WO2018166012A1 - 线性振动马达及电子设备 - Google Patents

线性振动马达及电子设备 Download PDF

Info

Publication number
WO2018166012A1
WO2018166012A1 PCT/CN2017/079865 CN2017079865W WO2018166012A1 WO 2018166012 A1 WO2018166012 A1 WO 2018166012A1 CN 2017079865 W CN2017079865 W CN 2017079865W WO 2018166012 A1 WO2018166012 A1 WO 2018166012A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
vibration motor
linear
linear vibration
annular
Prior art date
Application number
PCT/CN2017/079865
Other languages
English (en)
French (fr)
Inventor
王国元
张辉
唐有为
刘元江
冯蓬勃
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US16/491,664 priority Critical patent/US20200044542A1/en
Publication of WO2018166012A1 publication Critical patent/WO2018166012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • B06B1/045Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures

Definitions

  • the present invention relates to the field of motor technology and, more particularly, to a linear vibration motor and an electronic device.
  • vibration motors For example, portable consumer electronic devices such as cell phones, wearable devices, gaming machines, and the like can employ vibration motors as feedback for the system.
  • a vibration motor can be used as the vibration prompt of the mobile phone, or a vibration motor can be used to provide the game machine with a game touch, and the like.
  • Linear vibration motors have many advantages over conventional eccentric rotary vibration motors. For example, a linear vibration motor does not require a commutator and a brush, and it does not generate a frictional spark during operation. Linear vibration motors operate reliably and respond quickly. Therefore, the application of linear vibration motors is becoming more and more extensive.
  • a spring piece is generally used as a supporting member in a linear vibration motor to transmit vibration of a mass body.
  • the production process, strength and life of the shrapnel will restrict the use of the linear vibrator.
  • Figure 1 shows a prior art linear vibration motor.
  • the linear vibration motor includes a spring piece 11, an upper case 12, a permanent magnet 13, a yoke 14, a mass body 15, a coil 16, a base 17, and a flexible circuit 18.
  • the permanent magnet 13, the mass body 15, and the yoke 14 constitute a mover.
  • the permanent magnet 13 and the mass body 15 are fixed together by the yoke 14.
  • the elastic piece 11 is used to support the mover.
  • the coil 16 generates a force that drives the movement of the mover when energized.
  • the shrapnel when the shrapnel is laser welded, the shrapnel is easily deformed. The shrapnel is more sensitive to flatness. It is difficult to form the shrapnel. When the bending of the shrapnel is not appropriate, the tail of the shrapnel is easily tilted. It collides with the object, causing noise.
  • the shrapnel is a stressed component and is subjected to alternating stress. After a while, the shrapnel may break. The life of the shrapnel usually affects the life of the linear vibration motor.
  • a linear vibration motor is disclosed in Chinese Patent Application No. CN201620087447.1, which is incorporated herein by reference in its entirety.
  • a linear vibration motor comprising: a magnetizer; a mover including a permanent magnet; and a linear movement support, wherein the mover is mounted on the linear movement support to Moving along a linear movement path defined by the linearly moving support body, wherein the magnetizer is disposed in the direction of the linear movement path in the vicinity of the mover to interact with the permanent magnet, thereby making the non-excited In the state, the mover tends to an equilibrium position of the linear movement path, and wherein the material of the magnetizer is a soft magnetic material.
  • the linear moving support body includes at least two guide shafts, the permanent magnets are annular permanent magnets, and the annular permanent magnets are movable in the axial direction of the guide shaft; and wherein
  • the magnetizer is a magnetic core located at an annular center passing through the annular permanent magnet.
  • the mover further comprises an annular mass body, the annular permanent magnet being fixed with the annular mass body, and the guide shaft extending longitudinally through the annular mass body.
  • the linear movement support body includes at least one guide shaft movable in the axial direction of the guide shaft; and wherein the magnetizer is a guide around the mover Magnetic ring.
  • the linear moving support body comprises a guiding shaft
  • the mover comprises an annular mass body
  • the permanent magnet is an annular permanent magnet
  • the guiding shaft is located at the annular mass body
  • An annular center, the permanent magnet and the annular mass are fixed together,
  • the permanent magnet is concentric with the annular shape of the annular mass.
  • the mover further includes a bushing that mates with the guide shaft.
  • the linear vibration motor further includes a control coil located across the magnetizer, wherein the control coil generates an electromagnetic field upon energization to control movement of the mover along a linear path of travel.
  • the linear vibration motor further includes an upper case and a base, wherein the linear moving support and the magnetizer are fixed between the upper case and the base.
  • an anti-collision contact portion is disposed between the at least one of the upper case and the base and the mover to prevent the mover from contacting at least one of the upper case and the base,
  • the material of the anti-collision contact portion is a material capable of absorbing impact.
  • an electronic device comprising a linear vibration motor according to embodiments herein.
  • a linear vibration motor is provided with a magnetic effect having a spring effect by using a permanent magnet and a magnetizer, thereby replacing the mechanical spring.
  • Figure 1 shows a schematic view of a prior art linear vibration motor.
  • Fig. 2 is a view showing the structure of a linear vibration motor according to the first embodiment.
  • Fig. 3 shows a schematic cross-sectional view of a linear vibration motor according to a first embodiment.
  • Fig. 4 shows a schematic exploded view of a linear vibration motor according to the first embodiment.
  • Fig. 5 shows a schematic cross-sectional view of a linear vibration motor according to a second embodiment.
  • Fig. 6 shows a schematic exploded view of a linear vibration motor according to a second embodiment.
  • Fig. 7 is a view showing the configuration of a linear vibration motor according to a third embodiment.
  • Fig. 8 shows a schematic cross-sectional view of a linear vibration motor according to a third embodiment.
  • Fig. 9 shows a schematic exploded view of a linear vibration motor according to a third embodiment.
  • Fig. 10 shows a schematic cross-sectional view of a linear vibration motor according to a fourth embodiment.
  • Fig. 11 shows a schematic exploded view of a linear vibration motor according to a fourth embodiment.
  • Figure 12 shows a schematic diagram of an electronic device in accordance with one embodiment.
  • Fig. 2 is a view showing the structure of a linear vibration motor according to the first embodiment.
  • Fig. 3 shows a schematic cross-sectional view of a linear vibration motor according to a first embodiment.
  • Fig. 4 shows a schematic exploded view of a linear vibration motor according to the first embodiment.
  • the linear vibration motor includes an upper casing 101, a base 102, and a flexible circuit 103.
  • the upper case 101 and the base 102 are used to define the shape and internal space of the linear vibration motor.
  • the flexible circuit 103 is used to provide a control signal to the linear vibration motor.
  • the flexible circuit 103 is described herein, it is also possible to provide control signals to the linear vibration motor, such as a printing plate circuit or the like, by other types of circuits.
  • the upper case 101 and the base 102 may be fixed together by welding or the like.
  • the linear vibration motor may include a magnetizer 201, movers 301, 302, and a linear moving support 104, 105.
  • the mover can include a permanent magnet 302. Furthermore, as in prior art solutions, the mover may also include a mass body 301.
  • the linear moving support 104, 105 can define a linear moving path (linear moving track) in which the mover moves.
  • the movers 301, 302 are mounted on the linear moving supports 104, 105 to move along a linear movement path defined by the linearly moving support.
  • the linear moving support guides the movement of the mover and ensures that the mover is not affected by the eccentricity during operation.
  • the magnetizer 201 is disposed in the vicinity of the mover along the linear movement path direction to interact with the permanent magnet such that the mover tends to the equilibrium position of the linear movement path in the non-excited state .
  • the material of the magnetizer 201 is a soft magnetic material.
  • the non-excited state is relative to the state of vibration when the coil of the linear vibration motor is energized.
  • the mover in the non-excited state, can be either moving or stationary.
  • the "trending" means that the mover is in an equilibrium position in the case of a mover stationary; and in the case where the mover is moving, the interaction causes the mover to move toward the equilibrium position.
  • the soft magnetic material it is possible to provide sufficient support for the mover in the non-excited state so that the mover is in the equilibrium position of the linear movement path.
  • the soft magnetic material can help the coil generate a magnetic field to generate a driving force for the mover.
  • the soft magnetic material refers to a material having the above properties.
  • coercivity can also be used to define soft magnetic materials.
  • the soft magnetic material may be a magnetic material having a coercive force of less than 12.5 Oe.
  • the soft magnetic material may be iron or a ferrite material or the like.
  • the soft magnetic material can be magnetized by the permanent magnet to interact with the permanent magnet to stabilize the mover in the equilibrium position.
  • a permanent magnet refers to a magnetic material capable of retaining magnetism under normal use.
  • the permanent magnet may be a magnetic material having a coercive force greater than 125 Oe.
  • the interaction between the magnetizer and the permanent magnet in the mover can be produced.
  • a spring piece is not required. This can simplify the manufacturing process of the linear vibration motor.
  • the linear vibration motor further includes control coils 202, 203 located at opposite ends of the magnetizer.
  • the control coils 202, 203 generate an electromagnetic field when energized to control the mover to move along a linear movement path. Two coils are provided here to provide a large vibration driving force to the mover.
  • the linear vibration motor may further include an upper case 101 and a base 102.
  • the linear moving support bodies 104, 105 and the magnetizer 201 are fixed between the upper case 101 and the base 102.
  • anti-collision contact portions 303, 304 are disposed between the at least one of the upper case 101 and the base 102 and the movers 301, 302 to prevent the movers 301, 302 and the upper case 101 and At least one of the bases 102 is in contact, wherein the material of the collision-proof contact portion is a material that absorbs impact.
  • the permanent magnet is an annular permanent magnet 302, which is a magnetic core 201 located through the center of the ring of the annular permanent magnet.
  • the linear moving support body includes at least two guide shafts.
  • the annular permanent magnet is movable in the axial direction of the guide shaft.
  • the ring refers to the shape of the center blank.
  • the outer shape and center shape of the ring may be circular or other shapes.
  • the peripheral shape and the center shape of the ring may be the same or different.
  • the outer shape and the central shape of the ring are both circular.
  • the mover also includes a sleeve 305, 306 that mates with the guide shaft.
  • the mover also includes an annular mass 301.
  • the annular permanent magnet 302 is fixed to the annular mass 301, and the guide shafts 104, 105 extend longitudinally through the annular mass.
  • the annular permanent magnet 302 and the annular mass 302 may be fixed together by gluing or the like.
  • the linear vibration motor includes an upper casing 101, a base 102, a flexible circuit 103, two guide shafts 104, 105, a magnetic core 201, coils 202, 203, an annular mass body 301, and a ring-shaped permanent The magnet 302, the collision-proof contact portions 303, 304, and the sleeves 305, 306.
  • the coils 202, 203 are located at both ends of the magnetic core 201.
  • a mover composed of an annular mass body 301 and a ring-shaped permanent magnet 302.
  • the permanent magnets 302 and the coils 202, 203 When the coils 202, 203 are energized, the permanent magnets 302 and the coils 202, 203 generate an electromagnetic force to drive the movers along the guide shafts 104, 105. Since the magnetic core 201 is a soft magnetic material, the magnetic core 201 can help the coil generate a magnetic field at the coils 202, 203.
  • the magnetic core 201 and the permanent magnet 302 can generate mutual magnetic attraction.
  • the magnetic attraction force can function as a spring during the reciprocating motion of the vibrator.
  • energy storage and energy release can be performed to maintain continuous movement of the mover.
  • the collision avoiding contact portion 304 may be disposed on the inner surface of the base 102 to prevent contact between the mover and the base 102 when the mover linearly vibrates.
  • the collision preventing contact portion 303 may be provided on the upper surface of the annular mass body 301 to prevent contact between the mover and the upper casing 101 when the mover linearly vibrates.
  • the collision avoiding contact portions 303, 304 may be formed of an elastic material. They can be used to prevent contact between the mover and the upper case 101 or the base 102 due to excessive vibration of the mover. For example, they can be used to prevent contact noise. Furthermore, this can alleviate the wear of the mover due to the contact.
  • the material of the collision-resistant contact portions 303, 304 may be a material such as rubber, cork, polypropylene, or the like.
  • the collision-proof contact portions 303, 304 can absorb an external impact. It will be understood by those skilled in the art that the material of the collision-proof contact portions 303, 304 is not limited thereto, and they may be any material capable of absorbing an impact.
  • the annular mass body 301 has a pilot hole that can cooperate with the sleeves 305, 306.
  • the guide shafts 104, 105 are in clearance engagement with the sleeves 305, 306.
  • the annular mass body 301 may be a high density tungsten steel material to increase the mass of the mover to obtain a strong vibrational feeling.
  • the material of the mass body may also be other materials depending on the design requirements.
  • the annular permanent magnet 302 can be located at the inner ring of the annular mass body 301 to oppose the magnetic core 201.
  • the upper and lower surfaces of the annular permanent magnet 302 are respectively on the upper surface of the annular mass body 301 The lower surface distances are equal such that the annular permanent magnet 302 is located intermediate the annular mass body 301.
  • Fig. 5 shows a schematic cross-sectional view of a linear vibration motor according to a second embodiment.
  • Fig. 6 shows a schematic exploded view of a linear vibration motor according to a second embodiment.
  • the second embodiment differs from the first embodiment in that the bushings 305, 306 are omitted in the second embodiment.
  • Other portions of the second embodiment may be the same as the corresponding portions of the first embodiment, and thus detailed description thereof will be omitted.
  • Fig. 7 is a view showing the configuration of a linear vibration motor according to a third embodiment.
  • Fig. 8 shows a schematic cross-sectional view of a linear vibration motor according to a third embodiment.
  • Fig. 9 shows a schematic exploded view of a linear vibration motor according to a third embodiment.
  • the linear movement support comprises at least one guide shaft.
  • the mover is movable in an axial direction of the guide shaft, wherein the magnetizer is a magnetic flux ring surrounding the mover.
  • the linear moving support includes a guide shaft, the mover includes an annular mass, and the permanent magnet is an annular permanent magnet.
  • the guide shaft is located at an annular center of the annular mass body, and the permanent magnet is fixed to the annular mass body, and the permanent magnet is concentric with the annular shape of the annular mass body.
  • the third embodiment will be specifically described below with reference to Figs. 7-9. Description of components corresponding to the first embodiment in the third embodiment may be omitted.
  • the linear vibration motor includes an upper case 2101, a base 2102, and a flexible circuit 2103.
  • the linear vibration motor includes an upper casing 2101, a base 2102, a flexible circuit 2103, a guide shaft 2201, a sleeve 2202, an upper annular mass body 2301, a lower annular mass body 2302, a ring-shaped permanent magnet 2303, and a guide.
  • the guide shaft 2201 cooperates with the sleeve 2202 so that the mover can move along the guide shaft.
  • the upper annular mass body 2301 and the lower annular mass body 2302 sandwich the annular permanent magnet 2303 to constitute a mover that can move up and down (vibrate) along the guide shaft 2201.
  • the annular permanent magnet 2303 may be located outside the mover so as to oppose the magnetizer 2401.
  • the magnetizer 2401 may be a magnetically permeable ring.
  • An electromagnetic force is generated between the annular permanent magnet 2303 and the coils 2402, 2403 to drive the mover to move up and down along the guide shaft 2201.
  • the structure of the magnetically permeable ring 2201 and the annular permanent magnet 2303 creates mutual magnetic attraction, which acts as a spring during the reciprocating motion of the mover. Through this spring action, energy can be stored and released to maintain the continuous operation of the mover.
  • the magnetically permeable ring 2401 is disposed at an intermediate position that mates with the inner wall of the outer casing 2101.
  • the coil 2402 and the coil 2403 may be the same as the inner and outer diameters of the magnetic conductive ring 2401 and located on the upper and lower sides of the magnetic conductive ring 2401.
  • the coil 2402 and the coil 2403 can be connected by a wire slot on the magnetically permeable ring.
  • the upper annular mass body 2301 and the lower annular mass body 2302 may be annular annular boss structures.
  • the outer diameter of the annular permanent magnet 2303 may be the same as the outer diameter of the upper annular mass 2301 and the lower annular mass 2302.
  • the outer diameters of the upper annular mass body 2301, the lower annular mass body 2302, and the annular permanent magnet 2303 are smaller than the inner diameters of the magnetic conductive ring 2401 and the coils 2402, 2403. Therefore, when the mover (the upper annular mass body 2301, the lower annular mass body 2302, the annular permanent magnet 2303, and the sleeve 2202) moves, the mover does not contact the magnetic guide ring 2401 and the coils 2402 and 2403.
  • the sleeve 202 is disposed between the mover and the guide shaft 2201 to ensure the movement of the mover up and down along the guide shaft 2201.
  • Fig. 10 shows a schematic cross-sectional view of a linear vibration motor according to a fourth embodiment.
  • Fig. 11 shows a schematic exploded view of a linear vibration motor according to a fourth embodiment.
  • the fourth embodiment is different from the third embodiment in that the boss 2202 is omitted in the fourth embodiment.
  • the other portions of the fourth embodiment may be the same as the corresponding portions of the third embodiment, and thus their detailed descriptions are omitted.
  • a "magnetic spring” having a spring effect is formed by utilizing the interaction of the permanent magnet and the magnetizer. A mutual magnetic attraction is generated between the permanent magnet and the magnetizer, and functions as a spring during the reciprocating motion of the mover. Through the magnetic spring, energy is stored and released to maintain continuous operation of the mover. In addition, the magnetic spring can cause the mover to tend to the equilibrium position of the linear movement path.
  • mechanical springs and/or shrapnel can be omitted.
  • the mechanical spring and the elastic piece are easily damaged by a sudden impact such as dropping, for example, the mechanical spring and the elastic piece are displaced.
  • the spring effect is generated by the interaction between the permanent magnet and the magnetizer, the possibility of such a malfunction can be reduced.
  • Figure 12 shows a schematic diagram of an electronic device in accordance with one embodiment.
  • the electronic device 500 may be a device such as a smart phone.
  • a linear vibration motor according to the above embodiment may be provided in the electronic device 500 in order to improve vibration prompt, tactile sensation, and the like.

Abstract

一种线性振动马达和电子设备。该马达包括:导磁体(201);动子(301),包括永磁体(302);以及线性移动支撑体(104、105),其中,动子(301)被安装在线性移动支撑体(104、105)上,以沿线性移动支撑体(104、105)所限定的线性移动路径进行移动,其中,导磁体(201)在动子(301)附近沿线性移动路径方向被设置,以与永磁体(302)相互作用,从而使得在非激励状态下动子(301)趋向于线性移动路径的平衡位置,以及导磁体(201)的材料是软磁材料。本技术方案可以省略机械弹簧。

Description

线性振动马达及电子设备 技术领域
本发明涉及一种马达技术领域,并且更具体地,涉及一种线性振动马达和电子设备。
背景技术
目前,越来越多的电子设备采用振动马达。例如,诸如手机、可穿戴设备、游戏机等的便携式消费类电子设备可以采用振动马达作为系统的反馈。例如,可以使用振动马达作为手机的振动提示,或者,可以使用振动马达给游戏机提供游戏触感,等。
相对于传统的偏心轮式旋转振动马达,线性振动马达具有许多优点。例如,线性振动马达不需要换向器和电刷,它在运行中不产生摩擦的电火花。线性振动马达运行可靠、响应快。因此,线性振动马达的应用越来越广泛。
在现有技术中,通常使用弹片作为线性振动马达中的支撑元件,以传递质量体的振动。弹片的制作工艺、强度及寿命会制约线性振动器使用。
图1示出了一种现有技术的线性振动马达。如图1所示,该线性振动马达包括弹片11、上壳12、永磁体13、磁轭14、质量体15、线圈16、底座17和柔性电路18。永磁体13、质量体15和磁轭14构成动子。永磁体13和质量体15通过磁轭14固定在一起。弹片11用于支撑动子。线圈16在通电的情况下产生驱动动子移动的作用力。
在常规的线性振动器中,在运行过程中,为避免机械弹片与上下壳体相碰触,需要在质量块上留出上下振动的避让空间。这导致质量块质量小,性能低。
此外,在对弹片进行激光焊接时,弹片容易发生变形。弹片对平整度较为敏感。弹片的成型困难。当弹片的弯折不适当时,弹片的尾部容易翘 起而与客体发生碰撞,从而导致杂音。
此外,弹片的变形会使马达中的弹簧元件内部发生摩擦,产生热量,从而损害弹簧寿命。此外,这还会产生噪音。
此外,弹片是受力部件并经受交变应力的作用。在一段时间之后,弹片可能会折断。弹片的寿命通常会影响线性振动马达的寿命。
中国专利申请CN201620087447.1公开了一种线性振动马达,它在此全部引入作为参考。
因此,在现有技术中需要提出一种新的线性振动马达方案以解决现有技术中的至少一个技术问题。
发明内容
本发明的一个目的是提供一种用于线性振动马达的新技术方案。
根据本发明的第一方面,提供了一种线性振动马达,包括:导磁体;动子,包括永磁体;以及线性移动支撑体,其中,所述动子被安装在线性移动支撑体上,以沿线性移动支撑体所限定的线性移动路径进行移动,其中,所述导磁体在所述动子附近沿所述线性移动路径方向被设置,以与所述永磁体相互作用,从而使得在非激励状态下所述动子趋向于所线性移动路径的平衡位置,以及其中,所述导磁体的材料是软磁材料。
可选地或另选地,所述线性移动支撑体包括至少两个导向轴,所述永磁体是环形永磁体,以及所述环形永磁体能沿所述导向轴的轴向移动;以及其中,所述导磁体是位于穿过所述环形永磁体的环形中心的磁芯。
可选地或另选地,所述动子还包括环形质量体,所述环形永磁体与所述环形质量体被固定在一起,以及所述导向轴纵向穿过所述环形质量体。
可选地或另选地,所述线性移动支撑体包括至少一个导向轴,所述动子能沿所述导向轴的轴向移动;以及其中,所述导磁体是围绕所述动子的导磁环。
可选地或另选地,所述线性移动支撑体包括一个导向轴,所述动子包括环形质量体,所述永磁体是环形永磁体;其中,所述导向轴位于所述环形质量体的环形中心,所述永磁体与所述环形质量体被固定在一起,所述 永磁体与所述环形质量体的环形同心。
可选地或另选地,所述动子还包括与所述导向轴配合的轴套。
可选地或另选地,线性振动马达还包括位于所述导磁体两端的控制线圈,其中,所述控制线圈在通电时产生电磁场,以控制所述动子沿线性移动路径进行移动。
可选地或另选地,线性振动马达还包括上壳和底座,其中,所述线性移动支撑体和导磁体被固定在所述上壳和底座之间。
可选地或另选地,在所述上壳和底座中的至少一个与所述动子之间设置有防撞接触部分,以防止动子和所述上壳和底座中的至少一个接触,其中,所述防撞接触部分的材料是能吸收冲击的材料。
根据本发明的第二方面,提供了一种电子设备,包括根据这里的实施例的线性振动马达。
根据本发明的实施例,利用永磁体和导磁体,为线性振动马达提供具有弹簧效果的磁作用,从而取代机械弹簧。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1示出了现有技术技术的线性振动马达的示意图。
图2示出了根据第一实施例的线性振动马达的结构示意图。
图3示出了根据第一实施例的线性振动马达的示意性剖视图。
图4示出了根据第一实施例的线性振动马达的示意性爆炸视图。
图5示出了根据第二实施例的线性振动马达的示意性剖视图。
图6示出了根据第二实施例的线性振动马达的示意性爆炸视图。
图7示出了根据第三实施例的线性振动马达的结构示意图。
图8示出了根据第三实施例的线性振动马达的示意性剖视图。
图9示出了根据第三实施例的线性振动马达的示意性爆炸视图。
图10示出了根据第四实施例的线性振动马达的示意性剖视图。
图11示出了根据第四实施例的线性振动马达的示意性爆炸视图。
图12示出了根据一个实施例的电子设备的示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面,参照附图描述各个实施例和例子。
图2示出了根据第一实施例的线性振动马达的结构示意图。图3示出了根据第一实施例的线性振动马达的示意性剖视图。图4示出了根据第一实施例的线性振动马达的示意性爆炸视图。
如图2所示,线性振动马达包括上壳101、底座102和柔性电路103。上壳101和底座102用于限定线性振动马达的形状和内部空间。柔性电路103用于为线性振动马达提供控制信号。本领域技术人员应当理解,尽管在这里描述了柔性电路103,但是,还可以通过其他类型的电路为线性振动马达提供控制信号,例如,印刷版电路等。此外,例如,上壳101和底座102可以通过焊接等方式被固定在一起。
线性振动马达可以包括导磁体201、动子301、302和线性移动支撑体 104、105。
动子可以包括永磁体302。此外,如现有技术的方案那样,动子还可以包括质量体301。
线性移动支撑体104、105可以限定动子移动的线性移动路径(线性移动轨道)。
所述动子301、302被安装在线性移动支撑体104、105上,以沿线性移动支撑体所限定的线性移动路径进行移动。线性移动支撑体引导动子移动,并保证动子在工作时不受偏心影响。
所述导磁体201在所述动子附近沿所述线性移动路径方向被设置,以与所述永磁体相互作用,从而使得在非激励状态下所述动子趋向于所线性移动路径的平衡位置。所述导磁体201的材料是软磁材料。
这里,非激励状态是相对于当给线性振动马达的线圈通电时的振动状态的。例如,在非激励状态下,动子可以是运动的,也可以是静止的。所述“趋向于”指的是:在动子静止的情况下,所述动子位于平衡位置;以及在动子是运动的情况下,所述相互作用使得动子向着平衡位置移动。
在这里,通过软磁材料,在非激励状态下能够为动子提供足够支撑,使得动子处于所述线性移动路径的平衡位置。当给线性振动马达的线圈通电时,所述软磁材料可以帮助线圈产生磁场,以产生对动子的驱动力。在这里,软磁材料指的是具有上述性质的材料。此外,还可以使用矫顽力来定义软磁材料。例如,在一些情况下,所述软磁材料可以是矫顽力小于12.5Oe的磁性材料。例如,所述软磁材料可以是铁或铁氧体材料等。
软磁材料可以被永磁体磁化,从而与永磁体相互作用,将动子稳定在平衡位置。
在这里,永磁体指的是在正常使用情况下能够保持磁性的磁性材料。例如,在一些情况下,永磁体可以是矫顽力大于125Oe的磁性材料。
本领域技术人员应当理解,由于重力等的作用,当线性振动马达处于不同的姿态(正向水平放置姿态、竖直放置姿态等)时,各个非激励状态下的平衡位置可能有所偏移。
在这个实施例中,通过导磁体和动子中的永磁体的相互作用,可以产 生具有线性弹簧的效果(磁弹簧)。
例如,当动子被驱动之后,不需要额外的复位弹簧,可以通过这种磁弹簧的作用将动子复位到所述平衡位置。
此外,在所述线性振动马达中,不需要机械弹簧。因此,不会产生机械损耗。
此外,在所述线性振动马达中,不需要弹片。这可以简化所述线性振动马达的制造工艺。
此外,可以消除弹片对所述线性振动马达的影响。
在第一实施例中,线性振动马达还包括位于所述导磁体两端的控制线圈202、203。所述控制线圈202、203在通电时产生电磁场,以控制所述动子沿线性移动路径进行移动。在这里提供两个线圈,可以给动子提供较大的振动驱动力。
线性振动马达还可以包括上壳101和底座102。所述线性移动支撑体104、105和导磁体201被固定在所述上壳101和底座102之间。
例如,在所述上壳101和底座102中的至少一个的与所述动子301、302之间设置有防撞接触部分303、304,以防止动子301、302和所述上壳101和底座102中的至少一个接触,其中,所述防撞接触部分的材料是能吸收冲击的材料。
在第一实施例中,所述永磁体是环形永磁体302,所述导磁体是位于穿过所述环形永磁体的环形中心的磁芯201。在这里,所述线性移动支撑体包括至少两个导向轴。以及所述环形永磁体能沿所述导向轴的轴向移动。在这里,环形指的是中心空白的形状。环形的外围形状和中心形状可以是圆形,也可以是其他形状。另外,环形的外围形状和中心形状可以是相同的,也可以是不同的。优选地,环形的外围形状和中心形状都是圆形。
例如,所述动子还包括与所述导向轴配合的轴套305、306。
例如,所述动子还包括环形质量体301。所述环形永磁体302与所述环形质量体301被固定在一起,以及所述导向轴104、105纵向穿过所述环形质量体。例如,所述环形永磁体302与所述环形质量体302可以通过胶合等方式被固定在一起。
如图3和图4所示,所述线性振动马达包括上壳101、底座102、柔性电路103、两个导向轴104、105、磁芯201、线圈202、203、环形质量体301、环形永磁体302、防撞接触部分303、304以及轴套305、306。
线圈202、203位于磁芯201的两端。环形质量体301和环形永磁体302构成的动子。
当线圈202、203通电时,永磁体302和线圈202、203产生电磁力,以驱动动子沿导向轴104、105移动。由于磁芯201是软磁材料,因此,磁芯201在线圈202、203时可以帮助线圈产生磁场。
磁芯201和永磁体302可以产生相互的磁吸引力。在振子的往复运动过程中,所述磁吸引力可以起到弹簧的作用。通过磁芯201和永磁体302的相互作用,可以进行储能和释放能量,以维持动子的连续移动。
防撞接触部分304可以设置在底座102的内表面上,以防止在动子线性振动时动子与底座102之间接触。
可以在环形质量体301的上表面设置防撞接触部分303,以防止在动子线性振动时动子与上壳101之间接触。
例如,防撞接触部分303、304可由弹性材料形成。它们可以用于防止由于动子的过度振动导致的动子与上壳101或底座102之间的接触。例如,它们可以用于防止产生接触噪声。此外,这可以减轻由于所述接触而造成的动子磨损。
例如,防撞接触部分303、304的材料可以是诸如橡胶、软木、聚丙烯等的材料。在出现外部冲击的情况下,防撞接触部分303、304可以吸收外部冲击。本领域技术人员应当理解,防撞接触部分303、304的材料不限于此,它们可以是能够吸收冲击的任何材料。
环形质量体301具有可以与轴套305、306相配合的导向孔。导向轴104、105与轴套305、306间隙配合。
例如,环形质量体301可以是高密度的钨钢材料,以增大动子的质量,从而获取强的振感。根据设计的需要,质量体的材料也可以是其他材料。
例如,可以将环形永磁体302位于环形质量体301内环处,以与磁芯201相对。例如,环形永磁体302的上下表面分别与环形质量体301的上 下表面距离相等,以使得环形永磁体302位于环形质量体301中间位置。
图5示出了根据第二实施例的线性振动马达的示意性剖视图。图6示出了根据第二实施例的线性振动马达的示意性爆炸视图。
第二实施例与第一实施例的区别在于,在第二实施例中省略了轴套305、306。第二实施例的其他部分可以与第一实施例的相应部分相同,因此,省略对它们的详细描述。
图7示出了根据第三实施例的线性振动马达的结构示意图。图8示出了根据第三实施例的线性振动马达的示意性剖视图。图9示出了根据第三实施例的线性振动马达的示意性爆炸视图。
在第三实施例中,所述线性移动支撑体包括至少一个导向轴。所述动子能沿所述导向轴的轴向移动,其中,所述导磁体是围绕所述动子的导磁环。
例如,所述线性移动支撑体包括一个导向轴,所述动子包括环形质量体,所述永磁体是环形永磁体。所述导向轴位于所述环形质量体的环形中心,所述永磁体与所述环形质量体被固定在一起,所述永磁体与所述环形质量体的环形同心。
下面参照图7-9具体描述第三实施例。第三实施例中与第一实施例相对应的部件的描述可以被省略。
如图7所示,线性振动马达包括上壳2101、底座2102和柔性电路2103。
如图8、9所示,线性振动马达包括上壳2101、底座2102、柔性电路2103、一个导向轴2201、轴套2202、上环形质量体2301、下环形质量体2302、环形永磁体2303、导磁体2401、线圈2402、2403、
导向轴2201与轴套2202相配合,从而使得动子能沿导向轴移动。上环形质量体2301和下环形质量体2302将环形永磁体2303夹在中间,从而构成能沿导向轴2201上下移动(振动)的动子。如图8所示,环形永磁体2303可以位于动子外侧,从而与导磁体2401相对。导磁体2401可以是导磁环。
在环形永磁体2303和线圈2402、2403之间产生电磁力,以驱动动子沿导向轴2201上下移动。
导磁环2201和环形永磁体2303的结构产生相互的磁吸力,在动子的往复运动过程中起到弹簧的作用。通过这种弹簧作用,可以进行存储和释放能量,以维持动子的连续运行。
例如,导磁环2401被设置在与外壳2101内壁相配合的中间位置。线圈2402和线圈2403可以与导磁环2401内外径相同,并位于导磁环2401上下两侧。线圈2402和线圈2403可以通过导磁环上的过线槽相连。
上环形质量体2301和下环形质量体2302可以是环形凸台结构。环形永磁体2303的外径可以与上环形质量体2301和下环形质量体2302的外径相同。
这里,上环形质量体2301、下环形质量体2302、环形永磁体2303的外直径小于导磁环2401、线圈2402、2403的内径。因此,在动子(上环形质量体2301、下环形质量体2302、环形永磁体2303、轴套2202)移动时,动子与导磁环2401、线圈2402、2403不接触。
轴套202被设置在动子和导向轴2201之间,以保证动子沿导向轴2201的上下移动。
图10示出了根据第四实施例的线性振动马达的示意性剖视图。图11示出了根据第四实施例的线性振动马达的示意性爆炸视图。
第四实施例与第三实施例的区别在于,在第四实施例中省略了轴套2202。第四实施例的其他部分可以与第三实施例的相应部分相同,因此,省略对它们的详细描述。
在一个实施例中,通过利用永磁体和导磁体的相互作用,形成具有弹簧效应的“磁弹簧”。在所述永磁体和导磁体之间产生相互的磁吸力,在动子的往复运动过程中起到弹簧的作用。通过所述磁弹簧,储存和释放能量,以维持动子的连续运行。另外,通过所述磁弹簧,使动子能够趋向于线性移动路径的平衡位置。这里,可以省去机械弹簧和/或弹片。
另外,现有技术的线性振动马达中,机械弹簧、弹片很容易由于诸如掉落的突然撞击而损坏,例如,机械弹簧、弹片发生移位。在本发明的实施例中,由于利用永磁体和导磁体之间的相互作用来产生弹簧效应,因此,可以减小由于这种故障的可能性。
图12示出了根据一个实施例的电子设备的示意图。
如图12所示,电子设备500可以是诸如智能电话的设备。可以在电子设备500中设置根据上述实施例的线性振动马达,以便提高振动提示、触感等。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (8)

  1. 一种线性振动马达,包括:
    导磁体;
    动子,包括永磁体;以及
    线性移动支撑体,
    其中,所述动子被安装在线性移动支撑体上,以沿线性移动支撑体所限定的线性移动路径进行移动,
    其中,所述导磁体在所述动子附近沿所述线性移动路径方向被设置,以与所述永磁体相互作用,从而使得在非激励状态下所述动子趋向于所线性移动路径的平衡位置,以及
    其中,所述导磁体的材料是软磁材料。
  2. 根据权利要求1所述的线性振动马达,其中,所述线性移动支撑体包括至少两个导向轴,所述永磁体是环形永磁体,以及所述环形永磁体能沿所述导向轴的轴向移动;以及
    其中,所述导磁体是位于穿过所述环形永磁体的环形中心的磁芯。
  3. 根据权利要求2所述的线性振动马达,其中,所述动子还包括环形质量体,所述环形永磁体与所述环形质量体被固定在一起,以及所述导向轴纵向穿过所述环形质量体。
  4. 根据权利要求2-3中的任何一项所述的线性振动马达,其中,所述动子还包括与所述导向轴配合的轴套。
  5. 根据权利要求1-4中的任何一项所述的线性振动马达,还包括位于所述导磁体两端的控制线圈,其中,所述控制线圈在通电时产生电磁场,以控制所述动子沿线性移动路径进行移动。
  6. 根据权利要求1-5中的任何一项所述的线性振动马达,还包括上壳和底座,其中,所述线性移动支撑体和导磁体被固定在所述上壳和底座之间。
  7. 根据权利要求6所述的线性振动马达,其中,在所述上壳和底座中的至少一个与所述动子之间设置有防撞接触部分,以防止动子和所述上壳和底座中的至少一个接触,其中,所述防撞接触部分的材料是能吸收冲击的材料。
  8. 一种电子设备,包括根据权利要求1-7中的任何一项所述的线性振动马达。
PCT/CN2017/079865 2017-03-14 2017-04-10 线性振动马达及电子设备 WO2018166012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/491,664 US20200044542A1 (en) 2017-03-14 2017-04-10 Linear vibration motor and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710151420.3 2017-03-14
CN201710151420.3A CN106849588B (zh) 2017-03-14 2017-03-14 线性振动马达及电子设备

Publications (1)

Publication Number Publication Date
WO2018166012A1 true WO2018166012A1 (zh) 2018-09-20

Family

ID=59144601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079865 WO2018166012A1 (zh) 2017-03-14 2017-04-10 线性振动马达及电子设备

Country Status (3)

Country Link
US (1) US20200044542A1 (zh)
CN (1) CN106849588B (zh)
WO (1) WO2018166012A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849587B (zh) * 2017-03-14 2022-04-05 歌尔股份有限公司 线性振动马达及电子设备
CN215772886U (zh) * 2020-07-10 2022-02-08 日本电产株式会社 振动马达及触觉器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713901B2 (en) * 2002-03-14 2004-03-30 The Boeing Company Linear electromagnetic zero net mass jet actuator
CN204425167U (zh) * 2015-02-02 2015-06-24 韩朝阳 一种用于光通信器件产品的音圈马达
CN105556814A (zh) * 2013-11-07 2016-05-04 磁化电子株式会社 线性振动产生装置
CN205430016U (zh) * 2015-12-03 2016-08-03 歌尔声学股份有限公司 一种线性振动马达及其弹性支撑件
CN106329871A (zh) * 2016-09-30 2017-01-11 歌尔股份有限公司 线性振动马达以及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470689B2 (ja) * 2000-08-28 2003-11-25 松下電工株式会社 リニアアクチュエータ
WO2007029325A1 (ja) * 2005-09-08 2007-03-15 Namiki Seimitsu Houseki Kabusikikaisha 扁平振動アクチュエー タ
KR100923867B1 (ko) * 2009-07-21 2009-10-28 김태진 리니어 진동 모터
KR101491456B1 (ko) * 2013-11-05 2015-02-23 주식회사 하이소닉 햅틱 엑추에이터
CN105305762B (zh) * 2015-11-17 2017-03-29 上海泉源机电有限公司 一种磁平衡直线振动马达及其振动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713901B2 (en) * 2002-03-14 2004-03-30 The Boeing Company Linear electromagnetic zero net mass jet actuator
CN105556814A (zh) * 2013-11-07 2016-05-04 磁化电子株式会社 线性振动产生装置
CN204425167U (zh) * 2015-02-02 2015-06-24 韩朝阳 一种用于光通信器件产品的音圈马达
CN205430016U (zh) * 2015-12-03 2016-08-03 歌尔声学股份有限公司 一种线性振动马达及其弹性支撑件
CN106329871A (zh) * 2016-09-30 2017-01-11 歌尔股份有限公司 线性振动马达以及电子设备

Also Published As

Publication number Publication date
CN106849588A (zh) 2017-06-13
US20200044542A1 (en) 2020-02-06
CN106849588B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2018166013A1 (zh) 线性振动马达及电子设备
KR102030597B1 (ko) 진동발생장치 및 이를 구비하는 전자장치
JP5680216B2 (ja) 筒型リニアモータ
KR102013737B1 (ko) 진동발생장치
US20150137627A1 (en) Vibration actuator and mobile information terminal
KR101388868B1 (ko) 진동발생장치
US10658914B2 (en) Magnetically balancing guided linear vibration motor
US20190006926A1 (en) Linear vibration motor
US20140132089A1 (en) Linear vibration motor
WO2018058807A1 (zh) 线性振动马达
KR100566005B1 (ko) 자기식 댐퍼 및 이를 구비한 액추에이터
US9630213B2 (en) Vibration actuator
CN107107112B (zh) 线性振动马达
JP2019201486A (ja) リニア振動モータ及び電子機器
US20180236488A1 (en) Vibration motor
WO2018166012A1 (zh) 线性振动马达及电子设备
JP5655999B2 (ja) 電磁サスペンション装置
WO2018008280A1 (ja) リニア振動モータ
JP2020054018A (ja) 振動アクチュエータ
CN204993015U (zh) 一种磁悬浮马达
CN204947875U (zh) 线性振动马达
CN204993014U (zh) 一种磁悬浮马达
CN205092754U (zh) 线性振动马达
KR101320226B1 (ko) 진동발생장치
JP2017178477A (ja) エレベータ用電磁ブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900983

Country of ref document: EP

Kind code of ref document: A1