opening 128 where the beam irradiation position shift is expected. A dummy beam called a cut-off beam is irradiated through the opening 128 in the vicinity of. As a result, as shown in FIG. 20C, the two beams shown in the upper row and the beams at both ends of the lower row are connected to the beams passing through the openings located on both sides in the X-axis direction. A repulsive force acts between them, and the occurrence of an irradiation position shift in the X-axis direction is prevented. As described above, it is possible to correct the X shift amount of the beam by using the Coulomb force (Coulomb interaction) between the discarded cut beam and the beam whose X shift is to be corrected. In this case, a discarded cut beam may be provided so as to reduce pattern unevenness. In addition, when the non-uniform pattern is eliminated by setting the abandoned cut beam, there is an accompanying effect that the influence of the heat of irradiation on the wafer becomes more straightforward and correction becomes easier.
 ここで、本変形例2の場合、捨てカットビームを用いた、オン状態とされるビームのX軸方向に関する照射位置ずれの調整能力を考慮して、オン状態とされるビームのX軸方向に関する照射位置ずれの許容値、及びビーム成形アパーチャプレート28Bの複数の開口128の配置が定められている。 Here, in the case of the second modification, in consideration of the adjustment capability of the irradiation position shift with respect to the X-axis direction of the beam that is turned on using the discarded cut beam, the X-axis direction of the beam that is turned on is considered. The allowable value of the irradiation position deviation and the arrangement of the plurality of openings 128 of the beam shaping aperture plate 28B are determined.
 なお、上記実施形態では、ウエハWをシャトル10を介して保持する微動ステージ85bが電子ビーム照射装置92(電子ビーム光学系)に対して走査方向(Y軸方向)に移動しつつ、電子ビームによるウエハWの走査露光が行われる場合について説明したが、電子ビーム照射装置92(電子ビーム光学系)を、所定方向、例えばY軸方向に移動可能に構成する場合には、ウエハが静止している状態で、電子ビーム照射装置(電子ビーム光学系)をY軸方向に移動させつつ、電子ビームによるウエハWの走査露光を行なっても良い。あるいは、ウエハWと電子ビーム照射装置とを互いに逆向きに移動させつつ、電子ビームによるウエハWの走査露光を行なっても良い。 In the above-described embodiment, the fine movement stage 85b that holds the wafer W via the shuttle 10 moves in the scanning direction (Y-axis direction) with respect to the electron beam irradiation device 92 (electron beam optical system), and uses the electron beam. Although the case where the scanning exposure of the wafer W is performed has been described, when the electron beam irradiation device 92 (electron beam optical system) is configured to be movable in a predetermined direction, for example, the Y-axis direction, the wafer is stationary. In this state, the wafer W may be scanned and exposed by the electron beam while moving the electron beam irradiation apparatus (electron beam optical system) in the Y-axis direction. Alternatively, the scanning exposure of the wafer W by the electron beam may be performed while moving the wafer W and the electron beam irradiation apparatus in opposite directions.
 また、上記実施形態では、電子ビーム照射装置92が備える電子ビーム光学系がマルチビーム光学系から成るm本の光学系カラム20によって構成される場合について説明したが、これに限らず、電子ビーム光学系は、シングルカラムタイプのマルチビーム光学系であっても良い。 In the above embodiment, the case where the electron beam optical system included in the electron beam irradiation device 92 is configured by the m optical system columns 20 including the multi-beam optical system is described. The system may be a single column type multi-beam optical system.
 なお、上記実施形態に係るマルチビーム光学系として、それぞれのビームをオン/オフする方法には、複数の開口を有するブランキングアパーチャアレイを介して複数の電子ビームを発生させ、描画パターンに応じて電子ビームを個別にオン/オフしてパターンを試料面に描画する方式を採用しても良い。また、ブランキングアパーチャアレイの代わりに、複数の電子ビームを射出する複数の電子放出部を有する面放出型電子ビーム源を用いる構成であっても良い。 As a multi-beam optical system according to the above-described embodiment, a method of turning on / off each beam is performed by generating a plurality of electron beams via a blanking aperture array having a plurality of apertures, and depending on a drawing pattern. A method of drawing the pattern on the sample surface by individually turning on / off the electron beam may be adopted. Further, instead of the blanking aperture array, a configuration using a surface emission type electron beam source having a plurality of electron emission portions for emitting a plurality of electron beams may be used.
 また、上記実施形態では、ウエハWがシャトル10に保持された状態で搬送されるタイプの電子ビーム露光装置について説明したが、これに限らず、ウエハWが単独で露光用のステージ(又はテーブル)上に搬送され、そのウエハを保持するステージ(又はテーブル)を走査方向に移動しつつ、電子ビーム照射装置(電子ビーム光学系)からウエハWにビームを照射して露光を行う、通常のタイプの電子ビーム露光装置であっても良い。かかる電子ビーム露光装置であっても、マルチビーム光学系から成る電子ビーム光学系を備えている限り、前述したマルチビーム光学系の像面上に形成されるビーム成形アパーチャプレートの多数の開口の像のディストーション(照射面上での各ビームの照射位置ずれ)の補正方法は、好適に適用することができる。 In the above-described embodiment, the electron beam exposure apparatus of the type in which the wafer W is transported while being held by the shuttle 10 has been described. However, the present invention is not limited to this, and the stage (or table) for exposing the wafer W alone. A normal type in which exposure is performed by irradiating the wafer W with a beam from an electron beam irradiation apparatus (electron beam optical system) while moving the stage (or table) holding the wafer in the scanning direction. An electron beam exposure apparatus may be used. Even in such an electron beam exposure apparatus, as long as an electron beam optical system composed of a multi-beam optical system is provided, images of many apertures of the beam shaping aperture plate formed on the image surface of the multi-beam optical system described above. The method for correcting the distortion (irradiation position shift of each beam on the irradiation surface) can be preferably applied.
 また、上記実施形態では、微動ステージ85bが、粗動ステージ85aに対して6自由度方向に移動可能な場合について説明したが、これに限らず、微動ステージはXY平面内でのみ移動可能であっても良い。この場合、微動ステージの位置情報を計測する第1計測系52及び第2計測系54も、XY平面内の3自由度方向に関する位置情報を計測可能であっても良い。 In the above embodiment, the case where the fine movement stage 85b is movable in the direction of 6 degrees of freedom with respect to the coarse movement stage 85a has been described. However, the present invention is not limited to this, and the fine movement stage can be moved only in the XY plane. May be. In this case, the first measurement system 52 and the second measurement system 54 that measure the position information of the fine movement stage may also be able to measure the position information related to the three degrees of freedom direction in the XY plane.
 なお、上記実施形態では、第1計測系52を、エンコーダシステムで構成する場合について説明したが、これに限らず、第1計測系52を、干渉計システムによって構成しても良い。 In the above embodiment, the case where the first measurement system 52 is configured by an encoder system has been described. However, the present invention is not limited thereto, and the first measurement system 52 may be configured by an interferometer system.
 なお、上記実施形態では、電子ビーム照射装置92がメトロロジーフレーム94と一体で、3つの吊り下げ支持機構95a、95b、95cを介して真空チャンバの天板(天井壁)から吊り下げ支持されるものとしたが、これに限らず、電子ビーム照射装置92は、床置きタイプのボディによって支持されても良い。また、上記実施形態では、真空チャンバ80の内部に、露光システム82の全体が収容された場合について説明したが、これに限らず、露光システム82のうち、電子ビーム照射装置92の鏡筒93の下端部を除く部分を、真空チャンバ80の外部に露出させても良い。 In the above-described embodiment, the electron beam irradiation device 92 is integrally supported with the metrology frame 94 and supported by being suspended from the top plate (ceiling wall) of the vacuum chamber via the three suspension support mechanisms 95a, 95b, and 95c. However, the present invention is not limited to this, and the electron beam irradiation device 92 may be supported by a floor-standing body. In the above embodiment, the case where the entire exposure system 82 is accommodated in the vacuum chamber 80 has been described. However, the present invention is not limited to this, and the column 93 of the electron beam irradiation apparatus 92 in the exposure system 82 is not limited thereto. A portion other than the lower end may be exposed to the outside of the vacuum chamber 80.
 なお、上記実施形態では、ターゲットが半導体素子製造用のウエハである場合について説明したが、本実施形態に係る電子ビーム露光装置100は、ガラス基板上に微細なパターンを形成してマスクを製造する際にも好適に適用できる。例えば、角型のガラスプレートやシリコンウエハにマスクパターンを描画する露光システムや、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光システム等であっても良い。また、上記実施形態では、荷電粒子ビームとして電子ビームを使用する電子ビーム露光装置について説明したが、露光用の荷電粒子ビームとしてイオンビーム等を用いる露光装置にも上記実施形態を適用することができる。 In addition, although the said embodiment demonstrated the case where a target was a wafer for semiconductor element manufacture, the electron beam exposure apparatus 100 which concerns on this embodiment forms a fine pattern on a glass substrate, and manufactures a mask. In particular, it can be suitably applied. For example, an exposure system for drawing a mask pattern on a rectangular glass plate or a silicon wafer, an exposure system for manufacturing an organic EL, a thin film magnetic head, an image sensor (CCD, etc.), a micromachine, a DNA chip, etc. Also good. In the above embodiment, an electron beam exposure apparatus using an electron beam as a charged particle beam has been described. However, the above embodiment can also be applied to an exposure apparatus using an ion beam or the like as a charged particle beam for exposure. .
 また、コンプリメンタリ・リソグラフィを構成する露光技術は、ArF光源を用いた液浸露光技術と、荷電粒子ビーム露光技術との組み合わせに限られず、例えば、ラインアンドスペースパターンをArF光源やKrF等のその他の光源を用いたドライ露光技術で形成しても良い。 In addition, the exposure technology that constitutes complementary lithography is not limited to the combination of the immersion exposure technology using an ArF light source and the charged particle beam exposure technology. For example, the line and space pattern may be changed to other types such as an ArF light source and KrF. You may form by the dry exposure technique using a light source.
 半導体素子などの電子デバイス(マイクロデバイス)は、図21に示されるように、デバイスの機能・性能設計を行うステップ、シリコン材料からウエハを製作するステップ、リソグラフィ技術等によってウエハ上に実際の回路等を形成するウエハ処理ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。ウエハ処理ステップは、リソグラフィステップ(ウエハ上にレジスト(感応材)を塗布する工程、前述した実施形態に係る電子ビーム露光装置及びその露光方法によりウエハに対する露光(設計されたパターンデータに従ったパターンの描画)を行う工程、露光されたウエハを現像する工程を含む)、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップなどを含む。ウエハ処理ステップは、リソグラフィステップに先立って、前工程の処理(酸化ステップ、CVDステップ、電極形成ステップ、イオン打ち込みステップなどをさらに含んでいても良い。この場合、リソグラフィステップで、上記実施形態の電子ビーム露光装置100を用いて前述の露光方法を実行することで、ウエハ上にデバイスパターンが形成されるので、高集積度のマイクロデバイスを生産性良く(歩留まり良く)製造することができる。特に、リソグラフィステップ(露光を行う工程)で、前述したコンプリメンタリ・リソグラフィを行い、その際に上記実施形態の電子ビーム露光装置100を用いて前述の露光方法を実行することで、より高集積度の高いマイクロデバイスを製造することが可能になる。 As shown in FIG. 21, an electronic device (microdevice) such as a semiconductor element includes a step of designing the function and performance of the device, a step of manufacturing a wafer from a silicon material, an actual circuit on the wafer by lithography technology, etc. The wafer is manufactured through a wafer processing step, a device assembly step (including a dicing process, a bonding process, and a packaging process), an inspection step, and the like. The wafer processing step includes a lithography step (a step of applying a resist (sensitive material) on the wafer, exposure to the wafer by the electron beam exposure apparatus and the exposure method thereof according to the above-described embodiment) A step of performing (drawing), a step of developing the exposed wafer), an etching step for removing the exposed member other than the portion where the resist remains by etching, and a resist for removing the unnecessary resist after the etching. Including a removal step. The wafer processing step may further include a pre-process (an oxidation step, a CVD step, an electrode formation step, an ion implantation step, etc.) prior to the lithography step. By executing the above-described exposure method using the beam exposure apparatus 100, a device pattern is formed on the wafer, so that highly integrated microdevices can be manufactured with high productivity (yield). In the lithography step (exposure process), the above-described complementary lithography is performed, and at that time, the above-described exposure method is executed using the electron beam exposure apparatus 100 of the above-described embodiment. The device can be manufactured.
 なお、上記実施形態で引用した露光装置などに関する国際公開、及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。 It should be noted that the disclosure of the international publication relating to the exposure apparatus and the like cited in the above embodiment and the disclosure of the US patent specification are incorporated herein by reference.
 以上説明したように、本発明に係る露光装置及び露光方法、リソグラフィ方法、並びにデバイス製造方法は、マイクロデバイスの製造に適している。 As described above, the exposure apparatus, the exposure method, the lithography method, and the device manufacturing method according to the present invention are suitable for manufacturing a micro device.
 10…シャトル、20…マルチビーム光学系、23…光学系、28…ビーム成形アパーチャプレート、28a…開口、29…ブランキングアパーチャアレイ、38A、38B、38C、38D…電磁レンズ、50…主制御装置、85…粗微動ステージ、86…粗動ステージ駆動系、90…微動ステージ駆動系、92…電子ビーム照射装置、100…電子ビーム露光装置、W…ウエハ。 DESCRIPTION OF SYMBOLS 10 ... Shuttle, 20 ... Multi-beam optical system, 23 ... Optical system, 28 ... Beam shaping aperture plate, 28a ... Aperture, 29 ... Blanking aperture array, 38A, 38B, 38C, 38D ... Electromagnetic lens, 50 ... Main controller 85 ... Coarse / fine motion stage 86: Coarse motion stage drive system 90 ... Fine motion stage drive system 92 ... Electron beam irradiation device 100 ... Electron beam exposure device W ... Wafer

Claims (9)

  1.  荷電粒子ビームを照射してターゲットを露光する露光装置であって、
     前記ターゲットの面に平行な所定面内の第1方向及び前記第1方向に前記所定面内で交差する第2方向に沿って配列された複数の開口を有するビーム成形部材と、前記複数の開口をそれぞれ通過した前記荷電粒子ビームを前記ターゲットに照射する光学系とを有し、前記複数の開口は、前記ターゲットに照射される複数の前記荷電粒子ビームの位置ずれが許容値以下となるように配列される照射装置を備え、
     前記複数の開口の配列は、前記荷電粒子ビーム間の距離を変化させて得られる、前記荷電粒子ビーム間に働くクーロン力に起因する前記荷電粒子ビームの位置情報を考慮して定められている露光装置。
    An exposure apparatus that exposes a target by irradiating a charged particle beam,
    A beam shaping member having a plurality of openings arranged along a first direction in a predetermined plane parallel to the surface of the target and a second direction intersecting the first direction in the predetermined plane; and the plurality of openings And an optical system that irradiates the target with the charged particle beam that has passed through each of the plurality of apertures, and the plurality of apertures are configured such that positional deviations of the plurality of charged particle beams that irradiate the target are less than an allowable value. An irradiation device arranged,
    The arrangement of the plurality of openings is determined in consideration of positional information of the charged particle beam caused by Coulomb force acting between the charged particle beams obtained by changing a distance between the charged particle beams. apparatus.
  2.  隣接する前記開口同士の距離は、前記ターゲット上に形成されたラインアンドスペースパターンのライン部の2ピッチ以上の距離に対応する距離となるように定められており、
     前記複数の開口をそれぞれ通過した前記荷電粒子ビームは、前記ラインアンドスペースパターンのライン部を切断する請求項1に記載の露光装置。
    The distance between the adjacent openings is determined to be a distance corresponding to a distance of 2 pitches or more of the line portion of the line and space pattern formed on the target,
    The exposure apparatus according to claim 1, wherein the charged particle beam that has passed through each of the plurality of openings cuts a line portion of the line-and-space pattern.
  3.  前記ターゲットを保持して移動するステージと、
     前記ステージと前記光学系との相対的な移動を制御するとともに、前記ターゲットに照射される前記荷電粒子ビームの位置を調整する制御装置と、を備え、
     前記複数の開口の配列は、前記ライン部の切断のために前記ターゲットに照射される前記荷電粒子ビームの位置を調整する前記制御装置の調整能力を考慮して定められている請求項2に記載の露光装置。
    A stage holding and moving the target;
    A control device that controls the relative movement between the stage and the optical system, and adjusts the position of the charged particle beam applied to the target;
    The arrangement of the plurality of openings is determined in consideration of an adjustment capability of the control device that adjusts a position of the charged particle beam irradiated to the target for cutting the line portion. Exposure equipment.
  4.  前記光学系は、前記複数の開口をそれぞれ通過した前記荷電粒子ビームについて、前記荷電粒子ビームが前記ターゲットに照射されるオン状態と前記荷電粒子ビームが前記ターゲットに照射されないオフ状態とを個別に設定可能であり、
     前記ビーム成形部材は、前記ライン部の切断に用いられる前記荷電粒子ビームがそれぞれ通過する複数の前記開口のそれぞれに近接して配置され、前記ライン部の切断には用いられない前記荷電粒子ビームがそれぞれ通過する複数の補助開口をさらに有し、
     前記制御装置は、前記補助開口を通過する前記荷電粒子ビームの前記オン状態と前記オフ状態とを制御することで、前記ライン部の切断に用いられる前記オン状態となる前記荷電粒子ビームの照射位置を調整する請求項3に記載の露光装置。
    The optical system individually sets an ON state in which the charged particle beam is irradiated on the target and an OFF state in which the charged particle beam is not irradiated on the target for each of the charged particle beams that have passed through the plurality of openings. Is possible,
    The beam shaping member is disposed in proximity to each of the plurality of openings through which the charged particle beam used for cutting the line portion passes, and the charged particle beam not used for cutting the line portion includes A plurality of auxiliary openings each passing therethrough,
    The control device controls the ON state and the OFF state of the charged particle beam that passes through the auxiliary opening, thereby irradiating the charged particle beam in the ON state used for cutting the line portion. The exposure apparatus according to claim 3, wherein the exposure is adjusted.
  5.  前記第1方向は、前記ラインアンドスペースパターンの周期方向であって、
     前記ビーム成形部材には、複数の前記開口のそれぞれに対して前記第1方向の一側と他側に補助開口が配置され、
     前記制御装置は、前記開口の前記第1方向の一側と他側に位置する補助開口をそれぞれ通過する一対の前記荷電粒子ビームを択一的にオン状態にすることで、前記ライン部の切断に用いられる前記オン状態となる前記荷電粒子ビームの照射位置を調整する請求項4に記載の露光装置。
    The first direction is a periodic direction of the line and space pattern,
    In the beam shaping member, auxiliary openings are disposed on one side and the other side of the first direction with respect to each of the plurality of openings.
    The control device selectively cuts the line portion by turning on a pair of the charged particle beams that pass through auxiliary openings located on one side and the other side of the opening in the first direction. The exposure apparatus according to claim 4, which adjusts an irradiation position of the charged particle beam that is in the on state and is used in an exposure.
  6.  前記制御装置は、前記所定面内で前記第1方向と交差する方向に前記ステージを駆動しつつ、前記荷電粒子ビームの照射タイミングを制御することで、前記ライン部の切断に用いられる前記荷電粒子ビームの前記ライン部上での照射位置を調整する請求項1~5のいずれか一項に記載の露光装置。 The control device controls the charged particle beam irradiation timing while driving the stage in a direction intersecting the first direction within the predetermined plane, whereby the charged particles used for cutting the line portion The exposure apparatus according to any one of claims 1 to 5, wherein an irradiation position of the beam on the line portion is adjusted.
  7.  ターゲットを露光装置で露光して前記ターゲット上にラインアンドスペースパターンを形成することと、
     請求項1~6のいずれか一項に記載の露光装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むリソグラフィ方法。
    Exposing a target with an exposure apparatus to form a line and space pattern on the target;
    7. A lithography method comprising: using the exposure apparatus according to claim 1 to cut a line pattern constituting the line and space pattern.
  8.  前記ラインパターンの切断を行うことでは、
     切断対象である前記ラインパターンを切断するための所定数の前記荷電粒子ビームとともに、該所定数の前記荷電粒子ビームが通過する開口に近接して前記ビーム成形部材に設けられた開口を通過するダミーの前記荷電粒子ビームがオン状態とされて、所定数の前記荷電粒子ビームの少なくとも一部の前記ターゲット上での照射位置が調整される請求項7に記載のリソグラフィ方法。
    By cutting the line pattern,
    A dummy that passes through an opening provided in the beam shaping member close to an opening through which the predetermined number of charged particle beams pass, together with a predetermined number of the charged particle beams for cutting the line pattern to be cut. The lithography method according to claim 7, wherein the charged particle beam is turned on to adjust an irradiation position on at least a part of the predetermined number of the charged particle beams on the target.
  9.  リソグラフィ工程を含むデバイス製造方法であって、
     前記リソグラフィ工程では、請求項7又は8に記載のリソグラフィ方法によりターゲットに対する露光が行われるデバイス製造方法。
    A device manufacturing method including a lithography process,
    9. A device manufacturing method in which exposure of a target is performed by the lithography method according to claim 7 or 8 in the lithography process.
PCT/JP2017/010823 2017-03-17 2017-03-17 Exposure device, lithographic method, and device manufacturing method WO2018167936A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/010823 WO2018167936A1 (en) 2017-03-17 2017-03-17 Exposure device, lithographic method, and device manufacturing method
TW107107540A TW201837983A (en) 2017-03-17 2018-03-07 Exposure apparatus and lithography method, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/010823 WO2018167936A1 (en) 2017-03-17 2017-03-17 Exposure device, lithographic method, and device manufacturing method

Publications (1)

Publication Number Publication Date
WO2018167936A1 true WO2018167936A1 (en) 2018-09-20

Family

ID=63523484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010823 WO2018167936A1 (en) 2017-03-17 2017-03-17 Exposure device, lithographic method, and device manufacturing method

Country Status (2)

Country Link
TW (1) TW201837983A (en)
WO (1) WO2018167936A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142316A (en) * 1993-06-25 1995-06-02 Fujitsu Ltd Electron-beam exposure apparatus
JP2002158156A (en) * 2000-11-17 2002-05-31 Advantest Corp Electron beam exposure system, electron beam exposing method, and method for fabricating semiconductor element
JP2006080303A (en) * 2004-09-09 2006-03-23 Hitachi High-Technologies Corp Electron beam drawing apparatus
JP2012178437A (en) * 2011-02-25 2012-09-13 Canon Inc Drawing apparatus, drawing method and article manufacturing method
JP2013016744A (en) * 2011-07-06 2013-01-24 Canon Inc Drawing apparatus and method for manufacturing devices
US8999627B1 (en) * 2013-03-05 2015-04-07 Multibeam Corporation Matched multiple charged particle beam systems for lithographic patterning, inspection, and accelerated yield ramp
JP2016207926A (en) * 2015-04-27 2016-12-08 株式会社アドバンテスト Exposure apparatus and exposure method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142316A (en) * 1993-06-25 1995-06-02 Fujitsu Ltd Electron-beam exposure apparatus
JP2002158156A (en) * 2000-11-17 2002-05-31 Advantest Corp Electron beam exposure system, electron beam exposing method, and method for fabricating semiconductor element
JP2006080303A (en) * 2004-09-09 2006-03-23 Hitachi High-Technologies Corp Electron beam drawing apparatus
JP2012178437A (en) * 2011-02-25 2012-09-13 Canon Inc Drawing apparatus, drawing method and article manufacturing method
JP2013016744A (en) * 2011-07-06 2013-01-24 Canon Inc Drawing apparatus and method for manufacturing devices
US8999627B1 (en) * 2013-03-05 2015-04-07 Multibeam Corporation Matched multiple charged particle beam systems for lithographic patterning, inspection, and accelerated yield ramp
JP2016207926A (en) * 2015-04-27 2016-12-08 株式会社アドバンテスト Exposure apparatus and exposure method

Also Published As

Publication number Publication date
TW201837983A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
KR20150070341A (en) Actuation mechanism, optical apparatus, lithography apparatus and method of manufacturing devices
JP2007103657A (en) Optical element retaining device, exposure device and device manufacturing method
US20110174985A1 (en) Lithography system with lens rotation
US20080017807A1 (en) Deflector array, exposure apparatus, and device manufacturing method
US6930756B2 (en) Electron beam exposure apparatus and semiconductor device manufacturing method
JP4298547B2 (en) Positioning apparatus and exposure apparatus using the same
WO2016167339A1 (en) Exposure system
US20060061751A1 (en) Stage assembly including a stage having increased vertical stroke
US11276558B2 (en) Exposure apparatus and exposure method, lithography method, and device manufacturing method
JP6610890B2 (en) Charged particle beam exposure apparatus and device manufacturing method
WO2018167936A1 (en) Exposure device, lithographic method, and device manufacturing method
US20180356737A1 (en) Exposure apparatus and control method of exposure apparatus, and device manufacturing method
WO2017188343A1 (en) Holding device, exposure method, exposure system, and transfer system
US9298077B2 (en) Reaction assembly for a stage assembly
WO2018074306A1 (en) Exposure system and lithography system
JP2017130507A (en) Reference member and calibration method
US6906334B2 (en) Curved I-core
JP4559137B2 (en) Vacuum equipment manufacturing apparatus and manufacturing method
JP2000138279A (en) Stage device and aligner
TWI712864B (en) Charged particle beam irradiation apparatus
JP2016207755A (en) Exposure system and exchange method
JP2005277241A (en) Stage apparatus, exposure apparatus, and manufacturing method of device
JP2005260126A (en) Mask holder, stage device, aligner, and method for manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP