WO2018164196A1 - Polarizing film, polarizing plate, and method for manufacturing same - Google Patents

Polarizing film, polarizing plate, and method for manufacturing same Download PDF

Info

Publication number
WO2018164196A1
WO2018164196A1 PCT/JP2018/008826 JP2018008826W WO2018164196A1 WO 2018164196 A1 WO2018164196 A1 WO 2018164196A1 JP 2018008826 W JP2018008826 W JP 2018008826W WO 2018164196 A1 WO2018164196 A1 WO 2018164196A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing film
pva
polarizing
mass
Prior art date
Application number
PCT/JP2018/008826
Other languages
French (fr)
Japanese (ja)
Inventor
達也 大園
辻 嘉久
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201880016563.6A priority Critical patent/CN110383124B/en
Priority to JP2019504646A priority patent/JP7199343B2/en
Priority to KR1020197028378A priority patent/KR102582196B1/en
Publication of WO2018164196A1 publication Critical patent/WO2018164196A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a polarizing film composed of a polyvinyl alcohol film containing an iodine dichroic dye, a polarizing film having a low shrinkage rate, a polarizing plate, and a method for producing them.
  • a polarizing film used for a polarizing plate having a light transmission and shielding function is a basic component of a liquid crystal display (LCD).
  • LCD liquid crystal display
  • Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of a polarizing film.
  • a polarizing film constituting the polarizing plate a polyvinyl alcohol film (hereinafter referred to as “polyvinyl”).
  • alcohol "and” PVA "and that there is referred) uniaxially stretched iodine to stretched film was oriented dye (I 3 - and I 5 -, etc.) dichroic dye to what has mainstream adsorption of such It has become.
  • Such a polarizing film is manufactured by a method of subjecting a PVA film to a swelling process, a dyeing process, a crosslinking process, a stretching process, an immobilizing process, and a drying process.
  • LCDs are widely used in mobile applications such as notebook computers and mobile phones. Such LCDs for mobile devices are used in various environments. Therefore, a polarizing film having a low shrinkage at high temperatures and excellent dimensional stability is demanded.
  • Patent Documents 1 to 5 describe polarizing films obtained by stretching a PVA film dyed with an iodine-based dye and then drying at 50 to 70 ° C. for 2 to 4 minutes.
  • the polarizing film thus obtained had a high shrinkage rate.
  • the polarizing film contracts and the glass plate warps. It was.
  • the present invention has been made in order to solve the above problems, and provides a polarizing film having excellent polarization performance and hue, low shrinkage ratio and excellent dimensional stability, and a method for producing the same. It is the purpose. Moreover, it aims at providing the polarizing plate using such a polarizing film, and its manufacturing method.
  • the above problem is a polarizing film comprising a PVA film containing an iodine-based dichroic dye and crosslinked with a boron compound, having a polarization degree of 99.5% or more and a simple substance b value of 3.0 or less. It is solved by providing a polarizing film that satisfies the following formulas (1) and (2).
  • a ⁇ 0.9 (1) B / A ⁇ 55 (2)
  • A is a shrinkage rate (%) of the polarizing film heated at 80 ° C. for 4 hours
  • B is a shrinking stress (N / mm 2 ) of the polarizing film heated at 80 ° C. for 4 hours. It is.
  • the simple substance b value is 1.0 or more. It is also preferable that A is 0.5 or more. It is also preferable that the degree of polymerization of the PVA is 1,500 to 6,000. It is also preferable that the polarizing film has a thickness of 1 to 30 ⁇ m.
  • the above-mentioned problem is that the PVA film with the stretching direction fixed at 55 to 65 ° C. after the step of dyeing the PVA film with an iodine dichroic dye, the step of crosslinking with a boron compound and the step of stretching are performed.
  • the problem can also be solved by providing a method for producing the polarizing film in which an annealing treatment step of heating for 72 hours or more is performed.
  • a polarizing plate formed by laminating the polarizing film and the protective film is a preferred embodiment of the present invention.
  • the PVA film and a protective film are laminated to obtain a multilayer film, and the stretching direction
  • a method for producing the polarizing plate, in which an annealing treatment step is performed in which the multilayer film to which is fixed is heated at 55 to 65 ° C. for 72 hours or more is also a preferred embodiment of the present invention.
  • the polarizing film of the present invention has excellent polarizing performance and hue, and has a small shrinkage ratio and excellent dimensional stability. Therefore, the polarizing plate using the polarizing film is suitably used for high-performance LCDs, particularly LCDs used at high temperatures. Moreover, according to the manufacturing method of this invention, such a polarizing film and a polarizing plate can be manufactured simply.
  • FIG. 3 is a graph plotting the shrinkage rate and the simple substance b value of polarizing films in Examples 1 and 2, Comparative Examples 1 to 3, 5 to 12, and 14 to 16, and Reference Example 1.
  • FIG. 2 is a graph plotting the shrinkage stress and shrinkage rate of polarizing films in Examples 1 and 2, Comparative Examples 1 to 3, 5 to 12, 14 to 16, and Reference Example 1.
  • the polarizing film of the present invention is a polarizing film comprising a PVA film containing an iodine-based dichroic dye and crosslinked with a boron compound, having a polarization degree of 99.5% or more and a simple substance b value of 3. It is 0 or less and satisfies the following formulas (1) and (2).
  • A is a shrinkage rate (%) of the polarizing film heated at 80 ° C. for 4 hours
  • B is a shrinking stress (N / mm 2 ) of the polarizing film heated at 80 ° C. for 4 hours. It is.
  • the polarizing film of the present invention solves such a point, and is characterized by having a low shrinkage rate while having excellent polarizing performance and hue.
  • the manufacturing method of such a polarizing film is not particularly limited, but the present inventor succeeded in manufacturing a polarizing film having such performance for the first time by adopting a new manufacturing method. Specifically, after performing a step of dyeing a PVA film with an iodine dichroic dye, a step of crosslinking with a boron compound, and a step of stretching, the PVA film in which the stretching direction is fixed is 55 to 65 ° C. By performing an annealing treatment step of heating for 72 hours or more, a polarizing film having excellent polarization performance and hue, and having a small shrinkage ratio and excellent dimensional stability can be produced.
  • the said manufacture is used suitably for manufacture of various polarizing films including the polarizing film of this invention.
  • the manufacturing method will be described in detail.
  • the PVA contained in the raw PVA film used in the production of the polarizing film of the present invention should be obtained by saponifying a polyvinyl ester obtained by polymerizing one or more vinyl esters.
  • a polyvinyl ester obtained by polymerizing one or more vinyl esters.
  • the vinyl ester include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, and isopropenyl acetate.
  • vinyl acetate is preferable from the viewpoint of ease of production, availability, and cost of PVA.
  • the polyvinyl ester may be obtained using only one or two or more kinds of vinyl esters as a monomer, but one or two as long as the effects of the present invention are not impaired. It may be a copolymer of at least one kind of vinyl ester and another monomer copolymerizable therewith.
  • Examples of other monomers copolymerizable with the vinyl ester include ⁇ -olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene and isobutene; (meth) acrylic acid or a salt thereof; (meth) Methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (meth) (Meth) acrylic acid esters such as t-butyl acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate; (meth) acrylamide, N-methyl (meth) Acrylamide, N-ethyl (meth) acrylamide, N, N-
  • the proportion of structural units derived from other monomers in the polyvinyl ester is preferably 15 mol% or less, preferably 10 mol% or less, based on the number of moles of all structural units constituting the polyvinyl ester. More preferred is 5 mol% or less.
  • the other monomer is a monomer that may promote water solubility of the obtained PVA, such as (meth) acrylic acid or unsaturated sulfonic acid
  • the polarizing film In order to prevent PVA from being dissolved in the production process, the proportion of structural units derived from these monomers in the polyvinyl ester is 5 mol% or less based on the number of moles of all structural units constituting the polyvinyl ester. It is preferable that it is 3 mol% or less.
  • the PVA used in the present invention may be modified with one or two or more types of graft copolymerizable monomers as long as the effects of the present invention are not impaired.
  • examples of the graft copolymerizable monomer include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; ⁇ -olefins having 2 to 30 carbon atoms, and the like.
  • the proportion of structural units derived from the graft copolymerizable monomer in PVA (structural units in the graft modified portion) is preferably 5 mol% or less based on the number of moles of all structural units constituting PVA. .
  • a part of the hydroxyl group may be cross-linked or may not be cross-linked.
  • said PVA may react with aldehyde compounds, such as acetaldehyde and a butyraldehyde, etc., and a part of the hydroxyl group may form the acetal structure.
  • the polymerization degree of the PVA is preferably in the range of 1500 to 6000, more preferably in the range of 1800 to 5000, and still more preferably in the range of 2000 to 4000.
  • the degree of polymerization of PVA in the present specification means an average degree of polymerization measured according to the description of JIS K6726-1994.
  • PVA in a polarizing film contains the crosslinked structure by boron compounds, such as a boric acid, if it dissociates by hydrolyzing boric acid ester etc., it will be a substantial change in the average degree of polymerization of PVA itself. There is no.
  • the degree of saponification of PVA is preferably 98 mol% or more, more preferably 98.5 mol% or more, and further preferably 99 mol% or more from the viewpoint of the polarizing performance of the polarizing film.
  • the degree of saponification is less than 98 mol%, PVA tends to be eluted during the production process of the polarizing film, and the eluted PVA may adhere to the film and reduce the polarizing performance of the polarizing film.
  • the degree of saponification of PVA refers to the total number of moles of structural units (typically vinyl ester units) that can be converted into vinyl alcohol units by saponification and the vinyl alcohol units of PVA.
  • the degree of saponification can be measured according to the description of JIS K6726-1994.
  • PVA in a raw film and PVA in the obtained polarizing film have substantially the same saponification degree.
  • a PVA film is formed using the stock solution.
  • the film forming method include a cast film forming method, an extrusion film forming method, a wet film forming method, and a gel film forming method. These film forming methods may be used alone or in combination of two or more. Among these film forming methods, the cast film forming method and the extrusion film forming method are preferable because a PVA film having uniform thickness and width and good physical properties can be obtained.
  • the formed PVA film can be dried or heat-treated as necessary.
  • the film-forming stock solution can be obtained, for example, by mixing a liquid medium with one or more of the PVA and, if necessary, a surfactant, a plasticizer and an additive.
  • PVA may be in a dissolved state in a liquid medium or in a molten state. The mixing is preferably performed under heating.
  • liquid medium used for the preparation of the membrane forming stock solution examples include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol. , Trimethylolpropane, ethylenediamine, diethylenetriamine and the like, and one or more of them can be used. Among these, water is preferable from the viewpoint of environmental load and recoverability.
  • the volatile fraction of the film-forming stock solution (content ratio in the film-forming stock solution of volatile components such as liquid media removed by volatilization or evaporation during film formation) varies depending on the film-forming method, film-forming conditions, etc. Specifically, it is preferably in the range of 50 to 95% by mass, more preferably in the range of 55 to 90% by mass, and still more preferably in the range of 60 to 85% by mass.
  • the volatile fraction of the film-forming stock solution is 50% by mass or more, the viscosity of the film-forming stock solution does not become too high, and filtration and defoaming are smoothly performed during preparation of the film-forming stock solution, and there are few foreign matters and defects. Film production is facilitated.
  • the volatile fraction of the film-forming stock solution is 95% by mass or less, the concentration of the film-forming stock solution does not become too low, and the production of an industrial PVA film becomes easy.
  • the film forming stock solution preferably contains a surfactant.
  • a surfactant By including the surfactant, the film-forming property is improved and the occurrence of uneven thickness of the film is suppressed, and the film is easily peeled off from the metal roll or belt used for film formation.
  • the PVA film may contain a surfactant.
  • the kind of said surfactant is not specifically limited, From a viewpoint of the peelability from a metal roll or a belt, an anionic surfactant or a nonionic surfactant is preferable.
  • anionic surfactant for example, a carboxylic acid type such as potassium laurate; a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate are suitable.
  • a carboxylic acid type such as potassium laurate
  • a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate
  • a sulfonic acid type such as dodecylbenzene sulfonate
  • Nonionic surfactants include, for example, alkyl ether types such as polyoxyethylene oleyl ether; alkylphenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate; polyoxyethylene laurylamino Alkylamine type such as ether; alkylamide type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; alkanolamide type such as lauric acid diethanolamide and oleic acid diethanolamide; polyoxy An allyl phenyl ether type such as alkylene allyl phenyl ether is preferred.
  • surfactants can be used alone or in combination of two or more.
  • the content thereof is preferably 0.01 to 0.5 parts by weight, preferably 0.02 to 0.00 parts, per 100 parts by weight of PVA contained in the film-forming stock solution.
  • the amount is more preferably 3 parts by mass, and particularly preferably 0.05 to 0.1 parts by mass.
  • the content is 0.01 parts by mass or more, the film forming property and the peelability are further improved.
  • the content is 0.5 parts by mass or less, it is possible to prevent the surfactant from bleeding out on the surface of the PVA film to cause blocking and deterioration in handleability.
  • the content of PVA in the raw PVA film used in the present invention is preferably 50 to 99% by mass from the viewpoint of ease of production of the polarizing film.
  • the content is more preferably 75% by mass or more, further preferably 80% by mass or more, and particularly preferably 85% by mass or more.
  • the content is more preferably 98% by mass or less, further preferably 96% by mass or less, and particularly preferably 95% by mass or less.
  • the PVA film preferably contains a plasticizer.
  • the plasticizer include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, and trimethylol propane.
  • One or more of the agents can be included. Among these, glycerin is preferable from the viewpoint of the effect of improving stretchability.
  • the content of the plasticizer in the PVA film is preferably 1 to 20 parts by mass with respect to 100 parts by mass of PVA.
  • the content is more preferably 2 parts by mass or more, further preferably 4 parts by mass or more, and particularly preferably 5 parts by mass or more. Further, the content is more preferably 15 parts by mass or less.
  • the PVA film may further contain components such as an antioxidant, an antifreezing agent, a pH adjuster, a hiding agent, an anti-coloring agent, an oil agent, and a surfactant as necessary.
  • the thickness of the PVA film is preferably 5 to 100 ⁇ m. When the thickness is 100 ⁇ m or less, a thin polarizing film can be easily obtained. The thickness is more preferably 60 ⁇ m or less. On the other hand, when the thickness is less than 5 ⁇ m, it may be difficult to produce a polarizing film, and uneven staining may easily occur.
  • the thickness of the PVA film is more preferably 7 ⁇ m or more. The thickness here refers to the thickness of the PVA layer in the case of a multilayer film.
  • the PVA film may be a single layer film or a multilayer film having a PVA layer and a base resin layer.
  • the film thickness is preferably 20 ⁇ m or more, and more preferably 30 ⁇ m or more, in order to ensure handling properties.
  • the thickness of the PVA layer can be 20 ⁇ m or less, or 15 ⁇ m or less.
  • the thickness of the base resin layer in the multilayer film is usually 20 to 500 ⁇ m.
  • the base resin When using a multilayer film having a PVA layer and a base resin layer as the PVA film, the base resin must be capable of being stretched together with PVA.
  • Polyester, polyolefin resin, or the like can be used.
  • an amorphous polyester resin is preferable, and an amorphous polyester resin obtained by copolymerizing polyethylene terephthalate and a copolymer component such as isophthalic acid or 1,4-cyclohexanedimethanol is preferably used.
  • the surface of the base resin film may be modified, or an adhesive layer may be formed between both layers.
  • the shape of the PVA film is not particularly limited, but is preferably a long PVA film because it can be continuously supplied when a polarizing film is produced.
  • the length of the long PVA film (length in the long direction) is not particularly limited, and can be set as appropriate according to the application of the polarizing film to be produced, for example, within a range of 5 to 20000 m. be able to.
  • the width of the PVA film is not particularly limited, and can be appropriately set according to the use of the polarizing film to be produced. In recent years, since the enlargement of screens of liquid crystal televisions and liquid crystal monitors has progressed, it is suitable for these applications when the width of the PVA film is 0.5 m or more, more preferably 1.0 m or more. On the other hand, if the width of the PVA film is too wide, it tends to be difficult to uniformly stretch the polarizing film when the polarizing film is produced by a device that has been put to practical use. Therefore, the width of the PVA film is 7 m or less. Is preferred.
  • the polarizing film of the present invention is produced using the PVA film described above as a raw fabric. Specifically, a step of dyeing the PVA film with an iodine dichroic dye (hereinafter sometimes referred to as “dyeing step”), a step of crosslinking the PVA film with a boron compound (hereinafter referred to as “crosslinking”). And the step of stretching the PVA film (hereinafter also referred to as the “stretching step”), the PVA film with the stretched direction fixed thereto is heated at 55 to 65 ° C. for 72 hours. It is preferable to manufacture a polarizing film by the method of performing the annealing process which heats more than time.
  • the above production method it is preferable to perform a step of swelling the original PVA film (hereinafter, sometimes referred to as “swelling step”) before performing the above steps.
  • swelling step After performing the dyeing process, the crosslinking process, and the stretching process, it is also preferable to perform the annealing process after further performing a process of drying the PVA film (hereinafter sometimes referred to as “drying process”).
  • drying process a process of drying the PVA film
  • drying process a step of appropriately washing the PVA film may be performed.
  • a method of performing a dyeing step, a crosslinking step, a stretching step, and an annealing treatment step in this order is more preferable, and a swelling step, a dyeing step, a crosslinking step, a stretching step, a fixing treatment step, a drying step, and an annealing treatment step are performed.
  • the method performed in this order is more preferable.
  • each step will be described in detail.
  • the manufacturing method it is preferable to first perform a step of swelling the original PVA film.
  • the PVA film is swollen by dipping in water at 10 to 50 ° C.
  • the temperature of the water is preferably 20 ° C. or higher, and more preferably 40 ° C. or lower.
  • the time for immersing the PVA film in water is preferably 0.1 to 5 minutes, and more preferably 0.5 to 3 minutes. By setting it as such immersion time, a PVA film can be efficiently swollen uniformly.
  • the water in which the PVA film is immersed is not limited to pure water, and may be an aqueous solution in which various components are dissolved, or a mixture of water and a water-soluble organic solvent.
  • a step of dyeing the PVA film with an iodine dichroic dye is performed. It is preferable to perform the dyeing process after the swelling process. Moreover, although the dyeing
  • the dyeing process is generally performed by immersing the PVA film in a solution (particularly an aqueous solution) containing iodine-potassium iodide as a dyeing bath. In the present invention, such a dyeing method is suitably employed.
  • the iodine concentration in the dyeing bath is preferably 0.01 to 0.5% by mass, and the potassium iodide concentration is preferably 0.01 to 10% by mass.
  • the temperature of the dyeing bath is preferably 10 to 50 ° C., more preferably 20 to 40 ° C.
  • the time for immersing the PVA film in the dyeing bath is preferably 0.1 to 10 minutes, more preferably 0.2 to 5 minutes.
  • the dyeing bath may contain a boron compound, but its content is usually less than 5% by mass, preferably 1% by mass or less, in terms of boric acid. As said boron compound, what is mentioned later as what is used for a bridge
  • a step of crosslinking the PVA film using a boron compound is performed. After performing the crosslinking step in this manner, a polarizing film having a low shrinkage rate can be obtained while having an excellent polarization performance and hue by performing an annealing treatment step described later.
  • the crosslinking process is performed before the annealing process. Moreover, it is preferable to perform a bridge
  • the crosslinking step and the dyeing step or the stretching step may be performed simultaneously. Moreover, you may perform the process of bridge
  • the crosslinking step can be performed by immersing the PVA film in an aqueous solution containing a boron compound.
  • a boron compound 1 type (s) or 2 or more types, such as boric acids, such as boric acid and borax, can be used.
  • the concentration of the boron compound in the aqueous solution is preferably 1 to 15% by mass, and more preferably 2 to 7% by mass in terms of boric acid. When the concentration is 1 to 15% by mass, the above-described effects can be achieved and sufficient stretchability can be maintained.
  • the aqueous solution may contain an auxiliary agent such as potassium iodide. From the viewpoint of efficient crosslinking, the temperature of the aqueous solution is preferably 20 to 50 ° C., particularly preferably 25 to 40 ° C.
  • the PVA film may be stretched during or between the above-described processes. By performing such stretching (pre-stretching), wrinkles can be prevented from entering the PVA film.
  • the total stretching ratio of pre-stretching (the ratio obtained by multiplying the stretching ratios in each step) is 4 based on the polarization performance in the case of producing a polarizing film. It is preferable that it is less than 2 times.
  • the draw ratio in the swelling process is preferably 1.05 to 3 times, the draw ratio in the dyeing process is preferably 3 times or less, and the draw ratio in the crosslinking process is preferably 2 times or less.
  • a step of stretching the PVA film is performed.
  • the stretching step can be performed by uniaxially stretching the PVA film using a wet stretching method or a dry stretching method.
  • a wet stretching method it can be carried out in an aqueous solution containing a boron compound, or can be carried out in the above-described dyeing bath or crosslinking bath.
  • a boron compound what was mentioned above as what is used for a bridge
  • the stretching may be performed at room temperature, may be performed while heating, or may be performed in the air using a PVA film after water absorption.
  • the wet stretching method is preferable, and it is more preferable to perform uniaxial stretching in an aqueous solution containing a boron compound.
  • concentration of the boron compound in the aqueous solution of the boron compound is preferably 0.5 to 6.0% by mass in terms of boric acid, more preferably 1.0 to 5.0% by mass, and 1.5 to 4.5% by mass. Particularly preferred.
  • the aqueous solution may contain potassium iodide, and the concentration is preferably 0.01 to 10% by mass.
  • the temperature at which the PVA film is stretched in the stretching step is preferably 30 to 90 ° C, more preferably 40 to 80 ° C, and even more preferably 50 to 70 ° C.
  • the draw ratio in the drawing step is preferably 1.2 times or more, more preferably 1.5 times or more, and 2 times or more. Is more preferable.
  • the total draw ratio including the draw ratio of the above-mentioned pre-stretch (the ratio obtained by multiplying the stretch ratio in each step) is 5.2 times or more based on the original length of the original PVA film before stretching. Preferably, it is 5.5 times or more, more preferably 5.8 times or more.
  • the upper limit of the total stretching ratio is not particularly limited, but the stretching ratio is preferably 8 times or less in order to prevent stretching.
  • uniaxial stretching in the longitudinal direction is preferable from the viewpoint of obtaining a film having excellent polarizing performance.
  • Uniaxial stretching in the longitudinal direction can be performed by changing the peripheral speed between the rolls using a stretching apparatus including a plurality of rolls parallel to each other.
  • lateral uniaxial stretching can be performed using a tenter type stretching machine.
  • the fixing treatment bath used for the fixing treatment an aqueous solution containing one or more of boron compounds can be used.
  • the boron compound those described above as being used for the crosslinking treatment can be used. it can.
  • the concentration of the boron compound in the fixed treatment bath is preferably 1 to 15% by mass.
  • the concentration of the boron compound is more preferably 10% by mass or less.
  • potassium iodide is contained in the aqueous solution, the concentration is preferably 0.01 to 10% by mass.
  • the temperature of the fixing treatment bath is preferably 15 to 60 ° C, and more preferably 20 to 40 ° C.
  • the annealing treatment step is performed after the step of drying the PVA film.
  • the drying temperature is preferably 30 ° C or higher, more preferably 40 ° C or higher, and further preferably 50 ° C or higher.
  • the drying temperature is preferably 100 ° C. or lower, and more preferably 80 ° C. or lower.
  • the drying time is preferably 10 seconds or more, more preferably 30 seconds or more, and further preferably 1 minute or more.
  • the drying time is preferably 30 minutes or less, more preferably 15 minutes or less, further preferably 10 minutes or less, and particularly preferably 5 minutes or less.
  • the drying step is preferably performed in a gas such as air or an inert gas, and the former is more preferable from the viewpoint of simple treatment.
  • the humidity at the time of performing a drying process in the air is not specifically limited, It is preferable that relative humidity is 35% or less, and it is more preferable that it is 15% or less.
  • an annealing treatment step of heating at 55 to 65 ° C. for 72 hours or more is performed.
  • the degree of polarization of the PVA film subjected to the annealing process is 99.7% or more.
  • the single b value of the PVA film subjected to the annealing treatment step is 2.8 or less.
  • the drying process and the annealing process may be performed for a total of 72 hours or more.
  • the PVA film roll needs to be annealed for 72 hours or more.
  • the moisture content of the PVA film used in the step is 1 to 25 mass%.
  • the moisture content is more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the annealing process it is necessary to anneal the PVA film with the stretching direction fixed.
  • the method at this time is not particularly limited, and after winding the PVA film in the stretching direction to obtain a film roll, the method of heating the film roll or the end of the PVA film in the stretching direction was fixed with a clip or the like. A method of annealing, etc. is adopted later, and the former is preferable from the viewpoint of productivity.
  • the annealing process is performed at 55 to 65 ° C.
  • the shrinkage rate can be reduced while maintaining the excellent polarization performance and hue of the PVA film.
  • the temperature is preferably 57 ° C. or higher.
  • the polarization performance and hue of the said PVA film will fall.
  • the temperature is preferably 63 ° C. or lower.
  • the annealing process is preferably performed in a gas such as air or an inert gas, and the former is more preferable from the viewpoint of simple processing.
  • the humidity when the annealing process is performed in air is not particularly limited, but the relative humidity is preferably 35% or less, and more preferably 15% or less.
  • the PVA film is heated for 72 hours or more.
  • the shrinkage rate can be lowered while maintaining the excellent polarization performance and hue of the PVA film.
  • the heating time is preferably 85 hours or longer, and more preferably 100 hours or longer.
  • the heating time is preferably 300 hours or less, and more preferably 200 hours or less.
  • the inventors examined the annealing treatment of the polarizing film. Although the shrinkage ratio is decreased by increasing the treatment temperature, the polarization is reduced. Performance and hue deteriorated, making it difficult to achieve both. As a result of further investigations, the present inventors have surprisingly been able to reduce the shrinkage rate while maintaining excellent polarization performance and hue by annealing at a low temperature for a long time as described above. I found out that I can do it. Although this mechanism is not clear, it is believed that annealing at a low temperature for a long time increases the crosslinking point of PVA with a boron compound and decreases the shrinkage.
  • the polarization performance is maintained by annealing at a low temperature because the change in the amorphous portion of PVA and the decomposition of the dye are suppressed. Furthermore, since the thermal decomposition of the PVA film is suppressed by annealing at a low temperature, the hue is considered to be maintained.
  • the simple substance b value of the polarizing film of the present invention needs to be 3.0 or less.
  • the polarizing film of the present invention having a low single b value and excellent hue is suitably used in LCDs and the like.
  • the simple substance b value is preferably 2.7 or less, and more preferably 2.45 or less.
  • the polarizing film needs to satisfy the following formulas (1) and (2).
  • A is a shrinkage rate (%) of the polarizing film heated at 80 ° C. for 4 hours
  • B is a shrinking stress (N / mm 2 ) of the polarizing film heated at 80 ° C. for 4 hours. It is.
  • the shrinkage ratio A of the polarizing film is 0.9% or less, the glass plate is hardly warped when the polarizing film is used for an LCD.
  • the polarizing film of the present invention having a low shrinkage ratio A is suitable for LCDs, in particular, LCDs for mobile devices that are often used or stored at high temperatures and that use thin glass plates.
  • the shrinkage rate A is preferably 0.85% or less, and more preferably 0.80 or less.
  • the shrinkage rate A is preferably 0.5% or more from the viewpoint of particularly excellent balance between polarization performance and hue and dimensional stability.
  • the method described in Examples described later is employed as a method for measuring the shrinkage rate A of the polarizing film.
  • the ratio (B / A) of the shrinkage stress B (N / mm 2 ) to the shrinkage rate A (%) of the polarizing film is 55 or more, the balance between the dimensional stability and the polarizing performance of the polarizing film is It becomes good.
  • the degree of polarization of the polarizing film is increased, the shrinkage stress and the shrinkage rate increase, and problems such as warpage of the glass plate occur when used in an LCD.
  • the polarizing film of the present invention has a high shrinkage stress B and a low shrinkage ratio A, it is possible to achieve both dimensional stability and polarizing performance, and such problems are solved.
  • the ratio (B / A) is preferably 60 or more.
  • the ratio (B / A) is preferably 100 or less.
  • the shrinkage rate A and the shrinkage stress B of the polarizing film As a method for measuring the shrinkage rate A and the shrinkage stress B of the polarizing film, the methods described in Examples described later are employed.
  • the shrinkage rate and the shrinkage stress are measured in the stretching direction of the polarizing film, and when stretching in a plurality of directions, the stretching ratio is measured in a higher direction.
  • the polarizing film preferably satisfies the following formula (3).
  • the shrinkage stress B of the polarizing film is 45 N / mm 2 or more, the polarizing performance is further improved.
  • the polarizing film has a low shrinkage ratio A, even when the polarizing film is used in an LCD, even when the film is contracted, the dimensional change of the film is caused by the adhesive layer between the film and the glass plate. Is absorbed. Therefore, even if the shrinkage stress B is high, the glass is hardly warped. In particular, LCDs for mobile devices such as mobile terminals are small in size and less dimensional change due to shrinkage of the polarizing film, so that glass warpage is less likely to occur.
  • the shrinkage stress B is more preferably 47 N / mm 2 or more.
  • the shrinkage stress B is preferably 60 N / mm 2 or less.
  • the thickness of the polarizing film is preferably 1 to 30 ⁇ m. Such a thin polarizing film is suitably used for LCDs such as LCDs, especially for mobile devices. When the thickness is less than 1 ⁇ m, it may be difficult to produce a polarizing film, and uneven dyeing may easily occur.
  • the thickness is preferably 5 ⁇ m or more. On the other hand, the thickness is more preferably 20 ⁇ m or less.
  • the content of PVA in the polarizing film is preferably 50 to 99% by mass.
  • the content is more preferably 75% by mass or more, further preferably 80% by mass or more, and particularly preferably 85% by mass or more.
  • it is more preferable that it is 98 mass% or less, it is more preferable that it is 96 mass% or less, and it is especially preferable that it is 95 mass% or less.
  • the content of the boron compound in the polarizing film is preferably 5 to 50% by mass in terms of boric acid. When the content is less than 5% by mass, the effect of reducing the shrinkage rate may be insufficient. The content is more preferably 12% by mass or more. On the other hand, when the said content exceeds 50 mass%, there exists a possibility that the contractile force of a polarizing film may become high too much. The content is more preferably 30% by mass or less.
  • the degree of polarization of the polarizing film needs to be 99.5% or more.
  • Such a polarizing film having a high degree of polarization is suitably used for a high-performance LCD.
  • the degree of polarization is preferably 99.7% or more, and more preferably 99.8% or more.
  • the simple substance b value of the polarizing film needs to be 3.0 or less. Such a polarizing film having a low single b value and an excellent hue is suitably used for a high-performance LCD.
  • the simple substance b value is preferably 2.8 or less, more preferably 2.5 or less.
  • the simple substance b value is usually 0 or more. From the viewpoint of particularly excellent balance between polarization performance and hue and dimensional stability, the simple substance b value is preferably 1.0 or more.
  • a polarizing plate formed by laminating the polarizing film and the protective film is a preferred embodiment of the present invention.
  • the polarizing plate using the polarizing film has excellent polarization performance and hue, and has excellent dimensional stability due to the low shrinkage rate of the polarizing film. Therefore, the polarizing plate is suitably used for LCDs such as LCDs, especially for mobile devices. .
  • the protective film is not particularly limited as long as it is optically transparent and has mechanical strength.
  • cellulose triacetate (TAC) film, cellulose acetate / butyrate (CAB) film, acrylic film, polyester film A film, a cyclic olefin (COP) film, etc. can be used.
  • the polarizing plate may be one in which the protective film is attached to one side of the polarizing film, or may be one in which the protective film is attached to both sides of the polarizing film.
  • examples of the adhesive for bonding include a PVA adhesive, a urethane adhesive, and an ultraviolet curable adhesive.
  • the manufacturing method of the said polarizing plate is not specifically limited, After performing the process of dyeing
  • the polarizing plate is produced in the same manner as the polarizing film production method described above except that the step of obtaining a multilayer film by laminating the PVA film and the protective film (hereinafter sometimes referred to as “lamination step”) is further performed. Obtainable.
  • a lamination process when performing a drying process, a lamination process may be performed before a drying process and a lamination process may be performed after a drying process.
  • a lamination process it is preferable to perform a lamination process after performing a fixing process.
  • the polarizing plate thus obtained is bright, has good polarization characteristics, and is excellent in dimensional stability even when used under high temperature conditions. Therefore, it is suitably used for high performance LCDs, particularly LCDs for mobile devices.
  • shrinkage stress of polarizing film The shrinkage stress was measured using an autograph AG-X with a thermostatic bath manufactured by Shimadzu Corporation and a video extensometer TR ViewX120S. For the measurement, a polarizing film conditioned at 20 ° C. and 20% RH for 18 hours was used. After the temperature chamber of Autograph AG-X was set to 20 ° C., a polarizing film (length direction: 15 cm, width direction: 1.5 cm) was attached to a chuck (chuck interval: 5 cm). Tensile (speed 1 mm / min) and temperature increase (10 ° C./min) of the thermostat to 80 ° C. were started simultaneously. When the tension reached 2N after about 3 seconds, the tension was stopped and kept in that state.
  • the tension until 4 hours after the temperature in the thermostatic chamber reached 80 ° C. was measured. At this time, because the distance between chucks changes due to thermal expansion, a gauge sticker is attached to the chuck, and the distance between chucks is corrected by the amount of movement of the gauge seal attached to the chuck using the video extensometer TR ViewX120S. Measurements were taken as possible.
  • the value obtained by subtracting the initial tension 2N from the measured value of the tension (N) after 4 hours is the contraction force (N) of the polarizing film, and the value (N) is divided by the sample cross-sectional area (mm 2 ). It was defined as shrinkage stress (N / mm 2 ).
  • the shrinkage rate was measured using a thermomechanical measuring device (Q400) manufactured by TA Instruments.
  • a polarizing film conditioned at 20 ° C. and 20% RH for 18 hours was used.
  • a measurement sample obtained by cutting the polarizing film in the length direction of 3 cm and the width direction of 0.3 cm was attached to the apparatus so that the distance between the chucks was about 2 cm.
  • the temperature inside the apparatus was increased from 20 ° C. to 80 ° C. at 10 ° C./min, and then the polarizing film was heated by holding at 80 ° C. for 4 hours, and the shrinkage was calculated by the following formula.
  • Example 1 [Preparation of polarizing film] 100 parts by mass of PVA (saponification degree 99.9 mol%, polymerization degree 2500), 10 parts by mass of glycerin as a plasticizer, and 0.1 parts by mass of sodium polyoxyethylene lauryl ether sulfate as a surfactant, the content of PVA A 9% by mass aqueous solution was used as a film-forming stock solution. This was dried on a metal roll at 80 ° C., and the obtained film was heat-treated at a temperature of 112 ° C. for 10 minutes in a hot air dryer to produce a PVA film having a thickness of 30 ⁇ m.
  • PVA response degree 99.9 mol%, polymerization degree 2500
  • glycerin glycerin
  • sodium polyoxyethylene lauryl ether sulfate sodium polyoxyethylene lauryl ether sulfate
  • a sample having a width of 5 cm and a length of 11 cm is cut from the central portion of the obtained PVA film in the width direction, and the range of 5 cm and the length of 5 cm is uniaxially stretched in the MD (machine axis) direction during film formation.
  • the sample was fixed to a drawing jig. As a swelling process, this sample was immersed in pure water at 30 ° C., and uniaxially stretched in the length direction 1.1 times during that time.
  • iodine is adsorbed by immersing in an aqueous solution (dye bath, temperature 30 ° C.) containing iodine and potassium iodide at a mass ratio of 1:20 for 60 seconds, and 2.2 times ( A total of 2.4 times) was uniaxially stretched in the length direction.
  • aqueous solution die bath, temperature 30 ° C.
  • iodine and potassium iodide containing iodine and potassium iodide at a mass ratio of 1:20 for 60 seconds, and 2.2 times ( A total of 2.4 times) was uniaxially stretched in the length direction.
  • the iodine concentration in the dyeing bath was adjusted so that the transmittance of the polarizing film after drying was 44%.
  • the substrate is immersed in an aqueous solution (crosslinking bath, temperature 32 ° C.) containing 2.6% by mass of boric acid, and the length is 1.1 times (2.7 times as a whole) during that time. Uniaxially stretched in the direction.
  • the film was immersed in an aqueous solution (stretching bath, temperature 60 ° C.) containing 3% by mass of boric acid and 5% by mass of potassium iodide, and 2.2 times (totally 6. (0 times) was uniaxially stretched in the length direction.
  • the stretched PVA film was immersed in a boric acid aqueous solution (boric acid concentration 1.5 mass%, potassium iodide concentration 4 mass%, temperature 22 ° C.) for 10 seconds.
  • a cleaning step the substrate was immersed for 5 seconds in an aqueous solution (cleaning bath, temperature 20 ° C.) containing 3.5% by mass of potassium iodide.
  • the obtained PVA film was dried in air at 80 ° C. for 4 minutes. The drying process was performed in a state of being released to the atmosphere using a hot air dryer.
  • the optical properties, shrinkage rate, shrinkage stress, thickness, moisture content, and boron element content of the PVA film (Reference Example 1) before the annealing treatment thus obtained were measured.
  • the moisture content of the PVA film before the annealing treatment step was 8.1%, and the boron content was 3.46% by mass [boric acid (B (OH) 3 ) content 19.8% by mass].
  • B (OH) 3 boric acid
  • Other results are shown in Table 1.
  • contraction rate and simple substance b value of the PVA film were plotted in FIG. 1, and the shrinkage stress and the shrinkage
  • the obtained PVA film was cut so as to be 20 cm in the MD direction and 7 cm in the TD direction.
  • Two stainless steel frames were sandwiched between the ends of the PVA film in the MD direction so as not to be loosened, and the frames were further clipped from both outsides. In this way, both ends of the PVA film in the MD direction were fixed.
  • the PVA film was annealed in air at 60 ° C. for 120 hours using a thermostatic bath. The annealing treatment was performed in a state released to the atmosphere.
  • the optical properties, shrinkage rate and shrinkage stress of the polarizing film thus obtained were measured. The results are shown in Table 1. Further, the shrinkage rate and the simple substance b value of the polarizing film are plotted in FIG. 1, and the shrinkage stress and the shrinkage rate are plotted in FIG.
  • the obtained polarizing film and the PVA film before the annealing treatment step have substantially the same boron element content.
  • Example 2 Comparative Examples 1 to 3, 5 to 12, 14 to 16 A polarizing film was prepared and evaluated in the same manner as in Example 1 except that the annealing temperature and time were changed as shown in Table 1. The results are shown in Table 1, FIG. 1 and FIG.
  • Example 3 [Production of multilayer film]
  • a PVA film before the annealing process was obtained.
  • Cellulose triacetate (TAC) film coated with PVA glue (PVA content is 3% by mass) on one side is placed on both sides of the PVA film and laminated with a laminator, followed by drying at 60 ° C. for 10 minutes
  • TAC Cellulose triacetate
  • PVA content is 3% by mass
  • the obtained multilayer film before the annealing treatment step was immersed in methylene chloride, which is a good solvent for TAC, for 1 week, and then dried in a draft at room temperature for 24 hours to remove TAC from the PVA film.
  • the optical properties, shrinkage rate, shrinkage stress and thickness of the PVA film from which TAC was removed were measured. The results are shown in Table 1.
  • a polarizing film (polarizing plate) was obtained by carrying out the annealing process in the same manner as in Example 1 except that the obtained multilayer film before the annealing process was used. After removing TAC from the obtained polarizing film (polarizing plate) in the same manner as described above, the optical properties, shrinkage rate, shrinkage stress and thickness of the polarizing film from which TAC was removed were measured. The results are shown in Table 1.
  • Comparative Examples 4 and 13 A polarizing plate was prepared and evaluated in the same manner as in Example 3 except that the annealing temperature and time were changed as shown in Table 1. These results are shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

Provided is a polarizing film that is formed of a PVA film which contains an iodine-based dichroic pigment and which is crosslinked by a boron compound, wherein the polarizing film has a polarization degree of 99.5% or greater, a single b value of 3.0 or less, and satisfies formula (1) and formula (2). Such a polarizing film has excellent polarization performance and hue, and has a small contraction rate and excellent dimensional stability. Formulae: (1): A ≤ 0.9; (2): B/A ≥ 55 A is the contraction rate (%) of the polarizing film which has been heated at 80oC for 4 hours, and B is the contraction stress (N/mm2) of the polarizing film which has been heated at 80oC for 4 hours.

Description

偏光フィルム、偏光板、及びそれらの製造方法Polarizing film, polarizing plate, and production method thereof
 本発明は、ヨウ素系二色性色素を含むポリビニルアルコールフィルムからなる収縮率が低い偏光フィルム、偏光板、及びそれらの製造方法に関する。 The present invention relates to a polarizing film composed of a polyvinyl alcohol film containing an iodine dichroic dye, a polarizing film having a low shrinkage rate, a polarizing plate, and a method for producing them.
 光の透過および遮蔽機能を有する偏光板に使用される偏光フィルムは、液晶ディスプレイ(LCD)の基本的な構成要素である。多くの偏光板は偏光フィルムの表面に三酢酸セルロース(TAC)フィルムなどの保護フィルムが貼り合わされた構造を有しており、偏光板を構成する偏光フィルムとしては、ポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と称することがある)を一軸延伸して配向させた延伸フィルムにヨウ素系色素(I やI 等)等の二色性色素が吸着しているものが主流となっている。このような偏光フィルムは、PVAフィルムに対して、膨潤工程、染色工程、架橋工程、延伸工程、固定化工程及び乾燥工程を施す方法などによって製造される。 A polarizing film used for a polarizing plate having a light transmission and shielding function is a basic component of a liquid crystal display (LCD). Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of a polarizing film. As a polarizing film constituting the polarizing plate, a polyvinyl alcohol film (hereinafter referred to as “polyvinyl”). alcohol "and" PVA "and that there is referred) uniaxially stretched iodine to stretched film was oriented dye (I 3 - and I 5 -, etc.) dichroic dye to what has mainstream adsorption of such It has become. Such a polarizing film is manufactured by a method of subjecting a PVA film to a swelling process, a dyeing process, a crosslinking process, a stretching process, an immobilizing process, and a drying process.
 近年、LCDは、ノートパソコンや携帯電話などのモバイル用途において多用されている。このようなモバイル機器用のLCDは様々な環境下で用いられる。そのため、高温下における収縮率が低く寸法安定性に優れた偏光フィルムが求められている。 In recent years, LCDs are widely used in mobile applications such as notebook computers and mobile phones. Such LCDs for mobile devices are used in various environments. Therefore, a polarizing film having a low shrinkage at high temperatures and excellent dimensional stability is demanded.
 特許文献1~5には、ヨウ素系色素で染色されたPVAフィルムを延伸させた後に、50~70℃にて2~4分間乾燥させて得られた偏光フィルムが記載されている。しかしながら、こうして得られた偏光フィルムは収縮率が高かった。このような偏光フィルムをガラス板と張り合わせてLCDに用いた場合、当該LCDを高温下で使用したり、保管したりした場合に、当該偏光フィルムが収縮してガラス板に反りが生じて問題となっていた。 Patent Documents 1 to 5 describe polarizing films obtained by stretching a PVA film dyed with an iodine-based dye and then drying at 50 to 70 ° C. for 2 to 4 minutes. However, the polarizing film thus obtained had a high shrinkage rate. When such a polarizing film is laminated on a glass plate and used for an LCD, when the LCD is used or stored at a high temperature, the polarizing film contracts and the glass plate warps. It was.
特開2006-65309号公報JP 2006-65309 A 特開2014-197050号公報JP 2014-197050 A 特開2006-267153号公報JP 2006-267153 A 特開2013-140324号公報JP 2013-140324 A 特開2012-3173号公報JP 2012-3173 A
 本発明は、上記課題を解決するためになされたものであり、優れた偏光性能および色相を有し、なおかつ収縮率が低くて寸法安定性に優れた偏光フィルム及びその製造方法を提供することを目的とするものである。また、このような偏光フィルムを用いた偏光板及びその製造方法を提供することを目的とするものである。 The present invention has been made in order to solve the above problems, and provides a polarizing film having excellent polarization performance and hue, low shrinkage ratio and excellent dimensional stability, and a method for producing the same. It is the purpose. Moreover, it aims at providing the polarizing plate using such a polarizing film, and its manufacturing method.
 上記課題は、ヨウ素系二色性色素を含み、かつホウ素化合物で架橋されたPVAフィルムからなる偏光フィルムであって、偏光度が99.5%以上であり、単体b値が3.0以下であり、かつ下記式(1)及び式(2)を満たす偏光フィルムを提供することによって解決される。
 A≦0.9  (1)
 B/A≧55  (2)
The above problem is a polarizing film comprising a PVA film containing an iodine-based dichroic dye and crosslinked with a boron compound, having a polarization degree of 99.5% or more and a simple substance b value of 3.0 or less. It is solved by providing a polarizing film that satisfies the following formulas (1) and (2).
A ≦ 0.9 (1)
B / A ≧ 55 (2)
 ただし、Aは、80℃にて4時間加熱された前記偏光フィルムの収縮率(%)であり、Bは、80℃にて4時間加熱された前記偏光フィルムの収縮応力(N/mm)である。 However, A is a shrinkage rate (%) of the polarizing film heated at 80 ° C. for 4 hours, and B is a shrinking stress (N / mm 2 ) of the polarizing film heated at 80 ° C. for 4 hours. It is.
 このとき、前記単体b値が1.0以上であることが好ましい。Aが0.5以上であることも好ましい。前記PVAの重合度が1,500~6,000であることも好ましい。前記偏光フィルムの厚みが1~30μmであることも好ましい。 At this time, it is preferable that the simple substance b value is 1.0 or more. It is also preferable that A is 0.5 or more. It is also preferable that the degree of polymerization of the PVA is 1,500 to 6,000. It is also preferable that the polarizing film has a thickness of 1 to 30 μm.
 上記課題は、PVAフィルムをヨウ素系二色性色素で染色する工程、ホウ素化合物を用いて架橋させる工程及び延伸する工程を行った後、延伸方向が固定された該PVAフィルムを55~65℃で72時間以上加熱するアニール処理工程を行う前記偏光フィルムの製造方法を提供することによっても解決される。 The above-mentioned problem is that the PVA film with the stretching direction fixed at 55 to 65 ° C. after the step of dyeing the PVA film with an iodine dichroic dye, the step of crosslinking with a boron compound and the step of stretching are performed. The problem can also be solved by providing a method for producing the polarizing film in which an annealing treatment step of heating for 72 hours or more is performed.
 前記偏光フィルムと保護フィルムとが積層されてなる偏光板が本発明の好適な実施態様である。PVAフィルムをヨウ素系二色性色素で染色する工程、ホウ素化合物を用いて架橋させる工程及び延伸する工程を行った後、該PVAフィルムと保護フィルムとを積層させて多層フィルムを得て、延伸方向が固定された該多層フィルムを55~65℃で72時間以上加熱するアニール処理工程を行う前記偏光板の製造方法もまた本発明の好適な実施態様である。 A polarizing plate formed by laminating the polarizing film and the protective film is a preferred embodiment of the present invention. After performing the process of dyeing a PVA film with an iodine dichroic dye, the process of crosslinking with a boron compound and the process of stretching, the PVA film and a protective film are laminated to obtain a multilayer film, and the stretching direction A method for producing the polarizing plate, in which an annealing treatment step is performed in which the multilayer film to which is fixed is heated at 55 to 65 ° C. for 72 hours or more is also a preferred embodiment of the present invention.
 本発明の偏光フィルムは、優れた偏光性能および色相を有し、なおかつ収縮率が小さく寸法安定性にも優れている。したがって、前記偏光フィルムを用いた偏光板は高性能LCD、特に高温下で使用されるLCDに好適に用いられる。また、本発明の製造方法によれば、そのような偏光フィルム及び偏光板を簡便に製造することができる。 The polarizing film of the present invention has excellent polarizing performance and hue, and has a small shrinkage ratio and excellent dimensional stability. Therefore, the polarizing plate using the polarizing film is suitably used for high-performance LCDs, particularly LCDs used at high temperatures. Moreover, according to the manufacturing method of this invention, such a polarizing film and a polarizing plate can be manufactured simply.
実施例1~2、比較例1~3、5~12及び14~16並びに参考例1における偏光フィルムの収縮率と単体b値とをプロットした図である。FIG. 3 is a graph plotting the shrinkage rate and the simple substance b value of polarizing films in Examples 1 and 2, Comparative Examples 1 to 3, 5 to 12, and 14 to 16, and Reference Example 1. 実施例1~2、比較例1~3、5~12及び14~16並びに参考例1における偏光フィルムの収縮応力と収縮率とをプロットした図である。FIG. 2 is a graph plotting the shrinkage stress and shrinkage rate of polarizing films in Examples 1 and 2, Comparative Examples 1 to 3, 5 to 12, 14 to 16, and Reference Example 1.
 本発明の偏光フィルムは、ヨウ素系二色性色素を含み、かつホウ素化合物で架橋されたPVAフィルムからなる偏光フィルムであって、偏光度が99.5%以上であり、単体b値が3.0以下であり、かつ下記式(1)及び式(2)を満たすものである。
 A≦0.9  (1)
 B/A≧55  (2)
The polarizing film of the present invention is a polarizing film comprising a PVA film containing an iodine-based dichroic dye and crosslinked with a boron compound, having a polarization degree of 99.5% or more and a simple substance b value of 3. It is 0 or less and satisfies the following formulas (1) and (2).
A ≦ 0.9 (1)
B / A ≧ 55 (2)
 ただし、Aは、80℃にて4時間加熱された前記偏光フィルムの収縮率(%)であり、Bは、80℃にて4時間加熱された前記偏光フィルムの収縮応力(N/mm)である。 However, A is a shrinkage rate (%) of the polarizing film heated at 80 ° C. for 4 hours, and B is a shrinking stress (N / mm 2 ) of the polarizing film heated at 80 ° C. for 4 hours. It is.
 通常、ヨウ素系二色性色素を含むPVAフィルムからなる偏光フィルムの偏光性能を向上させようとすると、高温下における偏光フィルムの収縮率及び収縮応力が高くなる。このような偏光フィルムをLCDに用いた場合、当該偏光フィルムと張り合わせたガラス板が反ってしまい問題となっていた。特に、モバイル用途に用いられるLCDは、高温下で使用されたり、保管されたりすることが多いうえに、使用されるガラス板も薄いため、偏光フィルムの収縮が大きな問題となっていた。 Usually, when an attempt is made to improve the polarizing performance of a polarizing film made of a PVA film containing an iodine-based dichroic dye, the shrinkage rate and shrinkage stress of the polarizing film at high temperatures increase. When such a polarizing film is used for an LCD, the glass plate bonded to the polarizing film is warped, which is a problem. In particular, LCDs used for mobile applications are often used or stored at high temperatures, and the glass plates used are thin, so the shrinkage of the polarizing film has been a major problem.
 このような問題を改善するため、偏光フィルムを高温で熱処理すると、収縮率や収縮応力は低下するものの、偏光性能が低下するうえに色相も悪化した。このように、優れた偏光性能及び色相を維持しつつ、収縮率や収縮応力を低下させて偏光フィルムの寸法安定性を高めることが難しかった。本発明の偏光フィルムはこのような点を解決したものであり、優れた偏光性能と色相とを有しながらも、収縮率が低いことを特徴とする。 In order to improve such a problem, when the polarizing film was heat-treated at a high temperature, the shrinkage rate and the shrinkage stress were lowered, but the polarization performance was lowered and the hue was also deteriorated. Thus, it was difficult to increase the dimensional stability of the polarizing film by reducing the shrinkage rate and the shrinkage stress while maintaining excellent polarization performance and hue. The polarizing film of the present invention solves such a point, and is characterized by having a low shrinkage rate while having excellent polarizing performance and hue.
 このような偏光フィルムの製造方法は特に限定されるものではないが、本発明者は、新しい製造方法を採用することによって、初めてこのような性能を有する偏光フィルムを製造することに成功した。具体的には、PVAフィルムをヨウ素系二色性色素で染色する工程、ホウ素化合物を用いて架橋させる工程及び延伸する工程を行った後、延伸方向が固定された該PVAフィルムを55~65℃で72時間以上加熱するアニール処理工程を行うことによって、優れた偏光性能および色相を有し、なおかつ収縮率が小さく寸法安定性にも優れた偏光フィルムを製造できる。当該製造は、本発明の偏光フィルムをはじめとする種々の偏光フィルムの製造に好適に用いられる。以下、当該製造方法について詳しく説明する。 The manufacturing method of such a polarizing film is not particularly limited, but the present inventor succeeded in manufacturing a polarizing film having such performance for the first time by adopting a new manufacturing method. Specifically, after performing a step of dyeing a PVA film with an iodine dichroic dye, a step of crosslinking with a boron compound, and a step of stretching, the PVA film in which the stretching direction is fixed is 55 to 65 ° C. By performing an annealing treatment step of heating for 72 hours or more, a polarizing film having excellent polarization performance and hue, and having a small shrinkage ratio and excellent dimensional stability can be produced. The said manufacture is used suitably for manufacture of various polarizing films including the polarizing film of this invention. Hereinafter, the manufacturing method will be described in detail.
 本発明の偏光フィルムの製造に用いられる原反のPVAフィルムに含まれるPVAは、ビニルエステルの1種または2種以上を重合して得られるポリビニルエステルをけん化することにより得られるものを使用することができる。当該ビニルエステルとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、酢酸イソプロペニル等が例示され、これらの中でも、PVAの製造の容易性、入手容易性、コスト等の点から、酢酸ビニルが好ましい。 The PVA contained in the raw PVA film used in the production of the polarizing film of the present invention should be obtained by saponifying a polyvinyl ester obtained by polymerizing one or more vinyl esters. Can do. Examples of the vinyl ester include vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, and isopropenyl acetate. Among these, vinyl acetate is preferable from the viewpoint of ease of production, availability, and cost of PVA.
 ポリビニルエステルは、単量体として、1種または2種以上のビニルエステルのみを用いて得られたものであってもよいが、本発明の効果を損なわない範囲内であれば、1種または2種以上のビニルエステルと、これと共重合可能な他の単量体との共重合体であってもよい。 The polyvinyl ester may be obtained using only one or two or more kinds of vinyl esters as a monomer, but one or two as long as the effects of the present invention are not impaired. It may be a copolymer of at least one kind of vinyl ester and another monomer copolymerizable therewith.
 ビニルエステルと共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等の炭素数2~30のα-オレフィン;(メタ)アクリル酸またはその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸エステル;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸またはその塩、(メタ)アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロール(メタ)アクリルアミドまたはその誘導体等の(メタ)アクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;(メタ)アクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸またはその塩、エステルもしくは酸無水物;イタコン酸またはその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;不飽和スルホン酸などを挙げることができる。上記のポリビニルエステルは、前記した他の単量体の1種または2種以上に由来する構造単位を有することができる。 Examples of other monomers copolymerizable with the vinyl ester include α-olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene and isobutene; (meth) acrylic acid or a salt thereof; (meth) Methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (meth) (Meth) acrylic acid esters such as t-butyl acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate; (meth) acrylamide, N-methyl (meth) Acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, diacetone (meth) acrylamid (Meth) acrylamide propanesulfonic acid or a salt thereof, (meth) acrylamidopropyldimethylamine or a salt thereof, (meth) acrylamide derivatives such as N-methylol (meth) acrylamide or a derivative thereof; N-vinylformamide, N-vinylacetamide N-vinyl amides such as N-vinyl pyrrolidone; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether ; Vinyl cyanide such as (meth) acrylonitrile; vinyl halide such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride; Allyl compounds such as ril and allyl chloride; maleic acid or its salts, esters or acid anhydrides; itaconic acid or its salts, esters or acid anhydrides; vinylsilyl compounds such as vinyltrimethoxysilane; unsaturated sulfonic acids Can do. Said polyvinyl ester can have a structural unit derived from 1 type, or 2 or more types of an above described other monomer.
 ポリビニルエステルに占める、他の単量体に由来する構造単位の割合は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、15モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることがさらに好ましい。 The proportion of structural units derived from other monomers in the polyvinyl ester is preferably 15 mol% or less, preferably 10 mol% or less, based on the number of moles of all structural units constituting the polyvinyl ester. More preferred is 5 mol% or less.
 特に、当該他の単量体が、(メタ)アクリル酸、不飽和スルホン酸などのように、得られるPVAの水溶性を促進する可能性のある単量体である場合には、偏光フィルムの製造過程においてPVAが溶解するのを防止するために、ポリビニルエステルにおけるこれらの単量体に由来する構造単位の割合は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましく、3モル%以下であることがより好ましい。 In particular, when the other monomer is a monomer that may promote water solubility of the obtained PVA, such as (meth) acrylic acid or unsaturated sulfonic acid, the polarizing film In order to prevent PVA from being dissolved in the production process, the proportion of structural units derived from these monomers in the polyvinyl ester is 5 mol% or less based on the number of moles of all structural units constituting the polyvinyl ester. It is preferable that it is 3 mol% or less.
 本発明で用いられるPVAは、本発明の効果を損なわない範囲内であれば、1種または2種以上のグラフト共重合可能な単量体によって変性されたものであってもよい。当該グラフト共重合可能な単量体としては、例えば、不飽和カルボン酸またはその誘導体;不飽和スルホン酸またはその誘導体;炭素数2~30のα-オレフィンなどが挙げられる。PVAにおけるグラフト共重合可能な単量体に由来する構造単位(グラフト変性部分における構造単位)の割合は、PVAを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましい。 The PVA used in the present invention may be modified with one or two or more types of graft copolymerizable monomers as long as the effects of the present invention are not impaired. Examples of the graft copolymerizable monomer include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; α-olefins having 2 to 30 carbon atoms, and the like. The proportion of structural units derived from the graft copolymerizable monomer in PVA (structural units in the graft modified portion) is preferably 5 mol% or less based on the number of moles of all structural units constituting PVA. .
 前記PVAは、その水酸基の一部が架橋されていてもよいし架橋されていなくてもよい。また上記のPVAは、その水酸基の一部がアセトアルデヒド、ブチルアルデヒド等のアルデヒド化合物などと反応してアセタール構造を形成していてもよい。 In the PVA, a part of the hydroxyl group may be cross-linked or may not be cross-linked. Moreover, said PVA may react with aldehyde compounds, such as acetaldehyde and a butyraldehyde, etc., and a part of the hydroxyl group may form the acetal structure.
 前記PVAの重合度は、1500~6000の範囲内であることが好ましく、1800~5000の範囲内であることがより好ましく、2000~4000の範囲内であることがさらに好ましい。当該重合度が1500以上であることにより、得られる偏光フィルムの耐久性をより向上させることができる。一方、当該重合度が6000以下であることにより、製造コストの上昇や製膜時における工程通過性の不良などを抑制することができる。本明細書におけるPVAの重合度は、JIS K6726-1994の記載に準じて測定される平均重合度を意味する。なお、偏光フィルム中のPVAは、ホウ酸等のホウ素化合物による架橋構造を含んでいるが、ホウ酸エステルを加水分解させること等によって解離させれば、PVAの平均重合度自体に実質的な変化はない。 The polymerization degree of the PVA is preferably in the range of 1500 to 6000, more preferably in the range of 1800 to 5000, and still more preferably in the range of 2000 to 4000. When the polymerization degree is 1500 or more, the durability of the obtained polarizing film can be further improved. On the other hand, when the degree of polymerization is 6000 or less, it is possible to suppress an increase in manufacturing cost, poor process passability during film formation, and the like. The degree of polymerization of PVA in the present specification means an average degree of polymerization measured according to the description of JIS K6726-1994. In addition, although PVA in a polarizing film contains the crosslinked structure by boron compounds, such as a boric acid, if it dissociates by hydrolyzing boric acid ester etc., it will be a substantial change in the average degree of polymerization of PVA itself. There is no.
 PVAのけん化度は、偏光フィルムの偏光性能などの観点から、98モル%以上であることが好ましく、98.5モル%以上であることがより好ましく、99モル%以上であることがさらに好ましい。けん化度が98モル%未満であると、偏光フィルムの製造過程でPVAが溶出しやすくなり、溶出したPVAがフィルムに付着して偏光フィルムの偏光性能を低下させる場合がある。なお、本明細書におけるPVAのけん化度とは、PVAが有する、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル単位)とビニルアルコール単位との合計モル数に対して当該ビニルアルコール単位のモル数が占める割合(モル%)をいう。けん化度はJIS K6726-1994の記載に準じて測定することができる。なお、原反フィルム中のPVAと得られた偏光フィルム中のPVAは、ケン化度が実質的に同じである。 The degree of saponification of PVA is preferably 98 mol% or more, more preferably 98.5 mol% or more, and further preferably 99 mol% or more from the viewpoint of the polarizing performance of the polarizing film. When the degree of saponification is less than 98 mol%, PVA tends to be eluted during the production process of the polarizing film, and the eluted PVA may adhere to the film and reduce the polarizing performance of the polarizing film. In this specification, the degree of saponification of PVA refers to the total number of moles of structural units (typically vinyl ester units) that can be converted into vinyl alcohol units by saponification and the vinyl alcohol units of PVA. The proportion (mol%) occupied by the number of moles of vinyl alcohol units. The degree of saponification can be measured according to the description of JIS K6726-1994. In addition, PVA in a raw film and PVA in the obtained polarizing film have substantially the same saponification degree.
 製膜原液を用いてPVAフィルムを製膜する。製膜方法としては、例えば、キャスト製膜法、押出製膜法、湿式製膜法、ゲル製膜法などが挙げられる。これらの製膜方法は1種のみを採用しても2種以上を組み合わせて採用してもよい。これらの製膜方法の中でもキャスト製膜法、押出製膜法が、厚みおよび幅が均一で物性の良好なPVAフィルムが得られることから好ましい。製膜されたPVAフィルムには必要に応じて乾燥や熱処理を行うことができる。 A PVA film is formed using the stock solution. Examples of the film forming method include a cast film forming method, an extrusion film forming method, a wet film forming method, and a gel film forming method. These film forming methods may be used alone or in combination of two or more. Among these film forming methods, the cast film forming method and the extrusion film forming method are preferable because a PVA film having uniform thickness and width and good physical properties can be obtained. The formed PVA film can be dried or heat-treated as necessary.
 製膜原液は、例えば、前記PVAおよび必要に応じてさらに界面活性剤、可塑剤および添加剤などのうちの1種または2種以上と液体媒体とを混合することによって得ることができる。製膜原液においてPVAは液体媒体中に溶解した状態であってもよいし、溶融状態であってもよい。上記混合は加熱下に行うのが好ましい。 The film-forming stock solution can be obtained, for example, by mixing a liquid medium with one or more of the PVA and, if necessary, a surfactant, a plasticizer and an additive. In the film-forming stock solution, PVA may be in a dissolved state in a liquid medium or in a molten state. The mixing is preferably performed under heating.
 製膜原液の調製に使用される上記液体媒体としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミンなどを挙げることができ、これらのうちの1種または2種以上を使用することができる。そのうちでも、環境に与える負荷や回収性の点から水が好ましい。 Examples of the liquid medium used for the preparation of the membrane forming stock solution include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol. , Trimethylolpropane, ethylenediamine, diethylenetriamine and the like, and one or more of them can be used. Among these, water is preferable from the viewpoint of environmental load and recoverability.
 製膜原液の揮発分率(製膜時に揮発や蒸発によって除去される液体媒体などの揮発性成分の製膜原液中における含有割合)は、製膜方法、製膜条件などによっても異なるが、一般的には、50~95質量%の範囲内であることが好ましく、55~90質量%の範囲内であることがより好ましく、60~85質量%の範囲内であることがさらに好ましい。製膜原液の揮発分率が50質量%以上であることにより、製膜原液の粘度が高くなり過ぎず、製膜原液調製時の濾過や脱泡が円滑に行われ、異物や欠点の少ないPVAフィルムの製造が容易になる。一方、製膜原液の揮発分率が95質量%以下であることにより、製膜原液の濃度が低くなり過ぎず、工業的なPVAフィルムの製造が容易になる。 The volatile fraction of the film-forming stock solution (content ratio in the film-forming stock solution of volatile components such as liquid media removed by volatilization or evaporation during film formation) varies depending on the film-forming method, film-forming conditions, etc. Specifically, it is preferably in the range of 50 to 95% by mass, more preferably in the range of 55 to 90% by mass, and still more preferably in the range of 60 to 85% by mass. When the volatile fraction of the film-forming stock solution is 50% by mass or more, the viscosity of the film-forming stock solution does not become too high, and filtration and defoaming are smoothly performed during preparation of the film-forming stock solution, and there are few foreign matters and defects. Film production is facilitated. On the other hand, when the volatile fraction of the film-forming stock solution is 95% by mass or less, the concentration of the film-forming stock solution does not become too low, and the production of an industrial PVA film becomes easy.
 製膜原液は界面活性剤を含むことが好ましい。界面活性剤を含むことにより、製膜性が向上してフィルムの厚み斑の発生が抑制されると共に、製膜に使用する金属ロールやベルトからのフィルムの剥離が容易になる。界面活性剤を含む製膜原液からPVAフィルムを製造した場合には、当該PVAフィルム中には界面活性剤が含有され得る。上記の界面活性剤の種類は特に限定されないが、金属ロールやベルトからの剥離性の観点などから、アニオン性界面活性剤またはノニオン性界面活性剤が好ましい。 The film forming stock solution preferably contains a surfactant. By including the surfactant, the film-forming property is improved and the occurrence of uneven thickness of the film is suppressed, and the film is easily peeled off from the metal roll or belt used for film formation. When a PVA film is produced from a film-forming stock solution containing a surfactant, the PVA film may contain a surfactant. Although the kind of said surfactant is not specifically limited, From a viewpoint of the peelability from a metal roll or a belt, an anionic surfactant or a nonionic surfactant is preferable.
 アニオン性界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型;ポリオキシエチレンラウリルエーテル硫酸塩、オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート等のスルホン酸型などが好適である。 As the anionic surfactant, for example, a carboxylic acid type such as potassium laurate; a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate are suitable.
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などが好適である。 Nonionic surfactants include, for example, alkyl ether types such as polyoxyethylene oleyl ether; alkylphenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate; polyoxyethylene laurylamino Alkylamine type such as ether; alkylamide type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; alkanolamide type such as lauric acid diethanolamide and oleic acid diethanolamide; polyoxy An allyl phenyl ether type such as alkylene allyl phenyl ether is preferred.
 これらの界面活性剤は1種を単独でまたは2種以上を組み合わせて使用することができる。 These surfactants can be used alone or in combination of two or more.
 製膜原液が界面活性剤を含む場合、その含有量は、製膜原液に含まれるPVA100質量部に対して、0.01~0.5質量部であることが好ましく、0.02~0.3質量部であることがより好ましく、0.05~0.1質量部であることが特に好ましい。当該含有量が0.01質量部以上であることにより製膜性および剥離性がより向上する。一方、当該含有量が0.5質量部以下であることにより、界面活性剤がPVAフィルムの表面にブリードアウトしてブロッキングが生じ取り扱い性が低下するのを抑制することができる。 When the film-forming stock solution contains a surfactant, the content thereof is preferably 0.01 to 0.5 parts by weight, preferably 0.02 to 0.00 parts, per 100 parts by weight of PVA contained in the film-forming stock solution. The amount is more preferably 3 parts by mass, and particularly preferably 0.05 to 0.1 parts by mass. When the content is 0.01 parts by mass or more, the film forming property and the peelability are further improved. On the other hand, when the content is 0.5 parts by mass or less, it is possible to prevent the surfactant from bleeding out on the surface of the PVA film to cause blocking and deterioration in handleability.
 本発明で用いられる原反のPVAフィルムにおけるPVAの含有量は、偏光フィルムの製造のしやすさ等の観点から、50~99質量%であることが好ましい。当該含有量は、75質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、85質量%以上であることが特に好ましい。一方、当該含有量は98質量%以下であることがより好ましく、96質量%以下であることがさらに好ましく、95質量%以下であることが特に好ましい。 The content of PVA in the raw PVA film used in the present invention is preferably 50 to 99% by mass from the viewpoint of ease of production of the polarizing film. The content is more preferably 75% by mass or more, further preferably 80% by mass or more, and particularly preferably 85% by mass or more. On the other hand, the content is more preferably 98% by mass or less, further preferably 96% by mass or less, and particularly preferably 95% by mass or less.
 延伸性向上の観点から前記PVAフィルムは可塑剤を含むことが好ましい。当該可塑剤としては、例えば、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン等の多価アルコールなどを挙げることができ、PVAフィルムはこれらの可塑剤の1種または2種以上を含むことができる。これらの中でも、延伸性の向上効果の観点からグリセリンが好ましい。 From the viewpoint of improving stretchability, the PVA film preferably contains a plasticizer. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, and trimethylol propane. One or more of the agents can be included. Among these, glycerin is preferable from the viewpoint of the effect of improving stretchability.
 前記PVAフィルムにおける可塑剤の含有量は、PVA100質量部に対して、1~20質量部であることが好ましい。前記含有量が1質量部以上であることにより、PVAフィルムの延伸性をより向上させることができる。一方、前記含有量が20質量部以下であることにより、PVAフィルムが柔軟になり過ぎて取り扱い性が低下するのを防止することができる。前記含有量は2質量部以上であることがより好ましく、4質量部以上であることがさらに好ましく、5質量部以上であることが特に好ましい。また、前記含有量は、15質量部以下であることがより好ましい。なお、偏光フィルムの製造条件などにもよるが、PVAフィルムに含まれる可塑剤は偏光フィルムを製造する際に溶出することがあるため、その全量が偏光フィルムに残存するとは限らない。 The content of the plasticizer in the PVA film is preferably 1 to 20 parts by mass with respect to 100 parts by mass of PVA. When the content is 1 part by mass or more, the stretchability of the PVA film can be further improved. On the other hand, when the content is 20 parts by mass or less, it is possible to prevent the PVA film from becoming too flexible and handling properties from being lowered. The content is more preferably 2 parts by mass or more, further preferably 4 parts by mass or more, and particularly preferably 5 parts by mass or more. Further, the content is more preferably 15 parts by mass or less. Although depending on the manufacturing conditions of the polarizing film, the plasticizer contained in the PVA film may be eluted when the polarizing film is manufactured, so that the total amount does not always remain in the polarizing film.
 前記PVAフィルムは、必要に応じて、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色防止剤、油剤、界面活性剤などの成分をさらに含んでいてもよい。 The PVA film may further contain components such as an antioxidant, an antifreezing agent, a pH adjuster, a hiding agent, an anti-coloring agent, an oil agent, and a surfactant as necessary.
 前記PVAフィルムの厚みは、5~100μmであることが好ましい。前記厚みが100μm以下であることにより、薄い偏光フィルムが容易に得られる。前記厚みは、60μm以下であることがより好ましい。一方、前記厚みが5μm未満である場合、偏光フィルムの製造が困難になるおそれがあるほか、染色ムラが生じやすくなるおそれがある。PVAフィルムの厚みは、7μm以上であることがより好ましい。ここでいう厚みは、多層フィルムの場合にはPVA層の厚みのことをいう。 The thickness of the PVA film is preferably 5 to 100 μm. When the thickness is 100 μm or less, a thin polarizing film can be easily obtained. The thickness is more preferably 60 μm or less. On the other hand, when the thickness is less than 5 μm, it may be difficult to produce a polarizing film, and uneven staining may easily occur. The thickness of the PVA film is more preferably 7 μm or more. The thickness here refers to the thickness of the PVA layer in the case of a multilayer film.
 前記PVAフィルムは、単層フィルムであってもよいし、PVA層と基材樹脂層を有する多層フィルムを用いてもよい。単層フィルムの場合には、ハンドリング性を確保するために、フィルムの厚みが20μm以上であることが好ましく、30μm以上であることがより好ましい。一方、多層フィルムの場合には、PVA層の厚みを20μm以下にすることもできるし、15μm以下にすることもできる。多層フィルムにおける基材樹脂層の厚みは、通常20~500μmである。 The PVA film may be a single layer film or a multilayer film having a PVA layer and a base resin layer. In the case of a single layer film, the film thickness is preferably 20 μm or more, and more preferably 30 μm or more, in order to ensure handling properties. On the other hand, in the case of a multilayer film, the thickness of the PVA layer can be 20 μm or less, or 15 μm or less. The thickness of the base resin layer in the multilayer film is usually 20 to 500 μm.
 前記PVAフィルムとして、PVA層と基材樹脂層を有する多層フィルムを用いる場合、基材樹脂は、PVAとともに延伸処理ができるものでなければならない。ポリエステルやポリオレフィン樹脂などを用いることができる。なかでも、非晶ポリエステル樹脂が好ましく、ポリエチレンテレフタレートや、それにイソフタル酸や1,4-シクロヘキサンジメタノールなどの共重合成分を共重合した非晶ポリエステル樹脂が好適に用いられる。PVA溶液を基材樹脂フィルムに塗布することによって多層フィルムを製造することが好ましい。このとき、PVA層と基材樹脂層の間の接着性を改善するために、基材樹脂フィルムの表面を改質したり、両層間に接着剤層を形成したりしてもよい。 When using a multilayer film having a PVA layer and a base resin layer as the PVA film, the base resin must be capable of being stretched together with PVA. Polyester, polyolefin resin, or the like can be used. Among these, an amorphous polyester resin is preferable, and an amorphous polyester resin obtained by copolymerizing polyethylene terephthalate and a copolymer component such as isophthalic acid or 1,4-cyclohexanedimethanol is preferably used. It is preferable to produce a multilayer film by applying the PVA solution to the base resin film. At this time, in order to improve the adhesiveness between the PVA layer and the base resin layer, the surface of the base resin film may be modified, or an adhesive layer may be formed between both layers.
 前記PVAフィルムの形状は特に制限されないが、偏光フィルムを製造する際に連続して供給できることから長尺のPVAフィルムであることが好ましい。長尺のPVAフィルムの長さ(長尺方向の長さ)は特に制限されず、製造される偏光フィルムの用途などに応じて適宜設定することができ、例えば、5~20000mの範囲内とすることができる。 The shape of the PVA film is not particularly limited, but is preferably a long PVA film because it can be continuously supplied when a polarizing film is produced. The length of the long PVA film (length in the long direction) is not particularly limited, and can be set as appropriate according to the application of the polarizing film to be produced, for example, within a range of 5 to 20000 m. be able to.
 前記PVAフィルムの幅は特に制限されず、製造される偏光フィルムの用途などに応じて適宜設定することができる。近年、液晶テレビや液晶モニターの大画面化が進行しているので、PVAフィルムの幅を0.5m以上、より好ましくは1.0m以上にしておくと、これらの用途に好適である。一方、PVAフィルムの幅があまりに広すぎると実用化されている装置で偏光フィルムを製造する場合に均一に延伸することが困難になる傾向があることから、PVAフィルムの幅は7m以下であることが好ましい。 The width of the PVA film is not particularly limited, and can be appropriately set according to the use of the polarizing film to be produced. In recent years, since the enlargement of screens of liquid crystal televisions and liquid crystal monitors has progressed, it is suitable for these applications when the width of the PVA film is 0.5 m or more, more preferably 1.0 m or more. On the other hand, if the width of the PVA film is too wide, it tends to be difficult to uniformly stretch the polarizing film when the polarizing film is produced by a device that has been put to practical use. Therefore, the width of the PVA film is 7 m or less. Is preferred.
 以上説明したPVAフィルムを原反として用いて、本発明の偏光フィルムが製造される。具体的には、前記PVAフィルムをヨウ素系二色性色素で染色する工程(以下、「染色工程」と称することがある)、前記PVAフィルムをホウ素化合物を用いて架橋させる工程(以下、「架橋工程」と称することがある)及び前記PVAフィルムを延伸する工程(以下、「延伸工程」と称することがある)を行った後、延伸方向が固定された該PVAフィルムを55~65℃で72時間以上加熱するアニール処理工程を行う方法により偏光フィルムを製造することが好ましい。 The polarizing film of the present invention is produced using the PVA film described above as a raw fabric. Specifically, a step of dyeing the PVA film with an iodine dichroic dye (hereinafter sometimes referred to as “dyeing step”), a step of crosslinking the PVA film with a boron compound (hereinafter referred to as “crosslinking”). And the step of stretching the PVA film (hereinafter also referred to as the “stretching step”), the PVA film with the stretched direction fixed thereto is heated at 55 to 65 ° C. for 72 hours. It is preferable to manufacture a polarizing film by the method of performing the annealing process which heats more than time.
 前記製造方法において、予め、原反のPVAフィルムを膨潤する工程(以下、「膨潤工程」と称することがある)を行ってから上記各工程に供することが好ましい。染色工程、架橋工程及び延伸工程を行った後、さらに、前記PVAフィルムを乾燥する工程(以下、「乾燥工程」と称することがある)を行ってからアニール処理工程を行うことも好ましい。乾燥工程の前に、適宜PVAフィルムを洗浄する工程を行ってもよい。また、前記製造方法において、1種類の工程を複数回行っても構わない。また、複数の工程を1つの浴中で同時に行っても構わない。 In the above production method, it is preferable to perform a step of swelling the original PVA film (hereinafter, sometimes referred to as “swelling step”) before performing the above steps. After performing the dyeing process, the crosslinking process, and the stretching process, it is also preferable to perform the annealing process after further performing a process of drying the PVA film (hereinafter sometimes referred to as “drying process”). Prior to the drying step, a step of appropriately washing the PVA film may be performed. Moreover, in the said manufacturing method, you may perform one type of process in multiple times. Moreover, you may perform a several process simultaneously in one bath.
 前記製造方法として、染色工程、架橋工程、延伸工程及びアニール処理工程をこの順番で行う方法がより好ましく、膨潤工程、染色工程、架橋工程、延伸工程、固定処理工程、乾燥工程及びアニール処理工程をこの順番で行う方法がさらに好ましい。以下、各工程について詳細に説明する。 As the manufacturing method, a method of performing a dyeing step, a crosslinking step, a stretching step, and an annealing treatment step in this order is more preferable, and a swelling step, a dyeing step, a crosslinking step, a stretching step, a fixing treatment step, a drying step, and an annealing treatment step are performed. The method performed in this order is more preferable. Hereinafter, each step will be described in detail.
 前記製造方法において、初めに、原反のPVAフィルムを膨潤する工程を行うことが好ましい。膨潤工程では、10~50℃の水に浸漬して前記PVAフィルムを膨潤させる。水の温度は、20℃以上であることが好ましく、40℃以下であることがより好ましい。このような温度の水に浸漬することで、前記PVAフィルムを効率良く均一に膨潤させることができる。前記PVAフィルムを水に浸漬する時間は、0.1~5分間であることが好ましく、0.5~3分間であることがより好ましい。このような浸漬時間とすることで、PVAフィルムを効率良く均一に膨潤させることができる。なお、PVAフィルムが浸漬される水は純水に限定されず、各種成分が溶解した水溶液であってもよいし、水と水溶性有機溶媒との混合物であってもよい。 In the manufacturing method, it is preferable to first perform a step of swelling the original PVA film. In the swelling step, the PVA film is swollen by dipping in water at 10 to 50 ° C. The temperature of the water is preferably 20 ° C. or higher, and more preferably 40 ° C. or lower. By immersing in water at such a temperature, the PVA film can be efficiently and uniformly swollen. The time for immersing the PVA film in water is preferably 0.1 to 5 minutes, and more preferably 0.5 to 3 minutes. By setting it as such immersion time, a PVA film can be efficiently swollen uniformly. The water in which the PVA film is immersed is not limited to pure water, and may be an aqueous solution in which various components are dissolved, or a mixture of water and a water-soluble organic solvent.
 前記製造方法において、PVAフィルムをヨウ素系二色性色素で染色する工程を行う。膨潤工程を行った後に、染色工程を行うことが好ましい。また、染色工程は、後述する延伸工程の前に行ってもよいし、延伸工程の後に行ってもよいが、前者が好ましい。染色工程はPVAフィルムを染色浴としてヨウ素-ヨウ化カリウムを含有する溶液(特に水溶液)中に浸漬させることにより行うのが一般的であり、本発明においてもこのような染色方法が好適に採用される。染色浴におけるヨウ素の濃度は0.01~0.5質量%であることが好ましく、ヨウ化カリウムの濃度は0.01~10質量%であることが好ましい。また、染色浴の温度は10~50℃、特に20~40℃とすることが好ましい。PVAフィルムを染色浴に浸漬する時間としては、0.1~10分間が好ましく、0.2~5分間がより好ましい。染色浴は、ホウ素化合物を含有していてもよいが、その含有量は、通常ホウ酸換算で5質量%未満であり、好適には1質量%以下である。前記ホウ素化合物としては、架橋工程に用いられるものとして後述するものが用いられる。 In the manufacturing method, a step of dyeing the PVA film with an iodine dichroic dye is performed. It is preferable to perform the dyeing process after the swelling process. Moreover, although the dyeing | staining process may be performed before the extending process mentioned later and may be performed after an extending process, the former is preferable. The dyeing process is generally performed by immersing the PVA film in a solution (particularly an aqueous solution) containing iodine-potassium iodide as a dyeing bath. In the present invention, such a dyeing method is suitably employed. The The iodine concentration in the dyeing bath is preferably 0.01 to 0.5% by mass, and the potassium iodide concentration is preferably 0.01 to 10% by mass. The temperature of the dyeing bath is preferably 10 to 50 ° C., more preferably 20 to 40 ° C. The time for immersing the PVA film in the dyeing bath is preferably 0.1 to 10 minutes, more preferably 0.2 to 5 minutes. The dyeing bath may contain a boron compound, but its content is usually less than 5% by mass, preferably 1% by mass or less, in terms of boric acid. As said boron compound, what is mentioned later as what is used for a bridge | crosslinking process is used.
 前記製造方法において、ホウ素化合物を用いてPVAフィルムを架橋させる工程を行う。こうして架橋工程を行った後に、後述するアニール処理工程を行うことによって、優れた偏光性能と色相とを有しながらも、収縮率が低い偏光フィルムを得ることができる。架橋工程は、アニール処理工程の前に行う。また、染色工程の後に架橋工程を行うことが好ましい。高温で湿式延伸する場合にPVAの溶出が防止される観点からは、延伸工程の前に架橋工程を行うことが好ましい。ホウ素化合物を含有する水溶液を染色浴や延伸浴として用いることにより、架橋工程と、染色工程又は延伸工程とを同時に行ってもよい。また、後述する固定処理工程として、ホウ素化合物を用いてPVAフィルムを架橋させる工程を行ってもよい。 In the manufacturing method, a step of crosslinking the PVA film using a boron compound is performed. After performing the crosslinking step in this manner, a polarizing film having a low shrinkage rate can be obtained while having an excellent polarization performance and hue by performing an annealing treatment step described later. The crosslinking process is performed before the annealing process. Moreover, it is preferable to perform a bridge | crosslinking process after a dyeing process. From the viewpoint of preventing the elution of PVA when performing wet stretching at a high temperature, it is preferable to perform a crosslinking step before the stretching step. By using an aqueous solution containing a boron compound as a dyeing bath or a stretching bath, the crosslinking step and the dyeing step or the stretching step may be performed simultaneously. Moreover, you may perform the process of bridge | crosslinking a PVA film using a boron compound as a fixing process process mentioned later.
 架橋工程は、ホウ素化合物を含む水溶液にPVAフィルムを浸漬することにより行うことができる。前記ホウ素化合物としては、ホウ酸、ホウ砂等のホウ酸塩などの1種または2種以上を使用することができる。前記水溶液におけるホウ素化合物の濃度はホウ酸換算で1~15質量%であることが好ましく、2~7質量%であることがより好ましい。前記濃度が1~15質量%であることで、上述した効果が奏されるとともに、十分な延伸性も維持することができる。前記水溶液はヨウ化カリウム等の助剤を含有してもよい。効率良く架橋させることができる観点から、前記水溶液の温度は、20~50℃、特に25~40℃が好ましい。 The crosslinking step can be performed by immersing the PVA film in an aqueous solution containing a boron compound. As said boron compound, 1 type (s) or 2 or more types, such as boric acids, such as boric acid and borax, can be used. The concentration of the boron compound in the aqueous solution is preferably 1 to 15% by mass, and more preferably 2 to 7% by mass in terms of boric acid. When the concentration is 1 to 15% by mass, the above-described effects can be achieved and sufficient stretchability can be maintained. The aqueous solution may contain an auxiliary agent such as potassium iodide. From the viewpoint of efficient crosslinking, the temperature of the aqueous solution is preferably 20 to 50 ° C., particularly preferably 25 to 40 ° C.
 後述する延伸工程とは別に、上述した各工程中や工程間において、PVAフィルムを延伸してもよい。このような延伸(前延伸)をすることにより、PVAフィルムにしわが入るのを防止することができる。前延伸の総延伸倍率(各工程における延伸倍率を掛け合わせた倍率)は、偏光フィルムを製造する場合の偏光性能などの観点から、延伸前の原反のPVAフィルムの元長に基づいて、4倍以下であることが好ましい。膨潤工程における延伸倍率としては、1.05~3倍が好ましく、染色工程における延伸倍率としては、3倍以下が好ましく、架橋工程における延伸倍率としては、2倍以下が好ましい。 Separately from the stretching process described later, the PVA film may be stretched during or between the above-described processes. By performing such stretching (pre-stretching), wrinkles can be prevented from entering the PVA film. Based on the original length of the original PVA film before stretching, the total stretching ratio of pre-stretching (the ratio obtained by multiplying the stretching ratios in each step) is 4 based on the polarization performance in the case of producing a polarizing film. It is preferable that it is less than 2 times. The draw ratio in the swelling process is preferably 1.05 to 3 times, the draw ratio in the dyeing process is preferably 3 times or less, and the draw ratio in the crosslinking process is preferably 2 times or less.
 前記偏光フィルムの製造方法において、前記PVAフィルムを延伸する工程を行う。延伸工程は、湿式延伸法または乾式延伸法を用いて、PVAフィルムを一軸延伸することにより行うことができる。湿式延伸法の場合は、ホウ素化合物を含む水溶液中で行うこともできるし、上記した染色浴中や架橋浴中で行うこともできる。ホウ素化合物としては、架橋処理に用いられるものとして上述したものを使用することができる。また乾式延伸法の場合は、室温のまま延伸を行ってもよいし、加熱しながら延伸してもよいし、吸水後のPVAフィルムを用いて空気中で行うこともできる。これらの中でも、湿式延伸法が好ましく、ホウ素化合物を含む水溶液中で一軸延伸するのがより好ましい。ホウ素化合物の水溶液中におけるホウ素化合物の濃度はホウ酸換算で0.5~6.0質量%が好ましく、1.0~5.0質量%がより好ましく、1.5~4.5質量%が特に好ましい。また、前記水溶液はヨウ化カリウムを含有してもよく、その濃度は0.01~10質量%が好ましい。 In the method for producing a polarizing film, a step of stretching the PVA film is performed. The stretching step can be performed by uniaxially stretching the PVA film using a wet stretching method or a dry stretching method. In the case of the wet drawing method, it can be carried out in an aqueous solution containing a boron compound, or can be carried out in the above-described dyeing bath or crosslinking bath. As a boron compound, what was mentioned above as what is used for a bridge | crosslinking process can be used. In the case of the dry stretching method, the stretching may be performed at room temperature, may be performed while heating, or may be performed in the air using a PVA film after water absorption. Among these, the wet stretching method is preferable, and it is more preferable to perform uniaxial stretching in an aqueous solution containing a boron compound. The concentration of the boron compound in the aqueous solution of the boron compound is preferably 0.5 to 6.0% by mass in terms of boric acid, more preferably 1.0 to 5.0% by mass, and 1.5 to 4.5% by mass. Particularly preferred. The aqueous solution may contain potassium iodide, and the concentration is preferably 0.01 to 10% by mass.
 延伸工程においてPVAフィルムを延伸する際の温度は、30~90℃が好ましく、40~80℃がより好ましく、50~70℃がさらに好ましい。 The temperature at which the PVA film is stretched in the stretching step is preferably 30 to 90 ° C, more preferably 40 to 80 ° C, and even more preferably 50 to 70 ° C.
 偏光フィルムを製造した場合の偏光性能等の点から、延伸工程における延伸倍率は、1.2倍以上であることが好ましく、1.5倍以上であることがより好ましく、2倍以上であることが更に好ましい。また、上記した前延伸の延伸倍率も含めた総延伸倍率(各工程における延伸倍率を掛け合わせた倍率)は、延伸前の原反のPVAフィルムの元長に基づいて、5.2倍以上であることが好ましく、5.5倍以上であることがより好ましく、5.8倍以上であることが特に好ましい。総延伸倍率の上限は特に制限されないが、延伸切れを防ぐためには延伸倍率は8倍以下であることが好ましい。 From the viewpoint of polarizing performance when a polarizing film is produced, the draw ratio in the drawing step is preferably 1.2 times or more, more preferably 1.5 times or more, and 2 times or more. Is more preferable. Moreover, the total draw ratio including the draw ratio of the above-mentioned pre-stretch (the ratio obtained by multiplying the stretch ratio in each step) is 5.2 times or more based on the original length of the original PVA film before stretching. Preferably, it is 5.5 times or more, more preferably 5.8 times or more. The upper limit of the total stretching ratio is not particularly limited, but the stretching ratio is preferably 8 times or less in order to prevent stretching.
 長尺のPVAフィルムを一軸延伸する場合における一軸延伸の方向に特に制限はなく、長尺方向への一軸延伸や幅方向への横一軸延伸を採用することができる。偏光フィルムを製造する場合に、偏光性能に優れたものが得られる点からは、長尺方向への一軸延伸が好ましい。長尺方向への一軸延伸は、互いに平行な複数のロールを備える延伸装置を使用して、各ロール間の周速を変えることにより行うことができる。一方、横一軸延伸はテンター型延伸機を用いて行うことができる。 There is no particular limitation on the direction of uniaxial stretching when a long PVA film is uniaxially stretched, and uniaxial stretching in the longitudinal direction or transverse uniaxial stretching in the width direction can be employed. In the case of producing a polarizing film, uniaxial stretching in the longitudinal direction is preferable from the viewpoint of obtaining a film having excellent polarizing performance. Uniaxial stretching in the longitudinal direction can be performed by changing the peripheral speed between the rolls using a stretching apparatus including a plurality of rolls parallel to each other. On the other hand, lateral uniaxial stretching can be performed using a tenter type stretching machine.
 前記偏光フィルムの製造方法において、延伸工程の後に、前記PVAフィルムに対して固定処理工程を行うことが好ましい。これにより、PVAフィルムに対するヨウ素系二色性色素の吸着が強固になる。固定処理に使用する固定処理浴としては、ホウ素化合物の1種または2種以上を含む水溶液を使用することができ、ホウ素化合物としては、架橋処理に用いられるものとして上述したものを使用することができる。また、必要に応じて、固定処理浴中にヨウ素化合物や金属化合物を添加してもよい。固定処理浴におけるホウ素化合物の濃度は、1~15質量%であることが好ましい。前記ホウ素化合物の濃度は10質量%以下であることがより好ましい。前記水溶液にヨウ化カリウムを含有させる場合、その濃度は0.01~10質量%が好ましい。固定処理浴の温度は、15~60℃が好ましく、20~40℃であることがより好ましい。 In the method for producing a polarizing film, it is preferable to perform a fixing treatment step on the PVA film after the stretching step. Thereby, adsorption | suction of the iodine type dichroic dye with respect to a PVA film becomes firm. As the fixing treatment bath used for the fixing treatment, an aqueous solution containing one or more of boron compounds can be used. As the boron compound, those described above as being used for the crosslinking treatment can be used. it can. Moreover, you may add an iodine compound and a metal compound in a fixed treatment bath as needed. The concentration of the boron compound in the fixed treatment bath is preferably 1 to 15% by mass. The concentration of the boron compound is more preferably 10% by mass or less. When potassium iodide is contained in the aqueous solution, the concentration is preferably 0.01 to 10% by mass. The temperature of the fixing treatment bath is preferably 15 to 60 ° C, and more preferably 20 to 40 ° C.
 本発明の製造方法において、染色工程、架橋工程及び延伸工程を行った後、さらに前記PVAフィルムを乾燥する工程を行ってから前記アニール処理工程を行うことも好ましい。固定処理工程を行う場合には、当該工程の後に乾燥工程を行うことが好ましい。偏光フィルムの寸法安定性がさらに向上する観点から、乾燥温度は、30℃以上が好ましく、40℃以上がより好ましく、50℃以上がさらに好ましい。一方、偏光フィルムの偏光性能および色相がさらに良好となる観点から、乾燥温度は、100℃以下が好ましく、80℃以下がより好ましい。偏光フィルムの寸法安定性がさらに向上する観点から、乾燥時間は、10秒間以上が好ましく、30秒間以上がより好ましく、1分間以上がさらに好ましい。一方、偏光フィルムの偏光性能および色相がさらに良好となる観点から、乾燥時間は30分間以下が好ましく、15分間以下がより好ましく、10分間以下がさらに好ましく、5分間以下が特に好ましい。乾燥工程を空気や不活性ガス等のガス中で行うことが好ましく、簡便に処理できる観点からは前者がより好ましい。乾燥工程を空気中で行う際の湿度は特に限定されないが、相対湿度が35%以下であることが好ましく、15%以下であることがより好ましい。 In the production method of the present invention, it is also preferable that after the dyeing step, the crosslinking step and the stretching step, the annealing treatment step is performed after the step of drying the PVA film. When performing the fixing treatment step, it is preferable to perform a drying step after the step. From the viewpoint of further improving the dimensional stability of the polarizing film, the drying temperature is preferably 30 ° C or higher, more preferably 40 ° C or higher, and further preferably 50 ° C or higher. On the other hand, from the viewpoint of further improving the polarization performance and hue of the polarizing film, the drying temperature is preferably 100 ° C. or lower, and more preferably 80 ° C. or lower. From the viewpoint of further improving the dimensional stability of the polarizing film, the drying time is preferably 10 seconds or more, more preferably 30 seconds or more, and further preferably 1 minute or more. On the other hand, from the viewpoint of further improving the polarizing performance and hue of the polarizing film, the drying time is preferably 30 minutes or less, more preferably 15 minutes or less, further preferably 10 minutes or less, and particularly preferably 5 minutes or less. The drying step is preferably performed in a gas such as air or an inert gas, and the former is more preferable from the viewpoint of simple treatment. Although the humidity at the time of performing a drying process in the air is not specifically limited, It is preferable that relative humidity is 35% or less, and it is more preferable that it is 15% or less.
 こうして得られた前記PVAフィルムの延伸方向を固定した後、55~65℃で72時間以上加熱するアニール処理工程を行う。ここで、アニール処理工程に供される前記PVAフィルムの偏光度が99.7%以上であることが好ましい。前記アニール処理工程を行うことにより、前記PVAフィルムの優れた偏光性能及び色相を維持したまま、収縮率を低下させることができる。したがって、このような高い偏光度を有するPVAフィルムに対して、前記アニール処理工程を行うことにより、優れた偏光性能と色相とを有しながらも、収縮率が低い偏光フィルムを得ることができる。同様の観点から、アニール処理工程に供される前記PVAフィルムの単体b値が2.8以下であることも好ましい。乾燥工程を55~65℃で行う場合、乾燥工程とアニール処理工程とを合計で72時間以上行えばよい。ただし、後述するように、前記PVAフィルムのロールをアニール処理する場合には、当該PVAフィルムのロールを72時間以上アニール処理する必要がある。 After fixing the stretching direction of the PVA film thus obtained, an annealing treatment step of heating at 55 to 65 ° C. for 72 hours or more is performed. Here, it is preferable that the degree of polarization of the PVA film subjected to the annealing process is 99.7% or more. By performing the annealing treatment step, the shrinkage rate can be lowered while maintaining the excellent polarization performance and hue of the PVA film. Therefore, by performing the annealing process on the PVA film having such a high degree of polarization, it is possible to obtain a polarizing film having a low shrinkage ratio while having excellent polarization performance and hue. From the same viewpoint, it is also preferable that the single b value of the PVA film subjected to the annealing treatment step is 2.8 or less. When the drying process is performed at 55 to 65 ° C., the drying process and the annealing process may be performed for a total of 72 hours or more. However, as will be described later, when the PVA film roll is annealed, the PVA film roll needs to be annealed for 72 hours or more.
 また、アニール処理工程による上記効果がより高くなる観点から、当該工程に供される前記PVAフィルムの水分率が1~25質量%であることが好ましい。前記水分率は20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。 In addition, from the viewpoint of further enhancing the above-described effect due to the annealing treatment step, it is preferable that the moisture content of the PVA film used in the step is 1 to 25 mass%. The moisture content is more preferably 20% by mass or less, and further preferably 15% by mass or less.
 前記アニール処理工程において、延伸方向が固定された状態で前記PVAフィルムをアニール処理する必要がある。このときの方法は特に限定されず、前記PVAフィルムを延伸方向に巻き取ってフィルムロールを得た後、当該フィルムロールを加熱する方法や前記PVAフィルムの延伸方向の端部をクリップ等で固定した後にアニール処理する方法等が採用され、生産性の観点からは前者が好ましい。 In the annealing process, it is necessary to anneal the PVA film with the stretching direction fixed. The method at this time is not particularly limited, and after winding the PVA film in the stretching direction to obtain a film roll, the method of heating the film roll or the end of the PVA film in the stretching direction was fixed with a clip or the like. A method of annealing, etc. is adopted later, and the former is preferable from the viewpoint of productivity.
 前記アニール処理工程は55~65℃で行う。このような低温でPVAフィルムを処理することによって、前記PVAフィルムの優れた偏光性能及び色相を維持したまま、収縮率を低下させることができる。前記温度が55℃未満の場合には、前記PVAフィルムの収縮率を低下させる効果が得られない。前記温度は57℃以上が好ましい。一方、前記温度が65℃を超える場合には、前記PVAフィルムの偏光性能及び色相が低下する。前記温度は63℃以下が好ましい。 The annealing process is performed at 55 to 65 ° C. By treating the PVA film at such a low temperature, the shrinkage rate can be reduced while maintaining the excellent polarization performance and hue of the PVA film. When the temperature is less than 55 ° C., the effect of reducing the shrinkage rate of the PVA film cannot be obtained. The temperature is preferably 57 ° C. or higher. On the other hand, when the said temperature exceeds 65 degreeC, the polarization performance and hue of the said PVA film will fall. The temperature is preferably 63 ° C. or lower.
 前記アニール処理工程を空気や不活性ガス等のガス中で行うことが好ましく、簡便に処理できる観点からは前者がより好ましい。前記アニール処理工程を空気中で行う際の湿度は特に限定されないが、相対湿度が35%以下であることが好ましく、15%以下であることがより好ましい。 The annealing process is preferably performed in a gas such as air or an inert gas, and the former is more preferable from the viewpoint of simple processing. The humidity when the annealing process is performed in air is not particularly limited, but the relative humidity is preferably 35% or less, and more preferably 15% or less.
 前記アニール処理工程において、前記PVAフィルムを72時間以上加熱する。このように前記PVAフィルムを低温で長時間加熱することによって、前記PVAフィルムの優れた偏光性能及び色相を維持したまま、収縮率を低下させることができる。前記加熱時間が72時間未満の場合には、前記PVAフィルムの収縮率を低下させる効果が不十分になる。前記加熱時間は、85時間以上が好ましく、100時間以上がより好ましい。一方、前記加熱時間は、300時間以下が好ましく、200時間以下がより好ましい。 In the annealing process, the PVA film is heated for 72 hours or more. By thus heating the PVA film at a low temperature for a long time, the shrinkage rate can be lowered while maintaining the excellent polarization performance and hue of the PVA film. When the heating time is less than 72 hours, the effect of reducing the shrinkage rate of the PVA film is insufficient. The heating time is preferably 85 hours or longer, and more preferably 100 hours or longer. On the other hand, the heating time is preferably 300 hours or less, and more preferably 200 hours or less.
 本発明者らは、LCDにおける、偏光フィルムの収縮によるガラス板の反りの問題を解決すべく、偏光フィルムのアニール処理について検討したところ、処理温度を高くすることにより収縮率は低下するものの、偏光性能や色相が悪化してしまい、これらを両立させることが難しかった。本発明者らは、さらに検討を進めた結果、驚くべきことに、上記のように低温で長時間アニール処理することによって、優れた偏光性能及び色相を維持したまま、収縮率を低下させることができることを見出した。このメカニズムは明らかではないが、低温で長時間アニールすることによって、ホウ素化合物によるPVAの架橋点が増加して収縮率が低下するものと考えられる。また、低温でアニール処理することによって、PVAのアモルファス部分の変化や色素の分解が抑制されるため偏光性能が維持されるものと考えられる。さらに、低温でアニール処理することによって、前記PVAフィルムの熱分解が抑制されるため、色相も維持されるものと考えられる。 In order to solve the problem of the warpage of the glass plate due to the shrinkage of the polarizing film in the LCD, the inventors examined the annealing treatment of the polarizing film. Although the shrinkage ratio is decreased by increasing the treatment temperature, the polarization is reduced. Performance and hue deteriorated, making it difficult to achieve both. As a result of further investigations, the present inventors have surprisingly been able to reduce the shrinkage rate while maintaining excellent polarization performance and hue by annealing at a low temperature for a long time as described above. I found out that I can do it. Although this mechanism is not clear, it is believed that annealing at a low temperature for a long time increases the crosslinking point of PVA with a boron compound and decreases the shrinkage. In addition, it is considered that the polarization performance is maintained by annealing at a low temperature because the change in the amorphous portion of PVA and the decomposition of the dye are suppressed. Furthermore, since the thermal decomposition of the PVA film is suppressed by annealing at a low temperature, the hue is considered to be maintained.
 こうして得られる本発明の偏光フィルムの単体b値が3.0以下である必要がある。このように単体b値が低く色相に優れた本発明の偏光フィルムはLCD等において好適に用いられる。前記単体b値は2.7以下が好ましく、2.45以下がより好ましい。 The simple substance b value of the polarizing film of the present invention thus obtained needs to be 3.0 or less. Thus, the polarizing film of the present invention having a low single b value and excellent hue is suitably used in LCDs and the like. The simple substance b value is preferably 2.7 or less, and more preferably 2.45 or less.
 前記偏光フィルムは、下記式(1)及び式(2)を満たす必要がある。
 A≦0.9  (1)
 B/A≧55  (2)
The polarizing film needs to satisfy the following formulas (1) and (2).
A ≦ 0.9 (1)
B / A ≧ 55 (2)
 ただし、Aは、80℃にて4時間加熱された前記偏光フィルムの収縮率(%)であり、Bは、80℃にて4時間加熱された前記偏光フィルムの収縮応力(N/mm)である。 However, A is a shrinkage rate (%) of the polarizing film heated at 80 ° C. for 4 hours, and B is a shrinking stress (N / mm 2 ) of the polarizing film heated at 80 ° C. for 4 hours. It is.
 前記偏光フィルムの収縮率Aが0.9%以下である場合、当該偏光フィルムをLCDに用いた際に、ガラス板の反りがほとんど生じない。このように収縮率Aが低い本発明の偏光フィルムは、LCD、特に、高温下で使用されたり、保管されたりすることが多いうえに、薄いガラス板が用いられるモバイル機器用のLCDに好適に用いられる。収縮率Aは0.85%以下が好ましく、0.80以下がより好ましい。一方、偏光性能および色相と、寸法安定性とのバランスに特に優れる観点から、収縮率Aは0.5%以上が好ましい。前記偏光フィルムの収縮率Aの測定方法として、後述する実施例に記載された方法が採用される。 When the shrinkage ratio A of the polarizing film is 0.9% or less, the glass plate is hardly warped when the polarizing film is used for an LCD. Thus, the polarizing film of the present invention having a low shrinkage ratio A is suitable for LCDs, in particular, LCDs for mobile devices that are often used or stored at high temperatures and that use thin glass plates. Used. The shrinkage rate A is preferably 0.85% or less, and more preferably 0.80 or less. On the other hand, the shrinkage rate A is preferably 0.5% or more from the viewpoint of particularly excellent balance between polarization performance and hue and dimensional stability. As a method for measuring the shrinkage rate A of the polarizing film, the method described in Examples described later is employed.
 前記偏光フィルムの収縮率A(%)に対する収縮応力B(N/mm)の比(B/A)が55以上である場合には、前記偏光フィルムの寸法安定性と偏光性能とのバランスが良好となる。通常、偏光フィルムの偏光度を高めようとすると収縮応力及び収縮率が高くなり、LCDに用いた場合にガラス板に反りが生じる等の問題が発生する。一方、本発明の偏光フィルムは、収縮応力Bは高く、収縮率Aは低いため、寸法安定性と偏光性能とを両立させることが可能であり、このような問題が解消される。前記比(B/A)は60以上が好ましい。一方、前記比(B/A)は100以下が好ましい。 When the ratio (B / A) of the shrinkage stress B (N / mm 2 ) to the shrinkage rate A (%) of the polarizing film is 55 or more, the balance between the dimensional stability and the polarizing performance of the polarizing film is It becomes good. Usually, when the degree of polarization of the polarizing film is increased, the shrinkage stress and the shrinkage rate increase, and problems such as warpage of the glass plate occur when used in an LCD. On the other hand, since the polarizing film of the present invention has a high shrinkage stress B and a low shrinkage ratio A, it is possible to achieve both dimensional stability and polarizing performance, and such problems are solved. The ratio (B / A) is preferably 60 or more. On the other hand, the ratio (B / A) is preferably 100 or less.
 前記偏光フィルムの収縮率A及び収縮応力Bの測定方法として、後述する実施例に記載された方法が採用される。本発明において、偏光フィルムの延伸方向において収縮率及び収縮応力を測定し、複数の方向に延伸する場合は、延伸倍率が高い方向において測定する。 As a method for measuring the shrinkage rate A and the shrinkage stress B of the polarizing film, the methods described in Examples described later are employed. In the present invention, the shrinkage rate and the shrinkage stress are measured in the stretching direction of the polarizing film, and when stretching in a plurality of directions, the stretching ratio is measured in a higher direction.
 前記偏光フィルムは、下記式(3)を満たすことが好ましい。
 B≧45  (3)
The polarizing film preferably satisfies the following formula (3).
B ≧ 45 (3)
 ただし、Bは上記式(2)と同義である。 However, B is synonymous with the above formula (2).
 前記偏光フィルムの収縮応力Bが45N/mm以上であることにより、偏光性能がさらに向上する。上記のとおり、前記偏光フィルムは収縮率Aが低いため、前記偏光フィルムをLCDに用いた場合に、当該フィルムが収縮した場合でも、当該フィルムとガラス板の間の接着剤層によって、当該フィルムの寸法変化が吸収される。したがって、収縮応力Bが高くても、ガラスの反りが生じにくい。特に、携帯端末等のモバイル機器用のLCDは、寸法が小さく、前記偏光フィルムの収縮による寸法変化もより小さいため、ガラスの反りがさらに生じにくい。収縮応力Bは47N/mm以上がより好ましい。一方、収縮応力Bは60N/mm以下が好ましい。 When the shrinkage stress B of the polarizing film is 45 N / mm 2 or more, the polarizing performance is further improved. As described above, since the polarizing film has a low shrinkage ratio A, even when the polarizing film is used in an LCD, even when the film is contracted, the dimensional change of the film is caused by the adhesive layer between the film and the glass plate. Is absorbed. Therefore, even if the shrinkage stress B is high, the glass is hardly warped. In particular, LCDs for mobile devices such as mobile terminals are small in size and less dimensional change due to shrinkage of the polarizing film, so that glass warpage is less likely to occur. The shrinkage stress B is more preferably 47 N / mm 2 or more. On the other hand, the shrinkage stress B is preferably 60 N / mm 2 or less.
 前記偏光フィルムの厚みが1~30μmであることが好ましい。このように薄い偏光フィルムは、LCD等、特にモバイル機器用のLCDに好適に用いられる。前記厚みが1μm未満の場合には、偏光フィルムの製造が困難になるおそれがあるほか、染色ムラが生じやすくなるおそれがある。前記厚みは5μm以上が好ましい。一方、前記厚みは20μm以下がより好ましい。 The thickness of the polarizing film is preferably 1 to 30 μm. Such a thin polarizing film is suitably used for LCDs such as LCDs, especially for mobile devices. When the thickness is less than 1 μm, it may be difficult to produce a polarizing film, and uneven dyeing may easily occur. The thickness is preferably 5 μm or more. On the other hand, the thickness is more preferably 20 μm or less.
 前記偏光フィルム中のPVAの含有量は、50~99質量%であることが好ましい。当該含有量は、75質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、85質量%以上であることが特に好ましい。また、98質量%以下であることがより好ましく、96質量%以下であることがさらに好ましく、95質量%以下であることが特に好ましい。 The content of PVA in the polarizing film is preferably 50 to 99% by mass. The content is more preferably 75% by mass or more, further preferably 80% by mass or more, and particularly preferably 85% by mass or more. Moreover, it is more preferable that it is 98 mass% or less, it is more preferable that it is 96 mass% or less, and it is especially preferable that it is 95 mass% or less.
 前記偏光フィルム中のホウ素化合物の含有量はホウ酸換算で5~50質量%が好ましい。前記含有量が5質量%未満の場合には、収縮率を低下させる効果が不十分になるおそれがある。前記含有量は12質量%以上がより好ましい。一方、前記含有量が50質量%を超える場合には、偏光フィルムの収縮力が高くなり過ぎるおそれがある。前記含有量は30質量%以下がより好ましい。 The content of the boron compound in the polarizing film is preferably 5 to 50% by mass in terms of boric acid. When the content is less than 5% by mass, the effect of reducing the shrinkage rate may be insufficient. The content is more preferably 12% by mass or more. On the other hand, when the said content exceeds 50 mass%, there exists a possibility that the contractile force of a polarizing film may become high too much. The content is more preferably 30% by mass or less.
 前記偏光フィルムの偏光度が99.5%以上である必要がある。このような高い偏光度を有する偏光フィルムは、高性能LCDに好適に用いられる。前記偏光度は、99.7%以上が好ましく、99.8%以上がより好ましい。 The degree of polarization of the polarizing film needs to be 99.5% or more. Such a polarizing film having a high degree of polarization is suitably used for a high-performance LCD. The degree of polarization is preferably 99.7% or more, and more preferably 99.8% or more.
 前記偏光フィルムの単体b値が3.0以下である必要がある。このように単体b値が低く色相に優れた偏光フィルムは、高性能LCDに好適に用いられる。前記単体b値は2.8以下が好ましく、2.5以下がより好ましい。一方、前記単体b値は、通常0以上である。偏光性能および色相と、寸法安定性とのバランスに特に優れる観点から、単体b値は1.0以上が好ましい。 The simple substance b value of the polarizing film needs to be 3.0 or less. Such a polarizing film having a low single b value and an excellent hue is suitably used for a high-performance LCD. The simple substance b value is preferably 2.8 or less, more preferably 2.5 or less. On the other hand, the simple substance b value is usually 0 or more. From the viewpoint of particularly excellent balance between polarization performance and hue and dimensional stability, the simple substance b value is preferably 1.0 or more.
 前記偏光フィルムと保護フィルムとが積層されてなる偏光板が本発明の好適な実施態様である。前記偏光フィルムを用いた偏光板は、優れた偏光性能および色相を有し、なおかつ偏光フィルムの収縮率が低いため寸法安定性に優れるため、LCD等、特にモバイル機器用のLCDに好適に用いられる。 A polarizing plate formed by laminating the polarizing film and the protective film is a preferred embodiment of the present invention. The polarizing plate using the polarizing film has excellent polarization performance and hue, and has excellent dimensional stability due to the low shrinkage rate of the polarizing film. Therefore, the polarizing plate is suitably used for LCDs such as LCDs, especially for mobile devices. .
 前記保護フィルムは、光学的に透明でかつ機械的強度を有するものであれば特に限定されず、例えば、三酢酸セルロース(TAC)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルム、環状オレフィン(COP)フィルムなどを使用することができる。前記偏光板は、前記偏光フィルムの片面に前記保護フィルムが張り合わされたものであってもよいし、前記偏光フィルムの両面に前記保護フィルムが張り合わされたものであってもよい。また、貼り合わせのための接着剤としては、PVA系接着剤やウレタン系接着剤、もしくは紫外線硬化型接着剤などを挙げることができる。 The protective film is not particularly limited as long as it is optically transparent and has mechanical strength. For example, cellulose triacetate (TAC) film, cellulose acetate / butyrate (CAB) film, acrylic film, polyester film A film, a cyclic olefin (COP) film, etc. can be used. The polarizing plate may be one in which the protective film is attached to one side of the polarizing film, or may be one in which the protective film is attached to both sides of the polarizing film. In addition, examples of the adhesive for bonding include a PVA adhesive, a urethane adhesive, and an ultraviolet curable adhesive.
 前記偏光板の製造方法は特に限定されないが、PVAフィルムをヨウ素系二色性色素で染色する工程、ホウ素化合物を用いて架橋させる工程及び延伸する工程を行った後、該PVAフィルムと保護フィルムとを積層させて多層フィルムを得て、延伸方向が固定された該多層フィルムを55~65℃で72時間以上加熱するアニール処理工程を行う方法が好ましい。このような製造方法によれば、明るく、偏光特性が良好であり、しかも高温条件下で使用しても寸法安定性に優れた偏光板が得られるため、本発明の偏光板をはじめとする種々の偏光板の製造に好適に用いられる。PVAフィルムと保護フィルムとを積層させて多層フィルムを得る工程(以下、「積層工程」と称することがある)をさらに行うこと以外は、上述した偏光フィルムの製造方法と同様にして前記偏光板を得ることができる。前記偏光板の製造方法において、乾燥工程を行う場合には、乾燥工程の前に積層工程を行ってもよいし、乾燥工程の後に積層工程を行ってもよい。固定処理工程を行う場合には、固定処理工程を行った後に積層工程を行うことが好ましい。 Although the manufacturing method of the said polarizing plate is not specifically limited, After performing the process of dyeing | staining a PVA film with an iodine type dichroic dye, the process of bridge | crosslinking using a boron compound, and the process of extending | stretching, this PVA film and a protective film, A multilayer film is obtained by laminating the films, and an annealing treatment step is performed in which the multilayer film in which the stretching direction is fixed is heated at 55 to 65 ° C. for 72 hours or more. According to such a production method, a polarizing plate that is bright, has good polarization characteristics, and has excellent dimensional stability even when used under high-temperature conditions can be obtained. It is used suitably for manufacture of this polarizing plate. The polarizing plate is produced in the same manner as the polarizing film production method described above except that the step of obtaining a multilayer film by laminating the PVA film and the protective film (hereinafter sometimes referred to as “lamination step”) is further performed. Obtainable. In the manufacturing method of the said polarizing plate, when performing a drying process, a lamination process may be performed before a drying process and a lamination process may be performed after a drying process. When performing a fixing process, it is preferable to perform a lamination process after performing a fixing process.
 こうして得られた偏光板は、明るく、偏光特性が良好であり、しかも高温条件下で使用しても寸法安定性に優れているため、高性能LCD、特にモバイル機器用LCDに好適に用いられる。 The polarizing plate thus obtained is bright, has good polarization characteristics, and is excellent in dimensional stability even when used under high temperature conditions. Therefore, it is suitably used for high performance LCDs, particularly LCDs for mobile devices.
 以下、実施例を用いて本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically using examples.
[偏光フィルム中のホウ素元素含有量の算出]
 偏光フィルム(質量Jg)を蒸留水に添加してから加熱することにより、偏光フィルムが溶解した水溶液(質量Kg、固形分量0.005質量%)を得た。島津製作所製マルチ形ICP発光分析装置(ICP)を用いて当該水溶液中のホウ素濃度[L(ppm)]を測定して、下記計算式により偏光フィルム中のホウ素元素の含有量を求めた。
  偏光フィルム中の全ホウ素元素含有量(質量%)
  =[(L×10-6×K)/J]×100
[Calculation of boron element content in polarizing film]
The polarizing film (mass Jg) was added to distilled water and then heated to obtain an aqueous solution (mass Kg, solid content 0.005 mass%) in which the polarizing film was dissolved. The boron concentration [L (ppm)] in the aqueous solution was measured using a multi-type ICP emission spectrometer (ICP) manufactured by Shimadzu Corporation, and the content of boron element in the polarizing film was determined by the following formula.
Total boron element content in polarizing film (% by mass)
= [(L × 10 −6 × K) / J] × 100
[偏光フィルムの光学特性]
 得られた偏光フィルムの幅方向の中央部から、偏光フィルムの長手方向に3cm、幅方向に1.5cmの長方形のサンプルを採取し、積分球付き分光光度計(日本分光株式会社製「V7100」)を用いて、JIS Z8722(物体色の測定方法)に準拠し、視感度補正を行った上で、単体透過率(T)、偏光度(V)及び単体b値を計測した。
[Optical characteristics of polarizing film]
A rectangular sample of 3 cm in the longitudinal direction of the polarizing film and 1.5 cm in the width direction was collected from the center in the width direction of the obtained polarizing film, and a spectrophotometer with an integrating sphere (“V7100” manufactured by JASCO Corporation). ), The single transmittance (T), the degree of polarization (V), and the single b value were measured after correcting the visibility in accordance with JIS Z8722 (measurement method of object color).
[偏光フィルムの収縮応力]
 収縮応力は島津製作所製の恒温槽付きオートグラフAG-Xとビデオ式伸び計TR ViewX120Sを用いて測定した。測定には20℃、20%RHで18時間調湿した偏光フィルムを使用した。オートグラフAG-Xの恒温槽を20℃にした後、偏光フィルム(長さ方向15cm、幅方向1.5cm)をチャック(チャック間隔5cm)に取り付けた。引張り(速度1mm/min)と80℃へ恒温槽の昇温(10℃/min)を同時に開始した。約3秒後に張力が2Nに到達した時点で引張りを停止し、その状態で保持した。恒温槽内の温度が80℃に到達してから4時間後までの張力を測定した。このとき、熱膨張によってチャック間の距離が変わるため、チャックに標線シールを貼り、ビデオ式伸び計TR ViewX120Sを用いてチャックに貼り付けた標線シールが動いた分だけチャック間の距離を修正できるようにして測定を行った。なお、4時間後の張力(N)の測定値から初期張力2Nを差し引いた値を偏光フィルムの収縮力(N)とし、その値(N)をサンプル断面積(mm)で除した値を収縮応力(N/mm)と定義した。
[Shrinkage stress of polarizing film]
The shrinkage stress was measured using an autograph AG-X with a thermostatic bath manufactured by Shimadzu Corporation and a video extensometer TR ViewX120S. For the measurement, a polarizing film conditioned at 20 ° C. and 20% RH for 18 hours was used. After the temperature chamber of Autograph AG-X was set to 20 ° C., a polarizing film (length direction: 15 cm, width direction: 1.5 cm) was attached to a chuck (chuck interval: 5 cm). Tensile (speed 1 mm / min) and temperature increase (10 ° C./min) of the thermostat to 80 ° C. were started simultaneously. When the tension reached 2N after about 3 seconds, the tension was stopped and kept in that state. The tension until 4 hours after the temperature in the thermostatic chamber reached 80 ° C. was measured. At this time, because the distance between chucks changes due to thermal expansion, a gauge sticker is attached to the chuck, and the distance between chucks is corrected by the amount of movement of the gauge seal attached to the chuck using the video extensometer TR ViewX120S. Measurements were taken as possible. The value obtained by subtracting the initial tension 2N from the measured value of the tension (N) after 4 hours is the contraction force (N) of the polarizing film, and the value (N) is divided by the sample cross-sectional area (mm 2 ). It was defined as shrinkage stress (N / mm 2 ).
[偏光フィルムの収縮率]
 収縮率はTA Instruments製 熱機械測定装置(Q400)を用いて測定した。測定には20℃、20%RHで18時間調湿した偏光フィルムを使用した。偏光フィルムを長さ方向3cm、幅方向0.3cmに裁断した測定サンプルを、チャック間が約2cmとなるように装置に取り付けた。装置内を20℃から80℃まで10℃/minで昇温させた後、80℃で4時間保持することにより偏光フィルムの加熱を行い、収縮率を下記式により算出した。なお、サンプル取り付けてから測定終了までの間0.098(N)の一定荷重を印加した。
 収縮率(%)=100×(x-y)/x
  x:加熱前のチャック間距離(cm)
  y:加熱後のチャック間距離(cm)
[Shrinkage rate of polarizing film]
The shrinkage rate was measured using a thermomechanical measuring device (Q400) manufactured by TA Instruments. For the measurement, a polarizing film conditioned at 20 ° C. and 20% RH for 18 hours was used. A measurement sample obtained by cutting the polarizing film in the length direction of 3 cm and the width direction of 0.3 cm was attached to the apparatus so that the distance between the chucks was about 2 cm. The temperature inside the apparatus was increased from 20 ° C. to 80 ° C. at 10 ° C./min, and then the polarizing film was heated by holding at 80 ° C. for 4 hours, and the shrinkage was calculated by the following formula. Note that a constant load of 0.098 (N) was applied from the time when the sample was attached until the end of measurement.
Shrinkage rate (%) = 100 × (xy) / x
x: Distance between chucks before heating (cm)
y: Distance between chucks after heating (cm)
[水分率]
 PVAフィルムを105℃で16時間乾燥させて、乾燥前後のPVAフィルムの質量から下記式により、PVAフィルムの水分率を求めた。
 水分率(%)=100×(α-β)/α
  α:乾燥前のPVAフィルムの質量(g)
  β:乾燥後のPVAフィルムの質量(g)
[Moisture percentage]
The PVA film was dried at 105 ° C. for 16 hours, and the moisture content of the PVA film was determined from the mass of the PVA film before and after drying by the following formula.
Moisture content (%) = 100 × (α−β) / α
α: Mass of PVA film before drying (g)
β: mass of the PVA film after drying (g)
実施例1
[偏光フィルムの作製]
 PVA(けん化度99.9モル%、重合度2500)100質量部、可塑剤としてグリセリン10質量部、及び界面活性剤としてポリオキシエチレンラウリルエーテル硫酸ナトリウム0.1質量部を含み、PVAの含有率が9質量%である水溶液を製膜原液として用いた。これを80℃の金属ロール上で乾燥し、得られたフィルムを熱風乾燥機中で112℃の温度で10分間熱処理をし、厚みが30μmのPVAフィルムを製造した。
Example 1
[Preparation of polarizing film]
100 parts by mass of PVA (saponification degree 99.9 mol%, polymerization degree 2500), 10 parts by mass of glycerin as a plasticizer, and 0.1 parts by mass of sodium polyoxyethylene lauryl ether sulfate as a surfactant, the content of PVA A 9% by mass aqueous solution was used as a film-forming stock solution. This was dried on a metal roll at 80 ° C., and the obtained film was heat-treated at a temperature of 112 ° C. for 10 minutes in a hot air dryer to produce a PVA film having a thickness of 30 μm.
 得られたPVAフィルムの幅方向中央部から幅5cm、長さ11cmのサンプルをカットし、幅5cm、長さ5cmの範囲が製膜時のMD(機械軸)方向に一軸延伸できるように、一軸延伸治具にサンプルを固定した。膨潤工程として、このサンプルを30℃の純水に浸漬し、その間に1.1倍に長さ方向に一軸延伸した。続いて、染色工程として、ヨウ素とヨウ化カリウムを1:20の質量比で含有する水溶液(染色浴、温度30℃)に60秒間浸漬することによりヨウ素を吸着させ、その間に2.2倍(全体で2.4倍)に長さ方向に一軸延伸した。このとき、染色浴のヨウ素の濃度は乾燥後の偏光フィルムの透過率が44%になるように調製した。続いて、架橋工程として、ホウ酸を2.6質量%の割合で含有する水溶液(架橋浴、温度32℃)に浸漬し、その間に1.1倍(全体で2.7倍)に長さ方向に一軸延伸した。続いて、延伸工程として、ホウ酸を3質量%及びヨウ化カリウムを5質量%の割合で含有する水溶液(延伸浴、温度60℃)に浸漬し、その間に2.2倍(全体で6.0倍)に長さ方向に一軸延伸した。続いて、固定処理工程として、延伸されたPVAフィルムをホウ酸水溶液(ホウ酸濃度1.5質量%、ヨウ化カリウム濃度4質量%、温度22℃)中に10秒間浸漬した。続いて、洗浄工程として、ヨウ化カリウムを3.5質量%の割合で含有する水溶液(洗浄浴、温度20℃)に5秒間浸漬した。続いて、乾燥工程として、得られたPVAフィルムを空気中80℃で4分間乾燥させた。乾燥工程は、熱風乾燥機を用いて、大気に解放された状態で行った。こうして得られたアニール処理工程前のPVAフィルム(参考例1)の光学特性、収縮率、収縮応力、厚み、水分率及びホウ素元素含有量を測定した。アニール処理工程前のPVAフィルムの水分率は8.1%であり、ホウ素含有量は3.46質量%[ホウ酸(B(OH))含有量19.8質量%]であった。その他の結果を表1に示す。また、PVAフィルムの収縮率と単体b値とを図1にプロットし、収縮応力と収縮率とを図2にプロットした。 A sample having a width of 5 cm and a length of 11 cm is cut from the central portion of the obtained PVA film in the width direction, and the range of 5 cm and the length of 5 cm is uniaxially stretched in the MD (machine axis) direction during film formation. The sample was fixed to a drawing jig. As a swelling process, this sample was immersed in pure water at 30 ° C., and uniaxially stretched in the length direction 1.1 times during that time. Subsequently, as a dyeing step, iodine is adsorbed by immersing in an aqueous solution (dye bath, temperature 30 ° C.) containing iodine and potassium iodide at a mass ratio of 1:20 for 60 seconds, and 2.2 times ( A total of 2.4 times) was uniaxially stretched in the length direction. At this time, the iodine concentration in the dyeing bath was adjusted so that the transmittance of the polarizing film after drying was 44%. Subsequently, as a crosslinking step, the substrate is immersed in an aqueous solution (crosslinking bath, temperature 32 ° C.) containing 2.6% by mass of boric acid, and the length is 1.1 times (2.7 times as a whole) during that time. Uniaxially stretched in the direction. Subsequently, as a stretching process, the film was immersed in an aqueous solution (stretching bath, temperature 60 ° C.) containing 3% by mass of boric acid and 5% by mass of potassium iodide, and 2.2 times (totally 6. (0 times) was uniaxially stretched in the length direction. Subsequently, as a fixing treatment step, the stretched PVA film was immersed in a boric acid aqueous solution (boric acid concentration 1.5 mass%, potassium iodide concentration 4 mass%, temperature 22 ° C.) for 10 seconds. Subsequently, as a cleaning step, the substrate was immersed for 5 seconds in an aqueous solution (cleaning bath, temperature 20 ° C.) containing 3.5% by mass of potassium iodide. Subsequently, as a drying process, the obtained PVA film was dried in air at 80 ° C. for 4 minutes. The drying process was performed in a state of being released to the atmosphere using a hot air dryer. The optical properties, shrinkage rate, shrinkage stress, thickness, moisture content, and boron element content of the PVA film (Reference Example 1) before the annealing treatment thus obtained were measured. The moisture content of the PVA film before the annealing treatment step was 8.1%, and the boron content was 3.46% by mass [boric acid (B (OH) 3 ) content 19.8% by mass]. Other results are shown in Table 1. Moreover, the shrinkage | contraction rate and simple substance b value of the PVA film were plotted in FIG. 1, and the shrinkage stress and the shrinkage | contraction rate were plotted in FIG.
 得られたPVAフィルムをMD方向20cm、TD方向7cmとなるように裁断した。2枚のステンレス製の枠で当該PVAフィルムのMD方向の両端部を弛みが生じないように挟み、さらに当該枠を両外側からクリップで挟んだ。こうして、前記PVAフィルムのMD方向の両端部を固定した。恒温槽を用いて、当該PVAフィルムを空気中、60℃にて120時間アニール処理した。アニール処理は、大気に解放された状態で行った。こうして得られた偏光フィルムの光学特性、収縮率及び収縮応力を測定した。結果を表1に示す。また、偏光フィルムの収縮率と単体b値とを図1にプロットし、収縮応力と収縮率とを図2にプロットした。なお、得られた偏光フィルムとアニール処理工程前のPVAフィルムとはホウ素元素の含有量が実質的に同じである。 The obtained PVA film was cut so as to be 20 cm in the MD direction and 7 cm in the TD direction. Two stainless steel frames were sandwiched between the ends of the PVA film in the MD direction so as not to be loosened, and the frames were further clipped from both outsides. In this way, both ends of the PVA film in the MD direction were fixed. The PVA film was annealed in air at 60 ° C. for 120 hours using a thermostatic bath. The annealing treatment was performed in a state released to the atmosphere. The optical properties, shrinkage rate and shrinkage stress of the polarizing film thus obtained were measured. The results are shown in Table 1. Further, the shrinkage rate and the simple substance b value of the polarizing film are plotted in FIG. 1, and the shrinkage stress and the shrinkage rate are plotted in FIG. The obtained polarizing film and the PVA film before the annealing treatment step have substantially the same boron element content.
実施例2、比較例1~3、5~12、14~16
 アニール処理の温度及び時間を表1に示す通りに変更したこと以外は、実施例1と同様にして偏光フィルムの作製及び評価を行った。結果を表1、図1及び図2に示す。
Example 2, Comparative Examples 1 to 3, 5 to 12, 14 to 16
A polarizing film was prepared and evaluated in the same manner as in Example 1 except that the annealing temperature and time were changed as shown in Table 1. The results are shown in Table 1, FIG. 1 and FIG.
実施例3
[多層フィルムの作製]
 実施例1と同様にしてアニール処理工程前のPVAフィルムを得た。片面にPVA糊(PVA含有量は3質量%)が塗布された三酢酸セルロース(TAC)フィルムを前記PVAフィルムの両側に配置してラミネーターで張り合わせた後、60℃にて10分間乾燥を行うことにより、アニール処理工程前の多層フィルムを得た。
Example 3
[Production of multilayer film]
In the same manner as in Example 1, a PVA film before the annealing process was obtained. Cellulose triacetate (TAC) film coated with PVA glue (PVA content is 3% by mass) on one side is placed on both sides of the PVA film and laminated with a laminator, followed by drying at 60 ° C. for 10 minutes Thus, a multilayer film before the annealing treatment step was obtained.
 得られたアニール処理工程前の多層フィルムをTACの良溶媒である塩化メチレンに1週間浸漬した後、ドラフト内で室温にて24時間乾燥させることにより、PVAフィルムからTACを除去した。TACが除去されたPVAフィルム(参考例2)の光学特性、収縮率、収縮応力及び厚みを測定した。結果を表1に示す。 The obtained multilayer film before the annealing treatment step was immersed in methylene chloride, which is a good solvent for TAC, for 1 week, and then dried in a draft at room temperature for 24 hours to remove TAC from the PVA film. The optical properties, shrinkage rate, shrinkage stress and thickness of the PVA film from which TAC was removed (Reference Example 2) were measured. The results are shown in Table 1.
[多層フィルムのアニール処理]
 得られたアニール処理工程前の多層フィルムを用いたこと以外は実施例1と同様にしてアニール処理工程を行うことにより、偏光フィルム(偏光板)を得た。得られた偏光フィルム(偏光板)から上記と同様にしてTACを除去した後、TACが除去された偏光フィルムの光学特性、収縮率、収縮応力及び厚みを測定した。結果を表1に示す。
[Annealing of multilayer film]
A polarizing film (polarizing plate) was obtained by carrying out the annealing process in the same manner as in Example 1 except that the obtained multilayer film before the annealing process was used. After removing TAC from the obtained polarizing film (polarizing plate) in the same manner as described above, the optical properties, shrinkage rate, shrinkage stress and thickness of the polarizing film from which TAC was removed were measured. The results are shown in Table 1.
比較例4、13
 アニール処理の温度及び時間を表1に示すとおりに変更したこと以外は、実施例3と同様にして偏光板の作製及び評価を行った。これらの結果を表1に示す。
Comparative Examples 4 and 13
A polarizing plate was prepared and evaluated in the same manner as in Example 3 except that the annealing temperature and time were changed as shown in Table 1. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  ヨウ素系二色性色素を含み、かつホウ素化合物で架橋されたポリビニルアルコールフィルムからなる偏光フィルムであって、
     偏光度が99.5%以上であり、単体b値が3.0以下であり、かつ下記式(1)及び式(2)を満たす偏光フィルム。
     A≦0.9  (1)
     B/A≧55  (2)
     ただし、Aは、80℃にて4時間加熱された前記偏光フィルムの収縮率(%)であり、Bは、80℃にて4時間加熱された前記偏光フィルムの収縮応力(N/mm)である。
    A polarizing film comprising a polyvinyl alcohol film containing an iodine-based dichroic dye and crosslinked with a boron compound,
    A polarizing film having a polarization degree of 99.5% or more, a simple substance b value of 3.0 or less, and satisfying the following formulas (1) and (2).
    A ≦ 0.9 (1)
    B / A ≧ 55 (2)
    However, A is a shrinkage rate (%) of the polarizing film heated at 80 ° C. for 4 hours, and B is a shrinking stress (N / mm 2 ) of the polarizing film heated at 80 ° C. for 4 hours. It is.
  2.  前記単体b値が1.0以上である請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein the simple substance b value is 1.0 or more.
  3.  Aが0.5以上である請求項1又は2に記載の偏光フィルム。 The polarizing film according to claim 1 or 2, wherein A is 0.5 or more.
  4.  前記ポリビニルアルコールの重合度が1,500~6,000である請求項1~3のいずれかに記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 3, wherein the degree of polymerization of the polyvinyl alcohol is 1,500 to 6,000.
  5.  厚みが1~30μmである請求項1~4のいずれかに記載の偏光フィルム。 The polarizing film according to claim 1, wherein the polarizing film has a thickness of 1 to 30 μm.
  6.  請求項1~5のいずれかに記載の偏光フィルムと保護フィルムとが積層されてなる偏光板。 A polarizing plate in which the polarizing film according to any one of claims 1 to 5 and a protective film are laminated.
  7.  ポリビニルアルコールフィルムをヨウ素系二色性色素で染色する工程、ホウ素化合物を用いて架橋させる工程及び延伸する工程を行った後、延伸方向が固定された該ポリビニルアルコールフィルムを55~65℃で72時間以上加熱するアニール処理工程を行う請求項1~5のいずれかに記載の偏光フィルムの製造方法。 After performing a step of dyeing a polyvinyl alcohol film with an iodine-based dichroic dye, a step of crosslinking with a boron compound, and a step of stretching, the polyvinyl alcohol film in which the stretching direction is fixed is maintained at 55 to 65 ° C. for 72 hours. 6. The method for producing a polarizing film according to claim 1, wherein the annealing treatment step for heating is performed.
  8.  ポリビニルアルコールフィルムをヨウ素系二色性色素で染色する工程、ホウ素化合物を用いて架橋させる工程及び延伸する工程を行った後、該ポリビニルアルコールフィルムと保護フィルムとを積層させて多層フィルムを得て、延伸方向が固定された該多層フィルムを55~65℃で72時間以上加熱するアニール処理工程を行う請求項6に記載の偏光板の製造方法。 After performing a step of dyeing a polyvinyl alcohol film with an iodine dichroic dye, a step of crosslinking using a boron compound and a step of stretching, a multilayer film is obtained by laminating the polyvinyl alcohol film and a protective film, The method for producing a polarizing plate according to claim 6, wherein an annealing treatment step of heating the multi-layer film in which the stretching direction is fixed at 55 to 65 ° C for 72 hours or more is performed.
PCT/JP2018/008826 2017-03-08 2018-03-07 Polarizing film, polarizing plate, and method for manufacturing same WO2018164196A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880016563.6A CN110383124B (en) 2017-03-08 2018-03-07 Polarizing film, polarizing plate and method for producing the same
JP2019504646A JP7199343B2 (en) 2017-03-08 2018-03-07 Polarizing film, polarizing plate, and manufacturing method thereof
KR1020197028378A KR102582196B1 (en) 2017-03-08 2018-03-07 Polarizing film, polarizing plate, and their manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-044247 2017-03-08
JP2017044247 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018164196A1 true WO2018164196A1 (en) 2018-09-13

Family

ID=63447935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008826 WO2018164196A1 (en) 2017-03-08 2018-03-07 Polarizing film, polarizing plate, and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP7199343B2 (en)
KR (1) KR102582196B1 (en)
CN (1) CN110383124B (en)
TW (1) TWI757444B (en)
WO (1) WO2018164196A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121862A (en) * 2019-02-04 2021-08-26 住友化学株式会社 Polarizing plate and display device
JP2021157037A (en) * 2020-03-26 2021-10-07 株式会社クラレ Polarizing film and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021182557A1 (en) * 2020-03-13 2021-09-16

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185845A (en) * 2001-09-19 2003-07-03 Nitto Denko Corp Polarizing plate and method for manufacturing the same, and liquid crystal display using the same
JP2009109860A (en) * 2007-10-31 2009-05-21 Sumitomo Chemical Co Ltd Method of manufacturing polarizing plate
WO2012070424A1 (en) * 2010-11-25 2012-05-31 日東電工株式会社 Optical laminate and liquid crystal display device
WO2014050697A1 (en) * 2012-09-26 2014-04-03 株式会社クラレ Polyvinyl alcohol film and polarizing film
WO2015115359A1 (en) * 2014-01-28 2015-08-06 株式会社クラレ Master film for producing optical film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI296727B (en) * 2001-09-19 2008-05-11 Nitto Denko Corp Polarizing plate and method of manufacturing the same, and liquid crystal display using the polarizing plate
JP4229932B2 (en) 2004-07-28 2009-02-25 日東電工株式会社 Manufacturing method of polarizing film
JP4458483B2 (en) 2005-03-22 2010-04-28 日東電工株式会社 Manufacturing method of polarizing film, polarizing film, polarizing plate, and image display device
JP4697871B2 (en) * 2005-10-20 2011-06-08 日東電工株式会社 Laminated film
JP2012003173A (en) 2010-06-21 2012-01-05 Sumitomo Chemical Co Ltd Polarization film and manufacturing method of polarizer
JP5991883B2 (en) 2011-12-06 2016-09-14 日東電工株式会社 Method for producing polarizer and method for producing polarizing plate
JP6232921B2 (en) 2013-03-18 2017-11-22 住友化学株式会社 Production method of polarizing laminated film and polarizing plate
JP6191197B2 (en) 2013-03-29 2017-09-06 住友化学株式会社 Manufacturing method of polarizing film
KR102161870B1 (en) 2013-08-09 2020-10-05 주식회사 쿠라레 Original film for manufacturing optical film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185845A (en) * 2001-09-19 2003-07-03 Nitto Denko Corp Polarizing plate and method for manufacturing the same, and liquid crystal display using the same
JP2009109860A (en) * 2007-10-31 2009-05-21 Sumitomo Chemical Co Ltd Method of manufacturing polarizing plate
WO2012070424A1 (en) * 2010-11-25 2012-05-31 日東電工株式会社 Optical laminate and liquid crystal display device
WO2014050697A1 (en) * 2012-09-26 2014-04-03 株式会社クラレ Polyvinyl alcohol film and polarizing film
WO2015115359A1 (en) * 2014-01-28 2015-08-06 株式会社クラレ Master film for producing optical film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121862A (en) * 2019-02-04 2021-08-26 住友化学株式会社 Polarizing plate and display device
JP2021157037A (en) * 2020-03-26 2021-10-07 株式会社クラレ Polarizing film and manufacturing method therefor
JP7413116B2 (en) 2020-03-26 2024-01-15 株式会社クラレ Manufacturing method of polarizing film

Also Published As

Publication number Publication date
TWI757444B (en) 2022-03-11
JP7199343B2 (en) 2023-01-05
JPWO2018164196A1 (en) 2020-01-09
KR20190119127A (en) 2019-10-21
CN110383124A (en) 2019-10-25
CN110383124B (en) 2021-12-21
KR102582196B1 (en) 2023-09-22
TW201834839A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP5563725B1 (en) Polyvinyl alcohol film and polarizing film
WO2018164176A1 (en) Polarizing film, polarizing plate, and method for manufacturing same
JP2017142347A (en) Polarizing film with small contraction stress and production method of the same
JP2022008895A (en) Method for manufacturing polarization film
WO2018164196A1 (en) Polarizing film, polarizing plate, and method for manufacturing same
JP2019015926A (en) Polarization film and method for producing the same
JP2018135426A (en) Polyvinyl alcohol film and method for producing the same, and polarization film prepared therewith
JP6077626B2 (en) Polyvinyl alcohol film
WO2019151206A1 (en) Polyvinyl alcohol film and manufacturing method therefor
JP6858499B2 (en) Optical film manufacturing method
JP6667989B2 (en) Manufacturing method of polarizing film
WO2021132435A1 (en) Polyvinyl alcohol film and polarizing film
JP5563331B2 (en) Method for producing polyvinyl alcohol polymer film
JP6735541B2 (en) Polarizing film
JP5832921B2 (en) Polyvinyl alcohol film
WO2022113959A1 (en) Polyvinyl alcohol film, polarizing film using same, and polarizing plate
JP6571955B2 (en) Polyvinyl alcohol film
JP7413116B2 (en) Manufacturing method of polarizing film
WO2022113958A1 (en) Method for producing polarizing film and polarizing film
WO2022145489A1 (en) Polyvinyl alcohol film, polarizing film using same, and polarizing plate
JP2022112056A (en) Polarizer and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028378

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18763624

Country of ref document: EP

Kind code of ref document: A1