WO2018165998A1 - 石墨烯电极制备方法及液晶显示面板 - Google Patents

石墨烯电极制备方法及液晶显示面板 Download PDF

Info

Publication number
WO2018165998A1
WO2018165998A1 PCT/CN2017/078473 CN2017078473W WO2018165998A1 WO 2018165998 A1 WO2018165998 A1 WO 2018165998A1 CN 2017078473 W CN2017078473 W CN 2017078473W WO 2018165998 A1 WO2018165998 A1 WO 2018165998A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
substrate
laser
graphene layer
desired pattern
Prior art date
Application number
PCT/CN2017/078473
Other languages
English (en)
French (fr)
Inventor
王海军
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/545,715 priority Critical patent/US20190384087A1/en
Publication of WO2018165998A1 publication Critical patent/WO2018165998A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film

Definitions

  • the present invention relates to the field of graphene electrodes, and in particular to a method for preparing a graphene electrode and a liquid crystal display panel.
  • Graphene is a two-dimensional crystal that is stripped from a graphite material and composed of carbon atoms and has only one atomic thickness. Graphene is currently the thinnest and strongest material in nature, and it has a very high thermal conductivity. The excellent thermal conductivity makes graphene ideal as a heat sink for ultra-large-scale nano-integrated circuits in the future. In addition, the stable lattice structure of graphene makes it excellent in electrical conductivity. It is precisely because graphene has excellent performance that it has been widely used in the industry, for example, in display devices, as a graphene electrode, and the like.
  • the preparation of the graphene electrode is mainly: using a transfer method, specifically: transferring graphene to a desired substrate, and then etching the graphene by micro-machining to form a predetermined pattern; or, preparing a patterned pattern in advance
  • a metal material is formed by forming a graphene on a metal pattern by a chemical vapor deposition (CVD) method, and then transferring it to a desired substrate.
  • CVD chemical vapor deposition
  • Embodiments of the present invention provide a method for preparing a graphene electrode, which can simplify the preparation process and reduce the difficulty of patterning the graphene electrode, thereby further reducing the processing cost.
  • an embodiment of the present invention provides a method for preparing a graphene electrode, including the following steps:
  • the support plate and the substrate are separated from each other, and graphene adhered to the substrate is separated together with the substrate to form a patterned graphene electrode on the substrate.
  • the substrate is a flexible substrate prepared from PET or PI material.
  • the step of providing a support plate and forming a graphene layer on the support plate further comprises: baking the support plate carrying the graphene layer at 50 ° C - 80 ° C for baking.
  • the laser is a carbon dioxide laser, a semiconductor laser or a fiber laser.
  • the step of performing laser irradiation on the substrate corresponding to the predetermined pattern of the graphene electrode includes:
  • the substrate is subjected to laser irradiation by a planar laser source in cooperation with a patterned reticle, so that laser light transmitted through the reticle is irradiated onto a desired pattern region on the substrate facing the graphene layer.
  • the step of performing laser irradiation on the substrate corresponding to the desired pattern region of the graphene layer to adsorb the desired pattern region of the graphene layer on the substrate includes:
  • the graphene of the desired pattern region of the graphene layer captures energy of the laser to generate heat, and the generated heat melts the substrate in the laser irradiation region to be adsorbed by the melted substrate at the melting point.
  • the step of cooling the substrate to adhere the substrate to the adsorbed graphene by the laser irradiation portion includes:
  • the portion where the substrate is melted is solidified by cooling, thereby adhering the graphene adsorbed to the melted portion of the substrate to the substrate.
  • the graphene layer is formed by using graphene and/or graphene oxide as a raw material by spraying, coating or chemical vapor deposition.
  • the desired pattern region of the graphene layer is After the laser irradiation, the graphene oxide therein is reduced to reductive graphene oxide, and adsorbed and adhered to the substrate.
  • an embodiment of the present invention further provides a liquid crystal display panel including a graphene electrode, and the graphene electrode is prepared by the above method.
  • the method for preparing a graphene electrode and the liquid crystal display panel do not need to realize patterning of the graphene electrode by etching, and do not need to perform patterning of graphene by using a patterned metal material in combination with a CVD process.
  • the predetermined pattern region of the graphene electrode is directly irradiated with laser light, so that the graphene and/or the reducing graphene oxide in the predetermined pattern region are adsorbed and adhered to the substrate, so that the laser can be irradiated without laser irradiation.
  • the separation of the graphene and the formation of the patterned graphene electrode on the substrate not only simplifies the preparation process, but also reduces the difficulty of patterning the graphene electrode, thereby greatly reducing the processing cost.
  • FIG. 1 is a flow chart of a method for preparing a graphene electrode according to an embodiment of the present invention.
  • FIG. 2(a)-2(e) are schematic views showing the processing of each step in the preparation of the graphene electrode by the preparation method shown in Fig. 1.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined.
  • the ground connection, or the integral connection may be a mechanical connection; it may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • Embodiments of the present invention provide a method for preparing a graphene electrode, which can simplify the preparation process, reduce the difficulty of patterning the graphene electrode, and reduce the processing cost. The details are described below separately.
  • FIG. 1 is a flow chart of a method for preparing a graphene electrode according to an embodiment of the present invention.
  • FIG. 2(a)-2(e) is a pass. Schematic diagram of the processing of each step in the preparation method of the graphene shown in FIG. 2(a) to 2(e) correspond to the respective steps of the method for preparing the graphene electrode shown in FIG. 1, respectively.
  • the method for preparing the graphene electrode includes at least the following steps.
  • Step 1 Provide a support plate and form a graphene layer on the support plate.
  • the type of the support plate is not limited, and may be a support plate of glass, plastic or other materials.
  • the graphene layer may be formed of graphene and/or graphene oxide, in the embodiment of the invention, either by any one of the graphene and graphene oxide, or a film formed by the combination of both Layers, hereinafter collectively referred to as graphene layers.
  • the graphene and/or graphene oxide may be dispersed into wine After the fine or other similar solution, the graphene layer is formed on the support plate by a spraying or spin coating process. In another embodiment of the present invention, the graphene layer may also be formed on the support plate by a Chemical Vapor Deposition (CVD) process. In the present invention, the formation process of the graphene layer is not specifically limited.
  • the support plate carrying the graphene layer is baked at 50 ° C - 80 ° C to remove the The solution in the graphene layer either dries the support plate and the graphene layer.
  • the structure formed by this step 1 is as shown in FIG. 2(a), and a graphene layer 20 composed of graphene and/or graphene oxide is formed on the support plate 10.
  • Step 2 Providing a substrate and covering the substrate on the graphene layer.
  • the substrate is a target substrate of a display panel for carrying the graphene layer transferred from the support plate, so as to facilitate subsequent application of the graphene layer as an electrode to the display panel.
  • the substrate may be a flexible substrate prepared from a material such as polyethylene terephthalate (PET) or polyimide (PI), but in the present invention, the substrate is not The material is specifically limited.
  • the substrate 30 is covered on the graphene layer 20, and the graphene layer 20 is sandwiched between the support board 10 and the substrate 30.
  • the underlying graphene layer 20 is in phase contact.
  • Step 3 performing laser irradiation on the substrate corresponding to the desired pattern area of the graphene layer, so that the desired pattern area of the graphene layer is adsorbed on the substrate.
  • the desired pattern area of the graphene layer corresponds to a pattern setting required for the graphene electrode.
  • the graphene layer can obtain better conductivity, thereby overcoming the problem that the graphene oxide has low conductivity. Therefore, in an embodiment of the present invention, when the graphene layer is formed of graphene, at this time, graphene is adsorbed on the substrate facing the laser irradiation; and when the graphene layer is made of graphene oxide At the time of formation, at this time, the reduced graphene oxide after the laser reduction is adsorbed on the substrate at the laser irradiation; and when the graphene layer is formed by both the graphene and the graphene oxide layer, Graphene and reducing graphene oxide are adsorbed on the substrate where the laser is irradiated.
  • the desired pattern area of the graphene layer 20 is irradiated by the laser 40 to the desired pattern area of the graphene layer 20.
  • the graphene and/or graphene oxide captures the energy of the laser 40 to generate heat, and the generated heat causes the substrate 30 to be melted in the irradiation region, and the melted portion of the substrate 30 (see Fig. 2 (c
  • the reference numeral 31 indicates a site) which can adsorb the graphene in contact with the contact and/or the reduced graphene oxide after the laser reduction.
  • the duration of the irradiation of the laser light 40 may be controlled such that the substrate 30 is slightly melted by the irradiation region. Further, after the graphene layer 20 is heated, the adsorption force between the graphene layer 20 and the substrate 30 is also enhanced, and it is better adsorbed to the melted portion 31 of the substrate 30. Whereas the substrate 30 is not irradiated with laser light, the substrate 30 still covers only the graphene layer 20, and the graphene layer 20 cannot be adsorbed. In this manner, only the portion of the substrate 30 corresponding to the desired pattern of the graphene electrode is subjected to laser irradiation, and the graphene and/or the reductive graphene oxide can be adsorbed at the predetermined pattern.
  • the graphene layer may be irradiated by a laser source such as a carbon dioxide laser, a semiconductor laser, or a fiber laser, and the type of the laser source is not specifically limited in the present invention, as long as it can be illuminated.
  • the graphene layer is heated to cause the substrate 30 to be melted in the irradiation region, thereby enhancing the adsorption force of the substrate and the graphene layer.
  • the laser has a wavelength in the range of 500 nm to 1200 nm, an output power of 300-1500 mW, and a scanning speed of 5-10 mm/sec-1.
  • the laser source is a pen-like structure
  • the emitted light is a relatively concentrated laser beam
  • the pattern is moved to heat the pattern required for the substrate corresponding to the graphene electrode to adsorb the graphene at the desired pattern.
  • the above-mentioned laser irradiation method has high utilization rate of laser light, but since it is required to strictly follow the pattern movement required for the graphene electrode, the accuracy of laser control is required to be high.
  • a planar laser source may be coupled to a patterned photomask to irradiate laser light transmitted through the photomask to a desired pattern region of the graphene layer, thereby Laser irradiation is performed on a desired pattern region of the corresponding graphene on the substrate, and a portion blocked by the reticle is not irradiated with laser light.
  • illumination of the desired pattern regions of the graphene layer can be accomplished in one operation without the need to reciprocally adjust the laser source.
  • the pattern of the reticle corresponds to the stone. The pattern setting required for the urethane electrode.
  • the above laser irradiation method has a high efficiency due to the large-area illumination and the patterned mask, and the accuracy of the laser control is low, but the utilization rate of the laser is low. Therefore, in the actual processing, it can be selected in the above two laser irradiation modes in combination with actual production conditions, or simultaneously combined with the above two laser irradiation methods.
  • Step 4 Cooling the substrate so that the substrate is adhered to the adsorbed graphene and/or the reduced graphene oxide by the laser irradiated portion.
  • the portion of the substrate that is irradiated with the laser light is melted by the heat generated by the graphene layer, when the substrate is cooled, the portion of the substrate that is melted is re-solidified, thereby The adsorbed graphene and/or the reduced graphene oxide are adhered.
  • the portion of the substrate 30 that is irradiated with the laser light 40 is weakly melted by the heat generated by the graphene layer 20 (the portion indicated by reference numeral 31), and the portion where the substrate 30 is melted is
  • the graphene and/or the reducing graphene oxide which are in contact with the phase can be adsorbed (refer to the portion indicated by reference numeral 21 in Fig. 2(d)). Therefore, when the substrate 30 is cooled, the portion of the substrate 30 that is melted will be re-solidified, and the adsorbed graphene and/or the reduced graphene oxide (refer to the portion indicated by reference numeral 21 in Fig. 2(d)) are bonded.
  • the graphene and/or the reductive graphene oxide may be adhered to the substrate 30 in accordance with a predetermined pattern of the graphene electrode.
  • Step 5 separating the support plate from the substrate, and graphene and/or reducing graphene oxide adhered to the substrate are separated together with the substrate, thereby forming a patterned pattern on the substrate.
  • Graphene electrode
  • the graphene and/or the reductive graphene oxide are adhered to the substrate only in the region irradiated by the laser, and the substrate is only covered with the graphene.
  • the layer is not adhered to the graphene layer. Therefore, when the support plate and the substrate are separated from each other, only graphene and/or reducing graphene oxide adhering to the substrate may be from the graphene.
  • the layers are separated to form a patterned graphene electrode on the substrate. The portion of the graphene layer that is not irradiated with the laser light is not adhered to the substrate, and is not separated from the support plate by the substrate, and finally remains on the support plate.
  • the method for preparing a graphene electrode of the present invention does not need to realize patterning of the graphene electrode by etching, and does not need to perform patterning of graphene by using a patterned metal material in combination with a CVD process.
  • the predetermined pattern region of the graphene electrode is directly irradiated with laser light, so that the graphene and/or the reducing graphene oxide in the predetermined pattern region are adsorbed and adhered to the substrate, so that the laser can be irradiated without laser irradiation.
  • the separation of the graphene and the formation of the patterned graphene electrode on the substrate not only simplifies the preparation process, but also reduces the difficulty of patterning the graphene electrode, thereby greatly reducing the processing cost.
  • the present invention also provides a liquid crystal display panel, wherein the electrodes in the liquid crystal display panel are graphene electrodes, and the graphene electrodes are formed by the above method.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

一种石墨烯电极制备方法,将作为目标衬底的基板(30)覆盖于石墨烯层(20)上后,通过激光(40)照射基板(30)制备电极的所需图案区,以通过激光(40)将石墨烯转移至基板(30)上,由于仅在电极所需图案区才会转移有石墨烯,因此,转移到基板(30)上的石墨烯直接形成了图案化的石墨烯电极。石墨烯电极制备方法可简化制备过程,并降低石墨烯电极的图案化的难度,降低加工成本。还公开了一种液晶显示面板,其包括由石墨烯电极制备方法制备形成的石墨烯电极。

Description

石墨烯电极制备方法及液晶显示面板
本申请要求2017年03月14日递交的发明名称为“石墨烯电极制备方法及液晶显示面板”的申请号为201710155073.1的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及石墨烯电极领域,尤其涉及一种石墨烯电极制备方法及一种液晶显示面板。
背景技术
石墨烯(Graphene)是从石墨材料中剥离出来、并且由碳原子组成的只有一层原子厚度的二维晶体。石墨烯目前是自然界最薄、强度最高的材料,其具有极高导热系数,而优异的导热性能使得石墨烯有望作为未来超大规模纳米集成电路的散热材料。此外,石墨烯的稳定的晶格结构使其具有优秀的导电性。正是由于石墨烯具有优异的性能表现,使其在工业中得到了广泛的应用,例如,应用于显示装置中,作为石墨烯电极使用等。
目前,制备石墨烯电极主要是:利用转移法,具体为:将石墨烯转移到所需基底上,再利用微加工对石墨烯刻蚀,从而形成预设图案;或者,预先制备具有图案化的金属材料,利用化学气相沉积(Chemical Vapor Deposition,CVD)法在金属图案上形成石墨烯,进而转移到所需基底。虽然以上现有方法可制备出特定图案的石墨烯电极,但其制备过程复杂,石墨烯的质量较低,而且上述方法使得石墨烯电极图案化难度较大,成本较高。因此,需要开发一种新的石墨烯电极制备方法,使其在电子器件等领域的应用更加广泛。
发明内容
本发明实施例提供一种石墨烯电极制备方法,其可简化制备过程,并降低石墨烯电极的图案化的难度,从而进一步降低加工成本。
第一方面,本发明实施例提供了一种石墨烯电极制备方法,包括以下步骤:
提供一支撑板,并在所述支撑板上形成石墨烯层;
提供一基板,并将所述基板覆盖于所述石墨烯层上;
在所述基板上对应石墨烯电极预设图案处进行激光照射,使正对激光照射处的石墨烯吸附于所述基板上;
冷却所述基板,使所述基板被激光照射部分与吸附的所述石墨烯相粘连;及
将所述支撑板与所述基板相互分离,粘连于所述基板上的石墨烯随所述基板一起分离,从而于所述基板上形成图案化的石墨烯电极。
其中,所述基板为PET或者PI材料制备的柔性基板。
其中,所述提供一支撑板,并在所述支撑板上形成石墨烯层的步骤后还包括:将承载有石墨烯层的所述支撑板处于50℃-80℃条件下进行烘烤。
其中,所述激光为二氧化碳激光、半导体激光或者光纤激光。
其中,所述在所述基板上对应石墨烯电极预设图案处进行激光照射的步骤,包括:
在所述基板上,通过一激光束沿所述石墨烯层所需图案区移动;或者
通过一平面状的激光源,配合一图案化的光罩对所述基板进行激光照射,使透过所述光罩的激光照射至所述基板上正对所述石墨烯层所需图案区。
其中,所述在所述基板上对应所述石墨烯层所需图案区进行激光照射,使所述石墨烯层所需图案区吸附于所述基板上的步骤,包括:
所述石墨烯层所需图案区的石墨烯捕捉所述激光的能量而产生热量,所产生的热量将所述激光照射区域内的基板融化,以通过融化的所述基板于融化处吸附相接触的石墨烯。
其中,所述冷却所述基板,使所述基板被激光照射部分与吸附的所述石墨烯相粘连的步骤,包括:
所述基板融化的部分因冷却而凝固,从而将吸附于所述基板融化部分的石墨烯粘连在所述基板上。
其中,所述石墨烯层由石墨烯和/或氧化石墨烯作为原料,通过喷涂、涂旋或者化学气相沉积工艺形成。
其中,当所述石墨烯层中含有氧化石墨烯时,所述石墨烯层所需图案区经 过激光照射后,其中的氧化石墨烯被还原成还原性氧化石墨烯,并吸附且粘连于所述基板上。
第二方面,本发明实施例还提供了一种液晶显示面板,其包括石墨烯电极,并且所述石墨烯电极通过上述的方法制备而成。
本发明实施例中提供的石墨烯电极制备方法及液晶显示面板,无需通过刻蚀的方式实现石墨烯电极的图案化,也无需借助图案化的金属材料配合CVD工艺来实现石墨烯的图案化。本发明的制备方法中直接采用激光照射石墨烯电极的预设图案区域,使该预设图案区域的石墨烯和/或还原性氧化石墨烯吸附并粘连于基板上,从而可与未被激光照射的石墨烯分离,进而于所述基板上形成图案化的石墨烯电极,不仅简化了制备过程,还降低了石墨烯电极的图案化的难度,因此大大降低加工成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的石墨烯电极制备方法的流程图。
图2(a)-2(e)为通过图1所示制备方法来制备石墨烯电极时各步骤的加工示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明的一部分实施方式,而不是全部实施方式。在本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都应属在本发明保护的范围。
此外,以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明中所提到的方向用语,例如,“上”、“下”、“前”、“后”、 “左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本发明,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸地连接,或者一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。若本说明书中出现“工序”的用语,其不仅是指独立的工序,在与其他工序无法明确区别时,只要能实现所述工序所预期的作用则也包括在本用语中。另外,本说明书中用“~”表示的数值范围是指将“~”前后记载的数值分别作为最小值及最大值包括在内的范围。在附图中,结构相似或相同的单元用相同的标号表示。
本发明实施例提供了一种石墨烯电极制备方法,其可简化制备过程,并降低石墨烯电极的图案化的难度,降低加工成本。以下分别进行详细说明。
请参阅图1,图1为本发明实施例提供的石墨烯电极制备方法的流程图,请一并参阅图2(a)至2(e),图2(a)-2(e)为通过图1所示制备方法来制备石墨烯电极时各步骤的加工示意图。其中,图2(a)至2(e)分别对应图1所示石墨烯电极制备方法的各个步骤。在本发明实施例中,所述石墨烯电极制备方法至少包括以下步骤。
步骤1、提供一支撑板,并在所述支撑板上形成石墨烯层。
在本发明一实施例中,所述支撑板的类型不限,可以是玻璃、塑料或者其他材质的支撑板。所述石墨烯层可以由石墨烯和/或氧化石墨烯形成,在本发明的实施例中,无论是由所述石墨烯和氧化石墨烯中的任意一种,或者是两者共同形成的膜层,下文均统称为石墨烯层。
在本发明一实施方式中,可以将所述石墨烯和/或者氧化石墨烯分散到酒 精或者其他类似溶液中后,采用喷涂或者涂旋的工艺在所述支撑板上形成所述石墨烯层。在本发明另一实施方式中,也可以通过化学气相沉积(Chemical Vapor Deposition,CVD)工艺在所述支撑板上形成所述石墨烯层。在本发明中,不对所述石墨烯层的形成工艺做具体限定。
在本发明一实施方式中,在所述支撑板上形成石墨烯层后,再将承载有所述石墨烯层的所述支撑板处于50℃-80℃条件下进行烘烤,以去除所述石墨烯层中的溶液或者烘干所述支撑板以及石墨烯层。
通过该步骤1形成的结构如图2(a)所示,所述支撑板10上形成一层由石墨烯和/或氧化石墨烯构成的石墨烯层20。
步骤2、提供一基板,并将所述基板覆盖于所述石墨烯层上。
所述基板为一显示面板的目标衬底,用以承载由所述支撑板上转印来的所述石墨烯层,方便后续将该石墨烯层作为电极应用于显示面板中。其中,所述基板可以为聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)或者聚酰亚胺(Polyimide,PI)等材料制备的柔性基板,但在本发明中,不对所述基板的材质作具体的限定。
请一并参阅图2(b),所述基板30覆盖于所述石墨烯层20上,使所述石墨烯层20夹设于所述支撑板10与基板30之间,所述基板30与下方的所述石墨烯层20相抵持接触。
步骤3、在所述基板上对应所述石墨烯层所需图案区进行激光照射,使所述石墨烯层所需图案区吸附于所述基板上。
在本发明一实施方式中,所述石墨烯层所需图案区,对应石墨烯电极所需的图案设置。
由于所述激光可以将所述石墨烯层中的氧化石墨烯还原,形成还原性氧化石墨烯,使所述石墨烯层获得更好的导电性,从而克服氧化石墨烯导电性偏低的问题。因此,在本发明一实施方式中,当所述石墨烯层由石墨烯形成时,此时,正对激光照射处的基板上将吸附有石墨烯;而当所述石墨烯层由氧化石墨烯形成时,此时,正对激光照射处的基板上将吸附有被激光还原后的还原性氧化石墨烯;以及当所述石墨烯层由石墨烯与氧化石墨烯层两者共同形成时,正对激光照射处的基板上将吸附有石墨烯与还原性氧化石墨烯。
请一并结合图2(c),在本发明一实施方式中,通过激光40照射所述基板30正对所述石墨烯层20所需图案区,使所述石墨烯层20所需图案区的石墨烯和/或氧化石墨烯捕捉所述激光40的能量而产生热量,而产生的热量使得所述基板30于照射区域内被融化,而所述基板30的融化部分(参图2(c)中标号31指示部位)即可吸附相抵持接触的石墨烯和/或被激光还原后的还原性氧化石墨烯。在本发明一实施方式中,所述激光40照射的时长控制在使所述基板30被照射区域微弱的融化即可。并且,所述石墨烯层20被加热后,其与基板30之间的吸附力也将增强,可更好的吸附于所述基板30的融化部分31。而在基板30未被激光照射处,所述基板30仍然只是覆盖于所述石墨烯层20上,而无法吸附所述石墨烯层20。通过该种方式,仅在基板30上对应石墨烯电极所需图案部分进行激光照射,即可在该预设图案处吸附上石墨烯和/或还原性氧化石墨烯。
在本发明一实施方式中,可通过二氧化碳激光、半导体激光或者一光纤激光等激光源来照射所述石墨烯层,并且本发明中不对所述激光源的类型进行具体限定,只要能通过光照来使所述石墨烯层发热而使得所述基板30于照射区域内被融化,从而提升基板与石墨烯层的吸附力即可。
在本发明的一实施例中,所述激光的波长范围为500nm-1200nm,输出功率为300-1500mW,扫描速度为5-10mm/sec-1。
在本发明的一实施例中,所述激光源为类似笔状的结构,并且发出的光为较为集中的激光束,并控制所述激光束在所述基板上沿所述石墨烯电极所需的图案移动,即可对所述基板对应石墨烯电极所需的图案处进行加热,从而于该所需的图案处吸附上石墨烯。显然,上述激光照射方式,对激光的利用率高,但是由于需要严格按照石墨烯电极所需的图案移动,因此对激光控制的精确度要求较高。
在本发明的另一实施方式中,还可通过一平面状的激光源,配合一图案化的光罩,使透过所述光罩的激光照射至所述石墨烯层所需图案区,从而实现对所述基板上对应石墨烯所需图案区的激光照射,而被所述光罩遮挡的部分未受到激光的照射。通过该种方式,可一次性完成对所述石墨烯层所需图案区的照射,而无需往复调整所述激光源。可以理解的是,所述光罩的图案对应所述石 墨烯电极所需的图案设置。
显然,上述激光照射方式,由于采用大面积照射配合图案化的光罩的方式,因此效率较高,对激光控制的精确度要求较低,但是激光的利用率偏低。因此,实际加工过程中,可以结合实际生产情况于上述两种激光照射方式中进行选择,或者同时结合上述两种激光照射方式来实现。
步骤4、冷却所述基板,使所述基板被激光照射部分与吸附的石墨烯和/或还原性氧化石墨烯相粘连。
在本发明一实施方式中,由于所述基板被激光照射的部分被石墨烯层产生的热量所融化,因此,在所述基板被冷却时,所述基板被融化的部分将重新凝固,从而与吸附的石墨烯和/或还原性氧化石墨烯相粘连。
请一并参阅图2(d),由于所述基板30被激光40照射的部分,被石墨烯层20产生的热量而微弱的融化(标号31指示部位)了,所述基板30融化的部分即可吸附相抵持接触的石墨烯和/或还原性氧化石墨烯(参图2(d)中标号21指示部位)。因此,当所述基板30冷却时,所述基板30融化的部分将重新固化,同时将吸附的石墨烯和/或还原性氧化石墨烯(参图2(d)中标号21指示部位)粘接到所述基板30固化的位置,即可在基板30上按照石墨烯电极的预设图案粘接上石墨烯和/或还原性氧化石墨烯。
步骤5、将所述支撑板与所述基板相互分离,粘连于所述基板上的石墨烯和/或还原性氧化石墨烯随所述基板一起分离,从而在所述基板上形成了图案化的石墨烯电极。
由于经过上述步骤4后,仅在激光照射的区域内,所述基板上才粘连有石墨烯和/或还原性氧化石墨烯,而未被激光照射的区域,所述基板仅仅是覆盖于石墨烯层上,并未与石墨烯层相粘连,因此,将所述支撑板与基板相互分离时,仅有粘连于所述基板上的石墨烯和/或还原性氧化石墨烯会从所述石墨烯层上分离,从而在所述基板上形成图案化的石墨烯电极。而所述石墨烯层中未被激光照射的部分并未粘连于所述基板上,将无法在基板的带动下与所述支撑板分离,最终仍然残留在所述支撑板上。
请一并参阅图2(e),由于所述激光照射的区域是对应石墨烯电极所需的图案设置的,因此,通过上述加工步骤后,仅在对应石墨烯电极所需的图案位置 处粘连石墨烯和/或还原性氧化石墨烯21,从而于所述基板30上形成了图案化的石墨烯电极。
综上所述,本发明的石墨烯电极制备方法,无需通过刻蚀的方式实现石墨烯电极的图案化,也无需借助图案化的金属材料配合CVD工艺来实现石墨烯的图案化。本发明的制备方法中直接采用激光照射石墨烯电极的预设图案区域,使该预设图案区域的石墨烯和/或还原性氧化石墨烯吸附并粘连于基板上,从而可与未被激光照射的石墨烯分离,进而于所述基板上形成图案化的石墨烯电极,不仅简化了制备过程,还降低了石墨烯电极的图案化的难度,因此大大降低加工成本。
本发明还提供了一种液晶显示面板,该液晶显示面板中的电极为石墨烯电极,并且所述石墨烯电极采用上述方法制备形成。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含在本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上对本发明实施例所提供的石墨烯电极制备方法及液晶显示面板进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种石墨烯电极制备方法,其中,包括以下步骤:
    提供一支撑板,并在所述支撑板上形成石墨烯层;
    提供一基板,并将所述基板覆盖于所述石墨烯层上;
    在所述基板上对应所述石墨烯层所需图案区进行激光照射,使所述石墨烯层所需图案区吸附于所述基板上;
    冷却所述基板,使所述基板被激光照射部分与吸附的所述石墨烯相粘连;及
    将所述支撑板与所述基板相互分离,粘连于所述基板上的石墨烯随所述基板一起分离,从而于所述基板上形成图案化的石墨烯电极。
  2. 如权利要求1所述的石墨烯电极制备方法,其中,所述基板为PET或者PI材料制备的柔性基板。
  3. 如权利要求1所述的石墨烯电极制备方法,其中,在所述提供一支撑板,并在所述支撑板上形成石墨烯层的步骤后,还包括:
    将承载有石墨烯层的所述支撑板处于50℃-80℃条件下进行烘烤。
  4. 如权利要求1所述的石墨烯电极制备方法,其中,所述激光为二氧化碳激光、半导体激光或者光纤激光。
  5. 如权利要求1所述的石墨烯电极制备方法,其中,所述在所述基板上对应石墨烯电极预设图案处进行激光照射的步骤,包括:
    在所述基板上,通过一激光束沿所述石墨烯层所需图案区移动;或者
    通过一平面状的激光源,配合一图案化的光罩对所述基板进行激光照射,使透过所述光罩的激光照射至所述基板上正对所述石墨烯层所需图案区。
  6. 如权利要求1所述的石墨烯电极制备方法,其中,所述在所述基板上对 应所述石墨烯层所需图案区进行激光照射,使所述石墨烯层所需图案区吸附于所述基板上的步骤,包括:
    所述石墨烯层所需图案区的石墨烯捕捉所述激光的能量而产生热量,所产生的热量将所述激光照射区域内的基板融化,以通过融化的所述基板于融化处吸附相接触的石墨烯。
  7. 如权利要求6所述的石墨烯电极制备方法,其中,所述冷却所述基板,使所述基板被激光照射部分与吸附的所述石墨烯相粘连的步骤,包括:
    所述基板融化的部分因冷却而凝固,从而将吸附于所述基板融化部分的石墨烯粘连在所述基板上。
  8. 如权利要求1所述的石墨烯电极制备方法,其中,所述石墨烯层由石墨烯和/或氧化石墨烯作为原料,通过喷涂、涂旋或者化学气相沉积工艺形成。
  9. 如权利要求7所述的石墨烯电极制备方法,其中,所述石墨烯层由石墨烯和/或氧化石墨烯作为原料,通过喷涂、涂旋或者化学气相沉积工艺形成。
  10. 如权利要求8所述的石墨烯电极制备方法,其中,当所述石墨烯层中含有氧化石墨烯时,所述石墨烯层所需图案区经过激光照射后,其中的氧化石墨烯被还原成还原性氧化石墨烯,并吸附且粘连于所述基板上。
  11. 一种液晶显示面板,其包括石墨烯电极,其中,所述石墨烯电极采用一制备方法制备而成,所述制备方法包括:
    提供一支撑板,并在所述支撑板上形成石墨烯层;
    提供一基板,并将所述基板覆盖于所述石墨烯层上;
    在所述基板上对应所述石墨烯层所需图案区进行激光照射,使所述石墨烯层所需图案区吸附于所述基板上;
    冷却所述基板,使所述基板被激光照射部分与吸附的所述石墨烯相粘连;及
    将所述支撑板与所述基板相互分离,粘连于所述基板上的石墨烯随所述基板一起分离,从而于所述基板上形成图案化的石墨烯电极。
  12. 如权利要求11所述的液晶显示面板,其中,所述基板为PET或者PI材料制备的柔性基板。
  13. 如权利要求11所述的液晶显示面板,其中,在所述提供一支撑板,并在所述支撑板上形成石墨烯层后,还包括:
    将承载有石墨烯层的所述支撑板处于50℃-80℃条件下进行烘烤。
  14. 如权利要求11所述的液晶显示面板,其中,所述激光为二氧化碳激光、半导体激光或者光纤激光。
  15. 如权利要求11所述的液晶显示面板,其中,所述在所述基板上对应石墨烯电极预设图案处进行激光照射,包括:
    在所述基板上,通过一激光束沿所述石墨烯层所需图案区移动;或者
    通过一平面状的激光源,配合一图案化的光罩对所述基板进行激光照射,使透过所述光罩的激光照射至所述基板上正对所述石墨烯层所需图案区。
  16. 如权利要求11所述的液晶显示面板,其中,所述在所述基板上对应所述石墨烯层所需图案区进行激光照射,使所述石墨烯层所需图案区吸附于所述基板上,包括:
    所述石墨烯层所需图案区的石墨烯捕捉所述激光的能量而产生热量,所产生的热量将所述激光照射区域内的基板融化,以通过融化的所述基板于融化处吸附相接触的石墨烯。
  17. 如权利要求16所述的液晶显示面板,其中,所述冷却所述基板,使所述基板被激光照射部分与吸附的所述石墨烯相粘连,包括:
    所述基板融化的部分因冷却而凝固,从而将吸附于所述基板融化部分的石 墨烯粘连在所述基板上。
  18. 如权利要求11所述的液晶显示面板,其中,所述石墨烯层由石墨烯和/或氧化石墨烯作为原料,通过喷涂、涂旋或者化学气相沉积工艺形成。
  19. 如权利要求17所述的液晶显示面板,其中,所述石墨烯层由石墨烯和/或氧化石墨烯作为原料,通过喷涂、涂旋或者化学气相沉积工艺形成。
  20. 如权利要求18所述的液晶显示面板,其中,当所述石墨烯层中含有氧化石墨烯时,所述石墨烯层所需图案区经过激光照射后,其中的氧化石墨烯被还原成还原性氧化石墨烯,并吸附且粘连于所述基板上。
PCT/CN2017/078473 2017-03-14 2017-03-28 石墨烯电极制备方法及液晶显示面板 WO2018165998A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/545,715 US20190384087A1 (en) 2017-03-14 2017-03-28 Manufacturing method of graphene electrode and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710155073.1 2017-03-14
CN201710155073.1A CN106842725B (zh) 2017-03-14 2017-03-14 石墨烯电极制备方法及液晶显示面板

Publications (1)

Publication Number Publication Date
WO2018165998A1 true WO2018165998A1 (zh) 2018-09-20

Family

ID=59143969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078473 WO2018165998A1 (zh) 2017-03-14 2017-03-28 石墨烯电极制备方法及液晶显示面板

Country Status (3)

Country Link
US (1) US20190384087A1 (zh)
CN (1) CN106842725B (zh)
WO (1) WO2018165998A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034242A (zh) * 2019-03-29 2019-07-19 武汉华星光电半导体显示技术有限公司 有机电致发光器件、导电膜材料的制备方法和显示面板
CN111477637A (zh) * 2020-04-26 2020-07-31 Tcl华星光电技术有限公司 显示面板及其制作方法
CN111716715B (zh) * 2020-05-14 2021-12-28 青岛科技大学 一种基于液相光驱动的激光微纳米沉积打印方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880369A (zh) * 2012-10-15 2013-01-16 无锡格菲电子薄膜科技有限公司 一种单片式电容触摸屏及其制备方法
CN103995619A (zh) * 2014-06-13 2014-08-20 郑州巨顺佳电子科技有限公司 无边框触摸屏感应片及其制备方法
US20140233599A1 (en) * 2013-02-21 2014-08-21 Korea University Research And Business Foundation Nanolaser generator using graphene electrode and method for manufacturing the same
WO2014137180A1 (ko) * 2013-03-07 2014-09-12 울산대학교 산학협력단 그래핀 산화물의 부분환원을 이용한 탄소기반 전자소자 및 이의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011159922A2 (en) * 2010-06-16 2011-12-22 The Research Foundation Of State University Of New York Graphene films and methods of making thereof
US10761043B2 (en) * 2011-07-22 2020-09-01 The Trustees Of The University Of Pennsylvania Graphene-based nanopore and nanostructure devices and methods for macromolecular analysis
JP5910985B2 (ja) * 2011-11-30 2016-04-27 株式会社リコー レーザ光照射システム
CN103922321B (zh) * 2014-03-21 2015-10-14 京东方科技集团股份有限公司 石墨烯的制备方法、薄膜晶体管、阵列基板及显示面板
US9962914B2 (en) * 2016-01-21 2018-05-08 King Abdulaziz University Method for transferring a large-area graphene sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880369A (zh) * 2012-10-15 2013-01-16 无锡格菲电子薄膜科技有限公司 一种单片式电容触摸屏及其制备方法
US20140233599A1 (en) * 2013-02-21 2014-08-21 Korea University Research And Business Foundation Nanolaser generator using graphene electrode and method for manufacturing the same
WO2014137180A1 (ko) * 2013-03-07 2014-09-12 울산대학교 산학협력단 그래핀 산화물의 부분환원을 이용한 탄소기반 전자소자 및 이의 제조방법
CN103995619A (zh) * 2014-06-13 2014-08-20 郑州巨顺佳电子科技有限公司 无边框触摸屏感应片及其制备方法

Also Published As

Publication number Publication date
US20190384087A1 (en) 2019-12-19
CN106842725A (zh) 2017-06-13
CN106842725B (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
CN109494292B (zh) 一种微型发光二极管灯板、其制作方法及显示装置
WO2018165998A1 (zh) 石墨烯电极制备方法及液晶显示面板
TWI451610B (zh) 發光裝置之母板結構以及發光裝置及其製造方法
US20060096962A1 (en) Method for cutting substrate using femtosecond laser
EP3220412B1 (en) Encapsulating device and method
US8741535B2 (en) Laser irradiation device and method of fabricating organic light emitting display device using the same
CN1633517A (zh) 用于制作电路的在线沉积方法
US10259144B2 (en) Laser sintering apparatus and laser sintering method
US20170176853A1 (en) Nano-imprinting template, system, and imprinting method
US8848749B2 (en) Light radiating device and method of fabricating organic light emitting diode display device using the same
KR102423193B1 (ko) 증착용 마스크, 증착용 마스크 제조 방법 및 표시 장치 제조 방법
CN106783536A (zh) 激光退火设备、多晶硅薄膜和薄膜晶体管的制备方法
CN1955841A (zh) 激光诱导热成像掩模以及有机电致发光器件的制造方法
JP2010023071A (ja) 貼り合わせ基板の端子加工方法
JP2009004669A (ja) 金属配線基板の製造方法およびそれを用いて形成した金属配線基板
JP2006093077A (ja) レーザ照射装置及びそれを用いた有機電界発光素子の製造方法
WO2012157410A1 (ja) レーザ処理装置
JPWO2019215832A1 (ja) フレキシブル発光デバイスの製造方法および製造装置
US20220006010A1 (en) Method and apparatus for manufacturing flexible light emitting device
US9755190B2 (en) Laser-induced thermal imaging apparatus, method of laser-induced thermal imaging, and manufacturing method of organic light-emitting display apparatus using the method
KR100916656B1 (ko) 레이저 조사 장치 및 이를 이용한 다결정 규소 박막트랜지스터의 제조 방법
KR20160020353A (ko) 레이저를 이용한 그래핀 필름 제조장치 및 이의 제조방법
WO2019127717A1 (zh) 柔性显示面板的修复方法及其装置和柔性显示面板
JP2017027990A (ja) インプリント装置、インプリント方法および物品製造方法
CN106373908B (zh) 多晶硅沉积方法及用于其的沉积装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900631

Country of ref document: EP

Kind code of ref document: A1