WO2018166128A1 - 摄像透镜组 - Google Patents

摄像透镜组 Download PDF

Info

Publication number
WO2018166128A1
WO2018166128A1 PCT/CN2017/093500 CN2017093500W WO2018166128A1 WO 2018166128 A1 WO2018166128 A1 WO 2018166128A1 CN 2017093500 W CN2017093500 W CN 2017093500W WO 2018166128 A1 WO2018166128 A1 WO 2018166128A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image pickup
lens group
aspherical
image
Prior art date
Application number
PCT/CN2017/093500
Other languages
English (en)
French (fr)
Inventor
黄林
戴付建
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710145892.8A external-priority patent/CN106873129B/zh
Priority claimed from CN201720238759.2U external-priority patent/CN206684370U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/073,694 priority Critical patent/US11067775B2/en
Publication of WO2018166128A1 publication Critical patent/WO2018166128A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present invention relates to an image pickup lens group, particularly a small image pickup lens group composed of six lenses.
  • the mainstream camera lens adopts a wide-angle optical system in order to obtain an image with a wide viewing angle, but it is not conducive to shooting a distant object, and a clear image cannot be obtained.
  • the present invention therefore aims to provide an image pickup lens group having high resolution and miniaturization.
  • the present invention provides an imaging lens group.
  • One aspect of the present invention provides an image pickup lens group from which the image pickup lens group is photographed
  • the object side to the image side of the lens group sequentially includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens; wherein 0.8 ⁇ DT11/DT62 ⁇ 1.2, the DT11 is The maximum effective radius of the side of the first lens, the DT62 being the maximum effective radius of the side of the sixth lens image.
  • Another aspect of the present invention provides an image pickup lens group that sequentially includes a first lens, a second lens, a third lens, and a fourth lens from an object side to an image side of the image pickup lens group.
  • HFOV ⁇ 20°, the HFOV being half of the maximum field of view of the camera lens group.
  • the BFL is the on-axis distance from the side of the sixth lens image to the imaging surface, the TTL being the on-axis distance from the side of the first lens to the imaging surface.
  • the CTmax is the largest central thickness of the first to sixth lenses
  • the CTmin is the smallest central thickness of the first to sixth lenses.
  • the f1 is the effective focal length of the first lens
  • f is the effective focal length of the imaging lens group.
  • the f2 is the effective focal length of the second lens
  • f4 is the effective focal length of the fourth lens
  • the R11 is a radius of curvature of a side surface of the sixth lens
  • f is an effective focal length of the image pickup lens group.
  • the TTL is the on-axis distance from the side of the first lens to the imaging surface
  • f is the effective focal length of the imaging lens group.
  • f/f12 ⁇ 1.2 the f12 is a composite focal length of the first lens and the second lens
  • f is an effective focal length of the imaging lens group.
  • the image pickup lens assembly according to the present invention uses six plastic aspherical lenses, and has an effective focal length, Good imaging quality and small module size.
  • FIG. 1 is a schematic structural view of an image pickup lens unit of Embodiment 1;
  • FIG. 2 to FIG. 5 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens group of Embodiment 1.
  • FIG. 6 is a schematic structural view of an image pickup lens unit of Embodiment 2;
  • FIG. 11 is a schematic structural view of an image pickup lens unit of Embodiment 3.
  • FIG. 16 is a schematic structural view of an image pickup lens unit of Embodiment 4.
  • FIG. 21 is a schematic structural view of an image pickup lens unit of Embodiment 5.
  • 26 is a schematic structural view of an image pickup lens unit of Embodiment 6;
  • FIG. 30 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the image pickup lens unit of Embodiment 6;
  • Figure 31 is a view showing the configuration of an image pickup lens unit of Embodiment 7;
  • FIG. 36 is a schematic structural view of an image pickup lens unit of Embodiment 8.
  • Figure 46 is a view showing the configuration of an image pickup lens unit of Embodiment 10.
  • Figure 51 is a view showing the configuration of an image pickup lens unit of Embodiment 11;
  • Figure 56 is a view showing the configuration of an image pickup lens unit of Embodiment 12.
  • 57 to 60 show axial chromatic aberration curves, astigmatism curves, distortion curves, and magnification chromatic aberration curves of the imaging lens group of Example 12, respectively;
  • Figure 61 is a view showing the configuration of an image pickup lens unit of Embodiment 13;
  • 66 is a schematic structural view of an image pickup lens unit of Embodiment 14;
  • 67 to 70 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the imaging lens group of Embodiment 14.
  • Figure 71 is a view showing the configuration of an image pickup lens unit of Embodiment 15;
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the application provides an imaging lens set.
  • the imaging lens unit according to the present application is provided with a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens in this order from the object side to the image side of the image pickup lens group.
  • the first lens has a positive power and a side of the object is a convex surface.
  • the second lens has a negative power with a concave side like the image side.
  • the maximum effective radius DT11 of the side surface of the first lens object and the maximum effective radius DT62 of the side surface of the sixth lens image satisfy: 0.8 ⁇ DT11/DT62 ⁇ 1.2, and more specifically, 0.87 ⁇ DT11/ DT62 ⁇ 1.11.
  • the imaging lens group that satisfies the above relationship can compress the lateral size of the lens and reduce the height of the module.
  • half of the maximum angle of view of the image pickup lens group HFOV satisfies: HFOV ⁇ 20°, more specifically, HFOV ⁇ 16.6° is satisfied.
  • the telephoto function of the image pickup lens group can be realized by appropriately setting the value of half the HFOV of the maximum angle of view of the image pickup lens group.
  • the distance between the on-axis distance BFL of the sixth lens image side to the imaging surface and the on-axis distance TTL of the first lens object side to the imaging surface satisfies: 0.25 ⁇ BFL / TTL ⁇ 0.5, more specifically , satisfying 0.29 ⁇ BFL / TTL ⁇ 0.41.
  • the image pickup lens group that satisfies the above relationship can ensure the back focus, which is advantageous for improving the space and the processability.
  • a maximum center thickness CTmax of the first lens to the sixth lens and a minimum center thickness CTmin of the first lens to the sixth lens satisfy: 1.5 ⁇ CTmax/CTmin ⁇ 3.0 More specifically, 1.87 ⁇ CTmax / CTmin ⁇ 2.96 is satisfied.
  • the effective focal length f1 of the first lens and the effective focal length f of the imaging lens group satisfy: 0.5 ⁇ f1/f ⁇ 1.2, and more specifically, 0.51 ⁇ f1/f ⁇ 1.16.
  • the imaging lens group that satisfies the above relationship can ensure that the first lens assumes an appropriate positive power and realizes a telephoto function.
  • the effective focal length f2 of the second lens and the effective focal length f4 of the fourth lens satisfy:
  • the radius of curvature R11 of the side surface of the sixth lens object and the effective focal length f of the image pickup lens group satisfy:
  • the imaging lens group configured as described above can alleviate the incident angle of the light of the telephoto lens and reduce the aberration.
  • the radius of curvature R1 of the side surface of the first lens object and the radius of curvature R4 of the side surface of the second lens image satisfy:
  • the first lens and the second lens power reduce the aberration effect.
  • the axial distance TTL from the side of the first lens to the imaging surface and the effective focal length f of the imaging lens group satisfy: TTL / f ⁇ 1.1, more specifically, TTL / f ⁇ 1.08, Thereby achieving dimensional compression under telephoto.
  • the combined focal length f12 of the first lens and the second lens and the effective focal length f of the image pickup lens group satisfy: f/f12 ⁇ 1.2, more specifically, f/f12 ⁇ 1.02.
  • the image pickup lens group can realize a reasonable power distribution, thereby realizing a telephoto function.
  • FIG. 1 is a schematic structural view showing an image pickup lens unit of Embodiment 1.
  • the image pickup lens group includes six lenses.
  • the six lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the first lens E1 to the sixth lens E6 are disposed in order from the object side to the image side of the image pickup lens group.
  • the first lens E1 may have a positive power and the object side S1 may be a convex surface; the second lens E2 may have a negative power, and the image side surface S4 may be a concave surface.
  • the image pickup lens group further includes a filter E7 having an object side surface S13 and an image side surface S14 for filtering out infrared light. In this embodiment, light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the first to sixth lenses E1 to E6 have respective effective focal lengths f1 to f5.
  • the first lens E1 to the sixth lens E6 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the imaging lens group.
  • Table 1 below shows the effective focal lengths f1 to f5 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 2 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 3 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • FIG. 2 shows an axial chromatic aberration curve of the image pickup lens unit of Embodiment 1, which indicates that light beams of different wavelengths are deviated from a focus point after passing through the optical system.
  • FIG. 3 shows the image pickup lens of Embodiment 1. A set of astigmatism curves representing the meridional image curvature and the sagittal curvature of field.
  • Fig. 4 is a view showing a distortion curve of the image pickup lens unit of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 5 is a graph showing a magnification chromatic aberration curve of the image pickup lens unit of Embodiment 1, which shows a deviation of different image heights on the image plane after the light rays pass through the image pickup lens group.
  • the imaging lens group according to Embodiment 1 is an imaging lens group having high resolution and miniaturization.
  • Embodiment 2 of the present application will be described below with reference to FIGS. 6 to 10.
  • the imaging lens group described in the following embodiments is the same as the arrangement of the imaging lens group described in Embodiment 1.
  • a description similar to Embodiment 1 will be omitted for the sake of brevity.
  • Fig. 6 is a schematic structural view showing an image pickup lens unit of Embodiment 2.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 4 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 6 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 7 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 2, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 8 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 2, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 9 is a view showing a distortion curve of the image pickup lens unit of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • the imaging lens group according to Embodiment 2 is an imaging lens group having high resolution and miniaturization.
  • FIG. 11 is a schematic structural view showing an image pickup lens unit of Embodiment 3.
  • Camera lens group The object side to the image side sequentially includes a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 7 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 8 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 9 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 3, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 3, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the image pickup lens unit of Embodiment 3, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 3, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 3, which shows a meridional field curvature and a sagit
  • the imaging lens group according to Embodiment 3 is an imaging lens group having high resolution and miniaturization.
  • Fig. 16 is a view showing the configuration of an image pickup lens unit of Embodiment 4.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 10 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 11 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 12 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspheric surfaces S1 - S12 which can be used for the respective aspherical lenses in this embodiment.
  • Fig. 17 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 4, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 4, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 19 is a view showing a distortion curve of the image pickup lens unit of Embodiment 4, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 17 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 4, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 4, which shows a meridional field curvature and a sagit
  • the imaging lens group according to Embodiment 4 is an imaging lens group having high resolution and miniaturization.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 13 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 14 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 15 shows the high-order coefficients may be used for each respective aspheric S1-S12 aspherical lens according to the embodiment of A 4, A 6, A 8 , A 10 and A 12.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 5, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 5, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 24 is a view showing the distortion curve of the image pickup lens unit of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 5, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 5, which shows a meridional field curvature and a sagittal
  • the imaging lens group according to Embodiment 5 is an imaging lens group having high resolution and miniaturization.
  • Fig. 26 is a schematic structural view showing the image pickup lens unit of the sixth embodiment.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 16 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 17 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 18 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspheric surfaces S1 - S12 which can be used for the respective aspherical lenses in this embodiment.
  • FIG. 27 shows an axial chromatic aberration curve of the image pickup lens unit of Embodiment 6, which indicates different wavelengths. The light is deflected by the focus point after the optical system.
  • Fig. 28 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 6, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the image pickup lens unit of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 28 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 6, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the image pickup lens unit of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens group according to Embodiment 6 is an imaging lens group having high resolution and miniaturization.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 19 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 20 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 21 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 32 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 7, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 33 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 7, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 34 is a view showing the distortion curve of the image pickup lens unit of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens unit according to Embodiment 7 is an imaging lens group having high resolution and miniaturization.
  • Fig. 36 is a view showing the configuration of an image pickup lens unit of Embodiment 8.
  • the imaging lens group includes a first lens E1, a second lens E2, a third lens E3, and a fourth lens in order from the object side to the image side. E4, fifth lens E5, and sixth lens E6.
  • Table 22 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 23 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 24 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 37 is a view showing the axial chromatic aberration curve of the image pickup lens unit of Example 8, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 38 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 8, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 39 is a view showing the distortion curve of the image pickup lens unit of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens unit according to Embodiment 8 is an imaging lens group having high resolution and miniaturization.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 25 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 26 below shows the surface type and curvature half of each lens in the image pickup lens group in this embodiment. Diameter, thickness, material and conical coefficient.
  • Table 27 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 42 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 9, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 43 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 9, which shows a meridional field curvature and a sagittal image plane curvature.
  • Fig. 44 is a view showing the distortion curve of the image pickup lens unit of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens group according to Embodiment 9 is a camera with high resolution and miniaturization. Mirror group.
  • Fig. 46 is a view showing the configuration of an image pickup lens unit of Embodiment 10.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 28 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 29 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 30 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 47 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 10, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 48 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 10, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 49 is a view showing the distortion curve of the image pickup lens unit of Embodiment 10, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens group according to Embodiment 10 is an imaging lens group having high resolution and miniaturization.
  • Fig. 51 is a view showing the configuration of an image pickup lens unit of the eleventh embodiment.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 31 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 32 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 33 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 52 is a view showing an axial chromatic aberration curve of the image pickup lens unit of Embodiment 11, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Figure 53 shows the imaging of the embodiment 11 The astigmatism curve of the lens group, which represents the meridional field curvature and the sagittal image plane curvature.
  • Fig. 54 is a view showing the distortion curve of the image pickup lens unit of Embodiment 11, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens group according to Embodiment 11 is an imaging lens group having high resolution and miniaturization.
  • Fig. 56 is a view showing the configuration of an image pickup lens unit of Embodiment 12.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 34 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 35 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 36 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspheric surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 57 is a view showing the axial chromatic aberration curve of the image pickup lens unit of Example 12, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 58 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 12, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 59 is a view showing the distortion curve of the image pickup lens group of Embodiment 12, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 57 is a view showing the axial chromatic aberration curve of the image pickup lens unit of Example 12, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 58 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 12, which shows meridional field curvature and sagittal image plane curvature.
  • the imaging lens group according to Embodiment 12 is an imaging lens group having high resolution and miniaturization.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 37 shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 38 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 39 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 62 is a graph showing the axial chromatic aberration curve of the image pickup lens unit of Example 13, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 63 is a view showing an astigmatism curve of the image pickup lens unit of Embodiment 13, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 64 is a view showing the distortion curve of the image pickup lens group of Embodiment 13, which shows the distortion magnitude value in the case of different viewing angles.
  • the imaging lens group according to Embodiment 13 is an imaging lens group having high resolution and miniaturization.
  • Fig. 66 is a view showing the configuration of an image pickup lens unit of Embodiment 14.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 40 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 41 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 42 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 67 is a graph showing the axial chromatic aberration curve of the image pickup lens unit of Example 14, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 68 is a view showing an astigmatism curve of the image pickup lens unit of Example 14, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 69 is a view showing the distortion curve of the image pickup lens group of Embodiment 14, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 67 is a graph showing the axial chromatic aberration curve of the image pickup lens unit of Example 14, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 68 is a view showing an astigmatism curve of the image pickup lens unit of Example 14, which shows the meridional field curvature and the sagittal image plane curvature.
  • the imaging lens group according to Embodiment 14 is an imaging lens group having high resolution and miniaturization.
  • the imaging lens group includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, and a sixth lens E6.
  • Table 43 below shows the effective focal lengths f1 to f6 of the first lens E1 to the sixth lens E6, the total effective focal length f of the imaging lens group, the total length TTL of the imaging lens group, and half of the maximum angle of view of the imaging lens group HFOV .
  • Table 44 below shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in the image pickup lens group in this embodiment.
  • Table 45 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 and A 12 of the respective aspherical surfaces S1 - S12 of the respective aspherical lenses usable in this embodiment.
  • Fig. 72 is a view showing the axial chromatic aberration curve of the image pickup lens unit of Example 15, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 73 is a view showing an astigmatism curve of the image pickup lens group of Example 15, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 74 is a view showing the distortion curve of the image pickup lens group of Embodiment 15, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 72 is a view showing the axial chromatic aberration curve of the image pickup lens unit of Example 15, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 73 is a view showing an astigmatism curve of the image pickup lens group of Example 15, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 74
  • the imaging lens group according to Embodiment 15 is an imaging lens group having high resolution and miniaturization.
  • each conditional expression satisfies the conditions of Table 46 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像透镜组,摄像透镜组从摄像透镜组的物侧至像侧依序包括:具有正光焦度的第一透镜(E1),其物侧面为凸面;具有负光焦度的第二透镜(E2),其像侧面为凹面;具有光焦度的第三透镜(E3);具有光焦度的第四透镜(E4);具有光焦度的第五透镜(E5);以及具有光焦度的第六透镜(E6),其中,第一透镜(E1)物侧面的最大有效半径DT11与第六透镜(E6)像侧面的最大有效半径DT62之间满足:0.8<DT11/DT62<1.2。本摄像透镜组采用6片塑料非球面镜片,具有有效焦距长、成像品质好以及模组尺寸小的特点。

Description

摄像透镜组
相关申请的交叉引用
本申请要求于2017年3月13日提交于中国国家知识产权局(SIPO)的、专利申请号为201710145892.8的中国专利申请以及于2017年3月13日提交至SIPO的、专利申请号为201720238759.2的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种摄像透镜组,特别是由六片镜片组成的小型摄像透镜组。
背景技术
随着科学技术的发展,人们对便携式电子产品的成像质量的要求越来越高,手机、平板电脑等电子产品将变得更薄、体积更小。目前常用的感光元件如CCD(charge-coupled device,电耦合器件)或CMOS(complementary metal-oxide semiconductor,互补式金属氧化物半导体)图像传感器的性能也在不断提高,尺寸在逐渐减小,因此对应的摄像镜头也需满足高成像品质及小型化的需求。
为了满足小型化,需要尽可能地减少成像镜头的镜片数量,但是由此造成的设计自由度的缺乏,会难以满足市场对高成像性能的需求。且目前主流摄像镜头为了获得宽视角的图像,采用广角光学系统,但是不利于拍摄较远物体,无法获得清晰的图像。
因此本发明旨在提供一种具有高分辨率且小型化的摄像透镜组。
发明内容
为了解决现有技术中的至少一些问题,本发明提供了一种摄像透镜组。
本发明的一个方面提供了一种摄像透镜组,所述摄像透镜组从所述摄 像透镜组的物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜;其中,0.8<DT11/DT62<1.2,所述DT11为第一透镜物侧面的最大有效半径,所述DT62为第六透镜像侧面的最大有效半径。
本发明的另一个方面提供了这样一种摄像透镜组,所述摄像透镜组从所述摄像透镜组的物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,|(R1-R4)/(R1+R4)|≤1.0,所述R1为所述第一透镜物侧面的曲率半径,所述R4为所述第二透镜像侧面的曲率半径。
根据本发明的一个实施方式,HFOV<20°,所述HFOV为摄像透镜组的最大视场角的一半。
根据本发明的一个实施方式,0.25<BFL/TTL<0.5,所述BFL为第六透镜像侧面至成像面的轴上距离,所述TTL为第一透镜物侧面至成像面的轴上距离。
根据本发明的一个实施方式,1.5<CTmax/CTmin<3.0,所述CTmax为第一透镜至第六透镜中最大的中心厚度,所述CTmin为第一透镜至第六透镜中最小的中心厚度。
根据本发明的一个实施方式,0.5≤f1/f<1.2,所述f1为第一透镜的有效焦距,f为摄像透镜组的有效焦距。
根据本发明的一个实施方式,|f2/f4|<1.5,所述f2为第二透镜的有效焦距,f4为第四透镜的有效焦距。
根据本发明的一个实施方式,|R11|/f≤1.5,所述R11为第六透镜物侧面的曲率半径,f为摄像透镜组的有效焦距。
根据本发明的一个实施方式,|(R1-R4)/(R1+R4)|≤1.0,所述R1为第一透镜物侧面的曲率半径,所述R4为第二透镜像侧面的曲率半径。
根据本发明的一个实施方式,TTL/f≤1.1,所述TTL为第一透镜物侧面至成像面的轴上距离,f为摄像透镜组的有效焦距。
根据本发明的一个实施方式,f/f12<1.2,所述f12为第一透镜和第二透镜的合成焦距,f为摄像透镜组的有效焦距。
根据本发明的摄像透镜组采用6片塑料非球面镜片,具有有效焦距长、 成像品质好以及模组尺寸小的特点。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的摄像透镜组的结构示意图;
图2至图5分别示出了实施例1的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图6示出了实施例2的摄像透镜组的结构示意图;
图7至图10分别示出了实施例2的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图11示出了实施例3的摄像透镜组的结构示意图;
图12至图15分别示出了实施例3的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图16示出了实施例4的摄像透镜组的结构示意图;
图17至图20分别示出了实施例4的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图21示出了实施例5的摄像透镜组的结构示意图;
图22至图25分别示出了实施例5的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图26示出了实施例6的摄像透镜组的结构示意图;
图27至图30分别示出了实施例6的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图31示出了实施例7的摄像透镜组的结构示意图;
图32至图35分别示出了实施例7的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图36示出了实施例8的摄像透镜组的结构示意图;
图37至图40分别示出了实施例8的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图41示出了实施例9的摄像透镜组的结构示意图;
图42至图45分别示出了实施例9的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图46示出了实施例10的摄像透镜组的结构示意图;
图47至图50分别示出了实施例10的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图51示出了实施例11的摄像透镜组的结构示意图;
图52至图55分别示出了实施例11的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图56示出了实施例12的摄像透镜组的结构示意图;
图57至图60分别示出了实施例12的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图61示出了实施例13的摄像透镜组的结构示意图;
图62至图65分别示出了实施例13的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图66示出了实施例14的摄像透镜组的结构示意图;
图67至图70分别示出了实施例14的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
图71示出了实施例15的摄像透镜组的结构示意图;
图72至图75分别示出了实施例15的摄像透镜组的轴上色差曲线、象散曲线、畸变曲线和倍率色差曲线;
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接 至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种摄像透镜组。根据本申请的摄像透镜组从摄像透镜组的物侧至像侧依序设置有:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜。
在本申请的实施例中,第一透镜具有正光焦度,其物侧面为凸面。在本申请的实施例中,第二透镜具有负光焦度,其像侧面为凹面。在本申请的实施例中,第一透镜物侧面的最大有效半径DT11与第六透镜像侧面的最大有效半径DT62之间满足:0.8<DT11/DT62<1.2,更具体地,满足0.87≤DT11/DT62≤1.11。满足上述关系的摄像透镜组,能够压缩镜头横向尺寸,降低模组高度。
在本申请的实施例中,摄像透镜组的最大视场角的一半HFOV满足:HFOV<20°,更具体地,满足HFOV≤16.6°。通过合理设置摄像透镜组的最大视场角的一半HFOV的值,可实现摄像透镜组的长焦功能。
在本申请的实施例中,第六透镜像侧面至成像面的轴上距离BFL与第一透镜物侧面至成像面的轴上距离TTL之间满足:0.25<BFL/TTL<0.5,更具体地,满足0.29≤BFL/TTL≤0.41。满足上述关系的摄像透镜组能够保证后焦,利于改善空间以及工艺性。
在本申请的实施例中,第一透镜至所述第六透镜中最大的中心厚度CTmax与第一透镜至所述第六透镜中最小的中心厚度CTmin之间满足:1.5<CTmax/CTmin<3.0,更具体地,满足1.87≤CTmax/CTmin≤2.96。通过合理设置CTmax与CTmin之间的关系,可以使镜片厚度分配均匀,利于改善空间以及工艺性。
在本申请的实施例中,第一透镜的有效焦距f1与摄像透镜组的有效焦距f之间满足:0.5≤f1/f<1.2,更具体地,满足0.51≤f1/f≤1.16。满足上述关系的摄像透镜组能够保证第一透镜承担适当的正光焦度,实现长焦功能。
在本申请的实施例中,第二透镜的有效焦距f2与第四透镜的有效焦距f4之间满足:|f2/f4|<1.5,更具体地,满足|f2/f4|≤1.34。通过上述配置的摄像透镜组能够实现合理的光焦度分配,从而有效降低像差。
在本申请的实施例中,第六透镜物侧面的曲率半径R11与摄像透镜组的有效焦距f之间满足:|R11|/f≤1.5,更具体地,满足|R11|/f≤1.33。通过上述配置的摄像透镜组能够缓和长焦镜头的光线入射角度,降低像差。
在本申请的实施例中,第一透镜物侧面的曲率半径R1与第二透镜像侧面的曲率半径R4之间满足:|(R1-R4)/(R1+R4)|≤1.0,更具体地,满足|(R1-R4)/(R1+R4)|≤0.94。通过这种设置,能够实现合理的形状搭配,保证 第一透镜和第二透镜光焦度同时,减低像差影响。
在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与摄像透镜组的有效焦距f之间满足:TTL/f≤1.1,更具体地,满足TTL/f≤1.08,从而实现长焦下的尺寸压缩。
在本申请的实施例中,第一透镜和第二透镜的合成焦距f12与摄像透镜组的有效焦距f之间满足:f/f12<1.2,更具体地,满足f/f12≤1.02。通过这种设置,摄像透镜组能够实现合理的光焦度分配,从而实现长焦功能。
以下结合具体实施例进一步描述本申请。
实施例1
首先参照图1至图5描述根据本申请实施例1的摄像透镜组。
图1为示出了实施例1的摄像透镜组的结构示意图。如图1所示,摄像透镜组包括6片透镜。这6片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4、具有物侧面S9和像侧面S10的第五透镜E5以及具有物侧面S11和像侧面S12的第六透镜E6。第一透镜E1至第六透镜E6从摄像透镜组的物侧到像侧依次设置。第一透镜E1可具有正光焦度,且其物侧面S1可为凸面;第二透镜E2可具有负光焦度,且其像侧面S4可为凹面。该摄像透镜组还包括用于滤除红外光的具有物侧面S13和像侧面S14的滤光片E7。在该实施例中,来自物体的光依次穿过各表面S1至S14并最终成像在成像表面S15上。
在该实施例中,第一透镜E1至第六透镜E6分别具有各自的有效焦距f1至f5。第一透镜E1至第六透镜E6沿着光轴依次排列并共同决定了摄像透镜组的总有效焦距f。下表1示出了第一透镜E1至第六透镜E6的有效焦距f1至f5、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 5.48 f(mm) 10.72
f2(mm) -9.89 TTL(mm) 11.26
f3(mm) -101.36 HFOV(deg) 16.4
f4(mm) 27.48    
f5(mm) -179.54    
f6(mm) -14.73    
表1
表2示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 4.4607 1.4833 1.55,56.1 -0.8378
S2 非球面 -8.0359 -0.1706   -30.6560
STO 球面 无穷 0.2706    
S3 非球面 -6.6317 0.7966 1.64,23.8 0.5736
S4 非球面 145.3467 0.2462   50.0000
S5 非球面 -5.9513 0.8722 1.55,56.1 -36.7037
S6 非球面 -7.0136 0.0300   -19.3488
S7 非球面 5.6726 1.0418 1.55,56.1 7.6852
S8 非球面 8.5292 0.0500   7.4887
S9 非球面 3.2185 0.7169 1.64,23.5 -1.5314
S10 非球面 2.8581 0.8535   0.5049
S11 非球面 -14.3117 0.5000 1.55,56.1 43.5665
S12 非球面 18.5679 0.7663   -52.3766
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.5000    
S15 球面 无穷      
表2
下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10、A12、A14和A16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.4349E-03 -5.7105E-04 7.5026E-05 -5.8125E-05 8.9175E-06 -1.1902E-06 7.4941E-08
S2 -2.2293E-03 2.7295E-04 -3.2523E-04 -2.8087E-04 1.5479E-04 -2.9779E-05 2.3073E-06
S3 7.1785E-03 -1.2535E-03 -5.1872E-04 2.0046E-04 6.2685E-06 -1.1696E-05 1.7665E-06
S4 9.1641E-04 -3.3445E-03 7.4725E-04 1.2211E-04 -4.0885E-05 9.0198E-07 0.0000E+00
S5 9.7399E-03 7.3044E-04 -8.9117E-04 -4.0076E-05 1.3081E-04 -2.7231E-05 0.0000E+00
S6 1.1777E-02 -1.3298E-03 -1.8564E-03 7.2464E-04 -5.3860E-05 -2.4619E-05 3.2952E-06
S7 -6.6154E-03 -1.0409E-03 -2.8268E-03 1.5663E-03 -2.2767E-04 -1.5855E-05 2.1796E-06
S8 -1.0493E-02 5.1707E-03 -8.5240E-03 4.9510E-03 -6.6943E-04 -1.7415E-04 4.3247E-05
S9 -1.8379E-02 1.3370E-02 -9.6335E-03 4.8096E-03 -1.2739E-03 1.6848E-04 -1.1966E-05
S10 -3.4140E-02 1.8005E-02 -4.3275E-03 1.0577E-03 -1.0954E-03 6.2061E-04 -9.4823E-05
S11 -8.9829E-02 1.6736E-02 -1.8935E-03 2.4406E-03 -3.4288E-03 1.4778E-03 -2.0812E-04
S12 -6.9353E-02 2.1008E-02 -7.9878E-03 3.6990E-03 -1.7164E-03 4.6488E-04 -5.2374E-05
表3
图2示出了实施例1的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的摄像透镜 组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图2至图5可以看出,根据实施例1的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例2
以下参照图6至图10描述根据本申请实施例2的摄像透镜组。除了摄像透镜组的各透镜的参数之外,例如除了各透镜的曲率半径、厚度、材料、圆锥系数、有效焦距、轴上间距、各透镜的高次项系数等之外,在本实施例2及以下各实施例中描述的摄像透镜组与实施例1中描述的摄像透镜组的布置结构相同。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。
图6为示出了实施例2的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表4示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 6.04 f(mm) 10.69
f2(mm) -8.44 TTL(mm) 11.50
f3(mm) -11.95 HFOV(deg) 16.6
f4(mm) 17.67    
f5(mm) 5.74    
f6(mm) -5.44    
表4
表5示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
Figure PCTCN2017093500-appb-000001
Figure PCTCN2017093500-appb-000002
表5
下表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -5.9756E-04 -2.6665E-04 -4.3403E-05 1.3947E-06 -3.3333E-06
S2 -3.6747E-04 -7.9811E-04 -7.4451E-05 -6.7525E-06 1.9947E-06
S3 -5.3449E-03 7.4750E-04 -2.7726E-05 -5.5493E-05 1.2005E-05
S4 -9.7773E-03 2.7066E-03 1.5149E-04 1.3455E-04 2.2940E-05
S5 -6.5011E-03 1.4260E-03 6.6242E-04 2.9183E-05 -1.4056E-05
S6 -1.3381E-03 1.9353E-03 2.8185E-04 3.2732E-05 -5.2667E-05
S7 7.5597E-04 6.4849E-04 1.8271E-04 -4.3770E-05 -1.6737E-07
S8 -1.5722E-03 2.2414E-04 -1.7930E-05 6.0800E-06 -3.1685E-06
S9 6.4173E-04 -4.0468E-04 -2.2385E-05 1.4841E-06 1.1759E-06
S10 3.0908E-03 -8.8287E-04 3.6025E-05 8.2312E-06 1.6217E-06
S11 -1.3364E-03 -2.0162E-05 1.3452E-04 1.7381E-05 -7.4338E-07
S12 -6.7518E-03 7.8110E-04 4.2999E-07 -4.8755E-06 4.2002E-07
表6
图7示出了实施例2的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图7至图10可以看出,根据实施例2的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例3
以下参照图11至图15描述根据本申请实施例3的摄像透镜组。
图11为示出了实施例3的摄像透镜组的结构示意图。摄像透镜组由 物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表7示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 6.15 f(mm) 10.69
f2(mm) -8.79 TTL(mm) 11.50
f3(mm) -11.42 HFOV(deg) 16.6
f4(mm) 15.38    
f5(mm) 5.79    
f6(mm) -5.34    
表7
表8示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 3.4386 1.4533 1.55,56.1 -0.1662
S2 非球面 -129.3288 0.0500   50.0000
S3 非球面 4.7693 0.7626 1.65,23.5 -0.1359
S4 非球面 2.4301 0.5226   -0.1414
STO 球面 无穷 0.0000    
S5 非球面 27.5750 0.7595 1.65,23.5 -99.0000
S6 非球面 5.7586 0.9325   2.6622
S7 非球面 9.2762 0.8781 1.55,56.1 8.5770
S8 非球面 -86.6267 0.0819   50.0000
S9 非球面 20.0154 1.1363 1.65,23.5 36.5679
S10 非球面 -4.4943 0.8732   -0.2616
S11 非球面 -3.4834 0.6000 1.65,23.5 0.8156
S12 非球面 396.6307 0.1501   -99.0000
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.0009    
S15 球面 无穷      
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
Figure PCTCN2017093500-appb-000003
Figure PCTCN2017093500-appb-000004
表9
图12示出了实施例3的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图12至图15可以看出,根据实施例3的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例4
以下参照图16至图20描述根据本申请实施例4的摄像透镜组。
图16为示出了实施例4的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表10示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 6.32 f(mm) 10.70
f2(mm) -10.21 TTL(mm) 11.50
f3(mm) -10.94 HFOV(deg) 16.6
f4(mm) 7.63    
f5(mm) 17.72    
f6(mm) -7.86    
表10
下表11示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.5917    
S1 非球面 3.2718 1.2907 1.55,56.1 0.0131
S2 非球面 52.9549 0.0508   50.0000
S3 非球面 4.3698 0.8190 1.65,23.5 0.4128
S4 非球面 2.4349 0.9577   -0.0469
S5 非球面 -4.5855 0.9005 1.65,23.5 1.5778
S6 非球面 -14.0586 0.4133   32.9372
S7 非球面 7.6127 1.1850 1.55,56.1 1.2905
S8 非球面 -8.7201 0.5207   -9.8541
S9 非球面 -163.1643 0.7457 1.65,23.5 -99.0000
S10 非球面 -10.7172 0.6667   -6.2335
S11 非球面 -3.7947 0.6000 1.55,56.1 0.1823
S12 非球面 -34.2173 0.0500   50.0000
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.0009    
S15 球面 无穷      
表11
下表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 1.3060E-04 -6.6577E-05 7.5873E-06 1.3986E-06 -7.5601E-07
S2 6.4111E-04 1.2336E-05 2.5833E-06 1.4421E-06 -1.5750E-06
S3 -5.1413E-03 1.8154E-04 3.6266E-05 -2.4716E-06 -2.4938E-07
S4 -6.8213E-03 1.0965E-05 -1.2729E-04 5.0733E-06 -5.1914E-06
S5 -9.4652E-04 -5.6831E-04 5.0636E-05 -2.7882E-06 1.2966E-06
S6 -1.6607E-04 5.3349E-04 1.7017E-04 5.2626E-05 -1.6322E-07
S7 3.9591E-04 2.9788E-04 9.9665E-05 1.7050E-05 -4.9510E-06
S8 -7.5319E-04 1.8025E-04 4.4757E-05 -1.1710E-06 -2.8978E-06
S9 1.3965E-03 3.2863E-04 4.2444E-05 1.6706E-06 -2.7342E-06
S10 4.1717E-03 -6.6635E-05 -1.3059E-06 2.1101E-06 1.0487E-06
S11 -1.1039E-03 -6.6701E-04 -7.0980E-05 6.2008E-06 2.2965E-07
S12 -5.7148E-03 -8.4863E-05 1.9790E-05 1.7425E-07 -1.5183E-07
表12
图17示出了实施例4的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图17至图20可以 看出,根据实施例4的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例5
以下参照图21至图25描述根据本申请实施例5的摄像透镜组。
图21为示出了实施例5的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表13示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 8.41 f(mm) 10.69
f2(mm) -9.43 TTL(mm) 11.50
f3(mm) 6.69 HFOV(deg) 16.2
f4(mm) 14.09    
f5(mm) -6.23    
f6(mm) -21.12    
表13
下表14示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.5214    
S1 非球面 3.5740 1.0198 1.55,56.1 -0.0413
S2 非球面 14.4759 0.0500   35.2901
S3 非球面 6.2651 0.6000 1.65,23.5 1.8557
S4 非球面 2.9727 1.2901   -0.1107
S5 非球面 19.2874 1.2010 1.55,56.1 4.2922
S6 非球面 -4.4101 0.0500   0.5568
S7 非球面 28.6319 0.8326 1.55,56.1 -99.0000
S8 非球面 -10.4288 0.0500   10.9099
S9 非球面 8.5745 0.7517 1.55,56.1 -4.0446
S10 非球面 2.3623 1.1523   0.1739
S11 非球面 -5.1566 0.6525 1.55,56.1 3.6247
S12 非球面 -9.7383 0.0500   18.8875
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.5011    
S15 球面 无穷      
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -4.8158E-04 -1.3549E-05 1.2042E-05 -9.5256E-07 -5.1131E-12
S2 7.8338E-04 5.4092E-05 5.9091E-06 5.4898E-06 -3.1866E-06
S3 -4.8548E-03 2.2476E-04 4.5056E-05 -9.5657E-06 -1.3797E-06
S4 -5.1227E-03 3.3358E-04 -1.3731E-05 1.9174E-05 -4.2308E-06
S5 6.7731E-04 -3.4033E-04 1.0970E-05 -6.4674E-06 -3.8016E-06
S6 -4.6499E-04 -3.6956E-04 -3.2045E-05 6.7570E-06 -2.4866E-06
S7 -1.0371E-02 -1.0725E-04 8.6903E-06 3.1154E-06 5.9190E-06
S8 -7.3587E-03 -1.8274E-04 -1.9187E-05 9.8504E-06 1.9699E-06
S9 -4.9931E-03 -7.7138E-04 -1.3880E-04 -3.4369E-05 -1.1977E-06
S10 -1.1271E-02 -8.9485E-05 -1.3346E-04 -2.9688E-05 -1.2512E-05
S11 -4.8006E-03 8.1042E-04 2.7861E-04 3.2087E-05 3.2592E-07
S12 -6.5483E-03 2.1504E-04 2.9266E-05 2.1415E-06 -2.0362E-06
表15
图22示出了实施例5的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图22至图25可以看出,根据实施例5的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例6
以下参照图26至图30描述根据本申请实施例6的摄像透镜组。
图26为示出了实施例6的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表16示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 10.26 f(mm) 10.70
f2(mm) -11.34 TTL(mm) 11.50
f3(mm) 7.14 HFOV(deg) 16.2
f4(mm) -16.93    
f5(mm) -12.07    
f6(mm) 22.74    
表16
下表17示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.5922    
S1 非球面 3.2647 1.0434 1.55,56.1 0.0363
S2 非球面 6.9368 0.0500   6.6501
S3 非球面 6.5794 0.6000 1.65,23.5 0.0491
S4 非球面 3.3427 1.2128   -0.1458
S5 非球面 5.1770 1.1636 1.55,56.1 0.9879
S6 非球面 -14.5471 0.0500   14.5739
S7 非球面 5.5655 0.7743 1.65,23.5 3.7601
S8 非球面 3.4873 0.5310   -0.2926
S9 非球面 8.3642 0.6981 1.55,56.1 -15.3971
S10 非球面 3.5791 0.2745   -0.4792
S11 非球面 4.8102 1.0159 1.65,23.5 -11.0991
S12 非球面 6.5584 0.2864   -17.2922
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.5007    
S15 球面 无穷      
表17
下表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -2.1080E-04 1.6251E-05 1.0027E-05 -2.6236E-07 -9.4393E-07
S2 2.0796E-03 -3.5601E-07 -2.6608E-05 -1.1193E-06 -1.7680E-06
S3 -2.1710E-04 -4.1543E-05 1.2291E 05 -1.7746- 06 1.1402- 06
S4 -1.8147E-03 6.5044E-05 -2.4073E-05 2.3152E-05 -2.1818E-06
S5 1.5769E-03 2.2901E-04 3.0239E-05 1.5625E-06 -4.7653E-07
S6 -1.3005E-03 -5.4846E-05 2.5759E-05 -2.2496E-06 -3.6964E-07
S7 -6.1307E-03 -2.3023E-05 -7.3682E-05 -1.8054E-05 -4.9534E-06
S8 -5.1593E-03 1.1811E-03 1.2126E-04 3.3325E-05 -1.7481E-05
S9 -1.1473E-02 -2.7178E-03 3.6028E-04 3.4268E-05 -1.9892E-05
S10 -1.1875E-02 4.0043E-04 -7.1435E-05 4.0804E-06 -7.9138E-06
S11 -4.9368E-03 4.3990E-04 1.3666E-04 -4.8267E-06 -8.2277E-06
S12 -7.4388E-03 6.4471E-05 9.2711E-05 -2.9622E-06 -1.2653E-06
表18
图27示出了实施例6的摄像透镜组的轴上色差曲线,其表示不同波长 的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图27至图30可以看出,根据实施例6的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例7
以下参照图31至图35描述根据本申请实施例7的摄像透镜组。
图31为示出了实施例7的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表19示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 9.19 f(mm) 10.70
f2(mm) -8.94 TTL(mm) 11.33
f3(mm) 7.24 HFOV(deg) 16.2
f4(mm) -28.55    
f5(mm) 108.03    
f6(mm) -13.56    
表19
下表20示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
Figure PCTCN2017093500-appb-000005
Figure PCTCN2017093500-appb-000006
表20
下表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -5.9492E-04 6.7458E-06 5.8498E-06 -1.7088E-07 -4.5796E-07
S2 2.2938E-03 1.3829E-04 2.8106E-06 1.5856E-06 -6.6836E-08
S3 -5.8593E-04 1.0988E-05 2.3099E-05 1.0837E-06 -1.7195E-07
S4 -2.1052E-03 1.3921E-04 1.3392E-05 2.1123E-05 -2.1848E-06
S5 1.4615E-03 -1.1684E-04 -5.0048E-06 -7.8172E-06 1.1127E-06
S6 -3.6542E-03 -2.4282E-04 -3.3365E-05 3.7474E-06 -5.9338E-07
S7 -7.9903E-03 -2.4922E-04 4.2242E-06 1.6212E-06 4.6813E-07
S8 -1.2422E-02 4.6253E-05 4.4915E-05 8.6199E-06 -1.7893E-05
S9 -6.1503E-03 -1.2062E-04 1.6748E-04 -6.0149E-06 -1.5696E-05
S10 -3.8418E-03 -4.0683E-04 -4.3505E-05 3.8469E-05 -2.3870E-05
S11 -2.0126E-02 -2.9064E-04 -7.5024E-05 -8.5240E-05 -5.6308E-06
S12 -1.3680E-02 8.7605E-04 -1.6089E-05 -1.6101E-05 3.9285E-06
表21
图32示出了实施例7的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图33示出了实施例7的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图32至图35可以看出,根据实施例7的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例8
以下参照图36至图40描述根据本申请实施例8的摄像透镜组。
图36为示出了实施例8的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜 E4、第五透镜E5以及第六透镜E6。
下表22示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 6.82 f(mm) 10.70
f2(mm) -8.11 TTL(mm) 11.50
f3(mm) 18.31 HFOV(deg) 16.3
f4(mm) 10.14    
f5(mm) -6.27    
f6(mm) 50.60    
表22
下表23示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.5552    
S1 非球面 3.4273 1.1222 1.55,56.1 0.0164
S2 非球面 37.9811 0.0500   48.3236
S3 非球面 5.3841 0.9273 1.66,21.5 0.1066
S4 非球面 2.4966 1.0290   -0.0268
S5 非球面 -5.4053 0.9681 1.55,56.1 -0.4828
S6 非球面 -3.7313 0.0500   0.1283
S7 非球面 10.9144 1.2205 1.55,56.1 -9.3004
S8 非球面 -10.8151 0.7671   1.5110
S9 非球面 -4.7449 0.6000 1.55,56.1 1.8278
S10 非球面 12.9153 0.1318   -5.5303
S11 非球面 10.4363 0.6571 1.65,23.5 -8.0190
S12 非球面 14.9510 0.1769   33.5339
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.5009    
S15 球面 无穷      
表23
下表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
Figure PCTCN2017093500-appb-000007
Figure PCTCN2017093500-appb-000008
表24
图37示出了实施例8的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图38示出了实施例8的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图39示出了实施例8的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图40示出了实施例8的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图37至图40可以看出,根据实施例8的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例9
以下参照图41至图45描述根据本申请实施例9的摄像透镜组。
图41为示出了实施例9的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表25示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 8.29 f(mm) 10.70
f2(mm) -8.94 TTL(mm) 11.50
f3(mm) 6.61 HFOV(deg) 16.2
f4(mm) -29.79    
f5(mm) -10.30    
f6(mm) 264.61    
表25
下表26示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半 径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.5330    
S1 非球面 3.5693 1.0272 1.55,56.1 0.0754
S2 非球面 15.1316 0.0500   41.6783
S3 非球面 9.5210 0.9429 1.65,23.5 2.2186
S4 非球面 3.4553 1.0920   -0.2736
S5 非球面 12.7278 1.3914 1.55,56.1 -3.0970
S6 非球面 -4.8481 0.0500   0.7879
S7 非球面 4.0835 0.6777 1.55,56.1 -5.3437
S8 非球面 3.0731 0.8631   -2.9109
S9 非球面 -7.6977 0.6000 1.55,56.1 4.1070
S10 非球面 21.5180 0.0517   -36.8777
S11 非球面 6.6925 0.7027 1.65,23.5 -0.6145
S12 非球面 6.6781 0.2514   -18.9811
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.5000    
S15 球面 无穷      
表26
下表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -2.4515E-04 -2.1235E-05 1.9624E-05 -4.7552E-06 6.7490E-07
S2 2.5819E-03 -2.8337E-04 -1.1320E-05 9.6403E-06 -2.4930E-06
S3 -1.6632E-03 2.9361E-05 1.1088E-05 -5.4880E-06 1.6132E-07
S4 -3.8264E-03 6.6417E-04 -6.1587E-05 1.2097E-05 3.9683E-07
S5 1.6065E-03 -5.7483E-04 5.5309E-05 -9.0525E-06 4.5331E-07
S6 -1.8287E-03 -3.1372E-04 -1.6372E-05 6.0605E-06 -1.2223E-06
S7 -9.7100E-03 -4.5367E-04 4.0243E-05 -6.1136E-06 2.3906E-07
S8 -2.0134E-02 -1.4562E-04 -2.3510E-04 -1.0511E-05 1.1207E-06
S9 -1.7352E-02 -1.1889E-03 6.9995E-05 -1.8703E-05 4.5371E-06
S10 4.7443E-04 -2.1840E-04 6.4657E-05 3.4869E-06 -7.9293E-07
S11 -1.3210E-02 7.6392E-04 -1.0011E-04 -4.6737E-06 7.4589E-07
S12 -1.0128E-02 4.5541E-04 4.4566E-05 -1.8566E-05 1.3693E-06
表27
图42示出了实施例9的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图43示出了实施例9的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图44示出了实施例9的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图45示出了实施例9的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图42至图45可以看出,根据实施例9的摄像透镜组是一种具有高分辨率且小型化的摄像透 镜组。
实施例10
以下参照图46至图50描述根据本申请实施例10的摄像透镜组。
图46为示出了实施例10的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表28示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 7.30 f(mm) 10.71
f2(mm) -7.27 TTL(mm) 11.31
f3(mm) 34.89 HFOV(deg) 16.3
f4(mm) 18.34    
f5(mm) 30.56    
f6(mm) -14.56    
表28
下表29示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.3766    
S1 非球面 4.3654 1.2432 1.55,56.1 1.0344
S2 非球面 -41.8825 0.4726   21.7127
S3 非球面 -15.7464 0.6000 1.65,23.5 48.5091
S4 非球面 6.7889 0.1568   1.3629
S5 非球面 7.9428 0.7929 1.55,56.1 3.2639
S6 非球面 13.1324 0.4899   -99.0000
S7 非球面 8.3825 0.7548 1.65,23.5 -29.0265
S8 非球面 27.6539 0.0500   -56.4355
S9 非球面 2.3571 0.6928 1.55,56.1 0.0536
S10 非球面 2.4593 1.3163   -0.1993
S11 非球面 -7.6346 0.8949 1.55,56.1 13.5719
S12 非球面 -197.0684 0.0488   50.0000
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.5007    
S15 球面 无穷      
表29
下表30示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -3.2489E-03 -3.1506E-04 -3.5033E-05 -5.1227E-06 -7.1857E-07
S2 4.8417E-03 -5.5136E-04 -1.0880E-04 -5.2187E-06 1.0941E-06
S3 7.2427E-03 -6.0405E-04 -4.5290E-05 -3.9770E-06 3.7766E-06
S4 -5.5153E-03 2.3054E-04 -7.7799E-05 -1.5705E-06 -3.3987E-06
S5 3.5605E-03 8.2329E-05 6.0374E-05 -1.4123E-05 -4.7090E-06
S6 -4.6103E-04 -6.5590E-06 -4.2505E-05 5.6013E-06 9.4922E-07
S7 -5.4261E-03 -2.1871E-04 -3.8651E-06 -4.7853E-06 5.1337E-07
S8 1.2658E-03 -2.0254E-04 -3.4499E-06 5.4190E-07 -8.5233E-06
S9 -6.6890E-03 9.3135E-04 2.4784E-05 -2.3035E-05 4.7532E-06
S10 -1.0983E-02 3.3835E-03 -1.4562E-04 8.7113E-05 1.0319E-05
S11 -3.1426E-02 -3.0441E-04 -9.6962E-05 -7.8470E-05 -1.2698E-05
S12 -2.2468E-02 1.5067E-03 -6.9668E-05 -1.8099E-05 2.8948E-06
表30
图47示出了实施例10的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图48示出了实施例10的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图49示出了实施例10的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图50示出了实施例10的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图47至图50可以看出,根据实施例10的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例11
以下参照图51至图55描述根据本申请实施例11的摄像透镜组。
图51为示出了实施例11的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表31示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 5.55 f(mm) 10.70
f2(mm) -7.65 TTL(mm) 11.38
f3(mm) -61.19 HFOV(deg) 16.5
f4(mm) 8.12    
f5(mm) 215.50    
f6(mm) -12.39    
表31
下表32示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.5972    
S1 非球面 3.1939 1.3204 1.55,56.1 -0.0418
S2 非球面 -51.1088 0.0500   -48.6690
S3 非球面 6.0052 0.7067 1.65,23.5 -0.0568
S4 非球面 2.5856 0.2551   -0.1047
S5 非球面 3.4519 0.7885 1.55,56.1 -0.0791
S6 非球面 2.8764 0.8444   0.4337
S7 非球面 -5.0309 1.5000 1.55,56.1 -1.0508
S8 非球面 -2.6058 0.1865   -0.3225
S9 非球面 -2.9844 0.6000 1.65,23.5 0.2387
S10 非球面 -3.1524 0.6785   -0.6922
S11 非球面 -4.4191 0.6000 1.55,56.1 0.0398
S12 非球面 -13.3311 0.0500   8.0420
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.5011    
S15 球面 无穷      
表32
下表33示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -3.8890E-04 -6.4793E-05 6.7438E-06 4.6436E-07 -1.1996E-06
S2 5.3486E-04 -1.3958E-05 -1.9700E-05 -3.1336E-06 2.7803E-07
S3 -4.4740E-03 -5.3033E-05 4.2489E-06 1.8865E-06 2.0131E-06
S4 -4.3761E-03 -2.7775E-04 3.8056E-05 6.8865E-05 1.7621E-05
S5 -1.3799E-04 4.2396E-04 1.5496E-04 1.7304E-05 7.7076E-07
S6 7.3744E-04 2.3237E-03 5.0857E-04 9.3822E-05 -4.1261E-05
S7 -6.5911E-04 8.3321E-04 2.5871E-04 -2.0272E-05 -1.8334E-05
S8 1.0377E-02 -6.7727E-04 -1.4345E-04 -2.7071E-05 -1.4230E-05
S9 7.6549E-03 8.2860E-05 -1.3161E-04 -6.4366E-05 -1.1469E-05
S10 2.9464E-03 8.3490E-05 -9.1402E-05 -2.0771E-05 -2.8893E-06
S11 3.2007E-03 -6.7525E-04 -3.2998E-05 8.9614E-06 -2.3566E-06
S12 -6.5549E-03 -3.2137E-05 1.1242E-05 -4.1060E-06 1.9075E-07
表33
图52示出了实施例11的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图53示出了实施例11的摄像 透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图54示出了实施例11的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图55示出了实施例11的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图52至图55可以看出,根据实施例11的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例12
以下参照图56至图60描述根据本申请实施例12的摄像透镜组。
图56为示出了实施例12的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表34示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 12.38 f(mm) 10.71
f2(mm) -10.69 TTL(mm) 11.17
f3(mm) 4.90 HFOV(deg) 16.2
f4(mm) 53.38    
f5(mm) -3.37    
f6(mm) 8.32    
表34
下表35示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
Figure PCTCN2017093500-appb-000009
Figure PCTCN2017093500-appb-000010
表35
下表36示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 3.4751E-04 3.3873E-05 1.7358E-05 -9.4867E-07 -3.9012E-07
S2 1.8340E-03 1.1546E-04 2.4561E-05 1.1743E-05 -4.5024E-06
S3 -1.5826E-02 3.9492E-04 6.9305E-05 -1.2679E-06 -2.5760E-06
S4 -2.6253E-02 1.2392E-04 3.1684E-05 2.1565E-05 -6.0051E-06
S5 -3.0881E-03 -3.8262E-04 7.2021E-05 1.0180E-05 -3.8558E-07
S6 -5.8771E-03 -4.7511E-04 -6.9471E-05 1.7755E-05 4.2560E-06
S7 -3.6403E-03 -2.8311E-04 -2.2779E-04 -1.6777E-05 2.8065E-05
S8 -2.4762E-03 1.0435E-04 -2.2718E-04 -5.8781E-05 2.9307E-05
S9 -1.7786E-03 -1.7484E-03 -3.6073E-04 5.8677E-05 -1.5186E-05
S10 -5.3958E-03 1.2324E-03 2.1823E-04 -4.4541E-05 -3.1605E-06
S11 -6.7707E-03 8.3006E-04 8.0132E-05 1.4938E-05 -2.8605E-06
S12 -1.3508E-03 -7.9113E-04 9.1867E-05 6.7090E-06 7.4888E-07
表36
图57示出了实施例12的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图58示出了实施例12的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图59示出了实施例12的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图60示出了实施例12的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图57至图60可以看出,根据实施例12的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例13
以下参照图61至图65描述根据本申请实施例13的摄像透镜组。
图61为示出了实施例13的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表37示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 5.62 f(mm) 10.70
f2(mm) -6.04 TTL(mm) 11.42
f3(mm) -73.51 HFOV(deg) 16.4
f4(mm) 6.96    
f5(mm) -9.66    
f6(mm) 57.67    
表37
下表38示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
STO 球面 无穷 -0.5613    
S1 非球面 3.2956 1.3738 1.55,56.1 -0.0930
S2 非球面 -38.7322 0.0500   50.0000
S3 非球面 7.1222 1.1984 1.65,23.5 -0.2033
S4 非球面 2.3551 0.3692   -0.0632
S5 非球面 4.2221 0.6000 1.55,56.1 -0.5252
S6 非球面 3.6287 0.8404   1.1756
S7 非球面 -5.5661 1.3413 1.55,56.1 2.8700
S8 非球面 -2.4522 0.3111   -0.4436
S9 非球面 -7.8074 0.6000 1.55,56.1 0.2977
S10 非球面 16.7357 0.0500   50.0000
S11 非球面 8.0630 0.6561 1.65,23.5 -8.3463
S12 非球面 9.9609 0.2257   -56.0606
S13 球面 无穷 0.3000 1.52,64.2  
S14 球面 无穷 3.5006    
S15 球面 无穷      
表38
下表39示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
Figure PCTCN2017093500-appb-000011
Figure PCTCN2017093500-appb-000012
表39
图62示出了实施例13的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图63示出了实施例13的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图64示出了实施例13的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图65示出了实施例13的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图62至图65可以看出,根据实施例13的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例14
以下参照图66至图70描述根据本申请实施例14的摄像透镜组。
图66为示出了实施例14的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表40示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 7.06 f(mm) 10.70
f2(mm) -8.29 TTL(mm) 11.32
f3(mm) 8.04 HFOV(deg) 16.3
f4(mm) -8.44    
f5(mm) 180.00    
f6(mm) 42.80    
表40
下表41示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
Figure PCTCN2017093500-appb-000013
Figure PCTCN2017093500-appb-000014
表41
下表42示出了可用于该实施例中的各非球面透镜的各非球面S1-S12的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -5.3331E-04 -2.1985E-04 -4.3033E-06 -1.2433E-05 -5.7798E-07
S2 -1.1211E-03 -4.4274E-04 -9.1357E-06 7.3989E-07 1.9689E-07
S3 -8.8290E-03 5.7114E-04 6.8026E-05 9.8164E-06 -2.4886E-06
S4 -1.5980E-02 4.7830E-04 2.7351E-04 6.0189E-05 -1.4640E-06
S5 -7.1454E-03 -1.8062E-03 3.4837E-04 1.1598E-04 1.2922E-05
S6 -9.0691E-03 -3.4096E-04 -1.0000E-05 3.9916E-05 -9.9225E-06
S7 1.4026E-02 -1.5386E-03 -3.8933E-04 -3.2794E-05 -1.3688E-05
S8 -1.8129E-02 3.2705E-03 -3.3919E-04 -1.8087E-04 -1.0516E-05
S9 -3.5146E-02 -6.2024E-04 3.8068E-04 -1.5322E-04 -4.2282E-05
S10 1.2275E-02 -1.7576E-03 -8.8156E-05 -6.9426E-06 8.4097E-06
S11 2.5550E-03 1.2526E-04 -1.0423E-04 7.1334E-06 3.1318E-07
S12 -4.9652E-03 1.0320E-03 3.3460E-05 -2.8232E-05 2.5048E-06
表42
图67示出了实施例14的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图68示出了实施例14的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图69示出了实施例14的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图70示出了实施例14的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图67至图70可以看出,根据实施例14的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
实施例15
以下参照图71至图75描述根据本申请实施例15的摄像透镜组。
图71为示出了实施例15的摄像透镜组的结构示意图。摄像透镜组由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5以及第六透镜E6。
下表43示出了第一透镜E1至第六透镜E6的有效焦距f1至f6、摄像透镜组的总有效焦距f、摄像透镜组的总长度TTL以及摄像透镜组的最大视场角的一半HFOV。
f1(mm) 6.99 f(mm) 10.70
f2(mm) -4.61 TTL(mm) 11.50
f3(mm) 10.53 HFOV(deg) 16.6
f4(mm) 6.66    
f5(mm) 44.81    
f6(mm) -5.51    
表43
下表44示出了该实施例中的摄像透镜组中各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 3.7545 1.0621 1.55,56.1 0.5705
S2 非球面 195.9543 0.5892   -99.0000
S3 非球面 -25.3038 0.6000 1.65,23.5 49.5450
S4 非球面 3.4073 0.5056   0.1237
S5 非球面 6.8058 0.7467 1.65,23.5 -6.6917
S6 非球面 无穷 0.1054   -24.5000
STO 球面 无穷 0.0500    
S7 非球面 5.5861 1.1055 1.55,56.1 2.4793
S8 非球面 -9.7033 0.5613   17.0183
S9 非球面 -8.8399 1.1237 1.55,56.1 7.0808
S10 非球面 -6.7869 0.6004   -11.6570
S11 非球面 -2.5702 0.6000 1.65,23.5 0.4785
S12 非球面 -18.8995 0.0500   50.0000
S13 球面 无穷 0.3000 1.55,56.1  
S14 球面 无穷 3.5008    
S15 球面 无穷      
表44
下表45示出了可用于该实施例中的各非球面透镜的各非球面S1-S12 的高次项系数A4、A6、A8、A10和A12
面号 A4 A6 A8 A10 A12
S1 -2.2307E-03 -1.9118E-04 -4.5142E-05 -5.1251E-06 -2.5730E-06
S2 5.7668E-03 -5.9566E-04 -1.1476E-04 -3.1332E-05 4.8629E-06
S3 7.0305E-03 -1.0958E-03 -1.8096E-04 4.1997E-05 9.2451E-07
S4 -7.0107E-03 6.0212E-04 8.0690E-05 6.5540E-05 -2.7974E-07
S5 -3.2055E-03 -5.4238E-04 5.9844E-04 3.2250E-05 -3.1130E-05
S6 1.0634E-03 -1.2644E-04 9.4318E-05 1.1325E-04 -4.0702E-05
S7 -1.4788E-03 7.3604E-04 -1.9904E-04 -1.2754E-05 1.1968E-05
S8 -1.4283E-02 4.2983E-04 1.3696E-04 -6.5299E-06 1.4153E-05
S9 -1.2785E-02 -2.0944E-03 1.2276E-04 2.2311E-04 -2.6827E-05
S10 -7.6866E-04 -2.9457E-03 -4.5209E-05 1.1999E-04 -1.6827E-05
S11 -2.8545E-03 -8.4718E-04 2.4333E-04 3.1159E-05 2.0000E-05
S12 -9.7018E-03 1.4345E-03 -1.3216E-05 4.2883E-06 -6.0457E-07
表45
图72示出了实施例15的摄像透镜组的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图73示出了实施例15的摄像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图74示出了实施例15的摄像透镜组的畸变曲线,其表示不同视角情况下的畸变大小值。图75示出了实施例15的摄像透镜组的倍率色差曲线,其表示光线经由摄像透镜组后在成像面上的不同的像高的偏差。综上所述并参照图72至图75可以看出,根据实施例15的摄像透镜组是一种具有高分辨率且小型化的摄像透镜组。
概括地说,在上述实施例1至15中,各条件式满足下面表46的条件。
条件式/实施例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HFOV 16.4 16.6 16.6 16.6 16.2 16.2 16.2 16.3 16.2 16.3 16.5 16.2 16.4 16.3 16.6
DT11/DT62 1.11 0.91 0.91 0.87 0.95 0.95 1.00 0.95 0.91 0.95 0.87 0.91 0.87 0.91 1.00
BFL/TTL 0.41 0.29 0.30 0.29 0.33 0.36 0.34 0.35 0.35 0.34 0.34 0.36 0.35 0.38 0.33
CTmax/CTmin 2.96 2.50 2.42 2.15 2.00 1.93 1.93 2.03 2.32 2.07 2.50 2.40 2.28 2.47 1.87
f1/f 0.51 0.57 0.58 0.59 0.79 0.96 0.86 0.64 0.77 0.68 0.52 1.16 0.53 0.66 0.65
f2/f4 -0.36 -0.48 -0.57 -1.34 -0.67 0.67 0.31 -0.80 0.30 -0.40 -0.94 -0.20 -0.87 0.98 -0.69
|R11|/f 1.33 0.33 0.33 0.35 0.48 0.45 0.46 0.98 0.63 0.71 0.41 0.38 0.75 0.38 0.24
|(R1-R4)/(R1+R4)| 0.94 0.17 0.17 0.15 0.09 0.01 0.04 0.16 0.02 0.22 0.11 0.14 0.17 0.13 0.05
TTL/f 1.05 1.08 1.08 1.08 1.08 1.07 1.06 1.07 1.08 1.06 1.06 1.04 1.07 1.06 1.08
f/f12 1.02 0.93 0.93 1.02 0.36 0.28 0.18 0.64 0.36 0.29 0.95 0.05 0.79 0.59 -0.26
表46
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述 技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 一种摄像透镜组,所述摄像透镜组从所述摄像透镜组的物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,所述第一透镜物侧面的最大有效半径DT11与所述第六透镜像侧面的最大有效半径DT62满足0.8<DT11/DT62<1.2。
  2. 根据权利要求1所述的摄像透镜组,其中,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有负光焦度,其像侧面为凹面;以及
    所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均具有光焦度。
  3. 根据权利要求1或2所述的摄像透镜组,其中,0.25<BFL/TTL<0.5,所述BFL为所述第六透镜像侧面至成像面的轴上距离,所述TTL为所述第一透镜物侧面至成像面的轴上距离。
  4. 根据权利要求1或2所述的摄像透镜组,其中,1.5<CTmax/CTmin<3.0,所述CTmax为所述第一透镜至所述第六透镜中最大的中心厚度,所述CTmin为所述第一透镜至所述第六透镜中最小的中心厚度。
  5. 根据权利要求1或2所述的摄像透镜组,其中,0.5≤f1/f<1.2,所述f1为所述第一透镜的有效焦距,所述f为所述摄像透镜组的有效焦距。
  6. 根据权利要求1或2所述的摄像透镜组,其中,|f2/f4|<1.5,所述f2为所述第二透镜的有效焦距,所述f4为所述第四透镜的有效焦距。
  7. 根据权利要求1或2所述的摄像透镜组,其中,|R11|/f≤1.5,所述R11为所述第六透镜物侧面的曲率半径,所述f为所述摄像透镜组的有效焦 距。
  8. 根据权利要求1或2所述的摄像透镜组,其中,|(R1-R4)/(R1+R4)|≤1.0,所述R1为所述第一透镜物侧面的曲率半径,所述R4为所述第二透镜像侧面的曲率半径。
  9. 根据权利要求1或2所述的摄像透镜组,其中,TTL/f≤1.1,所述TTL为所述第一透镜物侧面至成像面的轴上距离,所述f为所述摄像透镜组的有效焦距。
  10. 根据权利要求1或2所述的摄像透镜组,其中,f/f12<1.2,所述f12为所述第一透镜和所述第二透镜的合成焦距,所述f为所述摄像透镜组的有效焦距。
  11. 根据权利要求1或2所述的摄像透镜组,其中,HFOV<20°,所述HFOV为所述摄像透镜组的最大视场角的一半。
  12. 一种摄像透镜组,所述摄像透镜组从所述摄像透镜组的物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,
    其特征在于,|(R1-R4)/(R1+R4)|≤1.0,所述R1为所述第一透镜物侧面的曲率半径,所述R4为所述第二透镜像侧面的曲率半径。
  13. 根据权利要求1所述的摄像透镜组,其中,
    所述第一透镜具有正光焦度,其物侧面为凸面;
    所述第二透镜具有负光焦度,其像侧面为凹面;以及
    所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均具有光焦度。
  14. 根据权利要求12或13所述的摄像透镜组,其中, 0.25<BFL/TTL<0.5,所述BFL为所述第六透镜像侧面至成像面的轴上距离,所述TTL为所述第一透镜物侧面至成像面的轴上距离。
  15. 根据权利要求13所述的摄像透镜组,其中,所述第一透镜物侧面的最大有效半径DT11与所述第六透镜像侧面的最大有效半径DT62满足0.8<DT11/DT62<1.2。
  16. 根据权利要求12或13所述的摄像透镜组,其中,1.5<CTmax/CTmin<3.0,所述CTmax为所述第一透镜至所述第六透镜中最大的中心厚度,所述CTmin为所述第一透镜至所述第六透镜中最小的中心厚度。
  17. 根据权利要求12或13所述的摄像透镜组,其中,0.5≤f1/f<1.2,所述f1为所述第一透镜的有效焦距,所述f为所述摄像透镜组的有效焦距。
  18. 根据权利要求12或13所述的摄像透镜组,其中,|f2/f4|<1.5,所述f2为所述第二透镜的有效焦距,所述f4为所述第四透镜的有效焦距。
  19. 根据权利要求12或13所述的摄像透镜组,其中,|R11|/f≤1.5,所述R11为所述第六透镜物侧面的曲率半径,所述f为所述摄像透镜组的有效焦距。
  20. 根据权利要求12或13所述的摄像透镜组,其中,TTL/f≤1.1,所述TTL为所述第一透镜物侧面至成像面的轴上距离,所述f为所述摄像透镜组的有效焦距。
  21. 根据权利要求12或13所述的摄像透镜组,其中,f/f12<1.2,所述f12为所述第一透镜和所述第二透镜的合成焦距,所述f为所述摄像透镜组的有效焦距。
  22. 根据权利要求12或13所述的摄像透镜组,其中,HFOV<20°,所述HFOV为所述摄像透镜组的最大视场角的一半。
PCT/CN2017/093500 2017-03-13 2017-07-19 摄像透镜组 WO2018166128A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/073,694 US11067775B2 (en) 2017-03-13 2017-07-19 Camera lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710145892.8A CN106873129B (zh) 2017-03-13 2017-03-13 摄像透镜组
CN201720238759.2U CN206684370U (zh) 2017-03-13 2017-03-13 摄像透镜组
CN201710145892.8 2017-03-13
CN201720238759.2 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018166128A1 true WO2018166128A1 (zh) 2018-09-20

Family

ID=63523760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093500 WO2018166128A1 (zh) 2017-03-13 2017-07-19 摄像透镜组

Country Status (2)

Country Link
US (1) US11067775B2 (zh)
WO (1) WO2018166128A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609763A (zh) * 2022-02-25 2022-06-10 中国科学院西安光学精密机械研究所 一种小型化光学镜头、成像装置以及便携终端
US11391928B2 (en) 2020-08-14 2022-07-19 Largan Precision Co., Ltd. Optical image lens assembly, image capturing unit and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062351A1 (zh) * 2013-10-30 2015-05-07 浙江舜宇光学有限公司 具有六片镜片的镜头系统
CN204389773U (zh) * 2012-07-23 2015-06-10 富士胶片株式会社 摄像透镜及摄像装置
CN105319687A (zh) * 2014-07-07 2016-02-10 先进光电科技股份有限公司 光学成像系统
CN105425370A (zh) * 2014-09-11 2016-03-23 富士胶片株式会社 光学系统及光学装置
CN105807406A (zh) * 2014-12-29 2016-07-27 大立光电股份有限公司 光学摄影系统、取像装置及电子装置
CN106873129A (zh) * 2017-03-13 2017-06-20 浙江舜宇光学有限公司 摄像透镜组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI439720B (zh) * 2011-03-11 2014-06-01 Largan Precision Co Ltd 影像擷取鏡片組
TWI487944B (zh) * 2012-12-28 2015-06-11 Largan Precision Co Ltd 光學結像鏡頭
WO2017113557A1 (zh) * 2015-12-31 2017-07-06 浙江舜宇光学有限公司 摄像镜头
JP6403711B2 (ja) * 2016-04-04 2018-10-10 カンタツ株式会社 撮像レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204389773U (zh) * 2012-07-23 2015-06-10 富士胶片株式会社 摄像透镜及摄像装置
WO2015062351A1 (zh) * 2013-10-30 2015-05-07 浙江舜宇光学有限公司 具有六片镜片的镜头系统
CN105319687A (zh) * 2014-07-07 2016-02-10 先进光电科技股份有限公司 光学成像系统
CN105425370A (zh) * 2014-09-11 2016-03-23 富士胶片株式会社 光学系统及光学装置
CN105807406A (zh) * 2014-12-29 2016-07-27 大立光电股份有限公司 光学摄影系统、取像装置及电子装置
CN106873129A (zh) * 2017-03-13 2017-06-20 浙江舜宇光学有限公司 摄像透镜组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391928B2 (en) 2020-08-14 2022-07-19 Largan Precision Co., Ltd. Optical image lens assembly, image capturing unit and electronic device
CN114609763A (zh) * 2022-02-25 2022-06-10 中国科学院西安光学精密机械研究所 一种小型化光学镜头、成像装置以及便携终端

Also Published As

Publication number Publication date
US11067775B2 (en) 2021-07-20
US20210048626A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
CN109164560B (zh) 成像镜头
CN106873129B (zh) 摄像透镜组
WO2018076630A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2019210738A1 (zh) 光学成像镜头
WO2018090609A1 (zh) 光学成像系统及摄像装置
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2019192180A1 (zh) 光学成像镜头
CN107065141B (zh) 成像镜头
WO2018153012A1 (zh) 摄像镜头
WO2017148020A1 (zh) 摄远镜头
WO2019091170A1 (zh) 摄像透镜组
WO2018214349A1 (zh) 摄像镜头
WO2019214334A1 (zh) 摄像镜头组
WO2019052220A1 (zh) 光学成像镜头
WO2019141210A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019174286A1 (zh) 光学成像镜片组
WO2018058754A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2019052144A1 (zh) 光学成像镜头
WO2019062136A1 (zh) 摄像透镜组
WO2019037466A1 (zh) 摄像镜头
WO2019205821A1 (zh) 光学成像镜头
CN106772957B (zh) 摄像镜头及包括该摄像镜头的摄像装置
WO2019033756A1 (zh) 光学成像镜头
WO2019007045A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901122

Country of ref document: EP

Kind code of ref document: A1