WO2018165986A1 - 同步信号块检测方法、同步信号块传输方法、装置及系统 - Google Patents

同步信号块检测方法、同步信号块传输方法、装置及系统 Download PDF

Info

Publication number
WO2018165986A1
WO2018165986A1 PCT/CN2017/077142 CN2017077142W WO2018165986A1 WO 2018165986 A1 WO2018165986 A1 WO 2018165986A1 CN 2017077142 W CN2017077142 W CN 2017077142W WO 2018165986 A1 WO2018165986 A1 WO 2018165986A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
time domain
terminal
preset information
Prior art date
Application number
PCT/CN2017/077142
Other languages
English (en)
French (fr)
Inventor
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to US16/467,949 priority Critical patent/US10880031B2/en
Priority to CN202011001601.6A priority patent/CN112134673B/zh
Priority to CN202011003317.2A priority patent/CN112134674B/zh
Priority to EP17900757.0A priority patent/EP3537784B1/en
Priority to ES17900757T priority patent/ES2867873T3/es
Priority to CN201780081209.7A priority patent/CN110140392B/zh
Priority to EP21154611.4A priority patent/EP3836654A1/en
Priority to PCT/CN2017/077142 priority patent/WO2018165986A1/zh
Publication of WO2018165986A1 publication Critical patent/WO2018165986A1/zh
Priority to US17/101,541 priority patent/US11444714B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a synchronization signal block detection method, a synchronization signal block transmission method, apparatus, and system.
  • a base station transmits an synchronization signal by using an omni-directional transmission technology, so that the terminal establishes synchronization with the base station according to the synchronization signal, and accesses the cell.
  • LTE Long-Term Evolution
  • the base station and the terminal since the base station and the terminal use a high frequency band of 6 GHz or higher, in order to solve the problem of high frequency signal coverage difference and large attenuation, the base station will use a beam.
  • the signal is sent by scanning. Therefore, in a 5G system, the base station will use different beams to transmit Synchronization Signal Blocks (SS Blocks) in different beam scanning directions.
  • the synchronization signal block includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a synchronization channel. After the terminal receives the synchronization signal block from the corresponding beam scanning direction, the synchronization signal block is detected, thereby completing synchronization and access.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the terminal In order to improve the access performance of the terminal, the terminal needs to perform joint detection on the synchronization signal block containing the same information.
  • the terminal since the terminal cannot identify the synchronization signal block that contains the same information, the joint detection cannot be performed, which affects the access performance of the terminal.
  • the embodiment of the present invention provides a synchronization signal block detection method and a synchronization signal block transmission.
  • Method, device and system The technical solution is as follows:
  • a synchronization signal block detection method comprising:
  • the terminal Determining, by the terminal, a time-frequency resource location of the second synchronization signal block according to the preset information included in the first synchronization signal block, where the first synchronization signal block and the second synchronization signal block are transmitted by using the same beam Or, the first synchronization signal block and the second synchronization signal block carry the same information;
  • the terminal detects the second synchronization signal block.
  • the preset information includes:
  • the access network device uses a total amount of beams of different beams when transmitting the synchronization signal block; and/or a transmission period of the synchronization signal block.
  • the preset information includes the total amount of the beam, and the transmission period is a pre-agreed;
  • the preset information includes the transmission period, and the total amount of the beam type is pre-agreed.
  • determining the time-frequency resource location of the second synchronization signal block according to the preset information included in the first synchronization signal block includes:
  • the terminal calculates a time domain interval between the first synchronization signal block and the second synchronization signal block according to the total number of beams and the transmission period;
  • the time domain interval is at least one of a number of subframes, a number of slots, a number of minislots, or a number of orthogonal frequency division multiplexing OFDM symbols.
  • the preset information includes a transmission period of the synchronization signal block set in which the first synchronization signal block is located, and the synchronization signal block set includes at least one synchronization signal block.
  • determining the time-frequency resource location of the second synchronization signal block according to the preset information included in the first synchronization signal block includes:
  • the transmission period Determining, by the terminal, the transmission period as a time domain interval between the first synchronization signal block and the second synchronization signal block;
  • the time domain interval is at least one of a number of subframes, a number of slots, a number of minislots, or a number of orthogonal frequency division multiplexing OFDM symbols.
  • the preset information includes a total amount of synchronization signal blocks of the synchronization signal block set in which the first synchronization signal block is located, and the synchronization signal block set includes at least one synchronization signal block.
  • determining the time-frequency resource location of the second synchronization signal block according to the preset information included in the first synchronization signal block includes:
  • the time domain interval is at least one of a number of subframes, a number of slots, a number of minislots, or a number of orthogonal frequency division multiplexing OFDM symbols.
  • the preset information includes a first time domain index of the first synchronization signal block, and the first time domain index is used to indicate a time domain location of the first synchronization signal block.
  • the first time domain index is an index of the first synchronization signal block in a synchronization signal block set
  • the first time domain index is an index of a time domain resource where the first synchronization signal block is located in a radio frame, a subframe, or a time slot;
  • the first time domain index is an index of all synchronization signal blocks of the first synchronization signal block in a radio frame, a subframe or a time slot;
  • the synchronization signal block set includes at least one synchronization signal block, and the time domain resource is a subframe, a time slot, a mini slot or an orthogonal frequency division multiplexing OFDM symbol.
  • determining the time-frequency resource location of the second synchronization signal block according to the preset information included in the first synchronization signal block includes:
  • the terminal calculates a second time domain index corresponding to the second synchronization signal block according to the first time domain index and a pre-agreed index interval;
  • the terminal determines a time domain location of the second synchronization signal block according to the second time domain index.
  • the preset information includes a frequency domain interval between the first synchronization signal block and the second synchronization signal block;
  • Determining a time-frequency resource location of the second synchronization signal block according to the preset information included in the first synchronization signal block further comprising:
  • the detecting the second synchronization signal block includes:
  • the terminal performs joint detection on the first synchronization signal in the first synchronization signal block and the second synchronization signal in the second synchronization signal block;
  • the terminal performs joint detection on the first synchronization channel in the first synchronization signal block and the second synchronization channel in the second synchronization signal block;
  • the terminal detects the second synchronization signal block by using a different receive beam than the first synchronization signal block.
  • the first synchronization signal block includes a first synchronization signal and a first synchronization channel, and the first synchronization signal or the first synchronization channel includes the preset information.
  • a method for transmitting a synchronization signal block comprising:
  • the access network device transmits the first synchronization signal block to the terminal
  • the first synchronization signal block includes preset information
  • the terminal is configured to determine a time-frequency resource location of the second synchronization signal block according to the preset information, and perform the second synchronization signal block on the second synchronization signal block. Detection.
  • the preset information includes:
  • the total amount of beams of different beams is used when the access network device transmits the synchronization signal block;
  • the synchronization signal block set includes at least one synchronization signal block
  • the synchronization signal block set includes at least one synchronization signal block
  • first time domain index of the first synchronization signal block where the first time domain index is used to indicate the a time domain position of a sync signal block
  • a synchronization signal block detecting apparatus comprising at least one unit for implementing any one of the above first aspect or the first aspect A possible implementation of the synchronous signal block detection method.
  • a synchronization signal block transmission apparatus comprising at least one unit for implementing any one of the second aspect or the second aspect described above A possible implementation of the synchronous signal block transmission method.
  • a terminal comprising a processor, a memory, a transmitter and a receiver; the processor is configured to store one or more instructions, the instruction being indicated as Executing by the processor, the processor is configured to implement the synchronization signal block detection method provided by any one of the foregoing first aspect or the first aspect; the receiver is configured to implement synchronization signal block reception, The transmitter is configured to implement transmission of an uplink signal.
  • an access network device comprising a processor, a memory, a transmitter and a receiver; the processor is configured to store one or more instructions The instruction is instructed to be executed by the processor, the processor being configured to implement the synchronization signal block transmission method provided by any one of the foregoing second aspect or the second aspect; the receiver is used for The reception of the uplink signal is implemented, and the transmitter is used to implement transmission of the synchronization signal block.
  • a mobile communication system comprising: a terminal and an access network device;
  • the terminal includes the synchronization signal block detecting apparatus according to the third aspect
  • the access network device includes the synchronization signal block transmission device of the fourth aspect.
  • a mobile communication system comprising: a terminal and an access network device
  • the terminal includes the terminal according to the fifth aspect
  • the access network device includes the access network device as described in the sixth aspect.
  • a computer readable medium storing one or more instructions for implementing any of the first aspect or the first aspect described above A possible implementation of the synchronization signal block detection method.
  • a computer readable medium storing one or more instructions for implementing any of the above second aspect or second aspect A possible implementation of the synchronous signal block transmission method.
  • the access network device adds the preset information to the synchronization signal block, so that after receiving the synchronization signal block, the terminal can determine, according to the preset information, the same information that is carried by the current synchronization signal block, or other synchronization using the same beam transmission.
  • the time-frequency resource location of the signal block in turn, enables joint detection of two synchronization signal blocks, thereby improving the detection performance of the terminal on the synchronization signal block.
  • FIG. 1 is a schematic structural diagram of a mobile communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an access network device transmitting a synchronization signal block by using a beam scanning method
  • FIG. 3 is a flowchart of a method for detecting a synchronization signal block according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for detecting a synchronization signal block according to an embodiment of the present invention
  • FIG. 5A is a flowchart of a method for detecting a synchronization signal block according to an embodiment of the present invention
  • 5B is a schematic diagram of an access network device periodically transmitting a synchronization signal block set
  • FIG. 6 is a flowchart of a method for detecting a synchronization signal block according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a method for detecting a synchronization signal block according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a synchronization signal block detecting apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal according to an exemplary embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an access network device according to an exemplary embodiment of the present invention.
  • a “module” as referred to herein generally refers to a process that is stored in memory and that is capable of performing certain functions.
  • a sequence or instruction; a “unit” as referred to herein generally refers to a functional structure that is logically divided, and the “unit” can be implemented by pure hardware or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic structural diagram of a mobile communication system according to an embodiment of the present invention.
  • the mobile communication system can be a 5G system, also known as a New Radio (NR) system.
  • the mobile communication system includes an access network device 120 and a terminal 140.
  • NR New Radio
  • the access network device 120 can be a base station, and the base station can be used to convert the received radio frame with the IP packet message, and can also coordinate the attribute management of the air interface.
  • the base station may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE, or a base station employing a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • LTE Long Term Evolutional Node B
  • a base station employing a centralized distributed architecture in a 5G system.
  • the access network device 120 adopts a centralized distributed architecture it generally includes a central unit (CU) and at least two distributed units (DUs).
  • CU central unit
  • DUs distributed units
  • a centralized data unit is provided with a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, and a Media Access Control (MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the physical layer (Physical, PHY) protocol stack is provided in the unit.
  • the specific implementation manner of the access network device 120 is not limited in the embodiment of the present invention.
  • the access network device 120 and the terminal 140 establish a wireless connection through the wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is an NR; or the wireless air interface may also be a 5G based next generation mobile communication network technical standard. Wireless air port.
  • Terminal 140 may be a device that provides voice and/or data connectivity to a user.
  • the terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Subscriber Unit Subscriber Station, Mobile Station, Mobile, Remote Station, Access Point, Remote Terminal , Access Terminal, User Terminal, User Agent, User Device, or User Terminal (User Equipment).
  • the synchronization signal block detection method and the synchronization signal block transmission method provided by the embodiments of the present invention are used for the process in which the terminal 140 initially accesses the cell covered by the access network device 120.
  • multiple access network devices 120 and/or multiple terminals 140 may be included, and one access network device 120 and one terminal 140 are shown in FIG.
  • this embodiment does not limit this.
  • the access network device in order for a terminal that enters a cell range to successfully complete access, the access network device needs to periodically transmit a synchronization block (SS Block).
  • SS Block synchronization block
  • the terminal entering the cell range After receiving the synchronization signal block, the terminal entering the cell range performs correlation detection on the synchronization signal block, and determines the time-frequency position of the synchronization signal (including the primary synchronization signal and the secondary synchronization signal) in the synchronization signal block, thereby completing according to the synchronization signal. Synchronization; further, the terminal determines the time-frequency position of the synchronization channel in the synchronization signal block, and then detects and demodulates the synchronization channel, and finally completes cell access according to information carried in the synchronization channel (usually including system information).
  • the access network device sends a synchronization signal block by means of beam scanning.
  • the terminal uses the receiving beam to receive the synchronization signal block transmitted by the access network device, and then completes the access according to the synchronization signal block.
  • the access network device uses four different beam transmission synchronization signal blocks, for example, the first beam is used for scanning 0° to 30. In the ° region, the second beam is used to scan the 30° to 60° region, the third beam is used to scan the 60° to 90° region, and the fourth beam is used to scan the 90° to 120° region.
  • the synchronization signal block transmitted by using four different beams constitutes a synchronization signal block group; and in order to improve the terminal access rate, the access network device can repeatedly transmit the same synchronization signal block group (the access network device in FIG. 2 is repeatedly transmitted).
  • At least one sync signal block group constitutes a sync signal block set, and the sync signal block set is periodically transmitted.
  • the information carried in the synchronization signal block using different beam transmissions may be different.
  • the synchronization channels in different synchronization signal blocks carry different beam IDs, control channel information, and the like.
  • the terminal can perform joint detection on the synchronization signal block carrying the same information. For example, as shown in FIG. 2, the terminal may perform joint detection on the synchronization signal block transmitted by the first beam in the first synchronization signal block group and the second synchronization signal block group (the information carried by the synchronization signal block transmitted by the same beam) the same).
  • the terminal is not aware of which sync block The carried information is the same, and the information carried by the synchronization signal blocks is different, so that the terminal cannot perform the synchronization signal block association detection, thereby affecting the detection performance of the synchronization signal block and the access efficiency of the terminal.
  • the access network device adds the preset information to the synchronization signal block, so that after receiving the synchronization signal block, the terminal can according to the preset information and the time when the current synchronization signal block is located.
  • the frequency resource location determines a synchronization signal block that carries the same information or uses the same beam transmission as the current synchronization signal block, and then performs joint detection on the two to improve the detection performance of the synchronization signal block and the access efficiency of the terminal.
  • FIG. 3 is a flowchart of a method for detecting a synchronization signal block according to an embodiment of the present invention. This embodiment is exemplified by applying the synchronization signal block detecting method to the mobile communication system shown in FIG. 1.
  • the method includes:
  • Step 301 The access network device transmits a first synchronization signal block to the terminal.
  • the first synchronization signal block includes at least a first synchronization signal and a first synchronization channel.
  • the first synchronization signal includes a primary synchronization signal and a secondary synchronization signal, and may further include a Beam Specific RS (BRS), where the first synchronization channel is a Physical Broadcast Channel (PBCH).
  • BRS Beam Specific RS
  • PBCH Physical Broadcast Channel
  • the preset information is added to the first synchronization signal block.
  • the first synchronization signal of the first synchronization signal block includes the preset information, or the first synchronization channel of the first synchronization signal block includes the preset information.
  • the access network device uses different synchronization sequences to indicate different preset information.
  • Step 302 The terminal receives the first synchronization signal block transmitted by the access network device.
  • the terminal has at least one beam receiving direction
  • the terminal that enters the cell covered by the access network device can receive the first synchronization signal block from the at least one beam receiving direction.
  • Step 303 The terminal determines, according to preset information included in the first synchronization signal block, a time-frequency resource location of the second synchronization signal block, where the first synchronization signal block and the second synchronization signal block are transmitted by using the same beam, or first The sync signal block carries the same information as the second sync signal block.
  • the terminal acquires preset information from the synchronization signal of the first synchronization signal block, or acquires the preset information from the first synchronization channel of the first synchronization signal block.
  • the preset information included in the first synchronization signal block includes at least one of the following.
  • the total amount of beams of different beams is used when the access network device transmits the synchronization signal block.
  • the access network device transmits a total of 16 in a set of synchronization signal blocks. For each sync signal block, and using 4 different beams, the total amount of the beam is 4.
  • the transmission period of the sync signal block is the length of time between the transmission of two adjacent sync signal blocks.
  • the transmission period is in units of a sub frame, a slot, a mini slot, an OFDM symbol, or an absolute time.
  • Each synchronization signal block set includes a plurality of synchronization signal blocks, the synchronization signal block sets are periodically transmitted, and the synchronization signal blocks transmitted in the transmission periods of different synchronization signal block sets and the beams used thereof are identical.
  • the set of synchronization signal blocks shown in FIG. 2 includes at least one set of synchronization signal blocks, and each synchronization signal block in each group of synchronization signal blocks can be transmitted by using different beams.
  • the transmission period of the set of synchronization signal blocks is the length of time between the transmissions of two adjacent sets of synchronization signal blocks.
  • the transmission period is in units of a sub frame, a slot, a mini slot, an OFDM symbol, or an absolute time.
  • the synchronization signal block set includes at least one synchronization signal block, and each synchronization signal block in each group of synchronization signal blocks may be transmitted by using different beams.
  • the synchronization signal block set in which the synchronization signal block is located includes 16 synchronization signal blocks, and the total number of synchronization signal blocks is 16.
  • a first time domain index of the first synchronization signal block the first time domain index being used to indicate a time domain location of the first synchronization signal block.
  • the preset information of the first synchronization signal block further includes a frequency domain interval between the first synchronization signal block and the second synchronization signal block.
  • the frequency domain interval is a physical resource block (PRB) number, a sub-band number or a bandwidth, and the like.
  • the terminal After receiving the first synchronization signal block, the terminal determines the frequency domain position of the second synchronization signal block according to the frequency domain position of the first synchronization signal block and the frequency domain interval.
  • Step 304 The access network device transmits a second synchronization signal block to the terminal.
  • the access network device transmits the second synchronization signal block by using the same beam as the first synchronization signal block.
  • the information carried by the first synchronization signal block is the same as the information carried in the second synchronization signal block.
  • the access network device uses the first beam to transmit the first synchronization signal block 21 (located in the first synchronization signal block group) to the terminal, and uses the first beam to transmit the second synchronization signal block to the terminal. 22 (located in the second sync signal block group).
  • Step 305 The terminal detects the second synchronization signal block.
  • the terminal After receiving the second synchronization signal block at the determined time domain position, the terminal detects the second synchronization signal block.
  • the terminal jointly detects the first synchronization signal in the first synchronization signal block and the second synchronization signal in the second synchronization signal block, thereby improving The demodulation performance of the terminal to the synchronization signal.
  • the terminal jointly detects the first synchronization channel in the first synchronization signal block and the second synchronization channel in the second synchronization signal block, thereby improving the demodulation performance of the synchronization channel by the terminal.
  • the terminal when performing joint detection on the first synchronization channel and the second synchronization channel, the terminal combines soft bits in the first synchronization channel and the second synchronization channel to improve detection performance.
  • the terminal detects the second synchronization signal block by using a different receive beam than the first synchronization signal block.
  • the terminal has two receiving beams (corresponding to different beam receiving directions), when the terminal detects the first synchronization signal block by using the first receiving beam, and determines the second synchronization signal block according to the preset information in the first synchronization signal block. After the time domain location, the second synchronization signal block is detected using the second receive beam. Further, according to the detection result of the first synchronization signal block and the second synchronization signal block, the terminal determines the reception beam corresponding to the optimal detection result as the target reception beam, and uses the target reception beam reception in the subsequent downlink signal reception process. Downstream signal.
  • the access network device adds the preset information to the synchronization signal block, so that after receiving the synchronization signal block, the terminal can determine the corresponding information according to the preset information.
  • the current synchronization signal block carries the same information, or uses the time-frequency resource position of other synchronization signal blocks transmitted by the same beam, thereby implementing joint detection on the two synchronization signal blocks, thereby improving the detection performance of the terminal on the synchronization signal block.
  • the terminal receives the first synchronization signal block and the second synchronization signal block by using different receiving beams, thereby determining the target receiving beam with the best receiving quality, and then using the target receiving beam to receive the subsequent downlink signal, thereby improving the downlink.
  • the terminal will determine the time domain position of the second synchronization signal block by using the corresponding time domain position determination mode and combining the time domain position of the first synchronization signal block, and then The two sync signal blocks are detected.
  • the embodiment shown in FIG. 4 is configured to include a total transmission period of the beam and/or a synchronization signal in the preset information.
  • the embodiment shown in FIG. 5A is configured to include the synchronization signal of the first synchronization signal block in the preset information. The transmission period of the block set; the embodiment shown in FIG.
  • the embodiment shown in FIG. 7 includes the first synchronization for the preset information.
  • FIG. 4 is a flowchart of a method for detecting a synchronization signal block according to another embodiment of the present invention.
  • This embodiment is exemplified by applying the synchronization signal block detecting method to the mobile communication system shown in FIG. 1.
  • the method includes:
  • Step 401 The access network device transmits a first synchronization signal block to the terminal, where the preset information of the first synchronization signal block includes a total amount of beams using different beams when the access network device transmits the synchronization signal block, and/or a synchronization signal. The transmission period of the block.
  • the access network device adds corresponding preset information to the first synchronization signal block based on the pre-agreed parameters in the protocol, so that the terminal can determine the first according to the preset information and the pre-agreed parameters.
  • the time domain position of the second sync signal block is added to the access network device.
  • the preset information of the first synchronization signal block includes the current access network device.
  • the transmission period may be set by the access network device
  • the preset information of the first synchronization signal block includes the synchronization signal block.
  • the preset information includes both the total amount of the beam and the transmission period.
  • Step 402 The terminal receives the first synchronization signal block transmitted by the access network device.
  • Step 403 The terminal calculates a time domain interval between the first synchronization signal block and the second synchronization signal block according to the total beam quantity and the transmission period.
  • the time domain interval is at least one of a number of subframes, a number of slots, a number of minislots, or a number of OFDM symbols.
  • the terminal calculates the time domain interval according to the total number of beams included in the preset information and the transmission period of the pre-agreed synchronization signal block.
  • the total number of beams included in the preset information is 4, and the transmission period of the pre-agreed synchronization signal block is 8 OFDM symbols, and the time domain between the first synchronization signal block and the second synchronization signal block.
  • the interval is 4 x 832 OFDM symbols.
  • the terminal calculates the time domain interval according to the transmission period included in the preset information and the pre-agreed beam total.
  • Step 404 The terminal determines a time domain position of the second synchronization signal block according to the time domain position and the time domain interval of the first synchronization signal block.
  • the terminal determines the time domain position of the second synchronization signal block according to the calculated time domain interval and the time domain position of the first synchronization signal block.
  • the time domain interval calculated by the terminal according to the total number of beams and the transmission period is: the first synchronization signal block 21 and the second synchronization signal block group in the first synchronization signal block group.
  • Step 405 The access network device transmits a second synchronization signal block to the terminal.
  • Step 406 The terminal receives the second synchronization signal block from the determined time domain location.
  • the terminal receives the synchronization signal block at the time domain position according to the determined time domain position of the second synchronization signal block.
  • the first synchronization signal block and the second synchronization signal block use the same beam transmission, or carry the same information.
  • Step 407 The terminal detects the second synchronization signal block.
  • the access network device adds the preset information to the synchronization signal block, so that after receiving the synchronization signal block, the terminal can determine the corresponding information according to the preset information.
  • the current synchronization signal block carries the same information, or uses the time-frequency resource position of other synchronization signal blocks transmitted by the same beam, thereby implementing joint detection of the two synchronization signal blocks, thereby improving the end.
  • the detection performance of the sync signal block is performed.
  • FIG. 5A a flowchart of a method for detecting a synchronization signal block according to still another embodiment of the present invention is shown.
  • This embodiment is exemplified by applying the synchronization signal block detecting method to the mobile communication system shown in FIG. 1.
  • the method includes:
  • Step 501 The access network device transmits a first synchronization signal block to the terminal, where the preset information of the first synchronization signal block includes a transmission period of the synchronization signal block set where the first synchronization signal block is located.
  • each synchronization signal block is transmitted by using different beamforming, or the information carried by each synchronization signal block is different (ie, the synchronization signal block)
  • the set contains only one sync block group).
  • the access network device adds a transmission period of the synchronization signal block set to the first synchronization signal block.
  • the access network device periodically transmits a set of synchronization signal blocks, and each of the synchronization signal block sets includes a synchronization signal block that uses four types of beamforming.
  • the synchronization signal block 51 transmitted by the access network device to the terminal includes the transmission period of the first synchronization signal block set in which the synchronization signal block 51 is located, and the transmission period is the time domain resource occupied by the complete transmission of 4 synchronization signal blocks ( Contains the interval between sets of adjacent sync signal blocks). For example, the transmission period is M time slots.
  • Step 502 The terminal receives the first synchronization signal block transmitted by the access network device.
  • Step 503 The terminal determines the transmission period as a time domain interval between the first synchronization signal block and the second synchronization signal block.
  • the terminal Since the synchronization signal block set is periodically transmitted, and the synchronization signal blocks included in different synchronization signal block sets are the same, the terminal directly determines the transmission period as the time domain interval between the first synchronization signal block and the second synchronization signal block. .
  • the time domain interval between the synchronization signal block 51 in the first synchronization signal block set and the synchronization signal block 52 in the second synchronization signal block set is M time slots.
  • Step 504 The terminal determines a time domain position of the second synchronization signal block according to the time domain position and the time domain interval of the first synchronization signal block.
  • the terminal determines the time domain position of the second synchronization signal block in the adjacent synchronization signal block set according to the time domain position and the time domain interval of the first synchronization signal block.
  • Step 505 The access network device transmits a second synchronization signal block to the terminal.
  • Step 506 The terminal receives the second synchronization signal block from the determined time domain location.
  • step 507 the terminal detects the second synchronization signal block.
  • FIG. 6 is a flowchart of a method for detecting a synchronization signal block according to still another embodiment of the present invention. This embodiment is exemplified by applying the synchronization signal block detecting method to the mobile communication system shown in FIG. 1.
  • the method includes:
  • Step 601 The access network device transmits a first synchronization signal block to the terminal, where the preset information of the first synchronization signal block includes a total amount of synchronization signal blocks of the synchronization signal block set where the first synchronization signal block is located.
  • the access network device directly adds the transmission period of the synchronization signal block set to the first synchronization signal block.
  • the transmission of the synchronization signal block is pre-agreed in the protocol.
  • the access network device may only add the total number of synchronization signal blocks of the synchronization signal block set to the first synchronization signal block, and the terminal automatically calculates the synchronization signal block according to the transmission period of the synchronization signal block and the total number of synchronization signal blocks. The transmission period of the collection.
  • the preset information of the first synchronization signal block includes a total number of synchronization signal blocks of 16; for example, as shown in FIG. 5B, the preset information of the first synchronization signal block includes a synchronization signal block.
  • the total amount is 4.
  • Step 602 The terminal receives the first synchronization signal block transmitted by the access network device.
  • Step 603 The terminal determines a time domain interval between the first synchronization signal block and the second synchronization signal block according to the total number of synchronization signal blocks and the transmission period of the pre-agreed synchronization signal block.
  • the terminal After receiving the first synchronization signal block, the terminal calculates a transmission period of the synchronization signal block set where the first synchronization signal block is located according to the total number of synchronization signal blocks and the transmission period of the pre-agreed synchronization signal block, and determines the transmission period.
  • the preset information includes a total number of synchronization signal blocks of 4, and the transmission period of the pre-agreed synchronization signal block is 1 time slot
  • the synchronization signal block 51 and the synchronization signal block 52 The time domain interval (located in the set of two adjacent sync signal blocks) is 4 time slots.
  • Step 604 The terminal determines a time domain position of the second synchronization signal block according to the time domain position and the time domain interval of the first synchronization signal block.
  • Step 605 The access network device transmits a second synchronization signal block to the terminal.
  • Step 606 The terminal receives the second synchronization signal block from the determined time domain location.
  • Step 607 The terminal detects the second synchronization signal block.
  • FIG. 7 is a flowchart of a method for detecting a synchronization signal block according to another embodiment of the present invention.
  • This embodiment is exemplified by applying the synchronization signal block detecting method to the mobile communication system shown in FIG. 1.
  • the method includes:
  • Step 701 The access network device transmits a first synchronization signal block to the terminal, where the preset information of the first synchronization signal block includes a first time domain index of the first synchronization signal block, where the first time domain index is used to indicate the first synchronization The time domain position of the signal block.
  • the first time domain index is an index of the first synchronization signal block in the set of synchronization signal blocks, where the synchronization signal block set includes at least one synchronization signal block.
  • the time domain indexes of the respective synchronization signal blocks are sequentially 0 to 15.
  • the first time domain index is an index of a time domain resource where the first synchronization signal block is located in a radio frame, a subframe, or a time slot.
  • the time domain resource is a subframe, a time slot, a mini slot or an OFDM symbol.
  • the time domain index of the first synchronization signal block is 0; for example, when the first synchronization signal block occupies the radio frame In the third subframe of (a total of 10 subframes), the time domain index of the first synchronization signal block is 2.
  • the first time domain index is an index of all synchronization signal blocks in the radio frame, the subframe or the time slot of the first synchronization signal block.
  • the time domain index of the sync signal block occupying the first sub-frame is 0.
  • the time domain index of the sync signal block occupying the third subframe is 1
  • the time domain index of the sync signal block occupying the 5th subframe is 2
  • the time domain index of the sync signal block occupying the 7th subframe is 3.
  • the access network device may also set a time domain index for the synchronization signal block in other possible manners, which is not limited by the present invention.
  • Step 702 The terminal receives the first synchronization signal block transmitted by the access network device.
  • Step 703 The terminal calculates the second same according to the first time domain index and the pre-agreed index interval.
  • the index interval is used to indicate the difference of the time domain index between the synchronization signal blocks transmitted by the same beam, or to indicate the difference of the time domain index between the synchronization signal blocks carrying the same information.
  • Step 704 The terminal determines a time domain location of the second synchronization signal block according to the second time domain index.
  • the terminal determines the synchronization signal block corresponding to the time domain index “4” as the second synchronization signal block. .
  • Step 705 The access network device transmits a second synchronization signal block to the terminal.
  • Step 706 The terminal receives the second synchronization signal block from the determined time domain location.
  • Step 707 The terminal detects the second synchronization signal block.
  • the steps performed by the terminal in the foregoing embodiments may be separately implemented as the synchronization signal block detection method on the terminal side.
  • the steps performed by the access network device in the foregoing embodiments may be separately implemented as the access network device.
  • FIG. 8 is a schematic structural diagram of a synchronization signal block detecting apparatus according to an embodiment of the present invention.
  • the sync block detecting means can be implemented as all or part of the terminal by software, hardware, and a combination of both.
  • the synchronization signal block detecting device includes: a receiving unit 820, a determining unit 840, and a detecting unit 860;
  • the receiving unit 820 is configured to implement the foregoing steps 302, 402, 502, 602, and 702 and functions related to the receiving step;
  • Determining unit 840 functions for implementing functions 303, 403 to 404, 503 to 504, 603 to 604, and 703 to 704 of the above steps;
  • the detecting unit 860 is configured to implement the foregoing steps 305, 407, 507, and 607 and the detecting step Off function.
  • an embodiment of the present invention further provides a synchronization signal block transmission apparatus, which can be implemented as all or a part of an access network device by software, hardware, and a combination of the two.
  • the sync block transmission means includes a transmission unit for implementing the above steps 301, 304, 401, 405, 501, 505, 601, 605, 701, 705 and functions related to the transmission step.
  • FIG. 9 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present invention.
  • the terminal includes a processor 21 , a receiver 22 , a transmitter 23 , a memory 24 , and a bus 25 .
  • the processor 21 includes one or more processing cores, and the processor 21 executes various functional applications and information processing by running software programs and modules.
  • the receiver 22 and the transmitter 23 can be implemented as a communication component.
  • the communication component can be a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, etc., for modulating and/or decoding information. Adjust and receive or send this information via wireless signal.
  • the memory 24 is connected to the processor 21 via a bus 25.
  • Memory 24 can be used to store software programs as well as modules.
  • the memory 24 can store at least one of the application modules 26 described by the functions.
  • the application module 26 can include a receiving module 261, a determining module 262, and a detecting module 263.
  • the processor 21 is configured to execute the receiving module 261 to implement the function of the steps of receiving the synchronization signal block in the foregoing various method embodiments; the processor 21 is configured to execute the determining module 262 to implement the steps of determining the time-frequency resource location in the foregoing various method embodiments. The processor 21 is configured to execute the detection module 263 to implement the functions of the steps of detecting the synchronization signal block in the various method embodiments described above.
  • memory 24 can be implemented by any type of volatile or non-volatile memory device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable In addition to Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • FIG. 10 is a schematic structural diagram of an access network device according to an exemplary embodiment of the present invention.
  • the access network device includes: a processor 21, a receiver 22, a transmitter 23, a memory 24, and a bus 25. .
  • the processor 21 includes one or more processing cores, and the processor 21 executes various functional applications and information processing by running software programs and modules.
  • the receiver 22 and the transmitter 23 can be implemented as a communication component.
  • the communication component can be a communication chip.
  • the communication chip can include a receiving module, a transmitting module, a modem module, etc., for modulating and/or decoding information. Adjust and receive or send this information via wireless signal.
  • the memory 24 is connected to the processor 21 via a bus 25.
  • Memory 24 can be used to store software programs as well as modules.
  • the memory 24 can store at least one of the application modules 26 described by the functions.
  • the application module 26 can include a transmission module 261.
  • the processor 21 is configured to execute the transmission module 261 to implement the functions of the steps of transmitting synchronization signal blocks in the various method embodiments described above.
  • memory 24 can be implemented by any type of volatile or non-volatile memory device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable In addition to Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • the functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本发明实施例提供了一种同步信号块检测方法、同步信号块传输方法、装置及系统,涉及通信领域,所述方法包括:终端接收接入网设备传输的第一同步信号块;根据第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,第一同步信号块与第二同步信号块采用相同的波束发送,或,第一同步信号块与第二同步信号块携带相同的信息;终端对第二同步信号块进行检测。本发明实施例中,终端能够根据第一同步信号块确定出第二同步信号块的时频资源位置,从而对两者进行联合检测,进而提高了终端对同步信号块的检测性能。

Description

同步信号块检测方法、同步信号块传输方法、装置及系统 技术领域
本发明实施例涉及通信领域,特别涉及一种同步信号块检测方法、同步信号块传输方法、装置及系统。
背景技术
在长期演进(Long-Term Evolution,LTE)系统中,基站采用全向发送技术发送同步信号,以便终端根据同步信号与基站建立同步,并接入小区。
而在第五代移动通信技术(the 5th generation mobile communication,5G)系统中,由于基站和终端会采用6GHz以上的高频频段,为了解决高频信号覆盖差且衰减大的问题,基站将采用波束扫描的方式发送信号。因此,在5G系统中,基站将采用不同的波束在不同的波束扫描方向上传输同步信号块(Synchronization Signal Block,SS Block)。其中,同步信号块中包含主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和同步信道。终端从相应的波束扫描方向接收到同步信号块后,即对同步信号块进行检测,从而完成同步和接入。
为了提高终端的接入性能,终端需要对包含相同信息的同步信号块进行联合检测。但是相关技术中,由于终端无法识别包含相同信息的同步信号块,进而导致联合检测无法执行,影响终端的接入性能。
发明内容
为了解决相关技术中由于终端无法识别包含相同信息的同步信号块,进而导致联合检测无法执行,影响终端接入性能的问题,本发明实施例提供了一种同步信号块检测方法、同步信号块传输方法、装置及系统。所述技术方案如下:
根据本发明实施例的第一方面,提供了一种同步信号块检测方法,所述方法包括:
终端接收接入网设备传输的第一同步信号块;
所述终端根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,所述第一同步信号块与所述第二同步信号块采用相同的波束发送,或,所述第一同步信号块与所述第二同步信号块携带相同的信息;
所述终端对所述第二同步信号块进行检测。
在可选的实施例中,所述预设信息包括:
所述接入网设备传输同步信号块时采用不同波束的波束总量;和/或,同步信号块的传输周期。
在可选的实施例中,所述预设信息中包括所述波束总量,所述传输周期为预先约定;
或,
所述预设信息中包括所述传输周期,所述波束类型总量为预先约定。
在可选的实施例中,所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,包括:
所述终端根据所述波束总量和所述传输周期,计算所述第一同步信号块与所述第二同步信号块之间的时域间隔;
所述终端根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
在可选的实施例中,所述预设信息包括所述第一同步信号块所在同步信号块集合的传输周期,所述同步信号块集合中包含至少一组同步信号块。
在可选的实施例中,所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,包括:
所述终端将所述传输周期确定为所述第一同步信号块与所述第二同步信号块之间的时域间隔;
所述终端根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
在可选的实施例中,所述预设信息包括所述第一同步信号块所在同步信号块集合的同步信号块总量,所述同步信号块集合中包含至少一组同步信号块。
在可选的实施例中,所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,包括:
所述终端根据所述同步信号块总量,以及预先约定的同步信号块的传输周期,确定所述第一同步信号块与所述第二同步信号块之间的时域间隔;
所述终端根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
在可选的实施例中,所述预设信息包括所述第一同步信号块的第一时域索引,所述第一时域索引用于指示所述第一同步信号块的时域位置。
在可选的实施例中,所述第一时域索引为所述第一同步信号块在所在同步信号块集合中的索引;
或,
所述第一时域索引为所述第一同步信号块所在时域资源在所在无线帧、子帧或时隙中的索引;
或,
所述第一时域索引为所述第一同步信号块在所在无线帧、子帧或时隙中所有同步信号块中的索引;
其中,所述同步信号块集合中包含至少一组同步信号块,所述时域资源为子帧、时隙、迷你时隙或正交频分复用OFDM符号。
在可选的实施例中,所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,包括:
所述终端根据所述第一时域索引以及预先约定的索引间隔,计算所述第二同步信号块对应的第二时域索引;
所述终端根据所述第二时域索引确定所述第二同步信号块的时域位置。
在可选的实施例中,所述预设信息包括所述第一同步信号块和所述第二同步信号块之间的频域间隔;
所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,还包括:
所述终端根据所述第一同步信号块的频域位置以及所述第一同步信号块和所述第二同步信号块之间的频域间隔,确定所述第二同步信号块的频域位置。
在可选的实施例中,所述对所述第二同步信号块进行检测,包括:
所述终端对所述第一同步信号块中的第一同步信号和所述第二同步信号块中的第二同步信号进行联合检测;
或,
所述终端对所述第一同步信号块中的第一同步信道和所述第二同步信号块中的第二同步信道进行联合检测;
或,
所述终端采用与所述第一同步信号块不同的接收波束检测所述第二同步信号块。
在可选的实施例中,所述第一同步信号块中包含第一同步信号和第一同步信道,所述第一同步信号或所述第一同步信道中包含所述预设信息。
根据本发明实施例的第二方面,提供了一种同步信号块传输方法,所述方法包括:
接入网设备向终端传输第一同步信号块;
所述接入网设备向终端传输第二同步信号块,所述第一同步信号块与所述第二同步信号块采用相同的波束发送,或,所述第一同步信号块与所述第二同步信号块携带相同的信息;
其中,所述第一同步信号块中包含预设信息,所述终端用于根据所述预设信息确定所述第二同步信号块的时频资源位置,并对所述第二同步信号块进行检测。
在可选的实施例中,所述预设信息包括:
所述接入网设备传输同步信号块时采用不同波束的波束总量;
和/或,
同步信号块的传输周期;
和/或,
所述第一同步信号块所在同步信号块集合的传输周期,所述同步信号块集合中包含至少一组同步信号块;
和/或,
所述第一同步信号块所在同步信号块集合的同步信号块总量,所述同步信号块集合中包含至少一组同步信号块;
和/或,
所述第一同步信号块的第一时域索引,所述第一时域索引用于指示所述第 一同步信号块的时域位置;
和/或,
所述第一同步信号块与所述第二同步信号块之间的频域间隔。
根据本发明实施例的第三方面,提供了一种同步信号块检测装置,所述同步信号块检测装置包括至少一个单元,该至少一个单元用于实现上述第一方面或第一方面中任意一种可能的实现方式所提供的同步信号块检测方法。
根据本发明实施例的第四方面,提供了一种同步信号块传输装置,所述同步信号块传输装置包括至少一个单元,该至少一个单元用于实现上述第二方面或第二方面中任意一种可能的实现方式所提供的同步信号块传输方法。
根据本发明实施例的第五方面,提供了一种终端,所述终端包括处理器、存储器、发射器和接收器;所述处理器用于存储一个或一个以上的指令,所述指令被指示为由所述处理器执行,所述处理器用于实现上述第一方面或第一方面中任意一种可能的实现方式所提供的同步信号块检测方法;所述接收器用于实现同步信号块的接收,所述发射器用于实现上行信号的发送。
根据本发明实施例的第六方面,提供了一种接入网设备,所述接入网设备设备包括处理器、存储器、发射器和接收器;所述处理器用于存储一个或一个以上的指令,所述指令被指示为由所述处理器执行,所述处理器用于实现上述第二方面或第二方面中任意一种可能的实现方式所提供的同步信号块传输方法;所述接收器用于实现上行信号的接收,所述发射器用于实现同步信号块的发送。
根据本发明实施例的第七方面,提供了一种移动通信系统,所述系统包括:终端和接入网设备;
所述终端包括如第三方面所述的同步信号块检测装置;
所述接入网设备包括如第四方面所述的同步信号块传输装置。
根据本发明实施例的第七方面,提供了一种移动通信系统,所述系统包括:终端和接入网设备
所述终端包括如第五方面所述的终端;
所述接入网设备包括如第六方面所述的接入网设备。
根据本发明实施例的第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有一个或一个以上的指令,所述指令用于实现上述第一方面或第一方面中任意一种可能的实现方式所提供的同步信号块检测方法。
根据本发明实施例的第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有一个或一个以上的指令,所述指令用于实现上述第二方面或第二方面中任意一种可能的实现方式所提供的同步信号块传输方法。
本发明实施例提供的技术方案的有益效果是:
接入网设备通过向同步信号块中添加预设信息,使得终端接收到同步信号块后,能够根据该预设信息确定出与当前同步信号块携带相同信息,或,采用相同波束传输的其他同步信号块的时频资源位置,进而实现对两个同步信号块进行联合检测,提高了终端对同步信号块的检测性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明一个实施例提供的移动通信系统的结构示意图;
图2是接入网设备采用波束扫描方式传输同步信号块的示意图;
图3示出了本发明一个实施例提供的同步信号块检测方法的方法流程图;
图4示出了本发明一个实施例提供的同步信号块检测方法的方法流程图;
图5A示出了本发明一个实施例提供的同步信号块检测方法的方法流程图;
图5B是接入网设备周期性传输同步信号块集合的示意图;
图6示出了本发明一个实施例提供的同步信号块检测方法的方法流程图;
图7示出了本发明一个实施例提供的同步信号块检测方法的方法流程图;
图8示出了本发明一个实施例提供的同步信号块检测装置的结构示意图;
图9示出了本发明一个示例性实施例提供的终端的结构示意图;
图10示出了本发明一个示例性实施例提供的接入网设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在本文提及的“模块”通常是指存储在存储器中的能够实现某些功能的程 序或指令;在本文中提及的“单元”通常是指按照逻辑划分的功能性结构,该“单元”可以由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
请参考图1,其示出了本发明一个实施例提供的移动通信系统的结构示意图。该移动通信系统可以是5G系统,又称新空口(New Radio,NR)系统。该移动通信系统包括:接入网设备120和终端140。
接入网设备120可以是基站,该基站可用于将接收到的无线帧与IP分组报文进行相互转换,还可协调对空中接口的属性管理。例如,基站可以LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),或者,5G系统中采用集中分布式架构的基站。当接入网设备120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理层(Physical,PHY)协议栈,本发明实施例对接入网设备120的具体实现方式不加以限定。
接入网设备120和终端140通过无线空口建立无线连接。可选地,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是NR;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
终端140可以是指向用户提供语音和/或数据连通性的设备。终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端140可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户装置(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户 终端(User Equipment)。
本发明各个实施例提供的同步信号块检测方法以及同步信号块传输方法,即用于终端140初始接入接入网设备120所覆盖小区的过程。
需要说明的是,在图1所示的移动通信系统中,可以包括多个接入网设备120和/或多个终端140,图1中以示出一个接入网设备120和一个终端140来举例说明,但本实施例对此不作限定。
在5G系统中,为了使进入小区范围的终端能够顺利完成接入,接入网设备需要周期性得传输同步信号块(SS Block)。进入小区范围的终端接收到同步信号块后,即对同步信号块进行相关检测,确定同步信号块中同步信号(包括主同步信号和辅同步信号)所处的时频位置,从而根据同步信号完成同步;进一步的,终端确定同步信号块中同步信道的时频位置,进而对同步信道进行检测解调,最终根据同步信道中携带的信息(通常包括系统信息)完成小区接入。
与LTE系统不同的是,由于5G系统中终端和接入网设备均使用6GHz以上的高频频段进行信号发送,而高频信号存在衰减大和覆盖范围差的特点,因此,为了确保终端的接入质量,5G系统中,接入网设备采用波束扫描的方式发送同步信号块。相应的,终端采用接收波束接收接入网设备传输的同步信号块,进而根据同步信号块完成接入。
示意性的,如图2所示,针对自身覆盖的小区(比如120°扇区),接入网设备采用四种不同的波束传输同步信号块,比如,第一波束用于扫描0°至30°区域,第二波束用于扫描30°至60°区域,第三波束用于扫描60°至90°区域,第四波束用于扫描90°至120°区域。其中,采用四种不同波束传输的同步信号块构成一个同步信号块组;且为了提高终端接入率,接入网设备可以重复传输同一同步信号块组(图2中接入网设备重复传输了3次),至少一个同步信号块组即构成同步信号块集合,且同步信号块集合周期性传输。另外,采用不同波束传输的同步信号块中携带的信息可能不同,比如,不同同步信号块中同步信道携带不同的波束ID、控制信道信息等等。
为了提高同步信号块的检测性能,终端可以对携带相同信息的同步信号块进行联合检测。比如,如图2所示,终端可以对第一同步信号块组和第二同步信号块组中,采用第一波束传输的同步信号块进行联合检测(采用相同波束传输的同步信号块携带的信息相同)。但是,由于终端无法知悉哪些同步信号块 携带的信息相同,哪些同步信号块携带的信息不同,导致终端无法进行同步信号块关联检测,进而影响同步信号块的检测性能以及终端的接入效率。
为了解决上述问题,本发明各个实施例中,接入网设备通过在同步信号块中添加预设信息,使得终端接收到同步信号块后,能够根据预设信息以及当前同步信号块所处的时频资源位置,确定出与当前同步信号块携带相同信息或采用相同波束传输的同步信号块,进而对两者进行联合检测,提高同步信号块的检测性能以及终端的接入效率,下面采用示意性的实施例进行说明。
请参考图3,其示出了本发明一个实施例提供的同步信号块检测方法的方法流程图。本实施例以该同步信号块检测方法应用于图1所示的移动通信系统中来举例说明。该方法包括:
步骤301,接入网设备向终端传输第一同步信号块。
其中,第一同步信号块中至少包含第一同步信号和第一同步信道。可选的,第一同步信号包括主同步信号和辅同步信号,还可以包含波束专属参考信号(Beam Specific RS,BRS),第一同步信道为物理广播信道(Physical Broadcast Channel,PBCH)。
接入网设备向终端传输第一同步信号块前,向第一同步信号块中添加预设信息。可选的,第一同步信号块的第一同步信号中包含该预设信息,或,第一同步信号块的第一同步信道中包含该预设信息。可选的,接入网设备使用不同的同步序列指示不同的预设信息。
步骤302,终端接收接入网设备传输的第一同步信号块。
可选的,终端具有至少一个波束接收方向,进入接入网设备所覆盖小区的终端即能够从至少一个波束接收方向上接收第一同步信号块。
步骤303,终端根据第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,第一同步信号块与第二同步信号块采用相同的波束发送,或,第一同步信号块与第二同步信号块携带相同的信息。
可选的,终端从第一同步信号块的同步信号中获取预设信息,或,从第一同步信号块的第一同步信道中获取该预设信息。
可选的,第一同步信号块中包含的预设信息包括如下至少一种。
1、接入网设备传输同步信号块时采用不同波束的波束总量。
示意性的,如图2所示,接入网设备在一个同步信号块集合内共传输16 个同步信号块,且采用了4种不同的波束,则该波束总量即为4。
2、同步信号块的传输周期。
同步信号块的传输周期即为两个相邻的同步信号块传输之间相差的时间长度。其中,该传输周期以子帧(sub frame)、时隙(slot)、迷你时隙(mini slot)、OFDM符号为单位或是一个绝对时间。
3、第一同步信号块所在同步信号块集合的传输周期。每个同步信号块集合包含若干个同步信号块,同步信号块集合是周期性发送的,且在不同的同步信号块集合的传输周期发送的同步信号块及其采用的波束完全相同。例如,图2所示同步信号块集合中包含至少一组同步信号块,每组同步信号块中各个同步信号块可以采用不同的波束传输。
示意性的,同步信号块集合的传输周期即为两个相邻的同步信号块集合传输之间相差的时间长度。。其中,该传输周期以子帧(sub frame)、时隙(slot)、迷你时隙(mini slot)、OFDM符号为单位或是一个绝对时间。
4、第一同步信号块所在同步信号块集合的同步信号块总量,同步信号块集合中包含至少一组同步信号块,每组同步信号块中各个同步信号块可以采用不同的波束传输。
示意性的,如图2所示,同步信号块所在的同步信号块集合中包含16个同步信号块,同步信号块总量即为16。
5、第一同步信号块的第一时域索引,第一时域索引用于指示第一同步信号块的时域位置。
6、第一同步信号块与第二同步信号块之间的频域间隔。
当接入网设备采用频分复用的方式传输同步信号块时,第一同步信号块和第二同步信号块所占用的频域资源可能不同。因此,在一种可能的实施方式中,第一同步信号块的预设信息中还包含第一同步信号块与第二同步信号块之间的频域间隔。其中,该频域间隔为物理资源块(Physical Resource Block,PRB)数、子带数或带宽等等。
接收到第一同步信号块后,终端即根据第一同步信号块的频域位置以及该频域间隔,确定第二同步信号块的频域位置。
示意性的,当第一同步信号块的预设信息中包含频域间隔为60kHz带宽,且,且第一同步信号块的频域位置为1000kHz,则第二同步信号块的频域位置为1060kHz。步骤304,接入网设备向终端传输第二同步信号块。
其中,接入网设备采用与第一同步信号块相同的波束传输第二同步信号块。可选的,第一同步信号块携带的信息与第二同步信号块中携带的信息相同。
示意性的,如图2所示,接入网设备采用第一波束向终端传输第一同步信号块21(位于第一同步信号块组)后,采用第一波束向终端传输第二同步信号块22(位于第二同步信号块组)。
步骤305,终端对第二同步信号块进行检测。
终端在确定出的时域位置上接收到第二同步信号块后,即对第二同步信号块进行检测。
针对第二同步信号块的检测过程,在一种可能的实现方式中,终端对第一同步信号块中的第一同步信号和第二同步信号块中的第二同步信号进行联合检测,从而提高终端对同步信号的解调性能。
在另一种可能的实施方式中,终端对第一同步信号块中的第一同步信道和第二同步信号块中的第二同步信道进行联合检测,从而提高终端对同步信道的解调性能。
可选的,在对第一同步信道和第二同步信道进行联合检测时,终端对第一同步信道和第二同步信道中的软比特进行合并,以提高检测性能。
在另一种可能的实施方式中,终端采用与第一同步信号块不同的接收波束检测第二同步信号块。
示意性,终端具有两种接收波束(对应不同波束接收方向),当终端采用第一接收波束检测第一同步信号块,并根据第一同步信号块中的预设信息确定出第二同步信号块的时域位置后,采用第二接收波束检测第二同步信号块。进一步的,根据第一同步信号块和第二同步信号块的检测结果,终端将最佳检测结果对应的接收波束确定为目标接收波束,并在后续下行信号接收过程中,使用该目标接收波束接收下行信号。综上所述,本实施例提供的同步信号块检测方法中,接入网设备通过向同步信号块中添加预设信息,使得终端接收到同步信号块后,能够根据该预设信息确定出与当前同步信号块携带相同信息,或,采用相同波束传输的其他同步信号块的时频资源位置,进而实现对两个同步信号块进行联合检测,提高了终端对同步信号块的检测性能。
本实施例中,终端采用不同的接收波束接收第一同步信号块和第二同步信号块,从而确定出接收质量最佳的目标接收波束,进而采用该目标接收波束接收后续下行信号,提高了下行信号的接收质量。
针对同步信号块中不同类型的预设信息,终端将采用相应的时域位置确定方式,并结合第一同步信号块的时域位置,确定第二同步信号块的时域位置,进而对该第二同步信号块进行检测。下述实施例中,图4所示实施例针对预设信息中包含波束总量和/或同步信号的传输周期;图5A所示实施例针对预设信息中包含第一同步信号块所在同步信号块集合的传输周期;图6所示实施例针对预设信息中包含第一同步信号块所在同步信号块集合的同步信号块总量;图7所示实施例针对预设信息中包含第一同步信号块的第一时域索引。
请参考图4,其示出了本发明另一个实施例提供的同步信号块检测方法的方法流程图。本实施例以该同步信号块检测方法应用于图1所示移动通信系统来举例说明。该方法包括:
步骤401,接入网设备向终端传输第一同步信号块,第一同步信号块的预设信息中包括接入网设备传输同步信号块时采用不同波束的波束总量,和/或,同步信号块的传输周期。
在一种可能的实施方式中,基于协议中预先约定的参数,接入网设备向第一同步信号块中添加相应的预设信息,使得终端能够根据预设信息以及预先约定的参数确定出第二同步信号块的时域位置。
可选的,当协议中预先约定同步信号块的传输周期时(波束总量可以由接入网设备根据自身配置自行设定),第一同步信号块的预设信息中包含当前接入网设备传输同步信号块时采用不同波束的波束总量;
当协议中预先约定接入网设备传输同步信号块时采用不同波束的波束总量时(传输周期可以由接入网设备自行设定),第一同步信号块的预设信息中包含同步信号块的传输周期;
当协议中未预先约定波束总量和传输周期时,预设信息中即同时包含波束总量和传输周期。
示意性的,如图2所示,当协议中预先约定同步信号块的传输周期为M个OFDM符号时,由于接入网设备传输同步信号块时使用4种不同的波束,因此,第一同步信号块的预设信息中包含波束总量N=4。
步骤402,终端接收接入网设备传输的第一同步信号块。
本步骤的实施方式与上述步骤302相似,本实施例在此不再赘述。
步骤403,终端根据波束总量和传输周期,计算第一同步信号块与第二同步信号块之间的时域间隔。
其中,该时域间隔为子帧数量、时隙数量、迷你时隙数量或OFDM符号数量中的至少一种。
在一种可能的实施方式中,终端根据预设信息中包含的波束总量,以及预先约定的同步信号块的传输周期,计算得到该时域间隔。
比如,终端获取到预设信息中包含的波束总量为4,且预先约定的同步信号块的传输周期为8个OFDM符号,则第一同步信号块与第二同步信号块之间的时域间隔为4×832个OFDM符号。
在另一种可能的实施方式中,终端根据预设信息中包含的传输周期,以及预先约定的波束总量,计算得到该时域间隔。
步骤404,终端根据第一同步信号块的时域位置和时域间隔,确定第二同步信号块的时域位置。
进一步的,终端根据计算出的时域间隔以及第一同步信号块的时域位置,确定出第二同步信号块的时域位置。
示意性的,如图2所示,终端根据波束总量和传输周期计算得到的时域间隔即为:第一同步信号块组中第一同步信号块21与第二同步信号块组中第二同步信号块22之间的时域间隔。因此,在已知第一同步信号块21时域位置以及时域间隔的前提下,终端能够确定出第二同步信号块22的时域位置。
步骤405,接入网设备向终端传输第二同步信号块。
本步骤的实施方式与上述步骤304相似,本实施例在此不再赘述。
步骤406,终端从确定出的时域位置处接收第二同步信号块。
终端根据确定出的第二同步信号块的时域位置,在该时域位置上接收同步信号块。其中,第一同步信号块与第二同步信号块采用相同的波束传输,或者携带的信息相同。
步骤407,终端对第二同步信号块进行检测。
本步骤的实施方式与上述步骤305相似,本实施例在此不再赘述。
综上所述,本实施例提供的同步信号块检测方法中,接入网设备通过向同步信号块中添加预设信息,使得终端接收到同步信号块后,能够根据该预设信息确定出与当前同步信号块携带相同信息,或,采用相同波束传输的其他同步信号块的时频资源位置,进而实现对两个同步信号块进行联合检测,提高了终 端对同步信号块的检测性能。
请参考图5A,其示出了本发明再一个实施例提供的同步信号块检测方法的方法流程图。本实施例以该同步信号块检测方法应用于图1所示移动通信系统来举例说明。该方法包括:
步骤501,接入网设备向终端传输第一同步信号块,第一同步信号块的预设信息中包括第一同步信号块所在同步信号块集合的传输周期。
在一种可能的实施方式中,接入网设备传输的同步信号块集合中,各个同步信号块均采用不同的波束赋形后传输,或者,各个同步信号块携带的信息不同(即同步信号块集合中仅包含一个同步信号块组)。为了使终端能够对相邻两个同步信号块集合中的第一同步信号块和第二同步信号块进行联合检测,接入网设备向第一同步信号块中添加同步信号块集合的传输周期。
示意性的,如图5B所示,接入网设备周期性传输同步信号块集合,且各个同步信号块集合中包含采用4种波束赋形的同步信号块。接入网设备向终端传输的同步信号块51中,即包含同步信号块51所在第一同步信号块集合的传输周期,该传输周期即为完整传输4个同步信号块所占用的时域资源(包含相邻同步信号块集合之间的间隔)。比如,该传输周期为M个时隙。
步骤502,终端接收接入网设备传输的第一同步信号块。
步骤503,终端将该传输周期确定为第一同步信号块与第二同步信号块之间的时域间隔。
由于同步信号块集合周期性传输,且不同同步信号块集合中包含的同步信号块相同,因此,终端直接将该传输周期确定为第一同步信号块与第二同步信号块之间的时域间隔。
示意性的,如图5B所示,当传输周期为M个时隙时,第一同步信号块集合中的同步信号块51与第二同步信号块集合中同步信号块52的时域间隔即为M个时隙。
步骤504,终端根据第一同步信号块的时域位置和时域间隔,确定第二同步信号块的时域位置。
与上述步骤404相似的,终端根据第一同步信号块的时域位置以及时域间隔,确定相邻同步信号块集合中第二同步信号块的时域位置。
步骤505,接入网设备向终端传输第二同步信号块。
步骤506,终端从确定出的时域位置处接收第二同步信号块。
步骤507,终端对第二同步信号块进行检测。
上述步骤505至步骤507的实施方式与步骤405至407相似,本实施例在此不再赘述。
请参考图6,其示出了本发明又一个实施例提供的同步信号块检测方法的方法流程图。本实施例以该同步信号块检测方法应用于图1所示移动通信系统来举例说明。该方法包括:
步骤601,接入网设备向终端传输第一同步信号块,第一同步信号块的预设信息中包括第一同步信号块所在同步信号块集合的同步信号块总量。
图5A所示实施例中,接入网设备直接将同步信号块集合的传输周期添加到第一同步信号块中,在另一种可能的实施方式中,当协议中预先约定同步信号块的传输周期时,接入网设备可以仅将同步信号块集合的同步信号块总量添加到第一同步信号块中,由终端根据同步信号块的传输周期和同步信号块总量自行计算得到同步信号块集合的传输周期。
比如,如图2所示,第一同步信号块的预设信息中包括同步信号块总量为16;又比如,如图5B所示,第一同步信号块的预设信息中包括同步信号块总量为4。
步骤602,终端接收接入网设备传输的第一同步信号块。
步骤603,终端根据同步信号块总量,以及预先约定的同步信号块的传输周期,确定第一同步信号块与第二同步信号块之间的时域间隔。
接收到第一同步信号块后,终端即根据同步信号块总量以及预先约定的同步信号块的传输周期,计算得到第一同步信号块所在同步信号块集合的传输周期,并将该传输周期确定为相邻两个同步信号块集合中,第一同步信号块与第二同步信号块之间的时域间隔。
示意性的,如图5B所示,当预设信息中包括同步信号块总量为4,且预先约定的同步信号块的传输周期为1个时隙时,同步信号块51和同步信号块52(位于相邻两个同步信号块集合中)之间的时域间隔即为4个时隙。
步骤604,终端根据第一同步信号块的时域位置和时域间隔,确定第二同步信号块的时域位置。
步骤605,接入网设备向终端传输第二同步信号块。
步骤606,终端从确定出的时域位置处接收第二同步信号块。
步骤607,终端对第二同步信号块进行检测。
上述步骤605至步骤607的实施方式与步骤405至407相似,本实施例在此不再赘述。
请参考图7,其示出了本发明还一个实施例提供的同步信号块检测方法的方法流程图。本实施例以该同步信号块检测方法应用于图1所示移动通信系统来举例说明。该方法包括:
步骤701,接入网设备向终端传输第一同步信号块,第一同步信号块的预设信息中包括第一同步信号块的第一时域索引,第一时域索引用于指示第一同步信号块的时域位置。
在第一种可能的实施方式中,第一时域索引为第一同步信号块在所在同步信号块集合中的索引,其中,同步信号块集合中包含至少一组同步信号块。
示意性的,如图2所示,由于同步信号块集合中包含16个同步信号块,因此各个同步信号块的时域索引依次为0至15。
在第二种可能的实施方式中,第一时域索引为第一同步信号块所在时域资源在所在无线帧、子帧或时隙中的索引。其中,该时域资源为子帧、时隙、迷你时隙或OFDM符号。
比如,当第一同步信号块占据无线帧(共10个子帧)中的第1个子帧时,第一同步信号块的时域索引即为0;又比如,当第一同步信号块占据无线帧(共10个子帧)中的第3个子帧时,第一同步信号块的时域索引即为2。
在第三种可能的实施方式中,第一时域索引为第一同步信号块在所在无线帧、子帧或时隙中所有同步信号块中的索引。
比如,当一个无线帧中包含4个同步信号块,且4个同步信号块分别占据第1、3、5、7个子帧时,占据第1个子帧的同步信号块的时域索引为0,占据第3个子帧的同步信号块的时域索引为1,占据第5个子帧的同步信号块的时域索引为2,占据第7个子帧的同步信号块的时域索引为3。
需要说明的是,除了上述三种时域索引设定方式外,接入网设备还可以采用其他可能的方式为同步信号块设定时域索引,本发明并不对此进行限定。
步骤702,终端接收接入网设备传输的第一同步信号块。
步骤703,终端根据第一时域索引以及预先约定的索引间隔,计算第二同 步信号块对应的第二时域索引。
其中,该索引间隔用于指示采用相同波束传输的的同步信号块之间时域索引的差值,或,用于指示携带相同信息的同步信号块之间时域索引的差值。
示意性的,如图2所示,当时域索引为同步信号块在所在同步信号块集合中的索引时,终端即根据第一同步信号块21的第一时域索引0,以及索引间隔4(由于四个同步信号块为一组),计算得到第二同步信号块22的第二时域索引为0+4=4。
步骤704,终端根据第二时域索引确定第二同步信号块的时域位置。
比如,当时域索引为同步信号块在同步信号块集合中的索引,且计算得到第二时域索引为4时,终端即将时域索引“4”对应的同步信号块确定为第二同步信号块。
步骤705,接入网设备向终端传输第二同步信号块。
步骤706,终端从确定出的时域位置处接收第二同步信号块。
步骤707,终端对第二同步信号块进行检测。
上述步骤705至步骤707的实施方式与步骤405至407相似,本实施例在此不再赘述。
需要说明的一点是,上述各个实施例中由终端执行的步骤可以单独实现成为终端侧的同步信号块检测方法,上述各个实施例中由接入网设备执行的步骤可以单独实现成为接入网设备侧的同步信号块传输方法。
以下为本发明实施例的装置实施例,对于装置实施例中未详细阐述的部分,可以参考上述方法实施例中公开的技术细节。
请参考图8,其示出了本发明一个实施例提供的同步信号块检测装置的结构示意图。该同步信号块检测装置可以通过软件、硬件以及两者的组合实现成为终端的全部或一部分。该同步信号块检测装置包括:接收单元820、确定单元840和检测单元860;
接收单元820,用于实现上述步骤302、402、502、602、702以及与接收步骤相关的功能;
确定单元840,用于实现上述步骤的功能303、403至404、503至504、603至604以及703至704的功能;
检测单元860,用于实现上述步骤305、407、507、607以及与检测步骤相 关的功能。
另外,本发明实施例还提供了一种同步信号块传输装置,该同步信号块传输装置可以通过软件、硬件以及两者的组合实现成为接入网设备的全部或一部分。该同步信号块传输装置包括传输单元,该传输单元用于实现上述步骤301、304、401、405、501、505、601、605、701、705以及与传输步骤相关的功能。
请参考图9,其示出了本发明一个示例性实施例提供的终端的结构示意图,该终端包括:处理器21、接收器22、发射器23、存储器24和总线25。
处理器21包括一个或者一个以上处理核心,处理器21通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器22和发射器23可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器24通过总线25与处理器21相连。
存储器24可用于存储软件程序以及模块。
存储器24可存储至少一个功能所述的应用程序模块26。应用程序模块26可以包括:接收模块261、确定模块262和检测模块263。
处理器21用于执行接收模块261以实现上述各个方法实施例中有关接收同步信号块步骤的功能;处理器21用于执行确定模块262以实现上述各个方法实施例中有关确定时频资源位置步骤的功能;处理器21用于执行检测模块263以实现上述各个方法实施例中有关检测同步信号块步骤的功能。
此外,存储器24可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
请参考图10,其示出了本发明一个示例性实施例提供的接入网设备的结构示意图,该接入网设备包括:处理器21、接收器22、发射器23、存储器24和总线25。
处理器21包括一个或者一个以上处理核心,处理器21通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器22和发射器23可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器24通过总线25与处理器21相连。
存储器24可用于存储软件程序以及模块。
存储器24可存储至少一个功能所述的应用程序模块26。应用程序模块26可以包括:传输模块261。
处理器21用于执行传输模块261以实现上述各个方法实施例中有关传输同步信号块步骤的功能。
此外,存储器24可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (50)

  1. 一种同步信号块检测方法,其特征在于,所述方法包括:
    终端接收接入网设备传输的第一同步信号块;
    所述终端根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,所述第一同步信号块与所述第二同步信号块采用相同的波束发送,或,所述第一同步信号块与所述第二同步信号块携带相同的信息;
    所述终端对所述第二同步信号块进行检测。
  2. 根据权利要求1所述的方法,其特征在于,所述预设信息包括:
    所述接入网设备传输同步信号块时采用不同波束的波束总量;
    和/或,
    同步信号块的传输周期。
  3. 根据权利要求2所述的方法,其特征在于,
    所述预设信息中包括所述波束总量,所述传输周期为预先约定;
    或,
    所述预设信息中包括所述传输周期,所述波束类型总量为预先约定。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,包括:
    所述终端根据所述波束总量和所述传输周期,计算所述第一同步信号块与所述第二同步信号块之间的时域间隔;
    所述终端根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  5. 根据权利要求1所述的方法,其特征在于,所述预设信息包括所述第一同步信号块所在同步信号块集合的传输周期,所述同步信号块集合中包含至少一组同步信号块。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,包括:
    所述终端将所述传输周期确定为所述第一同步信号块与所述第二同步信号块之间的时域间隔;
    所述终端根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  7. 根据权利要求1所述的方法,其特征在于,所述预设信息包括所述第一同步信号块所在同步信号块集合的同步信号块总量,所述同步信号块集合中包含至少一组同步信号块。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,包括:
    所述终端根据所述同步信号块总量,以及预先约定的同步信号块的传输周期,确定所述第一同步信号块与所述第二同步信号块之间的时域间隔;
    所述终端根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  9. 根据权利要求1所述的方法,其特征在于,所述预设信息包括所述第一同步信号块的第一时域索引,所述第一时域索引用于指示所述第一同步信号块的时域位置。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一时域索引为所述第一同步信号块在所在同步信号块集合中的索引;
    或,
    所述第一时域索引为所述第一同步信号块所在时域资源在所在无线帧、子帧或时隙中的索引;
    或,
    所述第一时域索引为所述第一同步信号块在所在无线帧、子帧或时隙中所有同步信号块中的索引;
    其中,所述同步信号块集合中包含至少一组同步信号块,所述时域资源为子帧、时隙、迷你时隙或正交频分复用OFDM符号。
  11. 根据权利要求9或10所述的方法,其特征在于,所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,包括:
    所述终端根据所述第一时域索引以及预先约定的索引间隔,计算所述第二同步信号块对应的第二时域索引;
    所述终端根据所述第二时域索引确定所述第二同步信号块的时域位置。
  12. 根据权利要求1所述的方法,其特征在于,所述预设信息包括所述第一同步信号块和所述第二同步信号块之间的频域间隔;
    所述根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,还包括:
    所述终端根据所述第一同步信号块的频域位置以及所述第一同步信号块和所述第二同步信号块之间的频域间隔,确定所述第二同步信号块的频域位置。
  13. 根据权利要求1至12任一所述的方法,其特征在于,所述对所述第二同步信号块进行检测,包括:
    所述终端对所述第一同步信号块中的第一同步信号和所述第二同步信号块中的第二同步信号进行联合检测;
    或,
    所述终端对所述第一同步信号块中的第一同步信道和所述第二同步信号块中的第二同步信道进行联合检测;
    或,
    所述终端采用与所述第一同步信号块不同的接收波束检测所述第二同步信号块。
  14. 根据权利要求1至12任一所述的方法,其特征在于,所述第一同步信号块中包含第一同步信号和第一同步信道,所述第一同步信号或所述第一同步信道中包含所述预设信息。
  15. 一种同步信号块传输方法,其特征在于,所述方法包括:
    接入网设备向终端传输第一同步信号块;
    所述接入网设备向终端传输第二同步信号块,所述第一同步信号块与所述第二同步信号块采用相同的波束发送,或,所述第一同步信号块与所述第二同步信号块携带相同的信息;
    其中,所述第一同步信号块中包含预设信息,所述终端用于根据所述预设信息确定所述第二同步信号块的时频资源位置,并对所述第二同步信号块进行检测。
  16. 根据权利要求15所述的方法,其特征在于,所述预设信息包括:
    所述接入网设备传输同步信号块时采用不同波束的波束总量;
    和/或,
    同步信号块的传输周期;
    和/或,
    所述第一同步信号块所在同步信号块集合的传输周期,所述同步信号块集合中包含至少一组同步信号块;
    和/或,
    所述第一同步信号块所在同步信号块集合的同步信号块总量,所述同步信号块集合中包含至少一组同步信号块;
    和/或,
    所述第一同步信号块的第一时域索引,所述第一时域索引用于指示所述第一同步信号块的时域位置;
    和/或,
    所述第一同步信号块与所述第二同步信号块之间的频域间隔。
  17. 一种同步信号块检测装置,其特征在于,所述装置包括:
    接收单元,用于接收接入网设备传输的第一同步信号块;
    确定单元,用于根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,所述第一同步信号块与所述第二同步信号块采用相同的波束发送,或,所述第一同步信号块与所述第二同步信号块携带相同的信息;
    检测单元,用于对所述第二同步信号块进行检测。
  18. 根据权利要求17所述的装置,其特征在于,所述预设信息包括:
    所述接入网设备传输同步信号块时采用不同波束的波束总量;
    和/或,
    同步信号块的传输周期。
  19. 根据权利要求18所述的装置,其特征在于,
    所述预设信息中包括所述波束总量,所述传输周期为预先约定;
    或,
    所述预设信息中包括所述传输周期,所述波束类型总量为预先约定。
  20. 根据权利要求19所述的装置,其特征在于,所述确定单元,用于:
    根据所述波束总量和所述传输周期,计算所述第一同步信号块与所述第二同步信号块之间的时域间隔;
    根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  21. 根据权利要求17所述的装置,其特征在于,所述预设信息包括所述第一同步信号块所在同步信号块集合的传输周期,所述同步信号块集合中包含至少一组同步信号块。
  22. 根据权利要求21所述的装置,其特征在于,所述确定单元,用于:
    将所述传输周期确定为所述第一同步信号块与所述第二同步信号块之间的 时域间隔;
    根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  23. 根据权利要求17所述的装置,其特征在于,所述预设信息包括所述第一同步信号块所在同步信号块集合的同步信号块总量,所述同步信号块集合中包含至少一组同步信号块。
  24. 根据权利要求23所述的装置,其特征在于,所述确定单元,用于:
    根据所述同步信号块总量,以及预先约定的同步信号块的传输周期,确定所述第一同步信号块与所述第二同步信号块之间的时域间隔;
    根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  25. 根据权利要求17所述的装置,其特征在于,所述预设信息包括所述第一同步信号块的第一时域索引,所述第一时域索引用于指示所述第一同步信号块的时域位置。
  26. 根据权利要求25所述的装置,其特征在于,
    所述第一时域索引为所述第一同步信号块在所在同步信号块集合中的索引;
    或,
    所述第一时域索引为所述第一同步信号块所在时域资源在所在无线帧、子帧或时隙中的索引;
    或,
    所述第一时域索引为所述第一同步信号块在所在无线帧、子帧或时隙中所有同步信号块中的索引;
    其中,所述同步信号块集合中包含至少一组同步信号块,所述时域资源为子帧、时隙、迷你时隙或正交频分复用OFDM符号。
  27. 根据权利要求25或26所述的装置,其特征在于,所述确定单元,用于:
    根据所述第一时域索引以及预先约定的索引间隔,计算所述第二同步信号块对应的第二时域索引;
    根据所述第二时域索引确定所述第二同步信号块的时域位置。
  28. 根据权利要求17所述的装置,其特征在于,所述预设信息包括所述第一同步信号块和所述第二同步信号块之间的时域间隔;
    所述确定单元,还用于:
    根据所述第一同步信号块的频域位置以及所述第一同步信号块和所述第二同步信号块之间的频域间隔,确定所述第二同步信号块的频域位置。
  29. 根据权利要求17至28任一所述的装置,其特征在于,所述检测单元,用于:
    对所述第一同步信号块中的第一同步信号和所述第二同步信号块中的第二同步信号进行联合检测;
    或,
    对所述第一同步信号块中的第一同步信道和所述第二同步信号块中的第二同步信道进行联合检测;
    或,
    采用与所述第一同步信号块不同的接收波束检测所述第二同步信号块。
  30. 根据权利要求17至28任一所述的装置,其特征在于,所述第一同步信号块中包含第一同步信号和第一同步信道,所述第一同步信号或所述第一同步信道中包含所述预设信息。
  31. 一种同步信号块传输装置,其特征在于,所述装置包括:
    传输单元,用于向终端传输第一同步信号块;
    所述传输单元,还用于向终端传输第二同步信号块,所述第一同步信号块与所述第二同步信号块采用相同的波束发送,或,所述第一同步信号块与所述第二同步信号块携带相同的信息;
    其中,所述第一同步信号块中包含预设信息,所述终端用于根据所述预设信息确定所述第二同步信号块的时频资源位置,并对所述第二同步信号块进行检测。
  32. 根据权利要求31所述的装置,其特征在于,所述预设信息包括:
    所述接入网设备传输同步信号块时采用不同波束的波束总量;
    和/或,
    同步信号块的传输周期;
    和/或,
    所述第一同步信号块所在同步信号块集合的传输周期,所述同步信号块集合中包含至少一组同步信号块;
    和/或,
    所述第一同步信号块所在同步信号块集合的同步信号块总量,所述同步信号块集合中包含至少一组同步信号块;
    和/或,
    所述第一同步信号块的第一时域索引,所述第一时域索引用于指示所述第一同步信号块的时域位置;
    和/或,
    所述第一同步信号块与所述第二同步信号块之间的频域间隔。
  33. 一种终端,其特征在于,所述终端包括:
    接收器,用于接收接入网设备传输的第一同步信号块;
    处理器,用于根据所述第一同步信号块中包含的预设信息,确定第二同步信号块的时频资源位置,所述第一同步信号块与所述第二同步信号块采用相同的波束发送,或,所述第一同步信号块与所述第二同步信号块携带相同的信息;
    所述处理器,还用于对所述第二同步信号块进行检测。
  34. 根据权利要求33所述的终端,其特征在于,所述预设信息包括:
    所述接入网设备传输同步信号块时采用不同波束的波束总量;
    和/或,
    同步信号块的传输周期。
  35. 根据权利要求34所述的终端,其特征在于,
    所述预设信息中包括所述波束总量,所述传输周期为预先约定;
    或,
    所述预设信息中包括所述传输周期,所述波束类型总量为预先约定。
  36. 根据权利要求35所述的终端,其特征在于,处理器,还用于:
    根据所述波束总量和所述传输周期,计算所述第一同步信号块与所述第二同步信号块之间的时域间隔;
    根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  37. 根据权利要求33所述的终端,其特征在于,所述预设信息包括所述第一同步信号块所在同步信号块集合的传输周期,所述同步信号块集合中包含至少一组同步信号块。
  38. 根据权利要求37所述的终端,其特征在于,所述处理器,还用于:
    将所述传输周期确定为所述第一同步信号块与所述第二同步信号块之间的时域间隔;
    根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  39. 根据权利要求33所述的终端,其特征在于,所述预设信息包括所述第一同步信号块所在同步信号块集合的同步信号块总量,所述同步信号块集合中 包含至少一组同步信号块。
  40. 根据权利要求39所述的终端,其特征在于,所述处理器,还用于:
    根据所述同步信号块总量,以及预先约定的同步信号块的传输周期,确定所述第一同步信号块与所述第二同步信号块之间的时域间隔;
    根据所述第一同步信号块的时域位置和所述时域间隔,确定所述第二同步信号块的时域位置;
    其中,所述时域间隔为子帧数量、时隙数量、迷你时隙数量或正交频分复用OFDM符号数量中的至少一种。
  41. 根据权利要求33所述的终端,其特征在于,所述预设信息包括所述第一同步信号块的第一时域索引,所述第一时域索引用于指示所述第一同步信号块的时域位置。
  42. 根据权利要求41所述的终端,其特征在于,
    所述第一时域索引为所述第一同步信号块在所在同步信号块集合中的索引;
    或,
    所述第一时域索引为所述第一同步信号块所在时域资源在所在无线帧、子帧或时隙中的索引;
    或,
    所述第一时域索引为所述第一同步信号块在所在无线帧、子帧或时隙中所有同步信号块中的索引;
    其中,所述同步信号块集合中包含至少一组同步信号块,所述时域资源为子帧、时隙、迷你时隙或正交频分复用OFDM符号。
  43. 根据权利要求41或42所述的终端,其特征在于,所述处理器,还用于:
    根据所述第一时域索引以及预先约定的索引间隔,计算所述第二同步信号块对应的第二时域索引;
    根据所述第二时域索引确定所述第二同步信号块的时域位置。
  44. 根据权利要求33所述的终端,其特征在于,所述预设信息包括所述第一同步信号块和所述第二同步信号块之间的时域间隔;
    所述处理器,还用于:
    根据所述第一同步信号块的频域位置以及所述第一同步信号块和所述第二同步信号块之间的频域间隔,确定所述第二同步信号块的频域位置。
  45. 根据权利要求33至44任一所述的终端,其特征在于,所述处理器,还用于:
    对所述第一同步信号块中的第一同步信号和所述第二同步信号块中的第二同步信号进行联合检测;
    或,
    对所述第一同步信号块中的第一同步信道和所述第二同步信号块中的第二同步信道进行联合检测;
    或,
    采用与所述第一同步信号块不同的接收波束检测所述第二同步信号块。
  46. 根据权利要求33至44任一所述的装置,其特征在于,所述第一同步信号块中包含第一同步信号和第一同步信道,所述第一同步信号或所述第一同步信道中包含所述预设信息。
  47. 一种接入网设备,其特征在于,所述接入网设备包括:
    发射器,用于向终端传输第一同步信号块;
    所述发射器,还用于向终端传输第二同步信号块,所述第一同步信号块与所述第二同步信号块采用相同的波束发送,或,所述第一同步信号块与所述第二同步信号块携带相同的信息;
    其中,所述第一同步信号块中包含预设信息,所述终端用于根据所述预设信息确定所述第二同步信号块的时频资源位置,并对所述第二同步信号块进行检测。
  48. 根据权利要求47所述的接入网设备,其特征在于,所述预设信息包括:
    所述接入网设备传输同步信号块时采用不同波束的波束总量;
    和/或,
    同步信号块的传输周期;
    和/或,
    所述第一同步信号块所在同步信号块集合的传输周期,所述同步信号块集合中包含至少一组同步信号块;
    和/或,
    所述第一同步信号块所在同步信号块集合的同步信号块总量,所述同步信号块集合中包含至少一组同步信号块;
    和/或,
    所述第一同步信号块的第一时域索引,所述第一时域索引用于指示所述第一同步信号块的时域位置;
    和/或,
    所述第一同步信号块与所述第二同步信号块之间的频域间隔。
  49. 一种移动通信系统,其特征在于,所述系统中包括:终端和接入网设备;
    所述终端包括如权利要求17至30任一所述的同步信号块检测装置;
    所述接入网设备包括如权利要求31或32所述的同步信号块传输装置。
  50. 一种移动通信系统,其特征在于,所述系统中包括:终端和接入网设备;
    所述终端包括如权利要求33至46任一所述的终端;
    所述接入网设备包括如权利要求47或48所述的接入网设备。
PCT/CN2017/077142 2017-03-17 2017-03-17 同步信号块检测方法、同步信号块传输方法、装置及系统 WO2018165986A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/467,949 US10880031B2 (en) 2017-03-17 2017-03-17 Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
CN202011001601.6A CN112134673B (zh) 2017-03-17 2017-03-17 同步信号块检测方法、同步信号块传输方法、装置及系统
CN202011003317.2A CN112134674B (zh) 2017-03-17 2017-03-17 同步信号块检测方法、同步信号块传输方法、装置及系统
EP17900757.0A EP3537784B1 (en) 2017-03-17 2017-03-17 Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
ES17900757T ES2867873T3 (es) 2017-03-17 2017-03-17 Método para detectar el bloque de señal de sincronización y método, aparato y sistema para transmitir el bloque de señal de sincronización
CN201780081209.7A CN110140392B (zh) 2017-03-17 2017-03-17 同步信号块检测方法、同步信号块传输方法、装置及系统
EP21154611.4A EP3836654A1 (en) 2017-03-17 2017-03-17 Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
PCT/CN2017/077142 WO2018165986A1 (zh) 2017-03-17 2017-03-17 同步信号块检测方法、同步信号块传输方法、装置及系统
US17/101,541 US11444714B2 (en) 2017-03-17 2020-11-23 Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077142 WO2018165986A1 (zh) 2017-03-17 2017-03-17 同步信号块检测方法、同步信号块传输方法、装置及系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/467,949 A-371-Of-International US10880031B2 (en) 2017-03-17 2017-03-17 Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
US17/101,541 Continuation US11444714B2 (en) 2017-03-17 2020-11-23 Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block

Publications (1)

Publication Number Publication Date
WO2018165986A1 true WO2018165986A1 (zh) 2018-09-20

Family

ID=63521727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077142 WO2018165986A1 (zh) 2017-03-17 2017-03-17 同步信号块检测方法、同步信号块传输方法、装置及系统

Country Status (5)

Country Link
US (2) US10880031B2 (zh)
EP (2) EP3537784B1 (zh)
CN (3) CN110140392B (zh)
ES (1) ES2867873T3 (zh)
WO (1) WO2018165986A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115983B2 (en) 2016-11-11 2021-09-07 Qualcomm Incorporated Data and control channels in synchronization bursts for millimeter wave new radio
CN110365461B (zh) * 2017-12-18 2020-08-07 华为技术有限公司 一种信号发送、接收方法及设备
WO2019157661A1 (en) * 2018-02-13 2019-08-22 Zte Corporation Cell information acquisition method and apparatus
US10993196B2 (en) * 2018-08-10 2021-04-27 Lenovo (Singapore) Pte. Ltd. Identifying synchronization signal/physical broadcast channel block occasions
KR20200057235A (ko) 2018-11-16 2020-05-26 삼성전자주식회사 참조 신호 수신 방법 및 이를 위한 전자 장치
CN112564868B (zh) * 2019-09-26 2023-04-07 大唐移动通信设备有限公司 一种信号的发送、接收方法及终端
US10879990B1 (en) * 2019-11-27 2020-12-29 Qualcomm Incorporated Dynamic beam switching
CN114830737A (zh) * 2019-12-09 2022-07-29 瑞典爱立信有限公司 用于使减少带宽的无线设备能够接入小区的方法
WO2021223227A1 (zh) * 2020-05-08 2021-11-11 北京小米移动软件有限公司 同步信号的传输方法、装置、设备及可读存储介质
US11700589B2 (en) * 2020-06-05 2023-07-11 Qualcomm Incorporated Synchronization signal block transmissions in non-terrestrial networks
CN113965300B (zh) * 2020-07-20 2023-02-17 大唐移动通信设备有限公司 一种ssb解调及生成的方法、装置及存储介质
CN116097815A (zh) * 2020-08-31 2023-05-09 华为技术有限公司 同步信号传输方法及装置
EP4290793A4 (en) * 2021-03-02 2024-04-10 Huawei Tech Co Ltd WIRELESS COMMUNICATION METHOD, COMMUNICATION APPARATUS AND COMMUNICATION SYSTEM
CN115499853A (zh) * 2021-06-18 2022-12-20 维沃移动通信有限公司 信号获取方法及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222269A (zh) * 2007-01-10 2008-07-16 北京三星通信技术研究有限公司 小区搜索中指示同步信道偏移的设备和方法
WO2016203290A1 (en) * 2015-06-15 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Variable synchronization block format
CN106455040A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795668B (zh) * 2012-11-02 2017-08-18 电信科学技术研究院 一种信号处理方法、基站、终端、及系统
US9516541B2 (en) * 2013-09-17 2016-12-06 Intel IP Corporation Congestion measurement and reporting for real-time delay-sensitive applications
EP3075089B1 (en) * 2013-11-27 2021-09-08 Telefonaktiebolaget LM Ericsson (publ) Sending and detecting synchronization signals and an associated information message
KR102172442B1 (ko) * 2014-02-19 2020-10-30 삼성전자주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
CN106304346B (zh) * 2015-05-15 2019-07-19 电信科学技术研究院 一种同步信号的发送、接收方法及装置
CN107623933B (zh) * 2016-07-15 2019-12-10 电信科学技术研究院 一种初始接入信号的传输方法和装置
CN108282859B (zh) * 2017-01-06 2020-10-27 华为技术有限公司 一种通信方法和装置
SG11201907020XA (en) * 2017-02-03 2019-08-27 Ntt Docomo Inc Base station and synchronization signal transmission method
WO2018147645A1 (en) * 2017-02-07 2018-08-16 Innovative Technology Lab Co., Ltd. Method and apparatus for broadcast channel configuration and broadcast channel transmission and reception for communication system
US10813063B2 (en) * 2017-03-15 2020-10-20 Qualcomm Incorporated Synchronization signal transmission in a new radio wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222269A (zh) * 2007-01-10 2008-07-16 北京三星通信技术研究有限公司 小区搜索中指示同步信道偏移的设备和方法
WO2016203290A1 (en) * 2015-06-15 2016-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Variable synchronization block format
CN106455040A (zh) * 2016-11-30 2017-02-22 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537784A4 *

Also Published As

Publication number Publication date
US20200162182A1 (en) 2020-05-21
US10880031B2 (en) 2020-12-29
CN112134674A (zh) 2020-12-25
EP3836654A1 (en) 2021-06-16
CN112134673B (zh) 2022-03-25
CN110140392A (zh) 2019-08-16
CN112134674B (zh) 2023-01-24
US11444714B2 (en) 2022-09-13
EP3537784A1 (en) 2019-09-11
ES2867873T3 (es) 2021-10-21
EP3537784B1 (en) 2021-03-17
CN110140392B (zh) 2020-10-23
US20210075535A1 (en) 2021-03-11
EP3537784A4 (en) 2019-12-18
CN112134673A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
US11444714B2 (en) Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
US11411668B2 (en) Multi-codeword transmission method and apparatus
US20210226685A1 (en) Beam selection method, apparatus and system
US11405906B2 (en) Downlink control information transmission and reception methods and devices
WO2018227494A1 (zh) 测量间隔配置方法、装置、设备、终端及系统
WO2016049890A1 (zh) 数据传输方法和设备
US10756861B2 (en) Communication method, and related device and system
WO2017128883A1 (zh) 一种导频信号发送、信道估计方法及设备
KR20180100366A (ko) 다운링크 피드백 정보를 송신하는 방법, 기지국 및 단말 기기
US20220167339A1 (en) Beam failure recovery method and apparatus
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2018170877A1 (zh) 信息发送方法、装置、终端、接入网设备及系统
WO2018120156A1 (zh) 系统信息发送方法、系统信息接收方法及装置
WO2017121384A1 (zh) 一种无线帧的传输方法以及无线网络设备
WO2016169479A1 (zh) 一种数据传输方法及设备
WO2019184884A1 (zh) 通信方法、装置、设备及存储介质
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
WO2018170878A1 (zh) 资源指示方法、装置、接入网设备、终端及系统
WO2018171568A1 (zh) 一种信息传输方法、处理方法及装置
CN103796194A (zh) 载波汇聚中上行数据的传输方法和装置
WO2021160074A1 (zh) 信号解调方法、信号传输方法及相关装置
WO2018170693A1 (zh) 信号测量方法、装置、终端及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017900757

Country of ref document: EP

Effective date: 20190606

NENP Non-entry into the national phase

Ref country code: DE