WO2018166220A1 - 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法 - Google Patents

一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法 Download PDF

Info

Publication number
WO2018166220A1
WO2018166220A1 PCT/CN2017/109612 CN2017109612W WO2018166220A1 WO 2018166220 A1 WO2018166220 A1 WO 2018166220A1 CN 2017109612 W CN2017109612 W CN 2017109612W WO 2018166220 A1 WO2018166220 A1 WO 2018166220A1
Authority
WO
WIPO (PCT)
Prior art keywords
gypsum
aluminum ash
sulfur
desulfurized gypsum
cement
Prior art date
Application number
PCT/CN2017/109612
Other languages
English (en)
French (fr)
Inventor
王文龙
任常在
李国麟
王超前
孙静
毛岩鹏
赵希强
宋占龙
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2018166220A1 publication Critical patent/WO2018166220A1/zh
Priority to ZA2019/06733A priority Critical patent/ZA201906733B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0473Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0473Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide
    • C01B17/0482Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide with carbon or solid carbonaceous materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to the fields of chemical industry, building materials technology, comprehensive utilization of desulfurized gypsum and aluminum ash resources and environmental protection, and particularly relates to a system and method for producing sulfur by using sulphur aluminate produced by desulfurization gypsum and aluminum ash.
  • Desulfurization gypsum is a by-product of flue gas desulfurization in industrial production.
  • the main component is crystalline calcium sulfate (CaSO 4 ⁇ 2H 2 O).
  • the water content is generally 10% to 20%, the color is light yellow, the particles are fine, and its pH is
  • the natural gypsum is equivalent, the mass fraction of calcium sulfate and calcium sulfate dihydrate is generally above 90%, and the mass fraction of calcium sulfate and calcium sulfate dihydrate of natural gypsum is generally 70% to 80%.
  • the desulfurized gypsum has high purity and stable composition.
  • the main impurities contained are unreacted calcium oxide and calcium sulfite.
  • the main difference is that the water content is higher, the particle size is smaller, and the water-soluble salt is more.
  • the type of desulfurized gypsum is greatly affected by temperature.
  • the desulfurized gypsum loses crystal water from 135 °C, and all the crystal water is removed at 185 °C.
  • the main mineral component of the desulfurized gypsum dried at 140 °C has been changed from dihydrate gypsum. Semi-hydrated gypsum. With the continuous improvement of China's infrastructure, the demand for electricity is increasing, and China's thermal power generation accounts for about 80% of the total power generation.
  • the average sulfur content of coal-fired power generation and desulfurization is estimated to have reached 600 million tons of desulfurization gypsum in the industrial by-product. If it cannot be comprehensively utilized, the desulfurized gypsum will occupy a large amount of land and pollute the environment. The amount of land required for simple stacking is 5 Ten thousand acres. Because it contains a variety of harmful impurities that are harmful to human health and biological growth, it not only occupies a large amount of land, but also wastes valuable sulfur resources while polluting the desulfurized gypsum, and it will pollute the environment and bring harm to the ecology.
  • Aluminum ash is a waste produced in the primary and secondary aluminum industries.
  • the aluminum content is 30-55% and is a renewable resource.
  • the output of aluminum ash is also increasing. Taking 2012 as an example, China's primary aluminum production is about 20 million tons, and each production of 1 ton of primary aluminum will produce about 30 kilograms of aluminum ash; in the secondary aluminum industry, China's 2012 output of recycled aluminum is about 4.8 million tons. For every ton of recycled aluminum produced, about 300 kilograms of aluminum ash will be produced. Together, in 2012, China's aluminum ash production will reach 2 million tons.
  • the main chemical components of aluminum ash include: Al 2 O 3 accounts for 40-60% wt, AlN accounts for 15-30% wt, metal Al accounts for 5-10% wt, and additionally contains partial SiO 2 and Na, Mg, K hydrochloric acid. Salt, etc., the content is more than 10% wt, the composition is complex, and contains many heavy metal impurities that pollute the environment.
  • the primary aluminum ash is white
  • the secondary aluminum ash is mostly black gray
  • the aluminum ash slag has good grindability
  • the hardness is not high
  • the appearance of the particles is very irregular, and has many different shapes
  • the particle size is uneven between particles. The size is significantly different, resulting in poor fluidity.
  • sulphoaluminate cement has become a new direction in the research and development of cement industry at home and abroad. Its cement clinker has low heat consumption, high early strength, short setting time, excellent freeze-thaw resistance and alkalinity. A series of excellent performance. Because the existing sulphoaluminate cement has obvious advantages and complete types, it is widely used in the fields of repairing and rushing construction, winter construction engineering, anti-corrosion engineering and so on. At home and abroad, there are technical precedents for the application of gypsum decomposition to produce ordinary Portland cement and sulfuric acid. At present, the mature technology is to mix the dried powdery material with other raw materials and grind into the hollow rotary kiln for decomposition and calcination.
  • the atmosphere is difficult to control, and it is easy to produce a high oxygen content in the kiln, which will cause the carbon portion added to the raw material to react with oxygen, resulting in insufficient carbon required for the gypsum decomposition reaction, resulting in a problem of reduced decomposition rate and desulfurization rate of gypsum;
  • the sulfuric acid has low value, is difficult to transport, and has poor market acceptance.
  • Sulfur is mainly recovered from petroleum refining and natural gas purification. It is obtained from environmentally-friendly by-products of coal chemical, fertilizer production, thermal power generation, non-ferrous metal smelting and other industries, or uses natural gypsum ore to produce sulfur.
  • the annual consumption of domestic sulfur exceeds 10 million tons, and it needs to import about 9 million tons from abroad every year, showing a situation of serious shortage of supply.
  • chemical production mainly relies on the import of sulfur, the price of sulfur is rising, which increases the cost of chemical production.
  • the basic raw materials used in the production of sulphoaluminate cement in the prior art are limestone, bauxite and gypsum.
  • the limestone as the calcium raw material mainly provides the calcium oxide component required in the formation of sulphoaluminate cement clinker, aluminum bismuth.
  • soil mainly provides the alumina component required in the formation of sulphoaluminate cement clinker;
  • gypsum as a sulfur raw material mainly provides the sulfur trioxide component required in the formation of sulphoaluminate cement clinker.
  • the calcination temperature of ordinary sulphoaluminate cement is generally from 1250 to 1300 ° C. During this process, a small amount of CaSO 4 is decomposed, but since the concentration of sulfur dioxide in the flue gas is small, it cannot be co-produced. Industrial production of sulfuric acid.
  • the inventors have thought about whether it is possible to develop a process that enables the simultaneous preparation of sulphoaluminate cement clinker and sulphur in large quantities, which not only prevents excessive carbon dioxide emissions, but also exacerbates the greenhouse effect of the environment, and can produce a large amount of Sulfur, which reduces the production cost of sulfur, can completely avoid the problems of low sulfuric acid value, difficulty in transportation, and poor market acceptance when sulfuric acid is produced.
  • the method can fully utilize the aluminum ash and desulfurization gypsum which have few applications and serious accumulation, and realize the co-production of high value sulphoaluminate cement and sulfur.
  • the technical solution of the present invention is:
  • a system for producing sulfur by using desulfurization gypsum and aluminum ash to produce sulphoaluminate cement comprising a dryer, a pulverizer, a rotary kiln, a cement pulverizer, a cement storage tank, a dust collector and a reduction fixed bed, wherein After the aluminum ash and the desulfurized gypsum are dried by the dryer, the aluminum ash, the activated carbon and the desulfurized gypsum are mixed in a specific ratio, and then the mixture is sent to a pulverizer for grinding, and the pulverized mixture is sent to a rotary kiln for calcination, and The pulverized coal is transported to the rotary kiln; the calcined sulphoaluminate clinker and the desulfurized gypsum are mixed in a specific ratio, and then ground in a cement pulverizer, and the obtained sulphoaluminate cement is transported to a cement storage
  • the sulfur dioxide-containing gas obtained by calcination in the rotary kiln is dedusted by a dust remover and transported into a reduction fixed bed to be reduced to obtain sulfur.
  • the system can realize the joint production of sulphoaluminate cement and sulfur by using solid waste aluminum ash and desulfurized gypsum, which not only realizes the treatment of solid waste, but also produces a high-performance material and sulfur, and reduces sulfur. Cost of production.
  • the aluminum ash and the desulfurized gypsum are preheated in the process of utilizing the residual heat, and when the residual heat of the desulfurized gypsum is heated to about 200 ° C, the hemihydrate gypsum is formed. This saves a portion of the heat required for calcination and saves energy.
  • the coal powder is transported to the rotary kiln, and the coal powder can react with the oxygen in the rotary kiln to make the reaction chamber of the rotary kiln a weak oxidizing atmosphere, and the addition of activated carbon can make the desulfurization gypsum achieve sufficient decomposition rate and desulfurization. rate.
  • a waste heat recovery device is connected between the rotary kiln and the dust remover, and the flue gas discharged from the rotary kiln heats the water in the waste heat recovery device, and the obtained high-temperature steam is introduced into the dryer as a heating medium.
  • the cooled flue gas enters the dust collector to remove dust.
  • the waste heat recovery equipment is similar to a heat exchanger.
  • the waste heat in the flue gas is used to heat the liquid in the waste heat recovery equipment, such as water, to obtain high temperature steam, and the temperature of the flue gas is lowered, and the temperature of the flue gas is lower (not lower than 850 ° C) will not cause greater damage to the subsequent dust collector and reduction fixed bed, extending the service life of subsequent equipment.
  • the high temperature steam obtained can be The aluminum ash and the desulfurized gypsum are dried by heating. Since it is necessary to control the conversion of dihydrate desulfurization gypsum into semi-water desulfurization gypsum, it is necessary to strictly control the temperature of the heating medium. The temperature of the high temperature steam is much smaller than the temperature of the flue gas, which facilitates the control of the process.
  • a method for producing sulfur by using desulfurization gypsum and aluminum ash to produce sulphoaluminate cement comprising the following steps:
  • the sulfur dioxide product is obtained by removing dust and catalytically reducing the sulfur dioxide containing flue gas
  • the mass ratio of aluminum ash, desulfurized gypsum and activated carbon is: 33-39: 61-67: 0.5-1.
  • CaSO 4 can be completely decomposed at 1350-1400 °C, and can provide a large amount of calcium oxide. At this time, the decomposition temperature of 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 has been reached, impurities are generated, and sulphuric acid cannot be prepared. Salt cement.
  • the inventors have verified through trial and error that when activated carbon is added to the raw material, the activated carbon and the desulfurized gypsum can undergo redox reaction at a lower temperature, and when the mass ratio of the aluminum ash, the desulfurized gypsum and the activated carbon is: 33-39:61- 67:0.5-1, calcination temperature is 1250-1300 ° C, calcination time is 30-60 min, desulfurization gypsum can be used instead of quicklime to prepare a large amount of sulphoaluminate cement, and provide a large amount of sulfur dioxide, which provides for the preparation of sulfur The raw materials also reduce energy consumption and reduce the production cost of cement.
  • the amount of desulfurization gypsum added in the conventional method is small, only the calcium sulfate in the desulfurization gypsum is used, and limestone is required to meet the formulation of the sulphoaluminate cement, but in this method, the amount of the desulfurized gypsum is small ( Generally, it is 5-15% of the total mass of the ingredients, and it is not possible to make full use of the desulfurized gypsum rich in stock. In the present invention, the amount of desulfurized gypsum is relatively large (61%-67%).
  • a part of the desulfurized gypsum is present in the mixture in the form of calcium sulfate, and the other part of the desulfurized gypsum is reduced and decomposed to form calcium oxide, and a reasonable ratio is obtained.
  • the amount of desulfurization gypsum is relatively large, and the purpose of preparing sulphoaluminate cement by using a large amount of desulfurized gypsum is realized, and the desulfurization gypsum of the digested pile is greatly contributed.
  • the temperature at which the desulfurization gypsum is heated and dehydrated into semi-water desulfurization gypsum is 120-140 ° C.
  • the chemical composition of the raw material obtained by mixing aluminum ash and hemihydrate gypsum is: SiO 2 3-10 parts by weight; CaO 36-43 parts by weight; Al 2 O 3 28-40 parts by weight ; Fe 2 O 3 1-3 parts by weight; SO 3 8-15 parts by weight
  • the ratio of the raw material is: a basicity coefficient C m of 0.95 to 0.98, and an aluminum to sulfur ratio P of 1.05-1.22 (since the calcium source is partially decomposed by desulfurization gypsum, the aluminum to sulfur ratio is much smaller than
  • the control ratio of conventional sulphoaluminate preparation is 3.86
  • the ratio of aluminum to silicon is 2-3.
  • Fe 2 O 3 , TiO 2 , SO 3 , and SiO 2 are respectively percentage by weight of the corresponding chemical components.
  • the particle size after grinding is less than 8 ⁇ m.
  • the best grading of the best performance of cement is: 3 ⁇ 32 ⁇ m, because the 3 ⁇ 32 ⁇ m particles play a major role in the strength increase, especially the 3 ⁇ 8 ⁇ m particles are particularly important for cement performance, the more the content, the better the performance.
  • the prepared sulphoaluminate cement clinker is mainly composed of calcium sulphoaluminate (3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 ), dicalcium silicate (2CaO ⁇ SiO 2 ) and iron phase.
  • the mineral phase accounts for 30-50%, 25-40% and 0-4%, respectively.
  • the late strength of the prepared sulphoaluminate cement continued to increase. After the compressive strength test, the compressive strength of 3 days was 53.4 MPa, and the compressive strength of 28 days was 75.2 MPa.
  • the fuel during calcination is pulverized coal or coal gas.
  • the excess air ratio of the pulverized coal combustion is less than 1.05.
  • the excess air ratio is the ratio of the air mass actually supplied to burn 1 kg of fuel to the air mass required to theoretically completely burn 1 kg of fuel.
  • the method further comprises the step of heating the water with sulfur dioxide containing flue gas to obtain a high temperature steam, which is used as a heating medium for heating the aluminum ash and the desulfurized gypsum.
  • the mass ratio of the sulphoaluminate cement clinker to the desulfurized gypsum is 100:5.
  • the dust concentration in the flue gas after dust removal is less than 10 g/NM 3 .
  • the service life of the activated carbon fixed bed can be improved, and the purity of the sulfur can be improved, so that the purity of the prepared sulfur reaches over 97%.
  • H 2 S, COS, and CS 2 are all reducing agents, they all react with SO 2 at a certain temperature to form elemental sulfur, namely:
  • the invention comprehensively utilizes the method for producing sulfur by the production of sulfur-aluminate special cement with desulfurization gypsum and aluminum ash, and the raw materials required for the production mainly come from the desulfurization products of the power plant, the aluminum ash generated by the electrolytic aluminum plant, and the activated carbon of the reducing agent.
  • the raw materials are widely available and the price is low.
  • the method not only reuses industrial solid waste, but also produces high-performance sulphoaluminate cement clinker.
  • the produced sulphoaluminate cement clinker can produce special cement or conventional cement additives, and is now widely used in emergency repair. , construction construction, winter construction engineering, anti-corrosion engineering, in the production of sulphoaluminate cement clinker, the co-production of sulfur to achieve high purity quality requirements, can be used in the chemical, food, pharmaceutical industries.
  • Example 1 is a schematic view showing a process flow of a method for producing sulfur by using sulphur aluminate produced by using desulfurization gypsum and aluminum ash in Example 1 and Example 2;
  • FIG. 2 is a schematic view showing a process flow of a method for producing sulfur by using sulphur aluminate cement produced by using desulfurization gypsum and aluminum ash in Example 3.
  • the aluminum ash and the desulfurized gypsum are respectively sent into the dryer, and the desulfurized gypsum is 61%, the aluminum ash is 38%, and the activated carbon is 1%, based on the dried solid matter. It is directly fed into a hollow rotary kiln for calcination at a calcination temperature of 1280 ° C and a calcination time of 60 minutes.
  • the generated high-temperature kiln gas is indirectly dried by the waste heat recovery equipment, the by-product high-temperature steam and hot water, and the original aluminum ash and desulfurization gypsum.
  • the kiln gas of the waste heat recovery equipment is reduced to 860 ° C.
  • the sulphoaluminate clinker produced in the rotary kiln is cooled by a grate cooler to rapidly cool the sulphoaluminate cement clinker, and the main phase of the clinker after cooling is calcium sulphoaluminate.
  • the dicalcium silicate and iron phases are 40%, 40% and 4%, respectively, and belong to high-silicon high-iron type sulphoaluminate cement.
  • the aluminum ash and the desulfurized gypsum are respectively sent into the dryer, and the desulfurized gypsum is 66%, the aluminum ash is 33%, and the activated carbon is 1%, based on the solid matter after drying. It is directly conveyed into a hollow rotary kiln for calcination at a calcination temperature of 1,250 ° C and a calcination time of 50 minutes.
  • the generated high-temperature kiln gas is indirectly dried by the waste heat recovery equipment, the by-product high-temperature steam and hot water, and the original aluminum ash and desulfurization gypsum.
  • Exhaust heat recovery equipment kiln gas gas temperature is reduced to 855 ° C, after dust removal, dehumidification
  • the air-conditioning oxygen-sulfur ratio is supplemented and dried, and then enters a fixed bed of activated carbon with a particle size of 10 mesh. After the catalytic reduction to produce elemental sulfur, the purity of the prepared sulfur reaches 99%.
  • the microwave is heated to evaporate the sulfur attached to the activated carbon fixed bed.
  • the collection device is cooled and collected.
  • the sulphoaluminate clinker produced in the rotary kiln is cooled by a grate cooler to rapidly cool the sulphoaluminate cement clinker, and the main phase of the clinker after cooling is calcium sulphoaluminate.
  • the dicalcium silicate and iron phases are 50%, 45% and 3%, respectively, and belong to high-silicon high-iron type sulphoaluminate cement.
  • the compressive strengths at 3 and 28 days were 55.4 MPa and 80.2 MPa, respectively.
  • the aluminum ash and the desulfurized gypsum are respectively sent into the dryer, and the desulfurized gypsum is 65%, the aluminum ash is 34%, and the activated carbon is 1%, based on the solid matter after drying.
  • the calcination temperature is 1300 ° C, and the calcination time is 30 minutes.
  • the generated high-temperature kiln gas is indirectly dried by the waste heat recovery equipment, the by-product high-temperature steam and hot water, and the original aluminum ash and desulfurization gypsum.
  • the kiln gas of the waste heat recovery equipment is reduced to 860 ° C, and after entering the two-stage reactor after dedusting, dehumidification purification, and air-conditioning to adjust the ratio of oxygen to sulfur, each reactor is filled with Cu/Al 2 O. 3 catalyst, and into the two-stage reactor into the gas, catalytic reduction to produce elemental sulfur, the purity of the prepared sulfur reaches 98%, using microwave heating, the sulfur attached to the fixed bed of activated carbon is evaporated, cooled in the collection device .
  • the sulphoaluminate clinker produced in the rotary kiln is cooled by a grate cooler to rapidly cool the sulphoaluminate cement clinker, and the main phase of the clinker after cooling is calcium sulphoaluminate.
  • the dicalcium silicate and iron phases are 50%, 40% and 4%, respectively, and belong to high-silicon high-iron type sulphoaluminate cement.
  • the invention has the following remarkable features:
  • the production process created by the present invention is different from the conventional production technology of producing sulfur co-production cement.
  • the cement product prepared by the present invention belongs to sulphoaluminate cement instead of conventional Portland cement.
  • the sulphoaluminate cement mineral composition is different from ordinary Portland cement. It is mainly composed of calcium sulphoaluminate (3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 ), dicalcium silicate (2CaO ⁇ SiO 2 ) and iron phase. Phase, low temperature firing at 1250-1350 °C, is a kind of early, strong, fast and hard cementing material with excellent properties such as high impermeability, high frost resistance, corrosion resistance and low alkalinity;
  • the waste heat recovery equipment is installed at the tail of the rotary kiln to enter the kiln.
  • the raw materials are dried, and the use of coal and electric energy is greatly reduced, so that energy conservation and consumption reduction can be fundamentally achieved.
  • the invention utilizes aluminum ash and desulfurization gypsum to produce special sulphoaluminate cement to produce sulfur in parallel, which has significant application value, and its implementation can form outstanding economic and environmental benefits.
  • the method of preparing kiln gas into sulfur can effectively solve the problem of storage and transportation of sulfuric acid which is difficult to solve in the acid making industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法,1)将铝灰烘干,将脱硫石膏加热脱水,使其转变为半水石膏;2)将铝灰和半水石膏按设定比例混匀后,粉磨、均化;3)将粉磨、均化后的铝灰和半水石膏的混合物进行煅烧,煅烧时,向混合物中投入煤粉,进行富氧燃烧,得到硫铝酸盐水泥熟料和含二氧化硫烟气;4)硫铝酸盐水泥熟料与脱硫石膏按比例混合、粉磨后,得到硫铝酸盐水泥;5)含二氧化硫烟气经过除尘、催化还原,制得硫磺产品;其中,铝灰、脱硫石膏、碳粉的质量比为:33‑39:61‑66:1。

Description

[根据细则37.2由ISA制定的发明名称] 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法 技术领域
本发明涉及化工、建材技术及脱硫石膏与铝灰资源综合利用和环境保护治理领域,具体涉及一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统和方法。
背景技术
在土地资源日趋紧张、环境保护日趋重要的当今社会,中国工信部在《“十二五”大宗工业固体废物综合利用专项规划》中将来自五大行业的尾矿、煤矸石、粉煤灰、冶炼渣、副产石膏和赤泥列为大宗工业固废,将其作为处理的主要对象。其中,脱硫石膏、铝灰和赤泥因排放量大或者处置难度高而受到越来越多的关注。
脱硫石膏是工业生产中烟气脱硫产生的副产物,主要成分是结晶硫酸钙(CaSO4·2H2O)含水率一般在10%~20%,颜色呈淡黄色,颗粒较细,其酸碱度与天然石膏相当,硫酸钙和二水硫酸钙的质量分数一般在90%以上,天然石膏的硫酸钙和二水硫酸钙质量分数一般在70%~80%。脱硫石膏纯度较高,成分稳定,含有的主要杂质为未反应掉的氧化钙和亚硫酸钙,与天然石膏相比,主要区别在于含水率较高,粒度更微小,含水溶性盐类较多。脱硫石膏的型态受温度影响较大,脱硫石膏从135℃开始失去结晶水,到185℃脱除全部的结晶水,140℃条件下烘干的脱硫石膏主要矿物成分已由二水石膏变成了半水石膏。随着我国基础设施的不断完善,对于电力的需求不断加剧,而我国的火电发电量占总发电量的80%左右,根据近10年相应火力发电量、火力发电燃煤平均含硫量及脱硫设施平均脱硫效率,预估现有的工业副产脱硫石膏已达到6亿吨,若不能被综合利用,脱硫石膏将会占用大量的土地,污染环境,仅单纯堆放所需要的土地量则达到5万亩。由于含有多种危害人体健康及生物生长的有害杂质,所以在脱硫石膏堆放的同时不仅占用大量土地,浪费了宝贵的硫资源,而且会污染环境,给生态带来危害。
铝灰是在一次和二次铝工业中产生的一种废弃物,铝元素的含量可达30-55%,是一种可再生的资源。随着我国铝工业的快速发展,铝灰的产量也越来越多。以2012年为例,中国原铝产量约2000万吨,而每生产1吨原铝,则会产生约30千克铝灰;在二次铝工业中,我国2012年再生铝产量约480万吨,而每生产1吨再生铝,会相应产生约300千克铝灰;两者相加,2012年我国铝灰产量约达200万吨。铝灰的主要化学成分包括:Al2O3占40-60%wt,AlN占15-30%wt,金属Al占5-10%wt,另外含有部分SiO2和Na、Mg、K的盐酸盐等,含量多在10%wt以下,成分复杂,包含很多污染环境的重金属杂质。一次铝灰呈白 色,二次铝灰多呈现黑灰色,铝灰渣的可磨性好,硬度不高,颗粒外观形貌很不规则,具有多种不同的形状,颗粒之间粒度不均,大小有明显差别,致使其流动性差。虽然铝灰的排放量并非很大,但由于成分复杂、处置困难而缺乏高效利用途径,目前多被堆积处理,一方面占用土地,污染土壤,颗粒状的粉尘也对大气造成影响,另一方面也造成了资源的浪费。
近年来,硫铝酸盐水泥成为国内外水泥行业研究发展的新方向,其水泥熟料具有生产所需要的热耗低、早期强度高、凝结时间短、极好的抗冻融性、碱度低等一系列优异性能。由于现有硫铝酸盐水泥优点显著,种类齐全,现被广泛的应用在抢修、抢建工程,冬季施工工程,抗腐蚀工程等领域。国内外有应用石膏分解联产普通硅酸盐水泥和硫酸的技术先例,目前成熟的技术是将烘干后的粉状物料与其它原料配合经粉磨进入中空回转窑进行分解锻烧,窑内气氛难以控制,容易产生窑中氧含量偏高,会使原料中加入的碳部分与氧反应,造成石膏分解反应所需的碳不足,导致石膏的分解率和脱硫率降低的问题;而且制备得到的硫酸存在价值较低、难运输、市场接受度差等问题。
此外,我国几乎没有天然硫磺矿,硫磺主要从石油炼制、天然气净化中回收,从煤化工、化肥生产、火力发电、有色金属冶炼等行业的环保副产物获得,或者采用天然石膏矿生产硫磺。国内硫磺年消费量超过1000万吨,每年需从国外进口约900万吨,呈现出严重供不应求的局面。由于化工生产中主要依靠进口硫磺,导致硫磺价格不断上涨,提高了化工生产的成本。
发明内容
现有技术中生产硫铝酸盐水泥所用的基本原材料是石灰石、铝矾土和石膏,石灰石作为钙质原料主要是提供硫铝酸盐水泥熟料形成过程中所需要的氧化钙成分,铝矾土作为铝制原料主要提供硫铝酸盐水泥熟料形成过程中所需要的氧化铝成分;石膏作为硫质原料主要提供硫铝酸盐水泥熟料形成过程中所需要的三氧化硫成分。在实际的生产中,石灰石在850-900℃发生分解,产生CaO和CO2,CO2从废气中逸出,由于硫铝酸盐水泥熟料在制备过程中需要用到大量的石灰石,所以会释放大量的CO2,大大加剧了环境的温室效应。
普通的硫铝酸盐水泥在煅烧温度在1250-1300℃时,4CaO·2Si2O2·CaSO2消失,分解为α′-2CaO·SiO2和游离CaSO4,此时熟料的主要矿物为3CaO·3Al2O3·CaSO4和2CaO·SiO2,还有少量铁相和CaSO4,以及微量的MgO,普通硫铝酸盐水泥已完全形成,再继续加热至1300~1400℃时,矿物熟料无明显变化;若加热至1400℃以上3CaO·3Al2O3·CaSO4及CaSO4开始分解,产生12CaO·7Al2O3等急凝矿物,出现熔块。所以,普通硫铝酸盐水泥的煅烧温度一般为1250-1300℃,在此过程中,会有少量的CaSO4 发生分解,但是,由于烟气中的二氧化硫的浓度很小,所以无法进联产硫酸的行工业化生产。
所以,发明人经过思考,提出是否可以研发一种工艺方法,使可以同时大量制备硫铝酸盐水泥熟料和硫磺,不但可以防止二氧化碳的过度排放,加剧环境的温室效应,而且可以生产大量的硫磺,降低硫磺的生产成本,可完全避免生产硫酸时存在的硫酸价值较低、难运输以及市场接受度差的问题。
针对上述现有技术中存在的技术问题,本发明的目的是提供一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统和方法。该方法可以使目前应用极少、堆存严重的铝灰和脱硫石膏得到充分利用,实现了具有较高价值的硫铝酸盐水泥和硫磺的联产。
为了解决以上技术问题,本发明的技术方案为:
一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统,包括烘干器、粉磨机、回转窑、水泥粉磨机、水泥储罐、除尘器以及还原固定床,其中,铝灰和脱硫石膏经过烘干器烘干后,将铝灰、活性炭和脱硫石膏按特定比例混合后,将混合物送至粉磨机粉磨,粉磨后的混合物输送至回转窑中煅烧,并向回转窑中输送煤粉;煅烧得到的硫铝酸盐熟料与脱硫石膏按特定比例混合后,在水泥粉磨机中粉磨,得到的硫铝酸盐水泥输送至水泥储罐储存;
回转窑中煅烧得到的含有二氧化硫的气体经过除尘器除尘,输送进还原固定床中还原,得到硫磺。
该系统利用固体废弃物铝灰和脱硫石膏即可实现硫铝酸盐水泥和硫磺的联产,既实现了固体废弃物的处理,又制备得到一种高性能材料和硫磺,同时降低了硫磺的生产成本。
由于采用了余热回收设备,因此在利用余热过程中对铝灰、脱硫石膏进行了预热,当脱硫石膏余热加热到200℃左右时,即形成半水石膏。这样可以节省一部分煅烧所需要的热量,节约能源。
煅烧过程中,向回转窑中输送煤粉,煤粉可以与回转窑中的氧气反应,使回转窑的反应室中为弱氧化气氛,活性炭的加入,使脱硫石膏可以达到足够的分解率和脱硫率。
优选的,所述回转窑与除尘器之间连接有余热回收设备,回转窑中排放的烟气对余热回收设备中的水加热,得到的高温蒸汽通入所述烘干器中作为加热介质,冷却后的烟气进入除尘器除尘。
余热回收设备类似换热器,利用烟气中的余热对余热回收设备内的液体,如水,进行加热,得到高温蒸汽的同时,降低了烟气的温度,较低的烟气温度(不低于850℃)对后续的除尘器和还原固定床不会造成较大的损害,延长了后续设备的使用寿命。得到的高温蒸汽可 以对铝灰和脱硫石膏进行加热干燥。由于需要控制将二水脱硫石膏转变为半水脱硫石膏,所以需要严格控制加热介质的温度。高温蒸汽的温度远小于烟气的温度,便于进行工艺的控制。
一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法,包括如下步骤:
1)将铝灰烘干,将脱硫石膏加热脱水,使其转变为半水石膏;
2)将活性炭、铝灰和半水石膏按设定比例混匀后,粉磨、均化;
3)将粉磨、均化后的铝灰和半水石膏的混合物在1250-1300℃下进行煅烧,煅烧时间为30-60min,得到硫铝酸盐水泥熟料和含二氧化硫烟气;
4)含二氧化硫烟气经过除尘、催化还原,制得硫磺产品;
其中,铝灰、脱硫石膏和活性炭的质量比为:33-39:61-67:0.5-1。
在该煅烧条件下,既可以保证煅烧得到的水泥熟料中各组分的配合满足制备硫铝酸盐水泥的要求,又能使多余的二氧化硫释放,制备较多的硫磺,使水泥和硫磺联产成为可能。
发明人为了实现自己的设想,想到使用较多的脱硫石膏代替原有的石灰石,但是如果只采用脱硫石膏时,在回转窑中进行煅烧,CaSO4在1250-1300℃发生分解,但是仍有部分包裹在内部的脱硫石膏未发生分解,导致脱硫石膏的分解不充分,在3CaO·3Al2O3·CaSO4的形成阶段提供的CaO的量不足,影响制备得到的硫铝酸盐水泥的质量。CaSO4在1350-1400℃时才能发生较彻底的分解,可以提供大量的氧化钙,而此时也已经达到了3CaO·3Al2O3·CaSO4的分解温度,产生杂质,无法制备硫铝酸盐水泥。
所以,如何使用脱硫石膏代替石灰石制备大量硫铝酸盐水泥的同时,制备大量的二氧化硫,又是一个亟需解决的问题。
发明人经过反复试验验证,当在原料中加入活性炭时,活性炭与脱硫石膏可以在较低温度下发生氧化还原反应,且当铝灰、脱硫石膏和活性炭的质量比为:33-39:61-67:0.5-1,煅烧温度为1250-1300℃,煅烧时间为30-60min时,可以使用脱硫石膏代替生石灰来制备大量的硫铝酸盐水泥,并提供了大量的二氧化硫,为硫磺的制备提供了原料,同时还降低了能耗,降低了水泥的生产成本。
在水泥煅烧的环节,由于没有使用石灰石作为提供钙基的原料,在与传统脱硫石膏生产水泥熟料联产硫酸时,普通硅酸盐水泥熟料中CaO含量通常为64-67%,而硫铝酸盐水泥熟料中CaO含量仅为38-48%,含钙量的差异意味着由碳酸钙煅烧所释放的CO2减少;再加上烧成温度比硅酸盐水泥低150-200℃,能耗低能进一步降低CO2排放;应用生命周期评价理 论,得到单位生产水泥熟料所释放的的CO2排放量仅为常规硅酸盐水泥熟料的40%。
此外,传统方法中添加脱硫石膏的量较少,只是利用脱硫石膏中的硫酸钙,需要外加石灰石以满足硫铝酸盐水泥的配方,但是在这种方法下,脱硫石膏的使用量较少(一般为配料总质量的5-15%),无法充分利用堆存量丰富的脱硫石膏。本发明中脱硫石膏的用量较多(61%-67%),在生产过程中,一部分脱硫石膏以硫酸钙的形式存在于混合物中,另一部分脱硫石膏还原分解生成氧化钙,通过合理配比,可以满足硫铝酸盐水泥的配方要求。脱硫石膏的用量较多,实现了利用大量脱硫石膏制备硫铝酸盐水泥的目的,对消化堆存的脱硫石膏起到较大的贡献。
在脱硫石膏的煅烧过程中加入足够量的煤粉,使煤粉燃烧,可以消耗回转窑中多余的氧气,使回转窑中为弱氧化气氛,同时,活性炭的存在,保障了脱硫石膏的分解率和脱硫率。
优选的,步骤1)中,脱硫石膏加热脱水转变为半水脱硫石膏的温度为120-140℃。
优选的,步骤2)中,铝灰和半水石膏混匀后得到的生料的化学组成为:SiO2 3-10重量份;CaO 36-43重量份;Al2O3 28-40重量份;Fe2O3 1-3重量份;SO3 8-15重量份
进一步优选的,所述生料的率值为:碱度系数Cm在0.95~0.98,铝硫比P在1.05-1.22(由于钙源采用脱硫石膏的部分分解得到,所以铝硫比要远小于常规硫铝酸盐制备的控制率值3.86)之间,铝硅比为2-3。
其中,
Figure PCTCN2017109612-appb-000001
Fe2O3、TiO2、SO3、SiO2分别为相应化学成分所占的重量百分比。
优选的,步骤2)中,粉磨后的粒度小于8μm。
目前比较公认的水泥最佳性能的颗粒级配为:3~32μm,因为3~32μm颗粒对强度增长起主要作用,特别是3~8μm颗粒对水泥性能尤为重要,含量越多,性能越好。
优选的,步骤3)中,制备得到的硫铝酸盐水泥熟料以硫铝酸钙(3CaO·3Al2O3·CaSO4)、硅酸二钙(2CaO·SiO2)和铁相为主要矿物相,所占比例分别为30~50%,25~40%和0~4%。
制备的硫铝酸盐水泥的后期强度持续增加,经过抗压强度试验,3天抗压强度可达53.4MPa,28天抗压强度达75.2MPa。
优选的,步骤3)中,煅烧时的燃料是煤粉或煤气。
优选的,步骤3)中,煤粉燃烧的过量空气系数小于1.05。
过量空气系数是燃烧1kg燃料实际供给的空气质量与理论上完全燃烧1kg燃料所需的空气质量之比。
优选的,步骤3)中,还包括利用含二氧化硫烟气对水进行加热,获得高温蒸汽的步骤,所述高温蒸汽用作对铝灰和脱硫石膏进行加热的加热介质。
优选的,步骤4)中,硫铝酸盐水泥熟料与脱硫石膏的质量比为100:5。
优选的,步骤5)中,除尘后的烟气中含尘浓度小于10g/NM3
对回转窑中排放的烟气进行除尘,再利用粒度为10目的活性炭固定床进行还原时,可以提高活性炭固定床的使用寿命,同时可以提高硫磺的纯度,使制备的硫磺纯度达到97%以上。
上述制备方法制备得到的硫铝酸盐水泥。
含二氧化硫的窑气经余热回收利用设备、在经活性炭固定床将窑气中二氧化硫还原成硫磺的制取原理,如下:
C+SO2=0.5S2+CO2
除了上述主反应外,还有很多副产物,有CO、COS、H2S、CS2等,其生成反应主要有:
CO2+C=2CO;
CO+0.5S2=COS;
5SO2+H2O+7C=5CO2+0.5S2+H2S+COS+CS2
S2+C=CS2
由于H2S,COS,CS2都是还原剂,它们都能和SO2在一定温度下反应生成单质硫,即:
2H2S+SO2=1.5S2+2H2O;
2COS+SO2=1.5S2+2CO2
CS2+SO2=1.5S2+CO2
本发明的有益技术效果为:
本发明综合利用脱硫石膏与铝灰生产硫铝酸盐特种水泥联产硫磺的方法工艺,生产所需要的原料主要来源于电厂的脱硫产品,电解铝厂产生的废渣铝灰,以及还原剂活性炭,原料取材广泛、价格低廉。该方法不但对工业固废进行了再利用,同时生产高性能硫铝酸盐水泥熟料,生产的硫铝酸盐水泥熟料可以生产特种水泥或者常规水泥的添加剂,现被广泛的应用在抢修、抢建工程,冬季施工工程,抗腐蚀工程,在生产硫铝酸盐水泥熟料的同时,联产的硫磺达到高纯度的质量要求,可以用在化工、食品、医药行业中。
附图说明
图1为实施例1和实施例2中利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法工艺流程示意图;
图2为实施例3中利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法工艺流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
实施例1
如图1所示,将铝灰、脱硫石膏分别送入烘干器内,以经过烘干后的固体物质计,脱硫石膏:61%,铝灰:38%,活性碳占1%。直接输送入中空回转窑中煅烧,煅烧温度为1280℃,煅烧时间为60分钟。产生的高温窑气经过余热回收设备,副产的高温蒸汽及热水,对原始铝灰,脱硫石膏进行间接烘干。出余热回收设备的窑气,气体温度降低到860℃,在经除尘、除湿净化、补充空气调节氧硫比并干燥后进入粒度为10目的活性炭固定床,经催化还原生成单质硫,制备的硫磺纯度达到98%,采用微波加热,将附着在活性炭固定床上的硫磺蒸发,在收集装置中冷却收集。将在回转窑产生的硫铝酸盐熟料,经过篦式冷却机冷却,使硫铝酸盐水泥熟料得以快速冷却,冷却后的烧成后的熟料主要物相为硫铝酸钙、硅酸二钙和铁相,含量分别为40%、40%和4%,属于高硅高铁型硫铝酸盐水泥。
经水泥标准胶砂强度试验(GB/T 17671-1999),3天和28天抗压强度分别为53.4Mpa和75.2Mpa。
实施例2
将铝灰、脱硫石膏分别送入烘干器内,以经过烘干后的固体物质计,脱硫石膏:66%,铝灰:33%,活性碳占1%。直接输送入中空回转窑中煅烧,煅烧温度为1250℃,煅烧时间为50分钟。产生的高温窑气经过余热回收设备,副产的高温蒸汽及热水,对原始铝灰,脱硫石膏进行间接烘干。出余热回收设备的窑气,气体温度降低到855℃,在经除尘、除湿净 化、补充空气调节氧硫比并干燥后进入粒度为10目的活性炭固定床,经催化还原生成单质硫,制备的硫磺纯度达到99%,采用微波加热,将附着在活性炭固定床上的硫磺蒸发,在收集装置中冷却收集。将在回转窑产生的硫铝酸盐熟料,经过篦式冷却机冷却,使硫铝酸盐水泥熟料得以快速冷却,冷却后的烧成后的熟料主要物相为硫铝酸钙、硅酸二钙和铁相,含量分别为50%、45%和3%,属于高硅高铁型硫铝酸盐水泥。
经水泥标准胶砂强度试验(GB/T 17671-1999),3天和28天抗压强度分别为55.4Mpa和80.2Mpa。
实施例3
如图2所示,将铝灰、脱硫石膏分别送入烘干器内,以经过烘干后的固体物质计,脱硫石膏:65%,铝灰:34%,活性碳占1%。直接输送入中空回转窑中,并向回转窑中通入煤气煅烧,煅烧温度为1300℃,煅烧时间为30分钟。产生的高温窑气经过余热回收设备,副产的高温蒸汽及热水,对原始铝灰,脱硫石膏进行间接烘干。出余热回收设备的窑气,气体温度降低到860℃,在经除尘、除湿净化、补充空气调节氧硫比并干燥后进入两段式反应器,每个反应器中都装填Cu/Al2O3催化剂,并向两段式反应器中通入煤气,经催化还原生成单质硫,制备的硫磺纯度达到98%,采用微波加热,将附着在活性炭固定床上的硫磺蒸发,在收集装置中冷却收集。将在回转窑产生的硫铝酸盐熟料,经过篦式冷却机冷却,使硫铝酸盐水泥熟料得以快速冷却,冷却后的烧成后的熟料主要物相为硫铝酸钙、硅酸二钙和铁相,含量分别为50%、40%和4%,属于高硅高铁型硫铝酸盐水泥。
经水泥标准胶砂强度试验(GB/T 17671-1999),3天和28天抗压强度分别为53.4Mpa和75.2Mpa。
本发明具有以下显著的特点:
(1)本发明创造的生产工艺与以往的生产硫磺联产水泥生产技术不同,本发明所制备的水泥产品属于硫铝酸盐水泥,而不是常规的硅酸盐水泥。硫铝酸盐水泥矿物成分不同于普通硅酸盐水泥,它以硫铝酸钙(3CaO·3Al2O3·CaSO4)、硅酸二钙(2CaO·SiO2)和铁相为主要矿物物相,在1250-1350℃下低温烧成,是一种早强、高强、快硬的胶凝材料,具有高抗渗、高抗冻、耐腐蚀和低碱性等优秀特性;
(2)生产具有易操作性,用石膏类原料生产硫酸并联产硅酸盐水泥时,因为不能够使熟料中含有较高的SO3,需要严格控制石膏的分解率,需要添加还原剂并控制煅烧过程为弱还原气氛,否则就会造成窑况不稳或熟料质量不合格的问题;而联产硫铝酸盐水泥时,因为熟料本身要求较高的SO3含量,所以不需要刻意控制煅烧气氛,于是生产的可操作性大大提 高。
(3)由于煅烧硫铝酸盐水泥熟料所需温度为1250~1300℃之间,低于煅烧硅酸盐水泥的温度100℃,在回转窑的尾部加装余热回收利用设备,对进入窑的生料进行烘干,较大幅度的减少煤炭、电能的使用量,从而能在根本上实现节能降耗。
(4)由于在产品生产过程中的原料完全来自于工业固废,生产的原料成本较低,而制备的高性能硫铝酸盐胶凝材料市场价值较高,同时联产单质硫磺,使整个生产的产品附加值较高。
鉴于以上多方面的技术优势,本发明利用铝灰与脱硫石膏生产特种硫铝酸盐水泥并联产硫磺,具有显著的应用价值,其实施可形成突出的经济效益和环境效益。将窑气制备成硫磺的方法可以有效解决制酸工业中较难解决的硫酸的储存和运输的问题。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围内。

Claims (10)

  1. 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统,其特征在于:包括烘干器、粉磨机、回转窑、水泥粉磨机、水泥储罐、除尘器以及还原固定床,其中,铝灰和脱硫石膏经过烘干器烘干后,将铝灰、活性炭和脱硫石膏按特定比例混合后,将混合物送至粉磨机粉磨,粉磨后的混合物输送至回转窑中煅烧,并向回转窑中输送煤粉;煅烧得到的硫铝酸盐熟料与脱硫石膏按特定比例混合后,在水泥粉磨机中粉磨,得到的硫铝酸盐水泥输送至水泥储罐储存;
    回转窑中煅烧得到的含有二氧化硫的气体经过除尘器除尘,输送进还原固定床中还原,得到硫磺。
  2. 根据权利要求1所述的系统,其特征在于:所述回转窑与除尘器之间连接有余热回收设备,回转窑中排放的烟气对余热回收设备中的水加热,得到的高温蒸汽通入所述烘干器中作为加热介质,冷却后的烟气进入除尘器除尘。
  3. 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法,其特征在于:包括如下步骤:
    1)将铝灰烘干,将脱硫石膏加热脱水,使其转变为半水石膏;
    2)将活性炭、铝灰和半水石膏按设定比例混匀后,粉磨、均化;
    3)将粉磨、均化后的铝灰和半水石膏的混合物在1250-1300℃下进行煅烧,煅烧时间为30-60min,得到硫铝酸盐水泥熟料和含二氧化硫烟气;
    4)含二氧化硫烟气经过除尘、催化还原,制得硫磺产品;
    其中,铝灰、脱硫石膏、活性炭的质量比为:33-39:61-67:0.5-1。
  4. 根据权利要求3所述的方法,其特征在于:步骤1)中,脱硫石膏加热脱水转变为半水脱硫石膏的温度为120-140℃。
  5. 根据权利要求3所述的方法,其特征在于:步骤2)中,铝灰和半水石膏混匀后得到的生料的化学组成为:SiO2 3-10重量份;CaO 36-43重量份;Al2O3 28-40重量份;Fe2O3 1-3重量份;SO3 8-15重量份。
  6. 根据权利要求5所述的方法,其特征在于:所述生料的率值为:碱度系数Cm在0.95~0.98之间,铝硫比P在1.05-1.22之间,铝硅比为2-3。
  7. 根据权利要求3所述的方法,其特征在于:步骤3)中,煅烧时的燃料是煤粉或煤气。
  8. 根据权利要求3所述的方法,其特征在于:步骤3)中,制备得到的硫铝酸盐水泥熟料以硫铝酸钙(3CaO·3Al2O3·CaSO4)、硅酸二钙(2CaO·SiO2)和铁相为主要矿物相,所占比例分别为30~50%,25~40%和0~4%。
  9. 根据权利要求3所述的方法,其特征在于:步骤3)中,还包括利用含二氧化硫烟气对水进行加热,获得高温蒸汽的步骤,所述高温蒸汽用作对铝灰和脱硫石膏进行加热的加热介质。
  10. 权利要求1-9任一所述制备方法制备得到的硫铝酸盐水泥。
PCT/CN2017/109612 2017-03-17 2017-11-07 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法 WO2018166220A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2019/06733A ZA201906733B (en) 2017-03-17 2019-10-11 Method for co-producing sulphoaluminate cement and sulfur by using desulfurized gypsum and aluminum ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710159992.6 2017-03-17
CN201710159992.6A CN107056102B (zh) 2017-03-17 2017-03-17 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统和方法

Publications (1)

Publication Number Publication Date
WO2018166220A1 true WO2018166220A1 (zh) 2018-09-20

Family

ID=59620931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109612 WO2018166220A1 (zh) 2017-03-17 2017-11-07 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法

Country Status (3)

Country Link
CN (1) CN107056102B (zh)
WO (1) WO2018166220A1 (zh)
ZA (1) ZA201906733B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863123A (zh) * 2018-07-25 2018-11-23 西南科技大学 利用铝灰替代部分高铝矾土制备铝酸盐水泥的工艺
CN114133196A (zh) * 2021-11-22 2022-03-04 云南森博混凝土外加剂有限公司 一种水泥灌浆料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056102B (zh) * 2017-03-17 2020-01-24 山东卓联环保科技有限公司 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统和方法
CN108640175A (zh) * 2018-05-24 2018-10-12 焦作市远润环保科技有限公司 一种新型净水剂的生产方法
CN108773849A (zh) * 2018-08-23 2018-11-09 长沙中硅水泥技术开发有限公司 水泥窑协同处置二次铝灰的系统与方法
CN109987866B (zh) 2019-04-15 2020-03-31 山东大学 利用钢渣生产低碱度、新矿物体系硫铝酸盐水泥的方法及系统
CN111233356B (zh) * 2020-03-10 2021-04-06 山东大学 一种铝灰预处理的全固废制备硫铝酸盐水泥的方法及系统
CN111943652B (zh) * 2020-08-22 2023-03-24 郑州经纬科技实业有限公司 铝镁轻质耐火材料的制备方法
CN112028506B (zh) * 2020-09-15 2022-04-15 齐鲁工业大学 硫铝酸盐-磷酸钾镁复合凝胶材料和硫磺联产的方法和系统
CN113149476A (zh) * 2021-04-10 2021-07-23 浙江红狮环保股份有限公司 一种水泥熟料生产中处置电解铝铝灰的方法
CN113443643B (zh) * 2021-05-25 2022-04-01 昆明理工大学 一种协同处理铝灰、炭渣及脱硫石膏渣的方法
CN114620753B (zh) * 2021-11-29 2023-08-18 浙江天石纳米科技股份有限公司 综合利用化学反应热生产轻质碳酸钙的低碳工艺方法
CN116969703B (zh) * 2023-09-18 2023-12-19 常熟理工学院 一种利用锂渣和二次铝灰制备地质聚合硫铝酸盐水泥的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468792A (zh) * 2007-12-28 2009-07-01 尹小林 工业废石膏制硫磺新工艺
CN103922622A (zh) * 2014-03-20 2014-07-16 山东大学 一种利用铝灰生产硫铝酸盐水泥的工艺
CN107056102A (zh) * 2017-03-17 2017-08-18 山东卓联环保科技有限公司 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59703767D1 (de) * 1996-10-26 2001-07-19 Ardex Gmbh Verwertung von Al-haltigen Reststoffen
CN103304170B (zh) * 2013-06-28 2014-08-20 重庆大学 一种生产硫铝酸盐水泥的方法
CN106430111A (zh) * 2016-09-18 2017-02-22 江苏德义通环保科技有限公司 一种从烟气中回收二氧化硫制取硫磺的方法
CN106431031B (zh) * 2016-09-23 2019-02-19 金正大生态工程集团股份有限公司 一种利用磷石膏制硫铝酸盐水泥联产硫酸的方法
CN106365476B (zh) * 2016-09-23 2019-06-04 金正大诺泰尔化学有限公司 一种脱硫石膏制备硫铝酸盐水泥联产硫酸的方法
CN206692569U (zh) * 2017-03-17 2017-12-01 山东卓联环保科技有限公司 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468792A (zh) * 2007-12-28 2009-07-01 尹小林 工业废石膏制硫磺新工艺
CN103922622A (zh) * 2014-03-20 2014-07-16 山东大学 一种利用铝灰生产硫铝酸盐水泥的工艺
CN107056102A (zh) * 2017-03-17 2017-08-18 山东卓联环保科技有限公司 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863123A (zh) * 2018-07-25 2018-11-23 西南科技大学 利用铝灰替代部分高铝矾土制备铝酸盐水泥的工艺
CN114133196A (zh) * 2021-11-22 2022-03-04 云南森博混凝土外加剂有限公司 一种水泥灌浆料及其制备方法

Also Published As

Publication number Publication date
ZA201906733B (en) 2020-09-30
CN107056102A (zh) 2017-08-18
CN107056102B (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2018166220A1 (zh) 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法
CN106904849B (zh) 一种利用工业固废生产硫铝酸盐水泥联产硫酸的系统和方法
CN103304170B (zh) 一种生产硫铝酸盐水泥的方法
CN103771734B (zh) 一种规模化煅烧处理利用电解锰渣的方法
Potgieter An Overview of Cement production: How" green" and sustainable is the industry?
CN101003422B (zh) 一种用磷石膏生产硫酸和水泥的新方法
CN108358478B (zh) 一种分步煅烧煤气化渣制备胶凝材料的方法
CN101913786B (zh) 利用循环流化床固硫灰渣制备特种水泥的方法
CN106830722B (zh) 有机废水协同工业固废制备超高水充填材料的系统及方法
CN103435281A (zh) 一种水泥熟料及其制备工艺
CN102765893B (zh) 利用废渣氟石膏和赤泥制备硫铝酸盐特种水泥熟料的方法
CN106882932A (zh) 一种赤泥的综合利用方法
CN111646714A (zh) 一种硅酸盐水泥熟料及其制备方法
CN113502164A (zh) 一种利用脱硫石膏和磷石膏与钾矿石生产矿物质土壤调理剂的方法及产品
CN110963721B (zh) 一种利用干法水泥厂转型处理锰渣生产活性掺合材的方法
WO2018166221A1 (zh) 一种有机废水和工业固废协同处理的系统和方法
CN113354311A (zh) 一种资源节约型低碳水泥熟料及其制备方法
CN110981231A (zh) 基于干法旋窑水泥生产线协同处理电解锰渣的设备及方法
CN106810094B (zh) 利用城市废物和工业固废制备水泥联产硫磺的系统及方法
CN112028506B (zh) 硫铝酸盐-磷酸钾镁复合凝胶材料和硫磺联产的方法和系统
CN102020251A (zh) 一种石膏制硫酸与水泥的改进生产工艺
CN102320761B (zh) 一种水泥活性混合材与混凝土活性掺合料的制备方法
CN104844022A (zh) 低钙硅酸盐水泥熟料及其水泥的制备方法
CN1330599C (zh) 利用硬石膏生产硫酸联产高贝利特水泥的方法
CN107215850A (zh) 一种锂盐渣和工业副产石膏制硫酸联产水泥工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900481

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17900481

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.03.2020)