WO2018166221A1 - 一种有机废水和工业固废协同处理的系统和方法 - Google Patents

一种有机废水和工业固废协同处理的系统和方法 Download PDF

Info

Publication number
WO2018166221A1
WO2018166221A1 PCT/CN2017/109613 CN2017109613W WO2018166221A1 WO 2018166221 A1 WO2018166221 A1 WO 2018166221A1 CN 2017109613 W CN2017109613 W CN 2017109613W WO 2018166221 A1 WO2018166221 A1 WO 2018166221A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic wastewater
flue gas
slurry
enters
rotary kiln
Prior art date
Application number
PCT/CN2017/109613
Other languages
English (en)
French (fr)
Inventor
王文龙
王超前
任常在
李国麟
毛岩鹏
孙静
宋占龙
赵希强
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710159979.0A external-priority patent/CN106866006B/zh
Priority claimed from CN201710163740.0A external-priority patent/CN106830722B/zh
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2018166221A1 publication Critical patent/WO2018166221A1/zh
Priority to ZA2019/06734A priority Critical patent/ZA201906734B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a system and method for co-processing organic wastewater and industrial solid waste.
  • Industrial solid waste mainly includes red mud, desulfurization gypsum, smelting slag, tailings sand and coal gangue.
  • the total industrial solid waste production volume was 11.8 billion tons, and the total new stock was 19 billion tons.
  • the total industrial solid waste production volume was 15 billion tons, and the total new stock was 27 billion tons.
  • Organic wastewater has a tendency to increase in quantity, concentration and toxicity.
  • urban domestic wastewater to petrochemical, metallurgy, papermaking, fermenting, pharmaceutical, textile printing and dyeing wastewater it belongs to organic wastewater.
  • Organic wastewater is organic wastewater and wastewater contaminated by bacterial viruses. Its direct discharge will cause serious damage to the environment. The pollution, which in turn poses a serious threat to human health, so organic wastewater must be effectively treated before it can be discharged.
  • the incineration method is a method for deeply oxidizing organic wastewater by high temperature at high temperature, which can completely oxidize and decompose harmful organic substances in waste water at high temperature to generate carbon dioxide and water, so that the removal rate of organic matter in the wastewater can reach 99.99% or more.
  • the most effective and thorough treatment method, and the incineration method has a short processing time and high processing efficiency. Under normal circumstances, organic hazardous waste liquid with organic content greater than 10% should be incinerated for final treatment.
  • the incineration method has the disadvantages of large equipment investment and high treatment cost. In addition to certain special wastewaters (such as hospital wastewater need to be sterilized and sterilized), it is necessary to use this method. Generally, organic wastewater is difficult to be treated by incineration.
  • sulphoaluminate cement has become a new direction in the research and development of cement industry at home and abroad. Its cement clinker has low heat consumption, high early strength, short setting time, excellent freeze-thaw resistance and alkalinity. A series of excellent performance. Due to the obvious advantages of the existing sulphoaluminate cement, it has been widely used in the fields of repairing, rushing construction, winter construction engineering, anti-corrosion engineering and so on. China's traditional sulphoaluminate cement is prepared by using gypsum, limestone and aluminum-vanadium. The cement production technology is dry production, and it is difficult to use organic wastewater to make organic wastewater treatment. Waste contains a large amount of water, and it needs to be dried after being used for preparing sulphoaluminate cement, and the drying cost is high, so it is difficult to use industrial solid waste in large quantities.
  • Ultra-high water filling materials have attracted more and more attention as an emerging backfill material.
  • Ultra-high water filling materials should generally have the following basic properties: 1. Compressive pressure of the filled material after curing The strength should exceed 2MPa; 2, must have good flow capacity, can meet the long-distance transportation requirements; 3, suitable curing characteristics (mainly refers to the initial setting time and final setting time of the material); 4, compared with the cost of coal mining , has a lower cost; 5, higher security and stability.
  • the above five basic properties are the problems that need to be considered in the traditional preparation of ultra-high water filling materials, but with the deepening of mining of resources such as coal mines, these basic properties can no longer meet the actual needs. For example, now the pollution is getting more and more serious, the rainwater is acidic, and it will penetrate into the ground, which will cause certain erosion effect on the filling material; the super-high water filling material solidified body will be weathered in the air and will seriously affect its Support strength; when underwater construction such as the ocean, the filling material needs to have sufficient impermeability and erosion resistance.
  • the main raw materials of the existing ultra-high water filling materials are fly ash, cement, quicklime, gypsum, foaming agent and water, etc.
  • Each component requires a high cost, and the raw material of the ultra-high water filling material is
  • the cement used is sulphoaluminate cement, and the production of sulphoaluminate cement also has the problem of difficulty in applying organic wastewater and industrial solid waste.
  • the object of the present invention is to provide a system and method for co-processing organic wastewater and industrial solid waste, which can realize industrial solid waste and organic wastewater such as aluminum ash, desulfurization gypsum and calcium carbide slag.
  • the synergistic treatment can also produce ultra-high water filling materials and products such as sulphoaluminate cement, which reduces the production cost of the two products.
  • a method for co-processing organic wastewater and industrial solid waste comprising the following steps:
  • the invention realizes the physicochemical complementation of the organic waste water and the industrial solid waste, and the organic waste water contains a small amount of the silicate solution to be used as the cement raw material, and the organic matter and the combustible organic matter in the organic waste water can also be used as the fuel to burn and release heat in the rotary kiln.
  • the prepared base material can be used as a cement, or other products can be prepared by blending with other components.
  • the invention adopts a part of organic waste water mixed with industrial solid waste, not only reduces the amount of industrial water, but also in the process of industrial solid waste mixing and homogenizing with organic wastewater, part of the organic waste is fixed in industrial solid waste, so that the fire is made.
  • the organic waste fixed in the cement clinker process can be used as a high-temperature calcined fuel, thereby reducing the use of pulverized coal and reducing the use of pulverized coal. Cost of production.
  • another part of the organic wastewater is directly subjected to high-temperature calcination after concentration, which not only provides fuel for high-temperature calcination, but also fully treats the organic waste in the organic wastewater.
  • the invention adopts the equipment of the base material to realize the application of the organic wastewater incineration method, and at the same time, can fully utilize the energy generated when the organic wastewater is incinerated, realizes the energy utilization of the organic wastewater, reduces the use of the coal powder, and thus processes the organic Wastewater and industrial solid waste reduce the cost of production of base materials or end products. Since the moisture content of the demineralized red mud, calcium carbide slag and desulfurized gypsum is 30% to 60%, if the dry grinding process is used to dry the raw materials, the equipment and energy consumption are greatly limited.
  • the mechanical energy reduction method removes water consumption by less than 10% of the direct drying cost, and the content of harmful volatile components such as chloride ions in the raw material can also be eliminated and reduced by mechanical filtration.
  • the purpose of the homogenization treatment in the present invention is to obtain a uniform material composition and remove soluble impurities in the material, for example, sodium oxide and potassium oxide in the alkali-removed red mud can be removed to further de-alkali the raw material.
  • the moisture content in the mixed liquid in the present invention is 60% to 70% (mass), which enables the wet grinding to be carried out sufficiently, the moisture content is too small to be sufficiently ground, and the excessive moisture content increases the energy consumption.
  • the wet grinding described in the present invention is a method of grinding an aqueous material.
  • step 1) the desulfurized gypsum, the aluminum ash, the calcium carbide slag, the coal gangue, the iron tailings and a part of the organic wastewater are mixed to obtain a mixed liquid, the base material obtained in the step 3), the quick-setting agent, the dispersing agent, The expansion agent and water are formulated into ultra-high water filling materials.
  • the present invention utilizes industrial solid waste such as coal gangue, iron tailings, desulfurization gypsum, aluminum ash and calcium carbide slag instead of high-quality mineral resources to prepare high-water filling materials, thereby avoiding occupation and pollution of land resources by solid waste.
  • industrial solid waste such as coal gangue, iron tailings, desulfurization gypsum, aluminum ash and calcium carbide slag
  • the comprehensive utilization of large-scale industrial solid waste has been realized, which greatly reduces the cost of preparation of high-water filling materials and improves the economic benefits of mining such as coal mines.
  • the invention realizes the application of the organic wastewater incineration method by using the equipment for preparing the ultra-high water filling material, and at the same time, can fully utilize the energy generated by the incineration of the organic wastewater, realize the energy utilization of the organic wastewater, and reduce the use of the coal powder.
  • the present invention uses a part of organic wastewater to be mixed with industrial solid waste, which not only reduces the amount of industrial water, but also partially fixes organic waste in industrial solid waste during industrial homogenization and organic waste water mixing and homogenization.
  • the organic waste fixed during the burning of the cement clinker can be used as a high-temperature calcined fuel, thereby reducing the use of the pulverized coal and reducing the production cost.
  • another part of the organic wastewater is directly subjected to high-temperature calcination after concentration, which not only provides fuel for high-temperature calcination, but also fully treats the organic waste in the organic wastewater.
  • the mass ratio of the desulfurized gypsum, the aluminum ash, the calcium carbide slag, the coal gangue and the iron tailings is 13 to 20:15 to 20:30 to 35:20 to 25:8 to 16.
  • the calcination temperature is 1250 to 1300 ° C, and the calcination time is 60 to 80 min.
  • the basic material has a basicity coefficient C m of 0.95 to 0.98; and an aluminum to sulfur ratio P of 2.1 to 3.5.
  • Al 2 O 3 , SO 3 , SiO 2 , CaO, TiO 2 , Fe 2 O 3 are percentages of each oxide in the clinker (Al 2 O 3 , SO 3 , SiO 2 other than the formula) , CaO, TiO 2 , Fe 2 O 3 are the corresponding chemical components).
  • the chemical composition of the base material is as shown in Table 1.
  • the prepared precursor material contains more iron aluminate minerals (such as calcium iron aluminate), and hydrated to form hydrated calcium iron aluminate, hydration.
  • Iron aluminate minerals such as calcium iron aluminate
  • Calcium ferric aluminate has a dense structure, does not react with corrosive ions such as sulfate and carbonate in the atmosphere, and has a very low void ratio, which can block the intrusion of other molecules or ions, and can avoid the intrusion of air on hydration products. It can also reduce the influence of air on the crystallization water in the high water filling material. Therefore, the high water filling material prepared by the base material has strong corrosion resistance, and particularly has strong weathering resistance.
  • the high water filling material prepared by the base material has better impermeability and is more suitable for underwater construction such as the sea.
  • the base material does not need to be added with cement, and its compressive strength can reach 2 to 3 MPa in 2 hours, and has sufficient supporting strength and high strength in the later stage.
  • the main mineral composition of the base material is as shown in Table 2.
  • the obtained matrix material is calcium sulphoaluminate (3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 , simple ), dicalcium silicate (2CaO ⁇ SiO 2 , simple C 2 S) and iron phase (mainly 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 , simple C 4 AF) are the main minerals.
  • the added accelerator, dispersant and expansion agent respectively account for 0.1% to 1%, 0.5% to 2% and 0.5% to 2% by mass of the base material, and the mass of the added water is the total mass of the high water filling material. 95 to 97%.
  • the main component of the quick-setting admixture is clinker made of aluminum-oxygen clinker, soda ash and quicklime, which is prepared by grinding. It is an admixture which can be quickly solidified and hardened by being mixed into concrete.
  • the quick-setting agent can be Accelerate the final setting speed of the high-water filling material, so that after filling the high-water filling material, it can solidify in a short period of time and provide sufficient support strength.
  • the dispersing agent is a kind of surfactant which has both opposite properties of lipophilicity and hydrophilicity in the molecule, and is an agent for promoting uniform dispersion of the material particles in the medium to form a stable suspension.
  • the expansion agent can cause volume expansion by physical and chemical reaction, and is added to the high water filling material.
  • the high water filling material is coagulated and hardened, the volume expands, and the effect of fully filling the cement gap can improve the filling effect of the high water filling material.
  • the method further comprises the steps of: heating the water by using the high-temperature flue gas discharged from the rotary kiln to obtain high-temperature steam, and heating and drying the high-temperature steam to the material.
  • the mixture is obtained by mixing desulfurization gypsum, calcium carbide slag, aluminum ash, de-alkali red mud and a part of organic wastewater, and in step 3), the base material obtained by high-temperature calcination is sulphoaluminate clinker.
  • the mass ratio of the alkali-removed red mud, calcium carbide slag, aluminum ash, and desulfurized gypsum is from 30 to 50:20 to 30:10 to 20:15 to 25.
  • the desulfurization gypsum before the production of clinker is added in a mass ratio
  • the desulfurized gypsum after the production of clinker is added in a conventional process.
  • the fineness of the material in the slurry is less than 0.20 mm.
  • the calcination temperature is from 1250 ° C to 1350 ° C.
  • the chemical composition of the sulphoaluminate clinker is as shown in Table 3:
  • the main mineral composition of the sulphoaluminate clinker is as shown in Table 4:
  • CSA stands for sulphoaluminate cement.
  • f-CaO is less than 0, and f-SO 3 is from 0.3 to 2.5.
  • f-CaO CaO-1.87 ⁇ SiO 2 —1.4 ⁇ Fe 2 O 3 —0.7 ⁇ TiO 2 —0.73 ⁇ (Al 2 O 3 —0.64 ⁇ Fe 2 O 3 );
  • Al 2 O 3 , SO 3 , SiO 2 , CaO, TiO 2 , Fe 2 O 3 It is the percentage of each compound in the clinker (Al 2 O 3 , SO 3 , SiO 2 , CaO, TiO 2 , Fe 2 O 3 , etc. Respectively the corresponding chemical components).
  • the obtained sulphoaluminate cement clinker is calcium sulphoaluminate (3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 , simple type ), dicalcium silicate (2CaO ⁇ SiO 2 , simple C 2 S) and iron phase (mainly 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 , simple C 4 AF) are the main minerals.
  • step 2) the slurry is stirred for a set time and then subjected to pressure filtration.
  • the components in the material are mixed well.
  • the set time is 12h.
  • step 2) the mechanically filtered filtrate is returned to the organic wastewater.
  • Organic waste that has not been fixed by industrial solid waste can be reprocessed to prevent zero discharge of organic waste.
  • step 3 the organic wastewater is pretreated before concentration.
  • the pretreatment comprises filtration. Remove suspended solids from organic wastewater.
  • the particle size of the solid particles in the filtered organic wastewater is less than 40 mesh.
  • the pretreatment comprises a neutralization process. Prevent corrosion of the concentrating equipment while preventing incineration from corroding the rotary kiln or slagging in the rotary kiln.
  • the pH of the organic wastewater after the neutralization treatment is 6-8.
  • the pretreatment comprises filtering, neutralizing processing in sequence.
  • the organic wastewater has a concentration temperature of 85 to 95 °C.
  • the mixed slurry has a moisture content of 20 to 25% by mass.
  • the moisture content in the range of 20 to 25% can meet the needs of subsequent production, and is suitable for the processing ability of the foregoing steps, and can also save fuel use during calcination.
  • the high temperature flue gas generated by the rotary kiln is recovered by waste heat to generate high temperature steam.
  • the high temperature steam is used as a heat source for organic wastewater concentration.
  • the high temperature steam is cooled to 85 to 95 ° C as a heat source for organic wastewater concentration.
  • the flue gas recovered after the waste heat is discharged through the flue gas treatment after dust removal.
  • the obtained base material was prepared by the above method.
  • An ultra-high water filling material consisting of the following components: 1 to 3 parts by weight of the above-mentioned base material, 95 to 97 parts by weight of water, a quick setting agent, a dispersing agent and a swelling agent, a quick setting agent, a dispersing agent and a swelling agent.
  • the mass is 0.1 to 1%, 0.5 to 2%, and 0.5 to 2%, respectively, of the mass of the base material.
  • a system for co-processing organic wastewater and industrial solid waste including wet pulverizer, filter press, homogenization tank, rotary kiln and indirect heat exchanger, each raw material and a part of organic wastewater from the organic wastewater tank enters the wet powder
  • the mill performs wet grinding, and then enters the homogenization tank and the filter press for homogenization treatment and pressure filtration to obtain a slurry.
  • Another portion of the organic wastewater from the organic wastewater tank enters the indirect heat exchanger for concentration and The slurry enters the rotary kiln together for high temperature calcination, and Matrix material.
  • the matrix material obtained after high temperature calcination is formulated into a super high water filling material together with a quick setting agent, a dispersing agent, a swelling agent and water.
  • the filtrate produced by the filter press after the filter press enters the organic wastewater pool.
  • the organic waste in the filtrate is further processed.
  • the filtering device is included, and the other part of the organic wastewater enters the filtering device and then enters the indirect heat exchanger.
  • the neutralization tank is included, and the other part of the organic wastewater enters the neutralization tank for neutralization and then enters the indirect heat exchanger.
  • the filtering device and the neutralization tank are included, and the other part of the organic wastewater sequentially enters the filtering device and the neutralization tank to be separately filtered and neutralized before entering the indirect heat exchanger.
  • the waste heat recovery device is included, and the high-temperature flue gas generated by the rotary kiln enters the waste heat recovery device for waste heat recovery.
  • the high temperature steam after waste heat recovery serves as a heat source for the indirect heat exchanger.
  • the cooler is included, and the high temperature steam after the waste heat recovery enters the cooler to be cooled and enters the indirect heat exchanger.
  • the dust collector is included, and the flue gas after the waste heat recovery enters the dust collector for dust removal.
  • the flue gas treatment system is included, and the flue gas is discharged after entering the flue gas treatment system for the flue gas treatment after the dust removal.
  • the basic raw materials for the preparation of ultra-high water filling materials are fly ash, cement, quicklime and gypsum, which are generally solved by means of outsourcing.
  • the higher price leads to an increase in production costs and a huge competitive pressure.
  • the invention can completely rely on industrial solid waste to replace the raw materials for production, and the production cost is greatly reduced, and the problem of the manufacture of the traditional ultra-high water filling material is solved while solving the problem of difficult use of solid waste.
  • the solid waste materials for making ultra-high water filling materials of the present invention are coal gangue, desulfurized gypsum, aluminum ash and calcium carbide slag, which solve a series of problems such as land occupation, environmental pollution and resource waste, and turn them into waste. For these solid waste production enterprises, it not only solves the burden of solid waste, but also brings economic benefits.
  • the basic raw materials for the traditional sulphoaluminate cement process are alumina, limestone and gypsum, which are generally purchased out.
  • the solution is that the higher prices lead to higher production costs and the pressure of competition.
  • the invention can completely rely on industrial solid waste instead of the raw materials for production, and the production cost is greatly reduced, and the problem of the manufacture of the traditional sulphoaluminate cement is solved while solving the problem of difficult use of solid waste.
  • the solid waste raw materials for producing sulphoaluminate cement of the invention are de-alkali red mud, calcium carbide slag, aluminum ash, desulfurization gypsum, fly ash and coal gangue, which solves a series of land occupation, environmental pollution and resource waste. Problems that turn them into waste. For these solid waste production enterprises, it not only solves the burden of solid waste, but also brings economic benefits. Achieving a win-win situation between solid waste production enterprises and sulphoaluminate cement production enterprises.
  • FIG. 1 is a process flow diagram of preparing an ultra-high water filling material in the present invention.
  • FIG. 2 is a process flow diagram of preparing a sulphoaluminate cement in the present invention.
  • Organic wastewater combined with industrial solid waste to prepare ultra-high water filling materials including wet pulverizer, filter press, homogenization tank, rotary kiln and indirect heat exchanger, desulfurization gypsum, aluminum ash, calcium carbide slag, coal gangue,
  • the iron tailings and a part of the organic wastewater from the organic wastewater tank enter the wet pulverizer for wet grinding, and then enter the homogenization tank and the filter press for homogenization treatment and pressure filtration to obtain the slurry from the organic wastewater pool.
  • Another part of the organic wastewater enters the indirect heat exchanger for concentration, and then enters the rotary kiln with the slurry for high-temperature calcination.
  • the base material obtained after high-temperature calcination is super high with the accelerator, dispersant, expansion agent and water. Water filling material.
  • the filtering device and the neutralization tank are included, and another part of the organic wastewater enters the filtering device and the neutralization tank in turn for filtration and neutralization, and then enters the indirect heat exchanger.
  • the high-temperature flue gas generated by the rotary kiln enters the waste heat recovery equipment for waste heat recovery.
  • the high temperature steam recovered from the waste heat enters the cooler and then enters the indirect heat exchanger.
  • the flue gas after the waste heat recovery enters the dust collector for dust removal.
  • the flue gas enters the flue gas treatment system for flue gas treatment and is discharged.
  • the desulfurization gypsum, aluminum ash, calcium carbide slag, coal gangue and iron tailings are mixed and matched in proportion, and a part of the organic wastewater in the organic wastewater tank is added to form a mixed liquid, so that the moisture content of the mixed liquid is 60% to 70%, and Stir well.
  • the milled slurry was homogenized and demineralized in a homogenization tank, and stirred for 12 hours to obtain a uniform slurry.
  • the uniform slurry is dehydrated by mechanical pressure filtration to obtain a slurry, and the filtered filtrate is sent to an organic wastewater tank.
  • Another part of the organic wastewater in the organic wastewater wastewater pond is treated, ie pretreated. Filtration is carried out so that the solid particles contained are below 40 mesh, and the suspended matter in the portion of the organic wastewater is removed.
  • the filtered organic wastewater is then neutralized to make the organic wastewater neutral or near neutral, preventing corrosion of the kiln or kiln during incineration.
  • the neutralized organic wastewater is sent to an indirect heat exchanger, and the steam generated by the waste heat recovery equipment is cooled to 85-95 ° C to indirectly concentrate the organic wastewater, and the water content is below 30%.
  • the concentrated organic wastewater and the slurry obtained in the step 4 are sent to a rotary kiln for high-temperature calcination (1250 ° C to 1350 ° C).
  • the rotary kiln flue gas is connected to the flue gas waste heat recovery equipment, and the generated high temperature steam is cooled to 85 ° C ⁇ 95 ° C, and the organic wastewater is indirectly concentrated by an indirect heat exchanger.
  • the flue gas passing through the waste heat recovery equipment is passed to a bag filter for dust removal. Finally, the flue gas treatment system is introduced for desulfurization and denitrification, and the flue gas treatment is discharged to the atmosphere.
  • the base material produced in the rotary kiln is cooled by a cooling machine, and the obtained base material is calcium sulphoaluminate.
  • Dicalcium silicate (C 2 S) and iron phase (mainly C 4 AF) are the main minerals.
  • the cooled base material is added to a super-high water filling material by adding a quick-setting admixture, a dispersing agent, a swelling agent and water.
  • the specific parameters are as follows: the coal gangue is pulverized, and the aluminum ash, the calcium carbide slag and the desulfurized gypsum are compounded.
  • the coal gangue accounts for 25 parts by weight
  • the desulfurized gypsum accounts for 17 weight.
  • the calcium carbide slag accounts for 40 parts by weight
  • the aluminum ash accounts for 18 parts by weight
  • the iron tailings accounts for 8 parts by weight.
  • the powder is homogenized, and then directly transferred to a rotary kiln for calcination after pressure filtration, the firing temperature is 1270 ° C, and the calcination time is 80 minutes.
  • the main phases of the clinker after firing are calcium sulphoaluminate and dicalcium silicate. Take the above-mentioned base material, add 1.0% of the base material mass accelerator, 1.5% expansion agent, 1.5% dispersant, and take another 96 parts of water. The mass of each water is the same as the mass of the above-mentioned base material, and fully mixed. Ultra high water filling material. The initial setting time is 30 minutes, the final setting time is 2.5 hours, and the 3-hour intensity is 2.5 MPa.
  • the specific parameters are as follows: the coal gangue is pulverized, and the aluminum ash, the calcium carbide slag and the desulfurized gypsum are compounded, and the coal gangue is 23 parts by weight, based on the solid matter, the desulfurized gypsum 22 parts by weight, calcium carbide slag was 35 parts by weight, aluminum ash was 20 parts by weight, and iron tailings was 11 parts by weight.
  • the powder is homogenized, and then directly transferred into a rotary kiln for calcination after pressure filtration, the calcination temperature is 1350 ° C, and the calcination time is 80 minutes.
  • the specific parameters are as follows: the coal gangue is pulverized, and the aluminum ash, the calcium carbide slag and the desulfurized gypsum are compounded, and the coal gangue is 21 parts by weight, and the desulfurized gypsum is 20 parts by solid matter.
  • the calcium carbide slag was 37 parts by weight
  • the aluminum ash was 15 parts by weight
  • the iron tailings were 15 parts by weight.
  • the powder is homogenized, and then directly transferred to a rotary kiln for calcination after pressure filtration, the calcination temperature is 1350 ° C, and the calcination time is 75 minutes.
  • Examples 1-3 correspond to the test group 1 and the test group 2 and Test group 3; one group was placed in indoor air to naturally weather it.
  • Examples 1-3 corresponded to control group 1, control group 2 and control group 3, respectively.
  • the compressive strength measurements of different ages and normalized blocks were performed at different ages. The results are shown in Table 1.
  • Organic wastewater combined with industrial solid waste to prepare sulphoaluminate cement system including organic wastewater tank, homogenization tank, wet pulverizer, filter press, rotary kiln and indirect heat exchanger, alkali-removed red mud, calcium carbide slag,
  • the aluminum ash, desulfurized gypsum and a part of the organic wastewater from the organic wastewater tank enter the wet pulverizer for wet grinding, and then enter the homogenization tank and the filter press for homogenization treatment and pressure filtration to obtain the slurry, which is from organic
  • Another part of the organic wastewater in the wastewater tank enters the indirect heat exchanger for concentration, and then enters the rotary kiln together with the slurry for high-temperature calcination, and the sulphoaluminate clinker is obtained after high-temperature calcination.
  • the filtrate produced by the filter press after the filter press enters the organic wastewater tank.
  • the filtering device and the neutralization tank are included, and another part of the organic wastewater enters the filtering device and the neutralization tank in turn for filtration and neutralization, and then enters the indirect heat exchanger.
  • the high-temperature flue gas generated by the rotary kiln enters the waste heat recovery equipment for waste heat recovery.
  • the high temperature steam recovered from the waste heat enters the cooler and then enters the indirect heat exchanger.
  • the flue gas after the waste heat recovery enters the dust collector for dust removal.
  • the flue gas enters the flue gas treatment system for flue gas treatment and is discharged.
  • the slurry is ground by a wet mill, and the fineness is controlled to be less than 1% of the 0.20 mm sieve.
  • the milled slurry was homogenized and demineralized in a homogenization tank, and stirred for 12 hours to obtain a uniform slurry.
  • the uniform slurry is dehydrated by mechanical pressure filtration to obtain a slurry, and the filtered filtrate is sent to an organic wastewater tank.
  • Another part of the organic wastewater in the organic wastewater wastewater pond is treated, ie pretreated. Filtration is carried out so that the solid particles contained are below 40 mesh, and the suspended matter in the portion of the organic wastewater is removed.
  • the filtered organic wastewater is then neutralized to make the organic wastewater neutral or near neutral, preventing corrosion of the kiln or kiln during incineration.
  • the neutralized organic wastewater is sent to an indirect heat exchanger, and the steam generated by the waste heat recovery equipment is cooled to 85-95 ° C to indirectly concentrate the organic wastewater, and the water content is below 30%.
  • the concentrated organic wastewater and the slurry obtained in the step 4 are sent to a rotary kiln for high-temperature calcination (1250 ° C to 1350 ° C).
  • the rotary kiln flue gas is connected to the flue gas waste heat recovery equipment, and the generated high temperature steam is cooled to 85 ° C ⁇ 95 ° C, and the organic wastewater is indirectly concentrated by an indirect heat exchanger.
  • the flue gas passing through the waste heat recovery equipment is passed to a bag filter for dust removal. Finally, the flue gas treatment system is introduced for desulfurization and denitrification, and the flue gas treatment is discharged to the atmosphere.
  • the sulphoaluminate cement clinker produced in the rotary kiln is cooled by a grate cooler, and the cold air is directly exchanged with the clinker for cooling, and can be cooled to 80-100 ° C in 25 to 35 minutes.
  • Sulphoaluminate cement clinker with calcium sulphoaluminate Dicalcium silicate (C 2 S) and iron phase (mainly C 4 AF) is the main mineral.
  • step 14 the temperature of the cement will increase.
  • the mill will be ventilated and cooled during the grinding process.
  • the mill body will be sprayed with water to cool the cement to 30 ⁇ 40°C. .
  • the specific parameters, calculation results and detection are as follows: based on the mass of the solid-liquid mixture after mixing and matching, the alkali-removing red mud accounts for 35.45%, the carbide slag accounts for 24.61%, and the aluminum ash accounts for 18.32. %, desulfurization gypsum accounted for 21.62%, based on the mass of calcined raw meal: SiO 2 accounted for 8.14%, Al 2 O 3 accounted for 31.20%, Fe 2 O 3 accounted for 3.72%, CaO accounted for 43.23%, MgO accounted for 0.33%, TiO 2 accounted for 1.30%, SO 3 accounted for 8.94%. Coal powder accounts for 2.53%.
  • the concentrated organic wastewater is added to the raw meal and sent to a rotary kiln for calcination at a calcination temperature of 1280 °C.
  • the calcination time was 60 minutes. At this time, dioxins, furans, PCBs, etc. can be well eliminated.
  • the flue gas is then recycled to the heat recovery equipment for heat recovery. Finally, the flue gas is dedusted and flue gas treated. No harmful substances such as dioxins, furans and PCBs were detected after the treated flue gas was detected.
  • the calcined clinker passes through a grate cooler and a grinding system in sequence to obtain a sulphoaluminate cement clinker.
  • the specific parameters, calculation results and detection are as follows: based on the mass of the solid-liquid mixture after mixing and matching, the alkali-removed red mud accounts for 46.86%, and the calcium carbide slag accounts for 25.34%. Ash accounts for 10.45% and desulfurized gypsum accounts for 17.35%.
  • the concentrated organic wastewater was added to the raw meal and sent to a rotary kiln for calcination at a firing temperature of 1290 ° C and a calcination time of 60 minutes. No harmful substances such as dioxins, furans and PCBs were detected after the treated flue gas was detected.
  • the compressive strengths at 3 and 28 days were 40.8 MPa and 43.7 MPa, respectively.

Abstract

一种有机废水和工业固废协同处理的系统和方法,该方法包括如下步骤:1)将脱硫石膏、铝灰、电石渣、煤矸石、铁尾矿和一部分有机废水混合后获得混合液,或将脱硫石膏、电石渣、铝灰、脱碱赤泥和一部分有机废水混合后获得混合物,混合物中的水分含量为60%~70%;2)再对混合物进行湿法粉磨,然后将湿法粉磨后的物料进行均化处理得到浆液,所述浆液经过机械压滤脱水获得浆料;3)另一部分有机废水经过浓缩后与所述浆料一起进入回转窑中进行高温煅烧获得基体材料,高温煅烧过程中向回转窑中喷入煤粉,使煤粉和浆料与浓缩有机废水中的有机物燃烧。

Description

一种有机废水和工业固废协同处理的系统和方法 技术领域
本发明涉及一种有机废水和工业固废协同处理的系统和方法。
背景技术
我国经济发展迅速,大量的能源消耗产生了大量的工业固体废弃物(简称工业固废),工业固废主要包括赤泥、脱硫石膏、冶炼渣、尾矿砂和煤矸石等。“十一五”期间工业固废总生产量118亿吨,总新增存量190亿吨。“十二五”期间工业固废总生产量150亿吨,总新增存量270亿吨。随着我国工业化进程的不断加快,这些工业固废占用大量土地的同时还存在着随时污染环境的危险。
随着我国人口数量的增加、城市化进程的加快、工业的迅速发展和工业规模的不断扩大,有机废水呈现数量多、浓度高、毒性大的趋势。从城市生活废水到石油化工、冶金、造纸、发酵酿酒、制药、纺织印染废水都属于有机废水,有机废水是以有机污染物和被细菌病毒污染为主的废水,其直接排放会对环境造成严重的污染,进而对人类的身体健康造成严重的威胁,所以有机废水必须经过有效的处理才能排放。焚烧法是在高温下用空气深度氧化处理有机废水的方法,可将废水中的有害有机物在高温下彻底氧化分解,生成二氧化碳和水,使得废水中有机物的去除率可达99.99%以上,是最有效最彻底的处理手段,而且焚烧法的处理时间短,处理效率高。一般情况下,有机物含量大于10%的有机有害废液都应采用焚烧法作最终处理。但是焚烧法具有设备投资大、处理成本高的缺点,除了某些特殊废水(如医院废水需要消毒灭菌)必须采用该法外,一般有机废水难以应用焚烧法进行处理。
近年来,硫铝酸盐水泥成为国内外水泥行业研究发展的新方向,其水泥熟料具有生产所需要的热耗低、早期强度高、凝结时间短、极好的抗冻融性、碱度低等一系列优异性能。由于现有硫铝酸盐水泥的优点显著,现已被广泛应用在抢修、抢建工程,冬季施工工程,抗腐蚀工程等领域。我国传统的硫铝酸盐水泥是使用石膏、石灰石和铝钒土进行制备,该种水泥生产技术是干法生产,用不到有机废水,难以对有机废水的处理做出贡献;而大多工业固废中含有大量的水分,将其应用于制备硫铝酸盐水泥时需要经过干燥后使用,干燥成本较高,所以难以大量使用工业固废。
煤矿等采空区的回填技术的发展一直以来都相对滞后,降低了采矿的效率,增加了采矿的成本,对社会和环境造成了安全隐患。超高水充填材料作为一种新兴的回填材料引起越来越多的关注。超高水充填材料一般应该具备以下基本性能:1、固化后充填材料的抗压 强度应超过2MPa;2、必须具有良好的流动能力,才能满足长距离输送要求;3、合适的固化特性(主要是指材料的初凝时间和终凝时间);4、与采煤成本相比,具有较低的成本;5、较高的安全性和稳定性。以上的五种基本性能是传统制备超高水充填材料需要考虑的问题,但是随着煤矿等资源开采的深入,这几种基本性能已经不能满足实际的需求。如,现在污染越来越严重,雨水都是呈若酸性,渗入地下,则会对充填材料造成一定的侵蚀作用;超高水充填材料凝固体暴露在空气中受风化作用,也会严重影响其支撑强度;海洋等水下施工时,需要充填材料具有足够的抗渗性能和抗侵蚀性能等。此外,现有的超高水充填材料的主要原料为粉煤灰、水泥、生石灰、石膏、发泡剂和水等,每种成分都需要较高的成本,而且超高水充填材料的原料中使用的水泥是硫铝酸盐水泥,硫铝酸盐水泥的生产同样存在难以应用有机废水和工业固废的问题。
发明内容
为了解决现有技术中存在的以上问题,本发明的目的提供一种有机废水和工业固废协同处理的系统及方法,该方法可以实现铝灰、脱硫石膏、电石渣等工业固废和有机废水的协同处理,同时还能制备得到超高水充填材料和硫铝酸盐水泥等产品,降低了这两种产品的生产成本。
为了实现上述目的,本发明的技术方案为:
一种有机废水和工业固废协同处理的方法,包括如下步骤:
1)将脱硫石膏、铝灰、电石渣、煤矸石、铁尾矿和一部分有机废水混合后获得混合液,或,将脱硫石膏、电石渣、铝灰、脱碱赤泥和一部分有机废水混合后获得混合物,混合物中的水分含量为60%~70%(质量);
2)再对混合物进行湿法粉磨,然后将湿法粉磨后的物料进行均化处理得到浆液,所述浆液经过机械压滤脱水获得浆料;
3)另一部分有机废水经过浓缩后与所述浆料一起进入回转窑中进行高温煅烧获得基体材料,高温煅烧过程中向回转窑中喷入煤粉,使煤粉和浆料与浓缩有机废水中的有机物燃烧。
本发明实现了有机废水和工业固废的物化互补,有机废水中含有少量硅酸盐溶液可做水泥原料,同样有机废水中的有机质和可燃有机物也可以作为燃料在回转窑中燃烧放热。制备得到的基体材料可以作为水泥使用,也可以通过与其他组分掺配,制备其他产品。
本发明采用一部分有机废水与工业固废混合,不仅降低了工业水的用量,而且在工业固废在与有机废水混合均化过程中,部分有机废物被固定在工业固废中,使得在烧制水泥熟料过程中被固定的有机废物能够作为高温煅烧的燃料,从而降低了煤粉的使用,降低了 生产成本。同时另一部分有机废水通过浓缩后直接进行高温煅烧,不仅对高温煅烧提供了燃料,而且对有机废水中有机废物进行充分处理。
本发明采用基体材料的设备实现了有机废水焚烧法的应用,同时,能够充分利用有机废水焚烧时产生的能量,实现了有机废水的能源化利用,降低了煤粉的使用,从而既处理了有机废水和工业固废又降低了基体材料或终端产品的生产成本。由于脱碱赤泥、电石渣、脱硫石膏含水率达30%~60%,若采用干法研磨工艺需对原料进行干燥处理,设备和能耗受到很大限制。以机械压滤方式去除水分能耗不到直接干燥成本的10%,原料中的氯离子等有害挥发性成分含量也可以通过机械压滤过程中得以消除和降低。
本发明中均化处理的目的是获得均一的物料成分和去除物料中的可溶性杂质,如,可脱除脱碱赤泥中的氧化钠和氧化钾,使原料进行进一步脱碱。
本发明中所述混合液中的水分含量为60%~70%(质量)可使得湿法粉磨充分进行,水分含量过小不易充分粉磨,水分含量过大耗能增多。
本发明中所述的湿法粉磨为将含水物料进行粉磨的方法。
优选的,步骤1)中,将脱硫石膏、铝灰、电石渣、煤矸石、铁尾矿和一部分有机废水混合后获得混合液,步骤3)中获得的基体材料与速凝剂、分散剂、膨胀剂和水配制成超高水充填材料。
首先,本发明利用了煤矸石、铁尾矿、脱硫石膏、铝灰和电石渣等工业固废代替优质矿产资源,来制备高水充填材料,避免了固体废弃物对土地资源的占用和污染,实现了大宗工业固体废弃物的资源化综合利用,大大降低了高水充填材料制备的成本,提高了煤矿等矿产开采的经济效益。其次,本发明采用制备超高水充填材料的设备实现了有机废水焚烧法的应用,同时,能够充分利用有机废水焚烧时产生的能量,实现有机废水的能源化利用,降低了煤粉的使用,从而既处理了有机废水和工业固废又降低了生产超高水充填材料的成本。第三,本发明采用一部分有机废水与工业固废进行混合,不仅降低了工业水的用量,而且在工业固废在与有机废水混合均化过程中,部分有机废物被固定在工业固废中,使得在烧制水泥熟料过程中被固定的有机废物能够作为高温煅烧的燃料,从而降低了煤粉的使用,降低了生产成本。同时另一部分有机废水通过浓缩后直接进行高温煅烧,不仅为高温煅烧提供了燃料,而且对有机废水中有机废物进行充分处理。
进一步优选的,脱硫石膏、铝灰、电石渣、煤矸石和铁尾矿的质量比为:13~20:15~20:30~35:20~25:8~16。
进一步优选的,步骤3)中,煅烧的温度为1250~1300℃,煅烧时间为60~80min。
进一步优选的,步骤3)中,所述基体材料中,碱度系数Cm为0.95~0.98;铝硫比P为 2.1~3.5。
Figure PCTCN2017109613-appb-000001
Figure PCTCN2017109613-appb-000002
式中Al2O3、SO3、SiO2、CaO、TiO2、Fe2O3均为熟料中各氧化物的百分含量(公式以外所述的Al2O3、SO3、SiO2、CaO、TiO2、Fe2O3分别为相应化学成分)。
更进一步优选的,所述基体材料的化学组成如表1所示。
表1 基体材料的化学组成(wt%)
品种 SiO2 Al2O3 CaO SO3 Fe2O3
含量% 5~13 29~35 30~42 8~16 11~12.5
经过试验验证,基体材料中的含铁量较大,所制备的前躯体材料含有更多的铁铝酸盐矿物(如铁铝酸钙),水化后生成水化铁铝酸钙,水化铁铝酸钙具有致密结构,不与大气中的硫酸根、碳酸根等腐蚀性离子产生化学反应,而且空隙率非常低,可以阻滞其他分子或离子侵入,可以避免空气对水化产物的侵害,还可以降低空气对高水充填材料中结晶水的影响,因此该基体材料制备的高水充填材料的抗侵蚀性较强,尤其具有较强的抗风化性能。
此外,该基体材料制备的高水充填材料具有较好的抗渗性能,更适合海洋等水下施工。
该基体材料中无需加入水泥,其抗压强度在2小时内即可达到2~3MPa,具有足够的支撑强度,后期强度高。
进一步优选的,所述基体材料的主要矿物组成如表2所示。
表2 基体材料的主要矿物组成(wt%)
Figure PCTCN2017109613-appb-000003
获得的基体材料以硫铝酸钙(3CaO·3Al2O3·CaSO4,简式
Figure PCTCN2017109613-appb-000004
)、硅酸二钙(2CaO·SiO2,简式C2S)和铁相(主要为4CaO·Al2O3·Fe2O3,简式C4AF)为主要矿物。
进一步优选的,加入的速凝剂、分散剂和膨胀剂分别占基体材料的质量百分数为0.1~1%、0.5~2%和0.5~2%,加入的水的质量为高水充填材料总质量的95~97%。
速凝剂主要成分为铝氧熟料、纯碱、生石灰按比例烧制成的熟料,经磨细而制成,是掺入混凝土中能使混凝土迅速凝结硬化的外加剂,该速凝剂可以加快高水充填材料的终凝速度,使高水充填材料充填完毕后,能在较短的时间内凝固,提供足够的支撑强度。
分散剂是一种在分子内同时具有亲油性和亲水性两种相反性质的界面活性剂,是促使物料颗粒均匀分散于介质中,形成稳定悬浮体的药剂。
膨胀剂可以通过理化反应引起体积膨胀,加在高水充填材料中,当高水充填材料凝结硬化时,随之体积膨胀,起充分填充水泥间隙的作用,可以提高高水充填材料的充填效果。优选的,步骤3)中,还包括利用回转窑中排放的高温烟气对水进行加热获取高温蒸汽,并将高温蒸汽对物料进行加热烘干的步骤。
优选的,步骤1)中,将脱硫石膏、电石渣、铝灰、脱碱赤泥和一部分有机废水混合后获得混合物,步骤3)中,高温煅烧获得的基体材料为硫铝酸盐熟料。
进一步优选的,脱碱赤泥、电石渣、铝灰和脱硫石膏的质量比为30~50:20~30:10~20:15~25。其中,生产熟料之前的脱硫石膏安该质量比进行添加,生产熟料之后的脱硫石膏安常规工艺进行添加。
进一步优选的,所述浆液中的物料的细度小于0.20mm。
进一步优选的,步骤3)中,煅烧的温度为1250℃~1350℃。
进一步优选的,所述硫铝酸盐熟料的化学组成如表3所示:
表3 硫铝酸盐水泥熟料的主要化学组成(wt%)
品种 SiO2 Al2O3 CaO SO3 Fe2O3
CSA 3~10 28~40 36~43 8~15 1~3
进一步优选的,所述硫铝酸盐熟料的主要矿物组成如表4所示:
表4 硫铝酸盐水泥熟料的主要矿物组成(wt%)
Figure PCTCN2017109613-appb-000005
CSA表示硫铝酸盐水泥。
更进一步优选的,f-CaO小于0,f-SO3为0.3~2.5。
f-CaO=CaO-1.87×SiO2-1.4×Fe2O3-0.7×TiO2-0.73×(Al2O3-0.64×Fe2O3);
Figure PCTCN2017109613-appb-000006
式中Al2O3、SO3、SiO2、CaO、TiO2、Fe2O3
Figure PCTCN2017109613-appb-000007
均为熟料中各化合物的百分含 量(公式以外所述的Al2O3、SO3、SiO2、CaO、TiO2、Fe2O3
Figure PCTCN2017109613-appb-000008
分别为相应化学成分)。
获得的硫铝酸盐水泥熟料以硫铝酸钙(3CaO·3Al2O3·CaSO4,简式
Figure PCTCN2017109613-appb-000009
)、硅酸二钙(2CaO·SiO2,简式C2S)和铁相(主要为4CaO·Al2O3·Fe2O3,简式C4AF)为主要矿物。
优选的,步骤2)中,所述浆液搅拌设定时间后进行压滤。使物料中的各组分混合充分。
进一步优选的,所述设定时间为12h。
优选的,步骤2)中,机械压滤后的滤液流回至有机废水中。使得未被工业固废固定的有机废物能进行再次处理,防止有机废物的零排放。
优选的,步骤3)中,所述有机废水在浓缩前进行预处理。
进一步优选的,所述预处理包括过滤。去除有机废水中的悬浮物。
更进一步优选的,过滤后有机废水中的固体微粒的粒径小于40网目。
进一步优选的,所述预处理包括中和处理。防止腐蚀浓缩设备,同时防止焚烧是腐蚀回转窑或在回转窑内结渣。
更进一步优选的,中和处理后有机废水的pH为6~8。
进一步优选的,所述预处理依次包括过滤、中和处理。
优选的,所述有机废水的浓缩温度为85~95℃。
优选的,所述混合浆液中的水分含量为20~25%(质量)。水分含量在20~25%范围内即可满足后续生产的需要,又适合前述步骤的处理能力,还能能够节约煅烧时的燃料使用。
优选的,所述回转窑产生的高温烟气经过余热回收产生高温蒸汽。
进一步优选的,所述高温蒸汽作为有机废水浓缩的热源。
进一步优选的,所述高温蒸汽冷却至85~95℃作为有机废水浓缩的热源。
进一步优选的,经余热回收后的烟气经过除尘后经过烟气处理进行排放。
上述方法制备得到的基体材料。
一种超高水充填材料,由以下组分组成:上述基体材料1~3重量份,水95~97重量份,速凝剂,分散剂和膨胀剂,速凝剂、分散剂和膨胀剂的质量分别为基体材料质量的0.1~1%、0.5~2%和0.5~2%。
有机废水和工业固废协同处理的系统,包括湿法粉磨机、压滤机、均化池、回转窑和间接换热器,各个原料和来自有机废水池中的一部分有机废水进入湿法粉磨机进行湿法粉磨,再依次进入均化池、压滤机进行均化处理和压滤获得浆料,来自有机废水池中的另一部分有机废水进入间接换热器进行浓缩后与所述浆料一起进入回转窑进行高温煅烧,得到 基体材料。
优选的,高温煅烧后获得的基体材料与速凝剂、分散剂、膨胀剂和水配制成超高水充填材料。
优选的,所述压滤机压滤后产生的滤液进入所述有机废水池。进一步处理滤液中的有机废物。
优选的,包括过滤装置,所述另一部分有机废水进入过滤装置过滤后再进入间接换热器。
优选的,包括中和池,所述另一部分有机废水进入中和池进行中和后再进入间接换热器。
优选的,包括过滤装置与中和池,所述另一部分有机废水依次进入过滤装置与中和池分别进行过滤和中和后再进入间接换热器。
优选的,包括余热回收设备,回转窑产生的高温烟气进入余热回收设备进行余热回收。
进一步优选的,余热回收后的高温蒸汽作为间接换热器的热源。
进一步优选的,包括冷却器,余热回收后的高温蒸汽进入冷却器冷却后进入间接换热器。
进一步优选的,包括除尘器,余热回收后的烟气进入除尘器进行除尘。
更进一步优选的,包括烟气处理系统,除尘后烟气进入烟气处理系统进行烟气处理后排放。
本发明的有益效果为:
(1)超高水充填材料制法的基本原材料是粉煤灰、水泥、生石灰、石膏,一般采用外购的方式解决,较高的价格导致制作成本上升,竞争压力巨大。本发明完全可以依靠工业固废代替其制作原料,制作成本大幅下降,在解决固废难以利用问题的同时解决了传统超高水充填材料制作的不足。
(2)本发明制作超高水充填材料的固废原料为煤矸石、脱硫石膏、铝灰和电石渣,解决了土地占用、环境污染、资源浪费等一系列问题,使它们变废为宝。对这些固废生产企业来说不仅解决了固废问题的负担,而且还带来了经济利益。
(3)在本发明工艺中,通过湿法配料和机械压滤除水的方式,实现了固废和有机废水物化的综合利用,合理的在生料中加入浓缩的有机废水,减少了部分工业水的用量。而且利用浓缩有机废水的可燃性,在回转炉中焚烧放热可减少煤的燃烧量。烟气的热量可回收用于对有机废水的真空浓缩。实现燃料的节约利用。
(4)传统的硫铝酸盐水泥制法的基本原材料是矾土、石灰石和石膏,一般采用外购的 方式解决,较高的价格导致制作成本上升,竞争压力巨大。而且现在不少企业生产硫铝酸盐水泥的过程中能耗高、污染大、浪费严重,已经不符合国家的产业政策。本发明完全可以依靠工业固废代替其制作原料,制作成本大幅下降,在解决固废难以利用问题的同时解决了传统硫铝酸盐水泥制作的不足。
(5)本发明制作硫铝酸盐水泥的固废原料为脱碱赤泥、电石渣、铝灰、脱硫石膏、粉煤灰、煤矸石,解决了土地占用、环境污染、资源浪费等一系列问题,使它们变废为宝。对这些固废生产企业来说不仅解决了固废问题的负担,而且还带来了经济利益。在固废生产企业和硫铝酸盐水泥生产企业之间实现双赢。
附图说明
图1为本发明中制备超高水充填材料的工艺流程图。
图2为本发明中制备硫铝酸盐水泥的工艺流程图。
具体实施方式
下面结合附图对本发明作进一步说明。
实施例1
有机废水协同工业固废制备超高水充填材料的系统,包括湿法粉磨机、压滤机、均化池、回转窑和间接换热器,脱硫石膏、铝灰、电石渣、煤矸石、铁尾矿和来自有机废水池中的一部分有机废水进入湿法粉磨机进行湿法粉磨,再依次进入均化池、压滤机进行均化处理和压滤获得浆料,来自有机废水池中的另一部分有机废水进入间接换热器进行浓缩后与所述浆料一起进入回转窑进行高温煅烧,高温煅烧后获得的基体材料与速凝剂、分散剂、膨胀剂和水配制成超高水充填材料。
包括过滤装置与中和池,另一部分有机废水依次进入过滤装置与中和池分别进行过滤和中和后再进入间接换热器。
包括余热回收设备,回转窑产生的高温烟气进入余热回收设备进行余热回收。
包括冷却器,余热回收后的高温蒸汽进入冷却器冷却后进入间接换热器。
包括除尘器,余热回收后的烟气进入除尘器进行除尘。
包括烟气处理系统,除尘后烟气进入烟气处理系统进行烟气处理后排放。
如图1所示,其工艺如下:
1.将脱硫石膏、铝灰、电石渣、煤矸石、铁尾矿按比例混合匹配,加入有机废水池中的一部分有机废水形成混合液,使混合液的水分含量在60%~70%,并充分搅拌。
2.将混合均匀的浆液通过湿法磨进行粉磨。
3.将磨后的浆液在均化池进行均化除碱后,搅拌12h,得到成分均匀的浆液。
4.将均匀的浆液通过机械压滤脱水获得浆料,将压滤后的滤液输送至有机废水池中。
5.有机废水废水池中的另一部分有机废水进行处理,即预处理。进行过滤使所含固体微粒在40网目以下,去除该部分有机废水中的悬浮物。
6.然后对过滤后的有机废水进行中和,使有机废水达到中性或接近中性,防止在焚烧的时候会腐蚀窑体或窑内结渣。
7.将经中和的有机废水送到间接换热器,利用余热回收设备产生的蒸汽冷却至85~95℃对有机废水进行间接浓缩,并使其含水率在30%以下。
8.将浓缩后的有机废水与步骤4获得的浆料送入回转窑内,进行高温煅烧(1250℃~1350℃)。
9.将烟煤煤粉喷入回转窑燃烧器内进行燃烧。
10.回转窑烟气连接到烟气余热回收设备,产生的高温蒸汽冷却至85℃~95℃,通过间接换热器对有机废水进行间接浓缩处理。
11.经过余热回收设备的烟气通入布袋除尘器进行除尘。最后通入烟气处理系统进行脱硫脱硝,烟气处理合格后排放至大气。
12.在回转窑内产生的基体材料,经过冷却机进行冷却,得到的基体材料以硫铝酸钙
Figure PCTCN2017109613-appb-000010
硅酸二钙(C2S)和铁相(主要为C4AF)为主要矿物。
13.将冷却后的基体材料,添加速凝剂、分散剂、膨胀剂和水配制成超高水充填材料。
按照采用上述系统及上述工艺进行制备,其具体参数如下:将煤矸石进行粉碎,与铝灰、电石渣、脱硫石膏进行配料,以固体物质计,煤矸石占25重量份,脱硫石膏占17重量份,电石渣占40重量份,铝灰占18重量份,铁尾矿占8重量份。物料配合后进行粉磨均化,压滤后直接输送入回转窑中煅烧,烧成温度为1270℃,煅烧时间为80分钟。烧成后的熟料主要物相为硫铝酸钙和硅酸二钙。取上述基体材料,加入基体材料质量1.0%的速凝剂、1.5%的膨胀剂、1.5%的分散剂,另取96份水,每份水的质量与上述基体材料的质量相同,充分混合制备超高水充填材料。初凝时间为30分钟,终凝时间为2.5h,3小时强度达2.5MPa。
实施例2
按照采用实施例1中的系统及工艺进行制备,其具体参数如下:将煤矸石进行粉碎,与铝灰、电石渣、脱硫石膏进行配料,以固体物质计,煤矸石为23重量份,脱硫石膏为22重量份,电石渣为35重量份,铝灰占20重量份,铁尾矿占11重量份。物料配合后进行粉磨均化,压滤后直接输送入回转窑中煅烧,煅烧温度为1350℃,煅烧时间为80分钟。取上述基体材料,加入基体材料质量0.5%的速凝剂、1.5%的膨胀剂,1.0%的分散剂,另取97份水, 每2份水的质量与上述基体材料的质量相同,充分混合制备超高水充填材料。初凝时间为10分钟,终凝时间为2h,3小时强度达3.2MPa。
实施例3
按照采用上述系统及上述工艺进行制备,其具体参数如下:将煤矸石进行粉碎,与铝灰、电石渣、脱硫石膏进行配料,以固体物质计,煤矸石为21重量份,脱硫石膏为20重量份,电石渣为37重量份,铝灰占15重量份,铁尾矿占15重量份。物料配合后进行粉磨均化,压滤后直接输送入回转窑中煅烧,煅烧温度为1350℃,煅烧时间为75分钟。取上述基体材料,加入基体材料质量1.0%的速凝剂、0.5%的膨胀剂,1.5%的分散剂,另取97份水,每2份水的质量与上述基体材料的质量相同,充分混合制备超高水充填材料。初凝时间为20分钟,终凝时间为3h,3小时强度达2.9MPa。
抗侵蚀试验:
将每个实施例1-3制备的高水充填材料分为两组进行试验:一组置于养护箱内进行养护,作为试验组,实施例1-3分别对应试验组一、试验组二和试验组三;一组置于室内空气中让其自然风化,作为对照组,实施例1-3分别对应对照组一、对照组二和对照组三。试验时,对正常养护块和受风化块进行不同龄期的抗压强度测量,结果如表1所示。
表1
Figure PCTCN2017109613-appb-000011
实施例4
有机废水协同工业固废制备硫铝酸盐水泥的系统,包括有机废水池、均化池、湿法粉磨机、压滤机、回转窑和间接换热器,脱碱赤泥、电石渣、铝灰、脱硫石膏和来自有机废水池中的一部分有机废水进入湿法粉磨机进行湿法粉磨,再依次进入均化池、压滤机进行均化处理和压滤获得浆料,来自有机废水池中的另一部分有机废水进入间接换热器进行浓缩后与所述浆料一起进入回转窑进行高温煅烧,高温煅烧后获得硫铝酸盐熟料。
所述压滤机压滤后产生的滤液进入所述有机废水池。
包括过滤装置与中和池,另一部分有机废水依次进入过滤装置与中和池分别进行过滤和中和后再进入间接换热器。
包括余热回收设备,回转窑产生的高温烟气进入余热回收设备进行余热回收。
包括冷却器,余热回收后的高温蒸汽进入冷却器冷却后进入间接换热器。
包括除尘器,余热回收后的烟气进入除尘器进行除尘。
包括烟气处理系统,除尘后烟气进入烟气处理系统进行烟气处理后排放。
如图2所示,其工艺如下:
1.将脱碱赤泥、电石渣、铝灰和脱硫石膏按比例混合匹配,加入有机废水池中的一部分有机废水形成混合液,使混合液的水分含量在60%~70%,并充分搅拌。
2.将浆液通过湿法磨进行粉磨,细度控制在0.20mm筛筛余1%以下。
3.将磨后的浆液在均化池进行均化除碱后,搅拌12h,得到成分均匀的浆液。
4.将均匀的浆液通过机械压滤脱水获得浆料,将压滤后的滤液输送至有机废水池中。
5.有机废水废水池中的另一部分有机废水进行处理,即预处理。进行过滤使所含固体微粒在40网目以下,去除该部分有机废水中的悬浮物。
6.然后对过滤后的有机废水进行中和,使有机废水达到中性或接近中性,防止在焚烧的时候会腐蚀窑体或窑内结渣。
7.将经中和的有机废水送到间接换热器,利用余热回收设备产生的蒸汽冷却至85~95℃对有机废水进行间接浓缩,并使其含水率在30%以下。
8.将浓缩后的有机废水与步骤4获得的浆料送入回转窑内,进行高温煅烧(1250℃~1350℃)。
9.将烟煤煤粉喷入回转窑燃烧器内进行燃烧。
10.回转窑烟气连接到烟气余热回收设备,产生的高温蒸汽冷却至85℃~95℃,通过间接换热器对有机废水进行间接浓缩处理。
11.经过余热回收设备的烟气通入布袋除尘器进行除尘。最后通入烟气处理系统进行脱硫脱硝,烟气处理合格后排放至大气。
12.在回转窑内产生的硫铝酸盐水泥熟料,经过篦式冷却机进行冷却,冷空气与熟料直接进行热交换,在25~35min内即可冷却到80~100℃,得到的硫铝酸盐水泥熟料以硫铝酸钙
Figure PCTCN2017109613-appb-000012
硅酸二钙(C2S)和铁相(主要为C4AF)为主要矿物。
13.将熟料放进大棚冷却,在确保熟料的外表温度低于80℃,再将熟料与脱硫石膏按比例混合,脱硫石膏占总物料的8%,并送入粉磨系统粉磨成水泥。
14.粉磨过程水泥温度会升高,为防止步骤13加入的脱硫石膏脱水,粉磨过程中对磨机通风散热,同时对磨机筒体喷水,可使出磨水泥降温30~40℃。
按照采用上述系统及上述工艺进行制备,其具体参数、计算结果及检测如下:以混合匹配后固液混合物质的质量计,脱碱赤泥占35.45%,电石渣占24.61%,铝灰占18.32%,脱硫石膏占21.62%,以煅烧生料质量计:SiO2占8.14%,Al2O3占31.20%,Fe2O3占3.72%,CaO占43.23%,MgO占0.33%,TiO2占1.30%,SO3占8.94%。煤粉占2.53%。将生料中加入浓缩的有机废水送入回转窑煅烧,煅烧温度为1280℃。煅烧时间为60分钟。此时二噁英、呋喃、PCB等都能很好的消除。然后烟气经余热回收设备,对热量进行回收利用。最后对烟气进行除尘、烟气处理。处理后的烟气经检测未发现二噁英、呋喃、PCB等有害物质。煅烧后的熟料依次经过篦式冷却机、粉磨系统,可得硫铝酸盐水泥熟料。经测算,以粉磨后的熟料计,SiO2占9.62%,Al2O3占31.67%,Fe2O3占3.84%,CaO占43.49%,MgO占0.36%,TiO2占1.30%,SO3占9.01%。可得f-CaO1=-0.87,f-SO3=1.52,所得结果符合范围,可以作为有效配料方案。经水泥胶砂强度检验方法(GB/T 17671-1999),3天和28天抗压强度分别为43.6MPa和46.9MPa。
实施例5
按照采用实施例4中的系统和工艺进行制备,其具体参数、计算结果及检测如下:以混合匹配后固液混合物质的质量计,脱碱赤泥占46.86%,电石渣占25.34%,铝灰占10.45%,脱硫石膏占17.35%。将生料中加入浓缩的有机废水送入回转窑煅烧,烧成温度为1290℃,煅烧时间为60分钟。处理后的烟气经检测未发现二噁英、呋喃、PCB等有害物质。经水泥胶砂强度检验方法,3天和28天抗压强度分别为40.8MPa和43.7MPa。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围内。

Claims (37)

  1. 一种有机废水和工业固废协同处理的方法,其特征在于:包括如下步骤:
    1)将脱硫石膏、铝灰、电石渣、煤矸石、铁尾矿和一部分有机废水混合后获得混合液,或,将脱硫石膏、电石渣、铝灰、脱碱赤泥和一部分有机废水混合后获得混合物,混合物中的水分含量为60%~70%;
    2)再对混合物进行湿法粉磨,然后将湿法粉磨后的物料进行均化处理得到浆液,所述浆液经过机械压滤脱水获得浆料;
    3)另一部分有机废水经过浓缩后与所述浆料一起进入回转窑中进行高温煅烧获得基体材料,高温煅烧过程中向回转窑中喷入煤粉,使煤粉和浆料与浓缩有机废水中的有机物燃烧。
  2. 根据权利要求1所述的方法,其特征在于:步骤1)中,将脱硫石膏、铝灰、电石渣、煤矸石、铁尾矿和一部分有机废水混合后获得混合液,步骤3)中获得的基体材料与速凝剂、分散剂、膨胀剂和水配制成超高水充填材料。
  3. 根据权利要求2所述的方法,其特征在于:脱硫石膏、铝灰、电石渣、煤矸石和铁尾矿的质量比为:13~20:15~20:30~35:20~25:8~16。
  4. 根据权利要求2所述的方法,其特征在于:步骤3)中,煅烧的温度为1250~1300℃,煅烧时间为60~80min。
  5. 根据权利要求2所述的方法,其特征在于:步骤3)中,所述基体材料中,碱度系数Cm为0.95~0.98;铝硫比P为2.1~3.5。
  6. 根据权利要求2所述的方法,其特征在于:加入的速凝剂、分散剂和膨胀剂分别占基体材料的质量百分数为0.1~1%、0.5~2%和0.5~2%,加入的水的质量为高水充填材料总质量的95~97%。
  7. 根据权利要求2所述的方法,其特征在于:步骤3)中,还包括利用回转窑中排放的高温烟气对水进行加热获取高温蒸汽,并将高温蒸汽对物料进行加热烘干的步骤。
  8. 根据权利要求1所述的方法,其特征在于:步骤1)中,将脱硫石膏、电石渣、铝灰、脱碱赤泥和一部分有机废水混合后获得混合物,步骤3)中,高温煅烧获得的基体材料为硫铝酸盐熟料。
  9. 根据权利要求8所述的方法,其特征在于:脱碱赤泥、电石渣、铝灰和脱硫石膏的质量比为30~50:20~30:10~20:15~25。
  10. 根据权利要求8所述的方法,其特征在于:所述浆液中的物料的细度小于0.20mm。
  11. 根据权利要求8所述的方法,其特征在于:步骤3)中,煅烧的温度为1250℃~1350℃。
  12. 根据权利要求8所述的方法,其特征在于:步骤3)中,制备的基体材料的f-CaO 小于0,f-SO3为0.3~2.5。
  13. 根据权利要求1所述的方法,其特征在于:步骤2)中,所述浆液搅拌设定时间后进行压滤。
  14. 根据权利要求1所述的方法,其特征在于:步骤2)中,机械压滤后的滤液流回至有机废水中。
  15. 根据权利要求1所述的方法,其特征在于:步骤3)中,所述有机废水在浓缩前进行预处理。
  16. 根据权利要求15所述的方法,其特征在于:所述预处理包括过滤。
  17. 根据权利要求16所述的方法,其特征在于:过滤后有机废水中的固体微粒的粒径小于40网目。
  18. 根据权利要求15所述的方法,其特征在于:所述预处理包括中和处理。
  19. 根据权利要求18所述的方法,其特征在于:中和处理后有机废水的pH为6~8。
  20. 根据权利要求15所述的方法,其特征在于:所述预处理依次包括过滤、中和处理。
  21. 根据权利要求15所述的方法,其特征在于:所述有机废水的浓缩温度为85~95℃。
  22. 根据权利要求15所述的方法,其特征在于:回转窑产生的高温烟气经过余热回收产生高温蒸汽;所述高温蒸汽作为有机废水浓缩的热源。
  23. 根据权利要求22所述的方法,其特征在于:所述高温蒸汽冷却至85~95℃作为有机废水浓缩的热源。
  24. 根据权利要求22所述的方法,其特征在于:经余热回收后的烟气经过除尘后经过烟气处理进行排放。
  25. 权利要求1-24任一所述方法制备得到的基体材料。
  26. 一种超高水充填材料,其特征在于:由以下组分组成:权利要求2-7任一所述基体材料1~3重量份,水95~97重量份,速凝剂,分散剂和膨胀剂,速凝剂、分散剂和膨胀剂的质量分别为基体材料质量的0.1~1%、0.5~2%和0.5~2%。
  27. 一种有机废水和工业固废协同处理的系统,其特征在于:包括湿法粉磨机、压滤机、均化池、回转窑和间接换热器,各个原料和来自有机废水池中的一部分有机废水进入湿法粉磨机进行湿法粉磨,再依次进入均化池、压滤机进行均化处理和压滤获得浆料,来自有机废水池中的另一部分有机废水进入间接换热器进行浓缩后与所述浆料一起进入回转窑进行高温煅烧,得到基体材料。
  28. 根据权利要求27所述的系统,其特征在于:高温煅烧后获得的基体材料与速凝剂、 分散剂、膨胀剂和水配制成超高水充填材料。
  29. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:所述压滤机压滤后产生的滤液进入所述有机废水池。
  30. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:包括过滤装置,所述另一部分有机废水进入过滤装置过滤后再进入间接换热器。
  31. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:包括中和池,所述另一部分有机废水进入中和池进行中和后再进入间接换热器。
  32. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:包括过滤装置与中和池,所述另一部分有机废水依次进入过滤装置与中和池分别进行过滤和中和后再进入间接换热器。
  33. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:包括余热回收设备,回转窑产生的高温烟气进入余热回收设备进行余热回收。
  34. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:余热回收后的高温蒸汽作为间接换热器的热源。
  35. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:包括冷却器,余热回收后的高温蒸汽进入冷却器冷却后进入间接换热器。
  36. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:包括除尘器,余热回收后的烟气进入除尘器进行除尘。
  37. [根据细则26改正30.11.2017] 
    根据权利要求27所述的系统,其特征在于:包括烟气处理系统,除尘后烟气进入烟气处理系统进行烟气处理后排放。
PCT/CN2017/109613 2017-03-17 2017-11-07 一种有机废水和工业固废协同处理的系统和方法 WO2018166221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2019/06734A ZA201906734B (en) 2017-03-17 2019-10-11 System and method for co-treating organic wastewater and industrial solid waste

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710159979.0A CN106866006B (zh) 2017-03-17 2017-03-17 有机废水协同工业固废制备硫铝酸盐水泥的系统及方法
CN201710163740.0A CN106830722B (zh) 2017-03-17 2017-03-17 有机废水协同工业固废制备超高水充填材料的系统及方法
CN.201710159979.0 2017-03-17
CN201710163740.0 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018166221A1 true WO2018166221A1 (zh) 2018-09-20

Family

ID=63522716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109613 WO2018166221A1 (zh) 2017-03-17 2017-11-07 一种有机废水和工业固废协同处理的系统和方法

Country Status (2)

Country Link
WO (1) WO2018166221A1 (zh)
ZA (1) ZA201906734B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205035A (zh) * 2020-01-17 2020-05-29 山东大学 一种赤泥协同废水制备的回填料及其制备方法和应用
CN112390264A (zh) * 2020-11-10 2021-02-23 北京科技大学 一种铝灰催化提高煤矸石脱硅率的方法
CN112408821A (zh) * 2020-11-26 2021-02-26 淄博海慧工程设计咨询有限公司 利用赤泥、铝灰生产高铁硫铝酸盐水泥的方法
CN116409947A (zh) * 2023-03-03 2023-07-11 昆明理工大学 一种高性能自流平水泥及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351444A (zh) * 2011-07-21 2012-02-15 新疆天业(集团)有限公司 全废渣低温急剧煅烧高标号水泥熟料方法
CN103453533A (zh) * 2013-08-28 2013-12-18 大连东泰产业废弃物处理有限公司 一种有机废液与水泥窑共处置的预处理方法
CN103922622A (zh) * 2014-03-20 2014-07-16 山东大学 一种利用铝灰生产硫铝酸盐水泥的工艺
CN105198329A (zh) * 2014-06-18 2015-12-30 阳泉市高星建材外加剂有限公司 一种高水填充材料及其制备方法和使用方法
CN106830722A (zh) * 2017-03-17 2017-06-13 山东大学 有机废水协同工业固废制备超高水充填材料的系统及方法
CN106866006A (zh) * 2017-03-17 2017-06-20 山东大学 有机废水协同工业固废制备硫铝酸盐水泥的系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351444A (zh) * 2011-07-21 2012-02-15 新疆天业(集团)有限公司 全废渣低温急剧煅烧高标号水泥熟料方法
CN103453533A (zh) * 2013-08-28 2013-12-18 大连东泰产业废弃物处理有限公司 一种有机废液与水泥窑共处置的预处理方法
CN103922622A (zh) * 2014-03-20 2014-07-16 山东大学 一种利用铝灰生产硫铝酸盐水泥的工艺
CN105198329A (zh) * 2014-06-18 2015-12-30 阳泉市高星建材外加剂有限公司 一种高水填充材料及其制备方法和使用方法
CN106830722A (zh) * 2017-03-17 2017-06-13 山东大学 有机废水协同工业固废制备超高水充填材料的系统及方法
CN106866006A (zh) * 2017-03-17 2017-06-20 山东大学 有机废水协同工业固废制备硫铝酸盐水泥的系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205035A (zh) * 2020-01-17 2020-05-29 山东大学 一种赤泥协同废水制备的回填料及其制备方法和应用
CN111205035B (zh) * 2020-01-17 2021-06-01 山东大学 一种赤泥协同废水制备的回填料及其制备方法和应用
CN112390264A (zh) * 2020-11-10 2021-02-23 北京科技大学 一种铝灰催化提高煤矸石脱硅率的方法
CN112408821A (zh) * 2020-11-26 2021-02-26 淄博海慧工程设计咨询有限公司 利用赤泥、铝灰生产高铁硫铝酸盐水泥的方法
CN116409947A (zh) * 2023-03-03 2023-07-11 昆明理工大学 一种高性能自流平水泥及其制备方法

Also Published As

Publication number Publication date
ZA201906734B (en) 2020-09-30

Similar Documents

Publication Publication Date Title
CN106904924B (zh) 利用城市废物和工业固废建筑3d打印材料的系统及方法
WO2018166220A1 (zh) 一种利用脱硫石膏与铝灰生产硫铝酸盐水泥联产硫磺的方法
WO2018166221A1 (zh) 一种有机废水和工业固废协同处理的系统和方法
CN106830722B (zh) 有机废水协同工业固废制备超高水充填材料的系统及方法
CN110759680B (zh) 一种基于工业尾气-污水处理-绿色高性能土木功能材料协同处置的赤泥利用方法
CN106746802B (zh) 利用城市废物和工业固废制备硫铝酸盐水泥的系统及方法
CN108129041B (zh) 利用油基钻井岩屑煅烧硅酸盐水泥熟料的制备方法
CN101913786B (zh) 利用循环流化床固硫灰渣制备特种水泥的方法
CN106904849A (zh) 一种利用工业固废生产硫铝酸盐水泥联产硫酸的系统和方法
CN106866006B (zh) 有机废水协同工业固废制备硫铝酸盐水泥的系统及方法
WO2009052671A1 (fr) Nouveau procédé de production de scorie de ciment au moyen de boues en état hygrométrique et de mélange en deux étapes
CN103771734A (zh) 一种规模化煅烧处理利用电解锰渣的方法
CN101913790B (zh) 一种含循环流化床燃煤固硫灰渣的混凝土膨胀剂
CN101898883B (zh) 一种高钙粉煤灰混凝土
KR102210123B1 (ko) 친환경적인 레미콘 조성물 및 이의 제조방법
CN105502974A (zh) 一种镍矿冶金渣的处理和利用方法
CN106810094B (zh) 利用城市废物和工业固废制备水泥联产硫磺的系统及方法
CN110963721B (zh) 一种利用干法水泥厂转型处理锰渣生产活性掺合材的方法
CN105693125B (zh) 一种硫铝酸盐水泥热稳定剂及其使用方法
CN111233353A (zh) 一种采用氧化铁渣部分替代铁质校正原料生产通用水泥熟料的方法
CN110937830A (zh) 一种利用镍渣生产新型矿粉及其制备的方法
CN102649634B (zh) 一种含有循环流化床燃煤固硫灰的灌浆材料
CN104310819B (zh) 一种新型水泥混合材及其制备方法和用途
CN112592079B (zh) 一种阿里特硫铝酸盐水泥及其制备方法和应用
CN115536350A (zh) 一种利用多种固废协同的道路基层铺设材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901177

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17901177

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17901177

Country of ref document: EP

Kind code of ref document: A1