WO2018166341A1 - 一种发送波束确定方法、发送端和接收端 - Google Patents

一种发送波束确定方法、发送端和接收端 Download PDF

Info

Publication number
WO2018166341A1
WO2018166341A1 PCT/CN2018/077114 CN2018077114W WO2018166341A1 WO 2018166341 A1 WO2018166341 A1 WO 2018166341A1 CN 2018077114 W CN2018077114 W CN 2018077114W WO 2018166341 A1 WO2018166341 A1 WO 2018166341A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit
beams
transmitting
group
groups
Prior art date
Application number
PCT/CN2018/077114
Other languages
English (en)
French (fr)
Inventor
高秋彬
陈润华
塔玛拉卡·拉盖施
王蒙军
苏昕
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to US16/489,734 priority Critical patent/US11025328B2/en
Priority to JP2019548654A priority patent/JP6970752B2/ja
Priority to EP18767927.9A priority patent/EP3598662B1/en
Priority to KR1020197028707A priority patent/KR20190120341A/ko
Publication of WO2018166341A1 publication Critical patent/WO2018166341A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a transmit beam determining method, a transmitting end, and a receiving end.
  • the receiving end may have one or more transceiver units.
  • the UE may have one or more transceiver units.
  • the transmitting end transmits signals through multiple transmitting beams, and the receiving end supports receiving signals transmitted by some or all of the plurality of transmitting beams simultaneously.
  • the base station sends a signal to the UE through three transmit beams, and the UE may simultaneously receive signals transmitted by one, two, or three of the three transmit beams.
  • the transmitting end can be received by the receiving end at the same time because it is not sure which transmitting beams transmit signals at the same time, so that there may be some cases where the signal transmitted by the transmitting beam cannot be received by the receiving end, which wastes the transmission resources. . It can be seen that how to determine the transmitting beam that the transmitting end can simultaneously send signals to the receiving end is a technical problem that is urgently needed to be solved.
  • An object of the present disclosure is to provide a method for determining a transmit beam, a transmitting end, and a receiving end, to solve the problem of how to determine a transmitting beam that a transmitting end can simultaneously transmit a signal to a receiving end.
  • an embodiment of the present disclosure provides a method for determining a transmit beam, including:
  • the transmitting end sends a beam training signal of N transmitting beams to the receiving end, where the N is a positive integer;
  • the transmitting end receives the identification information of the Q transmitting beams in the N transmitting beams and the packet information of each of the Q transmitting beams, where the Q sending The beam includes G transmit beam groups, and the G transmit beam groups are divided by the receiving end according to the measurement result, and the measurement result is that the receiving end receives and measures the beam training signal sent by the sending end.
  • the measurement result, the Q and the G are both positive integers;
  • the transmitting end determines that a transmitting beam belonging to a different transmitting beam group among the Q transmitting beams can be transmitted, and simultaneously sends a signal to the receiving end.
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receive end.
  • the measurement result includes:
  • the receiving end uses the G transceiver units to perform measurement and measurement on the beam training signals of each of the N transmission beams, and the obtained measurement results of the G transceiver units are obtained.
  • the measurement result of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the transceiver unit group;
  • the Q transmit beams include:
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement results of the G transceiver groups;
  • the G transmit beam groups include:
  • the receiving end divides the G transmit beam groups of the Q transmit beams according to the measurement results of the G transceiver groups.
  • the Q transmit beams include:
  • the receiving end selects Q measurement results of the first Q bits of the received quality in the measurement results of the G transceiver groups, and corresponds to the Q measurement results selected by the N transmit beams.
  • the G transmit beam groups include:
  • the receiving end groups the G transmitting beam groups of the Q transmitting beams according to the Q transmit beams in the corresponding transceiver unit group of the Q measurement results.
  • the Q transmit beams include:
  • the receiving end measurement results for each transceiver unit group are selected in the reception quality measurement result of the receiving cell group Q g Q g measurement results in the top position, the Q measurements obtained, and in the The Q transmit beams corresponding to the Q measurement results selected by the N transmit beams, wherein the Q g are the same or different positive integers for different transceiver units, and the G transmit beam groups correspond to The sum of Q g is the Q;
  • the G transmit beam groups include:
  • each transceiver group measurement results Q g Q g corresponding beam transmitting end, dividing transmission beam corresponding to the group transceiver unit group, and transmission beams obtained G groups.
  • each of the receiving and receiving unit groups includes at least one transceiver unit, and each transceiver unit includes at least one receiving beam, and the measurement results of the G transceiver unit groups include:
  • the receiving end For the beam training signals of the transmit beams of the N transmit beams, the receiving end performs the receive measurement by using the receive beams of the G transceiver groups to obtain the measurement results of the G transceiver groups. And a set of measurement results of the G transceiver groups in the set of measurement results of the G transceiver groups, wherein the measurement result set of each transceiver unit group includes each receive beam using the transceiver unit group And performing measurement results of the received measurement on the beam training signals of the N transmit beams; the measurement result of each transceiver unit group includes N measurement results, where the N measurement results are in the measurement result set of the transceiver group
  • the transmission beam corresponds to the measurement result with the highest reception quality.
  • the sending end receives the identifier information of the Q transmit beams in the N transmit beams sent by the receiving end, and the packet information of each of the Q transmit beams, including:
  • the transmitting end receives identification information of Q transmitting beams in the N transmitting beams sent by the receiving end, and grouping information and sub-packet information of each of the Q transmitting beams, where each A transmit beam corresponding to the same receive beam in the transmit beam group is divided into a transmit beam subgroup;
  • the method further includes:
  • the transmitting end determines that a transmit beam that belongs to the same transmit beam subgroup among the Q transmit beams can be transmitted, and simultaneously sends a signal to the receive end.
  • the receive beam corresponding to each transmit beam includes:
  • the measurement result of the beam training signal of the transmission beam of all the candidate receiving beams of the receiving end receives the receiving beam corresponding to the measurement result with the highest quality.
  • the sending end receives the identifier information of the Q transmit beams in the N transmit beams sent by the receiving end, and the packet information and the sub-packet information of each of the Q transmit beams. include:
  • the transmitting end receives the group information of the G transmit beam groups sent by the receiving end, where the packet information of each transmit beam group includes the transmit beam subgroup information of each sub transmit beam subgroup in the transmit beam group, and each The transmit beam subgroup information includes identification information of each transmit beam in the transmit beam subgroup; or
  • the transmitting end receives the beam splitting information of the Q transmitting beams that are sent by the receiving end, where the beam splitting information of each transmitting beam includes the identifier information of the sending beam, and the grouping of the sending beam group to which the transmitting beam belongs And a subgroup identifier of the transmit beam subgroup to which the transmit beam belongs.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the embodiment of the present disclosure further provides a method for determining a transmit beam, including:
  • the receiving end performs receiving measurement on the beam training signals of the N transmitting beams sent by the transmitting end, and selects Q transmitting beams from the N transmitting beams according to the measurement result, and divides the Q transmitting beams into G sending a beam group, wherein the N, the Q, and the G are both positive integers;
  • the receiving end performs receiving measurement on the beam training signals of the N transmitting beams sent by the sending end, including:
  • the receiving end uses the G transceiver unit groups to receive and measure the beam training signals of the N transmitting beams sent by the transmitting end;
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receiving end.
  • the receiving end uses the G transceiver group to receive and measure the beam training signals of the N transmit beams sent by the sending end, and selects Q transmit beams from the N transmit beams according to the measurement result, and Dividing the Q transmit beams into G transmit beam groups, including:
  • the receiving end uses the G transceiver groups to perform the receiving measurement, and obtain the measurement results of the G transceiver groups.
  • the measurement result of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the transceiver unit group;
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement results of the G transceiver groups, and divides the Q transmit beams into G transmit beam groups.
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement result of the G transceiver groups, and divides the Q transmit beams into G transmit beam groups, including :
  • the receiving end selects Q measurement results of the first Q bits of the received quality in the measurement results of the G transceiver groups, and selects the Q corresponding to the Q measurement results among the N transmit beams. Transmit beams, and divide the Q transmit beams into G transmit beam groups according to the corresponding transmit and receive unit groups of the Q transmit beams in the Q measurement results.
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement result of the G transceiver groups, and divides the Q transmit beams into G transmit beam groups, including :
  • Measurement results for each transceiver unit group, the reception quality of the receiving end selection are top bit Q g Q g measurement results in measurement result of the receiving cell group, Q to obtain measurement results, wherein, for The Q g of the different transceiver unit groups are the same or different positive integers, and the sum of Q g corresponding to the G transmit beam groups is the Q;
  • the receiving terminal selects the Q measurement results corresponding to the transmission beams Q, Q g and the transmission beams to each transceiver unit group Q g measurement results corresponding to the N transmission beams, and the division The transmit beam group corresponding to the transceiver unit group.
  • each transceiver unit group includes at least one transceiver unit, and each transceiver unit includes at least one receive beam, and the beam training signal for each of the N transmit beams sent by the transmit end,
  • the receiving end uses the G transceiver units to perform the receiving measurement, and obtains the measurement results of the G transceiver units, including:
  • the receiving end uses the receiving beams of the G transceiver group to perform receiving measurement, and obtains the G transceiver groups.
  • a measurement result set wherein the measurement result set of each transceiver unit group includes a measurement result of receiving measurement of a beam training signal of the N transmission beams by using each receiving beam of the transceiver unit group;
  • the receiving end selects measurement results of the G transceiver units in the measurement result set of the G transceiver groups, where the measurement result of each transceiver unit group includes N measurement results, and the N The measurement result is the measurement result with the highest reception quality corresponding to each transmission beam in the measurement result set of the transceiver unit group.
  • the method further includes:
  • the receiving end selects one receiving beam for each of the Q transmitting beams in the candidate receiving beam of the receiving end;
  • the receiving end divides the transmit beam corresponding to the same receive beam in the transmit beam group into one transmit beam subgroup;
  • the receiving end sends, to the sending end, the identifier information of the Q transmit beams in the N transmit beams, and the packet information of each of the Q transmit beams, including:
  • the receiving end sends, to the sending end, identification information of Q transmitting beams in the N transmitting beams, and packet information and sub-packet information of each of the Q transmitting beams.
  • the receiving end selects one receiving beam for the Q transmitting beams in the candidate receiving beam of the receiving end, including:
  • the receiving end acquires the measurement results of the beam training signals of all the received beams of the receiving end of the transmitting beam, and obtains the receiving beam corresponding to the measurement result with the highest receiving quality in the obtained measurement result.
  • the receive beam of the transmit beam is
  • the receiving end sends the identifier information of the Q transmit beams in the N transmit beams to the sending end, and the packet information and the sub-packet information of each of the Q transmit beams, including:
  • the receiving end sends the group information of the G transmit beam groups to the sending end, where the packet information of each transmit beam group includes the transmit beam subgroup information of each sub transmit beam subgroup in the transmit beam group, and each The transmit beam subgroup information includes identification information of each transmit beam in the transmit beam subgroup; or
  • the receiving end sends the beam splitting information of the Q transmit beams to the sending end, where the beam splitting information of each transmitting beam includes the identifier information of the sending beam, and the group identifier of the sending beam group to which the transmitting beam belongs. And a subgroup identifier of the transmit beam subgroup to which the transmit beam belongs.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the embodiment of the present disclosure further provides a sending end, including:
  • a sending module configured to send, to the receiving end, a beam training signal of N transmitting beams, where N is a positive integer;
  • a receiving module configured to receive identification information of Q transmit beams in the N transmit beams sent by the receiving end, and packet information of each of the Q transmit beams, where the Q The transmitting beam includes G transmitting beam groups, and the G transmitting beam groups are divided by the receiving end according to the measurement result, and the measurement result is that the receiving end receives and measures the beam training signal sent by the transmitting end.
  • the obtained measurement result, the Q and the G are both positive integers;
  • a first determining module configured to determine, by using a transmit beam that belongs to a different transmit beam group among the Q transmit beams, and send a signal to the receive end.
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receive end.
  • the measurement result includes:
  • the receiving end uses the G transceiver units to perform measurement and measurement on the beam training signals of each of the N transmission beams, and the obtained measurement results of the G transceiver units are obtained.
  • the measurement result of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the transceiver unit group;
  • the Q transmit beams include:
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement results of the G transceiver groups;
  • the G transmit beam groups include:
  • the receiving end divides the G transmit beam groups of the Q transmit beams according to the measurement results of the G transceiver groups.
  • the Q transmit beams include:
  • the receiving end selects Q measurement results of the first Q bits of the received quality in the measurement results of the G transceiver groups, and corresponds to the Q measurement results selected by the N transmit beams.
  • the G transmit beam groups include:
  • the receiving end groups the G transmitting beam groups of the Q transmitting beams according to the Q transmit beams in the corresponding transceiver unit group of the Q measurement results.
  • the Q transmit beams include:
  • the receiving end measurement results for each transceiver unit group are selected in the reception quality measurement result of the receiving cell group Q g Q g measurement results in the top position, the Q measurements obtained, and in the The Q transmit beams corresponding to the Q measurement results selected by the N transmit beams, wherein the Q g are the same or different positive integers for different transceiver units, and the G transmit beam groups correspond to The sum of Q g is the Q;
  • the G transmit beam groups include:
  • each transceiver group measurement results Q g Q g corresponding beam transmitting end, dividing transmission beam corresponding to the group transceiver unit group, and transmission beams obtained G groups.
  • each of the receiving and receiving unit groups includes at least one transceiver unit, and each transceiver unit includes at least one receiving beam, and the measurement results of the G transceiver unit groups include:
  • the receiving end For the beam training signals of the transmit beams of the N transmit beams, the receiving end performs the receive measurement by using the receive beams of the G transceiver groups to obtain the measurement results of the G transceiver groups. And a set of measurement results of the G transceiver groups in the set of measurement results of the G transceiver groups, wherein the measurement result set of each transceiver unit group includes each receive beam using the transceiver unit group And performing measurement results of the received measurement on the beam training signals of the N transmit beams; the measurement result of each transceiver unit group includes N measurement results, where the N measurement results are in the measurement result set of the transceiver group
  • the transmission beam corresponds to the measurement result with the highest reception quality.
  • the receiving module is configured to receive identification information of Q transmit beams in the N transmit beams sent by the receiving end, and packet information and sub-packets of each of the Q transmit beams. Information, wherein a transmit beam corresponding to the same receive beam in each transmit beam group is divided into a transmit beam subgroup;
  • the sending end further includes:
  • a second determining module configured to determine, by using a transmit beam that belongs to the same transmit beam subgroup among the Q transmit beams, and send a signal to the receive end.
  • the receive beam corresponding to each transmit beam includes:
  • the measurement result of the beam training signal of the transmission beam of all the candidate receiving beams of the receiving end receives the receiving beam corresponding to the measurement result with the highest quality.
  • the receiving module is configured to receive group information of G transmit beam groups sent by the receiving end, where packet information of each transmit beam group includes sending of each sub transmit beam subgroup in the transmit beam group.
  • packet information of each transmit beam group includes sending of each sub transmit beam subgroup in the transmit beam group.
  • Beam subgroup information, each transmit beam subgroup information includes identification information of each transmit beam in the transmit beam subgroup; or
  • the receiving module is configured to receive the beam splitting information of the Q transmit beams that are sent by the receiving end, where the beam splitting information of each transmit beam includes the identifier information of the transmit beam, and the transmit beam group to which the transmit beam belongs.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the embodiment of the present disclosure further provides a receiving end, including:
  • a measurement module configured to perform receiving measurement on a beam training signal of N transmit beams sent by the transmitting end, and select Q transmit beams from the N transmit beams according to the measurement result, and divide the Q transmit beams into G transmit beam groups, wherein N, the Q, and the G are positive integers;
  • a sending module configured to send, to the sending end, identifier information of the Q transmit beams, and packet information of each of the Q transmit beams, so that the sending end determines that the Q Transmit beams belonging to different transmit beam groups in the transmit beam, and simultaneously send signals to the receive end.
  • the measuring module is configured to receive, by using the G transceiver units, the beam training signals of the N transmit beams sent by the sending end, and select Q transmit beams from the N transmit beams according to the measurement result. And dividing the Q transmit beams into G transmit beam groups;
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receiving end.
  • the measuring module includes:
  • a measurement unit configured to receive, by using the G transceiver groups, a beam training signal for each of the N transmit beams sent by the transmitting end, to obtain measurement results of the G transceiver groups.
  • the measurement result of each transceiver unit group includes a measurement result of receiving and measuring a beam training signal of the N transmit beams by using the transceiver unit group;
  • a selecting unit configured to select Q transmit beams from the N transmit beams according to the measurement result of the G transceiver groups, and divide the Q transmit beams into G transmit beam groups.
  • the selecting unit is configured to select, in the measurement results of the G transceiver groups, Q measurement results whose receiving quality is ranked in the first Q bit, and select the Q among the N transmitting beams.
  • the Q transmit beams corresponding to the measurement results, and the Q transmit beams are divided into G transmit beam groups according to the corresponding transmit and receive unit groups of the Q transmit beams in the Q measurement results.
  • the selecting unit includes:
  • First selecting sub-unit for measurement results for each transceiver unit group, selecting reception quality measurement result of the receiving unit in the top group Q g Q g-bit measurement result, to obtain measurements of Q,
  • the Q g is the same or a different positive integer for the different transceiver unit groups, and the sum of Q g corresponding to the G transmit beam groups is the Q;
  • Second selecting sub-unit for selecting said Q Q measurement results corresponding to the transmission beams in N transmission beams, and Q g transmission beams to each transceiver unit group Q g corresponding measurement results And dividing a transmit beam group corresponding to the transceiver unit group.
  • each transceiver unit group includes at least one transceiver unit, and each transceiver unit includes at least one receive beam, and the measurement unit includes:
  • a measurement subunit configured to receive a beam training signal for each of the N transmit beams sent by the transmitting end, where the receiving end uses each receive beam of the G transceiver group to perform receiving measurement, to obtain the a measurement result set of the G transceiver units, wherein the measurement result set of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the receiving beams of the transceiver unit group;
  • a third selection subunit configured to select, in the measurement result set of the G transceiver unit groups, a measurement result of the G transceiver unit groups, where the measurement result of each transceiver unit group includes N measurements
  • the N measurement results are the measurement results with the highest reception quality corresponding to each transmission beam in the measurement result set of the transceiver unit group.
  • the receiving end further includes:
  • a selection module configured to select one receive beam for each of the Q transmit beams in the candidate receive beam of the receiving end
  • a dividing module configured to: for each of the transmitting beam groups, the receiving end divides a transmitting beam corresponding to the same receiving beam in the transmitting beam group into one transmitting beam subgroup;
  • the sending module is configured to send, to the sending end, identifier information of Q transmit beams in the N transmit beams, and packet information and sub-packet information of each of the Q transmit beams.
  • the selecting module is configured to obtain, for each of the transmit beams, a measurement result of the beam training signal of the transmit beam of all candidate receive beams of the receiving end, and obtain the measurement with the highest received quality in the obtained measurement result.
  • the corresponding receive beam is used as the receive beam of the transmit beam.
  • the sending module is configured to send, to the sending end, packet information of G transmit beam groups, where the packet information of each transmit beam group includes a transmit beam of each sub transmit beam subgroup in the transmit beam group.
  • Sub-group information, each transmit beam sub-group information includes identification information of each transmit beam in the transmit beam sub-group; or
  • the sending module is configured to send the beam splitting information of the Q transmit beams to the sending end, where the beam splitting information of each transmitting beam includes the identifier information of the sending beam, and the sending beam group to which the transmitting beam belongs The packet identifier and the subgroup identifier of the transmit beam subgroup to which the transmit beam belongs.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the embodiment of the present disclosure further provides a transmitting end, including: a processor, a transceiver, a memory, a user interface, and a bus interface, where:
  • the processor is configured to read a program in the memory, and perform the steps in any one of the sending beam determining methods provided above.
  • the embodiment of the present disclosure further provides a receiving end, including: a processor, a transceiver, a memory, a user interface, and a bus interface, where:
  • the processor is configured to read a program in the memory, and perform the steps in any one of the receiving beam side methods provided above.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, wherein the steps in the above-described transmit beam determining method are implemented when the computer program is executed by a processor.
  • the transmitting end sends a beam training signal of the N transmit beams to the receiving end, where the N is a positive integer; the transmitting end receives the Q transmit beams of the N transmit beams sent by the receiving end.
  • the transmission beams belonging to different transmission beam groups transmit signals to the receiving end at the same time. In this way, the transmitting end can determine the transmitting beam that can simultaneously send a signal to the receiving end.
  • FIG. 1 is a schematic structural diagram of a network applicable to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for determining a transmit beam according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a sending signal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another transmission signal according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of another method for determining a transmit beam according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a sending end according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another transmitting end according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a receiving end according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another receiving end according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another receiving end according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another receiving end according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another receiving end according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another transmitting end according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another receiving end according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
  • the present invention includes a transmitting end 11 and a receiving end 12 , wherein the transmitting end 11 may be a base station or a terminal, and the receiving end 12 may also be It is a terminal or a base station.
  • the transmitting end 11 is a base station
  • the receiving end 12 is a terminal
  • the communication between the terminal and the base station can be implemented
  • the transmitting end 11 is a terminal
  • the receiving end 12 is a base station, and the terminal and the terminal can also be implemented.
  • the communication between the base stations, or the transmitting end 11 is a base station, and the receiving end 12 is also a base station, so that communication between the base station and the base station can be implemented, or the transmitting end 11 is a terminal, and the receiving end 12 is also a terminal, which can be implemented. Communication between the terminal and the terminal.
  • the transmitting end 11 is not limited to a terminal or a base station.
  • the transmitting end 11 may also be another network side device.
  • the receiving end 12 is not limited to only a terminal or a device.
  • the receiving end 12 may also be another network side device, which is not limited in this embodiment of the disclosure.
  • the terminal may be a user equipment (User Equipment, UE), for example, may be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile internet device. (Mobile Internet Device, MID) or a terminal device such as a wearable device, it should be noted that the specific type of the terminal is not limited in the embodiment of the present disclosure.
  • UE User Equipment
  • PDA personal digital assistant
  • MID Mobile Internet Device
  • a terminal device such as a wearable device
  • the base station may be a macro station, such as an LTE eNB, a 5G NR NB, or the like; or a small station, such as a low power node (LPN: low power node) pico, femto, or the like, or may be an access point (AP, access point)
  • LPN low power node
  • AP access point
  • the base station may also be a network node formed by a central unit (CU) and a plurality of transmission reception points (TRPs) managed and controlled by the central unit (CU).
  • TRPs transmission reception points
  • there is one or more cells under one base station for example: different frequency points or sector splits. It should be noted that the specific type of the base station is not limited in the embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for determining a transmit beam. As shown in FIG. 2, the method includes the following steps:
  • the transmitting end sends a beam training signal of N transmit beams to the receiving end, where the N is a positive integer.
  • the transmitting end receives, by the receiving end, identifier information of the Q transmitting beams in the N sending beams, and packet information of each of the Q transmitting beams, where the Q sending The beam includes G transmit beam groups, and the G transmit beam groups are divided by the receiving end according to the measurement result, and the measurement result is that the receiving end receives and measures the beam training signal sent by the sending end.
  • the measurement result, the Q and the G are both positive integers;
  • the transmitting end determines that a transmit beam that belongs to a different transmit beam group among the Q transmit beams can be transmitted, and simultaneously sends a signal to the receive end.
  • the foregoing N transmit beams may be all or part of the transmit beams in the transmit end.
  • the foregoing transmit end may be shared.
  • each transmit beam can correspond to a set of beamforming weights, and the transmit beam shaping weight of the nth beam can be
  • K is the number of beam-shaped antenna elements, which may be smaller than the number of antenna units at the transmitting end.
  • one transmitting beam is sent from only K antenna units connected by one transceiver unit.
  • the transmitting beam may be a downlink transmitting beam
  • the transmitting beam may be an uplink transmitting beam.
  • the beam training signals of the above N transmit beams may be that the transmitting end transmits one beam training signal for each transmit beam.
  • the base station can send Training signals.
  • the beam training signals of the N transmit beams may be Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM), or Code Division Multiplexing (CDM), or
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • CDM Code Division Multiplexing
  • the combination of the multiplexing modes is transmitted, which is not limited in this embodiment of the disclosure.
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • CDM Code Division Multiplexing
  • the combination of the multiplexing modes is transmitted, which is not limited in this embodiment of the disclosure.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Training signals can be occupied OFDM symbols, each training signal occupies 1 OFDM symbol, and the training signals are TDM multiplexed. It is also possible to transmit training signals of multiple beams in one OFDM
  • the beam training signals of the N transmit beams may be sent after the beamforming weight corresponding to the beam is used.
  • the transmit beam training signal in step 201 may be a periodic transmission or a non-periodic transmission.
  • the receiving end After the beam training signal is sent by the transmitting end, the receiving end performs receiving measurement on the beam training signal sent by the transmitting end. For example, the receiving end receives and measures the beam training signal of the N transmitting beams sent by the transmitting end, and according to the measurement result, Selecting Q transmit beams from the N transmit beams, and dividing the Q transmit beams into G transmit beam groups, where Q and G are positive integers.
  • the receiving end may use all or part of the receiving units of the receiving end to receive and measure the beam training signals of the N transmitting beams.
  • the receiving end may use all or part of the receiving units to send each of the N transmitting beams respectively.
  • the beam training signals of the beam are subjected to reception measurement to obtain measurement results, wherein each measurement result includes a measurement result of a beam training signal of each of the transmission beams by the corresponding transceiver unit.
  • the receiving end may use all or part of the receiving units to receive and measure the beam training signals of the N transmitting beams respectively, and obtain measurement results, where each measurement result may include corresponding transceiver units for one or more transmitting beams.
  • the measurement result of the beam training signal may use all or part of the receiving units of the receiving end to receive and measure the beam training signals of the N transmitting beams.
  • the Q transmit beams may be the transmit beams corresponding to the measurement results in which the received quality is ranked in the first Q bits in the measurement result obtained by the above received measurement, or may select a certain number of measurement results in the above measurement result, and may select The measured result measures the corresponding Q transmit beams. It should be noted that, since the same transceiver unit may use the same transceiver unit for receiving measurement, and the reception quality of these measurement results is relatively good, the measurement results for different transceiver units may select the same transmission.
  • the beam that is, the same beam may exist in the above Q transmit beams.
  • the transceiver unit a and the transceiver unit b are respectively used for receiving measurement, and the reception quality of the measurement results of the transmission beam a by the transceiver unit a and the transceiver unit b are both the transceiver unit a and the transceiver unit b.
  • the measurement result is the best in the measurement result, so that the transmission beam a is selected for both the transceiver unit a and the transceiver unit b.
  • Such a transmit beam necessarily corresponds to a specific transceiver unit or a specific transceiver unit group, so that the transmit beam corresponding to the same transceiver unit or the transceiver unit group can be divided.
  • the same transmit beam group that is, one transmit beam group corresponds to the transceiver unit or the transceiver unit group.
  • the transmitting beam that the receiving end considers to be able to receive at the same time may be divided into one transmitting beam group.
  • the identifiers of the Q transmit beams and the packets of each of the Q transmit beams may be sent to the transmit end. information.
  • the transmitting end can know the transmitting beam group to which each transmitting beam belongs, and further determine that a transmitting beam belonging to a different transmitting beam group among the Q transmitting beams can be transmitted, and simultaneously send a signal to the receiving end.
  • the transmitting beam capable of transmitting signals to the receiving end at the same time may be that the transmitting beams can simultaneously send signals to the receiving end, and can be simultaneously received by the receiving end, that is, the transmitting beam capable of simultaneously transmitting signals to the receiving end can be It is understood to be a transmission beam whose transmission signal can be simultaneously received by the receiving end.
  • it can be understood as a simultaneous time point (for example, one OFDM symbol).
  • the transmitting end determines the transmitting beam that can send the signal to the receiving end at the same time
  • the transmitting beam that is simultaneously transmitted can be flexibly selected, and the transmitting end can also select the corresponding transmission mode according to the method, for example, Realizing space division by transmitting a plurality of parallel data streams by multiple transmission beams capable of simultaneously transmitting signals to the receiving end, or implementing a space by transmitting a plurality of transmission beams capable of simultaneously transmitting signals to the receiving end Diversity transmission to improve data transmission efficiency.
  • the transmitting beam is a downlink transmitting beam
  • the transmitting beam is an uplink transmitting beam
  • the G transmit beam groups respectively correspond to G transceiver groups of the receiving end.
  • the receiving end may use G transceiver units to receive and measure the beam training signals of the N transmitting beams sent by the transmitting end.
  • each transceiver unit group may include different or the same number of transceiver units, each transceiver unit group has at least one transceiver unit, and the transceiver unit in each transceiver unit group is connected to Several antenna units.
  • Transceiver units in different transceiver units can independently beamform the received signals and send them to the baseband processing unit for subsequent calculations.
  • the receiving end uses the G transceiver units to receive and measure the beam training signals of the N transmitting beams sent by the transmitting end.
  • the receiving end uses the G transceiver units to transmit the beam beams of each of the N transmitting beams.
  • the training signal is subjected to receiving measurement to obtain G measurement results, wherein each measurement result includes a measurement result of a beam training signal of each transmitting beam by the corresponding transceiver unit group, for example, the above G is 2, and the above N is 4 Then, two measurements are obtained, each of which includes measurements for four transmit beams.
  • the receiving end may receive and measure the beam training signals of the N transmitting beams by using the G transceiver units, and obtain G measurement results, where each measurement result may include one or more corresponding transceiver unit groups.
  • the measurement result of the beam training signal of the transmitting beam may include one or more corresponding transceiver unit groups.
  • the Q transmit beams may be the transmit beams corresponding to the measurement results in which the reception quality is ranked in the first Q bits in the measurement result obtained by the foregoing measurement, or may be the measurement corresponding to each of the G transceiver groups in the G transmit and receive unit groups. As a result, a certain number of measurement results are selected, and the selected measurement results are measured for the corresponding Q transmission beams. It should be noted that, since the same transmission beam group may be used for the same transmission group to perform reception measurement, and the reception quality of these measurement results is relatively good, the measurement results for different transceiver unit groups may be selected the same.
  • the transmit beam that is, the same beam may exist in the above Q transmit beams.
  • the transceiver unit group a and the transceiver unit group b are respectively used for receiving measurement, and the reception quality of the measurement results of the transmission beam a by the transceiver unit group a and the transceiver unit group b are both the transceiver unit group a.
  • the optimal measurement result in the measurement result of the transceiver unit group b so that the transmission beam a is selected for both the transceiver unit group a and the transceiver unit group b.
  • Such a transmit beam necessarily corresponds to one transceiver unit group, so that the transmit beams corresponding to the same transceiver group can be divided into the same one.
  • a transmit beam group that is, one transmit beam group corresponds to one transceiver unit group.
  • the transmit beams that belong to different transmit beam groups are more easily received by the receive end to improve data transmission efficiency.
  • the receiving end does not limit the receiving measurement by using the G transceiver units.
  • the receiving end may also perform receiving measurement by using a transceiver unit, and select and according to the measurement result.
  • the transmitting beam group corresponding to the transceiver unit that is, one transmitting beam group corresponds to one transmitting unit, so that the transmitting beams belonging to different transmitting beam groups can also be simultaneously received by the receiving end when transmitting signals to the receiving end.
  • the measurement result includes:
  • the receiving end uses the G transceiver units to perform measurement and measurement on the beam training signals of each of the N transmission beams, and the obtained measurement results of the G transceiver units are obtained.
  • the measurement result of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the transceiver unit group;
  • the Q transmit beams include:
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement results of the G transceiver groups;
  • the G transmit beam groups include:
  • the receiving end divides the G transmit beam groups of the Q transmit beams according to the measurement results of the G transceiver groups.
  • the Q transmit beams are selected according to the measurement results of the G transceiver groups, and the G transceiver groups are also divided according to the measurement results of the G transceiver groups.
  • the measurement result of each transceiver unit group includes the measurement result of receiving and measuring the beam training signals of the N transmission beams by using the transceiver unit group, that is, each transceiver unit group receives and measures the beam training signals of all the transmission beams, This makes the measurement results more comprehensive, so that you can choose a better Q transmit beam.
  • the receiving end may use the G transceiver groups to perform the receiving measurement, and obtain the measurement results of the G transceiver groups;
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement results of the G transceiver groups, and divides the Q transmit beams into G transmit beam groups.
  • the beam training signal for each of the N transmit beams sent by the transmitting end, the receiving end may use the G transceiver groups to perform the receiving measurement, which may be, for each transmit beam beam.
  • the training signals are all received and measured using G transceiver units, that is, each transceiver unit receives and measures the beam training signals of all the transmitted beams.
  • the foregoing Q transmit beams include:
  • the receiving end selects Q measurement results of the first Q bits of the received quality in the measurement results of the G transceiver groups, and corresponds to the Q measurement results selected by the N transmit beams.
  • the G transmit beam groups include:
  • the receiving end groups the G transmitting beam groups of the Q transmitting beams according to the Q transmit beams in the corresponding transceiver unit group of the Q measurement results.
  • the Q transmit beams corresponding to the Q measurement results whose reception quality is ranked in the first Q bits can be selected, so that the reception quality of the transmit beam can be maintained to improve the data transmission quality.
  • the receiving end may select, among the measurement results of the G transceiver units, Q measurement results whose reception quality is ranked in the first Q bits, and select the Q measurement results corresponding to the N transmission beams.
  • the Q transmit beams, and the Q transmit beams are divided into G transmit beam groups according to the corresponding transmit and receive unit groups of the Q transmit beams in the Q measurement results.
  • the four transmit beams with the highest reception quality are: downlink transmit beam 3 (transceiver unit group 1), downlink transmit beam 2 (transceiver unit group 1), and downlink transmit beam 1 (transceiver unit group 1).
  • Downstream transmit beam 3 (transceiver unit group 2).
  • the downlink transmit beam 3 appears twice, corresponding to the transceiver unit group 1 and the transceiver unit group 2, respectively. That is, since there are multiple transceiver units for reception, in the embodiment of the present disclosure, there may be repeated transmission beams among the Q transmission beams.
  • the G transmit beam packets are in two groups, respectively:
  • the first group corresponds to the transceiver unit group 1, wherein the beams are: a downlink transmission beam 3, a downlink transmission beam 2, and a downlink transmission beam 1.
  • the second group corresponds to the transceiver unit group 2, wherein the beam is: the downlink transmission beam 3.
  • the foregoing Q transmit beams include:
  • the receiving end measurement results for each transceiver unit group are selected in the reception quality measurement result of the receiving cell group Q g Q g measurement results in the top position, the Q measurements obtained, and in the The Q transmit beams corresponding to the Q measurement results selected by the N transmit beams, wherein the Q g are the same or different positive integers for different transceiver units, and the G transmit beam groups correspond to The sum of Q g is the Q;
  • the G transmit beam groups include:
  • each transceiver group measurement results Q g Q g corresponding beam transmitting end, dividing transmission beam corresponding to the group transceiver unit group, and transmission beams obtained G groups.
  • Q g measurement results can be selected in each transceiver unit group, and Q measurement results are obtained, so that Q g measurement results with optimal reception quality can be selected for each transceiver unit group, thereby improving Receive performance of each transceiver unit group at the receiving end.
  • the receiving end can select the reception quality measurement results Q g Q g the top position in the measurement result of the receiving cell group, Q to obtain measurement results; receiving end can selecting said Q Q measurement results corresponding to the transmission beams in N transmission beams, and each group Q g transceiving unit measurement results corresponding to the transmission beams Q g, corresponding divided groups and the transceiver unit Transmit beam group.
  • Q g may be pre-configured by the transmitting end to the receiving end, or may be determined by the receiving end.
  • the receiving end may sort the measurement results of each downlink transmit beam by the gth transceiver group, and select the Q g downlink transmit beams with the highest receiving quality.
  • the downlink transmit beams selected by different transceiver groups are There may be duplicates.
  • the first group corresponds to the transceiver unit group 1, wherein the beams are: a downlink transmission beam 3 and a downlink transmission beam 2.
  • the second group corresponds to the transceiver unit group 2, wherein the beam is: a downlink transmission beam 3, and a downlink transmission beam 1.
  • the receiving quality of the measurement result of the transmitting beam may be characterized by reference signal received power (RSRP), and may also be characterized by other measurements, which is not limited in this embodiment.
  • RSRP reference signal received power
  • the receiving end can also set a certain threshold value when sorting the transmitting beams according to the receiving quality, and only the downlink transmitting beams whose receiving quality is higher than the threshold value participate in the sorting.
  • each of the receiving and receiving unit groups includes at least one transceiver unit, and each of the transceiver units includes at least one receiving beam, and the measurement results of the G transceiver unit groups include:
  • the receiving end For the beam training signals of the transmit beams of the N transmit beams, the receiving end performs the receive measurement by using the receive beams of the G transceiver groups to obtain the measurement results of the G transceiver groups. And a set of measurement results of the G transceiver groups in the set of measurement results of the G transceiver groups, wherein the measurement result set of each transceiver unit group includes each receive beam using the transceiver unit group And performing measurement results of the received measurement on the beam training signals of the N transmit beams; the measurement result of each transceiver unit group includes N measurement results, where the N measurement results are in the measurement result set of the transceiver group
  • the transmission beam corresponds to the measurement result with the highest reception quality.
  • the measurement result of the G transceiver groups can be implemented, and the measurement result with the highest reception quality corresponding to each of the transmission beams is selected in each transceiver unit group, so that more optimal Q transmission beams can be selected.
  • the transceiver unit group 1 includes the receive beams 1 and 2
  • the measurement result set for the transceiver unit group 1 includes the measurement results of the receive beam 1 for the N transmit beams, and the receive beam 2 pair.
  • the measurement result of the N transmit beams wherein, for the transmit beam 1, the measurement result of the receive beam 1 having the highest reception quality in the measurement result set of the transceiving unit group 1 is for the transmit beam 2 in the measurement result set of the transceiving unit group 1
  • the measurement result of the receiving beam 2 is the highest receiving quality.
  • the measurement result of the transceiver unit group 1 is the measurement result of the receiving beam 1 for the transmitting beam 1 and the measurement result of the receiving beam 2 for the transmitting beam 2.
  • the receiving end may be: for the beam training signal of each of the N transmitting beams sent by the transmitting end, the receiving end may use each receiving beam in the G transceiver group to perform receiving and measuring, and obtain the The measurement result sets of the G transceiver units are described; the receiving end selects the measurement results of the G transceiver units in the measurement result sets of the G transceiver units.
  • the training signal for each transmit beam at the receiving end can be implemented, and all receive beams in all transceiver units are used for receiving measurement to select the optimal measurement result for each transmit beam in each transceiver unit group.
  • the receiving end may share Receiving beams, each receiving beam corresponding to a set of beam shaping weights, and the receiving beam shaping weight of the nth beam may be
  • L is the number of beam-formed antenna elements, which may be smaller than the number of antenna units at the receiving end.
  • the signals received by the L antenna elements are weighted by beamforming weights and combined and sent to a transceiver unit to obtain corresponding measurement results. .
  • the sending end receives, by the receiving end, identifier information of Q transmit beams in the N transmit beams, and a packet of each of the Q transmit beams.
  • Information including:
  • the transmitting end receives identification information of Q transmitting beams in the N transmitting beams sent by the receiving end, and grouping information and sub-packet information of each of the Q transmitting beams, where each A transmit beam corresponding to the same receive beam in the transmit beam group is divided into a transmit beam subgroup;
  • the method further includes:
  • the transmitting end determines that a transmit beam that belongs to the same transmit beam subgroup among the Q transmit beams can be transmitted, and simultaneously sends a signal to the receive end.
  • packet information and sub-packet information of each of the Q transmit beams can be obtained, so that the transmit beam group to which each transmit beam belongs and the associated transmit beam sub-group can be determined, so that it can be determined that the The transmit beams belonging to the same transmit beam sub-group of the Q transmit beams are simultaneously sent to the receiving end, that is, the transmit beams that can be simultaneously received by the receiving end belong to the same beam sub-group. And determining, by the transmit beam, the transmit beams belonging to different transmit beam groups of the Q transmit beams, and simultaneously transmitting signals to the receive end, so that more transmit beams that can simultaneously send signals to the receive end are determined, thereby Improve the efficiency of data transmission.
  • the transmit beam 1 belongs to the transmit beam group 1, the transmit beam 2 belongs to the transmit beam group 1, the transmit beam 3 belongs to the transmit beam group 1, and the transmit beam 1 and the transmit beam 2 belong to the transmit beam subgroup 1, and the transmit beam 4 belongs to the transmit beam Group 2; then, the transmitting end can determine that the transmitting beam 1 and the transmitting beam 2 can simultaneously transmit signals to the receiving end. And the transmitting beam 1 and the transmitting beam 4 can simultaneously send signals to the receiving end, and the transmitting beam 2 and the transmitting beam 4 can simultaneously send signals to the receiving end, and the transmitting beam 3 and the transmitting beam 4 can simultaneously send to the receiving end. signal. For example, as shown in FIG.
  • the transmit beam (BT) 1 and the transmit beam (BT) 2 simultaneously transmit signals to the receiving end, and are simultaneously received by the receive beam (BR) 1 of the transceiver unit (TXRU) 0 of the receiving end;
  • the transmit beam (BT) 1 and the transmit beam (BT) 4 can simultaneously transmit signals to the receiving end, and are respectively received and received by the receiving and receiving unit (TXRU) 0 of the receiving end (BR) 1 and transmitted and received.
  • the receive beam (BR) 2 of the unit (TXRU) 1 is simultaneously received.
  • the receiving end may be a candidate receiving beam in the receiving end, and select one receiving beam for each of the Q transmitting beams; for each transmitting beam group, the receiving end respectively uses the transmitting beam Transmit beams corresponding to the same receive beam in the group are divided into one transmit beam subgroup; the receiving end sends, to the transmitting end, identification information of Q transmit beams in the N transmit beams, and each of the Q transmit beams The packet information and sub-packet information of the transmit beam.
  • the candidate receiving wave of the receiving end may be a receiving beam included in the receiving end, and the candidate may be understood as a candidate for a receiving beam corresponding to a transmitting beam of the transmitting end, that is, a receiving beam corresponding to the transmitting beam is selected in the candidate receiving beam, and
  • the candidate receiving beams may be pre-configured by the receiving end, or set by the user, which is not limited in this embodiment of the disclosure.
  • P g 0, that is, no sub-group is divided in the g-th group. If one beam in the gth transmit beam group cannot be received simultaneously with any other beam in the same transmit beam group, the transmit beam does not belong to any one of the beam subgroups. Alternatively, a special subgroup may be agreed, and the beams in the gth group that cannot be simultaneously received with any other beam are divided into the subgroups.
  • the transmit beam group 1 includes a transmit beam 1, a transmit beam 2, and a transmit beam 3.
  • the receive end selects receive beam 1, receive beam 1 and receive beam 2 for transmit beam 1, transmit beam 2, and transmit beam 3, respectively.
  • the transmit beam 1 and the transmit beam 2 correspond to the same receive beam 1, so that the receive end divides the transmit beam 1 and the transmit beam 2 into one transmit beam subgroup.
  • the receive beam corresponding to each transmit beam includes:
  • the measurement result of the beam training signal of the transmission beam of all the candidate receiving beams of the receiving end receives the receiving beam corresponding to the measurement result with the highest quality.
  • the receiving beam corresponding to each transmitting beam is the receiving beam with the highest receiving quality for the transmitting beam among all the receiving beams at the receiving end, thereby improving the quality of the data transmission.
  • the receiving end may be configured to obtain, for each of the transmit beams, a measurement result of the beam training signal of the transmit beam of all candidate receive beams of the receive end, and receive quality of the received measurement result.
  • the highest measurement result corresponds to the receive beam as the receive beam of the transmit beam.
  • the sending end receives, by the receiving end, identifier information of Q transmit beams in the N transmit beams, and a packet of each of the Q transmit beams.
  • Information and subgroup information including:
  • the transmitting end receives the group information of the G transmit beam groups sent by the receiving end, where the packet information of each transmit beam group includes the transmit beam subgroup information of each sub transmit beam subgroup in the transmit beam group, and each The transmit beam subgroup information includes identification information of each transmit beam in the transmit beam subgroup; or
  • the transmitting end receives the beam splitting information of the Q transmitting beams that are sent by the receiving end, where the beam splitting information of each transmitting beam includes the identifier information of the sending beam, and the grouping of the sending beam group to which the transmitting beam belongs And a subgroup identifier of the transmit beam subgroup to which the transmit beam belongs.
  • the identifier information of the transmit beam may be a number corresponding to each beam defined in the system, or an index of a transmit beam training signal, such as a resource index, a sequence index, a time index, a port index, and a combination thereof.
  • an index of a transmit beam training signal such as a resource index, a sequence index, a time index, a port index, and a combination thereof.
  • the embodiment of the present disclosure is not limited thereto.
  • the first mode described above may take the form shown in Table 2 below.
  • the receiving end may also assign a unique identifier to each group and subgroup, and report the identifier together.
  • the packet information of each transmit beam group further includes a group identifier of the transmit beam group
  • each transmit beam subgroup information further includes a subgroup identifier of the transmit beam subgroup.
  • the transmit beam identifier (m, n, q) is an identifier of the qth downlink transmit beam of the nth subgroup of the mth downlink transmit beam packet.
  • the packet identifier and the sub-group identifier do not need to be reported for each downlink transmission beam repetition, and a common packet or sub-group identifier can be reported to the downlink transmission beam belonging to the same group or sub-group, thereby reducing transmission overhead.
  • the receiving end can assign a unique identifier to each group and sub-group.
  • the beam splitting information of the transmitting beam reported by the receiving end is as follows:
  • g i is the identifier of the downlink transmission packet to which the i th transmit beam belongs
  • s i is the identifier of the subgroup to which the i th transmit beam belongs
  • i 1, 2, . . . , Q, g i ⁇ ⁇ 1, 2,...,G ⁇ ,s i ⁇ 1,2,...,P gi ⁇ .
  • the packet information and the sub-group information of each transmit beam can be reported to the transmitting end flexibly by using the foregoing two embodiments.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit
  • the received waves corresponding to other transmit beams in the beam group are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the transmitting end sends a beam training signal of the N transmit beams to the receiving end, where the N is a positive integer; the transmitting end receives the Q transmit beams of the N transmit beams sent by the receiving end.
  • the transmission beams belonging to different transmission beam groups transmit signals to the receiving end at the same time. In this way, the transmitting end can determine the transmitting beam that can simultaneously send a signal to the receiving end.
  • an embodiment of the present disclosure provides another method for determining a transmit beam. As shown in FIG. 5, the method includes the following steps:
  • the receiving end performs receiving measurement on the beam training signals of the N transmitting beams sent by the sending end, and selects Q transmitting beams from the N transmitting beams according to the measurement result, and divides the Q transmitting beams into G.
  • a transmit beam group wherein the N, the Q, and the G are both positive integers;
  • the receiving end sends, to the sending end, identifier information of the Q transmit beams, and packet information of each of the Q transmit beams, so that the sending end determines that the Q transmit
  • the receiving end performs receiving measurement on the beam training signals of the N transmitting beams sent by the sending end, including:
  • the receiving end uses the G transceiver unit groups to receive and measure the beam training signals of the N transmitting beams sent by the transmitting end;
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receiving end.
  • the receiving end uses the G transceiver group to receive and measure the beam training signals of the N transmit beams sent by the sending end, and selects Q transmit beams from the N transmit beams according to the measurement result, and Dividing the Q transmit beams into G transmit beam groups, including:
  • the receiving end uses the G transceiver groups to perform the receiving measurement, and obtain the measurement results of the G transceiver groups.
  • the measurement result of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the transceiver unit group;
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement results of the G transceiver groups, and divides the Q transmit beams into G transmit beam groups.
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement result of the G transceiver groups, and divides the Q transmit beams into G transmit beam groups, including :
  • the receiving end selects Q measurement results of the first Q bits of the received quality in the measurement results of the G transceiver groups, and selects the Q corresponding to the Q measurement results among the N transmit beams. Transmit beams, and divide the Q transmit beams into G transmit beam groups according to the corresponding transmit and receive unit groups of the Q transmit beams in the Q measurement results.
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement result of the G transceiver groups, and divides the Q transmit beams into G transmit beam groups, including :
  • Measurement results for each transceiver unit group, the reception quality of the receiving end selection are top bit Q g Q g measurement results in measurement result of the receiving cell group, Q to obtain measurement results, wherein, for The Q g of the different transceiver unit groups are the same or different positive integers, and the sum of Q g corresponding to the G transmit beam groups is the Q;
  • the receiving terminal selects the Q measurement results corresponding to the transmission beams Q, Q g and the transmission beams to each transceiver unit group Q g measurement results corresponding to the N transmission beams, and the division The transmit beam group corresponding to the transceiver unit group.
  • each transceiver unit group includes at least one transceiver unit, and each transceiver unit includes at least one receive beam, and the beam training signal for each of the N transmit beams sent by the transmit end,
  • the receiving end uses the G transceiver units to perform the receiving measurement, and obtains the measurement results of the G transceiver units, including:
  • the receiving end uses the receiving beams of the G transceiver group to perform receiving measurement, and obtains the G transceiver groups.
  • a measurement result set wherein the measurement result set of each transceiver unit group includes a measurement result of receiving measurement of a beam training signal of the N transmission beams by using each receiving beam of the transceiver unit group;
  • the receiving end selects measurement results of the G transceiver units in the measurement result set of the G transceiver groups, where the measurement result of each transceiver unit group includes N measurement results, and the N The measurement result is the measurement result with the highest reception quality corresponding to each transmission beam in the measurement result set of the transceiver unit group.
  • the method further includes:
  • the receiving end selects one receiving beam for each of the Q transmitting beams in the candidate receiving beam of the receiving end;
  • the receiving end divides the transmit beam corresponding to the same receive beam in the transmit beam group into one transmit beam subgroup;
  • the receiving end sends, to the sending end, the identifier information of the Q transmit beams in the N transmit beams, and the packet information of each of the Q transmit beams, including:
  • the receiving end sends, to the sending end, identification information of Q transmitting beams in the N transmitting beams, and packet information and sub-packet information of each of the Q transmitting beams.
  • the receiving end selects one receiving beam for the Q transmitting beams in the candidate receiving beam of the receiving end, including:
  • the receiving end acquires the measurement results of the beam training signals of all the received beams of the receiving end of the transmitting beam, and obtains the receiving beam corresponding to the measurement result with the highest receiving quality in the obtained measurement result.
  • the receive beam of the transmit beam is
  • the receiving end sends the identifier information of the Q transmit beams in the N transmit beams to the sending end, and the packet information and the sub-packet information of each of the Q transmit beams, including:
  • the receiving end sends the group information of the G transmit beam groups to the sending end, where the packet information of each transmit beam group includes the transmit beam subgroup information of each sub transmit beam subgroup in the transmit beam group, and each The transmit beam subgroup information includes identification information of each transmit beam in the transmit beam subgroup; or
  • the receiving end sends the beam splitting information of the Q transmit beams to the sending end, where the beam splitting information of each transmitting beam includes the identifier information of the sending beam, and the group identifier of the sending beam group to which the transmitting beam belongs. And a subgroup identifier of the transmit beam subgroup to which the transmit beam belongs.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the receiving end may be a receiving end that includes one or more transceiver units.
  • the present embodiment is an implementation manner corresponding to the receiving end in the embodiment shown in FIG. 2.
  • the present embodiment refers to the related description of the embodiment shown in FIG. The examples will not be described again, and the same beneficial effects can be achieved.
  • the sending end 600 includes:
  • the sending module 601 is configured to send, to the receiving end, a beam training signal of N transmit beams, where N is a positive integer;
  • the receiving module 602 is configured to receive, by the receiving end, identifier information of the Q transmit beams in the N transmit beams, and packet information of each of the Q transmit beams, where the Q The transmission beam includes G transmission beam groups, and the G transmission beam groups are divided by the receiving end according to the measurement result, and the measurement result is that the receiving end receives the beam training signal sent by the transmitting end. Measuring the obtained measurement result, the Q and the G are both positive integers;
  • the first determining module 603 is configured to determine, by using a transmit beam that belongs to a different transmit beam group among the Q transmit beams, and send a signal to the receive end.
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receive end.
  • the measurement result includes:
  • the receiving end uses the G transceiver units to perform measurement and measurement on the beam training signals of each of the N transmission beams, and the obtained measurement results of the G transceiver units are obtained.
  • the measurement result of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the transceiver unit group;
  • the Q transmit beams include:
  • the receiving end selects Q transmit beams from the N transmit beams according to measurement results of the G transceiver groups;
  • the G transmit beam groups include:
  • the receiving end divides the G transmit beam groups of the Q transmit beams according to the measurement results of the G transceiver groups.
  • the Q transmit beams include:
  • the receiving end selects Q measurement results of the first Q bits of the received quality in the measurement results of the G transceiver groups, and corresponds to the Q measurement results selected by the N transmit beams.
  • the G transmit beam groups include:
  • the receiving end groups the G transmitting beam groups of the Q transmitting beams according to the Q transmit beams in the corresponding transceiver unit group of the Q measurement results.
  • the Q transmit beams include:
  • the receiving end measurement results for each transceiver unit group are selected in the reception quality measurement result of the receiving cell group Q g Q g measurement results in the top position, the Q measurements obtained, and in the The Q transmit beams corresponding to the Q measurement results selected by the N transmit beams, wherein the Q g are the same or different positive integers for different transceiver units, and the G transmit beam groups correspond to The sum of Q g is the Q;
  • the G transmit beam groups include:
  • each transceiver group measurement results Q g Q g corresponding beam transmitting end, dividing transmission beam corresponding to the group transceiver unit group, and transmission beams obtained G groups.
  • each of the receiving and receiving unit groups includes at least one transceiver unit, and each transceiver unit includes at least one receiving beam, and the measurement results of the G transceiver unit groups include:
  • the receiving end For the beam training signals of the transmit beams of the N transmit beams, the receiving end performs the receive measurement by using the receive beams of the G transceiver groups to obtain the measurement results of the G transceiver groups. And a set of measurement results of the G transceiver groups in the set of measurement results of the G transceiver groups, wherein the measurement result set of each transceiver unit group includes each receive beam using the transceiver unit group And performing measurement results of the received measurement on the beam training signals of the N transmit beams; the measurement result of each transceiver unit group includes N measurement results, where the N measurement results are in the measurement result set of the transceiver group
  • the transmission beam corresponds to the measurement result with the highest reception quality.
  • the receiving module is configured to receive identification information of Q transmit beams in the N transmit beams sent by the receiving end, and packet information and sub-packets of each of the Q transmit beams. Information, wherein a transmit beam corresponding to the same receive beam in each transmit beam group is divided into a transmit beam subgroup;
  • the sending end 600 further includes:
  • the second determining module 604 is configured to determine, by using a transmit beam that belongs to the same transmit beam subgroup among the Q transmit beams, and send a signal to the receive end.
  • the receive beam corresponding to each transmit beam includes:
  • the measurement result of the beam training signal of the transmission beam of all the candidate receiving beams of the receiving end receives the receiving beam corresponding to the measurement result with the highest quality.
  • the receiving module is configured to receive group information of G transmit beam groups sent by the receiving end, where packet information of each transmit beam group includes sending of each sub transmit beam subgroup in the transmit beam group.
  • packet information of each transmit beam group includes sending of each sub transmit beam subgroup in the transmit beam group.
  • Beam subgroup information, each transmit beam subgroup information includes identification information of each transmit beam in the transmit beam subgroup; or
  • the receiving module is configured to receive the beam splitting information of the Q transmit beams that are sent by the receiving end, where the beam splitting information of each transmit beam includes the identifier information of the transmit beam, and the transmit beam group to which the transmit beam belongs.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the foregoing sending end 600 may be the sending end of any embodiment of the method embodiment in the embodiment of the present disclosure, and any implementation manner of the sending end in the method embodiment of the disclosure may be implemented by the present embodiment.
  • the above-mentioned transmitting end 600 in the example is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • the receiving end 800 includes:
  • the measuring module 801 is configured to perform receiving measurement on the beam training signals of the N transmitting beams sent by the transmitting end, and select Q transmitting beams from the N transmitting beams according to the measurement result, and divide the Q transmitting beams.
  • the N, the Q, and the G are all positive integers;
  • the sending module 802 is configured to send, to the sending end, identifier information of the Q transmit beams, and packet information of each of the Q transmit beams, so that the sending end determines that the Q can pass the Q Among the transmission beams, the transmission beams belonging to different transmission beam groups transmit signals to the receiving end at the same time.
  • the measuring module 801 is configured to receive, by using the G transceiver units, the beam training signals of the N transmit beams sent by the sending end, and select, according to the measurement result, select Q transmissions from the N transmit beams. a beam, and dividing the Q transmit beams into G transmit beam groups;
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receiving end.
  • the measurement module 801 includes:
  • the measuring unit 8011 is configured to perform receiving measurement on the G beam transmitting signals of each of the N transmitting beams sent by the transmitting end, and obtain the measurement results of the G transceiver units.
  • the measurement result of each transceiver unit group includes a measurement result of receiving measurement of a beam training signal of the N transmission beams by using the transceiver unit group;
  • the selecting unit 8012 is configured to select Q transmit beams from the N transmit beams according to the measurement results of the G transceiver groups, and divide the Q transmit beams into G transmit beam groups.
  • the selecting unit 8012 is configured to select, in the measurement results of the G transceiver units, Q measurement results whose reception quality is ranked in the first Q bits, and select the N transmit beams.
  • the Q transmit beams corresponding to the Q measurement results, and the Q transmit beams are divided into G transmit beam groups according to the corresponding transmit and receive unit groups of the Q transmit beams in the Q measurement results.
  • the selecting unit 8012 includes:
  • First selecting sub-unit 80121 measurement results for each transceiver unit group, the reception quality of selected top bit Q g Q g measurement results in measurement result of the receiving cell group, to obtain measurements of Q
  • the Q g is the same or a different positive integer for the different transceiver unit groups, and the sum of Q g corresponding to the G transmit beam groups is the Q;
  • a second selection sub-unit 80122 configured to select, among the N transmit beams, Q transmit beams corresponding to the Q measurement results, and send Q g corresponding to Q g measurement results of each transceiver unit group A beam is divided into a transmit beam group corresponding to the transceiver unit group.
  • each transceiver unit group includes at least one transceiver unit, and each transceiver unit includes at least one receiving beam.
  • the measuring unit 8011 includes:
  • a measuring subunit 80111 configured to receive a beam training signal for each of the N transmitting beams sent by the transmitting end, where the receiving end uses each receiving beam of the G transceiver group to perform receiving measurement, and obtains a a measurement result set of the G transceiver units, wherein the measurement result set of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the receiving beams of the transceiver unit group;
  • a third selection subunit 80112 configured to select measurement results of the G transceiver groups in the measurement result set of the G transceiver groups, where the measurement result of each transceiver unit group includes N As a result of the measurement, the N measurement results are the measurement results with the highest reception quality corresponding to each transmission beam in the measurement result set of the transceiver unit group.
  • the receiving end 800 further includes:
  • the selecting module 803 is configured to select one receiving beam for each of the Q transmitting beams in the candidate receiving beam of the receiving end;
  • a dividing module 804 configured to: for each transmitting beam group, the receiving end divides a transmitting beam corresponding to the same receiving beam in the transmitting beam group into one transmitting beam subgroup;
  • the sending module 802 is configured to send, to the sending end, identifier information of Q transmit beams in the N transmit beams, and packet information and sub-packet information of each of the Q transmit beams.
  • the selecting module 803 is configured to obtain, for each of the transmit beams, a measurement result of the beam training signal of the transmit beam of all candidate receive beams of the receiving end, and obtain the highest received quality in the obtained measurement result.
  • the receiving beam corresponding to the measurement result is used as the receiving beam of the transmitting beam.
  • the sending module 802 is configured to send, to the sending end, packet information of G transmit beam groups, where the packet information of each transmit beam group includes sending of each sub transmit beam subgroup in the transmit beam group.
  • Beam subgroup information, each transmit beam subgroup information includes identification information of each transmit beam in the transmit beam subgroup; or
  • the sending module 802 is configured to send the beam splitting information of the Q transmit beams to the sending end, where the beam splitting information of each transmitting beam includes the identifier information of the sending beam, and the sending beam group to which the transmitting beam belongs.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the receiving end 800 may be the receiving end of any embodiment of the method embodiment in the embodiment of the disclosure, and any implementation manner of the receiving end in the method embodiment of the disclosure may be implemented by the present embodiment.
  • the receiving end 800 in the example is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • an embodiment of the present disclosure provides another sending end, where the sending end includes: a processor 1300, a transceiver 1310, a memory 1320, a user interface 1330, and a bus interface, where:
  • the processor 1300 is configured to read a program in the memory 1320 and perform the following process:
  • the beam includes G transmit beam groups, and the G transmit beam groups are divided by the receiving end according to the measurement result, and the measurement result is that the receiving end receives and measures the beam training signal sent by the sending end.
  • the measurement result, the Q and the G are both positive integers;
  • the transmitting end determines that a transmitting beam belonging to a different transmitting beam group among the Q transmitting beams can be transmitted, and simultaneously sends a signal to the receiving end.
  • the transceiver 1310 is configured to receive and transmit data under the control of the processor 1300.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1300 and various circuits of memory represented by memory 1320.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1310 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1330 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1300 is responsible for managing the bus architecture and general processing, and the memory 1320 can store data used by the processor 1300 in performing operations.
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receive end.
  • the measurement result includes:
  • the receiving end uses the G transceiver units to perform measurement and measurement on the beam training signals of each of the N transmission beams, and the obtained measurement results of the G transceiver units are obtained.
  • the measurement result of each transceiver unit group includes a measurement result of receiving measurement of the beam training signals of the N transmission beams by using the transceiver unit group;
  • the Q transmit beams include:
  • the receiving end selects Q transmit beams from the N transmit beams according to the measurement results of the G transceiver groups;
  • the G transmit beam groups include:
  • the receiving end divides the G transmit beam groups of the Q transmit beams according to the measurement results of the G transceiver groups.
  • the Q transmit beams include:
  • the receiving end selects Q measurement results of the first Q bits of the received quality in the measurement results of the G transceiver groups, and corresponds to the Q measurement results selected by the N transmit beams.
  • the G transmit beam groups include:
  • the receiving end groups the G transmitting beam groups of the Q transmitting beams according to the Q transmit beams in the corresponding transceiver unit group of the Q measurement results.
  • the Q transmit beams include:
  • the receiving end measurement results for each transceiver unit group are selected in the reception quality measurement result of the receiving cell group Q g Q g measurement results in the top position, the Q measurements obtained, and in the The Q transmit beams corresponding to the Q measurement results selected by the N transmit beams, wherein the Q g are the same or different positive integers for different transceiver units, and the G transmit beam groups correspond to The sum of Q g is the Q;
  • the G transmit beam groups include:
  • each transceiver group measurement results Q g Q g corresponding beam transmitting end, dividing transmission beam corresponding to the group transceiver unit group, and transmission beams obtained G groups.
  • each of the receiving and receiving unit groups includes at least one transceiver unit, and each transceiver unit includes at least one receiving beam, and the measurement results of the G transceiver unit groups include:
  • the receiving end For the beam training signals of the transmit beams of the N transmit beams, the receiving end performs the receive measurement by using the receive beams of the G transceiver groups to obtain the measurement results of the G transceiver groups. And a set of measurement results of the G transceiver groups in the set of measurement results of the G transceiver groups, wherein the measurement result set of each transceiver unit group includes each receive beam using the transceiver unit group And performing measurement results of the received measurement on the beam training signals of the N transmit beams; the measurement result of each transceiver unit group includes N measurement results, where the N measurement results are in the measurement result set of the transceiver group
  • the transmission beam corresponds to the measurement result with the highest reception quality.
  • the receiving, by the receiving end, the identifier information of the Q transmit beams in the N transmit beams, and the packet information of each of the Q transmit beams including:
  • each transmit beam group Transmit beams corresponding to the same receive beam are divided into one transmit beam subgroup;
  • the processor 1300 is further configured to:
  • the receive beam corresponding to each transmit beam includes:
  • the measurement result of the beam training signal of the transmission beam of all the candidate receiving beams of the receiving end receives the receiving beam corresponding to the measurement result with the highest quality.
  • the sending end receives the identifier information of the Q transmit beams in the N transmit beams sent by the receiving end, and the packet information and the sub-packet information of each of the Q transmit beams. include:
  • the transmitting end receives the group information of the G transmit beam groups sent by the receiving end, where the packet information of each transmit beam group includes the transmit beam subgroup information of each sub transmit beam subgroup in the transmit beam group, and each The transmit beam subgroup information includes identification information of each transmit beam in the transmit beam subgroup; or
  • the transmitting end receives the beam splitting information of the Q transmitting beams that are sent by the receiving end, where the beam splitting information of each transmitting beam includes the identifier information of the sending beam, and the grouping of the sending beam group to which the transmitting beam belongs And a subgroup identifier of the transmit beam subgroup to which the transmit beam belongs.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the foregoing transmitting end may be the transmitting end in the embodiment shown in FIG. 1 to FIG. 5, and any implementation manner of the transmitting end in the embodiment shown in FIG. 1 to FIG. 5 may be used in this embodiment.
  • the above-mentioned transmitting end is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • an embodiment of the present disclosure provides another receiving end, where the receiving end includes: a processor 1400, a transceiver 1410, a memory 1420, a user interface 1430, and a bus interface, where:
  • the processor 1400 is configured to read a program in the memory 1420 and perform the following process:
  • the transceiver 1410 Receiving, by the transceiver 1410, the beam training signals of the N transmit beams sent by the transmitting end, and selecting Q transmit beams from the N transmit beams according to the measurement result, and dividing the Q transmit beams into G a transmit beam group, wherein the N, the Q, and the G are both positive integers;
  • the transceiver 1410 sends the identification information of the Q transmit beams to the sending end, and the packet information of each of the Q transmit beams, so that the transmitting end determines that the Q transmit beams can pass.
  • the transmission beams belonging to different transmission beam groups transmit signals to the receiving end at the same time.
  • the transceiver 1410 is configured to receive and transmit data under the control of the processor 1400.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1400 and various circuits of memory represented by memory 1420.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1410 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1430 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1400 is responsible for managing the bus architecture and general processing, and the memory 1420 can store data used by the processor 1400 in performing operations.
  • the receiving, by the receiving, the beam training signals of the N transmit beams are received and measured, including:
  • the G transmit beam groups respectively correspond to the G transceiver groups of the receiving end.
  • the receiving by using the G transceiver units, receiving and measuring the beam training signals of the N transmit beams sent by the sending end, and selecting Q transmit beams from the N transmit beams according to the measurement result, and
  • the Q transmit beams are divided into G transmit beam groups, including:
  • the G transmit and receive unit groups are used for receiving and measuring, and the measurement results of the G transceiver units are obtained, wherein each of the transmit and receive signals is transmitted and received.
  • the measurement result of the unit group includes a measurement result of receiving and measuring the beam training signals of the N transmission beams by using the transceiver unit group;
  • the selecting the Q transmit beams from the N transmit beams according to the measurement result of the G transceiver groups, and dividing the Q transmit beams into G transmit beam groups includes:
  • the selecting the Q transmit beams from the N transmit beams according to the measurement result of the G transceiver groups, and dividing the Q transmit beams into G transmit beam groups includes:
  • Measurement results for each transceiver unit group, the reception quality are selected top bit Q g Q g measurement results in measurement result of the receiving cell group, Q to obtain measurement results, wherein, for different transceiver units
  • the Q g is the same or a different positive integer, and the sum of Q g corresponding to the G transmit beam groups is the Q;
  • each transceiver unit group includes at least one transceiver unit, and each transceiver unit includes at least one receive beam, and the beam training signal for each of the N transmit beams sent by the sender is used.
  • the G transceiver groups perform reception measurement, and obtain measurement results of the G transceiver groups, including:
  • the beam training signals of each of the N transmit beams sent by the transmitting end are received and measured by using the receiving beams of the G transceiver groups, and the measurement result sets of the G transceiver units are obtained.
  • the measurement result set of each transceiver unit group includes measurement results of receiving measurement of the beam training signals of the N transmission beams by using the receiving beams of the transceiver unit group;
  • the measurement result of the G transceiver groups is selected in the measurement result set of the G transceiver groups, wherein the measurement result of each transceiver unit group includes N measurement results, and the N measurement results are The measurement result of the highest quality of reception of each of the transmission beams in the measurement result set of the transceiver unit group.
  • processor 1400 is further configured to:
  • the transmit beam corresponding to the same receive beam in the transmit beam group is divided into one transmit beam subgroup;
  • the sending to the sending end, the identifier information of the Q transmit beams in the N transmit beams, and the packet information of each of the Q transmit beams, including:
  • selecting one receiving beam for the Q transmitting beams including:
  • the sending to the sending end, the identifier information of the Q transmit beams in the N transmit beams, and the packet information and the sub-packet information of each of the Q transmit beams, including:
  • packet information of the G transmit beam groups where the packet information of each transmit beam group includes transmit beam subgroup information of each sub transmit beam subgroup in the transmit beam group, and each transmit beam subgroup The information includes identification information of each transmit beam in the transmit beam subgroup;
  • the beam splitting information of each transmit beam includes identifier information of the transmit beam, a packet identifier of a transmit beam group to which the transmit beam belongs, and the transmit beam Subgroup ID of the associated transmit beam subgroup.
  • the target transmit beam group includes a target transmit beam, and the target transmit beam corresponding to the receive beam and the target transmit beam group to other transmit The received waves corresponding to the beam are different, and the sub-group identifier of the target transmit beam is empty or a preset identifier.
  • the receiving end may be the receiving end in the embodiment shown in FIG. 1 to FIG. 5, and any embodiment of the receiving end in the embodiment shown in FIG. 1 to FIG. 5 may be used in this embodiment.
  • the above-mentioned receiving end is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

本公开提供一种发送波束确定方法、发送端和接收端,该方法可包括:发送端向接收端发送N个发送波束的波束训练信号;发送端接收接收端发送的N个发送波束中的Q个发送波束的标识信息,以及Q个发送波束中每个发送波束的分组信息,其中,Q个发送波束包括G个发送波束组,G个发送波束组是接收端根据测量结果进行划分的,测量结果为接收端对发送端发送的波束训练信号进行接收测量得到的测量结果;发送端确定能够通过Q个发送波束中属于不同发送波束组的发送波束,同时向接收端发送信号。

Description

一种发送波束确定方法、发送端和接收端
相关申请的交叉引用
本申请主张在2017年3月17日在中国提交的中国专利申请号No.201710160177.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种发送波束确定方法、发送端和接收端。
背景技术
目前通信系统中,接收端可以有一个或者多个收发单元,例如:UE可以有一个或者多个收发单元。但不管接收端有一个还是多个收发单元,发送端通过多个发送波束发送信号时,且接收端均支持同时接收这多个发送波束中部分或者全部发送波束发送的信号。例如:基站通过3个发送波束向UE发送信号,UE可能会同时接收到这3个发送波束中的1个、2个或者3个发送波束发送的信号。但目前通信系统中,发送端由于不确定哪些发送波束同时发送信号时,可以被接收端同时接收,从而可能会存在一些发送波束发送的信号无法被接收端接收的情况,这样就会浪费传输资源。可见,如何确定发送端能够同时向接收端发送信号的发送波束是当前急需解决的技术问题。
发明内容
本公开的目的在于提供一种发送波束确定方法、发送端和接收端,以解决如何确定发送端能够同时向接收端发送信号的发送波束的问题。
为了达到上述目的,本公开实施例提供一种发送波束确定方法,包括:
发送端向接收端发送N个发送波束的波束训练信号,所述N为正整数;
所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根 据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;
所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
可选的,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,所述测量结果包括:
所述接收端对于所述N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
所述Q个发送波束包括:
所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择的Q个发送波束;
所述G个发送波束组,包括:
所述接收端根据所述G个收发单元组的测量结果将所述Q个发送波束划分的G个发送波束组。
可选的,所述Q个发送波束包括:
所述接收端在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束;
所述G个发送波束组包括:
所述接收端按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分的G个发送波束组。
可选的,所述Q个发送波束包括:
所述接收端对于每个收发单元组的测量结果,均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,得到Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
所述G个发送波束组包括:
所述接收端将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组,而得到的G个发送波束组。
可选的,所述接收端中每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述G个收发单元组的测量结果,包括:
对于所述N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,在所述G个收发单元组的测量结果集合中,选择的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
可选的,所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,包括:
所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,其中,每个发送波束组内对应相同接收波束的发送波束被划分成一个发送波束子组;
所述方法还包括:
所述发送端确定能够通过所述Q个发送波束中属于同一发送波束子组的发送波束,同时向所述接收端发送信号。
可选的,每个发送波束对应的接收波束,包括:
所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果中,接收质量最高的测量结果对应的接收波束。
可选的,所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,包括:
所述发送端接收所述接收端发送的G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述发送端接收所述接收端发送的所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
本公开实施例还提供一种发送波束确定方法,包括:
接收端对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,所述N、所述Q和所述G均为正整数;
所述接收端向所述发送端发送所述Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,以使所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
可选的,所述接收端对发送端发送的N个发送波束的波束训练信号进行接收测量,包括:
接收端使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量;
其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,所述接收端使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所 述接收端均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组。
可选的,所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
所述接收端在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分为G个发送波束组。
可选的,所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
对于每个收发单元组的测量结果,所述接收端均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,以得到Q个测量结果,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
所述接收端在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组。
可选的,每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,包括:
对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,其中,每个收发单元组的测量结果集合包 括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;
所述接收端在所述G个收发单元组的测量结果集合中,选择所述G个收发单元组的测量结果,其中,所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
可选的,所述方法还包括:
所述接收端在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束;
对于每个发送波束组,所述接收端均将该发送波束组内对应相同接收波束的发送波束划分成一个发送波束子组;
所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,包括:
所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息。
可选的,所述接收端在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束,包括:
对于每个发送波束,所述接收端均获取所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果,并将获取的测量结果中接收质量最高的测量结果对应的接收波束作为该发送波束的接收波束。
可选的,所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,包括:
所述接收端向所述发送端发送G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述接收端向所述发送端发送所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属 的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
本公开实施例还提供一种发送端,包括:
发送模块,用于向接收端发送N个发送波束的波束训练信号,所述N为正整数;
接收模块,用于接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;
第一确定模块,用于确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
可选的,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,所述测量结果包括:
所述接收端对于所述N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
所述Q个发送波束包括:
所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择的Q个发送波束;
所述G个发送波束组,包括:
所述接收端根据所述G个收发单元组的测量结果将所述Q个发送波束划分的G个发送波束组。
可选的,所述Q个发送波束包括:
所述接收端在所述G个收发单元组的测量结果中,选择接收质量排在前 Q位的Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束;
所述G个发送波束组包括:
所述接收端按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分的G个发送波束组。
可选的,所述Q个发送波束包括:
所述接收端对于每个收发单元组的测量结果,均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,得到Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
所述G个发送波束组包括:
所述接收端将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组,而得到的G个发送波束组。
可选的,所述接收端中每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述G个收发单元组的测量结果,包括:
对于所述N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,在所述G个收发单元组的测量结果集合中,选择的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
可选的,所述接收模块用于接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,其中,每个发送波束组内对应相同接收波束的发送波束被划分成一个发送波束子组;
所述发送端还包括:
第二确定模块,用于确定能够通过所述Q个发送波束中属于同一发送波束子组的发送波束,同时向所述接收端发送信号。
可选的,每个发送波束对应的接收波束,包括:
所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果中,接收质量最高的测量结果对应的接收波束。
可选的,所述接收模块用于接收所述接收端发送的G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述接收模块用于接收所述接收端发送的所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
本公开实施例还提供一种接收端,包括:
测量模块,用于对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,所述N、所述Q和所述G均为正整数;
发送模块,用于向所述发送端发送所述Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,以使所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
可选的,所述测量模块用于使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组;
其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,所述测量模块,包括:
测量单元,用于对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
选择单元,用于根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组。
可选的,所述选择单元用于在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分为G个发送波束组。
可选的,所述选择单元,包括:
第一选择子单元,用于对于每个收发单元组的测量结果,选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,以得到Q个测量结果,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
第二选择子单元,用于在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组。
可选的,每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述测量单元,包括:
测量子单元,用于对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;
第三选择子单元,用于在所述G个收发单元组的测量结果集合中,选择所述G个收发单元组的测量结果,其中,所述每个收发单元组的测量结果包 括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
可选的,所述接收端还包括:
选择模块,用于在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束;
划分模块,用于对于每个发送波束组,所述接收端均将该发送波束组内对应相同接收波束的发送波束划分成一个发送波束子组;
所述发送模块用于向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息。
可选的,所述选择模块用于对于每个发送波束,均获取所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果,并将获取的测量结果中接收质量最高的测量结果对应的接收波束作为该发送波束的接收波束。
可选的,所述发送模块用于向所述发送端发送G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述发送模块用于向所述发送端发送所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
本公开实施例还提供一种发送端,包括:处理器、收发机、存储器、用户接口和总线接口,其中:
所述处理器,用于读取所述存储器中的程序,执行上述提供的发送端侧中任一发送波束确定方法中的步骤。
本公开实施例还提供一种接收端,包括:处理器、收发机、存储器、用户接口和总线接口,其中:
所述处理器,用于读取所述存储器中的程序,执行上述提供的接收端侧中任一发送波束确定方法中的步骤。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,当所述计算机程序被处理器执行时,实现上述发送波束确定方法中的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开实施例,发送端向接收端发送N个发送波束的波束训练信号,所述N为正整数;所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。这样可以实现发送端可以确定能够同时向所述接收端发送信号的发送波束。
附图说明
图1为本公开实施例可应用的网络结构示意图;
图2为本公开实施例提供的一种发送波束确定方法的流程图;
图3为本公开实施例提供的一种发送信号的示意图;
图4为本公开实施例提供的另一种发送信号的示意图;
图5为本公开实施例提供的另一种发送波束确定方法的流程图;
图6为本公开实施例提供的一种发送端的结构示意图;
图7为本公开实施例提供的另一种发送端的结构示意图;
图8为本公开实施例提供的一种接收端的结构示意图;
图9为本公开实施例提供的另一种接收端的结构示意图;
图10为本公开实施例提供的另一种接收端的结构示意图;
图11为本公开实施例提供的另一种接收端的结构示意图;
图12为本公开实施例提供的另一种接收端的结构示意图;
图13为本公开实施例提供的另一种发送端的结构示意图;
图14为本公开实施例提供的另一种接收端的结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1为本公开实施例可应用的网络结构示意图,如图1所示,包括发送端11和接收端12,其中,发送端11可以是基站或者终端,而接收端12也可以是终端或者基站,例如:发送端11为基站,接收端12为终端,则可以实现终端与基站之间的通信,又或者发送端11为终端,则接收端12为基站,也可以实现终端与基站之间的通信,又或者发送端11为基站,接收端12也为基站,则可以实现基站与基站之间的通信,又或者发送端11为终端,接收端12也为终端,则可以实现终端与终端之间的通信。当然,本公开实施例中,并不限定发送端11只能是终端或者基站,例如:发送端11还可以是其他的网络侧设备,同理,接收端12也并不限定只是终端或者设备,例如:第接收端12还可以是其他的网络侧设备,对此本公开实施例不作限定。其中,附图1,以发送端11为基站,接收端12为终端进行举例示意。终端可以是用户终端(User Equipment,UE),例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。基站可以是宏站,如LTE eNB、5G NR NB等;也可以是小站,如低功率节点(LPN:low power node)pico、femto等小站,或者可以是接入点(AP,access point);基站也可以是中央单元(CU,central unit)与其管理和控制的多个传输接收点(TRP,Transmission Reception Point)共同组成的网络节点。另外,一个基站下有一个或多个小区(例如:不同的频点或扇区分裂)。需要说明的是,在本公开实施例中并不限定基站的 具体类型。
请参考图2,本公开实施例提供一种发送波束确定方法,如图2所示,包括以下步骤:
201、发送端向接收端发送N个发送波束的波束训练信号,所述N为正整数;
202、发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;
203、发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
本公开实施例中,上述N个发送波束可以是发送端中的所有或者部分发送波束,例如:上述发送端可以是共有
Figure PCTCN2018077114-appb-000001
个候选的发送波束,每个发送波束可以对应一组波束赋形权值,第n个波束的发送波束赋形权值可以为
Figure PCTCN2018077114-appb-000002
其中K是波束赋形的天线单元数,可以小于发送端的天线单元数,例如一个发送波束仅从一个收发单元连接的K个天线单元发出。其中,上述
Figure PCTCN2018077114-appb-000003
可以是等于或者大于上述N,且在上述发送端为基站时,上述发送波束可以是下行发送波束,而上述发送端为终端时,上述发送波束可以是上行发送波束。
上述N个发送波束的波束训练信号可以是发送端为每个发送波束发射一个波束训练信号。例如对于
Figure PCTCN2018077114-appb-000004
个下行发送波束,基站可以发送
Figure PCTCN2018077114-appb-000005
个训练信号。另外,上述N个发送波束的波束训练信号可以是时分复用(Time Division Multiplexing,TDM)、频分复用(Frequency Division Multiplexing,FDM)或者码分复用(Code Division Multiplexing,CDM),或者各种复用方式的组合进行发送的,对此本公开实施例不作限定。例如:以正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)为基础的系统中,
Figure PCTCN2018077114-appb-000006
个训练信号可以占用
Figure PCTCN2018077114-appb-000007
个OFDM符号,每个训练信号占用1个OFDM符号,训练信号之间为TDM复用。也可以在一个OFDM符号中发射多个波束的训 练信号,他们之间是FDM复用,或者CDM复用。
且上述N个发送波束的波束训练信号可以是使用该波束对应的波束赋形权值赋形之后发出。另外,步骤201中的发送波束训练信号可以是周期性发送,或者非周期性发送。
在发送端发送波束训练信号之后,接收端就对发送端发送的波束训练信号进行接收测量,例如:接收端对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,所述Q和所述G均为正整数。
其中,接收端可以是使用接收端的全部或者部分接收单元对N个发送波束的波束训练信号进行接收测量,例如:可以是接收端使用全部或者部分接收单元分别对N个发送波束中的每个发送波束的波束训练信号进行接收测量,以得到测量结果,其中,每个测量结果均包括对应的收发单元对每个发送波束的波束训练信号的测量结果。或者可以是,接收端使用全部或者部分接收单元分别对N个发送波束的波束训练信号进行接收测量,得到测量结果,其中,每个测量结果可以包括对应的收发单元对一个或者多个发送波束的波束训练信号的测量结果。
而上述Q个发送波束可以是进行上述接收测量得到的测量结果中接收质量排在前Q位的测量结果对应的发送波束,或者可以是在上述测量结果选择一定数量的测量结果,并将选择出的测结果测量对应的Q个发送波束。需要说明的是,由于针对同一个发送波束可能采用相同的收发单元进行接收测量,且这些测量结果的接收质量都比较好时,那么,针对不同的收发单元的测量结果可能会选择出相同的发送波束,即上述Q个发送波束中可能会存在相同的波束。例如:针对发送波束a,分别使用了收发单元a和收发单元b进行了接收测量,且收发单元a和收发单元b对发送波束a的测量结果的接收质量均是收发单元a和收发单元b的测量结果中最优的测量结果,从而针对收发单元a和收发单元b均会选择发送波束a。
另外,由于上述Q个发送波束是根据上述测量结果进行划分,这样一个发送波束必然与特定的收发单元或者特定收发单元组对应,从而就可以将对 应相同收发单元或者收发单元组的发送波束划分而同一个发送波束组,即一个发送波束组对应收发单元或者收发单元组。或者也可以是接收端将认为能够同时接收的发送波束划分为一个发送波束组。
这样在接收端选择Q个发送波束和划分G个发送波束组后,就可以向所述发送端发送所述Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息。而发送端接收这些信息后,就可以知道各发送波束所属的发送波束组,进而确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。其中,能够同时向所述接收端发送信号的发送波束可以是,这些发送波束可以同时向接收端发送信号,且可以被接收端同时接收,即能够同时向所述接收端发送信号的发送波束可以理解为发送信号能够被接收端同时接收的发送波束。另外,本公开实施例中,同时可以理解为同时一个时间点(例如一个OFDM符号)。
另外,本公开实施例中,在发送端确定能够同时向所述接收端发送信号的发送波束后,可以灵活的选择同时传输的发送波束,且发送端还可以据此选择相应的传输方式,例如通过能够同时向所述接收端发送信号的多个发送波束发送多个并行数据流实现空分复用,或者将一个数据流通过能够同时向所述接收端发送信号的多个发送波束,实现空间分集传输,以提高数据传输效率。
另外,本公开实施例中,若发送端为基站时,则发送波束为下行发送波束,若发送端为终端时,则发送波束为上行发送波束。
作为一种可选的实施方式,所述G个发送波束组分别与所述接收端的G个收发单元组对应。例如:接收端可以使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量。
其中,上述G个收发单元组可以是接收端预先划分好的,划分的方式可以是接收端自动划分的,或者接收端根据用户输入的操作而划分,或者接收端基于各收发单元的性能进行划分的,对此本公开实施例不作限定,且每个收发单元组可以包括不同或者相同数量的收发单元,每个收发单元组内至少有一个收发单元,每个收发单元组内的收发单元连接到若干个天线单元。不同收发单元组内的收发单元可以独立的对接收到的信号进行波束赋形,并送 到基带处理单元进行后续计算。
上述接收端使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量可以是,接收端使用G个收发单元组分别对N个发送波束中的每个发送波束的波束训练信号进行接收测量,以得到G个测量结果,其中,每个测量结果均包括对应的收发单元组对每个发送波束的波束训练信号的测量结果,例如:上述G为2,上述N为4,则得到2个测量结果,每个测量结果包括对于4个发送波束的测量结果。或者可以是,接收端使用G个收发单元组分别对N个发送波束的波束训练信号进行接收测量,得到G个测量结果,其中,每个测量结果可以包括对应的收发单元组对一个或者多个发送波束的波束训练信号的测量结果。
而上述Q个发送波束可以是进行上述接收测量得到的测量结果中接收质量排在前Q位的测量结果对应的发送波束,或者可以是在上述G个收发单元组每个收发单元组对应的测量结果选择一定数量的测量结果,并将选择出的测结果测量对应的Q个发送波束。需要说明的是,由于针对同一个发送波束可能采用相同的收发单元组进行接收测量,且这些测量结果的接收质量都比较好时,那么,针对不同的收发单元组的测量结果可能会选择出相同的发送波束,即上述Q个发送波束中可能会存在相同的波束。例如:针对发送波束a,分别使用了收发单元组a和收发单元组b进行了接收测量,且收发单元组a和收发单元组b对发送波束a的测量结果的接收质量均是收发单元组a和收发单元组b的测量结果中最优的测量结果,从而针对收发单元组a和收发单元组b均会选择发送波束a。
另外,由于上述Q个发送波束是根据上述G个收发单元组的测量结果进行划分,这样一个发送波束必然与一个收发单元组对应,从而就可以将对应相同收发单元组的发送波束划分而同一个发送波束组,即一个发送波束组对应一个收发单元组。
该实施方式中,由于G个发送波束组分别与所述接收端的G个收发单元组对应,从而属于不同的发送波束组的发送波束发送信号时更加容易被接收端同时接收,以提高数据传输效率。
需要说明的是,本公开实施例中,并不限定接收端通过G个收发单元组 进行接收测量,例如:接收端也可以是通过以收发单元为单位进行接收测量,并根据该测量结果选择与收发单元对应的发送波束组,即一个发送波束组对应一个发送单元,这样同样可以实现属于不同发送波束组的发送波束同时向接收端发送信号时能够被接收端同时接收。
可选的,上述实施方式,所述测量结果包括:
所述接收端对于所述N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
所述Q个发送波束包括:
所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择的Q个发送波束;
所述G个发送波束组,包括:
所述接收端根据所述G个收发单元组的测量结果将所述Q个发送波束划分的G个发送波束组。
该实施方式中,可以实现上述Q个发送波束是根据所述G个收发单元组的测量结果选择的,且上述G个收发单元组也是根据所述G个收发单元组的测量结果划分的。由于每个收发单元组的测量结果包括使用该收发单元组对N个发送波束的波束训练信号进行接收测量的测量结果,即每个收发单元组均对所有发送波束的波束训练信号进行接收测量,这样可以使得测量结果更加全面,从而可以选择出更优的Q个发送波束。例如:
对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均可以使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果;
所述接收端再根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组。
其中,上述对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均可以使用所述G个收发单元组进行接收测量可以是,对于每个发送波束的波束训练信号,均使用G个收发单元组进行接收测量, 即每个收发单元组均对所有发送波束的波束训练信号进行接收测量。
可选的,该实施方式中,上述Q个发送波束包括:
所述接收端在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束;
所述G个发送波束组包括:
所述接收端按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分的G个发送波束组。
该实施方式中,可以选择出接收质量排在前Q位的Q个测量结果对应的Q个发送波束,从而可以保持发送波束的接收质量,以提高数据传输质量。例如:接收端可以在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分为G个发送波束组。
假设接收端有2个收发单元组,发送端有4个下行发送波束,则接收端一共有8个测量值,测量结果如下表所示(单位为dBm):
表1:
  下行发送波束1 下行发送波束2 下行发送波束3 下行发送波束4
收发单元组1 -70 -68 -54 -80
收发单元组2 -82 -100 -72 -92
假设Q=4,则接收质量最高的4个发送波束分别为:下行发送波束3(收发单元组1),下行发送波束2(收发单元组1),下行发送波束1(收发单元组1),下行发送波束3(收发单元组2)。其中下行发送波束3出现了2次,分别对应收发单元组1和收发单元组2。即由于有多个收发单元组进行接收,在本公开实施例中,Q个发送波束中有可能存在重复的发送波束。
那么,G个发送波束分组则为两组,分别是:
第1组对应收发单元组1,其中的波束为:下行发送波束3,下行发送波束2,下行发送波束1。
第2组对应收发单元组2,其中的波束为:下行发送波束3。
可选的,上述实施方式中,上述Q个发送波束包括:
所述接收端对于每个收发单元组的测量结果,均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,得到Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
所述G个发送波束组包括:
所述接收端将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组,而得到的G个发送波束组。
该实施方式中,可以实现每个收发单元组中选择Q g个测量结果对应的,得到Q个测量结果,这样可以为每个收发单元组选择接收质量最优的Q g个测量结果,从而提高接收端每个收发单元组的接收性能。例如:
对于每个收发单元组的测量结果,接收端均可以选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,以得到Q个测量结果;接收端再可以在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组。
需要说明的是,上述Q g可以是发送端预先配置给接收端,也可以是接收端自行决定的。且上述g=1,2,…,G,例如:Q1=Q2=2,或者Q1=2,Q2=3等,但Q=Q 1+Q 2+…+Q G
具体的,接收端可以将第g个收发单元组对每个下行发送波束的测量结果进行排序,选择接收质量最高的Q g个下行发送波束,同样,这里不同的收发组选择的下行发送波束有可能有重复。
例如:仍然以表1中的测量结果为例,如果Q=4,并且限定Q1=Q2=2,则波束选择和分组的结果为:
第1组对应收发单元组1,其中的波束为:下行发送波束3,下行发送波束2。
第2组对应收发单元组2,其中的波束为:下行发送波束3,下行发送波束1。
另外,本公开实施例中,发送波束的测量结果的接收质量可以通过参考信号接收功率(RSRP)表征,也可以用其他的测量表征,对此本公开实施例不作限定。且为了降低计算量接收端端在按照接收质量对发送波束进行排序时还可以设置一定的门限值,只有接收质量高于门限值的下行发送波束参与排序。
可选的,上述实施方式中,所述接收端中每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述G个收发单元组的测量结果,包括:
对于所述N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,在所述G个收发单元组的测量结果集合中,选择的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
该实施方式中,可以实现上述G个收发单元组的测量结果,是每个收发单元组内选择各每个发送波束对应的接收质量最高的测量结果,从而可以选择出更优的Q个发送波束。例如:针对收发单元组1,该收发单元组1包括接收波束1和2,那么,针对收发单元组1的测量结果集合就包括接收波束1对N个发送波束的测量结果,以及接收波束2对N个发送波束的测量结果;其中,针对发送波束1在收发单元组1的测量结果集合内接收质量最高的为接收波束1的测量结果,针对发送波束2在收发单元组1的测量结果集合内接收质量最高的为接收波束2的测量结果,那么,收发单元组1的测量结果为接收波束1对发送波束1的测量结果和接收波束2对发送波束2的测量结果。
针对于接收端可以是,对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,接收端均可以使用所述G个收发单元组中的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合;接收端再在所述 G个收发单元组的测量结果集合中,选择所述G个收发单元组的测量结果。这样可以实现接收端针对每个发送波束的训练信号,均使用所有收发单元组内的所有接收波束进行接收测量,以选择出每个收发单元组内对各发送波束最优的测量结果。
另外,本公开实施例中,接收端可以共有
Figure PCTCN2018077114-appb-000008
个接收波束,每个接收波束对应一组波束赋形权值,第n个波束的接收波束赋形权值可以为
Figure PCTCN2018077114-appb-000009
其中L是波束赋形的天线单元数,可以小于接收端的天线单元数,例如L个天线单元接收到的信号经波束赋形权值加权后可以合并送到一个收发单元,以得相应的测量结果。
作为一种可选的实施方式,所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,包括:
所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,其中,每个发送波束组内对应相同接收波束的发送波束被划分成一个发送波束子组;
所述方法还包括:
所述发送端确定能够通过所述Q个发送波束中属于同一发送波束子组的发送波束,同时向所述接收端发送信号。
该实施方式中,可以实现获取Q个发送波束中各发送波束的分组信息和子分组信息,从而可以确定各发送波束所属的发送波束组,以及所属的发送波束子组,从而可以确定能够通过所述Q个发送波束中属于同一发送波束子组的发送波束,同时向所述接收端发送信号,即接收端能够被同时接收的发送波束归属为同一个波束子组。以及还可以确定所述Q个发送波束中属于不同发送波束组的发送波束,能够同时向所述接收端发送信号,这样可以确定出更多可以同时向所述接收端发送信号的发送波束,从而提高数据传输的效率。例如:发送波束1属于发送波束组1,发送波束2属于发送波束组1,发送波束3属于发送波束组1,且发送波束1和发送波束2属于发送波束子组1,发送波束4属于发送波束组2;那么,发送端就可以确定发送波束1和发送 波束2能够同时向所述接收端发送信号。且发送波束1和发送波束4能够同时向所述接收端发送信号,发送波束2和发送波束4能够同时向所述接收端发送信号,发送波束3和发送波束4能够同时向所述接收端发送信号。例如:如图3所示,发送波束(BT)1和发送波束(BT)2同时向接收端发送信号,且被接收端的收发单元(TXRU)0的接收波束(BR)1同时接收;又例如:如图4所示,发送波束(BT)1和发送波束(BT)4能够同时向所述接收端发送信号,且分别被接收端的收发单元(TXRU)0的接收波束(BR)1和收发单元(TXRU)1的接收波束(BR)2同时接收。
其中,该实施方式中,接收端可以是在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束;对于每个发送波束组,所述接收端均将该发送波束组内对应相同接收波束的发送波束划分成一个发送波束子组;接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息。其中,上述接收端的候选接收波可以是接收端中包括的接收波束,这个候选可以理解为发送端的发送波束对应的接收波束的候选者,即在候选接收波束中选择发送波束对应的接收波束,且这些候选接收波束可以是接收端预先配置的,或者用户设置,对此本公开实施例不作限定。
例如:对于第g组的Q g个下行发送波束,接收端进一步可以将其分为Pg个子组,第p个子组内的下行发送波束个数为R p,p=1,2,…,P g。并且有R 1+R 2+…+R Pg<=Q g。第g组内可以有发送波束不属于任何一个子组,即R 1+R 2+…+R Pg<Q g。如果第g个发送波束组内的任意两个波束都不能被接收端同时接收,则P g=0,即第g组内没有划分出任何子组。如果第g个发送波束组内的一个波束不能和同一个发送波束组内任何其他波束被同时接收,则该发送波束不属于任何一个波束子组。或者可以约定一个特殊的子组,第g组内不能和任何其他波束被同时接收的波束皆分于该子组内。
例如:发送波束组1中包括发送波束1、发送波束2和发送波束3,其中,接收端为发送波束1、发送波束2和发送波束3分别选择接收波束1、接收波束1和接收波束2,则发送波束1和发送波束2对应相同接收波束1,从而接收端将发送波束1和发送波束2划分成一个发送波束子组。
可选的,该实施方式中,每个发送波束对应的接收波束,包括:
所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果中,接收质量最高的测量结果对应的接收波束。
该实施方式中,可以实现每个发送波束对应的接收波束为,接收端的所有接收波束中对于该发送波束的接收质量最高的接收波束,从而提高数据传输的质量。
在该实施方式中,接收端可以是对于每个发送波束,接收端均可以获取所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果,并将获取的测量结果中接收质量最高的测量结果对应的接收波束作为该发送波束的接收波束。
可选的,上述实施方式中,所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,包括:
所述发送端接收所述接收端发送的G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述发送端接收所述接收端发送的所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
其中,发送波束的标识信息可以是在系统内定义的每个波束对应的编号,或者是发送波束训练信号的索引,如资源索引,序列索引,时间索引,端口索引,以及它们之间的组合形式等,对此本公开实施例不作限定。
其中,上述第一种方式可以采用如下表2所示的形式。优选的,接收端还可以为每个分组及子组赋予唯一的标识,并将该标识一同上报。例如:每个发送波束组的分组信息还包括该发送波束组的组标识,每个发送波束子组信息还包括该发送波束子组的子组标识。具体可以参见图2,其中,发送波束标识(m,n,q)是第m个下行发送波束分组中第n个子组的第q个下行发送 波束的标识。
表2:
Figure PCTCN2018077114-appb-000010
Figure PCTCN2018077114-appb-000011
需要说明的是,分组标识和子组标识不必针对每个下行发送波束重复都上报,可以对属于同一个分组或者子组的下行发送波束上报一个共同的分组或者子组标识,从而减少传输开销。
上述第二种方式,接收端可以为每个分组及子组赋予唯一的标识,接收端上报的发送波束的波束划分信息如下表3所示:
表3:
Figure PCTCN2018077114-appb-000012
其中g i是第i个发送波束所属于的下行发送分组的标识,s i是第i个发送波束所属于的子组的标识,i=1,2,…,Q,g i∈{1,2,…,G},s i∈{1,2,…,P gi}。
通过上述两种实施方式,可以实现灵活地向发送端上报各发送波束的分组信息和子组信息。
可选的,上述实施方式中,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。这样可以实现对于不能和同一个分组内的任何其他波束被同时接收的下行发送波束,其子组标识为空(不属于任何子组),或者给予一个特殊的子组标识,例如-1。从而让发送端能够准确确定哪些发送波束能够同时向接收端发送信号。
需要说明的是,本公开实施例介绍的多种可选的实施方式,彼此可以相 互结合实现,也可以单独实现。
本公开实施例,发送端向接收端发送N个发送波束的波束训练信号,所述N为正整数;所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。这样可以实现发送端可以确定能够同时向所述接收端发送信号的发送波束。
请参考图5,本公开实施例提供另一种发送波束确定方法,如图5所示,包括以下步骤:
501、接收端对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,所述N、所述Q和所述G均为正整数;
502、接收端向所述发送端发送所述Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,以使所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
可选的,所述接收端对发送端发送的N个发送波束的波束训练信号进行接收测量,包括:
接收端使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量;
其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,所述接收端使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组进行接收测量,得到所述G个收发单元 组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组。
可选的,所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
所述接收端在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分为G个发送波束组。
可选的,所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
对于每个收发单元组的测量结果,所述接收端均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,以得到Q个测量结果,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
所述接收端在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组。
可选的,每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,包括:
对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行 接收测量的测量结果;
所述接收端在所述G个收发单元组的测量结果集合中,选择所述G个收发单元组的测量结果,其中,所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
可选的,所述方法还包括:
所述接收端在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束;
对于每个发送波束组,所述接收端均将该发送波束组内对应相同接收波束的发送波束划分成一个发送波束子组;
所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,包括:
所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息。
可选的,所述接收端在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束,包括:
对于每个发送波束,所述接收端均获取所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果,并将获取的测量结果中接收质量最高的测量结果对应的接收波束作为该发送波束的接收波束。
可选的,所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,包括:
所述接收端向所述发送端发送G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述接收端向所述发送端发送所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
需要说明的,本公开实施例中接收端可以是包括一个或者多个收发单元的接收端。
需要说明的是,本实施例作为与图2所示的实施例中对应的接收端的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参考图6,本公开实施例提供一种发送端,如图6所示,发送端600包括:
发送模块601,用于向接收端发送N个发送波束的波束训练信号,所述N为正整数;
接收模块602,用于接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;
第一确定模块603,用于确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
可选的,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,所述测量结果包括:
所述接收端对于所述N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
所述Q个发送波束包括:
所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中 选择的Q个发送波束;
所述G个发送波束组,包括:
所述接收端根据所述G个收发单元组的测量结果将所述Q个发送波束划分的G个发送波束组。
可选的,所述Q个发送波束包括:
所述接收端在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束;
所述G个发送波束组包括:
所述接收端按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分的G个发送波束组。
可选的,所述Q个发送波束包括:
所述接收端对于每个收发单元组的测量结果,均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,得到Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
所述G个发送波束组包括:
所述接收端将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组,而得到的G个发送波束组。
可选的,所述接收端中每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述G个收发单元组的测量结果,包括:
对于所述N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,在所述G个收发单元组的测量结果集合中,选择的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收 质量最高的测量结果。
可选的,所述接收模块用于接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,其中,每个发送波束组内对应相同接收波束的发送波束被划分成一个发送波束子组;
如图7所示,所述发送端600还包括:
第二确定模块604,用于确定能够通过所述Q个发送波束中属于同一发送波束子组的发送波束,同时向所述接收端发送信号。
可选的,每个发送波束对应的接收波束,包括:
所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果中,接收质量最高的测量结果对应的接收波束。
可选的,所述接收模块用于接收所述接收端发送的G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述接收模块用于接收所述接收端发送的所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
需要说明的是,本实施例中上述发送端600可以是本公开实施例中方法实施例中任意实施方式的发送端,本公开实施例中方法实施例中发送端的任意实施方式都可以被本实施例中的上述发送端600所实现,以及达到相同的有益效果,此处不再赘述。
请参考图8,本公开实施例提供一种接收端,如图8所示,接收端800包括:
测量模块801,用于对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,所述N、所述Q和所述G均为正整数;
发送模块802,用于向所述发送端发送所述Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,以使所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
可选的,所述测量模块801用于使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组;
其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,如图9所示,所述测量模块801,包括:
测量单元8011,用于对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
选择单元8012,用于根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组。
可选的,所述选择单元8012用于在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分为G个发送波束组。
可选的,如图10所示,所述选择单元8012,包括:
第一选择子单元80121,用于对于每个收发单元组的测量结果,选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,以得到Q个测量结果,其中,对于不同的收发单元组所述Q g为相同或者不同的正整 数,且所述G个发送波束组对应的Q g之和为所述Q;
第二选择子单元80122,用于在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组。
可选的,每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,如图11所示,所述测量单元8011,包括:
测量子单元80111,用于对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;
第三选择子单元80112,用于在所述G个收发单元组的测量结果集合中,选择所述G个收发单元组的测量结果,其中,所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
可选的,如图12所示,所述接收端800还包括:
选择模块803,用于在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束;
划分模块804,用于对于每个发送波束组,所述接收端均将该发送波束组内对应相同接收波束的发送波束划分成一个发送波束子组;
所述发送模块802用于向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息。
可选的,所述选择模块803用于对于每个发送波束,均获取所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果,并将获取的测量结果中接收质量最高的测量结果对应的接收波束作为该发送波束的接收波束。
可选的,所述发送模块802用于向所述发送端发送G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波 束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述发送模块802用于向所述发送端发送所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
需要说明的是,本实施例中上述接收端800可以是本公开实施例中方法实施例中任意实施方式的接收端,本公开实施例中方法实施例中接收端的任意实施方式都可以被本实施例中的接收端800所实现,以及达到相同的有益效果,此处不再赘述。
请参考图13,本公开实施例提供另一种发送端,该发送端包括:处理器1300、收发机1310、存储器1320、用户接口1330和总线接口,其中:
处理器1300,用于读取存储器1320中的程序,执行下列过程:
通过收发机1310向接收端发送N个发送波束的波束训练信号,所述N为正整数;
通过收发机1310接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;
所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
其中,收发机1310,用于在处理器1300的控制下接收和发送数据。
在图13中,总线架构可以包括任意数量的互联的总线和桥,具体由处理 器1300代表的一个或多个处理器和存储器1320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1310可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1300负责管理总线架构和通常的处理,存储器1320可以存储处理器1300在执行操作时所使用的数据。
可选的,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,所述测量结果包括:
所述接收端对于所述N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
所述Q个发送波束包括:
所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择的Q个发送波束;
所述G个发送波束组,包括:
所述接收端根据所述G个收发单元组的测量结果将所述Q个发送波束划分的G个发送波束组。
可选的,所述Q个发送波束包括:
所述接收端在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束;
所述G个发送波束组包括:
所述接收端按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分的G个发送波束组。
可选的,所述Q个发送波束包括:
所述接收端对于每个收发单元组的测量结果,均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,得到Q个测量结果,并在所述N个发送波束中选择的所述Q个测量结果对应的Q个发送波束,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
所述G个发送波束组包括:
所述接收端将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组,而得到的G个发送波束组。
可选的,所述接收端中每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述G个收发单元组的测量结果,包括:
对于所述N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,在所述G个收发单元组的测量结果集合中,选择的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
可选的,所述接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,包括:
接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,其中,每个发送波束组内对应相同接收波束的发送波束被划分成一个发送波束子组;
处理器1300还用于:
确定能够通过所述Q个发送波束中属于同一发送波束子组的发送波束,同时向所述接收端发送信号。
可选的,每个发送波束对应的接收波束,包括:
所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果中,接收质量最高的测量结果对应的接收波束。
可选的,所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,包括:
所述发送端接收所述接收端发送的G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
所述发送端接收所述接收端发送的所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
需要说明的是,本实施例中上述发送端可以是图1-图5所示的实施例中的发送端,图1-图5所示实施例中发送端的任意实施方式都可以被本实施例中的上述发送端所实现,以及达到相同的有益效果,此处不再赘述。
请参考图14,本公开实施例提供另一种接收端,该接收端包括:处理器1400、收发机1410、存储器1420、用户接口1430和总线接口,其中:
处理器1400,用于读取存储器1420中的程序,执行下列过程:
通过收发机1410对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,所述N、所述Q和所述G均为正整数;
收发机1410向所述发送端发送所述Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,以使所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
其中,收发机1410,用于在处理器1400的控制下接收和发送数据。
在图14中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1400代表的一个或多个处理器和存储器1420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1410可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1430还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1400负责管理总线架构和通常的处理,存储器1420可以存储处理器1400在执行操作时所使用的数据。
可选的,所述对发送端发送的N个发送波束的波束训练信号进行接收测量,包括:
使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量;
其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
可选的,所述使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组。
可选的,所述根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个 测量结果,并在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分为G个发送波束组。
可选的,所述根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
对于每个收发单元组的测量结果,均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,以得到Q个测量结果,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组。
可选的,每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,包括:
对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;
在所述G个收发单元组的测量结果集合中,选择所述G个收发单元组的测量结果,其中,所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
可选的,处理器1400还用于:
在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束;
对于每个发送波束组,均将该发送波束组内对应相同接收波束的发送波束划分成一个发送波束子组;
所述向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,包括:
向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息。
可选的,所述在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束,包括:
对于每个发送波束,均获取所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果,并将获取的测量结果中接收质量最高的测量结果对应的接收波束作为该发送波束的接收波束。
可选的,所述向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,包括:
向所述发送端发送G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
向所述发送端发送所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
可选的,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
需要说明的是,本实施例中上述接收端可以是图1-图5所示的实施例中的接收端,图1-图5所示实施例中接收端的任意实施方式都可以被本实施例中的上述接收端所实现,以及达到相同的有益效果,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的, 例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (36)

  1. 一种发送波束确定方法,包括:
    发送端向接收端发送N个发送波束的波束训练信号,所述N为正整数;
    所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;
    所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
  2. 如权利要求1所述的方法,其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
  3. 如权利要求2所述的方法,其中,所述测量结果包括:
    所述接收端对于所述N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
    所述Q个发送波束包括:
    所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择的Q个发送波束;
    所述G个发送波束组,包括:
    所述接收端根据所述G个收发单元组的测量结果将所述Q个发送波束划分的G个发送波束组。
  4. 如权利要求1-3中任一项所述的方法,其中,所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,包括:
    所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信 息,其中,每个发送波束组内对应相同接收波束的发送波束被划分成一个发送波束子组;
    所述方法还包括:
    所述发送端确定能够通过所述Q个发送波束中属于同一发送波束子组的发送波束,同时向所述接收端发送信号。
  5. 如权利要求4所述的方法,其中,所述发送端接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,包括:
    所述发送端接收所述接收端发送的G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
    所述发送端接收所述接收端发送的所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
  6. 如权利要求5所述的方法,其中,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
  7. 一种发送波束确定方法,包括:
    接收端对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,所述N、所述Q和所述G均为正整数;
    所述接收端向所述发送端发送所述Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,以使所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
  8. 如权利要求7所述的方法,其中,所述接收端对发送端发送的N个 发送波束的波束训练信号进行接收测量,包括:
    接收端使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量;
    其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
  9. 如权利要求8所述的方法,其中,所述接收端使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
    对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
    所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组。
  10. 如权利要求9所述的方法,其中,所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
    所述接收端在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分为G个发送波束组。
  11. 如权利要求9所述的方法,其中,所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,包括:
    对于每个收发单元组的测量结果,所述接收端均选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,以得到Q个测量结果,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且所述G个发送波束组对应的Q g之和为所述Q;
    所述接收端在所述N个发送波束中选择所述Q个测量结果对应的Q个发 送波束,以及将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组。
  12. 如权利要求9-11中任一项所述的方法,其中,每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,包括:
    对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;
    所述接收端在所述G个收发单元组的测量结果集合中,选择所述G个收发单元组的测量结果,其中,所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
  13. 如权利要求7-11中任一项所述的方法,其中,所述方法还包括:
    所述接收端在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束;
    对于每个发送波束组,所述接收端均将该发送波束组内对应相同接收波束的发送波束划分成一个发送波束子组;
    所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,包括:
    所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息。
  14. 如权利要求13所述的方法,其中,所述接收端在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束,包括:
    对于每个发送波束,所述接收端均获取所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果,并将获取的测量结果中接收质量 最高的测量结果对应的接收波束作为该发送波束的接收波束。
  15. 如权利要求13所述的方法,其中,所述接收端向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,包括:
    所述接收端向所述发送端发送G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
    所述接收端向所述发送端发送所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
  16. 如权利要求15所述的方法,其中,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
  17. 一种发送端,包括:
    发送模块,用于向接收端发送N个发送波束的波束训练信号,所述N为正整数;
    接收模块,用于接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,其中,所述Q个发送波束包括G个发送波束组,所述G个发送波束组是所述接收端根据测量结果进行划分的,所述测量结果为所述接收端对所述发送端发送的波束训练信号进行接收测量得到的测量结果,所述Q和所述G均为正整数;
    第一确定模块,用于确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
  18. 如权利要求17所述的发送端,其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
  19. 如权利要求18所述的发送端,其中,所述测量结果包括:
    所述接收端对于所述N个发送波束中的每个发送波束的波束训练信号, 均使用所述G个收发单元组进行接收测量,得到的所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
    所述Q个发送波束包括:
    所述接收端根据所述G个收发单元组的测量结果从所述N个发送波束中选择的Q个发送波束;
    所述G个发送波束组,包括:
    所述接收端根据所述G个收发单元组的测量结果将所述Q个发送波束划分的G个发送波束组。
  20. 如权利要求17-19中任一项所述的发送端,其中,所述接收模块用于接收所述接收端发送的所述N个发送波束中的Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息,其中,每个发送波束组内对应相同接收波束的发送波束被划分成一个发送波束子组;
    所述发送端还包括:
    第二确定模块,用于确定能够通过所述Q个发送波束中属于同一发送波束子组的发送波束,同时向所述接收端发送信号。
  21. 如权利要求20所述的发送端,其中,所述接收模块用于接收所述接收端发送的G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
    所述接收模块用于接收所述接收端发送的所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
  22. 如权利要求21所述的发送端,其中,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
  23. 一种接收端,包括:
    测量模块,用于对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组,所述N、所述Q和所述G均为正整数;
    发送模块,用于向所述发送端发送所述Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息,以使所述发送端确定能够通过所述Q个发送波束中属于不同发送波束组的发送波束,同时向所述接收端发送信号。
  24. 如权利要求23所述的接收端,所述测量模块用于使用G个收发单元组对发送端发送的N个发送波束的波束训练信号进行接收测量,并根据测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组;
    其中,所述G个发送波束组分别与所述接收端的G个收发单元组对应。
  25. 如权利要求24所述的接收端,其中,所述测量模块,包括:
    测量单元,用于对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,均使用所述G个收发单元组进行接收测量,得到所述G个收发单元组的测量结果,其中,每个收发单元组的测量结果包括使用该收发单元组对所述N个发送波束的波束训练信号进行接收测量的测量结果;
    选择单元,用于根据所述G个收发单元组的测量结果从所述N个发送波束中选择Q个发送波束,以及将所述Q个发送波束划分为G个发送波束组。
  26. 如权利要求25所述的接收端,其中,所述选择单元用于在所述G个收发单元组的测量结果中,选择接收质量排在前Q位的Q个测量结果,并在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及按照所述Q个发送波束在所述Q个测量结果中对应的收发单元组,将所述Q个发送波束划分为G个发送波束组。
  27. 如权利要求25所述的接收端,其中,所述选择单元,包括:
    第一选择子单元,用于对于每个收发单元组的测量结果,选择接收质量在该接收单元组的测量结果中排在前Q g位的Q g个测量结果,以得到Q个测量结果,其中,对于不同的收发单元组所述Q g为相同或者不同的正整数,且 所述G个发送波束组对应的Q g之和为所述Q;
    第二选择子单元,用于在所述N个发送波束中选择所述Q个测量结果对应的Q个发送波束,以及将每个收发单元组的Q g个测量结果对应的Q g个发送波束,划分与该收发单元组对应的发送波束组。
  28. 如权利要求25-27中任一项所述的接收端,其中,每个收发单元组包括至少一个收发单元,且每个收发单元包括至少一个接收波束,所述测量单元,包括:
    测量子单元,用于对于发送端发送的N个发送波束中的每个发送波束的波束训练信号,所述接收端均使用所述G个收发单元组的各接收波束进行接收测量,得到所述G个收发单元组的测量结果集合,其中,每个收发单元组的测量结果集合包括使用该收发单元组的各接收波束对所述N个发送波束的波束训练信号进行接收测量的测量结果;
    第三选择子单元,用于在所述G个收发单元组的测量结果集合中,选择所述G个收发单元组的测量结果,其中,所述每个收发单元组的测量结果包括N个测量结果,该N个测量结果为该收发单元组的测量结果集合内每个发送波束对应的接收质量最高的测量结果。
  29. 如权利要求23-27中任一项所述的接收端,其中,所述接收端还包括:
    选择模块,用于在所述接收端的候选接收波束中,为所述Q个发送波束均选择一个接收波束;
    划分模块,用于对于每个发送波束组,所述接收端均将该发送波束组内对应相同接收波束的发送波束划分成一个发送波束子组;
    所述发送模块用于向所述发送端发送所述N个发送波束中Q个发送波束的标识信息,以及所述Q个发送波束中每个发送波束的分组信息和子分组信息。
  30. 如权利要求29所述的接收端,其中,所述选择模块用于对于每个发送波束,均获取所述接收端的所有候选接收波束对该发送波束的波束训练信号的测量结果,并将获取的测量结果中接收质量最高的测量结果对应的接收波束作为该发送波束的接收波束。
  31. 如权利要求29所述的接收端,其中,所述发送模块用于向所述发送端发送G个发送波束组的分组信息,其中,每个发送波束组的分组信息包括该发送波束组内各子发送波束子组的发送波束子组信息,每个发送波束子组信息包括该发送波束子组内各发送波束的标识信息;或者
    所述发送模块用于向所述发送端发送所述Q个发送波束的波束划分信息,其中,每个发送波束的波束划分信息包括该发送波束的标识信息、该发送波束所属的发送波束组的分组标识和该发送波束所属的发送波束子组的子组标识。
  32. 如权利要求31所述的接收端,其中,若所述G个发送波束组中存在目标发送波束组,所述目标发送波束组内包括目标发送波束,所述目标发送波束对应的接收波束与所述目标发送波束组内其他发送波束对应的接收波不同,所述目标发送波束的子组标识为空或者预设标识。
  33. 一种发送端,包括:处理器、收发机、存储器、用户接口和总线接口,其中:
    所述处理器,用于读取所述存储器中的程序,执行如权利要求1至6中任一项所述的发送波束确定方法中的步骤。
  34. 一种接收端,包括:处理器、收发机、存储器、用户接口和总线接口,其中:
    所述处理器,用于读取所述存储器中的程序,执行如权利要求7至16中任一项所述的发送波束确定方法中的步骤。
  35. 一种计算机可读存储介质,其上存储有计算机程序,其中,当所述计算机程序被处理器执行时,实现如权利要求1至6中任一项所述的发送波束确定方法中的步骤。
  36. 一种计算机可读存储介质,其上存储有计算机程序,其中,当所述计算机程序被处理器执行时,实现如权利要求7至16中任一项所述的发送波束确定方法中的步骤。
PCT/CN2018/077114 2017-03-17 2018-02-24 一种发送波束确定方法、发送端和接收端 WO2018166341A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/489,734 US11025328B2 (en) 2017-03-17 2018-02-24 Transmission beam determination method, transmitting end device and receiving end device
JP2019548654A JP6970752B2 (ja) 2017-03-17 2018-02-24 送信ビーム特定方法、送信側機器および受信側機器
EP18767927.9A EP3598662B1 (en) 2017-03-17 2018-02-24 Transmission wave beam determination method, transmission end and reception end
KR1020197028707A KR20190120341A (ko) 2017-03-17 2018-02-24 송신빔의 확정 방법, 송신단 및 수신단

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710160177.1A CN108631841B (zh) 2017-03-17 2017-03-17 一种发送波束确定方法、发送端和接收端
CN201710160177.1 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018166341A1 true WO2018166341A1 (zh) 2018-09-20

Family

ID=63521704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077114 WO2018166341A1 (zh) 2017-03-17 2018-02-24 一种发送波束确定方法、发送端和接收端

Country Status (6)

Country Link
US (1) US11025328B2 (zh)
EP (1) EP3598662B1 (zh)
JP (1) JP6970752B2 (zh)
KR (1) KR20190120341A (zh)
CN (1) CN108631841B (zh)
WO (1) WO2018166341A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448744B (zh) * 2019-08-30 2022-09-09 成都华为技术有限公司 一种信号测量方法及装置
CN115398817A (zh) * 2020-04-08 2022-11-25 苹果公司 用于基于群组的报告波束管理的装置和方法
CN114071735A (zh) * 2020-08-06 2022-02-18 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
US11664866B2 (en) * 2021-02-19 2023-05-30 Qualcomm Incorporated Methods for conveying additional information via beam permutations

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120162009A1 (en) * 2010-12-24 2012-06-28 Korea Electronics Technology Institute Beamforming array antenna control system and method for beamforming using the same
CN104521155A (zh) * 2012-07-31 2015-04-15 三星电子株式会社 在无线通信系统中使用波束成形的通信方法和设备
CN104734758A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种同步波束成形信号的发送、接收方法、基站和终端
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
US20150257073A1 (en) * 2014-03-10 2015-09-10 Samsung Electronics Co., Ltd. Apparatus and method for determining beam in wireless communication system
CN105684321A (zh) * 2013-09-27 2016-06-15 三星电子株式会社 无线通信系统中发送和接收波束信息的装置及方法
CN107734514A (zh) * 2016-08-11 2018-02-23 中兴通讯股份有限公司 分组指示信息的反馈方法、获取方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020404A1 (ko) 2013-08-05 2015-02-12 삼성전자 주식회사 무선 통신 시스템에서 빔 그룹핑을 통한 레퍼런스 신호 송수신 방법 및 장치
JP6499665B2 (ja) 2014-08-18 2019-04-10 パナソニック株式会社 Mimoトレーニング方法及び無線装置
EP3780711A1 (en) 2015-03-16 2021-02-17 NTT DoCoMo, Inc. User apparatus, base station, and communication method
CN115664484A (zh) * 2016-08-11 2023-01-31 中兴通讯股份有限公司 分组指示信息的获取及告知方法、设备及介质
CN110089044B (zh) * 2016-11-02 2024-02-23 交互数字专利控股公司 基于群组的波束管理
CN108260133B (zh) * 2016-12-28 2020-05-12 维沃移动通信有限公司 一种波束测量上报的方法、网络侧设备及移动终端
RU2721363C1 (ru) * 2017-02-13 2020-05-19 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ беспроводной связи, терминальное устройство и сетевое устройство
CA3056007C (en) * 2017-03-17 2022-01-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120162009A1 (en) * 2010-12-24 2012-06-28 Korea Electronics Technology Institute Beamforming array antenna control system and method for beamforming using the same
CN104521155A (zh) * 2012-07-31 2015-04-15 三星电子株式会社 在无线通信系统中使用波束成形的通信方法和设备
CN105684321A (zh) * 2013-09-27 2016-06-15 三星电子株式会社 无线通信系统中发送和接收波束信息的装置及方法
CN104734758A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种同步波束成形信号的发送、接收方法、基站和终端
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN104734754A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种波束赋形权值训练方法及基站、终端
US20150257073A1 (en) * 2014-03-10 2015-09-10 Samsung Electronics Co., Ltd. Apparatus and method for determining beam in wireless communication system
CN107734514A (zh) * 2016-08-11 2018-02-23 中兴通讯股份有限公司 分组指示信息的反馈方法、获取方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOONGHEON KIM ET AL.: "Fast Millimeter-Wave Beam Training with Receive Beamforming", JOURNAL OF COMMUNICATIONS AND NETWORKS, 31 October 2014 (2014-10-31), pages 512 - 522, XP011564357, ISSN: 1229-2370 *
See also references of EP3598662A4 *
WANG, HAIYANG ET AL.: "Partial Random Opportunistic SDMA with Beam Selection", TELECOMMUNICATION ENGINEERING, vol. 49, no. 12, 1 December 2009 (2009-12-01), pages 91 - 95, XP055619213, ISSN: 1001-893X *

Also Published As

Publication number Publication date
JP2020510338A (ja) 2020-04-02
JP6970752B2 (ja) 2021-11-24
US11025328B2 (en) 2021-06-01
EP3598662A1 (en) 2020-01-22
US20200014452A1 (en) 2020-01-09
CN108631841A (zh) 2018-10-09
CN108631841B (zh) 2021-05-28
EP3598662B1 (en) 2023-08-02
KR20190120341A (ko) 2019-10-23
EP3598662A4 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US11025316B2 (en) Method and apparatus used for data transmission
WO2018166341A1 (zh) 一种发送波束确定方法、发送端和接收端
WO2018202154A1 (zh) 传输预编码矩阵的指示方法和设备
US20220303101A1 (en) Method and Apparatus for Determining Resource Block Group Size
WO2018223972A1 (zh) 一种信道质量信息的上报方法及装置
US9973312B2 (en) Method and apparatus for feeding back CSI-RS resource combination, user equipment and base station
WO2018028470A1 (zh) 一种波束管理方法和相关设备
CN102014440B (zh) 一种小区间干扰协调方法、装置和系统
CN108810966B (zh) 一种通信方法及装置
US20210410142A1 (en) Communication Method and Device
US10778287B2 (en) Multipoint data transmission method and apparatus
WO2018126343A1 (zh) 通信方法、终端设备和网络设备
JP6625747B2 (ja) 共通セルネットワークにおけるマルチアンテナ伝送方法、及び基地局
CN112583547A (zh) Tci状态与dmrs映射关系的确定、配置方法及设备
CN108696306B (zh) 一种csi反馈配置方法、网络侧设备和终端
WO2018000430A1 (en) Resource multiplexing and allocation schemes for uplink beam reference signal in massive mimo system
CN109714780A (zh) 通信方法、终端和接入网设备
CN109150271B (zh) 一种最优波束确定方法、用户终端和网络侧设备
CN108092700A (zh) 数据传输的方法和设备
WO2019001314A1 (zh) 一种控制信道发送方法及装置
WO2023207863A1 (zh) 直通链路定位参考信号的发送方法、终端定位方法及装置
WO2022206504A1 (zh) Csi反馈方法、相关设备及可读存储介质
WO2022206999A1 (zh) 定位方法、装置及存储介质
WO2022237636A1 (zh) 信号传输方法、装置、终端及基站
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028707

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018767927

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018767927

Country of ref document: EP

Effective date: 20191017