WO2018164356A1 - 양자 암호키 분배 안정화 장치 및 방법 - Google Patents

양자 암호키 분배 안정화 장치 및 방법 Download PDF

Info

Publication number
WO2018164356A1
WO2018164356A1 PCT/KR2017/014864 KR2017014864W WO2018164356A1 WO 2018164356 A1 WO2018164356 A1 WO 2018164356A1 KR 2017014864 W KR2017014864 W KR 2017014864W WO 2018164356 A1 WO2018164356 A1 WO 2018164356A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
negative feedback
feedback signal
transmitter
key distribution
Prior art date
Application number
PCT/KR2017/014864
Other languages
English (en)
French (fr)
Inventor
김장면
조정식
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170028795A external-priority patent/KR101992957B1/ko
Priority claimed from KR1020170104173A external-priority patent/KR101992962B1/ko
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Priority to JP2019548671A priority Critical patent/JP6934528B2/ja
Priority to CN201780088168.4A priority patent/CN110383753B/zh
Priority to EP17899245.9A priority patent/EP3595235A4/en
Priority to US16/492,232 priority patent/US11240016B2/en
Publication of WO2018164356A1 publication Critical patent/WO2018164356A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/12Transmitting and receiving encryption devices synchronised or initially set up in a particular manner

Definitions

  • Embodiments of the present invention relate to quantum cryptographic key distribution stabilization apparatus and method.
  • QKDS quantum key distribution system
  • 1 is a conceptual diagram of a conventional quantum cryptographic key distribution system.
  • the quantum cryptographic key distribution system includes a quantum cryptographic key distribution transmitter 110, a quantum cryptographic key distribution receiver 120, a quantum channel 132, and a public or open channel 134.
  • the transmitter 110 of the quantum cryptographic key distribution system carries cryptographic key information on the single photon and transmits it through the quantum channel 132 in a manner of controlling the phase or polarization of the single photon.
  • the receiver 120 of the quantum encryption key distribution system extracts encryption key information using a phase modulator, an interferometer, a polarization beam splitter, or the like.
  • Quantum cryptographic key distribution systems are implemented using conventional optical communications and optical techniques.
  • a phase modulation quantum cryptographic key distribution system typically detects signals transmitted through a phase modulator and an interferometer located at a receiver.
  • the interference performance of the interferometer included in the quantum cryptographic key distribution system is very sensitive to environmental changes such as temperature and vibration, and the change in the effective optical path length caused by such environmental changes is due to the quantum cryptographic key distribution system. It has a big impact on overall performance.
  • QBER quantum bit error rate
  • a polarization modulation type quantum cryptographic key distribution system typically detects a signal through a polarization beam splitter located at a receiver.
  • the polarization of the transmission signal continues to change over time in the optical fiber as a transmission medium. Therefore, a function of aligning the polarization beam splitter with the polarization of the input signal is required.
  • the accuracy of this alignment affects the quantum bit error rate of the quantum cryptographic key distribution system. Therefore, there is a need for a method capable of quickly and efficiently compensating for an error between the polarization axis of the signal light changed by the optical fiber and the axis of the polarization beam splitter.
  • Embodiments of the present invention provide an apparatus and method for quantum encryption key distribution stabilization that can quickly and efficiently compensate for errors caused by changes in effective optical path length and polarization axis of an interferometer to improve performance of a quantum encryption key distribution system.
  • the main purpose is to provide.
  • One embodiment of the present invention includes a negative feedback signal generation unit for generating a negative feedback signal using the detection coefficient values discarded without being used to generate an encryption key among the photon detection-related values detected by the receiver; A correction value calculator which receives the negative feedback signal and calculates a correction value for an error to be compensated for; And a control unit which transmits the correction value to a transmitter or a receiver so that the transmitter and / or receiver controls a conversion factor influencing phase or polarization to correct phase or polarization.
  • a negative feedback signal generation process of generating a negative feedback signal using detection coefficient values discarded without being used for generating an encryption key among photon detection related values detected by a receiver;
  • a correction value calculating process of receiving the negative feedback signal and calculating a correction value for an error to be compensated for; And transmitting the correction value to a transmitter or receiver to control the transmitter and / or receiver to correct a phase or polarization by controlling a conversion factor that affects phase or polarization.
  • 1 is a conceptual diagram of a conventional quantum cryptographic key distribution system.
  • FIG. 2 is a conceptual diagram of a quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention.
  • FIG. 3 is an exemplary diagram of a Michelson phase modulated quantum cryptographic key distribution transceiver to which a quantum cryptographic key distribution stabilization device is applied according to an embodiment of the present invention.
  • FIG. 4 is an exemplary diagram of a Mach-Zehnder phase modulated quantum cryptographic key distribution transceiver to which a quantum cryptographic key distribution stabilization device is applied according to an embodiment of the present invention.
  • FIG 5 is an exemplary view for explaining the operation of the quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention.
  • FIG. 6 is another exemplary view for explaining the operation of the quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention.
  • FIG. 7 is another exemplary view for explaining the operation of the quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention.
  • FIG. 8 is an exemplary diagram illustrating a case where a quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention is included in a signal processing unit of a receiver.
  • QBER quantum bit error rate
  • FIG. 10 is a flowchart illustrating a quantum cryptographic key distribution stabilization method according to an embodiment of the present invention.
  • FIG. 11 is an exemplary diagram for describing an operation of a polarization modulation-based quantum cryptographic key distribution system to which a quantum cryptographic key distribution stabilization device is applied according to an embodiment of the present invention.
  • FIG. 12 is another exemplary diagram for describing an operation of a polarization modulation-based quantum cryptographic key distribution system to which a quantum cryptographic key distribution stabilization device is applied according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention.
  • the quantum cryptographic key distribution stabilization apparatus 200 is connected to the transmitter 110 and the receiver 120 for quantum cryptographic key distribution to perform data communication.
  • each of the transmitter and the receiver means a transmitter and a receiver for quantum cryptographic key distribution.
  • FIG. 2 illustrates a case where a quantum cryptographic key distribution stabilization device is located in a receiver according to an embodiment of the present invention.
  • the transmitter 110 includes a transmission optical system 210 and a transmission signal processor 220.
  • the transmission optical system 210 generates a single photon and performs modulation to load information on the generated single photon.
  • the transmission signal processor 220 is connected to the receiver 120 through the public channel 260 to perform data communication, and transmits information for driving the quantum cryptographic key distribution stabilization apparatus 200 connected to the reception signal processor 240. do.
  • the transmission signal processor 220 generates information for quantum encryption key distribution and stores the generated information.
  • Information for quantum cryptographic key distribution includes bit information and basis information.
  • the transmission signal processor 220 transmits information for quantum encryption key distribution to the transmission optical system 210, and shares information for quantum encryption key distribution with the quantum encryption key distribution stabilization apparatus 200 and the receiver 120.
  • the quantum cryptographic key distribution stabilization apparatus 200 improves the quantum bit error rate (QBER) quickly and efficiently by temporarily controlling the components included in the transmission optical system 210 based on the data received from the transmission signal processing unit 220. Do it.
  • QBER quantum bit error rate
  • the receiver 120 includes a reception optical system 230, a reception signal processor 240, and a quantum cryptographic key distribution stabilization device 200.
  • the receiver 120 receives a single photon transmitted from the transmitter 110 and extracts an encryption key.
  • the quantum cryptographic key distribution stabilization apparatus 200 may temporarily control the components included in the reception optical system 230 based on the data received from the reception signal processing unit 240.
  • the transmitter 110 and the receiver 120 may follow the BB84 protocol.
  • the BB84 protocol is implemented by combining two basis information and bit information.
  • the bit information is represented using two states orthogonal to each other.
  • the transmission optical system 210 may include two modulators for controlling bit information and basis information. For example, a first modulator (not shown) of the transmission optical system 210 may modulate bit information, and a second modulator (not shown) may modulate basis information. Or vice versa.
  • the single photon modulated by the transmission optical system 210 may include modulated bit information and basis information.
  • the single photon modulated by the transmission optical system 210 is transmitted to the receiver 120 through the quantum channel 250.
  • the receiver 120 receives a single photon transmitted from the transmitter 110 and extracts an encryption key.
  • the quantum cryptographic key distribution stabilization apparatus 200 may temporarily control the components included in the reception optical system 230 based on the data received from the reception signal processing unit 240.
  • the quantum cryptographic key distribution stabilization apparatus 200 of FIG. 2 is located in the receiver 120, it may be disposed in the transmitter 110, and may be implemented as an independent device.
  • FIG. 3 is an exemplary diagram of a Michelson phase modulated quantum cryptographic key distribution transceiver to which a quantum cryptographic key distribution stabilization device is applied according to an embodiment of the present invention.
  • the quantum cryptographic key distribution stabilization apparatus 300 is directly or indirectly connected to the transmitter 310 and the receiver 350 to perform data communication.
  • the transmitter 310 includes a transmission optical system 320 and a transmission signal processor 330.
  • the transmission optical system 320 generates a single photon and performs phase modulation to load information on the generated single photon.
  • the transmission optical system 320 may include a light source 322, a transmission interferometer 324, and a transmission phase modulator 326.
  • the transmission optical system 320 according to an embodiment of the present invention has a structure in which the transmission interferometer 324 and the transmission phase modulator 326 are separated, but the transmission interferometer 324 and the transmission phase modulator 326 are integrated. It may have a structure.
  • Light emitted is in single mode, and a laser having narrow linewidth and stable polarization characteristics is suitable as the light source 322.
  • the light source 322 may include a semiconductor laser such as a distributed feedback (DFB), a vertical-surface emitting laser (VCSEL), a distributed bragg reflector (DBR) laser, or a laser such as a solid state laser, a gas laser, or the like.
  • a semiconductor laser such as a distributed feedback (DFB), a vertical-surface emitting laser (VCSEL), a distributed bragg reflector (DBR) laser, or a laser such as a solid state laser, a gas laser, or the like.
  • the light source 322 may be formed by further adding an optical attenuator (not shown) or an optical modulator (not shown) to the above-described laser to generate a single photon.
  • the optical attenuator may be separated from the light source 322 and positioned anywhere on the optical path of the transmitter 310 to attenuate the optical signal transmitted to the quantum channel 342.
  • the transmission interferometer 324 splits photons received from the light source 322 into at least two optical paths.
  • the at least two light paths are designed to have different effective optical path lengths.
  • photons passing through the transmission interferometer 324 are separated in time.
  • At least two optical paths include two different optical paths, the long path t n and the short path t n-1 .
  • the light pulse passed through the transmission interferometer 324 may be represented by Equation 1 below.
  • E 0 represents the amplitude of the optical pulse
  • represents the pulse width
  • represents the angular frequency
  • t represents time
  • t n and t n-1 pass through the long and short paths, respectively. Indicates the time delay that occurs.
  • the transmission phase modulator 326 modulates the phase of the optical pulse via the transmission phase modulator 326 by ⁇ A.
  • the transmission phase modulator 326 may simultaneously modulate the phases of the two light pulses passing through the long path and the short path, and may modulate one optical pulse selected from the two light pulses.
  • the optical pulse E 2 immediately after passing through the transmission phase modulator 326 may be represented by Equation 2 below.
  • ⁇ A is the magnitude of the phase is modulated in the transmission phase modulating section 326
  • the phase of the transmitted two-phase modulator 326 in accordance with one embodiment of the invention is temporally separate light pulses each - ⁇ A It modulated by / 2 and ⁇ A / 2 and modulated so that the total phase difference of the two optical pulses separated in time became ⁇ A.
  • the transmitter 310 and the receiver 350 may follow the BB84 protocol. Accordingly, the transmission phase modulator 326 may include two modulators for controlling bit information and basis information. The first modulator (not shown) of the transmission phase modulator 326 modulates the bit information, and the second modulator (not shown) modulates the basis information.
  • the optical pulse modulated by the transmission phase modulator 326 may include modulated bit information and basis information. Thereafter, the optical pulses modulated by the transmission phase modulator 326 are transmitted to the receiver 350 through the quantum channel 342.
  • the receiver 350 includes a reception phase modulator 362, a reception interferometer 364, and a detector 366.
  • the reception optical system 360 according to the exemplary embodiment has a structure in which the reception phase modulator 362 and the reception interferometer 364 are separated, but the reception phase modulator 362 and the reception interferometer 364 are integrated. It may have a structure.
  • the reception phase modulator 362 modulates the phase of the optical pulse received through the quantum channel 342.
  • the phase added by the reception phase modulator 362 is ⁇ B.
  • the optical pulse E 3 immediately after passing through the reception phase modulator 362 may be expressed by Equation 3 below.
  • ⁇ B is a magnitude of a phase modulated by the reception phase modulator 362, and the reception phase modulator 362 according to the embodiment of the present invention sets the phases of two optical pulses separated in time, respectively, - ⁇ B. It modulated by / 2 and ⁇ B / 2 so that the total phase difference between the two optical pulses separated in time was ⁇ B.
  • the optical pulse modulated by the reception phase modulator 362 is incident on the reception interferometer 364.
  • the light pulses passing through the reception interferometer 364 are incident to the detector 366.
  • the receiving interferometer 364 may include an optical circulator (not shown) so that the optical pulse output from the receiving interferometer 364 does not face the input unit but toward the detection unit 366.
  • the light pulses, E D1 and E D2 incident to the first single photon detector 369 and the second single photon detector 367 included in the detector 366 may be represented by Equations 4 and 5, respectively.
  • Equations 4 and 5 are combined phases added by the receiver long path, the receiver long path, and the reception interferometer 364, respectively.
  • Equations 4 and 5 the middle two terms are independent of interference because they do not overlap in time, and only the first and fourth terms contribute to the interference. Therefore, E D1 and E D2 may be represented by Equations 6 and 7, respectively.
  • FIG. 4 is an exemplary diagram of a Mach-Zehnder phase modulated quantum cryptographic key distribution transceiver to which a quantum cryptographic key distribution stabilization device is applied according to an embodiment of the present invention.
  • Each of the transmitter 410 and the receiver 450 illustrated in FIG. 4 performs the same function as each of the transmitter 310 and the receiver 350 illustrated in FIG. 3.
  • the transmission optical system 420 of FIG. 4 has a structure in which the transmission interferometer 424 and the transmission modulator 426 are integrated, and the reception optical system 460 is integrated with the reception interferometer 462 and the reception modulator 463.
  • the transmission optical system 420 and the reception optical system 460 of FIG. 4 may have a structure in which an interferometer and a modulator are separated as in the transmission optical system 320 illustrated in FIG. 3.
  • Each of the transmit modulator 426 and the receive modulator 463 includes a Mahzander interferometer for modulation of light pulses.
  • the transmission interferometer 424 includes a transmission optical splitter (OS T ), a transmission optical delay (DL T ), a transmission phase modulator 426, and a transmission optical combiner (OC T ), and the reception interferometer 462 is a reception optical splitter. It includes (R OS), receiving gwangji smoke (R DL), receiving a phase modulating unit 463 and a receiving optical coupler (OC R).
  • the quantum cryptographic key distribution stabilization apparatus 400 is connected to the reception optical system 460 and the reception signal processing unit 470 to perform data communication.
  • the quantum cryptographic key distribution stabilization device 400 is included in the receiver 450, but may be included in the transmitter 410.
  • the quantum cryptographic key distribution stabilization apparatus 400 may be included in the reception signal processor 470 or the transmission signal processor 430 of the transmitter 410.
  • the receiver 450 detects a single photon by receiving an optical pulse transmitted from the transmitter 410.
  • the quantum cryptographic key distribution stabilization apparatus 400 receives the detected result.
  • the process until the receiver 450 receives the light pulse from the transmitter 410 through the quantum channel 442 to detect a single photon is the same as the above-described process.
  • One of the two temporally separated optical pulses input to the reception interferometer 462 of the receiver 450 is phase modulated by ⁇ A by the transmission phase modulator 426 of the transmitter 410, and the other is a reception phase.
  • the phase is modulated by ⁇ B.
  • the receiving interferometer 462 is an asymmetric interferometer with different optical paths.
  • the reception interferometer 462 outputs a pair of interference results based on two temporally separated optical pulses input to the reception interferometer 462.
  • a transmission delay corresponding to the length difference of the optical paths is generated. That is, two temporally separated optical pulses input to the reception interferometer 462 are divided into four optical pulses separated in time. Of the four light pulses separated in time, two light pulses adjacent or overlapped in time cause constructive interference or destructive interference, and their size increases or decreases.
  • the interference by the optical pulses separated in time depends on the detection rate in the detector 464.
  • the detection unit 464 may indicate the maximum detection rate when the constructive interference occurs at the maximum, and the minimum detection rate when the destructive interference occurs at the maximum.
  • the effective optical path length of the optical path included in the reception interferometer 462 is different from the preset value, that is, the temperature of the reception interferometer 462 is higher or lower than the preset temperature and included in the transmission interferometer 424.
  • the effective optical path is changed from the effective optical path length of the received optical path, or when the effective optical path is changed due to a change in the physical length due to vibration or other environmental change, two of the four optical pulses output from the reception interferometer 462 are overlapped in time.
  • the relative phase change of the pulse causes a change in the interference. That is, constructive or destructive interference does not completely occur at the two outputs of the reception interferometer 462, so that the two outputs may exhibit values that deviate from the maximum detection rate or the minimum detection rate.
  • FIG 5 is an exemplary view for explaining the operation of the quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention.
  • the transmitter is not illustrated in order to describe the operation of the quantum cryptographic key distribution stabilization apparatus 500 in more detail. Referring to FIG. 10, the quantum cryptographic key distribution stabilization method will also be described.
  • the quantum cryptographic key distribution stabilization apparatus 500 is connected to the detector 566 and the reception signal processor 560 to perform data communication.
  • the quantum cryptographic key distribution stabilization apparatus 500 is connected to a transmission signal processor (not shown) and a reception signal processor 560 through a public channel 544 and transmits and receives various information for stabilizing quantum cryptographic key distribution.
  • the information for stabilizing quantum cryptographic key distribution includes information for changing the effective optical path length of at least one effective optical path length conversion target 580 included in the transmitter or receiver.
  • the effective optical path length conversion target 580 may be an interferometer of a type including or separated from the phase modulator.
  • the detection result at the detector 566 may represent the maximum detection rate and the minimum detection rate.
  • the quantum cryptographic key distribution stabilization apparatus 500 may include a negative feedback signal generator 572, a correction value calculator 574, and an optical path controller 576.
  • the negative feedback signal generator 572 generates a negative feedback signal based on the single photon detection coefficient values detected by the detector 566 (S1010).
  • the negative feedback signal may include detection coefficient values based on the basis information of the transmitter, the bit information, and the basis information of the receiver.
  • the negative feedback signal generator 572 transmits the generated negative feedback signal to the correction value calculator 574.
  • the correction value calculator 574 receives the negative feedback signal generated by the negative feedback signal generator 572 and calculates a correction value for an error to be compensated for (S1020).
  • the error to be compensated for may be a deviation of the effective optical path length conversion target (not shown) included in the transmitter or the effective optical path length of the effective optical path length conversion target 580 included in the receiver.
  • the effective optical path length conversion object which can change the effective optical path length, is an optical path of an interferometer and an interferometer composed of an optical fiber or a flat optical waveguide or a free space optical system including a plurality of mirrors and a beam splitter. Temperature controllers, piezoelectric devices, mechanical devices, etc., capable of varying length.
  • the optical path controller 576 controls at least one effective optical path length conversion object included in at least one of the transmitter and the receiver based on the correction value generated by the correction value calculator 574 (S1030).
  • the effective optical path length conversion object is directly controlled by the quantum cryptographic key distribution stabilization apparatus 500.
  • FIG. 6 is another exemplary view for explaining the operation of the quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention.
  • the quantum cryptographic key distribution stabilization apparatus 600 according to an embodiment of the present invention illustrated in FIG. 6 performs the same function as the quantum cryptographic key distribution stabilization apparatus 500 illustrated in FIG. 5. The only difference is that they are connected to two different single-photon detectors 669 and 667 of the detector 666 to perform data communication.
  • the first single photon detector 669 and the second single photon detector 667 operate in gated Geiger mode to detect single photons that are attenuated, canceled, neither enhanced nor canceled by interference.
  • the quantum cryptographic key distribution stabilization apparatus 600 transmits information related to the detected signal from each of the first single photon detector 669 and the second single photon detector 667 to a transmission signal processor (not shown) and a receiver signal processor 660. ), Along with the information provided in the signal processing, stabilizes the quantum cryptographic key distribution system.
  • the reception signal processing unit 660 also receives detection signals from each of the first single photon detector 669 and the second single photon detector 667, stores the detection signal, and transmits some information related to the detection for encryption key extraction. Can be sent to.
  • the quantum cryptographic key distribution stabilization apparatus 600 is connected to the detector 666 and the reception signal processor 660 to perform data communication.
  • Information that the quantum cryptographic key distribution stabilization apparatus 600 exchanges with the detector 666 and the reception signal processor 660 is information for stabilizing a phase difference between the detection values detected by the detector 666 and a transmission interferometer and a reception interferometer. It may include.
  • the quantum cryptographic key distribution stabilization apparatus 600 receives information related to detection coefficient values of the first single photon detector 669 and the second single photon detector 667 included in the detection unit 666, and performs quantum cryptographic key distribution. Generate a negative feedback signal for The quantum cryptographic key distribution stabilization device 600 calculates a correction value based on the generated negative feedback signal, and controls the effective optical path length conversion target with the calculated correction value, thereby minimizing the phase difference between the transmitter and the receiver. Stabilize the key distribution system.
  • the optical path difference between the transmitter and the receiver deviates from the initially set value.
  • the phase difference between the output from the transmitter and the output from the receiver is changed to the same situation as the phase difference initially set. You can.
  • the detection rate measured by the detection unit 566 is used to determine the maximum detection rate and the minimum detection rate. Can be represented.
  • the key factor in stabilizing the detection rate in the detector 566 is not the absolute effective optical path length of the transmitter and receiver, but the split of possible cases of the entire optical path from the transmitter to the receiver, including the paths included in the transmitter and receiver. This is because single-photon pulses are relative phase differences caused by two optical paths that overlap and cause interference.
  • Transmitter Bit Information Transmitter Base Information Receiver base information D1 detection rate (%) D2 detection rate (%) Detection coefficient value representation Detection coefficient value increase / decrease 0 0 0 100 0 0 0 - ⁇ / 2 50 50 D1 00 , D2 00 -, + 0 ⁇ / 2 0 50 50 D1 01 , D2 01 +,- 0 ⁇ / 2 - ⁇ / 2 100 0 ⁇ 0 0 0 100 ⁇ 0 - ⁇ / 2 50 50 D1 10 , D2 10 +,- ⁇ ⁇ / 2 0 50 50 D1 11 , D2 11 -, + ⁇ ⁇ / 2 - ⁇ / 2 0 100
  • the first column and the second column represent the amount of bit information modulation and the amount of basis information modulation by the transmission modulator 326 included in the transmitter 310, respectively.
  • the third column shows the amount of basis information modulation by the reception modulator 362 included in the receiver 350.
  • the modulation amount is determined between the light pulse output relatively late through the long path and the light pulse output relatively quickly through the short path among two optical pulses separated in time by the interferometers 324 and 364 included in each modulator. Phase difference.
  • the fourth and fifth columns represent single photon detection rates at the first single photon detectors 369 and 669 and the second single photon detectors 367 and 667, respectively.
  • the sixth column indicates the detection coefficient values detected by the first single photon detectors 369 and 669 and the second single photon detectors 367 and 667 using bit information and basis information. Denotes the increase or decrease of the number of detected counts.
  • the detection coefficient value is defined to increase when the phase of the receiver 350 is relatively larger than the phase of the transmitter 310.
  • the basis information of the receiver 350 does not match the basis information of the transmitter.
  • the quantum cryptographic key distribution between the transmitter 310 and the receiver 350 is stabilized based on the detection coefficient values discarded. Values where the basis information of the transmitter 310 and the basis information of the receiver 350 coincide with each other will be used to extract the encryption key, and are not shown in Table 1.
  • the detection coefficient values in each detector are expressed as Dx nm , and x represents the number of the detector, m and n represent bit information and basis information of the transmitter 310, respectively. That is, when x is 1, m is 0, and n is 1, when the bit information and the basis information of the transmitter 310 are 0 and 1, respectively, it represents a detection coefficient value detected by the first single photon detector.
  • the display of the basis information of the receiver 350 is omitted, since it does not coincide with the basis information of the transmitter 350, the value of n may be confirmed and inferred. For example, in the case of the detection coefficient value indicated by D1 01 , since the bit information and the basis information of the transmitter 310 are 0 and 1, respectively, the basis information of the receiver 350 is zero.
  • D1 00 and D1 01 corresponding to the detection coefficient values in the first single photon detectors 369 and 669 move in opposite directions with respect to the temperature change. That is, D1 00 moves in the direction in which the detection coefficient value decreases, and D1 01 moves in the direction in which the detection coefficient value increases.
  • D2 00 and D2 01 corresponding to detection coefficient values in the second single photon detectors 367 and 667 move in opposite directions. That is, D2 00 moves in the direction in which the detection coefficient value decreases, and D2 01 moves in the direction in which the detection coefficient value increases.
  • the detection coefficient values in the first single photon detectors 369 and 669 and the detection coefficient values in the second single photon detectors 367 and 667 move in different directions. Accordingly, when the difference between the detection coefficient values at the first single photon detectors 369 and 669 and the detection coefficient values at the second single photon detectors 367 and 667 is calculated, the transmission interferometer 324 and the reception interferometer 364 are calculated. The impact of change is expressed consistently.
  • the relation between the detection coefficient values in the first single photon detectors 369 and 669 and the detection coefficient values in the second single photon detectors 367 and 667 can be expressed by Equation (11).
  • X is a first negative feedback signal for a value of bit information equal to zero.
  • the second negative feedback signal having bit information of 1 is different in direction from the first negative feedback signal for a value having bit information of zero. Accordingly, the second negative feedback signal Y may be represented by Equation 12 below.
  • the detection coefficient values in the first single photon detectors 369 and 669 and the detection coefficient values in the second single photon detectors 367 and 667 are different from the light loss in the quantum channel 342 and the detection efficiency in the detector. The value can be different by. Therefore, in order to compensate for this, the first negative feedback signal and the second negative feedback signal may be normalized.
  • the normalized first and second negative feedback signals are represented by Equations 13 and 14, respectively.
  • the negative feedback signal can be obtained by adding the first negative feedback signal and the second negative feedback signal, which can be expressed by Equation 15.
  • Z represents a negative feedback signal
  • X and Y represent a first negative feedback signal and a second negative feedback signal.
  • the above-described negative feedback signal is calculated by digitizing detection coefficient values which are reflected by the phase difference between the transmitter 310 and the receiver 350, and the calculation is performed by the negative feedback signals of the quantum cryptographic key distribution stabilization apparatuses 300 and 600. It is performed by the generation unit 672.
  • the negative feedback signal generator 672 uses the detection coefficient values generated from the detection results from the first single photon detectors 369 and 669 and the second single photon detectors 367 and 667 to generate the first negative feedback signal and the second negative feedback signal. Generates a negative feedback signal and adds these two values to produce a negative feedback signal.
  • the correction value calculator 674 calculates a correction value that should be substantially controlled to stabilize the quantum cryptographic key distribution based on the negative feedback signal received from the negative feedback signal generator 672.
  • the error to be compensated for may be a change amount of the effective optical path length included in the transmitter 310 or the receiver 350.
  • the effective optical path length conversion object 680 which is an element capable of changing the effective optical path length, is an effective optical path length of an interferometer and an interferometer composed of an optical fiber or a flat optical waveguide or a free space optical system including a plurality of mirrors and beam splitters. It can be a temperature controller, a piezoelectric element, a mechanical device and the like that can change.
  • the optical path controller 676 controls at least one effective optical path length conversion target 680 included in the receiver 350 based on the correction value generated by the correction value calculator 674 (S1030).
  • the effective optical path length conversion target included in the transmitter is controlled.
  • the effective optical path length conversion object 680 is controlled by the quantum cryptographic key distribution stabilization device 600.
  • FIG. 7 is another exemplary view for explaining the operation of the quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention.
  • the quantum cryptographic key distribution stabilization apparatus 700 of FIG. 7 performs the same function as the quantum cryptographic key distribution stabilization apparatus 600 illustrated in FIG. 6. However, the difference in that the effective optical path length conversion object 780 is not included in the receiver is included in the transmitter.
  • the quantum cryptographic key distribution stabilization apparatus 700 transmits information for stabilizing quantum cryptographic key distribution to the transmission signal processing unit 730 of the transmitter, thereby causing the transmission signal processing unit 730 to convert the effective optical path length 780. To control.
  • FIG. 8 is an exemplary diagram illustrating a case where a quantum cryptographic key distribution stabilization apparatus according to an embodiment of the present invention is included in a signal processing unit of a receiver.
  • the quantum cryptographic key distribution stabilization apparatus 800 of FIG. 8 performs the same function as the quantum cryptographic key distribution stabilization apparatus 600 illustrated in FIG. 6. However, the quantum cryptographic key distribution stabilization apparatus shown in FIG. 6 is that the quantum cryptographic key distribution stabilization apparatus 800 does not exist outside the reception signal processing unit 860 of the receiver and is included in the reception signal processing unit 860 of the receiver. Different from 600.
  • the quantum cryptographic key distribution stabilization apparatus 800 may control an effective optical path length conversion target (not shown) included in the receiver, and is disposed in the transmitter and included in the transmitter as in the embodiment illustrated in FIG.
  • the effective light path length conversion target 880 may be controlled.
  • QBER quantum bit error rate
  • the negative feedback signal and the quantum bit error rate value generated by the quantum cryptographic key distribution stabilization device are sensitively changed according to the temperature of the interferometer.
  • the temperature deviates from the initial set point
  • the negative feedback signal Z value deviates from zero.
  • the quantum bit error rate increases.
  • the optical path controller is a temperature controller
  • the effective optical path length conversion object is an interferometer included in the transmitter or the receiver.
  • the change in length caused by the temperature change or vibration of the interferometer changes the quantum bit error rate, and can be stabilized by controlling the temperature of the interferometer. Stabilization may also be achieved.
  • FIG. 10 is a flowchart illustrating a quantum cryptographic key distribution stabilization method according to an embodiment of the present invention.
  • the quantum cryptographic key distribution stabilization method according to an embodiment of the present invention is the same as described with the quantum cryptographic key distribution stabilization device according to an embodiment of the present invention shown in FIG.
  • FIG. 11 is an exemplary diagram for describing an operation of a polarization modulation-based quantum cryptographic key distribution system to which a quantum cryptographic key distribution stabilization device is applied according to an embodiment of the present invention.
  • the quantum cryptographic key distribution stabilization apparatus 1100 performs the same function as the quantum cryptographic key distribution stabilization apparatus 600 illustrated in FIG. 6. However, since the transmitter 1110 and the receiver 1150 perform the polarization modulation without performing the phase modulation, the information received for stabilization and the object to be controlled are different.
  • the quantum cryptographic key distribution stabilization apparatus 1100 is connected to the reception signal processor 1170 to perform data communication.
  • Information exchanged by the quantum cryptographic key distribution stabilization apparatus 1100 with the reception signal processing unit 1170 may include detection coefficient values detected by the detection unit 1168 and information for stabilizing polarizations of the transmitter 1110 and the receiver 1150. It may include.
  • the quantum cryptographic key distribution stabilization apparatus 1100 may be disposed in the transmitter 1110 or the receiver 1150, and may be implemented as an independent device.
  • the quantum cryptographic key distribution stabilization apparatus 1100 may include a transmitter corresponding to a case where the detection related value generated by the detector 1168 and the basis information generated by the receiver 1150 received through the reception signal processor 1170 do not match. By using the bit information and the basis information generated in 1110, a negative feedback signal for quantum cryptographic key distribution is generated. The quantum cryptographic key distribution stabilization apparatus 1100 calculates a correction value based on the generated negative feedback signal, and stabilizes the polarization state of the receiver 1150 using the polarization controller.
  • the transmitter 1110 includes a transmission optical system 1120 and a transmission signal processor 1130.
  • the transmission optical system 1120 includes a light source 1122, a polarization bit information modulator 1124, and a polarization basis information modulator 1126.
  • the polarization bit information modulator 1124 and the polarization basis information modulator 1126 may be integrated into one.
  • the light source 1122 performs the same function as the light source 222 shown in FIG.
  • the polarization bit information modulator 1124 receives light pulses from the light source 1122 and performs bit information modulation.
  • the polarization bit information modulator 1124 modulates the bit information by controlling the direction of the polarization of the optical pulse, that is, the angle.
  • the modulation angle is a value for a transmission axis of a polarization beam splitter (PBS) included in the receiver 1150.
  • PBS polarization beam splitter
  • the polarization basis information modulator 1126 receives light pulses from the light source 1122 and performs basis information modulation.
  • the polarization basis information modulator 1126 also modulates the basis information by controlling the angle of polarization of the optical pulse.
  • the polarization basis information modulator 1126 may modulate an unmodulated portion of the optical pulses inputted to the polarization basis information modulator 1126 by the polarization bit information modulator 1124.
  • optical pulses passing through the polarization bit information modulator 1124 and the polarization basis information modulator 1126 are transmitted to the receiver 1150 through the quantum channel 1142.
  • the transmission signal processor 1130 is connected to the receiver 1150 and the quantum cryptographic key distribution stabilization apparatus 1100 through a public channel 1144 to perform data communication.
  • the transmission signal processor 1130 generates information for quantum encryption key distribution and stores the generated information.
  • Information for quantum cryptographic key distribution includes bit information and basis information.
  • the transmission signal processor 1130 transmits information for quantum encryption key distribution to the transmission optical system 1120 and shares information for quantum encryption key distribution with the quantum encryption key distribution stabilization apparatus 1100 and the receiver 1150.
  • the receiver 1150 includes a reception optical system 1160 and a reception signal processor 1170.
  • the reception optical system 1160 includes a polarization axis tracker 1162, a polarization basis information modulator 1164, a polarization beam splitter 1166, and a detector 1168.
  • the detector 1168 may include at least two single photon detectors.
  • the polarization axis tracking unit 1162 tracks the polarization state of the light pulse transmitted from the transmitter 1110 through the quantum channel 1142.
  • Optical pulses that do not coincide with the polarization axis of the polarization beam splitter 1166 of the receiver 1150 are divided into components coincident with the polarization axis and components orthogonal to the polarization axis and pass through the polarization beam splitter 1166.
  • the polarization state of the optical pulse may be changed by various external factors generated in the process of passing through the quantum channel 1142.
  • the detection rate detected by the detection unit 1168 is at a maximum value of 100%, minimum 0%, and 50:50. You get out.
  • the polarization basis information modulator 1164 performs polarization modulation on the light pulse passed through the polarization axis tracker 1162. As the polarization basis information modulator 1164 performs polarization modulation on an optical pulse passing through the receiving optical system 1160, the detection value of the detector 1168 is changed.
  • the polarization beam splitter 1166 splits light pulses incident on the polarization beam splitter 1166 into two different optical paths according to polarization.
  • One of the optical pulses divided into two different optical paths is incident on the first single photon detector (not shown), and the other is incident on the second single photon detector (not shown).
  • Detection coefficient values due to light pulses incident on the first single photon detector and the second single photon detector are similar to those described with reference to FIGS. 6 and 1.
  • the first column and the second column represent the amount of bit information modulation and the amount of basis information modulation by each of the polarization bit information modulator 1124 and the polarization basis information modulator 1126 included in the transmitter 1110, respectively.
  • the third column shows the amount of basis information modulation by the polarization basis information modulator 1164 included in the receiver 1150.
  • the modulation amount is the angle at which the polarization of the light pulse is turned.
  • the fourth and fifth columns indicate single photon detection rates in the first single photon detector and the second single photon detector included in the detector 1168, respectively.
  • the sixth column represents the detection coefficient values detected by the first single photon detector and the second single photon detector using bit information and basis information
  • the seventh column, the last column shows the increase and decrease of the detection coefficient values.
  • the detection coefficient value is defined to increase when a single photon whose polarization is turned in the + direction with respect to the reference axis (vertical direction) of the transmitter 1110 is received. That is, when a single photon with polarized light in the negative direction is received, the detection coefficient value decreases.
  • the basis information of the receiver 1150 matches the basis information of the transmitter 1110.
  • the quantum cryptographic key distribution between the transmitter 1110 and the receiver 1150 is stabilized based on detection values that are not discarded. Values where the basis information of the transmitter 1110 and the basis information of the receiver 1150 coincide with each other will be used for extraction of the encryption key and are not described in Table 2.
  • the detection coefficient values in each detector are expressed as Dy kl , and y represents the number of the detector, k and 1 represent bit information and basis information of the transmitter 1110, respectively. That is, when y is 1, k is 0, and 1 is 1, when bit information and basis information of the transmitter 1110 are 0 and 1, respectively, the detection coefficient value detected by the first single photon detector is represented.
  • the display of the basis information of the receiver 1150 is omitted, since it does not coincide with the basis information of the transmitter 1150, the value of l may be confirmed and inferred.
  • the detection coefficient value denoted by D1 01 since the bit information and the basis information of the transmitter 1110 are 0 and 1, respectively, the basis information of the receiver 1150 is zero.
  • the negative feedback signal generated by the quantum cryptographic key distribution stabilization apparatus 1100 to stabilize the quantum cryptographic key distribution includes a first single photon detector and a second single photon detector included in the detector 1168. It can be obtained by applying the same to the single photon detector.
  • a first negative feedback signal, a second negative feedback signal, and a negative feedback signal obtained by adding these two values are each generated by the quantum cryptographic key distribution stabilization apparatus 1100 according to an embodiment of the present invention shown in FIG. , Can be represented by equation (14) and equation (15).
  • FIG. 12 is another exemplary diagram for describing an operation of a polarization modulation-based quantum cryptographic key distribution system to which a quantum cryptographic key distribution stabilization device is applied according to an embodiment of the present invention.
  • the quantum cryptographic key distribution stabilization apparatus 1200 according to the embodiment of the present invention illustrated in FIG. 12 performs the same function as the quantum cryptographic key distribution stabilization apparatus 1100 illustrated in FIG. 11. However, the first detector 1264 and the second detector 1267 of the receiver 1250 are different from each other by including four different single-photon detectors.
  • the quantum cryptographic key distribution stabilization apparatus 1200 is connected to the reception signal processor 1270 to perform data communication.
  • Information transmitted and received by the quantum cryptographic key distribution stabilization apparatus 1200 to the reception signal processor 1270 may include detection coefficient values detected by the first detector 1264 and the second detector 1267, the transmitter 1210, and the receiver 1250. ) May include information for stabilizing polarization between.
  • the transmitter 1210 is the same as the transmitter 1110 shown in FIG.
  • the receiver 1250 includes a reception optical system 1260 and a reception signal processor 1270.
  • the reception optical system 1260 includes a polarization axis tracking unit 1261, a beam splitter 1262, a first polarization beam splitter 1262, a first detector 1264, a polarization controller 1265, a second polarization beam splitter 1266, and A second detector 1267 is included.
  • Each of the first detector 1264 and the second detector 1267 may include at least two single photon detectors.
  • the polarization axis tracking unit 1261 tracks the polarization state of the optical pulse transmitted from the transmitter 1210 through the quantum channel 1242.
  • the optical pulses that do not coincide with the polarization axis of the first polarization beam splitter 1263 and the second polarization beam splitter 1266 of the receiver 1250 are divided into components that coincide with the polarization axis and components that are orthogonal to the polarization axis, respectively. Pass (1263, 1266).
  • the polarization state of the optical pulse may be changed by various external factors generated in the process of passing through the quantum channel 1242.
  • the first detection unit 1264 and the second detection unit 1267 are detected.
  • the detection coefficient value i.e., 100% of the maximum detection rate, 0% of the minimum value and 50:50, etc., is deviated.
  • the beam splitter 1262 selects an output to which light pulses incident to the beam splitter 1262 are transmitted. That is, the light pulse incident on the beam splitter 1262 passes through the beam splitter 1262, and then enters into one of the first polarization beam splitter 1263 and the polarization controller 1265.
  • the role of the first polarization beam splitter 1263 and the second polarization beam splitter 1266 is the same as that of the polarization beam splitter shown in FIG.
  • the first polarization beam splitter 1263 divides the light pulses incident from the first polarization beam splitter 1263 into two different optical paths according to polarization. One of the optical pulses divided into two different optical paths is incident on the first single photon detector (not shown), and the other is incident on the second single photon detector (not shown).
  • the polarization controller 1265 is fixed by the beam splitter 1262 so that the polarization state of the light pulse incident on the polarization controller 1265 is rotated by 45 °.
  • the second polarization beam splitter 1266 divides the light pulses output from the polarization controller 1265 into the second polarization beam splitter 1266 into two different optical paths according to polarization.
  • One of the optical pulses divided into two different optical paths is incident on the third single photon detector (not shown), and the other is incident on the fourth single photon detector (not shown).
  • Detection in the receiver 1250 according to changes in the polarization modulation amount and the polarization modulation amount of the transmitter 1210 and the receiver 1250 according to the BB84 protocol can be summarized into eight cases as shown in Table 3 below.
  • the first column and the second column represent the amount of bit information modulation and the amount of basis information modulation by each of the polarization bit information modulator 1224 and the polarization basis information modulator 1226 included in the transmitter 1210, respectively.
  • the third column is a value selected by the beam splitter 1262 included in the receiver 1250, and when 1 is selected, the optical pulse incident to the beam splitter 1262 is sent to the first polarization beam splitter 1263, 2 If is selected, the light pulse incident on the beam splitter 1262 is sent to the polarization controller 1265.
  • the fourth, fifth, sixth and seventh columns represent single photon detection rates in the first single photon detector, the second single photon detector, the third single photon detector and the fourth single photon detector, respectively.
  • the eighth column represents the detection coefficient values detected by the first single photon detector, the second single photon detector, the third single photon detector, and the fourth single photon detector by using bit information and basis information, and the last column, nine
  • the second column shows the increase and decrease of the detection coefficient value.
  • the detection coefficient value is defined to increase when a single photon whose polarization is turned in the + direction with respect to the reference axis (vertical direction) of the first polarization beam splitter 1263 of the receiver 1250 is defined. That is, when a single photon with polarized light in the negative direction is received, the detection coefficient value decreases.
  • the basis information of the receiver 1250 matches the basis information of the transmitter 1210.
  • the quantum cryptographic key distribution between the transmitter 1210 and the receiver 1250 is stabilized based on detection coefficient values that are not discarded. Values where the basis information of the transmitter 1210 and the basis information of the receiver 1250 match will be used for extraction of the encryption key.
  • the detection coefficient value of each detector is expressed as Dz uv , and z denotes the number of the detector, u and v denote bit information and basis information of the transmitter 1210, respectively. That is, when z is 1, u is 0, and v is 1, when bit information and basis information of the transmitter 1210 are 0 and 1, respectively, the detection coefficient value detected by the first single photon detector is represented.
  • the display of the basis information of the receiver 1250 is omitted, since it does not coincide with the basis information of the transmitter 1250, the value of v may be confirmed and inferred.
  • the detection coefficient value denoted by D1 01 since the bit information and the basis information of the transmitter 1210 are 0 and 1, respectively, the basis information of the receiver 1250 is zero.
  • the negative feedback signal generated by the quantum cryptographic key distribution stabilization apparatus 1200 to stabilize the quantum cryptographic key distribution can be obtained through the following process.
  • the bit information is 0, which corresponds to the detection coefficient values of the first single photon detector included in the first detector 1264 and the third single photon detector included in the second detector 1267.
  • D1 01 and D3 00 move in opposite directions. That is, D3 00 moves in the direction in which the detection coefficient value increases, and D1 01 moves in the direction in which the detection coefficient value decreases.
  • D2 01 and D4 00 corresponding to detection coefficient values of the second single photon detector included in the first detector 1264 and the fourth single photon detector included in the second detector 1267 may be in opposite directions. Move. That is, D2 01 moves in the direction in which the detection coefficient value increases, and D4 00 moves in the direction in which the detection coefficient value decreases.
  • X is a first negative feedback signal for a value having bit information of 0 and Y is a second negative feedback signal for a value having bit information of 1.
  • the detection coefficient values in the first single photon detector, the second single photon detector, the third single photon detector, and the fourth single photon detector are determined by differences in light loss in the quantum channel 1242, detection efficiency in the detector, and the like. The value can be different. Therefore, in order to compensate for this, the first negative feedback signal and the second negative feedback signal may be normalized.
  • the normalized first and second negative feedback signals are represented by Equations 18 and 19, respectively.
  • the negative feedback signal can be obtained by adding the first negative feedback signal and the second negative feedback signal, which can be expressed by Equation 20.
  • the above-described negative feedback signal is calculated by digitizing detection coefficient values reflected by the polarization difference of the transmitter 1210 and the receiver 1250, and the calculation is performed by the negative feedback signal generator of the quantum cryptographic key distribution stabilization device 1200. Is performed by In addition, the operation of the quantum cryptographic key distribution stabilization apparatus 1200 by the remaining components is the same as the operation of the quantum cryptographic key distribution stabilization apparatus 600 described with reference to FIG. 6.
  • each process is described as being sequentially executed, but is not necessarily limited thereto. In other words, since the process described in FIG. 10 may be applied by changing or executing one or more processes in parallel, FIG. 10 is not limited to the time series order.
  • each step of the flowchart shown in FIG. 10 may be embodied as computer readable codes on a computer readable recording medium.
  • the computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. That is, the computer-readable recording medium may be a magnetic storage medium (for example, ROM, floppy disk, hard disk, etc.), an optical reading medium (for example, CD-ROM, DVD, etc.) and a carrier wave (for example, the Internet Storage medium).
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • Quantum cryptographic key distribution stabilization device 100, 200, 300, 400, 500, 600, 700, 800, 1100, 1200: Quantum cryptographic key distribution stabilization device
  • transmission signal processing unit 220, 330, 430, 730, 830, 1130, 1230: transmission signal processing unit
  • Receive signal processor 240, 370, 470, 560, 660, 760, 860, 1170, 1270: Receive signal processor
  • Embodiments of the present invention are applied to the technical field to stabilize the quantum cryptographic key distribution system is a useful invention that can reduce the system construction cost by using a conventional system as it is to quickly and efficiently compensate for the error.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

본 발명의 실시예들은 양자 암호키 분배 시스템에 포함되는 광학계의 온도 변화 및 전송 경로의 편광 변화 등에 의해 발생하는 오차를 신속하면서도 효율적으로 보상할 수 있고, 종래의 양자 암호키 분배 시스템을 그대로 적용할 수 있어 비용을 절감할 수 있도록 하는 양자 암호키 분배 안정화 장치 및 방법을 제공한다.

Description

양자 암호키 분배 안정화 장치 및 방법
본 발명의 실시예들은 양자 암호키 분배 안정화 장치 및 방법에 관한 것이다.
이하에 기술되는 내용은 단순히 본 발명에 따른 실시예들과 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.
현재 사용되고 있는 대부분의 암호체계는 대개 수학적 복잡성에 기초하고 있고, 가역적이기 때문에 언젠가는 문제가 풀리게 된다. 이러한 문제점을 보완하기 위한 방안 중 하나가 양자 암호(quantum cryptography), 더욱 정확하게는 양자 암호키 분배(quantum key distribution)이다.
기존에 있던 대부분의 암호체계가 대부분 수학적 복잡성에 기초하는 데에 비해, 양자 암호는 자연현상에 기초하고 있으며, 암호에 사용되는 일회용 암호키를 생성하는 이상적인 방법 중 하나다. 중간에 도청자(Eve)가 난입할 경우 그 존재가 드러나며, 신호가 왜곡되어 도청자도 정확한 정보를 얻을 수 없는 보안성을 갖는다.
이러한 특성을 갖는 양자 암호를 송신부(Alice)와 수신부(Bob)가 공유할 수 있도록 하는 시스템이 양자 암호키 분배 시스템(quantum key distribution system; QKDS)이다.
도 1은 종래의 양자 암호키 분배 시스템의 개념도이다.
양자 암호키 분배 시스템은 양자 암호키 분배 송신부(110), 양자 암호키 분배 수신부(120), 양자 채널(132, quantum channel) 및 공개 채널(134, public or open channel)를 포함한다.
양자 암호키 분배 시스템의 송신부(110)는 단일광자(single photon)의 위상(phase) 또는 편광(polarization)을 제어하는 방식으로 단일광자에 암호키 정보를 실어 양자 채널(132)을 통해 전송한다. 양자 암호키 분배 시스템의 수신부(120)는 위상 변조기(phase modulator)와 간섭계(interferometer) 또는 편광빔 분할기(polarization beam splitter) 등을 이용하여 암호키 정보를 추출한다.
양자 암호키 분배 시스템은 종래의 광통신 및 광학 기술을 이용하여 구현된다. 특히, 위상변조 방식의 양자 암호키 분배 시스템은 통상적으로 수신부에 위치한 위상변조장치와 간섭계를 통해 전송된 신호를 검출한다.
양자 암호키 분배 시스템에 포함되는 간섭계의 간섭 성능은 온도나 진동 등 환경 변화에 매우 민감한 특성을 보이며, 이러한 환경 변화에 따른 유효 광경로 길이(effective optical path length)의 변화는 양자 암호키 분배 시스템의 전체 성능에 큰 영향을 미친다.
따라서 양자 암호키 분배 시스템의 양자비트오류율 즉, QBER(quantum bit error rate)을 개선하기 위해, 간섭계와 같은 광학계의 온도 변화 등에 의해 발생하는 오차를 신속하고 효율적으로 보상할 수 있는 방안이 필요하다.
또한, 편광변조 방식의 양자 암호키 분배 시스템은 통상적으로 수신부에 위치한 편광빔분할기를 통해 신호를 검출한다. 하지만, 전송 신호의 편광은 전송 매체인 광섬유 내에서 시간에 따라 계속 변화한다. 따라서 편광빔분할기를 입력 신호의 편광에 정렬하는 기능이 필요하다. 이러한 정렬의 정확도는 양자 암호키 분배 시스템의 양자비트오류율에 영향을 준다. 따라서 광섬유에 의해 변화된 신호광의 편광축(polarization axis)과 편광빔분할기의 축 사이의 오차를 신속하고 효율적으로 보상할 수 있는 방안이 필요하다.
본 발명의 실시예들은 양자 암호키 분배 시스템의 성능을 향상시키기 위해, 간섭계의 유효 광경로 길이 변화 및 편광축 변화 등에 의해 발생하는 오차를 신속하고 효율적으로 보상할 수 있는 양자 암호키 분배 안정화 장치 및 방법을 제공하는 데에 주된 목적이 있다.
본 발명의 일 실시예는 수신기에서 검출된 광자 검출 관련값들 중, 암호키 생성에 사용되지 않고 버려지는 검출 계수값들을 이용하여 부궤환 신호를 생성하는 부궤환 신호 생성부; 상기 부궤환 신호를 수신하여 보상되어야 할 오차에 대한 보정값을 산출하는 보정값 산출부; 및 상기 보정값을 송신기 또는 수신기에 전송하여 상기 송신기 및/또는 수신기가 위상 또는 편광에 영향을 주는 변환 인자를 제어하여 위상 또는 편광을 보정하도록 하는 제어부를 포함하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치를 제공한다.
본 발명의 일 실시예는 수신기에서 검출된 광자 검출 관련값들 중, 암호키 생성에 사용되지 않고 버려지는 검출 계수값들을 이용하여 부궤환 신호를 생성하는 부궤환 신호 생성 과정; 상기 부궤환 신호를 수신하여 보상되어야 할 오차에 대한 보정값을 산출하는 보정값 산출 과정; 및 상기 보정값을 송신기 또는 수신기에 전송하여 상기 송신기 및/또는 수신기가 위상 또는 편광에 영향을 주는 변환 인자를 제어하여 위상 또는 편광을 보정하도록 하는 제어하는 과정을 포함하는 것을 특징으로 하는 양자 암호키 분배 안정화 방법을 제공한다.
본 발명의 일 실시예에 따르면, 양자 암호키 분배 시스템에 포함되는 광학계의 유효 광경로 길이 변화 등에 의해 발생하는 오차를 효율적으로 보상할 수 있는 효과가 있다.
본 발명의 일 실시예의 다른 측면에 의하면, 양자 암호키 분배 시스템에서 발생하는 오차의 최초 제어 방향을 알 수 있고, 최적점에서 벗어난 정도를 알 수 있어 오차를 신속하게 제어할 수 있는 효과가 있다.
본 발명의 일 실시예의 또 다른 측면에 의하면, 종래의 양자 암호키 분배 시스템을 그대로 이용할 수 있어, 적용이 간편하고 비용이 적게 든다는 효과가 있다.
도 1은 종래의 양자 암호키 분배 시스템의 개념도이다.
도 2는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치의 개념도이다.
도 3은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 적용된 마이컬슨(Michelson) 위상변조 양자 암호키 분배 송수신기의 예시도이다.
도 4는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 적용된 마흐젠더(Mach-Zehnder) 위상변조 양자 암호키 분배 송수신기의 예시도이다.
도 5는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치의 동작을 설명하기 위한 일 예시도이다.
도 6은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치의 동작을 설명하기 위한 다른 예시도이다.
도 7은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치의 동작을 설명하기 위한 또 다른 예시도이다.
도 8은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 수신기의 신호처리부에 포함된 경우를 도시하는 일 예시도이다.
도 9는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 생성하는 온도변화에 따른 부궤환 에러신호와 양자비트오류율(QBER) 값을 도시한 그래프이다.
도 10은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 방법을 도시한 흐름도이다.
도 11은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 적용된 편광변조 기반의 양자 암호키 분배 시스템의 동작을 설명하기 위한 일 예시도이다.
도 12는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 적용된 편광변조 기반의 양자 암호키 분배 시스템의 동작을 설명하기 위한 다른 예시도이다.
이하, 본 발명의 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예들을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예들의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
이하, 첨부도면을 참조하여 본 발명의 실시예들에 따른 양자암호통신 시스템의 안정화 장치 및 방법을 설명하면 다음과 같다.
도 2는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치의 개념도이다.
양자 암호키 분배 안정화 장치(200)는 양자 암호키 분배 위한 송신기(110) 및 수신기(120)와 연결되어 데이터 통신을 수행한다. 이하, 별도의 언급이 없다면, 송신기 및 수신기 각각은 양자 암호키 분배를 위한 송신기 및 수신기를 의미한다.
도 2는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 수신기에 위치하는 경우를 도시한다.
송신기(110)는 송신 광학계(210, optical system)와 송신 신호처리부(220)를 포함한다. 송신 광학계(210)는 단일광자(single photon)를 생성하고, 생성된 단일광자에 정보를 싣기 위해 변조(modulation)를 수행한다.
송신 신호처리부(220)는 수신기(120)와 공개 채널(260)을 통해 연결되어 데이터 통신을 수행하고 수신 신호처리부(240)에 연결된 양자 암호키 분배 안정화 장치(200)의 구동을 위한 정보를 전달한다. 송신 신호처리부(220)는 양자 암호키 분배를 위한 정보를 생성하고, 생성된 정보를 저장한다. 양자 암호키 분배를 위한 정보는 비트 정보 및 기저 정보를 포함한다. 송신 신호처리부(220)는 양자 암호키 분배를 위한 정보를 송신 광학계(210)로 전송하며, 양자 암호키 분배 안정화 장치(200) 및 수신기(120)와 양자 암호키 분배를 위한 정보를 공유한다.
송신 신호처리부(220)가 수신기(120)로 송수신하는 정보는 도청될 수 있으므로, 송신 신호처리부(220)는 공개 채널(260)을 통해 암호키 정보를 교환하지는 않는다. 양자 암호키 분배 안정화 장치(200)는 송신 신호처리부(220)로부터 수신한 데이터에 기초하여 송신 광학계(210)에 포함된 구성요소를 일시적으로 제어하여 양자비트오류율(QBER)을 신속하고 효율적으로 개선할 수 있도록 한다.
수신기(120)는 수신 광학계(230), 수신 신호처리부(240) 및 양자 암호키 분배 안정화 장치(200)를 포함한다. 수신기(120)는 송신기(110)에서 전송한 단일광자를 수신하여 암호키를 추출한다. 양자 암호키 분배 안정화 장치(200)는 수신 신호처리부(240)로부터 수신한 데이터에 기초하여 수신 광학계(230)에 포함된 구성요소를 일시적으로 제어할 수 있다.
본 발명의 일 실시예에 따른 송신기(110) 및 수신기(120)는 BB84(Bennet Brassard 84) 프로토콜을 따를 수 있다. BB84 프로토콜은 두 가지 기저(basis) 정보와 비트(bit) 정보를 조합함으로써 구현된다. 이 때 비트 정보는 서로 직교하는 두 상태를 이용하여 표현된다. 이에 따라, 송신 광학계(210)는 비트 정보와 기저 정보를 제어하기 위해 두 개의 변조기를 포함할 수 있다. 예를 들어, 송신 광학계(210)의 제 1 변조기(미도시)는 비트 정보를 변조하고, 제 2 변조기(미도시)는 기저 정보를 변조할 수 있다. 또는 반대로도 구성될 수 있다.
송신 광학계(210)에서 변조된 단일광자는 변조된 비트 정보와 기저 정보를 포함할 수 있다. 송신 광학계(210)에서 변조된 단일광자는 양자 채널(250)을 통해 수신기(120)로 전송된다.
수신기(120)는 송신기(110)에서 전송한 단일광자를 수신하여 암호키를 추출한다. 양자 암호키 분배 안정화 장치(200)는 수신 신호처리부(240)로부터 수신한 데이터에 기초하여 수신 광학계(230)에 포함된 구성요소를 일시적으로 제어할 수 있다.
도 2의 양자 암호키 분배 안정화 장치(200)는 수신기(120)에 위치하고 있지만, 송신기(110)에 배치될 수 있으며, 그와 별도의 독립적인 장치로도 구현이 가능하다.
도 3은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 적용된 마이컬슨(Michelson) 위상변조 양자 암호키 분배 송수신기의 예시도이다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(300)는 송신기(310) 및 수신기(350)와 직간접적으로 연결되어 데이터 통신을 수행한다.
송신기(310)는 송신 광학계(320)와 송신 신호처리부(330)를 포함한다. 송신 광학계(320)는 단일광자를 생성하고, 생성된 단일광자에 정보를 싣기 위해 위상 변조(phase modulation)를 수행한다.
송신 광학계(320)는 광원(322), 송신 간섭계(324) 및 송신 위상 변조부(326)를 포함할 수 있다. 본 발명의 일 실시예에 따른 송신 광학계(320)는 송신 간섭계(324)와 송신 위상 변조부(326)가 분리된 구조를 갖지만, 송신 간섭계(324)와 송신 위상 변조부(326)가 통합된 구조를 가질 수 있다.
방출되는 빛이 단일모드(single mode)이고, 좁은 선폭(narrow linewidth) 및 안정된 편광(polarization) 특성을 가지는 레이저(laser)가 광원(322)으로서 적합하다.
광원(322)은 DFB(distributed feedback), VCSEL(vertical-surface emitting laser), DBR(distributed Bragg reflector) 레이저 등과 같은 반도체 레이저(semiconductor laser)나 고체 레이저, 가스 레이저 등과 같은 레이저를 포함할 수 있다.
광원(322)은 단일광자를 발생시키기 위해, 전술한 레이저에 광감쇠기(optical attenuator, 미도시) 또는 광변조기(optical modulator, 미도시) 등을 더 추가함으로써 형성될 수 있다. 또한, 광감쇠기는 광원(322)과 분리되어 송신기(310)의 광경로 상 어느 곳이라도 위치하여 양자 채널(342)로 전송되는 광신호를 감쇠할 수 있다.
송신 간섭계(324)는 광원(322)으로부터 수신한 광자를 적어도 두 개의 광경로(optical path)로 분할한다. 여기서, 적어도 두 개의 광경로는 서로 다른 유효 광경로 길이(effective optical path length)를 갖도록 설계된다. 따라서, 송신 간섭계(324)를 거친 광자들은 시간적으로 분리된다.
본 발명의 일 실시예에 따른 적어도 두 개의 광경로는 서로 다른 두 개의 광경로인 장경로(tn) 및 단경로(tn-1)를 포함한다. 광원(322)에서 생성된 광펄스가 가우시안 분포(Gaussian distribution)를 따른다고 가정하면, 송신 간섭계(324)를 통과한 광펄스는 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000001
여기서, E0는 광펄스의 진폭(amplitude), σ는 펄스폭, ω는 각주파수(angular frequency), t는 시간을 나타내며, tn 및 tn-1은 각각 장경로 및 단경로를 통과하면서 발생하는 시간지연을 나타낸다.
송신 위상 변조부(326)는 송신 위상 변조부(326)을 경유하는 광펄스의 위상을 φA만큼 변조시킨다. 이 때, 송신 위상 변조부(326)는 장경로 및 단경로를 통과하는 두 광펄스의 위상을 동시에 변조시킬 수도 있으며, 두 광펄스 중 선택된 하나의 광펄스를 변조시킬 수 있다.
두 광펄스 중 선택된 하나의 광펄스를 변조시키는 경우, 단경로 또는 장경로를 통과하는 하나의 광펄스의 위상만 φA만큼 변조시킨다.
두 광펄스의 위상을 동시에 변조시키는 경우, 송신 위상 변조부(326)를 통과한 직후의 광펄스 E2는 수학식 2와 같이 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000002
여기서, φA는 송신 위상 변조부(326)에서 변조되는 위상의 크기이며, 본 발명의 일 실시예에 따른 송신 위상 변조부(326)는 시간적으로 분리된 두 광펄스의 위상을 각각 -φA/2 및 φA/2씩 변조시켜 시간적으로 분리된 두 광펄스의 전체 위상차가 φA가 되도록 변조하였다.
본 발명의 일 실시예에 따른 송신기(310) 및 수신기(350)는 BB84 프로토콜을 따를 수 있다. 따라서, 송신 위상 변조부(326)는 비트 정보와 기저 정보를 제어하기 위해 두 개의 변조기를 포함할 수 있다. 송신 위상 변조부(326)의 제 1 변조기(미도시)는 비트 정보를 변조하고, 제 2 변조기(미도시)는 기저 정보를 변조한다.
송신 위상 변조부(326)에서 변조된 광펄스는 변조된 비트 정보와 기저 정보를 포함할 수 있다. 그 후, 송신 위상 변조부(326)에서 변조된 광펄스는 양자 채널(342)을 통해 수신기(350)로 전송된다.
본 발명의 일 실시예에 따른 수신기(350)는 수신 위상 변조부(362), 수신 간섭계(364) 및 검출부(366)를 포함한다. 본 발명의 일 실시예에 따른 수신 광학계(360)는 수신 위상 변조부(362)와 수신 간섭계(364)가 분리된 구조를 갖지만, 수신 위상 변조부(362)와 수신 간섭계(364)가 통합된 구조를 가질 수 있다.
수신 위상 변조부(362)는 양자 채널(342)를 거쳐 수신된 광펄스의 위상을 변조시킨다. 수신 위상 변조부(362)에서 추가되는 위상은 φB이다. 수신 위상 변조부(362)를 통과한 직후의 광펄스 E3는 수학식 3과 같이 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000003
여기서, φB는 수신 위상 변조부(362)에서 변조되는 위상의 크기이며, 본 발명의 일 실시예에 따른 수신 위상 변조부(362)는 시간적으로 분리된 두 광펄스의 위상을 각각 -φB/2 및 φB/2씩 변조시켜 시간적으로 분리된 두 광펄스의 전체 위상차가 φB가 되도록 변조하였다.
다만, 두 광펄스 중 선택된 하나의 광펄스를 변조시키는 경우, 단경로 또는 장경로를 통과하는 하나의 광펄스의 위상만 φB만큼 변조시킬 수 있다.
수신 위상 변조부(362)에서 변조된 광펄스는 수신 간섭계(364)에 입사된다. 수신 간섭계(364)를 경유한 광펄스는 검출부(366)로 입사된다. 수신 간섭계(364)에서 출력된 광펄스가 입력부로 향하지 않고, 검출부(366) 쪽으로 향하도록 하기 위해 수신 간섭계(364)는 광순환기(optical circulator, 미도시)를 포함할 수 있다. 검출부(366)에 포함된 제 1 단일광자 검출기(369)와 제 2 단일광자 검출기(367)로 입사되는 광펄스, ED1 및 ED2는 각각 수학식 4와 수학식 5로 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000004
Figure PCTKR2017014864-appb-M000005
여기서, tl, ts, φC는 각각 수신부 장경로, 수신부 장경로 및 수신 간섭계(364)에서 추가되는 결합 위상이다. 수학식 4와 수학식 5의 항들 가운데, 가운데 두 항들은 시간적으로 겹치지 않기 때문에 간섭과는 무관하며, 첫 항과 네 번째 항만이 간섭에 기여한다. 따라서 ED1 및 ED2는 각각 수학식 6과 수학식 7로 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000006
Figure PCTKR2017014864-appb-M000007
단일광자 검출기는 광펄스의 세기를 검출하기 때문에, 전기장의 제곱에 비례하는 신호를 검출한다. 따라서 제 1 단일광자 검출기(369) 및 제 2 단일광자 검출기(367)에서 검출되는 신호는 각각 수학식 8과 수학식 9로 나타낼 수 있다. 여기서, 2φC = π이다.
Figure PCTKR2017014864-appb-M000008
Figure PCTKR2017014864-appb-M000009
여기서, A는 수학식 10과 같다.
Figure PCTKR2017014864-appb-M000010
도 4는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 적용된 마흐젠더(Mach-Zehnder) 위상변조 양자 암호키 분배 송수신기의 예시도이다.
도 4에 도시된 송신기(410) 및 수신기(450) 각각은 도 3에 도시된 송신기(310) 및 수신기(350) 각각과 동일한 기능을 수행한다. 다만, 도 4의 송신 광학계(420)는 송신 간섭계(424)와 송신 변조부(426)가 통합된 구조를 가지며, 수신 광학계(460)는 수신 간섭계(462)와 수신 변조부(463)가 통합된 구조를 갖는다. 도 4의 송신 광학계(420) 및 수신 광학계(460) 각각은 도 3에 도시한 송신 광학계(320)에서와 같이 간섭계와 변조부가 분리된 구조를 가질 수도 있다. 송신 변조부(426) 및 수신 변조부(463) 각각은 광펄스의 변조를 위해 마흐젠더 간섭계를 포함한다.
송신 간섭계(424)는 송신 광분할기(OST), 송신 광지연기(DLT), 송신 위상 변조부(426) 및 송신 광결합기(OCT)를 포함하며, 수신 간섭계(462)는 수신 광분할기(OSR), 수신 광지연기(DLR), 수신 위상 변조부(463) 및 수신 광결합기(OCR)를 포함한다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(400)는 수신 광학계(460) 및 수신 신호처리부(470)와 연결되어 데이터 통신을 수행한다. 본 실시예에서는 양자 암호키 분배 안정화 장치(400)가 수신기(450)에 포함되었지만, 송신기(410)에 포함될 수 있다. 또한, 양자 암호키 분배 안정화 장치(400)는 수신 신호처리부(470) 또는 송신기(410)의 송신 신호처리부(430)에 포함될 수도 있다.
수신기(450)는 송신기(410)로부터 전송받은 광펄스를 수신하여 단일광자를 검출한다. 양자 암호키 분배 안정화 장치(400)는 검출한 결과를 수신한다. 수신기(450)가 양자 채널(442)을 통해 송신기(410)로부터 광펄스를 수신하여 단일광자를 검출하기까지의 과정은 전술한 과정과 동일하다.
수신기(450)의 수신 간섭계(462)에 입력되는 시간적으로 분리된 두 개의 광펄스 중 하나는 송신기(410)의 송신 위상 변조부(426)에 의해 φA만큼 위상 변조되고, 나머지 하나는 수신 위상 변조부(463)를 경유하는 과정에서 φB만큼 위상 변조된다.
수신 간섭계(462)는 서로 다른 광경로를 갖는 비대칭 간섭계이다. 수신 간섭계(462)는 수신 간섭계(462)에 입력되는 시간적으로 분리된 두 개의 광펄스에 기초하여 한 쌍의 간섭 결과를 출력한다. 시간적으로 분리된 두 개의 광펄스가 길이가 서로 다른 광경로를 통과하면서 그 광경로의 길이 차이만큼에 해당하는 전송 지연을 일으키게 된다. 즉, 수신 간섭계(462)에 입력된 시간적으로 분리된 두 개의 광펄스는 시간적으로 분리된 네 개의 광펄스로 분할된다. 시간적으로 분리된 네 개의 광펄스 중, 시간적으로 인접하거나(adjacent) 겹쳐진(overlapped) 두 개의 광펄스는 보강 간섭(constructive interference) 또는 상쇄 간섭(destructive interference)을 일으켜 그 크기가 커지거나 작아진다. 이렇게 시간적으로 분리된 광펄스에 의한 간섭이 검출부(464)에서의 검출률을 좌우한다. 검출부(464)는 보강 간섭이 최대로 일어난 경우, 최대 검출률을 나타낼 수 있고, 상쇄 간섭이 최대로 일어난 경우, 최소 검출률을 나타낸다.
그러나 수신 간섭계(462)에 포함된 광경로의 유효 광경로 길이가 미리 설정한 값과 달라진 경우, 즉, 수신 간섭계(462)의 온도가 미리 설정한 온도보다 높거나 낮아 송신 간섭계(424)에 포함된 광경로의 유효 광경로 길이와 달라진 경우, 또는, 진동이나 기타 환경 변화에 의해 물리적인 길이가 변하여 유효 광경로가 달라진 경우, 수신 간섭계(462)에서 출력된 네 개의 광펄스 중 시간적으로 겹쳐진 두 펄스의 상대적인 위상 변화가 간섭에 변화를 일으킨다. 즉, 수신 간섭계(462)의 두 출력에 보강 간섭이나 상쇄 간섭이 완벽히 일어나지 못하게 되어, 두 출력은 최대 검출률 또는 최소 검출률에서 벗어난 값을 나타낼 수 있다.
도 5는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치의 동작을 설명하기 위한 일 예시도이다.
도 5에서는 양자 암호키 분배 안정화 장치(500)의 동작을 더욱 구체적으로 설명하기 위해 송신기의 도시는 생략하였으며, 도 10을 함께 참조하여, 양자 암호키 분배 안정화 방법에 대해서도 설명한다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(500)는 검출부(566) 및 수신 신호처리부(560)과 연결되어 데이터 통신을 수행한다. 양자 암호키 분배 안정화 장치(500)는 공개 채널(544)을 통해 송신 신호처리부(미도시) 및 수신 신호처리부(560)와 연결되어 양자 암호키 분배를 안정화시키기 위한 다양한 정보를 송수신한다. 여기서, 양자 암호키 분배를 안정화시키기 위한 정보는 송신기 또는 수신기에 포함된 적어도 하나의 유효 광경로 길이 변환대상(580)의 유효 광경로 길이를 변경시킬 수 있는 정보를 포함한다. 여기서, 유효 광경로 길이 변환대상(580)은 위상 변조부가 포함되거나 분리된 형태의 간섭계가 될 수 있다.
송신기 및 수신기 사이에 형성된 단일광자의 여러 전송 경로 중, 중첩되는 두 경로의 광경로차가 최초에 설정한 값에서 어긋나 있는 경우를 살펴보자. 이 경우, 수신기에 포함된 유효 광경로 길이를 변경시킴으로써, 송신기로부터의 출력과 수신기로부터의 출력 사이의 위상 등의 설정 값에 영향을 받는 검출률을 최초에 설정한 상태에서의 값이 되도록 안정화할 수 있다. 수신기에 포함된 유효 광경로의 길이를 변경시켜 위상을 보정함으로써, 송신기 및 수신기의 기저 정보가 일치하는 경우에 검출부(566)에서의 검출 결과가 최대 검출률 및 최소 검출률을 나타낼 수 있다.
양자 암호키 분배 안정화 장치(500)는 부궤환 신호 생성부(572), 보정값 산출부(574) 및 광경로 제어부(576)을 포함할 수 있다.
부궤환 신호 생성부(572)는 검출부(566)에서 검출된 단일광자 검출 계수값들에 기초하여 부궤환 신호를 생성한다(S1010). 부궤환 신호는 송신기의 기저 정보, 비트 정보 및 수신기의 기저 정보에 기초한 검출 계수값들을 포함할 수 있다.
부궤환 신호 생성부(572)는 생성한 부궤환 신호를 보정값 산출부(574)로 전송한다.
보정값 산출부(574)는 부궤환 신호 생성부(572)가 생성한 부궤환 신호를 수신하여 보상되어야 할 오차에 대한 보정값을 산출한다(S1020). 여기서, 보상되어야 할 오차는 송신기에 포함된 유효 광경로 길이 변환대상(미도시) 또는 수신기에 포함된 유효 광경로 길이 변환대상(580)의 유효 광경로 길이의 편차가 될 수 있다.
유효 광경로 길이를 변경할 수 있는 요소인 유효 광경로 길이 변환대상은 광섬유 또는 평판형 광도파로나 복수의 거울과 빔분할기(beam splitter)를 포함하는 자유공간 광학계 등으로 구성된 간섭계와 간섭계의 유효 광경로 길이를 변화시킬 수 있는 온도 제어기(temperature controller), 압전 소자(piezoelectric device), 기계 장치(mechanical device) 등이 될 수 있다.
광경로 제어부(576)는 보정값 산출부(574)에서 생성한 보정값에 기초하여 송신기 및 수신기 중 적어도 하나에 포함된 적어도 하나의 유효 광경로 길이 변환대상을 제어한다(S1030). 유효 광경로 길이 변환대상은 양자 암호키 분배 안정화 장치(500)에 의해 직접적으로 제어된다.
도 6은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치의 동작을 설명하기 위한 다른 예시도이다.
도 6에 도시한 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(600)는 도 5에 도시한 양자 암호키 분배 안정화 장치(500)와 동일한 기능을 수행한다. 다만, 검출부(666)의 서로 다른 두 개의 단일광자 검출기(669, 667) 각각과 연결되어 데이터 통신을 수행한다는 것만 다르다.
제 1 단일광자 검출기(669) 및 제 2 단일광자 검출기(667)는 게이티드 가이거 모드로 동작하여 간섭에 의해 보강되거나, 상쇄되거나, 보강되지도 상쇄되지도 않은 단일광자를 검출한다. 양자 암호키 분배 안정화 장치(600)는 제 1 단일광자 검출기(669) 및 제 2 단일광자 검출기(667) 각각으로부터의 검출된 신호와 관련된 정보를 송신 신호처리부(미도시) 및 수신부 신호처리부(660)가 신호처리 과정에서 제공하는 정보와 함께 해석함으로써, 양자 암호키 분배 시스템을 안정화한다.
수신 신호처리부(660) 또한 제 1 단일광자 검출기(669) 및 제 2 단일광자 검출기(667) 각각으로부터의 검출 신호를 수신하여, 검출 신호를 저장하고 암호키 추출을 위해 검출과 관련된 일부 정보를 송신기로 전송할 수 있다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(600)는 검출부(666) 및 수신 신호처리부(660)과 연결되어 데이터 통신을 수행한다. 양자 암호키 분배 안정화 장치(600)가 검출부(666) 및 수신 신호처리부(660)와 주고 받는 정보는 검출부(666)에서 검출된 검출값들과 송신 간섭계 및 수신 간섭계 사이의 위상차를 안정화하기 위한 정보를 포함할 수 있다.
양자 암호키 분배 안정화 장치(600)는 검출부(666)에 포함된 제 1 단일광자 검출기(669) 및 제 2 단일광자 검출기(667)의 검출 계수값과 관련된 정보를 수신하여, 양자 암호키 분배를 위한 부궤환 신호를 생성한다. 양자 암호키 분배 안정화 장치(600)는 생성된 부궤환 신호에 기초하여 보정값을 산출하며, 산출된 보정값으로 유효 광경로 길이 변환대상을 제어함으로써, 송신기와 수신기 사이의 위상차를 최소화함으로써 양자 암호키 분배 송수신 시스템을 안정화시킨다.
송신기 및 수신기 사이의 광경로차가 최초에 설정한 값에서 어긋나 있는 경우를 살펴보자. 이 경우, 송신기 또는 수신기에 포함된 유효 광경로 길이 변환대상(680)의 유효 광경로 길이를 변경시킴으로써, 송신기로부터의 출력과 수신기로부터의 출력 사이의 위상차를 최초에 설정한 위상차와 같은 상황으로 변경시킬 수 있다. 송신기 또는 수신기에 포함된 유효 광경로 길이 변환대상(680)의 유효 광경로의 길이를 변경시켜 송신기 또는 수신기 내에서의 위상을 보정함으로써, 검출부(566)에서 측정되는 검출률이 최대 검출률 및 최소 검출률을 나타낼 수 있다.
송신기 및 수신기 중 어느 한 쪽에 포함된 광경로를 경유하는 광펄스의 위상을 보정하는 방법을 이용하는 경우, 변경된 유효 광경로 길이를 최초에 설정한 유효 광경로 길이와 같도록 보정할 필요는 없다. 검출부(566)에서의 검출률을 안정화시키는 핵심 요소는 송신기 및 수신기의 절대적인 유효 광경로 길이가 아니라, 송신기 및 수신기에 포함된 경로를 포함하여 송신기에서 수신기까지에 이르는 전체 광경로의 가능한 경우 중 분할된 단일광자 펄스가 중첩되어 간섭을 일으키는 두 광경로에 의해 발생하는 상대적인 위상차이기 때문이다.
BB84 프로토콜을 따르는 송신기 및 수신기의 위상 변조량 및 위상 변조량의 변화에 따른 수신기에서의 검출을 정리하면 표 1과 같이 나타낼 수 있다.
송신기비트정보 송신기기저 정보 수신기기저 정보 D1 검출률(%) D2 검출률(%) 검출 계수값 표현 검출 계수값 증감
0 0 0 100 0
0 0 -π/2 50 50 D100, D200 -, +
0 π/2 0 50 50 D101, D201 +, -
0 π/2 -π/2 100 0
π 0 0 0 100
π 0 -π/2 50 50 D110, D210 +, -
π π/2 0 50 50 D111, D211 -, +
π π/2 -π/2 0 100
표 1의 설명의 편의를 위해, 도 3과 도 6을 함께 참고하여 설명한다. 검출부(366, 666)에 사용되는 단일광자 검출기가 두 개이며, 송신기(310)와 수신기(350)가 BB84 프로토콜을 따르는 경우, 단일광자 검출은 표 1에 나타낸 바와 같이, 8가지 경우의 수를 가질 수 있다.
첫 번째 열(column) 및 두 번째 열은 각각 송신기(310)에 포함된 송신 변조부(326)에 의한 비트 정보 변조량 및 기저 정보 변조량을 나타낸다. 세 번째 열은 수신기(350)에 포함된 수신 변조부(362)에 의한 기저 정보 변조량을 나타낸다. 여기서, 변조량은 각 변조부에 포함된 간섭계(324, 364)에서 시간적으로 분리된 두 광펄스 중 장경로를 거쳐 상대적으로 늦게 출력되는 광펄스와 단경로를 거쳐 상대적으로 빨리 출력되는 광펄스 사이의 위상차이다.
네 번째 열 및 다섯 번째 열은 각각 제 1 단일광자 검출기(369, 669) 및 제 2 단일광자 검출기(367, 667)에서의 단일광자 검출률을 나타낸다. 여섯 번째 열은 제 1 단일광자 검출기(369, 669)와 제 2 단일광자 검출기(367, 667)에서 검출된 검출 계수값을 비트 정보와 기저 정보를 이용하여 나타낸 값이며, 가장 마지막 열인 일곱 번째 열은 검출 계수값(number of detected counts)의 증감을 나타낸다. 여기서, 검출 계수값은 송신기(310)의 위상에 비해 수신기(350)의 위상이 상대적으로 커졌을 때, 증가하는 것으로 정의하였다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(300, 600)는 수신기(350)에서 검출된 단일광자 검출 관련값들 중, 수신기(350)의 기저 정보가 송신기의 기저 정보와 일치하지 않아 버려지는 검출 계수값들에 기초하여 송신기(310) 및 수신기(350) 사이의 양자 암호키 분배를 안정화시킨다. 송신기(310)의 기저 정보와 수신기(350)의 기저 정보가 일치하는 값들은 암호키의 추출에 사용될 것이며, 표 1에는 나타내지 않았다.
각 검출기에서의 검출 계수값을 Dxnm으로 표현하였으며, x는 검출기의 번호, m 및 n은 각각 송신기(310)의 비트 정보와 기저 정보를 나타낸다. 즉, x가 1, m이 0, n이 1이면, 송신기(310)의 비트 정보와 기저 정보가 각각 0 및 1일 때, 제 1 단일광자 검출기에서 검출된 검출 계수값을 나타낸다. 수신기(350)의 기저 정보의 표시는 생략하였지만, 송신기(350)의 기저 정보와 일치하지 않기 때문에, n 값을 확인하여 유추할 수 있다. 예컨대, D101으로 표시된 검출 계수값의 경우, 송신기(310)의 비트 정보와 기저 정보가 각각 0 및 1이기 때문에, 수신기(350)의 기저 정보는 0이다.
표 1에서 비트 정보가 0인 경우를 살펴보면, 제 1 단일광자 검출기(369, 669)에서의 검출 계수값에 해당하는 D100와 D101이 온도 변화에 대해 서로 반대 방향으로 움직이는 것을 알 수 있다. 즉, D100은 검출 계수값이 감소하는 방향으로, D101은 검출 계수값이 증가하는 방향으로 움직인다.
또한, 제 2 단일광자 검출기(367, 667)에서의 검출 계수값에 해당하는 D200와 D201이 서로 반대의 방향으로 움직인다. 즉, D200은 검출 계수값이 감소하는 방향으로, D201은 검출 계수값이 증가하는 방향으로 움직인다.
제 1 단일광자 검출기(369, 669)에서의 검출 계수값과 제 2 단일광자 검출기(367, 667)에서의 검출 계수값은 서로 다른 방향으로 움직인다는 것을 확인할 수 있다. 따라서 제 1 단일광자 검출기(369, 669)에서의 검출 계수값과 제 2 단일광자 검출기(367, 667)에서의 검출 계수값의 차이를 계산하면, 송신 간섭계(324)와 수신 간섭계(364)의 변화에 따른 영향이 일관성있게 표현된다. 제 1 단일광자 검출기(369, 669)에서의 검출 계수값과 제 2 단일광자 검출기(367, 667)에서의 검출 계수값 사이의 관계를 수학식으로 표현하면, 수학식 11과 같이 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000011
여기서, X는 비트 정보가 0인 값에 대한 제 1 부궤환 신호이다. 비트 정보가 1인 값에 대해서도 동일하게 적용된다. 다만, 비트 정보가 1인 제 2 부궤환 신호는 비트 정보가 0인 값에 대한 제 1 부궤환 신호와 방향이 다르다. 따라서 제 2 부궤환 신호 Y는 다음의 수학식 12와 같이 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000012
제 1 단일광자 검출기(369, 669)에서의 검출 계수값과 제 2 단일광자 검출기(367, 667)에서의 검출 계수값은 양자 채널(342)에서의 광손실, 검출기에서의 검출 효율 등의 차이에 의해 그 값이 다를 수 있다. 따라서 이를 보상하기 위해, 제 1 부궤환 신호와 제 2 부궤환 신호를 정규화(normalization)할 수 있다. 정규화한 제 1 부궤환 신호와 제 2 부궤환 신호를 나타내면 각각 수학식 13 및 수학식 14와 같다.
Figure PCTKR2017014864-appb-M000013
Figure PCTKR2017014864-appb-M000014
부궤환 신호는 제 1 부궤환 신호와 제 2 부궤환 신호를 더하여 구할 수 있으며, 이는 수학식 15와 같이 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000015
여기서, Z는 부궤환 신호를 나타내며, X 및 Y는 제 1 부궤환 신호와 제 2 부궤환 신호를 나타낸다.
전술한 부궤환 신호는 송신기(310) 및 수신기(350) 사이의 위상차 등이 반영되어 나타나는 검출 계수값들을 수치화함으로써 계산되며, 이 계산은 양자 암호키 분배 안정화 장치(300, 600)의 부궤환 신호 생성부(672)에 의해서 수행된다.
부궤환 신호 생성부(672)는 제 1 단일광자 검출기(369, 669) 및 제 2 단일광자 검출기(367, 667)로부터의 검출 결과에서 발생한 검출 계수값들을 이용하여 제 1 부궤환 신호 및 제 2 부궤환 신호를 생성하며, 이 두 값을 더하여 부궤환 신호를 생성한다.
보정값 산출부(674)는 부궤환 신호 생성부(672)로부터 수신한 부궤환 신호에 기초하여 양자 암호키 분배를 안정시키기 위해 실질적으로 제어되어야 할 보정값을 산출한다. 여기서, 보상되어야 할 오차는 송신기(310) 또는 수신기(350)에 포함된 유효 광경로 길이의 변화량이 될 수 있다.
유효 광경로 길이를 변경할 수 있는 요소인 유효 광경로 길이 변환대상(680)은 광섬유 또는 평판형 광도파로나 복수의 거울과 빔 분할기를 포함하는 자유공간 광학계 등으로 구성된 간섭계와 간섭계의 유효 광경로 길이를 변화시킬 수 있는 온도 제어기, 압전 소자, 기계 장치 등이 될 수 있다.
광경로 제어부(676)는 보정값 산출부(674)에서 생성한 보정값에 기초하여 수신기(350)에 포함된 적어도 하나의 유효 광경로 길이 변환대상(680)을 제어한다(S1030). 광경로 제어부(676)가 송신기(미도시)에 포함된 경우에는 송신기에 포함된 유효 광경로 길이 변환대상을 제어한다. 유효 광경로 길이 변환대상(680)은 양자 암호키 분배 안정화 장치(600)에 의해 제어된다.
도 7은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치의 동작을 설명하기 위한 또 다른 예시도이다.
도 7의 양자 암호키 분배 안정화 장치(700)는 도 6에 도시한 양자 암호키 분배 안정화 장치(600)와 동일한 기능을 수행한다. 다만, 유효 광경로 길이 변환대상(780)이 수신기에 포함되어 있지 않고, 송신기에 포함되어 있다는 점이 다르다.
따라서 양자 암호키 분배 안정화 장치(700)는 양자 암호키 분배를 안정화하기 위한 정보를 송신기의 송신 신호처리부(730)로 전송하여, 송신 신호처리부(730)로 하여금 유효 광경로 길이 변환대상(780)을 제어하도록 한다.
도 8은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 수신기의 신호처리부에 포함된 경우를 도시하는 일 예시도이다.
도 8의 양자 암호키 분배 안정화 장치(800)는 도 6에 도시한 양자 암호키 분배 안정화 장치(600)와 동일한 기능을 수행한다. 다만, 양자 암호키 분배 안정화 장치(800)가 수신기의 수신 신호처리부(860) 외부에 존재하지 않고, 수신기의 수신 신호처리부(860)에 포함되어 있다는 점이 도 6에 도시한 양자 암호키 분배 안정화 장치(600)와 다르다.
양자 암호키 분배 안정화 장치(800)는 수신기에 포함되어 있는 유효 광경로 길이 변환대상(미도시)을 제어할 수도 있고, 도 7에 도시한 실시예에서와 같이, 송신기에 배치되어 송신기에 포함되어 있는 유효 광경로 길이 변환대상(880)을 제어할 수도 있다.
도 9는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 생성하는 온도변화에 따른 부궤환 에러신호와 양자비트오류율(QBER) 값을 도시한 그래프이다.
양자 암호키 분배 안정화 장치가 생성하는 부궤환 신호와 양자비트오류율 값이 간섭계의 온도에 따라 민감하게 변화하는 것을 확인할 수 있다. 온도가 최초 설정값으로부터 벗어나면, 부궤환 신호인 Z값이 0에서 벗어난다. 부궤환 신호인 Z값이 0에서 벗어남에 따라, 양자비트오류율이 증가한다.
이 실시예에서는 송신기와 수신기에 포함된 간섭계의 온도를 안정화하기 위해 사용하고 있는 온도 제어기의 설정값을 수정하는 방식으로 적용할 수 있다. 이 경우, 광경로 제어부가 온도 제어기가 되며, 유효 광경로 길이 변환대상이 송신기 또는 수신기에 포함된 간섭계가 된다.
간섭계의 온도 변화나 진동 등에 의한 길이 변화는 양자비트오류율을 변화시키는데 간섭계의 온도를 제어하여 안정화시킬 수도 있고, 압전소자나 기계장치를 이용하여 광경로를 구성하는 광학 소자의 물리적인 길이를 변화시켜 안정화를 이룰 수도 있다.
도 10은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 방법을 도시한 흐름도이다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 방법은 도 5에 도시한 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치와 함께 설명한 바와 같으므로, 설명을 생략한다.
도 11은 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 적용된 편광변조 기반의 양자 암호키 분배 시스템의 동작을 설명하기 위한 일 예시도이다.
도 11에 도시한 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(1100)는 도 6에 도시한 양자 암호키 분배 안정화 장치(600)와 동일한 기능을 수행한다. 다만, 송신기(1110) 및 수신기(1150)가 위상 변조를 수행하지 않고, 편광 변조를 수행하기 때문에, 안정화를 위해 수신하는 정보와 제어하는 대상이 다르다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(1100)는 수신 신호처리부(1170)와 연결되어 데이터 통신을 수행한다. 양자 암호키 분배 안정화 장치(1100)가 수신 신호처리부(1170)와 주고 받는 정보는 검출부(1168)에서 검출된 검출 계수값들과 송신기(1110) 및 수신기(1150)의 편광을 안정화하기 위한 정보를 포함할 수 있다. 여기서, 양자 암호키 분배 안정화 장치(1100)는 송신기(1110) 또는 수신기(1150)에 배치될 수 있으며, 그와 별도의 독립적인 장치로도 구현이 가능하다.
양자 암호키 분배 안정화 장치(1100)는 검출부(1168)로부터 생성된 검출 관련값과 수신 신호처리부(1170)를 통하여 수신한 수신기(1150)에서 생성한 기저 정보와 일치하지 않는 경우에 해당하는 송신기(1110)에서 생성한 비트 정보 및 기저정보를 이용하여, 양자 암호키 분배를 위한 부궤환 신호를 생성한다. 양자 암호키 분배 안정화 장치(1100)는 생성된 부궤환 신호에 기초하여 보정값을 산출하며, 편광 제어기를 이용하여 수신기(1150)의 편광 상태 등을 안정화시킨다.
본 발명의 일 실시예에 따른 송신기(1110)는 송신 광학계(1120) 및 송신 신호처리부(1130)를 포함한다.
송신 광학계(1120)는 광원(1122), 편광 비트 정보 변조부(1124) 및 편광 기저 정보 변조부(1126)을 포함한다. 편광 비트 정보 변조부(1124)와 편광 기저 정보 변조부(1126)는 하나로 통합되어 구현될 수 있다.
광원(1122)은 도 2에 도시한 광원(222)과 동일한 목적을 위해 동일한 기능을 수행한다.
편광 비트 정보 변조부(1124)는 광원(1122)으로부터 광펄스를 수신하여 비트 정보 변조를 수행한다. 편광 비트 정보 변조부(1124)는 광펄스가 갖는 편광의 방향 즉, 각도를 제어함으로써 비트 정보를 변조한다. 여기서, 변조 각도는 수신기(1150)에 포함된 편광빔분할기(poliarization beam splitter; PBS)의 통과축(transmission axis)에 대한 값이다.
편광 기저 정보 변조부(1126)는 광원(1122)로부터 광펄스를 수신하여 기저 정보 변조를 수행한다. 편광 기저 정보 변조부(1126) 또한 광펄스가 갖는 편광의 각도를 제어함으로써 기저 정보를 변조한다. 편광 기저 정보 변조부(1126)는 편광 기저 정보 변조부(1126)에 입력된 광펄스 중 편광 비트 정보 변조부(1124)에 의해 변조되지 않은 부분을 변조할 수 있다.
편광 비트 정보 변조부(1124)와 편광 기저 정보 변조부(1126)를 거친 광펄스는 양자 채널(1142)를 통해 수신기(1150)로 전송된다.
송신 신호처리부(1130)는 수신기(1150) 및 양자 암호키 분배 안정화 장치(1100)와 공개 채널(1144)을 통해 연결되어 데이터 통신을 수행한다. 송신 신호처리부(1130)는 양자 암호키 분배를 위한 정보를 생성하고, 생성된 정보를 저장한다. 양자 암호키 분배를 위한 정보는 비트 정보 및 기저 정보를 포함한다. 송신 신호처리부(1130)는 양자 암호키 분배를 위한 정보를 송신 광학계(1120)로 전송하며, 양자 암호키 분배 안정화 장치(1100) 및 수신기(1150)와 양자 암호키 분배를 위한 정보를 공유한다.
수신기(1150)는 수신 광학계(1160) 및 수신 신호처리부(1170)를 포함한다.
수신 광학계(1160)는 편광축 추적부(1162), 편광 기저 정보 변조부(1164), 편광빔분할기(1166) 및 검출부(1168)를 포함한다. 검출부(1168)는 적어도 두 개의 단일광자 검출기를 포함할 수 있다.
편광축 추적부(1162)는 양자 채널(1142)를 통해 송신기(1110)로부터 전송되는 광펄스의 편광 상태를 추적한다. 수신기(1150)의 편광빔분할기(1166)의 편광축과 일치하지 않는 광펄스는 편광축과 일치하는 성분과 편광축과 직교하는 성분으로 나누어져 편광빔분할기(1166)를 통과한다. 또한, 양자 채널(1142)을 경유하는 과정에서 발생하는 다양한 외부 요인에 의해 광펄스의 편광 상태가 변경될 수 있다. 이렇게 광펄스의 편광 상태가 변경되어 편광빔분할기(1166)의 편광축과 완벽히 일치하지 않게 되면, 검출부(1168)에서 검출되는 검출률이 최대인 100%, 최소인 0% 및 50:50 등의 값에서 벗어나게 된다.
편광 기저 정보 변조부(1164)는 편광축 추적부(1162)를 통과한 광펄스에 대하여 편광 변조를 수행한다. 편광 기저 정보 변조부(1164)가 수신 광학계(1160)를 통과하는 광펄스에 편광 변조를 수행함에 따라, 검출부(1168)에서의 검출값이 달라지게 된다.
편광빔분할기(1166)는 편광빔분할기(1166)에 입사되는 광펄스를 편광에 따라 서로 다른 두 개의 광경로로 분할한다. 서로 다른 두 개의 광경로로 분할된 광펄스 중 하나는 제 1 단일광자 검출기(미도시)에 입사되고, 나머지 하나는 제 2 단일광자 검출기(미도시)에 입사된다. 제 1 단일광자 검출기 및 제 2 단일광자 검출기에 입사된 광펄스에 의한 검출 계수값들은 도 6과 표 1을 참조하여 설명한 내용과 유사하다.
BB84 프로토콜을 따르는 송신기(1110) 및 수신기(1150)의 편광 변조량 및 편광 변조량의 변화에 따른 수신기(1150)에서의 검출은 표 2에 나타낸 바와 같이, 8가지 경우로 정리할 수 있다.
송신기비트정보 송신기기저 정보 수신기기저 정보 D1 검출률(%) D2 검출률(%) 검출 계수값 표현 검출 계수값 증감
100 0
45° 50 50 D100, D200 +, -
45° 50 50 D101, D201 -, +
45° -45° 100 0
90° 0 100
90° -45° 50 50 D110, D210 -, +
90° 45° 50 50 D111, D211 +, -
90° 45° -45° 0 100
첫 번째 열 및 두 번째 열은 각각 송신기(1110)에 포함된 편광 비트 정보 변조부(1124)와 편광 기저 정보 변조부(1126) 각각에 의한 비트 정보 변조량 및 기저 정보 변조량을 나타낸다. 세 번째 열은 수신기(1150)에 포함된 편광 기저 정보 변조부(1164)에 의한 기저 정보 변조량을 나타낸다. 여기서, 변조량은 해당 광펄스의 편광이 돌아간 각도이다.
네 번째 열 및 다섯 번째 열은 각각 검출부(1168)에 포함된 제 1 단일광자 검출기 및 제 2 단일광자 검출기에서의 단일광자 검출률을 나타낸다. 여섯 번째 열은 제 1 단일광자 검출기와 제 2 단일광자 검출기에서 검출된 검출 계수값을 비트 정보와 기저 정보를 이용하여 나타낸 값이며, 가장 마지막 열인 일곱 번째 열은 검출 계수값의 증감을 나타낸다. 여기서, 검출 계수값은 송신기(1110)의 기준축(수직 방향)에 대해 +방향으로 편광이 돌아간 단일광자가 수신되면 증가하는 것으로 정의하였다. 즉, -방향으로 편광이 돌아간 단일광자가 수신되면, 검출 계수값은 감소한다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(1100)는 수신기(1150)에서 검출된 단일광자 검출 계수값들 중, 수신기(1150)의 기저 정보가 송신기(1110)의 기저 정보와 일치하지 않아 버려지는 검출값들에 기초하여 송신기(1110) 및 수신기(1150) 사이의 양자 암호키 분배를 안정화시킨다. 송신기(1110)의 기저 정보와 수신기(1150)의 기저 정보가 일치하는 값들은 암호키의 추출에 사용될 것이며, 표 2에는 기재하지 않았다.
각 검출기에서의 검출 계수값을 Dykl으로 표현하였으며, y는 검출기의 번호, k 및 l은 각각 송신기(1110)의 비트 정보와 기저 정보를 나타낸다. 즉, y가 1, k가 0, l이 1이면 송신기(1110)의 비트 정보와 기저 정보가 각각 0 및 1일 때, 제 1 단일광자 검출기에서 검출된 검출 계수값을 나타낸다. 수신기(1150)의 기저 정보의 표시는 생략하였지만, 송신기(1150)의 기저 정보와 일치하지 않기 때문에, l 값을 확인하여 유추할 수 있다. 예컨대, D101으로 표시된 검출 계수값의 경우, 송신기(1110)의 비트 정보와 기저 정보가 각각 0 및 1이기 때문에, 수신기(1150)의 기저 정보는 0이 된다.
양자 암호키 분배 안정화 장치(1100)가 양자 암호키 분배를 안정화하기 위해 생성하는 부궤환 신호는 수학식 11에서 수학식 15까지의 내용을 검출부(1168)에 포함된 제 1 단일광자 검출기 및 제 2 단일광자 검출기에 대해 그대로 적용하여 구할 수 있다.
도 11에 도시한 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(1100)에서 생성되는 제 1 부궤환 신호, 제 2 부궤환 신호 및 이 두 값을 합한 부궤환 신호는 각각 수학식 13, 수학식 14 및 수학식 15로 표현될 수 있다.
도 12는 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치가 적용된 편광변조 기반의 양자 암호키 분배 시스템의 동작을 설명하기 위한 다른 예시도이다.
도 12에 도시한 본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(1200)는 도 11에 도시한 양자 암호키 분배 안정화 장치(1100)와 동일한 기능을 수행한다. 다만, 수신기(1250)의 제 1 검출부(1264) 및 제 2 검출부(1267)에 각각 두 개씩, 서로 다른 네 개의 단일광자 검출기가 포함된다는 것이 다르다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(1200)는 수신 신호처리부(1270)와 연결되어 데이터 통신을 수행한다. 양자 암호키 분배 안정화 장치(1200)가 수신 신호처리부(1270)와 주고받는 정보는 제 1 검출부(1264) 및 제 2 검출부(1267)에서 검출된 검출 계수값들과 송신기(1210) 및 수신기(1250) 사이의 편광을 안정화하기 위한 정보를 포함할 수 있다. 송신기(1210)는 도 11에 도시한 송신기(1110)와 동일하다.
수신기(1250)는 수신 광학계(1260) 및 수신 신호처리부(1270)를 포함한다. 수신 광학계(1260)는 편광축 추적부(1261), 빔분할기(1262), 제 1 편광빔분할기(1263), 제 1 검출부(1264), 편광 조절기(1265), 제 2 편광빔분할기(1266) 및 제 2 검출부(1267)를 포함한다. 제 1 검출부(1264) 및 제 2 검출부(1267) 각각은 적어도 두 개의 단일광자 검출기를 포함할 수 있다.
편광축 추적부(1261)는 양자 채널(1242)를 통해 송신기(1210)로부터 전송되는 광펄스의 편광 상태를 추적한다. 수신기(1250)의 제 1 편광빔분할기(1263) 및 제 2 편광빔분할기(1266)의 편광축과 일치하지 않는 광펄스는 편광축과 일치하는 성분과 편광축과 직교하는 성분으로 나누어져 각각의 편광빔분할기(1263, 1266)를 통과한다. 또한, 양자 채널(1242)을 경유하는 과정에서 발생하는 다양한 외부 요인에 의해 광펄스의 편광 상태가 변경될 수 있다. 이렇게 광펄스의 편광 상태가 변경되어 제 1 편광빔분할기(1263) 및 제 2 편광빔분할기(1266)의 편광축과 완벽히 일치하지 않게 되면, 제 1 검출부(1264) 및 제 2 검출부(1267)에서 검출되는 검출 계수값 즉, 검출률이 최대인 100%, 최소인 0% 및 50:50 등의 값에서 벗어나게 된다.
빔분할기(1262)는 빔분할기(1262)로 입사되는 광펄스가 전달될 출력을 선택한다. 즉, 빔분할기(1262)로 입사된 광펄스는 빔분할기(1262)를 거친 후, 제 1 편광빔분할기(1263) 및 편광 조절기(1265) 중 하나로 입사된다.
제 1 편광빔분할기(1263) 및 제 2 편광빔분할기(1266)의 역할은 도 11에 도시한 편광빔분할기의 역할과 동일하다. 제 1 편광빔분할기(1263)는 제 1 편광빔분할기(1263)에서 입사되는 광펄스를 편광에 따라 서로 다른 두 개의 광경로로 분할한다. 서로 다른 두 개의 광경로로 분할된 광펄스 중 하나는 제 1 단일광자 검출기(미도시)에 입사되고, 나머지 하나는 제 2 단일광자 검출기(미도시)에 입사된다.
편광 조절기(1265)는 빔분할기(1262)에서 출력되어 편광 조절기(1265)로 입사되는 광펄스의 편광 상태를 45˚ 회전되도록 고정한다.
제 2 편광빔분할기(1266)는 편광 조절기(1265)로부터 출력되어 제 2 편광빔분할기(1266)에 입사되는 광펄스를 편광에 따라 서로 다른 두 개의 광경로로 분할한다. 서로 다른 두 개의 광경로로 분할된 광펄스 중 하나는 제 3 단일광자 검출기(미도시)에 입사되고, 나머지 하나는 제 4 단일광자 검출기(미도시)에 입사된다.
BB84 프로토콜을 따르는 송신기(1210) 및 수신기(1250)의 편광 변조량 및 편광 변조량의 변화에 따른 수신기(1250)에서의 검출은 표 3에 나타낸 바와 같이 8가지 경우로 정리할 수 있다.
송신기비트 정보 송신기기저 정보 수신기선택값 D1 검출률(%) D2검출률(%) D3검출률(%) D4검출률(%) 검출 계수값 표현 검출 계수값 증감
1 100 0 0 0
2 0 0 50 50 D300, D400 +, -
45° 1 50 50 0 0 D101, D201 -, +
45° 2 0 0 100 0
90° 1 0 100 0 0
90° 2 0 0 50 50 D310, D410 -, +
90° 45° 1 50 50 0 0 D111, D211 +, -
90° 45° 2 0 0 0 100
첫 번째 열 및 두 번째 열은 각각 송신기(1210)에 포함된 편광 비트 정보 변조부(1224)와 편광 기저 정보 변조부(1226) 각각에 의한 비트 정보 변조량 및 기저 정보 변조량을 나타낸다. 세 번째 열은 수신기(1250)에 포함된 빔분할기(1262)에 의해 선택되는 값으로서, 1이 선택되면 빔분할기(1262)로 입사된 광펄스를 제 1 편광빔분할기(1263)로 보내고, 2가 선택되면 빔분할기(1262)로 입사된 광펄스를 편광 조절기(1265)로 보낸다.
네 번째 열, 다섯 번째 열, 여섯 번째 열 및 일곱 번째 열은 각각 제 1 단일광자 검출기, 제 2 단일광자 검출기, 제 3 단일광자 검출기 및 제 4 단일광자 검출기에서의 단일광자 검출률을 나타낸다.
여덟 번째 열은 제 1 단일광자 검출기, 제 2 단일광자 검출기, 제 3 단일광자 검출기 및 제 4 단일광자 검출기에서 검출된 검출 계수값을 비트 정보와 기저 정보를 이용하여 나타낸 값이며, 가장 마지막 열인 아홉 번째 열은 검출 계수값의 증감을 나타낸다. 여기서, 검출 계수값은 수신기(1250)의 제 1 편광빔분할기(1263)의 기준축(수직 방향)에 대해 +방향으로 편광이 돌아간 단일광자가 수신되면 증가하는 것으로 정의하였다. 즉, -방향으로 편광이 돌아간 단일광자가 수신되면, 검출 계수값은 감소한다.
본 발명의 일 실시예에 따른 양자 암호키 분배 안정화 장치(1200)는 수신기(1250)에서 검출된 단일광자 검출 관련값들 중, 수신기(1250)의 기저 정보가 송신기(1210)의 기저 정보와 일치하지 않아 버려지는 검출 계수값들에 기초하여 송신기(1210) 및 수신기(1250) 사이의 양자 암호키 분배를 안정화시킨다. 송신기(1210)의 기저 정보와 수신기(1250)의 기저 정보가 일치하는 값들은 암호키의 추출에 사용될 것이다.
각 검출기에서의 검출 계수값을 Dzuv으로 표현하였으며, z는 검출기의 번호, u 및 v는 각각 송신기(1210)의 비트 정보와 기저 정보를 나타낸다. 즉, z가 1, u가 0, v가 1이면 송신기(1210)의 비트 정보와 기저 정보가 각각 0 및 1일 때, 제 1 단일광자 검출기에서 검출된 검출 계수값을 나타낸다. 수신기(1250)의 기저 정보의 표시는 생략하였지만, 송신기(1250)의 기저 정보와 일치하지 않기 때문에, v 값을 확인하여 유추할 수 있다. 예컨대, D101으로 표시된 검출 계수값의 경우, 송신기(1210)의 비트 정보와 기저 정보가 각각 0 및 1이기 때문에, 수신기(1250)의 기저 정보는 0이 된다.
양자 암호키 분배 안정화 장치(1200)가 양자 암호키 분배를 안정화하기 위해 생성하는 부궤환 신호는 아래의 과정을 통해 구할 수 있다.
표 3에서 비트 정보가 0인 경우에 대해 살펴보면, 제 1 검출부(1264)에 포함된 제 1 단일광자 검출기와 제 2 검출부(1267)에 포함된 제 3 단일광자 검출기에서의 검출 계수값에 해당하는 D101와 D300이 서로 반대의 방향으로 움직인다는 것을 확인할 수 있다. 즉, D300은 검출 계수값이 증가하는 방향으로, D101은 검출 계수값이 감소하는 방향으로 움직인다.
또한, 제 1 검출부(1264)에 포함된 제 2 단일광자 검출기와 제 2 검출부(1267)에 포함된 제 4 단일광자 검출기에서의 검출 계수값에 해당하는 D201와 D400이 서로 반대의 방향으로 움직인다. 즉, D201은 검출 계수값이 증가하는 방향으로, D400은 검출 계수값이 감소하는 방향으로 움직인다.
이와 유사하게, 비트 정보가 1인 경우에 대해서 동일한 방향으로 움직이는 검출 계수값들끼리 정리하면, 아래의 수학식 16 및 수학식 17과 같은 관계를 얻을 수 있다.
Figure PCTKR2017014864-appb-M000016
Figure PCTKR2017014864-appb-M000017
여기서, X는 비트 정보가 0인 값에 대한 제 1 부궤환 신호이며, Y는 비트 정보가 1인 값에 대한 제 2 부궤환 신호이다.
제 1 단일광자 검출기, 제 2 단일광자 검출기, 제 3 단일광자 검출기 및 제 4 단일광자 검출기에서의 검출 계수값은 양자 채널(1242)에서의 광손실, 검출기에서의 검출 효율 등의 차이에 의해 그 값이 다를 수 있다. 따라서 이를 보상하기 위해, 제 1 부궤환 신호와 제 2 부궤환 신호를 정규화할 수 있다. 정규화한 제 1 부궤환 신호와 제 2 부궤환 신호를 나타내면 각각 수학식 18 및 수학식 19와 같다.
Figure PCTKR2017014864-appb-M000018
Figure PCTKR2017014864-appb-M000019
부궤환 신호는 제 1 부궤환 신호와 제 2 부궤환 신호를 더하여 구할 수 있으며, 이는 수학식 20과 같이 나타낼 수 있다.
Figure PCTKR2017014864-appb-M000020
전술한 부궤환 신호는 송신기(1210) 및 수신기(1250)의 편광 값 차등이 반영되어 나타나는 검출 계수값들을 수치화함으로써 계산되며, 이 계산은 양자 암호키 분배 안정화 장치(1200)의 부궤환 신호 생성부에 의해서 수행된다. 이외, 나머지 구성요소들에 의한 양자 암호키 분배 안정화 장치(1200)의 동작은 도 6을 참조하여 설명한 양자 암호키 분배 안정화 장치(600)의 동작과 동일하다.
도 10에서는 각각의 과정을 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 다시 말해, 도 10에 기재된 과정을 변경하여 실행하거나 하나 이상의 과정을 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 10은 시계열적인 순서로 한정되는 것은 아니다.
한편, 도 10에 도시된 흐름도의 각 단계는 컴퓨터로 읽을 수 있는 기록매체(computer-readable recording medium)에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 즉, 컴퓨터가 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장매체를 포함한다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이상의 설명은 본 발명에 따른 일 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명에 따른 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 따른 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명에 따른 일 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명에 따른 일 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
(부호의 설명)
110, 310, 410, 1110, 1210: 송신기
120, 350, 450, 1150, 1250: 수신기
132, 250, 342, 442, 1142, 1242: 양자 채널
134, 260, 344, 444, 544, 644, 744, 844, 1144, 1244: 공개 채널
100, 200, 300, 400, 500, 600, 700, 800, 1100, 1200: 양자 암호키 분배 안정화 장치
212, 322, 422, 1122, 1222: 광원
220, 330, 430, 730, 830, 1130, 1230: 송신 신호처리부
240, 370, 470, 560, 660, 760, 860, 1170, 1270: 수신 신호처리부
572, 672, 772: 부궤환 신호 생성부
574, 674, 774: 보정값 산출부
576, 676, 776: 광경로 제어부
580, 680, 780, 880: 유효 광경로 길이 변환대상
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2017년 3월 7일 한국에 출원한 특허출원번호 제10-2017-0028795호 및 2017년 8월 17일 한국에 출원한 특허출원번호 제10-2017-0104173호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하며 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.
본 발명의 실시예들은 양자 암호키 분배 시스템을 안정화하는 기술분야에 적용되어 종래의 시스템을 그대로 이용하면서도 신속하고 효율적으로 오차를 보상할 수 있도록 함으로써, 시스템 구축 비용을 절감할 수 있는 유용한 발명이다.

Claims (15)

  1. 수신기에서 검출된 광자 검출 관련값들 중, 암호키 생성에 사용되지 않고 버려지는 검출 계수값들을 이용하여 부궤환 신호를 생성하는 부궤환 신호 생성부;
    상기 부궤환 신호를 수신하여 보상되어야 할 오차에 대한 보정값을 산출하는 보정값 산출부; 및
    상기 보정값을 송신기 또는 수신기에 전송하여 상기 송신기 및/또는 상기 수신기로 하여금 안정화 대상에 영향을 주는 변환 인자를 제어하도록 하여 상기 안정화 대상을 보정하는 제어부
    를 포함하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  2. 제 1 항에 있어서,
    상기 송신기 및/또는 상기 수신기 각각은,
    상기 송신기 및/또는 상기 수신기 각각의 위상에 영향을 주는 전기광학적 특성, 자기광학적 특성, 온도 특성 및 물리적 길이를 제어하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  3. 제 1 항에 있어서,
    상기 송신기 및/또는 상기 수신기 각각은,
    상기 송신기 및/또는 상기 수신기 각각의 편광에 영향을 주는 광축을 제어하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  4. 수신기에서 검출된 광자 검출 관련값들 중, 암호키 생성에 사용되지 않고 버려지는 검출 계수값들을 이용하여 부궤환 신호를 생성하는 부궤환 신호 생성부;
    상기 부궤환 신호를 수신하여 보상되어야 할 오차에 대한 보정값을 산출하는 보정값 산출부; 및
    상기 보정값을 송신기 또는 수신기에 전송하여 상기 송신기 및/또는 상기 수신기가 위상에 영향을 주는 변환 인자를 제어하여 위상을 보정하도록 하는 제어부
    를 포함하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  5. 제 4 항에 있어서,
    상기 부궤환 신호 생성부는,
    상기 수신기의 기저(basis) 정보가 상기 수신기의 기저 정보와 일치하지 않아 버려지는 검출 계수값들을 이용하여 부궤환 신호를 생성하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  6. 제 4 항에 있어서,
    상기 부궤환 신호 생성부는,
    상기 수신기의 적어도 두 개의 광자 검출기 각각으로부터 검출된 검출 계수값들을 이용하여 상기 부궤환 신호를 계산하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  7. 제 4 항에 있어서,
    상기 부궤환 신호 생성부는,
    계산된 부궤환 신호의 부호가 상기 송신기 및 상기 수신기 중 어느 쪽에서의 위상의 편차가 양(positive)의 값을 갖는지 음(negative)의 값을 갖는지를 나타낼 수 있도록 하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  8. 제 4 항에 있어서,
    상기 보정값 산출부는,
    설정값과 상기 부궤환 신호의 차이인 오차의 현재 값, 과거 값 및 예측 값을 기 설정된 시간 간격마다 연속적으로 계산하여 보정값을 산출하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  9. 제 8 항에 있어서,
    상기 보정값 산출부는,
    상기 오차의 현재 값을 구하기 위해 비례 상수를 곱하고, 상기 오차의 과거 값을 구하기 위해 상기 기 설정된 시간 간격에 대해 오차를 적분(integral)하며, 상기 오차의 예측 값을 구하기 위해 상기 오차의 현재 값의 변화율을 계산하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  10. 수신기에서 검출된 광자 검출 관련값들 중, 암호키 생성에 사용되지 않고 버려지는 검출 계수값들을 이용하여 부궤환 신호를 생성하는 부궤환 신호 생성부;
    상기 부궤환 신호를 수신하여 보상되어야 할 오차에 대한 보정값을 산출하는 보정값 산출부; 및
    상기 보정값을 송신기 또는 수신기에 전송하여 상기 송신기 및/또는 상기 수신기가 편광에 영향을 주는 변환 인자를 제어하여 편광을 보정하도록 하는 제어부
    를 포함하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  11. 제 10 항에 있어서,
    상기 부궤환 신호 생성부는,
    상기 수신기의 기저(basis) 정보가 상기 수신기의 기저 정보와 일치하지 않아 버려지는 검출 계수값들을 이용하여 부궤환 신호를 생성하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  12. 제 10 항에 있어서,
    상기 부궤환 신호 생성부는,
    상기 수신기의 적어도 두 개의 광자 검출기 각각으로부터 검출된 검출 계수값들을 이용하여 상기 부궤환 신호를 계산하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  13. 제 10 항에 있어서,
    상기 부궤환 신호 생성부는,
    계산된 부궤환 신호의 부호가 상기 송신기 및 상기 수신기 중 어느 쪽에서의 편광의 편차가 양(positive)의 값을 갖는지 음(negative)의 값을 갖는지를 나타낼 수 있도록 하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  14. 제 10 항에 있어서,
    상기 보정값 산출부는,
    설정값과 상기 부궤환 신호의 차이인 오차의 현재 값, 과거 값 및 예측 값을 기 설정된 시간 간격마다 연속적으로 계산하여 보정값을 산출하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
  15. 제 14 항에 있어서,
    상기 보정값 산출부는,
    상기 오차의 현재 값을 구하기 위해 비례 상수를 곱하고, 상기 오차의 과거 값을 구하기 위해 상기 기 설정된 시간 간격에 대해 오차를 적분(integral)하며, 상기 오차의 예측 값을 구하기 위해 상기 오차의 현재 값의 변화율을 계산하는 것을 특징으로 하는 양자 암호키 분배 안정화 장치.
PCT/KR2017/014864 2017-03-07 2017-12-15 양자 암호키 분배 안정화 장치 및 방법 WO2018164356A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019548671A JP6934528B2 (ja) 2017-03-07 2017-12-15 量子暗号キー分配安定化装置
CN201780088168.4A CN110383753B (zh) 2017-03-07 2017-12-15 使量子加密密钥分配稳定的方法和设备
EP17899245.9A EP3595235A4 (en) 2017-03-07 2017-12-15 DEVICE AND METHOD FOR STABILIZING A QUANTUM KEY DISTRIBUTION
US16/492,232 US11240016B2 (en) 2017-03-07 2017-12-15 Method and apparatus for stabilizing quantum cryptographic key distribution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0104173 2017-03-07
KR1020170028795A KR101992957B1 (ko) 2017-03-07 2017-03-07 양자 암호키 분배 안정화 장치 및 방법
KR10-2017-0028795 2017-03-07
KR1020170104173A KR101992962B1 (ko) 2017-08-17 2017-08-17 양자 암호키 분배 안정화 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2018164356A1 true WO2018164356A1 (ko) 2018-09-13

Family

ID=63448254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014864 WO2018164356A1 (ko) 2017-03-07 2017-12-15 양자 암호키 분배 안정화 장치 및 방법

Country Status (5)

Country Link
US (1) US11240016B2 (ko)
EP (1) EP3595235A4 (ko)
JP (1) JP6934528B2 (ko)
CN (1) CN110383753B (ko)
WO (1) WO2018164356A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737082B (zh) * 2017-04-24 2020-11-17 华为技术有限公司 信号的接收装置和接收方法
CN109104251B (zh) * 2017-06-20 2021-07-16 华为技术有限公司 一种数据传输方法、装置及系统
US12074970B2 (en) 2019-06-17 2024-08-27 Kt Corporation Quantum key distribution method, device, and system
US11664983B2 (en) * 2020-09-22 2023-05-30 Mellanox Technologies, Ltd. Hybrid quantum key distribution link for an optical transceiver
KR20220049195A (ko) 2020-10-14 2022-04-21 주식회사 케이티 단일 광자 검출 장치 및 구동 방법
IL298938A (en) 2022-12-08 2024-07-01 Mellanox Technologies Ltd Measurement-based methods for accessing and characterizing quantum communication channels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060113767A (ko) * 2006-08-08 2006-11-02 미쓰비시덴키 가부시키가이샤 양자 키 배송 방법 및 통신 장치
KR20090124679A (ko) * 2008-05-30 2009-12-03 한국전자통신연구원 양자 암호 시스템 및 양자 암호 키의 분배 방법
KR20110071803A (ko) * 2009-12-21 2011-06-29 한국전자통신연구원 양자 암호키 분배를 위한 광위상 변조 방법 및 장치
KR20160050934A (ko) * 2014-10-31 2016-05-11 에스케이텔레콤 주식회사 양자 암호키 분배 시스템에서 편광 정렬 방법 및 장치
KR101672497B1 (ko) * 2015-06-10 2016-11-03 에스케이텔레콤 주식회사 양자 암호키 분배시스템, 이에 적용되는 송신장치 및 송신장치의 동작 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996845A (ja) 1995-09-29 1997-04-08 Mitsubishi Electric Corp 量子演算装置および量子暗号装置
US7627126B1 (en) * 2002-10-15 2009-12-01 Bbn Technologies Corp. Systems and methods for implementing path length control for quantum cryptographic systems
US7606371B2 (en) * 2003-12-22 2009-10-20 Magiq Technologies, Inc. Two-way QKD system with active compensation
CN1893324A (zh) 2005-07-08 2007-01-10 富士通株式会社 光dqpsk接收机的相位监测装置、相位控制装置及其方法
US20090185689A1 (en) * 2008-01-18 2009-07-23 Magiq Technologies, Inc. QKD system and method with improved signal-to-noise ratio
EP2330758A1 (en) * 2009-12-02 2011-06-08 University College Cork-National University of Ireland, Cork Coherent optical receiver system and method for detecting phase modulated signals
JP5440787B2 (ja) * 2010-03-05 2014-03-12 日本電気株式会社 光通信システムにおける通信装置およびその干渉計同期制御方法
GB2492083B8 (en) * 2011-06-17 2016-02-10 Toshiba Res Europ Ltd A quantum communication network
GB2510130B (en) 2013-01-24 2015-05-13 Toshiba Res Europ Ltd Modulation Unit
GB2534917B (en) * 2015-02-05 2017-09-27 Toshiba Res Europe Ltd A quantum communication system and a quantum communication method
GB2534918B (en) 2015-02-05 2019-07-24 Toshiba Res Europe Limited A quantum communication system and a quantum communication method
US9705511B2 (en) * 2015-06-18 2017-07-11 Yekutiel Josefsberg Ultra low phase noise frequency synthesizer
CN105337730B (zh) 2015-11-19 2018-08-24 山西大学 基于相位编码qkd系统的单光子偏振控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060113767A (ko) * 2006-08-08 2006-11-02 미쓰비시덴키 가부시키가이샤 양자 키 배송 방법 및 통신 장치
KR20090124679A (ko) * 2008-05-30 2009-12-03 한국전자통신연구원 양자 암호 시스템 및 양자 암호 키의 분배 방법
KR20110071803A (ko) * 2009-12-21 2011-06-29 한국전자통신연구원 양자 암호키 분배를 위한 광위상 변조 방법 및 장치
KR20160050934A (ko) * 2014-10-31 2016-05-11 에스케이텔레콤 주식회사 양자 암호키 분배 시스템에서 편광 정렬 방법 및 장치
KR101672497B1 (ko) * 2015-06-10 2016-11-03 에스케이텔레콤 주식회사 양자 암호키 분배시스템, 이에 적용되는 송신장치 및 송신장치의 동작 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595235A4 *

Also Published As

Publication number Publication date
CN110383753B (zh) 2023-05-05
EP3595235A1 (en) 2020-01-15
JP6934528B2 (ja) 2021-09-15
EP3595235A4 (en) 2020-12-23
US11240016B2 (en) 2022-02-01
US20200044836A1 (en) 2020-02-06
CN110383753A (zh) 2019-10-25
JP2020509716A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2018164356A1 (ko) 양자 암호키 분배 안정화 장치 및 방법
WO2017003243A1 (ko) 랜덤하면서 유일한 코드를 생성하는 전자 장치 및 그 제어 방법
CA2121739C (en) Apparatus and method employing fast polarization modulation to reduce effects of polarization hole burning and polarization dependent loss
WO2014163322A1 (ko) 입체 영상 장치
CN107113171A (zh) 安全通信系统、方法及装置
WO2009102164A2 (ko) Wdm-pon에서의 광 검출 장치 및 그 방법
JPH03184016A (ja) 光学的伝送・分散システム
WO2018147530A1 (ko) 음파를 이용한 식별정보와 구매자의 동적코드를 맵핑하는 모바일 결제 시스템
WO2021090963A1 (ko) 무선 광 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 송신 단말과 수신 단말
WO2024219919A1 (ko) 투과체에 대한 각도 기울임을 사용한 편광분할 더블 스캐닝 홀로그래피 시스템
CN107113172A (zh) 无人机认证方法,安全通信方法及对应系统
WO2018110775A1 (ko) 전자 기기 인증 매니저 장치
WO2017034112A1 (ko) 보안이 향상된 고속통신 시스템 및 방법
WO2024071668A1 (ko) 투과체에 대한 편광분할 더블 스캐닝 홀로그래피 시스템
WO2019107946A1 (en) Electronic device and method for processing remote payment
KR101992962B1 (ko) 양자 암호키 분배 안정화 장치 및 방법
WO2018155795A1 (ko) 듀얼 편광 안테나를 포함하는 uca 안테나를 사용하는 통신 장치
WO2020246848A1 (ko) 근사 암호화된 암호문에 대한 정렬 장치 및 방법
WO2020153660A1 (ko) 디지털 키 공유 시스템에서 이모빌라이저 토큰을 업데이트하는 장치 및 방법
WO2020141773A1 (ko) 출입 관리 시스템 및 이를 이용한 출입 관리 방법
WO2022004921A1 (ko) 플러그 앤드 플레이 퀀텀 키 분배 시스템에서 패러데이 회전 거울의 편광 왜곡 보정 방법 및 장치
WO2020022816A1 (ko) 위상 배열 안테나를 캘리브레이션하기 위한 장치 및 방법
WO2020067691A1 (ko) 무선 통신 시스템에서 빔포밍을 수행하는 방법 및 장치
WO2023153717A1 (ko) 포스트 양자 암호 환경을 위한 고 차원 다형성 암호화를 수행하는 전자 장치 및 그 동작 방법
WO2023167525A1 (ko) 동적 인증 코드 기반의 인증을 수행하는 산업용 제어장치 및 이를 이용한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017899245

Country of ref document: EP

Effective date: 20191007