WO2021223227A1 - 同步信号的传输方法、装置、设备及可读存储介质 - Google Patents

同步信号的传输方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2021223227A1
WO2021223227A1 PCT/CN2020/089230 CN2020089230W WO2021223227A1 WO 2021223227 A1 WO2021223227 A1 WO 2021223227A1 CN 2020089230 W CN2020089230 W CN 2020089230W WO 2021223227 A1 WO2021223227 A1 WO 2021223227A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
transmission
resource mapping
terminal
ssb
Prior art date
Application number
PCT/CN2020/089230
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/089230 priority Critical patent/WO2021223227A1/zh
Priority to EP20934713.7A priority patent/EP4149177A4/en
Priority to CN202410579330.4A priority patent/CN118283776A/zh
Priority to CN202080000945.7A priority patent/CN113924808B/zh
Priority to US17/923,494 priority patent/US20230189171A1/en
Publication of WO2021223227A1 publication Critical patent/WO2021223227A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a synchronization signal transmission method, device, equipment, and readable storage medium.
  • 3GPP defines three major directions for 5G application scenarios: Enhance Mobile Broadband (eMBB), Massive Machine Type of Communication (mMTC), Ultra Reliable & Low Latency Communication, URLLC), so the current 5G New Radio (NR) system is mainly designed for high-end terminals such as high-speed and low-latency, and cannot meet the requirements of some mid-range IoT devices.
  • eMBB Enhance Mobile Broadband
  • mMTC Massive Machine Type of Communication
  • URLLC Ultra Reliable & Low Latency Communication
  • NR 5G New Radio
  • the number of antennas is usually reduced, which leads to an increase in the duration of receiving a synchronization signal and thus an increase in the power consumption of the device.
  • the embodiments of the present disclosure provide a synchronization signal transmission method, device, device, and readable storage medium, which can reduce the power consumption of the device for receiving the synchronization signal while reducing the number of device antennas.
  • the technical solution is as follows.
  • the technical solution is as follows:
  • a synchronization signal transmission method which is applied to an access network device, and the method includes:
  • a transmission resource for transmitting a second synchronization signal is determined, where the second synchronization signal is a synchronization signal corresponding to the target service terminal.
  • a synchronization signal transmission method which is applied to a terminal, and the method includes:
  • a synchronization signal transmission device which is applied to access network equipment, and the device includes:
  • a processing module configured to determine a transmission period for transmitting the first synchronization signal
  • the processing module is further configured to transmit a second synchronization signal between the transmission periods of the two first synchronization signals, where the second synchronization signal is a synchronization signal corresponding to a target service terminal.
  • a synchronization signal transmission device which is applied to a terminal, and the device includes:
  • a processing module configured to determine a transmission period for receiving the first synchronization signal
  • the processing module is further configured to determine a transmission resource for transmitting a second synchronization signal between the two transmission periods of the first synchronization signal, wherein the terminal is a target corresponding to a target service type Business terminal.
  • a terminal in another aspect, includes:
  • Transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the synchronization signal transmission method described in the foregoing embodiment of the present disclosure.
  • an access network device in another aspect, and the access network device includes:
  • Transceiver connected to the processor
  • the processor is configured to load and execute executable instructions to implement the synchronization signal transmission method described in the foregoing embodiment of the present disclosure.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, the above at least one instruction, at least one program, code set or instruction The set is loaded and executed by the processor to implement the synchronization signal transmission method described in the above-mentioned embodiment of the present disclosure.
  • the target service terminal can receive the second synchronization signal, thereby reducing the total time for receiving multiple synchronization signals, and while reducing the number of device antennas, Reduce the power consumption of the device.
  • Fig. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a schematic structural diagram of a synchronization signal block provided by an exemplary embodiment of the present disclosure
  • Fig. 3 is a flowchart of a synchronization signal transmission method provided by an exemplary embodiment of the present disclosure
  • FIG. 4 is a flowchart of a synchronization signal transmission method provided by another exemplary embodiment of the present disclosure.
  • Fig. 5 is a structural block diagram of a synchronization signal transmission device provided by an exemplary embodiment of the present disclosure
  • Fig. 6 is a structural block diagram of a synchronization signal transmission device provided by another exemplary embodiment of the present disclosure.
  • Fig. 7 is a block diagram of a terminal provided by an exemplary embodiment of the present disclosure.
  • Fig. 8 is a block diagram of an access network device provided by an exemplary embodiment of the present disclosure.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system includes a core network 11, an access network 12, and a terminal 13.
  • the core network 11 includes several core network devices 110.
  • the core network equipment 110 includes access and mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), and user plane management functions (User Plane Function, UPF) and other equipment.
  • AMF access and mobility management functions
  • SMF session management functions
  • UPF User Plane Function
  • AMF uses To control terminal access rights and handover functions, SMF is used to provide server continuity and uninterrupted user experience of the server, such as: IP address and anchor point changes.
  • the access network 12 includes several access network devices 120.
  • the access network device 120 is a base station, and the base station is a device deployed in the access network to provide wireless communication functions for the terminal.
  • Base stations include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • LTE Long Term Evolution
  • eNodeB eNodeB
  • gNode B In the New Radio (NR) system
  • gNode B In the New Radio (NR) system
  • the name "base station” may be described and will change.
  • the above-mentioned devices that provide wireless communication functions for terminals are collectively referred to as access network devices.
  • the terminal 13 includes various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of terminals (User Equipment, UE), and mobile stations (Mobile Station). , MS), terminal (terminal device) and so on.
  • terminals User Equipment, UE
  • MS mobile stations
  • terminals terminals
  • the access network device 120 and the terminal 13 communicate with each other through a certain air interface technology, such as a Uu interface.
  • 3GPP defines three major directions for 5G application scenarios: Enhance Mobile Broadband (eMBB), Massive Machine Type of Communication (mMTC), Ultra Reliable & Low Latency Communication, URLLC), the current 5G NR is mainly designed for high-end terminals with high speed and low latency, which cannot meet the requirements for cost control and complexity reduction. Therefore, it is proposed to design a new IoT technology in the 5G NR system to cover the requirements of mid-range IoT NR-Lite devices.
  • Such mid-range IoT devices usually need to meet: 1. Low cost and low complexity; 2. A certain degree of coverage enhancement; 3. Low power consumption of the equipment.
  • the number of antennas is usually reduced in mid-range IoT devices, so as to achieve cost savings, reduce complexity, and reduce device size.
  • Synchronization Signal Block is a signal block broadcast by the cell to enable the terminal to find the cell. For example, when the terminal is turned on, it finds the corresponding cell by receiving the SSB; or, the terminal is in the NR system When moving, find a new cell by receiving the SSB.
  • Each cell will periodically send SSB in the downlink, such as: SSB is sent every 20ms or 50ms. Generally, the transmission period of SSB is in the range of 5ms to 160ms. Terminals within the cell signal range can receive the signal sent by the cell. SSB.
  • the SSB includes three parts: Primary Synchronization Signals (PSS), Secondary Synchronization Signals (SSS), and Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signals
  • SSS Secondary Synchronization Signals
  • PBCH Physical Broadcast Channel
  • Synchronization Signal Block 200 It includes the primary synchronization signal 210, the secondary synchronization signal 220, and the physical broadcast channel 230.
  • the SSB lasts for 4 Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and 240 sub-channels in the frequency domain. Carrier.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SSB can only be sent on a limited frequency set.
  • Table 1 the center frequency of SSB can only be within the frequency range shown in Table 1:
  • M and N are parameters for calculating the center frequency position.
  • the cell when the cell sends the SSB, it is sent periodically for all terminals in the cell, that is, the SSB broadcast by the cell will be received by all the terminals in the cell, and for mid-range IoT NR-Lite users , Due to the small number of antennas in the device, it is more difficult to receive SSB under the same receiving cycle than other high-end devices.
  • the SSB signal is weak at the edge of the cell, multiple SSBs need to be received Combine multiple SSBs and demodulate them to improve the received power of the SSB.
  • receiving multiple SSBs for merging needs to increase the receiving time, thereby increasing the power consumption of the device.
  • the present disclosure aims to reduce the receiving time when NR-Lite devices receive SSB.
  • the device can receive the SSB normally, thus, while reducing the receiving time for the NR-Lite device to receive the SSB, it does not affect the normal reception of the SSB by other devices.
  • Fig. 3 is a flowchart of a synchronization signal transmission method provided by an exemplary embodiment of the present disclosure.
  • the application of the method to an access network device is taken as an example for description. As shown in Fig. 3, the method includes:
  • Step 301 Determine a transmission period for transmitting the first synchronization signal.
  • the first synchronization signal is a unified synchronization signal sent by the base station to each terminal in the cell, and the first synchronization signal is sent according to a transmission period.
  • the transmission period is a period preset in the base station. In some embodiments, the transmission period is independently selected by the base station; in other embodiments, the transmission period is determined by the base station based on the communication protocol, or the transmission period is determined by the base station from the communication protocol. In some embodiments, the transmission period is determined by the base station and the UE through negotiation. That is, after the base station determines the transmission period, the first synchronization signal is broadcast during the transmission period, and both NR-Lite devices or non-NR-Lite devices within the cell range can receive the first synchronization signal broadcast by the base station.
  • the first synchronization signal is a synchronization signal indicating the reception of the terminal within the cell range.
  • the transmission period refers to the time domain resource or the frequency domain resource or the space domain resource used to transmit the first synchronization signal. That is, the transmission period is at least two resources with an interval for periodically broadcasting the first synchronization signal.
  • the first synchronization signal is a synchronization signal supported by the current NR system, and the structure of the first synchronization signal is shown in FIG.
  • the base station periodically sends the first synchronization signal, that is, the base station broadcasts the first synchronization signal every preset duration; illustratively, if the transmission period is 20 ms, the base station sends the first synchronization signal every 20 ms .
  • the transmission period can be selected from 5ms to 160ms.
  • Step 302 Determine a transmission resource for transmitting the second synchronization signal between the transmission periods of the two first synchronization signals, where the second synchronization signal is a synchronization signal corresponding to the target service terminal.
  • the transmission period refers to the transmission period used to transmit the first synchronization signal.
  • between two transmission periods refers to between any two transmission periods used to transmit the first synchronization signal, or between two adjacent transmission periods used to transmit the first synchronization signal. Between periods; the embodiments of the present disclosure do not limit this.
  • transmitting the second synchronization signal between two transmission periods refers to: the resource for transmitting the second synchronization signal does not completely overlap with the previous transmission period, and it is not limited whether it overlaps with the subsequent transmission period.
  • transmitting the second synchronization signal between transmission periods refers to: the resource for transmitting the second synchronization signal does not completely overlap with the subsequent transmission period, and it is not limited whether it overlaps with the previous transmission period.
  • transmitting the second synchronization signal between transmission periods refers to: the resource for transmitting the second synchronization signal does not overlap with the previous transmission period at all, and it is not limited whether it overlaps with the subsequent transmission period.
  • transmitting the second synchronization signal between transmission periods refers to: the resource for transmitting the second synchronization signal does not overlap with the subsequent transmission period at all, and it is not limited whether it overlaps with the previous transmission period.
  • the second synchronization signal is a synchronization signal corresponding to a mid-range IoT NR-Lite device, that is, if devices other than the NR-Lite device cannot receive the second synchronization signal, the first synchronization signal is required.
  • the synchronization signal and the second synchronization signal are different at the time of transmission, so that the second synchronization signal is not available to devices other than the NR-Lite device.
  • the second synchronization signal that is unavailable to other devices except NR-Lite devices refers to: devices other than NR-Lite devices cannot receive the second synchronization signal, or cannot recognize the second synchronization signal, or cannot decode the second synchronization signal.
  • the second synchronization signal, or the second synchronization signal, is directly discarded.
  • the difference between the first synchronization signal and the second synchronization signal includes at least one of the following conditions:
  • the first center frequency of the first synchronization signal meets the requirements of the specified frequency set; the second center frequency of the second synchronization signal does not meet the requirements of the specified frequency set;
  • the first resource mapping method for transmitting the first synchronization signal is different from the second resource mapping method for transmitting the second synchronization signal;
  • the first synchronization signal includes three parts: the first primary synchronization signal PSS, the first secondary synchronization signal SSS, and the first physical broadcast channel PBCH; and the second synchronization signal includes part of the first synchronization signal.
  • the transmission mode of the second synchronization signal is a transmission mode predefined by the protocol; or, the transmission mode of the second synchronization signal is a transmission mode pre-configured by the access network device, that is, the access network device sends control to the terminal Signaling, the control signaling includes an information field, and the information field is used to indicate the transmission mode of the second synchronization signal.
  • the control signaling can be any of the following: physical layer signaling, radio resource control (Radio Resource Control, RRC) signaling, and media access control element (MAC CE).
  • the first center frequency of the first synchronization signal meets the requirements of the specified frequency set; the second center frequency of the second synchronization signal does not meet the requirements of the specified frequency set.
  • the SSB can only be sent on a limited set of frequencies, such as the specified frequency set shown in Table 1 above.
  • the first center frequency of the first SSB needs to meet the requirements of the specified frequency set shown in Table 1; and because the second synchronization signal is a synchronization signal that indicates that the target service terminal receives, for example: the second synchronization signal indicates NR-Lite The synchronization signal received by the terminal, so the second center frequency of the second SSB does not meet the requirements of the specified frequency set shown in Table 1, so that other terminals except the NR-Lite terminal cannot receive the second SSB; and the NR-Lite The terminal is configured to know the second center frequency of the second SSB.
  • the frequency set corresponding to the second center frequency of the second SSB is predefined by the protocol; in some embodiments, the frequency set corresponding to the second center frequency of the second SSB is in the access network device Pre-configured, when the access network device configures the terminal with a frequency set corresponding to the second center frequency, the access network device sends control signaling to the target service terminal.
  • the control signaling includes an information field, which is used to indicate The set of frequencies corresponding to the center frequency of the second SSB; in some embodiments, the second center frequency of the second SSB is determined by the access network device based on a plurality of candidate parameters given by the protocol, that is, the access network device points to the target
  • the service terminal sends control signaling, and the control signaling includes an information field.
  • the information field is used to indicate that one or more of the multiple candidate parameters is the frequency set corresponding to the center frequency of the second SSB.
  • the information field may be the corresponding The identifier of the frequency set corresponding to the center frequency of the second SSB.
  • the frequency set corresponding to the center frequency of the second SSB may include one or more frequencies.
  • the information field may be the quantity value itself of the frequency set corresponding to the center frequency of the second SSB, or may be an identifier used to indicate the frequency set corresponding to the center frequency of the second SSB; wherein the access network device
  • the corresponding relationship between the frequency set and the identifier corresponding to the center frequency of the second SSB of the terminal may be determined according to the protocol, or configured by the access network device to the terminal, or determined through negotiation between the access network device and the terminal, or determined by the terminal and reported to the access network device. Network equipment.
  • the access network device When the access network device transmits the first synchronization signal and the second synchronization signal, it transmits the first synchronization signal according to the specified frequency set requirements according to the transmission period, and according to the center frequency of the second SSB between the transmission periods of the first synchronization signal The corresponding frequency set transmits the second synchronization signal.
  • the first resource mapping manner for transmitting the first synchronization signal may be different from the second resource mapping manner for transmitting the second synchronization signal.
  • the resource mapping method includes at least one of the following: the number of OFDM symbols occupied by the transmission of the SSB, the number of frequency resources occupied by the transmission of the SSB, the resource mapping number of the OFDM symbol occupied by the transmission of the SSB, and the PSS in the SSB , SSS and PBCH relative position relationship.
  • the first resource mapping mode includes the number of first orthogonal frequency division multiplexing OFDM symbols occupied by the transmission of the first SSB
  • the second resource mapping mode includes the second resource mapping mode occupied by the transmission of the second SSB.
  • the number of orthogonal frequency division multiplexing OFDM symbols, the number of the first OFDM symbol is different from the number of the second OFDM symbol.
  • the first SSB is a synchronization signal supported by the current system, and the format of the first SSB is consistent with the unified SSB format in the current system, that is, the first SSB lasts 4 OFDM symbols in the time domain; SSB is a synchronization signal designed for the target service terminal, and the second SSB is a synchronization signal that cannot be received by other terminals except the target service terminal.
  • the first SSB lasts for 4 OFDM symbols in the time domain
  • the second SSB is in time
  • the second SSB lasts for 3 OFDM symbols in the time domain, or the second SSB lasts for 5 OFDM symbols in the time domain.
  • the number of OFDM symbols occupied by the second SSB in the time domain can be more or less, but the second SSB is in time
  • the number of OFDM symbols occupied on the domain is not four.
  • the number of second OFDM symbols occupied by the second SSB in the time domain is predefined by the protocol; in some embodiments, the number of second OFDM symbols occupied by the second SSB in the time domain is Pre-configured in the network access device, when the access network device configures the terminal with the number of OFDM symbols occupied by the second SSB in the time domain, the access network device sends control signaling to the target service terminal.
  • the control signaling includes Information field, which is used to indicate the number of OFDM symbols occupied by the second SSB in the time domain.
  • the information field can be the value of the number of OFDM symbols itself, or can be an identifier used to indicate the number of OFDM symbols; wherein the access network device and the terminal have a correspondence between the number of OFDM symbols and the identifier, The corresponding relationship may be determined according to the protocol, or may be configured to the terminal by the access network device.
  • the first resource mapping method includes the number of first frequency resources occupied by the transmission of the first SSB
  • the second resource mapping method includes the number of second frequency resources occupied by the transmission of the second SSB.
  • the number of first frequency resources is different from the number of second frequency resources.
  • the first SSB is a synchronization signal supported by the current system, and the format of the first SSB is consistent with the unified SSB format in the current system, that is, the first SSB occupies 240 subcarriers in the frequency domain; and the second SSB Is a synchronization signal designed for the target service terminal, the second SSB is a synchronization signal that cannot be received by other terminals except the target service terminal; for example, when the first SSB occupies 240 subcarriers in the frequency domain, the second SSB is in the frequency domain.
  • the number of second frequency resources occupied by the second SSB in the frequency domain is predefined by the protocol. In some embodiments, the number of second frequency resources occupied by the second SSB in the frequency domain is the access network Pre-configured in the device, when the access network device configures the terminal with the number of frequency resources occupied by the second SSB in the frequency domain, the access network device sends control signaling to the target service terminal, and the control signaling includes information fields, This information field is used to indicate the number of frequency resources occupied by the second SSB in the frequency domain.
  • the information field may be the quantity value of the second frequency resource quantity itself, or may be an identifier used to indicate the quantity of the second frequency resource; wherein the access network device and the terminal have a difference between the second frequency resource quantity and the identifier.
  • the corresponding relationship between the two, the corresponding relationship may be determined according to the protocol, or may be configured to the terminal by the access network device.
  • the first resource mapping method includes the first resource mapping number for transmitting the OFDM symbol occupied by the first SSB
  • the second resource mapping method includes the second resource mapping number for transmitting the OFDM symbol occupied by the second SSB.
  • the resource mapping number, the first resource mapping number is different from the second resource mapping number.
  • the first SSB occupies 4 OFDM symbols in the time domain, where the resource numbers mapped to the 4 OFDM symbols are 3, 4, 5, and 6, that is, the first SSB is sequentially mapped to the The 3rd OFDM symbol, the 4th OFDM symbol, the 5th OFDM symbol and the 6th OFDM symbol; and the second SSB occupies 4 OFDM symbols in the time domain, and the resource numbers of the 4 OFDM symbols mapped respectively are 6, 3, 5, 4, that is, the second SSB is sequentially mapped to the 6th OFDM symbol, the 3rd OFDM symbol, the 5th OFDM symbol, and the 4th OFDM symbol in the time domain.
  • the resource mapping number of the OFDM symbol occupied by the second SSB in the time domain is predefined by the protocol; in some embodiments, the resource mapping number of the OFDM symbol occupied by the second SSB in the time domain is Pre-configured in the network access device, when the access network device configures the terminal with the resource mapping number of the OFDM symbol occupied by the second SSB, the access network device sends control signaling to the target service terminal, and the control signaling includes the information field , This information field is used to indicate the resource mapping number of the OFDM symbol occupied by the second SSB.
  • the information field may be the value itself of the resource mapping number of the OFDM symbol occupied by the second SSB, or may be an identifier used to indicate the resource mapping number of the OFDM symbol occupied by the second SSB; wherein the access network device
  • the corresponding relationship between the resource mapping number and the identifier of the OFDM symbol occupied by the terminal with the second SSB may be determined according to the protocol or configured by the access network device to the terminal.
  • the first SSB includes the first primary synchronization signal PSS, the first secondary synchronization signal SSS, and the first physical broadcast channel PBCH.
  • the first PSS, the first SSS, and the first PBCH are in the first SSB.
  • the second SSB includes the second primary synchronization signal PSS, the second secondary synchronization signal SSS, and the second physical broadcast channel PBCH.
  • the second PSS, the second SSS and the second PBCH are in the second SSB They are arranged in a second relative positional relationship, wherein the first relative positional relationship is different from the second relative positional relationship.
  • the first SSB is a synchronization signal supported by the current system, and the format of the first SSB is consistent with the unified SSB format in the current system, that is, the first PSS, the first SSS, and the first PBCH in the first SSB
  • the first relative position relationship satisfies the position relationship of PSS, SSS and PBCH in the SSB as shown in Figure 2; while the second SSB is a synchronization signal designed for the target service terminal, the second SSB is a terminal other than the target service terminal
  • the synchronization signal cannot be received, so the second relative positional relationship among the second PSS, the second SSS, and the second PBCH in the second SSB is different from the positional relationship among the PSS, SSS, and PBCH in the SSB shown in FIG. 2.
  • the positions of the second SSS and the second PSS in the second SSB are opposite to the positions of the first SSS and the first PSS in the first SSB.
  • the second relative positional relationship of the second PSS, the second SSS, and the second PBCH in the second SSB may be pre-defined by the protocol or pre-configured in the access network equipment.
  • the access network device sends control signaling to the target service terminal.
  • the control signaling includes an information field, which is used to indicate the second SSB in the second SSB. 2.
  • the information field may be the quantity value of the second relative position relationship itself, or may be an identifier used to indicate the second relative position relationship; wherein the access network device and the terminal have a second relative position relationship and an identifier.
  • the corresponding relationship may be determined according to the protocol, or configured by the access network device to the terminal, or determined through negotiation between the access network device and the terminal, or determined by the terminal and reported to the access network device. Network equipment.
  • the second synchronization signal may include part of the first synchronization signal.
  • the second synchronization signal includes only a part of the first PSS, the first SSS, and the first PBCH, for example: the second synchronization signal includes only the first PSS; or, the second synchronization signal only includes The first SSS is included; or, only the first PBCH is included in the second synchronization signal;
  • the second synchronization signal includes only two of the first PSS, the first SSS, and the first PBCH.
  • the second synchronization signal includes only the first PSS and the first PBCH; or, the second synchronization signal includes only the first PSS and the first PBCH; or The second synchronization signal only includes the first SSS and the first PBCH; or, the second synchronization signal only includes the first PSS and the first SSS;
  • the second synchronization signal includes the first PSS, the first SSS, and part of the first PBCH, that is, the first PBCH in the second synchronization signal is not the complete first PBCH, but the first SSB Part of the first PBCH;
  • the second synchronization signal includes part of the first PBCH. In some embodiments, the second synchronization signal includes part of the first PBCH, and may also include the first PSS and/or the first SSS; the first PBCH in the second synchronization signal is not the complete first PBCH, but the first The part of the first PBCH in the SSB.
  • the second synchronization signal does not include the first PSS, the first SSS, and the complete first PBCH at the same time.
  • the content included in the second SSB may be predefined by the protocol or pre-configured in the access network device.
  • the access network device configures the terminal with the content included in the second SSB
  • the access network device sends control signaling to the target service terminal.
  • the control signaling includes an information field, and the information field is used to indicate the content included in the second SSB.
  • the information field may be the field itself of the content included in the second SSB, or an identifier used to indicate the content included in the second SSB; wherein the access network equipment and the terminal have the content included in the second SSB
  • the corresponding relationship between the content and the identifier may be determined according to the protocol, or may be configured by the access network device to the terminal.
  • the synchronization signal transmission method increases the transmission of the second synchronization signal between the transmission periods of the first synchronization signal, so that the target service terminal can receive the second synchronization signal, thereby reducing
  • the total duration of receiving multiple synchronization signals reduces the power consumption of the device while reducing the number of device antennas.
  • Fig. 4 is a flowchart of a synchronization signal transmission method provided by an exemplary embodiment of the present disclosure.
  • the application of the method to the communication system shown in Fig. 1 is taken as an example for description.
  • the method includes:
  • Step 401 The access network device determines a transmission period for transmitting the first synchronization signal.
  • the first synchronization signal is a unified synchronization signal sent by the base station to each terminal in the cell, and the first synchronization signal is sent according to a transmission period.
  • the transmission period is a period preset in the base station. In some embodiments, the transmission period is independently selected by the base station; in other embodiments, the transmission period is determined by the base station based on the communication protocol, or the transmission period is determined by the base station from the communication protocol. In some embodiments, the transmission period is determined by the base station and the UE through negotiation. That is, after the base station determines the transmission period, the first synchronization signal is broadcast during the transmission period, and both NR-Lite devices or non-NR-Lite devices within the cell range can receive the first synchronization signal broadcast by the base station.
  • the first synchronization signal is a synchronization signal indicating the reception of the terminal within the cell range.
  • Step 402 The terminal determines a transmission period for receiving the first synchronization signal.
  • the terminal is located within the cell range, so it receives the first synchronization signal sent by the access network device according to the transmission period.
  • Step 403 The access network device determines a transmission resource for transmitting the second synchronization signal between the transmission periods of the two first synchronization signals, where the second synchronization signal is a synchronization signal corresponding to the target service terminal.
  • the second synchronization signal is a synchronization signal corresponding to a mid-range IoT NR-Lite device, that is, if devices other than the NR-Lite device cannot receive the second synchronization signal, the first synchronization signal is required.
  • the synchronization signal and the second synchronization signal are different at the time of transmission, so that devices other than the NR-Lite device cannot receive the second synchronization signal.
  • Step 404 The terminal determines a transmission resource for transmitting the second synchronization signal between the transmission periods of the two first synchronization signals.
  • the transmission period refers to the transmission period used to transmit the first synchronization signal.
  • between two transmission periods refers to between any two transmission periods used to transmit the first synchronization signal, or between two adjacent transmission periods used to transmit the first synchronization signal. Between periods; the embodiments of the present disclosure do not limit this.
  • the terminal is a mid-range IoT NR-Lite device.
  • the difference between the first synchronization signal and the second synchronization signal includes at least one of the following conditions:
  • the first center frequency of the first synchronization signal meets the requirements of the specified frequency set; the second center frequency of the second synchronization signal does not meet the requirements of the specified frequency set;
  • the first resource mapping method for receiving the first synchronization signal is different from the second resource mapping method for receiving the second synchronization signal;
  • the first resource mapping method includes the number of first OFDM symbols used to receive the first synchronization signal; the second resource mapping method includes the number of second OFDM symbols used to receive the second synchronization signal; The number of OFDM symbols is different from the number of second OFDM symbols.
  • the first resource mapping manner includes the number of first frequency resources used to receive the first synchronization signal; the second resource mapping manner includes the number of second frequency resources used to receive the second synchronization signal; The number of first frequency resources is different from the number of second frequency resources.
  • the first resource mapping method includes the first resource mapping number of the OFDM symbol used to receive the first synchronization signal; the second resource mapping method includes the second resource mapping number of the OFDM symbol used to receive the second synchronization signal. Resource mapping number; then the first resource mapping number is different from the second resource mapping number.
  • the first synchronization signal includes the first primary synchronization signal PSS, the first secondary synchronization signal SSS, and the first physical broadcast channel PBCH.
  • the first PSS, the first SSS, and the first PBCH are in the first synchronization signal.
  • the second synchronization signal includes the second primary synchronization signal PSS, the second secondary synchronization signal SSS and the second physical broadcast channel PBCH.
  • the second PSS, the second SSS and the second PBCH are in the second synchronization
  • the signals are arranged in a second relative position relationship; the first relative position relationship is different from the second relative position relationship.
  • the first synchronization signal includes three parts: the first primary synchronization signal PSS, the first secondary synchronization signal SSS, and the first physical broadcast channel PBCH; and the second synchronization signal includes part of the first synchronization signal.
  • the transmission mode of the second synchronization signal is a transmission mode predefined by the protocol; or, the transmission mode of the second synchronization signal is a transmission mode pre-configured by the access network equipment, that is, the terminal receives the control signaling, and the control
  • the signaling includes an information field, and the information field is used to indicate the transmission mode of the second synchronization signal.
  • the control signaling may be any of the following: physical layer signaling, RRC signaling, and MAC CE.
  • the synchronization signal transmission method increases the transmission of the second synchronization signal between the transmission periods of the first synchronization signal, so that the target service terminal can receive the second synchronization signal, thereby reducing
  • the total duration of receiving multiple synchronization signals reduces the power consumption of the device while reducing the number of device antennas.
  • Fig. 5 is a structural block diagram of a synchronization signal transmission device provided by an exemplary embodiment of the present disclosure. As shown in Fig. 5, the device includes:
  • the processing module 510 is configured to transmit the first synchronization signal according to the transmission period
  • the processing module 510 is further configured to transmit a second synchronization signal between the transmission periods, where the second synchronization signal is a synchronization signal indicating the reception of the target service terminal.
  • the second synchronization signal is a synchronization signal corresponding to a mid-range Internet of Things NR-Lite device.
  • the first center frequency of the first synchronization signal meets a requirement of a prescribed frequency set
  • the second center frequency of the second synchronization signal does not meet the requirement of the prescribed frequency set.
  • the first resource mapping manner for transmitting the first synchronization signal is different from the second resource mapping manner for transmitting the second synchronization signal.
  • the first resource mapping manner includes the number of first orthogonal frequency division multiplexing OFDM symbols occupied for transmitting the first synchronization signal
  • the second resource mapping manner includes the number of second orthogonal frequency division multiplexing OFDM symbols occupied for transmitting the second synchronization signal
  • the number of the first OFDM symbols is different from the number of the second OFDM symbols.
  • the first resource mapping manner includes the number of first frequency resources occupied for transmitting the first synchronization signal
  • the second resource mapping manner includes the number of second frequency resources occupied for transmitting the second synchronization signal
  • the number of the first frequency resources is different from the number of the second frequency resources.
  • the first resource mapping manner includes a first resource mapping number of an OFDM symbol occupied by the transmission of the first synchronization signal
  • the second resource mapping manner includes the second resource mapping number of the OFDM symbol occupied by the transmission of the second synchronization signal
  • the first resource mapping number is different from the second resource mapping number.
  • the first synchronization signal includes a first primary synchronization signal PSS, a first secondary synchronization signal SSS, and a first physical broadcast channel PBCH, and the first PSS, the first SSS, and the The first PBCHs are arranged in a first relative position relationship in the first synchronization signal;
  • the second synchronization signal includes a second primary synchronization signal PSS, a second secondary synchronization signal SSS, and a second physical broadcast channel PBCH.
  • the second PSS, the second SSS, and the second PBCH are in the second synchronization signal.
  • the signals are arranged in a second relative position relationship;
  • the first relative positional relationship is different from the second relative positional relationship.
  • the first synchronization signal includes a first primary synchronization signal PSS, a first secondary synchronization signal SSS, and a first physical broadcast channel PBCH;
  • the second synchronization signal includes part of the first synchronization signal.
  • the transmission mode of the second synchronization signal is a transmission mode predefined by the protocol
  • the device further includes: a sending module 520 configured to send control signaling to the terminal, the control signaling includes an information field, and the information field is used to indicate a transmission mode of the second synchronization signal.
  • a sending module 520 configured to send control signaling to the terminal, the control signaling includes an information field, and the information field is used to indicate a transmission mode of the second synchronization signal.
  • Fig. 6 is a structural block diagram of a synchronization signal transmission device provided by an exemplary embodiment of the present disclosure. As shown in Fig. 6, the device includes:
  • the processing module 610 is configured to determine a transmission period for receiving the first synchronization signal
  • the processing module 610 is further configured to determine a transmission resource for transmitting a second synchronization signal between the two transmission periods of the first synchronization signal, where the terminal is corresponding to the target service type Target business terminal.
  • the terminal is a mid-range IoT NR-Lite device.
  • the first center frequency of the first synchronization signal meets a requirement of a prescribed frequency set
  • the second center frequency of the second synchronization signal does not meet the requirement of the prescribed frequency set.
  • the first resource mapping manner for receiving the first synchronization signal is different from the second resource mapping manner for receiving the second synchronization signal.
  • the first resource mapping manner includes the number of first OFDM symbols used for receiving the first synchronization signal
  • the second resource mapping manner includes the number of second OFDM symbols used for receiving the second synchronization signal
  • the number of the first OFDM symbols is different from the number of the second OFDM symbols.
  • the first resource mapping manner includes the number of first frequency resources used for receiving the first synchronization signal
  • the second resource mapping manner includes the number of second frequency resources used for receiving the second synchronization signal
  • the number of the first frequency resources is different from the number of the second frequency resources.
  • the first resource mapping manner includes a first resource mapping number of an OFDM symbol used for receiving the first synchronization signal
  • the second resource mapping manner includes a second resource mapping number of an OFDM symbol used for receiving the second synchronization signal
  • the first resource mapping number is different from the second resource mapping number.
  • the first synchronization signal includes a first primary synchronization signal PSS, a first secondary synchronization signal SSS, and a first physical broadcast channel PBCH, and the first PSS, the first SSS, and the The first PBCHs are arranged in a first relative position relationship in the first synchronization signal;
  • the second synchronization signal includes a second primary synchronization signal PSS, a second secondary synchronization signal SSS, and a second physical broadcast channel PBCH.
  • the second PSS, the second SSS, and the second PBCH are in the second synchronization
  • the signals are arranged in a second relative position relationship;
  • the first relative positional relationship is different from the second relative positional relationship.
  • the first synchronization signal includes a first primary synchronization signal PSS, a first secondary synchronization signal SSS, and a first physical broadcast channel PBCH;
  • the second synchronization signal includes part of the first synchronization signal.
  • the transmission mode of the second synchronization signal is a transmission mode predefined by the protocol
  • the device further includes a receiving module 620 configured to receive control signaling, the control signaling includes an information field, and the information field is used to indicate a transmission mode of the second synchronization signal.
  • the synchronization signal transmission device provided by the embodiment of the present disclosure increases the transmission of the second synchronization signal between the transmission periods of the first synchronization signal, so that the target service terminal can receive the second synchronization signal, thereby reducing
  • the total duration of receiving multiple synchronization signals reduces the power consumption of the device while reducing the number of device antennas.
  • the synchronization signal transmission device provided in the above-mentioned embodiment only uses the division of the above-mentioned functional modules as an example.
  • the above-mentioned function allocation can be completed by different functional modules as required, that is, the internal equipment
  • the structure is divided into different functional modules to complete all or part of the content described above.
  • FIG. 7 shows a schematic structural diagram of a terminal provided by an exemplary embodiment of the present disclosure.
  • the terminal includes: a processor 701, a receiver 702, a transmitter 703, a memory 704, and a bus 705.
  • the processor 701 includes one or more processing cores, and the processor 701 executes various functional applications and information processing by running software programs and modules.
  • the receiver 702 and the transmitter 703 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 704 is connected to the processor 701 through the bus 705.
  • the memory 704 may be used to store at least one instruction, and the processor 701 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 704 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • non-transitory computer-readable storage medium including instructions, such as a memory including instructions, which can be executed by the processor of the terminal to complete the synchronization signal transmission method described above. Method of execution.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a non-transitory computer-readable storage medium When the instructions in the non-transitory computer storage medium are executed by the processor of the terminal, the terminal can execute the aforementioned synchronization signal transmission method.
  • Fig. 8 is a block diagram showing an access network device 800 according to an exemplary embodiment.
  • the access network device 800 is a base station.
  • the access network device 800 includes a processor 801, a receiver 802, a transmitter 803, and a memory 804.
  • the receiver 802, the transmitter 803, and the memory 804 are respectively connected to the processor 801 through a bus.
  • the processor 801 includes one or more processing cores, and the processor 801 executes the method executed by the access network device in the synchronization signal transmission method provided by the embodiment of the present disclosure by running software programs and modules.
  • the memory 804 can be used to store software programs and modules. Specifically, the memory 804 may store an operating system 841 and an application module 842 required by at least one function.
  • the receiver 802 is used to receive communication data sent by other devices, and the transmitter 803 is used to send communication data to other devices.
  • An exemplary embodiment of the present disclosure also provides a communication system, the system including: a terminal and an access network device;
  • the access network equipment includes the synchronization signal transmission device provided in the embodiment shown in FIG. 5;
  • the terminal includes the synchronization signal transmission device provided in the embodiment shown in FIG. 6.
  • An exemplary embodiment of the present disclosure also provides a communication system, the communication system including: a terminal and an access network device;
  • the terminal includes the terminal provided in the embodiment shown in FIG. 7;
  • the access network equipment includes the access network equipment provided in the embodiment shown in FIG. 8.
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium in which at least one instruction, at least one program, code set or instruction set is stored, the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the steps performed by the terminal or the access network device in the synchronization signal transmission method provided by the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种同步信号的传输方法、装置、设备及可读存储介质,涉及通信领域。该方法包括:确定用于传输第一同步信号的传输周期;在两个所述第一同步信号的所述传输周期之间,确定用于传输第二同步信号的传输资源,其中,所述第二同步信号为对应于目标业务终端的同步信号。通过在第一同步信号的传输周期之间增加传输第二同步信号,从而目标业务终端能够接收到该第二同步信号,从而减少接收多个同步信号的总时长,在减少设备天线数量的同时,减小了设备的功耗。

Description

同步信号的传输方法、装置、设备及可读存储介质 技术领域
本公开涉及通信领域,特别涉及一种同步信号的传输方法、装置、设备及可读存储介质。
背景技术
3GPP定义了5G应用场景的三大方向:移动宽带增强(Enhance Mobile Broadband,eMBB)、大规模物联网(Massive Machine Type of Communication,mMTC)、超高可靠超低时延通信(Ultra Reliable&Low Latency Communication,URLLC),所以目前的5G新空口(New Radio,NR)系统主要是针对高速率低时延等高端终端设计的,而无法满足一些中端物联网设备的要求。
在一些终端物联网设备中,为了节约成本、减小设备尺寸通常会减少天线数量,从而导致接收同步信号的时长增加,从而设备功耗增加。
发明内容
本公开实施例提供了一种同步信号的传输方法、装置、设备及可读存储介质,能够在减少设备天线数量的同时降低设备接收同步信号的功耗。所述技术方案如下。所述技术方案如下:
一方面,提供了一种同步信号的传输方法,应用于接入网设备,所述方法包括:
确定用于传输第一同步信号的传输周期;
在两个所述传输周期之间,确定用于传输第二同步信号的传输资源,其中,所述第二同步信号为对应于目标业务终端的同步信号。
另一方面,提供了一种同步信号的传输方法,应用于终端,所述方法包括:
确定接收第一同步信号的传输周期;
在两个所述传输周期之间,确定用于传输第二同步信号的传输资源,其中,所述终端为目标业务类型对应的目标业务终端
另一方面,提供了一种同步信号的传输装置,应用于接入网设备,所述装 置包括:
处理模块,被配置为确定用于传输第一同步信号的传输周期;
所述处理模块,还被配置为在两个所述第一同步信号的所述传输周期之间传输第二同步信号,其中,所述第二同步信号为对应于目标业务终端的同步信号。
另一方面,提供了一种同步信号的传输装置,应用于终端,所述装置包括:
处理模块,被配置为确定接收第一同步信号的传输周期;
所述处理模块,还被配置为在两个所述第一同步信号的所述传输周期之间,确定用于传输第二同步信号的传输资源,其中,所述终端为目标业务类型对应的目标业务终端。
另一方面,提供了一种终端,该终端包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上述本公开实施例所述的同步信号的传输方法。
另一方面,提供了一种接入网设备,该接入网设备包括:
处理器;
与处理器相连的收发器;
其中,处理器被配置为加载并执行可执行指令以实现如上述本公开实施例所述的同步信号的传输方法。
另一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,上述至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上述本公开实施例所述的同步信号的传输方法。
本公开实施例提供的技术方案带来的有益效果至少包括:
通过在第一同步信号的传输周期之间增加传输第二同步信号,从而目标业务终端能够接收到该第二同步信号,从而减少接收多个同步信号的总时长,在减少设备天线数量的同时,减小了设备的功耗。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的通信系统的框图;
图2是本公开一个示例性实施例提供的同步信号块的结构示意图;
图3是本公开一个示例性实施例提供的同步信号的传输方法的流程图;
图4是本公开另一个示例性实施例提供的同步信号的传输方法的流程图;
图5是本公开一个示例性实施例提供的同步信号的传输装置的结构框图;
图6是本公开另一个示例性实施例提供的同步信号的传输装置的结构框图;
图7是本公开一个示例性实施例提供的终端的框图;
图8是本公开一个示例性实施例提供的接入网设备的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1示出了本公开一个示意性实施例提供的通信系统的框图,该通信系统包括:核心网11、接入网12和终端13。
核心网11中包括若干个核心网设备110。核心网设备110包括接入和移动管理功能(Access and Mobility Management Function,AMF),会话管理功能(Session Management Function,SMF)以及用户面管理功能(User Plane Function,UPF)等设备,其中,AMF用于控制终端的接入权限以及切换等功能,SMF用于提供服务器连续性、服务器的不间断用户体验,如:IP地址和锚点变化等。
接入网12中包括若干个接入网设备120。在一些实施例中,接入网设备120是基站,基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在长期演进(Long Term Evolution,LTE)系统中,称为eNodeB或者eNB;在5G新空口(New Radio,NR)系统中,称为gNode B或者gNB。随着通信技术的演 进,“基站”这一名称可能描述,会变化。为方便本公开实施例中,上述为终端提供无线通信功能的装置统称为接入网设备。
终端13包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的终端(User Equipment,UE),移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
在LTE 4G系统中,为了支持物联网业务,提出了物联网(Machine Type Communication,MTC)和窄带物联网(Narrow Band Internet of Things,NB-IoT)两大技术,这两大技术主要是针对低速率、高时延等场景,比如:抄表、环境监测等场景。但随着物联网业务的不断发展,上述两种物联网技术的速率和时延难以满足如视频监控、智能家居、可穿戴设备、工业传感监测等业务的要求。
3GPP定义了5G应用场景的三大方向:移动宽带增强(Enhance Mobile Broadband,eMBB)、大规模物联网(Massive Machine Type of Communication,mMTC)、超高可靠超低时延通信(Ultra Reliable&Low Latency Communication,URLLC),目前的5G NR主要是针对高速率低时延的高端终端设计的,无法满足控制成本、降低复杂度的要求。故,提出在5G NR系统中设计一种新的物联网技术用于覆盖中端物联网NR-Lite设备的要求,这种中端物联网设备通常需要满足:1、造价低,复杂度低;2、一定程度的覆盖增强;3、设备功耗低。为了满足上述要求,通常会在中端物联网设备中减少天线的数量,从而达到节约成本以及降低复杂度,减小设备尺寸的要求。
同步信号块(Synchronization Signal Block,SSB)是一种由小区进行广播,用于使终端找到小区的信号块,如:在终端开机时,通过接收SSB找到对应的小区;或,终端在NR系统内移动时,通过接收SSB找到新的小区。每个小区会在下行周期性的发送SSB,如:每隔20ms或50ms发送一次SSB,通常,SSB的发送周期在5ms至160ms范围内,在小区信号范围内的终端都能接收到小区发送的SSB。
SSB包括主同步信号(Primary Synchronization Signals,PSS)、辅同步信号(Secondary Synchronization Signals,SSS)、物理广播信道(Physical Broadcast  Channel,PBCH)三部分,示意性的,请参考图2,同步信号块200中包括主同步信号210、辅同步信号220和物理广播信道230,其中,SSB在时域上持续4个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,在频域上持续240个子载波。同时,为了降低SSB的检测复杂度,SSB只能在有限的频率集上发送,示意性的,如下表一所示,SSB的中心频率只能在如表一所示的频率范围内:
表一
Figure PCTCN2020089230-appb-000001
其中,M、N为计算中心频率位置的参数。
当前NR系统中,小区在发送SSB时,是针对小区内的所有终端周期性发送,也即小区广播的SSB会被小区内的所有终端接收到,而对于中端物联网NR-Lite用户而言,由于设备中的天线数量较少,在同样的接收周期下,相较于其他高端设备,对SSB进行接收的难度较大,当位于小区边缘,SSB的信号较弱时,需要接收多个SSB进行合并,将多个SSB合并和解调处理,从而提高SSB的接收功率。然而,接收多个SSB进行合并需要增加接收时长,从而增加设备功耗。
由于NR-Lite设备对SSB进行接收时的接收难度较大,从而导致接收时长较长,从而本公开旨在降低NR-Lite设备对SSB进行接收时的接收时长,而由于NR系统中的其他高端设备能够正常对SSB进行接收,从而,在降低NR-Lite设备对SSB进行接收的接收时长的同时,不影响其他设备对SSB的正常接收。
图3是本公开一个示例性实施例提供的同步信号的传输方法的流程图,以该方法应用于接入网设备中为例进行说明,如图3所示,该方法包括:
步骤301,确定用于传输第一同步信号的传输周期。
在一些实施例中,第一同步信号为基站发送至小区内的每个终端的统一的同步信号,且第一同步信号按照传输周期进行发送。传输周期为基站中预先设 置的周期,在一些实施例中,传输周期为基站自主选择的;在另一些实施例中,传输周期为基站基于通信协议确定的,或是传输周期为基站从通信协议的多个候选参数中确定的;在一些实施例中传输周期为基站与UE协商确定的。也即,在基站确定传输周期后,在传输周期内广播第一同步信号,在小区范围内的无论是NR-Lite设备还是非NR-Lite设备都能够接收到基站广播的第一同步信号。
也即,第一同步信号为指示小区范围内的终端接收的同步信号。
在本公开实施例中,传输周期是指用于传输所述第一同步信号的时域资源或频域资源或空域资源。即,传输周期为具有间隔的至少两个资源,以用于周期性的广播第一同步信号。
示意性的,第一同步信号为当前NR系统所支持的同步信号,且第一同步信号的结构如图2所示,第一同步信号的中心频率满足表一所示的规定频率集合要求。在一些实施例中,基站周期性发送第一同步信号,也即基站每隔预设时长广播一次第一同步信号;示意性的,传输周期为20ms,则基站每隔20ms发送一次第一同步信号。通常,传输周期的选择范围在5ms至160ms之间。
步骤302,在两个第一同步信号的传输周期之间,确定用于传输第二同步信号的传输资源,其中,第二同步信号为对应于目标业务终端的同步信号。
其中,传输周期是指用于传输第一同步信号的传输周期。
在一些实施例中,在两个传输周期之间,是指在任意两个用于传输第一同步信号的传输周期之间,或是在相邻的两个用于传输第一同步信号的传输周期之间;本公开实施例并不对此做出限定。
在一些实施例中,在两个传输周期之间传输第二同步信号是指:传输第二同步信号的资源,与前一传输周期不完全重叠,且不限定是否与后一传输周期重叠。在一些实施例中,传输周期之间传输第二同步信号是指:传输第二同步信号的资源,与后一传输周期不完全重叠,且不限定是否与前一传输周期重叠。在一些实施例中,传输周期之间传输第二同步信号是指:传输第二同步信号的资源,与前一传输周期完全不重叠,且不限定是否与后一传输周期重叠。在一些实施例中,传输周期之间传输第二同步信号是指:传输第二同步信号的资源,与后一传输周期完全不重叠,且不限定是否与前一传输周期重叠。在一些实施例中,第二同步信号为对应于中端物联网NR-Lite设备的同步信号,也即,除NR-Lite设备以外的其他设备无法接收到该第二同步信号,则需要第一同步信号和第二同步信号在发送时存在不同,从而除NR-Lite设备以外的其他设备不可用 的第二同步信号。其中除NR-Lite设备以外的其他设备不可用的第二同步信号是指:除NR-Lite设备以外的其他设备无法接收该第二同步信号,或无法识别该第二同步信号,或无法解码该第二同步信号,或第二同步信号会直接丢弃。
在一些实施例中,第一同步信号和第二同步信号的不同包括以下至少一种情况:
第一,第一同步信号的第一中心频率满足规定频率集合要求;第二同步信号的第二中心频率不满足规定频率集合要求;
第二,传输第一同步信号的第一资源映射方式,与传输第二同步信号的第二资源映射方式不同;
第三,第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH三部分;而第二同步信号中包括部分第一同步信号。
在一些实施例中,第二同步信号的传输方式是协议预定义的传输方式;或,第二同步信号的传输方式为接入网设备预先配置的传输方式,即接入网设备向终端发送控制信令,该控制信令中包括信息字段,信息字段用于指示第二同步信号的传输方式。其中,控制信令可以为以下的任一种:物理层信令、无线资源控制(Radio Resource Control,RRC)信令、媒体访问控制单元(Media Access Control Element,MAC CE)。
下面,针对上述三种情况,分别通过实施例进行举例说明。
一、在以上的实施例中,可以为第一同步信号的第一中心频率满足规定频率集合要求;第二同步信号的第二中心频率不满足规定频率集合要求。
由于第一同步信号为指示小区内的各业务对应的终端接收的同步信号,故,为了降低SSB的检测复杂度,SSB只能在有限的频率集上发送,如上表一所示的规定频率集合要求,则第一SSB的第一中心频率需要满足表一所示的规定频率集合要求;而由于第二同步信号为指示目标业务终端接收的同步信号,如:第二同步信号为指示NR-Lite终端接收的同步信号,故第二SSB的第二中心频率不满足表一所示的规定频率集合要求,从而除NR-Lite终端以外的其他终端无法接收该第二SSB;且所述NR-Lite终端被配置为知晓第二SSB的第二中心频率。
在一些实施例中,第二SSB的第二中心频率所对应的频率集合是协议预定义的;在一些实施例中,第二SSB的第二中心频率所对应的频率集合是接入网设备中预配置的,当接入网设备向终端配置第二中心频率对应的频率集合时, 由接入网设备向目标业务终端发送控制信令,控制信令中包括信息字段,该信息字段用于指示第二SSB的中心频率所对应的频率集合;在一些实施例中,第二SSB的第二中心频率是接入网设备基于协议给出的多个候选参数确定的,即接入网设备向目标业务终端发送控制信令,控制信令中包括信息字段,该信息字段用于指示多个候选参数中的一个或多个为第二SSB的中心频率所对应的频率集合,该信息字段可以为对应的第二SSB的中心频率所对应的频率集合的标识符。在一些实施例中,第二SSB的中心频率所对应的频率集合可以包括一个或多个频率。
其中该信息字段可以为第二SSB的中心频率所对应的频率集合的数量值本身,也可以为用于指示第二SSB的中心频率所对应的频率集合的标识符;其中所述接入网设备与终端具有第二SSB的中心频率所对应的频率集合与标识符之间的对应关系。在一些实施例中,该对应关系可以为根据协议确定的,也可以为接入网设备配置给终端的,还可以为接入网设备与终端协商确定的,还可以终端确定并上报给接入网设备的。
则接入网设备在传输第一同步信号和第二同步信号时,按照传输周期根据规定频率集合要求传输第一同步信号,并在第一同步信号的传输周期之间根据第二SSB的中心频率所对应的频率集合传输第二同步信号。
二、在以上的实施例中,可以为传输第一同步信号的第一资源映射方式,与传输第二同步信号的第二资源映射方式不同。
在一些实施例中,资源映射方式中包括以下的至少一种:传输SSB所占用的OFDM符号数量、传输SSB所占用的频率资源数量、传输SSB所占用的OFDM符号的资源映射编号、SSB中PSS、SSS以及PBCH的相对位置关系。
1、在一些实施例中,第一资源映射方式中包括传输第一SSB所占用的第一正交频分复用OFDM符号数量,第二资源映射方式中包括传输第二SSB所占用的第二正交频分复用OFDM符号数量,则第一OFDM符号数量与第二OFDM符号数量不同。
示意性的,第一SSB为当前系统所支持的同步信号,则第一SSB的格式与当前系统中统一的SSB格式一致,也即第一SSB在时域上持续4个OFDM符号;而第二SSB是为目标业务终端设计的同步信号,则第二SSB为除目标业务终端以外的其他终端无法接收的同步信号,当第一SSB在时域上持续4个OFDM符号时,第二SSB在时域上持续3个OFDM符号,或,第二SSB在时域上持 续5个OFDM符号,第二SSB在时域上占用的OFDM符号的数量可以更多也可以更少,但第二SSB在时域上占用的OFDM符号的数量不是4个。
在一些实施例中,第二SSB在时域上占用的第二OFDM符号的数量是协议预定义的;在一些实施例中,第二SSB在时域上占用的第二OFDM符号的数量是接入网设备中预配置的,当接入网设备向终端配置第二SSB在时域上占用的OFDM符号的数量时,由接入网设备向目标业务终端发送控制信令,控制信令中包括信息字段,该信息字段用于指示第二SSB在时域上占用的OFDM符号的数量。其中该信息字段可以为OFDM符号的数量值本身,也可以为用于指示OFDM符号的数量的标识符;其中所述接入网设备与终端具有OFDM符号的数量与标识符之间的对应关系,该对应关系可以为根据协议确定的,也可以为接入网设备配置给终端的。
2、在一些实施例中,第一资源映射方式中包括传输第一SSB所占用的第一频率资源数量,第二资源映射方式中包括传输第二SSB所占用的第二频率资源数量,则第一频率资源数量与第二频率资源数量不同。
示意性的,第一SSB为当前系统所支持的同步信号,则第一SSB的格式与当前系统中统一的SSB格式一致,也即第一SSB在频域上占用240个子载波;而第二SSB是为目标业务终端设计的同步信号,则第二SSB为除目标业务终端以外的其他终端无法接收的同步信号;例如:当第一SSB在频域上占用240个子载波时,第二SSB在频域上占用230个子载波,或,第二SSB在频域上占用250个子载波;即,第二SSB在频域上占用的子载波数量,可以比第一SSB在频域上占用的子载波数量更多也可以更少,但第二SSB在频域上占用的子载波数量不等于第一SSB在频域上占用的子载波数量(即不是240个)。
在一些实施例中,第二SSB在频域上占用的第二频率资源数量是协议预定义的,在一些实施例中,第二SSB在频域上占用的第二频率资源数量是接入网设备中预配置的,当接入网设备向终端配置第二SSB在频域上占用的频率资源数量时,由接入网设备向目标业务终端发送控制信令,控制信令中包括信息字段,该信息字段用于指示第二SSB在频域上占用的频率资源数量。其中该信息字段可以为第二频率资源数量的数量值本身,也可以为用于指示第二频率资源数量的标识符;其中所述接入网设备与终端具有第二频率资源数量与标识符之间的对应关系,该对应关系可以为根据协议确定的,也可以为接入网设备配置给终端的。
3、在一些实施例中,第一资源映射方式中包括传输第一SSB所占用的OFDM符号的第一资源映射编号,第二资源映射方式中包括传输第二SSB所占用的OFDM符号的第二资源映射编号,则第一资源映射编号与第二资源映射编号不同。
示意性的,第一SSB在时域上占用4个OFDM符号,其中,4个OFDM符号分别映射的资源编号为3,4,5,6,也即,第一SSB在时域上依次映射到第3个OFDM符号、第4个OFDM符号、第5个OFDM符号以及第6个OFDM符号;而第二SSB在时域上占用4个OFDM符号,其中,4个OFDM符号分别映射的资源编号为6,3,5,4,也即,第二SSB在时域上依次映射到第6个OFDM符号、第3个OFDM符号、第5个OFDM符号以及第4个OFDM符号。
在一些实施例中,第二SSB在时域上占用的OFDM符号的资源映射编号是协议预定义的;在一些实施例中,第二SSB在时域上占用的OFDM符号的资源映射编号是接入网设备中预配置的,当接入网设备向终端配置第二SSB占用的OFDM符号的资源映射编号时,由接入网设备向目标业务终端发送控制信令,控制信令中包括信息字段,该信息字段用于指示第二SSB占用的OFDM符号的资源映射编号。其中该信息字段可以为第二SSB占用的OFDM符号的资源映射编号的数量值本身,也可以为用于指示第二SSB占用的OFDM符号的资源映射编号的标识符;其中所述接入网设备与终端具有第二SSB占用的OFDM符号的资源映射编号与标识符之间的对应关系,该对应关系可以为根据协议确定的,也可以为接入网设备配置给终端的。
4、在一些实施例中,第一SSB中包括第一主同步信号PSS、第一辅同步信号SSS以及第一物理广播信道PBCH,第一PSS、第一SSS和第一PBCH在第一SSB中以第一相对位置关系排列;第二SSB中包括第二主同步信号PSS、第二辅同步信号SSS以及第二物理广播信道PBCH,第二PSS、第二SSS和第二PBCH在第二SSB中以第二相对位置关系排列,其中,第一相对位置关系和第二相对位置关系不同。
示意性的,第一SSB为当前系统所支持的同步信号,则第一SSB的格式与当前系统中统一的SSB格式一致,也即第一SSB中第一PSS、第一SSS和第一PBCH的第一相对位置关系满足如图2所示的SSB中PSS、SSS和PBCH的位置关系;而第二SSB是为目标业务终端设计的同步信号,则第二SSB为除目标业务终端以外的其他终端无法接收的同步信号,故第二SSB中第二PSS、第二 SSS和第二PBCH中第二相对位置关系与图2所示的SSB中PSS、SSS和PBCH的位置关系不同。在一些实施例中,第二SSB中第二SSS和第二PSS的位置,与第一SSB中第一SSS和第一PSS的位置相反。
在一些实施例中,第二SSB中第二PSS、第二SSS和第二PBCH的第二相对位置关系可以是协议预定义的,也可以是接入网设备中预配置的,当接入网设备向终端配置第二SSB中的第二相对位置关系时,由接入网设备向目标业务终端发送控制信令,控制信令中包括信息字段,该信息字段用于指示第二SSB中的第二相对位置关系。其中该信息字段可以为第二相对位置关系的数量值本身,也可以为用于指示第二相对位置关系的标识符;其中所述接入网设备与终端具有第二相对位置关系与标识符之间的对应关系。在一些实施例中,该对应关系可以为根据协议确定的,也可以为接入网设备配置给终端的,还可以为接入网设备与终端协商确定的,还可以终端确定并上报给接入网设备的。
三、在以上的实施例中,可以为第二同步信号中包括部分第一同步信号。
在一些实施例中,第二同步信号中仅包括第一PSS、第一SSS和第一PBCH中的其中一部分,如:第二同步信号中仅包括第一PSS;或,第二同步信号中仅包括第一SSS;或,第二同步信号中仅包括第一PBCH;
在一些实施例中,第二同步信号中仅包括第一PSS、第一SSS和第一PBCH中的其中两部分,如:第二同步信号中仅包括第一PSS和第一PBCH;或,第二同步信号中仅包括第一SSS和第一PBCH;或,第二同步信号中仅包括第一PSS和第一SSS;
在一些实施例中,第二同步信号中包括第一PSS、第一SSS和部分第一PBCH,也即,第二同步信号中的第一PBCH并非完整的第一PBCH,而是第一SSB中第一PBCH的部分;
在一些实施例中,第二同步信号中包括部分第一PBCH。在一些实施例中,第二同步信号中包括部分第一PBCH,还可以包括第一PSS和/或第一SSS;第二同步信号中的第一PBCH并非完整的第一PBCH,而是第一SSB中第一PBCH的部分。
即,所述第二同步信号中不同时包括第一PSS、第一SSS、完整的第一PBCH。
在一些实施例中,第二SSB中包括的内容可以是协议预定义的,也可以是接入网设备中预配置的,当接入网设备向终端配置第二SSB中包括的内容时,由接入网设备向目标业务终端发送控制信令,控制信令中包括信息字段,该信 息字段用于指示第二SSB中包括的内容。其中该信息字段可以为第二SSB中包括的内容的字段本身,也可以为用于指示第二SSB中包括的内容的标识符;其中所述接入网设备与终端具有第二SSB中包括的内容与标识符之间的对应关系,该对应关系可以为根据协议确定的,也可以为接入网设备配置给终端的。
综上所述,本公开实施例提供的同步信号的传输方法,通过在第一同步信号的传输周期之间增加传输第二同步信号,从而目标业务终端能够接收到该第二同步信号,从而减少接收多个同步信号的总时长,在减少设备天线数量的同时,减小了设备的功耗。
图4是本公开一个示例性实施例提供的同步信号的传输方法的流程图,以该方法应用于如图1所示的通信系统中为例进行说明,如图4所示,该方法包括:
步骤401,接入网设备确定用于传输第一同步信号的传输周期。
在一些实施例中,第一同步信号为基站发送至小区内的每个终端的统一的同步信号,且第一同步信号按照传输周期进行发送。传输周期为基站中预先设置的周期,在一些实施例中,传输周期为基站自主选择的;在另一些实施例中,传输周期为基站基于通信协议确定的,或是传输周期为基站从通信协议的多个候选参数中确定的;在一些实施例中传输周期为基站与UE协商确定的。也即,在基站确定传输周期后,在传输周期内广播第一同步信号,在小区范围内的无论是NR-Lite设备还是非NR-Lite设备都能够接收到基站广播的第一同步信号。
也即,第一同步信号为指示小区范围内的终端接收的同步信号。
步骤402,终端确定接收第一同步信号的传输周期。
在一些实施例中,终端位于小区范围内,故按照传输周期接收接入网设备发送的第一同步信号。
步骤403,接入网设备在两个第一同步信号的传输周期之间,确定用于传输第二同步信号的传输资源,其中,第二同步信号为对应于目标业务终端的同步信号。
在一些实施例中,第二同步信号为对应于中端物联网NR-Lite设备的同步信号,也即,除NR-Lite设备以外的其他设备无法接收到该第二同步信号,则需要第一同步信号和第二同步信号在发送时存在不同,从而除NR-Lite设备以外的其他设备无法接收到第二同步信号。
步骤404,终端在两个第一同步信号的传输周期之间,确定用于传输第二同步信号的传输资源。
其中,传输周期是指用于传输第一同步信号的传输周期。
在一些实施例中,在两个传输周期之间,是指在任意两个用于传输第一同步信号的传输周期之间,或是在相邻的两个用于传输第一同步信号的传输周期之间;本公开实施例并不对此做出限定。
在一些实施例中,该终端为中端物联网NR-Lite设备。
在一些实施例中,第一同步信号和第二同步信号的不同包括以下至少一种情况:
第一,第一同步信号的第一中心频率满足规定频率集合要求;第二同步信号的第二中心频率不满足规定频率集合要求;
第二,接收第一同步信号的第一资源映射方式,与接收第二同步信号的第二资源映射方式不同;
在一些实施例中,第一资源映射方式包括接收第一同步信号所使用的第一OFDM符号数量;第二资源映射方式中包括接收第二同步信号所使用的第二OFDM符号数量;则第一OFDM符号数量与第二OFDM符号数量不同。
在一些实施例中,第一资源映射方式中包括接收第一同步信号所使用的第一频率资源数量;第二资源映射方式中包括接收第二同步信号所使用的第二频率资源数量;则第一频率资源数量与第二频率资源数量不同。
在一些实施例中,第一资源映射方式中包括接收第一同步信号所使用的OFDM符号的第一资源映射编号;第二资源映射方式中包括接收第二同步信号所使用的OFDM符号的第二资源映射编号;则第一资源映射编号与第二资源映射编号不同。
在一些实施例中,第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH,第一PSS、第一SSS和第一PBCH在第一同步信号中以第一相对位置关系排列;第二同步信号中包括第二主同步信号PSS、第二辅同步信号SSS和第二物理广播信道PBCH,第二PSS、第二SSS和第二PBCH在第二同步信号中以第二相对位置关系排列;则第一相对位置关系与第二相对位置关系不同。
第三,第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH三部分;而第二同步信号中包括部分第一同步信号。
在一些实施例中,第二同步信号的传输方式是协议预定义的传输方式;或,第二同步信号的传输方式为接入网设备预先配置的传输方式,即终端接收控制信令,该控制信令中包括信息字段,信息字段用于指示第二同步信号的传输方式。其中,控制信令可以为以下的任一种:物理层信令、RRC信令、MAC CE中的任意一种。
综上所述,本公开实施例提供的同步信号的传输方法,通过在第一同步信号的传输周期之间增加传输第二同步信号,从而目标业务终端能够接收到该第二同步信号,从而减少接收多个同步信号的总时长,在减少设备天线数量的同时,减小了设备的功耗。
图5是本公开一个示例性实施例提供的同步信号的传输装置的结构框图,如图5所示,该装置包括:
处理模块510,被配置为按照传输周期传输第一同步信号;
所述处理模块510,还被配置为在所述传输周期之间传输第二同步信号,其中,所述第二同步信号为指示目标业务终端接收的同步信号。
在一个可选的实施例中,所述第二同步信号为对应于中端物联网NR-Lite设备的同步信号。
在一个可选的实施例中,所述第一同步信号的第一中心频率满足规定频率集合要求;
所述第二同步信号的第二中心频率不满足所述规定频率集合要求。
在一个可选的实施例中,传输所述第一同步信号的第一资源映射方式,与传输所述第二同步信号的第二资源映射方式不同。
在一个可选的实施例中,所述第一资源映射方式中包括传输所述第一同步信号所占用的第一正交频分复用OFDM符号数量;
所述第二资源映射方式中包括传输所述第二同步信号所占用的第二正交频分复用OFDM符号数量;
所述第一OFDM符号数量与所述第二OFDM符号数量不同。
在一个可选的实施例中,所述第一资源映射方式中包括传输所述第一同步信号所占用的第一频率资源数量;
所述第二资源映射方式中包括传输所述第二同步信号所占用的第二频率资源数量;
所述第一频率资源数量与所述第二频率资源数量不同。
在一个可选的实施例中,所述第一资源映射方式中包括传输所述第一同步信号所占用的OFDM符号的第一资源映射编号;
所述第二资源映射方式中包括传输所述第二同步信号所占用的OFDM符号的第二资源映射编号;
所述第一资源映射编号与所述第二资源映射编号不同。
在一个可选的实施例中,所述第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH,所述第一PSS、第一SSS和所述第一PBCH在所述第一同步信号中以第一相对位置关系排列;
所述第二同步信号中包括第二主同步信号PSS、第二辅同步信号SSS和第二物理广播信道PBCH,所述第二PSS、第二SSS和所述第二PBCH在所述第二同步信号中以第二相对位置关系排列;
所述第一相对位置关系与所述第二相对位置关系不同。
在一个可选的实施例中,所述第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH;
所述第二同步信号中包括部分所述第一同步信号。
在一个可选的实施例中,所述第二同步信号的传输方式为协议预定义的传输方式;
或,
所述装置还包括:发送模块520,被配置为向终端发送控制信令,所述控制信令中包括信息字段,所述信息字段用于指示所述第二同步信号的传输方式。
图6是本公开一个示例性实施例提供的同步信号的传输装置的结构框图,如图6所示,该装置包括:
处理模块610,被配置为确定接收第一同步信号的传输周期;
所述处理模块610,还被配置为在两个所述第一同步信号的所述传输周期之间,确定用于传输第二同步信号的传输资源,其中,所述终端为目标业务类型对应的目标业务终端。
在一个可选的实施例中,所述终端为中端物联网NR-Lite设备。
在一个可选的实施例中,所述第一同步信号的第一中心频率满足规定频率集合要求;
所述第二同步信号的第二中心频率不满足所述规定频率集合要求。
在一个可选的实施例中,接收所述第一同步信号的第一资源映射方式,与接收所述第二同步信号的第二资源映射方式不同。
在一个可选的实施例中,所述第一资源映射方式中包括接收所述第一同步信号所使用的第一OFDM符号数量;
所述第二资源映射方式中包括接收所述第二同步信号所使用的第二OFDM符号数量;
所述第一OFDM符号数量与所述第二OFDM符号数量不同。
在一个可选的实施例中,所述第一资源映射方式中包括接收所述第一同步信号所使用的第一频率资源数量;
所述第二资源映射方式中包括接收所述第二同步信号所使用的第二频率资源数量;
所述第一频率资源数量与所述第二频率资源数量不同。
在一个可选的实施例中,所述第一资源映射方式中包括接收所述第一同步信号所使用的OFDM符号的第一资源映射编号;
所述第二资源映射方式中包括接收所述第二同步信号所使用的OFDM符号的第二资源映射编号;
所述第一资源映射编号与所述第二资源映射编号不同。
在一个可选的实施例中,所述第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH,所述第一PSS、第一SSS和所述第一PBCH在所述第一同步信号中以第一相对位置关系排列;
所述第二同步信号中包括第二主同步信号PSS、第二辅同步信号SSS和第二物理广播信道PBCH,所述第二PSS、第二SSS和所述第二PBCH在所述第二同步信号中以第二相对位置关系排列;
所述第一相对位置关系与所述第二相对位置关系不同。
在一个可选的实施例中,所述第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH;
所述第二同步信号中包括部分所述第一同步信号。
在一个可选的实施例中,所述第二同步信号的传输方式为协议预定义的传输方式;
或,
所述装置,还包括接收模块620,被配置为接收控制信令,所述控制信令中包括信息字段,所述信息字段用于指示所述第二同步信号的传输方式。
综上所述,本公开实施例提供的同步信号的传输装置,通过在第一同步信号的传输周期之间增加传输第二同步信号,从而目标业务终端能够接收到该第二同步信号,从而减少接收多个同步信号的总时长,在减少设备天线数量的同时,减小了设备的功耗。
需要说明的是:上述实施例提供的同步信号的传输装置仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分内容。
图7示出了本公开一个示例性实施例提供的终端的结构示意图,该终端包括:处理器701、接收器702、发射器703、存储器704和总线705。
处理器701包括一个或者一个以上处理核心,处理器701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器702和发射器703可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器704通过总线705与处理器701相连。
存储器704可用于存储至少一个指令,处理器701用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由终端的处理器执行以完成上述同步信号的传输方法中由终端侧执行的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述非临时性计算机存储介质中的指令由终端的处理器执行时,使得终端能够执行上述同步信号的传输方法。
图8是根据一示例性实施例示出的一种接入网设备800的框图。在一些实施例中,该接入网设备800是基站。
接入网设备800包括:处理器801、接收机802、发射机803和存储器804。接收机802、发射机803和存储器804分别通过总线与处理器801连接。
其中,处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块以执行本公开实施例提供的同步信号的传输方法中接入网设备所执行的方法。存储器804可用于存储软件程序以及模块。具体的,存储器804可存储操作系统841、至少一个功能所需的应用程序模块842。接收机802用于接收其他设备发送的通信数据,发射机803用于向其他设备发送通信数据。
本公开一示例性实施例还提供了一种通信系统,所述系统包括:终端和接入网设备;
所述接入网设备包括如图5所示实施例提供的同步信号的传输装置;
所述终端包括如图6所示实施例提供的同步信号的传输装置。
本公开一示例性实施例还提供了一种通信系统,所述通信系统包括:终端和接入网设备;
所述终端包括如图7所示实施例提供的终端;
所述接入网设备包括如图8所示实施例提供的接入网设备。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的同步信号的传输方法中由终端或者接入网设备执行的步骤。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公 开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (25)

  1. 一种同步信号的传输方法,其特征在于,应用于接入网设备,所述方法包括:
    确定用于传输第一同步信号的传输周期;
    在两个所述第一同步信号的所述传输周期之间,确定用于传输第二同步信号的传输资源,其中,所述第二同步信号为对应于目标业务终端的同步信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第二同步信号为对应于中端物联网NR-Lite设备的同步信号。
  3. 根据权利要求1所述的方法,其特征在于,
    所述第一同步信号的第一中心频率满足规定频率集合要求;
    所述第二同步信号的第二中心频率不满足所述规定频率集合要求。
  4. 根据权利要求1所述的方法,其特征在于,
    传输所述第一同步信号的第一资源映射方式,与传输所述第二同步信号的第二资源映射方式不同。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一资源映射方式中包括传输所述第一同步信号所占用的第一正交频分复用OFDM符号数量;
    所述第二资源映射方式中包括传输所述第二同步信号所占用的第二正交频分复用OFDM符号数量;
    所述第一OFDM符号数量与所述第二OFDM符号数量不同。
  6. 根据权利要求4所述的方法,其特征在于,
    所述第一资源映射方式中包括传输所述第一同步信号所占用的第一频率资源数量;
    所述第二资源映射方式中包括传输所述第二同步信号所占用的第二频率资源数量;
    所述第一频率资源数量与所述第二频率资源数量不同。
  7. 根据权利要求4所述的方法,其特征在于,
    所述第一资源映射方式中包括传输所述第一同步信号所占用的OFDM符号的第一资源映射编号;
    所述第二资源映射方式中包括传输所述第二同步信号所占用的OFDM符号的第二资源映射编号;
    所述第一资源映射编号与所述第二资源映射编号不同。
  8. 根据权利要求4所述的方法,其特征在于,
    所述第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH,所述第一PSS、第一SSS和所述第一PBCH在所述第一同步信号中以第一相对位置关系排列;
    所述第二同步信号中包括第二主同步信号PSS、第二辅同步信号SSS和第二物理广播信道PBCH,所述第二PSS、第二SSS和所述第二PBCH在所述第二同步信号中以第二相对位置关系排列;
    所述第一相对位置关系与所述第二相对位置关系不同。
  9. 根据权利要求1所述的方法,其特征在于,
    所述第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH;
    所述第二同步信号中包括部分所述第一同步信号。
  10. 根据权利要求1至9任一所述的方法,其特征在于,
    所述第二同步信号的传输方式为协议预定义的传输方式;
    或,
    向终端发送控制信令,所述控制信令中包括信息字段,所述信息字段用于指示所述第二同步信号的传输方式。
  11. 一种同步信号的传输方法,其特征在于,应用于终端,所述方法包括:
    确定接收第一同步信号的传输周期;
    在两个所述第一同步信号的所述传输周期之间,确定用于传输第二同步信号的传输资源,其中,所述终端为目标业务类型对应的目标业务终端。
  12. 根据权利要求11所述的方法,其特征在于,
    所述终端为中端物联网NR-Lite设备。
  13. 根据权利要求11所述的方法,其特征在于,
    所述第一同步信号的第一中心频率满足规定频率集合要求;
    所述第二同步信号的第二中心频率不满足所述规定频率集合要求。
  14. 根据权利要求11所述的方法,其特征在于,
    接收所述第一同步信号的第一资源映射方式,与接收所述第二同步信号的第二资源映射方式不同。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第一资源映射方式中包括接收所述第一同步信号所使用的第一OFDM符号数量;
    所述第二资源映射方式中包括接收所述第二同步信号所使用的第二OFDM符号数量;
    所述第一OFDM符号数量与所述第二OFDM符号数量不同。
  16. 根据权利要求14所述的方法,其特征在于,
    所述第一资源映射方式中包括接收所述第一同步信号所使用的第一频率资源数量;
    所述第二资源映射方式中包括接收所述第二同步信号所使用的第二频率资源数量;
    所述第一频率资源数量与所述第二频率资源数量不同。
  17. 根据权利要求14所述的方法,其特征在于,
    所述第一资源映射方式中包括接收所述第一同步信号所使用的OFDM符号的第一资源映射编号;
    所述第二资源映射方式中包括接收所述第二同步信号所使用的OFDM符号的第二资源映射编号;
    所述第一资源映射编号与所述第二资源映射编号不同。
  18. 根据权利要求14所述的方法,其特征在于,
    所述第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH,所述第一PSS、第一SSS和所述第一PBCH在所述第一同步信号中以第一相对位置关系排列;
    所述第二同步信号中包括第二主同步信号PSS、第二辅同步信号SSS和第二物理广播信道PBCH,所述第二PSS、第二SSS和所述第二PBCH在所述第二同步信号中以第二相对位置关系排列;
    所述第一相对位置关系与所述第二相对位置关系不同。
  19. 根据权利要求11所述的方法,其特征在于,
    所述第一同步信号中包括第一主同步信号PSS、第一辅同步信号SSS和第一物理广播信道PBCH;
    所述第二同步信号中包括部分所述第一同步信号。
  20. 根据权利要求11至19任一所述的方法,其特征在于,
    所述第二同步信号的传输方式为协议预定义的传输方式;
    或,
    接收控制信令,所述控制信令中包括信息字段,所述信息字段用于指示所述第二同步信号的传输方式。
  21. 一种同步信号的传输装置,其特征在于,应用于接入网设备,所述装置包括:
    处理模块,被配置为确定用于传输第一同步信号的传输周期;
    所述处理模块,还被配置为在两个所述第一同步信号的所述传输周期之间 传输第二同步信号,其中,所述第二同步信号为对应于目标业务终端的同步信号。
  22. 一种同步信号的传输装置,其特征在于,应用于终端,所述装置包括:
    处理模块,被配置为确定接收第一同步信号的传输周期;
    所述处理模块,还被配置为在两个所述第一同步信号的所述传输周期之间,确定用于传输第二同步信号的传输资源,其中,所述终端为目标业务类型对应的目标业务终端。
  23. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求1至10任一所述的同步信号的传输方法。
  24. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    其中,所述处理器被配置为加载并执行可执行指令以实现如权利要求11至20任一所述的同步信号的传输方法。
  25. 一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或所述指令集由处理器加载并执行以实现如权利要求1至20任一所述的同步信号的传输方法。
PCT/CN2020/089230 2020-05-08 2020-05-08 同步信号的传输方法、装置、设备及可读存储介质 WO2021223227A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/089230 WO2021223227A1 (zh) 2020-05-08 2020-05-08 同步信号的传输方法、装置、设备及可读存储介质
EP20934713.7A EP4149177A4 (en) 2020-05-08 2020-05-08 SYNCHRONIZATION SIGNAL TRANSMISSION METHOD AND DEVICE AND DEVICE AND READABLE STORAGE MEDIUM
CN202410579330.4A CN118283776A (zh) 2020-05-08 2020-05-08 同步信号的传输方法、装置、设备及可读存储介质
CN202080000945.7A CN113924808B (zh) 2020-05-08 2020-05-08 同步信号的传输方法、装置、设备及可读存储介质
US17/923,494 US20230189171A1 (en) 2020-05-08 2020-05-08 Method for synchronization signal transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089230 WO2021223227A1 (zh) 2020-05-08 2020-05-08 同步信号的传输方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2021223227A1 true WO2021223227A1 (zh) 2021-11-11

Family

ID=78468609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089230 WO2021223227A1 (zh) 2020-05-08 2020-05-08 同步信号的传输方法、装置、设备及可读存储介质

Country Status (4)

Country Link
US (1) US20230189171A1 (zh)
EP (1) EP4149177A4 (zh)
CN (2) CN118283776A (zh)
WO (1) WO2021223227A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112331A1 (en) * 2012-10-19 2014-04-24 Howard Rosen Avoidance of network interference between thermostats in a plurality of proximate wireless mesh networks
WO2017030302A1 (ko) * 2015-08-17 2017-02-23 엘지전자 주식회사 무선 통신 시스템에서 코드북을 이용한 동기 신호 송수신 방법
CN107113758A (zh) * 2014-11-17 2017-08-29 高通股份有限公司 用于在共享射频谱带中传送同步信号的技术
CN107733545A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 传输信号的方法和装置
CN108307476A (zh) * 2017-01-13 2018-07-20 上海诺基亚贝尔股份有限公司 无线接入网络中用于终端设备的初始接入的方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796242B (zh) * 2014-01-22 2018-01-19 电信科学技术研究院 一种发送和接收同步信号的方法、系统及设备
CN106304346B (zh) * 2015-05-15 2019-07-19 电信科学技术研究院 一种同步信号的发送、接收方法及装置
KR20170049379A (ko) * 2015-10-28 2017-05-10 한국전자통신연구원 협대역 무선통신 셀률러 시스템을 위한 동기신호를 구성하는 방법 및 장치, 그리고 이를 송신하는 방법 및 장치
EP3422613B1 (en) * 2016-02-26 2022-01-05 LG Electronics Inc. Method for receiving system information in wireless communication system supporting narrowband-iot, and device therefor
US10231198B2 (en) * 2016-03-31 2019-03-12 Lg Electronics Inc. Method and user equipment for receiving downlink signal, and method and base station for transmitting downlink signal
EP3577841B1 (en) * 2017-02-06 2022-06-15 Motorola Mobility LLC Transmitting and receiving a synchronization signal block
ES2867873T3 (es) * 2017-03-17 2021-10-21 Guangdong Oppo Mobile Telecommunications Corp Ltd Método para detectar el bloque de señal de sincronización y método, aparato y sistema para transmitir el bloque de señal de sincronización
CN109600834A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 通信的方法和通信设备
US10728016B2 (en) * 2017-10-06 2020-07-28 Qualcomm Incorporated Techniques and apparatuses for synchronization design

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112331A1 (en) * 2012-10-19 2014-04-24 Howard Rosen Avoidance of network interference between thermostats in a plurality of proximate wireless mesh networks
CN107113758A (zh) * 2014-11-17 2017-08-29 高通股份有限公司 用于在共享射频谱带中传送同步信号的技术
WO2017030302A1 (ko) * 2015-08-17 2017-02-23 엘지전자 주식회사 무선 통신 시스템에서 코드북을 이용한 동기 신호 송수신 방법
CN107733545A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 传输信号的方法和装置
CN108307476A (zh) * 2017-01-13 2018-07-20 上海诺基亚贝尔股份有限公司 无线接入网络中用于终端设备的初始接入的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4149177A4 *

Also Published As

Publication number Publication date
CN113924808B (zh) 2024-06-04
CN113924808A (zh) 2022-01-11
EP4149177A4 (en) 2024-02-21
CN118283776A (zh) 2024-07-02
EP4149177A1 (en) 2023-03-15
US20230189171A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
CN111148242B (zh) 信息传输方法及装置
WO2019214657A1 (zh) 时域资源分配、确定方法、装置、基站、终端及存储介质
WO2020147603A1 (zh) 通信方法、装置及设备
US10187869B2 (en) System information acquisition based on paging message indicators for normal and extended modification periods
CN110419245B (zh) 通过随机存取过程请求应需系统信息的装置及方法
CN104871469B (zh) 确定数据信道起始子帧的用户设备和方法
CN109150463B (zh) 信息发送、接收方法及装置
WO2020199000A1 (zh) 随机接入方法以及装置
CN111587600B (zh) 用于在多带宽部分上通信的方法、设备和计算机可读存储介质
JP2018511989A (ja) アクセス情報を取り扱うための方法、ネットワークノード、及びワイヤレスデバイス
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
US20220256487A1 (en) Rate matching indication method and apparatus, and device and storage medium
WO2020032203A1 (en) Configurable beam management of sidelink resources
CN116471699A (zh) 系统信息请求的用户设备及其方法
CN112335305A (zh) 下行信号的监听和发送方法、参数配置方法以及装置
WO2022257012A1 (zh) 省电方法、装置、设备及可读存储介质
US8081601B2 (en) Use of out-of-band signaling for wireless communication network to enhance search and entry
CN117063580A (zh) 无线通信系统中低性能用户设备通信方法及装置
US11096152B2 (en) Preamble design for grant free transmission and reception
WO2019075876A1 (zh) 资源调度方法和终端设备
CN114731645A (zh) 在带宽部分上进行通信的方法
JP7111171B2 (ja) リソーススケジューリング方法、データ送信方法及びその装置、通信システム
WO2021223227A1 (zh) 同步信号的传输方法、装置、设备及可读存储介质
CN115065987B (zh) 空闲信道侦听方法、装置及设备
WO2020029299A1 (zh) 数据中断指示方法及其装置、通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020934713

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE