WO2018163661A1 - Microparrticle number detector - Google Patents

Microparrticle number detector Download PDF

Info

Publication number
WO2018163661A1
WO2018163661A1 PCT/JP2018/002891 JP2018002891W WO2018163661A1 WO 2018163661 A1 WO2018163661 A1 WO 2018163661A1 JP 2018002891 W JP2018002891 W JP 2018002891W WO 2018163661 A1 WO2018163661 A1 WO 2018163661A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
collection
fine particles
charged
collecting
Prior art date
Application number
PCT/JP2018/002891
Other languages
French (fr)
Japanese (ja)
Inventor
京一 菅野
和幸 水野
英正 奥村
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2019504387A priority Critical patent/JPWO2018163661A1/en
Publication of WO2018163661A1 publication Critical patent/WO2018163661A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing

Definitions

  • the present invention relates to a particle number detector.
  • the particle number detector adds charge to the particles in the gas, collects the charged particles with the electrode plate of the diffusion separator, and measures the number of particles based on the amount of charges of the collected particles Is known (see, for example, Patent Document 1).
  • the present invention has been made to solve such a problem, and its main object is to facilitate the maintenance of the collecting electrode.
  • the particle number detector of the present invention is A charge generation unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the vent pipe to form charged fine particles; Provided on the downstream side of the gas flow with respect to the charge generation unit, and has a collecting electrode and a counter electrode facing the collecting electrode, and the distance between the collecting electrode and the counter electrode is 0.01 mm. Less than 0.2 mm, a charged particle collection unit that collects the charged particles passing through the Browning motion between the collection electrode and the counter electrode on the collection electrode; A number detection unit that detects the number of the fine particles based on a physical quantity that changes according to the number of the charged fine particles collected by the collection electrode; A heating unit for heating the collecting electrode; It is equipped with.
  • the charge generated by the discharge is added to the particles in the gas introduced into the vent tube to form charged particles.
  • the charged fine particles that pass through the Brownian motion between the collecting electrode and the counter electrode having an interval of 0.01 mm or more and less than 0.2 mm are collected by the collecting electrode.
  • the number detection unit detects the number of fine particles in the gas based on a physical quantity that changes according to the number of charged fine particles collected by the collection electrode.
  • This fine particle number detector includes a heating unit. Therefore, when fine particles or the like are deposited on the collection electrode, the collection electrode can be refreshed by heating the collection electrode in the heating unit and burning the deposit. Therefore, it is not necessary to remove the collection electrode and clean it to remove the deposit, and the maintenance of the collection electrode is facilitated.
  • charge includes positive charges and negative charges as well as ions.
  • Detecting the number of fine particles determines whether or not the number of fine particles falls within a predetermined numerical range (for example, whether or not a predetermined threshold value is exceeded) in addition to measuring the number of fine particles. Including cases.
  • the “physical quantity” may be a parameter that changes based on the number of charged fine particles (charge quantity), and examples thereof include current.
  • the interval between the collection electrode and the counter electrode is set to 0.01 mm or more in order to avoid excessive pressure loss, and the interval between the collection electrode and the counter electrode is set to less than 0.2 mm. This is to make it easier to collect the charged fine particles in Brownian motion on the collecting electrode.
  • the collection electrode and the counter electrode are arranged with a predetermined distance set in a range of 0.01 mm or more and less than 0.1 mm. If this distance is less than 0.1 mm, it becomes easier to collect charged fine particles that are in Brownian motion between the collecting electrode and the counter electrode.
  • the counter electrode is a partition electrode plate that bisects the passage
  • the collection electrode is provided to face each of the front and back surfaces of the partition electrode plate
  • the heating unit includes: ,
  • Each of the collecting electrodes may be provided.
  • the total area of the collecting electrode is increased as compared with the case where one collecting electrode is provided, so that the frequency of refreshing the collecting electrode by the heating unit can be reduced.
  • the charged particle collection unit can apply a voltage between the collection electrode and the counter electrode, and a voltage set in advance for each particle size range of the particles. You may make it apply between the said collection electrode and the said counter electrode. Even if no voltage is applied between the collecting electrode and the counter electrode, the charged fine particles passing through the two electrodes while moving in brown can be collected by the collecting electrode. On the other hand, when a voltage is applied between the collecting electrode and the counter electrode, the particle size range of the collected fine particles varies depending on the applied voltage. Therefore, the number of particles in a desired particle size range can be detected by applying a voltage preset for each particle size range between the collecting electrode and the counter electrode.
  • a plurality of the collecting electrodes may be provided at intervals from the upstream side to the downstream side of the gas flow.
  • the smaller charged fine particles are collected on the upstream collecting electrode, and the larger charged fine particles are collected on the downstream collecting electrode. Therefore, the charged fine particles can be easily classified.
  • the particle number detector of the present invention is provided between the charge generation unit and the charged particle collection unit, a removal electrode is disposed between a pair of removal electric field generation electrodes, and the pair of removal electric field generation electrodes There may be provided a surplus charge removing unit that removes surplus charges that have not been added to the fine particles when the removal voltage is applied therebetween. By so doing, excess charge is removed by the removal electrode, so that it is not collected by the collection electrode of the collection device and counted as the number of fine particles.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of the particle number detector 10. The graph showing the relationship between the particle size of fine particles and the transmittance.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 110.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 210. The graph showing the relationship between the particle size of fine particles and the transmittance.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 310.
  • FIG. 4 is a cross-sectional view illustrating a schematic configuration of a residual particle number detection device 70. Sectional drawing at the time of dividing the hollow part 12c into n steps and providing the collection apparatus 40 in each step.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the fine particle number detector 10
  • FIG. 2 is a graph showing the relationship between the particle size and transmittance of the fine particles.
  • the fine particle number detector 10 measures the number of fine particles contained in a gas (for example, exhaust gas from an automobile). As shown in FIG. 1, the particle number detector 10 includes a vent tube 12, a charge generation element 20, a surplus charge removal device 30, a collection device 40, a number detection device 50, and a heater 60.
  • the vent pipe 12 is made of ceramic, and has a gas inlet 12a for introducing gas into the vent pipe 12 and a gas outlet 12b for discharging the gas that has passed through the vent pipe 12.
  • the charge generation element 20 includes a needle electrode 22 and a counter electrode 24 provided so as to be exposed on a wall facing the needle electrode 22, provided on the side of the vent pipe 12 close to the gas inlet 12 a. is doing.
  • the needle electrode 22 and the counter electrode 24 are connected to a discharge power source 26 that applies a voltage Vp (for example, a pulse voltage).
  • Vp for example, a pulse voltage
  • the charge generating element 20 generates an air discharge due to a potential difference between the two electrodes when a voltage Vp is applied between the needle-like electrode 22 and the counter electrode 24.
  • the fine particles 16 in the gas are added with charges 18 (here, positive charges) to become charged fine particles P.
  • the surplus charge removing device 30 includes a pair of removal electric field generating electrodes (an application electrode 32 and a ground electrode 34) and a removal electrode 36.
  • the application electrode 32 and the ground electrode 34 are embedded in positions facing each other on the wall of the vent pipe 12.
  • the application electrode 32 is a minute positive potential V2 electrode.
  • the ground electrode 34 is an electrode connected to the ground.
  • the removal electrode 36 is disposed between the application electrode 32 and the ground electrode 34, and is exposed on the wall of the hollow portion 12 c in which the ground electrode 34 is embedded. As a result, a weak electric field is generated between the application electrode 32 and the ground electrode 34 of the surplus charge removing device 30.
  • the collection device 40 is a device that collects the charged fine particles P, and is provided in the hollow portion 12 c in the vent pipe 12.
  • the collection device 40 includes a collection electrode 42 and a counter electrode 44 that faces the collection electrode 42.
  • the collecting electrode 42 and the counter electrode 44 are exposed at positions facing each other on the wall of the vent pipe 12.
  • Both electrodes 42 and 44 are arranged with a predetermined distance set within a range of 0.01 mm or more and less than 0.2 mm (preferably 0.01 mm or more and 0.1 mm or less).
  • the distance between the electrodes 42 and 44 is also referred to as a channel thickness.
  • the counter electrode 44 is an electrode to which the voltage V1 can be applied. In the present embodiment, the voltage V1 is zero.
  • the collecting electrode 42 is connected to the ground via an ammeter 52.
  • the charged fine particles P (positively charged) enter the hollow portion 12 c while performing the Brownian motion, and pass between the collection electrode 42 and the counter electrode 44 after passing through the surplus charge removing device 30.
  • the channel thickness is the above-mentioned predetermined distance (minute distance). For this reason, the charged fine particles P having a small particle size with a sharp Brownian motion collide with the collecting electrode 42 and are collected even if no electric field is generated in both the electrodes 42 and 44.
  • the electrical wiring connecting the collecting electrode 42 and the ammeter 52 penetrates the heater 60 in a state where it is electrically insulated from the heater 60.
  • the relationship between the particle size of the fine particles and the transmittance is shown in the graph of FIG.
  • the voltage application to the counter electrode 44 is zero, when the channel thickness is 4 mm, almost all the fine particles having a particle diameter of 10 to 100 nm are transmitted without being collected by the collecting electrode.
  • the channel thickness is 0.1 mm, the smaller the particle size, the lower the transmittance and the easier it is to be collected by the collecting electrode 42.
  • There are two peaks in the particle size distribution of the fine particles one is a peak of 10 to 20 nm (condensed nucleus mode) and the other is a peak of 50 to 100 nm (accumulation mode). Therefore, when the voltage application to the counter electrode 44 is zero and the channel thickness is 0.1 mm, the charged fine particles P collected by the collecting electrode 42 are estimated to have a particle diameter of 10 to 20 nm.
  • the number detection device 50 includes an ammeter 52 and a number measurement device 54.
  • the ammeter 52 has one terminal connected to the collecting electrode 42 and the other terminal connected to the ground.
  • the ammeter 52 measures the current based on the charge 18 of the charged fine particles P collected by the collecting electrode 42.
  • the number measuring device 54 calculates the number of fine particles 16 based on the current of the ammeter 52.
  • the heater 60 is embedded in the wall of the vent pipe 12 at a position in the vicinity of the collecting electrode 42.
  • the heater 60 is connected to a power supply device (not shown), and generates heat when the power supply device is energized to heat the collecting electrode 42.
  • the particulate number detector 10 When measuring particulates contained in the exhaust gas of an automobile, the particulate number detector 10 is attached in the exhaust pipe of the engine. At this time, the particulate matter detector 10 is attached so that the exhaust gas is introduced into the vent pipe 12 from the gas inlet 12a of the particulate detector 10 and discharged from the gas outlet 12b.
  • the fine particles 16 contained in the exhaust gas introduced into the ventilation pipe 12 from the gas introduction port 12a are charged with the charge 18 (positive charge in this case) generated by the discharge of the charge generation element 20 and become the charged fine particles P and then the hollow portion. Enter 12c.
  • the charged fine particles P entering the hollow portion 12c those having a particle diameter of 10 to 20 nm have a low transmittance as shown in FIG. 2, and therefore when passing between the collecting electrode 42 and the counter electrode 44, both electrodes Even if no electric field is generated at 42 and 44, they are collected by the collecting electrode 42.
  • the charged fine particles P having a particle diameter of 50 to 100 nm pass through without being collected by the collecting electrode 42 because the transmittance exceeds 0.9 as shown in FIG.
  • the current based on the charge 18 of the charged fine particles P attached to the collecting electrode 42 is measured by an ammeter 52, and the number measuring device 54 calculates the number of the fine particles 16 based on the current.
  • the number measuring device 54 integrates (accumulates) the current value over a predetermined period to obtain the integrated value (accumulated charge amount), and divides the accumulated charge amount by the elementary charge to obtain the total number of charges (collected charge number).
  • the number Nt of fine particles 16 having a particle diameter of 10 to 20 nm attached to the collecting electrode 42 is obtained by dividing the number of collected charges by the average value of the number of charges added to one fine particle 16.
  • the average value of the collection rate of the fine particles 16 having a particle size of 10 to 20 nm is obtained by subtracting the average value of the transmittance of the fine particles 16 having a particle size of 10 to 20 nm from 1, and the number Nt is the average value of the collection rates.
  • the value divided by may be the total number Na.
  • the collection electrode 42 is heated and incinerated by heating the collection electrode 42 with the heater 60 periodically or at the timing when the accumulation amount reaches a predetermined amount. Refresh the face.
  • the charge generation element 20 of the present embodiment corresponds to a charge generation unit of the present invention
  • the collection device 40 corresponds to a charged particle collection unit
  • the number detection device 50 corresponds to a number detection unit
  • the heater 60 serves as a heating unit. It corresponds to.
  • the charged fine particles P having a predetermined particle size range (particle size of 10 to 20 nm) passing between the collecting electrode 42 and the counter electrode 44 while performing Brownian motion are as follows. And collected by the collecting electrode 42. Then, the number of fine particles 16 in the gas is detected based on a current that changes according to the number of charged fine particles P collected by the collecting electrode 42.
  • the particle number detector 10 includes a heater 60. Therefore, when the fine particles 16 or the like are deposited on the collecting electrode 42, the collecting electrode 42 can be refreshed by heating the collecting electrode 42 with the heater 60 and burning the deposit. Therefore, it is not necessary to remove the collection electrode 42 and clean it to remove the deposit, and the maintenance of the collection electrode 42 is facilitated.
  • the collection electrode 42 and the counter electrode 44 are arranged with a predetermined distance set within a range of 0.01 mm or more and less than 0.2 mm, the collection electrode 42 and the counter electrode 44 are disposed between the collection electrode 42 and the counter electrode 44. It is easy to collect the charged fine particles P that are in a Brownian motion, and the pressure loss does not become too high. In addition, if this distance is 0.1 mm or less, it becomes easier to collect.
  • the heater 60 is embedded in the wall of the vent pipe 12, but the heater 160 may be provided on the outer peripheral surface of the vent pipe 12 as in the particle number detector 110 shown in FIG.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the heater 60 of the embodiment described above can be installed near the collecting electrode 42, the collecting electrode 42 can be efficiently heated.
  • the collection device 40 including the collection electrode 42 and the counter electrode 44 is employed.
  • the collection electrodes 241 and 242 and the counter electrode 244 are used. You may employ
  • the same components as those in the above-described embodiment are denoted by the same reference numerals.
  • the counter electrode 244 is a partition electrode plate that divides the hollow portion 12 c into two, and the collection electrodes 241 and 242 are provided to face the front and back of the counter electrode 244, respectively.
  • the heaters 261 and 262 are provided in the vicinity of the collecting electrodes 241 and 242.
  • the number detection devices 251 and 252 are also connected to the respective collecting electrodes 241 and 242.
  • the frequency with which the collection electrodes 241 and 242 are refreshed by the heaters 261 and 262 can be reduced.
  • members supporting the counter electrode may be arranged on both the upper and lower surfaces of the ceramic plate so that the voltage V1 can be applied to both counter substrates.
  • the counter electrode on the lower surface of the ceramic plate faces the collecting electrode 241
  • the counter electrode on the upper surface of the ceramic plate faces the collecting electrode 242.
  • the voltage V1 applied to the counter electrode 44 is zero, but a voltage set in advance for each particle size range of the charged fine particles P may be applied to the counter electrode 44.
  • FIG. 5 is a graph showing the relationship between the particle size of the fine particles and the transmittance when the voltage is changed with a flow channel thickness of 0.1 mm.
  • the voltage V1 is zero, the fine particles 16 having a particle diameter of 10 to 20 nm hardly pass through the flow path (that is, are easily collected).
  • the voltage V1 is the predetermined voltage Va (> 0)
  • fine particles having a particle size of 10 to 50 nm are unlikely to pass through the flow path (that is, are easily collected), and the voltage V1 is equal to the predetermined voltage Vb (> 0).
  • Va fine particles having a particle size of 10 to 100 nm hardly pass through the flow path (that is, are easily collected). Therefore, when it is desired to detect the number of fine particles having a particle size of 10 to 20 nm, the voltage V1 is set to zero, and when it is desired to detect the number of fine particles having a particle size of 10 to 50 nm, the voltage V1 is set to a predetermined voltage Va.
  • the voltage V1 may be set to the predetermined voltage Vb. That is, by applying a preset voltage between the collection electrode 42 and the counter electrode 44 for each particle size range of the charged fine particles P, the number of particles in a desired particle size range can be detected. Further, by switching the set value of the voltage V1 stepwise with time, the number of particles in different particle size ranges can be grasped, and the particle size distribution can be obtained.
  • the collecting electrode 42 is provided as a single electrode, but a plurality of gaps may be provided from the upstream side to the downstream side of the gas flow.
  • An example is shown in FIG.
  • the fine particle number detector 310 of FIG. 6 includes three collection electrodes 421, 422, and 423.
  • the collection electrodes 421, 422, and 423 are connected to ammeters 521, 522, and 523, respectively, and the ammeters 521, 522, and 523 are connected to the number measuring devices 541, 542, and 543, respectively.
  • FIG. 6 the same components as those in the above-described embodiment are denoted by the same reference numerals.
  • the smaller charged fine particle P is collected by the upstream collecting electrode 421, and the larger charged fine particle P is collected by the downstream collecting electrode 423. Therefore, the charged fine particles P can be classified. Further, since the collection electrodes 421, 422, and 423 are provided with the number measuring devices 541, 542, and 543, the number of the small-sized fine particles 16, the number of the medium-sized fine particles 16, and the large-sized fine particles 16, respectively. Each number can be measured.
  • the number of charged fine particles P that have not been collected by the collection device 40 are collected before the gas discharge port 12b (upstream side of the gas flow).
  • the residual particle number detection device 70 has a pair of electric field generating electrodes 72 and 74 and a recovery electrode 76.
  • the pair of electric field generating electrodes 72 and 74 are embedded at positions facing each other on the wall of the vent pipe 12, and a voltage is applied so that a potential difference is generated between the electrodes 72 and 74. As a result, an electric field is generated between the electrodes 72 and 74.
  • the collection electrode 76 is disposed between the electrodes 72 and 74 and is exposed to the wall of the vent pipe 12.
  • the charged fine particles P that have passed through the collecting device 40 (see FIG. 1) and have reached between the electrodes 72 and 74 are attracted to the electrode 74 by the electric field generated between the electrodes 72 and 74, and in the middle It is recovered by a recovery electrode 76 installed in A number detection device 78 similar to the number detection device 50 (see FIG. 1) is connected to the collection electrode 76.
  • the number detection device 78 detects the number of charged fine particles P that have not been collected by the collection device 40. Therefore, the total number of particles contained in the gas can be known by adding the number of particles calculated by the two number detection devices 50 and 78. Further, the ratio of the number of fine particles having a particle diameter of 10 to 20 nm detected by the number detection device 50 to the total number of fine particles can be obtained.
  • the residual particle number detection device 70 may be configured by a mesh having an opening smaller than the interval between the collection electrode 42 and the counter electrode 44. In this case, since the charged fine particles P reach the mesh by Brownian motion, the particles can be collected without applying a voltage. Furthermore, if a voltage having a polarity opposite to that of the charged fine particles P is applied to the mesh, the charged fine particles P can be collected more reliably.
  • one collecting device 40 is provided in the hollow portion 12c.
  • n is an integer equal to or larger than 2
  • n in FIG. 3
  • a collecting device 40 collecting electrode 42 and counter electrode 44
  • the length of the hollow portion 12c in the gas flow direction can be reduced to 1 / n that of the above-described embodiment in order to obtain the same effect as that of the above-described embodiment, so that the particle number detector can be made compact.
  • the present invention can be used to detect the number of fine particles in exhaust gas from a power machine such as an automobile.
  • Fine particle number detector 12 vent tube, 12a gas inlet, 12b gas outlet, 12c hollow part, 16 fine particles, 18 charges, 22 needle electrodes, 24 counter electrode, 26 discharge power supply, 30 surplus charge removal device, 32 applied electrode, 34 ground electrode, 36 removal electrode, 40,240 collection device, 42,242,421-423 collection electrode, 44,244 counter electrode, 50,251,252 number detection device 52, 521 to 523 ammeter, 54, 541 to 543 number measuring device, 60, 160, 261, 262 heater, 70 remaining particle number detecting device, 72, 74 electric field generating electrode, 76 collecting electrode, 78 number detecting device, P Charged fine particles.

Abstract

This microparticle number detector 10 is provided with an electric charge generating element 20, a collecting device 40, and a number detecting device 50. The electric charge generating element 20 adds, to microparticles 16 in a gas, electric charges generated by electrical discharge to thereby convert the microparticles into charged microparticles P. The collecting device 40 collects, in a collecting electrode 42, the charged microparticles P that pass through between the collecting electrode 42 and a counter electrode 44 while performing Brownian motion. The number detecting device 50 detects the number of the microparticles 16 on the basis of a current varying according to the number of charged microparticles P collected by the collecting electrode 42. When the microparticles 16 or the like are deposited on the collecting electrode 42, a heater 60 burns and eliminates the deposits by heating the collecting electrode 42.

Description

微粒子数検出器Particle count detector
 本発明は、微粒子数検出器に関する。 The present invention relates to a particle number detector.
 微粒子数検出器としては、ガス中の微粒子に電荷を付加し、帯電した微粒子を拡散分離器の電極板で捕集し、捕集された微粒子の電荷の量に基づいて微粒子数を測定するものが知られている(例えば特許文献1参照)。 The particle number detector adds charge to the particles in the gas, collects the charged particles with the electrode plate of the diffusion separator, and measures the number of particles based on the amount of charges of the collected particles Is known (see, for example, Patent Document 1).
特開2014-59314号公報JP 2014-59314 A
 しかしながら、特許文献1の微粒子数検出器では、拡散分離器の電極板の表面に微粒子が堆積してしまうため、適時、電極板を取り外して清掃することにより堆積物を除去する必要があった。 However, in the particle number detector of Patent Document 1, since particles accumulate on the surface of the electrode plate of the diffusion separator, it is necessary to remove the deposit by removing the electrode plate and cleaning it at appropriate times.
 本発明はこのような課題を解決するためになされたものであり、捕集電極のメンテナンスを容易にすることを主目的とする。 The present invention has been made to solve such a problem, and its main object is to facilitate the maintenance of the collecting electrode.
 本発明の微粒子数検出器は、
 通気管内に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
 前記電荷発生部よりも前記ガスの流れの下流側に設けられ、捕集電極と前記捕集電極に対向する対向電極とを有し、前記捕集電極と前記対向電極との間隔は0.01mm以上0.2mm未満であり、前記捕集電極と前記対向電極との間をブラウン運動しながら通過する前記帯電微粒子を前記捕集電極に捕集する帯電微粒子捕集部と、
 前記捕集電極に捕集された前記帯電微粒子の数に応じて変化する物理量に基づいて、前記微粒子の数を検出する個数検出部と、
 前記捕集電極を加熱する加熱部と、
 を備えたものである。
The particle number detector of the present invention is
A charge generation unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the vent pipe to form charged fine particles;
Provided on the downstream side of the gas flow with respect to the charge generation unit, and has a collecting electrode and a counter electrode facing the collecting electrode, and the distance between the collecting electrode and the counter electrode is 0.01 mm. Less than 0.2 mm, a charged particle collection unit that collects the charged particles passing through the Browning motion between the collection electrode and the counter electrode on the collection electrode;
A number detection unit that detects the number of the fine particles based on a physical quantity that changes according to the number of the charged fine particles collected by the collection electrode;
A heating unit for heating the collecting electrode;
It is equipped with.
 この微粒子数検出器では、放電によって発生した電荷を通気管内に導入されたガス中の微粒子に付加して帯電微粒子にする。間隔が0.01mm以上0.2mm未満の捕集電極と対向電極との間をブラウン運動しながら通過する帯電微粒子は、捕集電極に捕集される。そして、個数検出部が、捕集電極に捕集された帯電微粒子の数に応じて変化する物理量に基づいてガス中の微粒子の数を検出する。この微粒子数検出器は、加熱部を備えている。そのため、捕集電極に微粒子等が堆積した場合、加熱部で捕集電極を加熱して堆積物を燃焼することにより捕集電極をリフレッシュすることができる。したがって、捕集電極を取り外して清掃して堆積物を除去する作業が不要となり、捕集電極のメンテナンスが容易になる。 In this particle number detector, the charge generated by the discharge is added to the particles in the gas introduced into the vent tube to form charged particles. The charged fine particles that pass through the Brownian motion between the collecting electrode and the counter electrode having an interval of 0.01 mm or more and less than 0.2 mm are collected by the collecting electrode. The number detection unit detects the number of fine particles in the gas based on a physical quantity that changes according to the number of charged fine particles collected by the collection electrode. This fine particle number detector includes a heating unit. Therefore, when fine particles or the like are deposited on the collection electrode, the collection electrode can be refreshed by heating the collection electrode in the heating unit and burning the deposit. Therefore, it is not necessary to remove the collection electrode and clean it to remove the deposit, and the maintenance of the collection electrode is facilitated.
 なお、本明細書において、「電荷」とは、正電荷や負電荷のほかイオンを含むものとする。「微粒子の数を検出する」とは、微粒子の数を測定する場合のほか、微粒子の数が所定の数値範囲に入るか否か(例えば所定のしきい値を超えるか否か)を判定する場合も含むものとする。「物理量」とは、帯電微粒子の数(電荷量)に基づいて変化するパラメータであればよく、例えば電流などが挙げられる。また、捕集電極と対向電極との間隔を0.01mm以上としたのは圧損が高くなりすぎるのを避けるためであり、0.2mm未満としたのは捕集電極と対向電極との間をブラウン運動している帯電微粒子を捕集電極に捕集しやすくするためである。 In this specification, “charge” includes positive charges and negative charges as well as ions. “Detecting the number of fine particles” determines whether or not the number of fine particles falls within a predetermined numerical range (for example, whether or not a predetermined threshold value is exceeded) in addition to measuring the number of fine particles. Including cases. The “physical quantity” may be a parameter that changes based on the number of charged fine particles (charge quantity), and examples thereof include current. The interval between the collection electrode and the counter electrode is set to 0.01 mm or more in order to avoid excessive pressure loss, and the interval between the collection electrode and the counter electrode is set to less than 0.2 mm. This is to make it easier to collect the charged fine particles in Brownian motion on the collecting electrode.
 本発明の微粒子数検出器において、前記捕集電極と前記対向電極とは、0.01mm以上0.1mm未満の範囲内で設定された所定距離を隔てて配置されていることが好ましい。この距離が0.1mm未満であれば、捕集電極と対向電極との間をブラウン運動している帯電微粒子をより捕集しやすくなる。 In the fine particle number detector of the present invention, it is preferable that the collection electrode and the counter electrode are arranged with a predetermined distance set in a range of 0.01 mm or more and less than 0.1 mm. If this distance is less than 0.1 mm, it becomes easier to collect charged fine particles that are in Brownian motion between the collecting electrode and the counter electrode.
 本発明の微粒子数検出器において、前記対向電極は、前記通路を2分する仕切り電極板であり、前記捕集電極は、前記仕切り電極板の表裏それぞれに対向して設けられ、前記加熱部は、それぞれの前記捕集電極に設けられていてもよい。こうすれば、1つの捕集電極を備えている場合に比べて捕集電極の総面積が広くなるため、加熱部によって捕集電極をリフレッシュする頻度を下げることができる。 In the particle number detector of the present invention, the counter electrode is a partition electrode plate that bisects the passage, the collection electrode is provided to face each of the front and back surfaces of the partition electrode plate, and the heating unit includes: , Each of the collecting electrodes may be provided. In this case, the total area of the collecting electrode is increased as compared with the case where one collecting electrode is provided, so that the frequency of refreshing the collecting electrode by the heating unit can be reduced.
 本発明の微粒子数検出器において、前記帯電微粒子捕集部は、前記捕集電極と前記対向電極との間に電圧を印加可能であり、前記微粒子の粒径範囲ごとに予め設定された電圧が前記捕集電極と前記対向電極との間に印加されるようにしてもよい。捕集電極と対向電極との間には電圧を印加しなくても両電極間をブラウン運動しながら通過する帯電微粒子を捕集電極に捕集することはできる。一方、捕集電極と対向電極との間に電圧を印加する場合、捕集される微粒子の粒径範囲は印加電圧によって異なる。そのため、微粒子の粒径範囲ごとに予め設定された電圧を捕集電極と対向電極との間に印加することにより、所望の粒径範囲の微粒子数を検出することができる。 In the particle number detector of the present invention, the charged particle collection unit can apply a voltage between the collection electrode and the counter electrode, and a voltage set in advance for each particle size range of the particles. You may make it apply between the said collection electrode and the said counter electrode. Even if no voltage is applied between the collecting electrode and the counter electrode, the charged fine particles passing through the two electrodes while moving in brown can be collected by the collecting electrode. On the other hand, when a voltage is applied between the collecting electrode and the counter electrode, the particle size range of the collected fine particles varies depending on the applied voltage. Therefore, the number of particles in a desired particle size range can be detected by applying a voltage preset for each particle size range between the collecting electrode and the counter electrode.
 本発明の微粒子数検出器において、前記捕集電極は、前記ガスの流れの上流側から下流側に向かって複数個、間隔をあけて設けられていてもよい。流体力学上、小さな帯電微粒子ほど上流側の捕集電極に捕集され、大きな帯電微粒子ほど下流側の捕集電極に捕集される。そのため、帯電微粒子を容易に分級することができる。 In the particle number detector of the present invention, a plurality of the collecting electrodes may be provided at intervals from the upstream side to the downstream side of the gas flow. In terms of fluid dynamics, the smaller charged fine particles are collected on the upstream collecting electrode, and the larger charged fine particles are collected on the downstream collecting electrode. Therefore, the charged fine particles can be easily classified.
 本発明の微粒子数検出器は、前記電荷発生部と前記帯電微粒子捕集部との間に設けられ、一対の除去電界生成電極の間に除去電極が配置され、前記一対の除去電界生成電極の間に除去電圧が印加されると前記微粒子に付加されなかった余剰の電荷が前記除去電極によって除去される余剰電荷除去部を備えていてもよい。こうすれば、余剰の電荷は除去電極によって除去されるため、捕集装置の捕集電極に捕集されて微粒子数にカウントされてしまうことがない。 The particle number detector of the present invention is provided between the charge generation unit and the charged particle collection unit, a removal electrode is disposed between a pair of removal electric field generation electrodes, and the pair of removal electric field generation electrodes There may be provided a surplus charge removing unit that removes surplus charges that have not been added to the fine particles when the removal voltage is applied therebetween. By so doing, excess charge is removed by the removal electrode, so that it is not collected by the collection electrode of the collection device and counted as the number of fine particles.
微粒子数検出器10の概略構成を表す断面図。FIG. 3 is a cross-sectional view illustrating a schematic configuration of the particle number detector 10. 微粒子の粒径と透過率との関係を表すグラフ。The graph showing the relationship between the particle size of fine particles and the transmittance. 微粒子数検出器110の概略構成を表す断面図。FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 110. 微粒子数検出器210の概略構成を表す断面図。FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 210. 微粒子の粒径と透過率との関係を表すグラフ。The graph showing the relationship between the particle size of fine particles and the transmittance. 微粒子数検出器310の概略構成を表す断面図。FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 310. 残粒子数検出装置70の概略構成を表す断面図。FIG. 4 is a cross-sectional view illustrating a schematic configuration of a residual particle number detection device 70. 中空部12cをn段に仕切り各段に捕集装置40を設けた場合の断面図。Sectional drawing at the time of dividing the hollow part 12c into n steps and providing the collection apparatus 40 in each step.
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は微粒子数検出器10の概略構成を表す断面図、図2は微粒子の粒径と透過率との関係を表すグラフである。 Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of the fine particle number detector 10, and FIG. 2 is a graph showing the relationship between the particle size and transmittance of the fine particles.
 微粒子数検出器10は、ガス(例えば自動車の排ガス)に含まれる微粒子の数を計測するものである。この微粒子数検出器10は、図1に示すように、通気管12、電荷発生素子20、余剰電荷除去装置30、捕集装置40、個数検出装置50及びヒータ60を備えている。通気管12は、セラミック製であり、ガスを通気管12内に導入するガス導入口12aと、通気管12を通過してきたガスを排出するガス排出口12bとを有している。 The fine particle number detector 10 measures the number of fine particles contained in a gas (for example, exhaust gas from an automobile). As shown in FIG. 1, the particle number detector 10 includes a vent tube 12, a charge generation element 20, a surplus charge removal device 30, a collection device 40, a number detection device 50, and a heater 60. The vent pipe 12 is made of ceramic, and has a gas inlet 12a for introducing gas into the vent pipe 12 and a gas outlet 12b for discharging the gas that has passed through the vent pipe 12.
 電荷発生素子20は、通気管12のガス導入口12aに近い側に設けられ、針状電極22と、その針状電極22に対向する壁に露出するように設置された対向電極24とを有している。針状電極22と対向電極24とは、電圧Vp(例えばパルス電圧等)を印加する放電用電源26に接続されている。電荷発生素子20は、針状電極22と対向電極24との間に電圧Vpが印加されることで、両電極間の電位差による気中放電が発生する。この気中放電中をガスが通過することによりガス中の微粒子16は電荷18(ここでは正電荷とする)が付加されて帯電微粒子Pになる。 The charge generation element 20 includes a needle electrode 22 and a counter electrode 24 provided so as to be exposed on a wall facing the needle electrode 22, provided on the side of the vent pipe 12 close to the gas inlet 12 a. is doing. The needle electrode 22 and the counter electrode 24 are connected to a discharge power source 26 that applies a voltage Vp (for example, a pulse voltage). The charge generating element 20 generates an air discharge due to a potential difference between the two electrodes when a voltage Vp is applied between the needle-like electrode 22 and the counter electrode 24. As the gas passes through the air discharge, the fine particles 16 in the gas are added with charges 18 (here, positive charges) to become charged fine particles P.
 余剰電荷除去装置30は、一対の除去電界発生電極(印加電極32及び接地電極34)と、除去電極36とを有している。印加電極32と接地電極34とは、通気管12の壁の互いに向かい合う位置に埋設されている。印加電極32は、微小な正電位V2の電極である。接地電極34は、グランドに接続された電極である。除去電極36は、印加電極32と接地電極34との間に配置され、接地電極34が埋設された中空部12cの壁に露出している。これにより、余剰電荷除去装置30の印加電極32と接地電極34との間には弱い電界が発生する。したがって、電荷発生素子20で発生した電荷18のうち、微粒子16に付加されなかった余剰の電荷18は、この弱い電界によって接地電極34に引き寄せられ、除去電極36に捕獲されたあとグランドに捨てられる。そのため、余剰の電荷18が捕集装置40の捕集電極42に捕集されて微粒子16の数にカウントされてしまうことがない。 The surplus charge removing device 30 includes a pair of removal electric field generating electrodes (an application electrode 32 and a ground electrode 34) and a removal electrode 36. The application electrode 32 and the ground electrode 34 are embedded in positions facing each other on the wall of the vent pipe 12. The application electrode 32 is a minute positive potential V2 electrode. The ground electrode 34 is an electrode connected to the ground. The removal electrode 36 is disposed between the application electrode 32 and the ground electrode 34, and is exposed on the wall of the hollow portion 12 c in which the ground electrode 34 is embedded. As a result, a weak electric field is generated between the application electrode 32 and the ground electrode 34 of the surplus charge removing device 30. Therefore, of the electric charges 18 generated by the electric charge generating element 20, the excessive electric charges 18 that have not been added to the fine particles 16 are attracted to the ground electrode 34 by this weak electric field, captured by the removal electrode 36, and then discarded to the ground. . Therefore, surplus charges 18 are not collected by the collection electrode 42 of the collection device 40 and counted as the number of fine particles 16.
 捕集装置40は、帯電微粒子Pを捕集する装置であり、通気管12内の中空部12cに設けられている。捕集装置40は、捕集電極42とその捕集電極42に対向する対向電極44とを有している。捕集電極42と対向電極44とは、通気管12の壁の互いに向かい合う位置に露出している。両電極42,44は、0.01mm以上0.2mm未満(好ましくは0.01mm以上0.1mm以下)の範囲内で設定された所定距離を隔てて配置されている。両電極42,44の間隔を流路厚ともいう。対向電極44は、電圧V1を印加可能な電極であるが、本実施形態では電圧V1はゼロとする。捕集電極42は、電流計52を介してグランドに接続されている。帯電微粒子P(正に帯電)は、ブラウン運動しながら中空部12cに入り込み、余剰電荷除去装置30を通過したあと捕集電極42と対向電極44との間を通過する。このとき、流路厚は上述した所定距離(微小距離)である。そのため、ブラウン運動の激しい粒径の小さな帯電微粒子Pは、両電極42,44に電界が発生していなくても捕集電極42に衝突して捕集される。なお、捕集電極42と電流計52とを繋ぐ電気配線は、ヒータ60とは電気的に絶縁された状態でヒータ60を貫通している。 The collection device 40 is a device that collects the charged fine particles P, and is provided in the hollow portion 12 c in the vent pipe 12. The collection device 40 includes a collection electrode 42 and a counter electrode 44 that faces the collection electrode 42. The collecting electrode 42 and the counter electrode 44 are exposed at positions facing each other on the wall of the vent pipe 12. Both electrodes 42 and 44 are arranged with a predetermined distance set within a range of 0.01 mm or more and less than 0.2 mm (preferably 0.01 mm or more and 0.1 mm or less). The distance between the electrodes 42 and 44 is also referred to as a channel thickness. The counter electrode 44 is an electrode to which the voltage V1 can be applied. In the present embodiment, the voltage V1 is zero. The collecting electrode 42 is connected to the ground via an ammeter 52. The charged fine particles P (positively charged) enter the hollow portion 12 c while performing the Brownian motion, and pass between the collection electrode 42 and the counter electrode 44 after passing through the surplus charge removing device 30. At this time, the channel thickness is the above-mentioned predetermined distance (minute distance). For this reason, the charged fine particles P having a small particle size with a sharp Brownian motion collide with the collecting electrode 42 and are collected even if no electric field is generated in both the electrodes 42 and 44. Note that the electrical wiring connecting the collecting electrode 42 and the ammeter 52 penetrates the heater 60 in a state where it is electrically insulated from the heater 60.
 ここで、微粒子の粒径と透過率との関係を図2のグラフに示す。対向電極44の電圧印加がゼロの場合、流路厚4mmでは粒径10~100nmの微粒子のほぼすべてが捕集電極42に捕集されることなく透過してしまう。流路厚0.1mmでは粒径が小さい微粒子ほど透過率が低く捕集電極42に捕集されやすいことがわかる。微粒子の粒度分布には2つの山があり、一つは10~20nmの山(凝縮核モード(nuclei mode))、もう一つは50~100nmの山(凝集モード(accumulation mode))である。そのため、対向電極44の電圧印加がゼロで流路厚が0.1mmの場合、捕集電極42に捕集される帯電微粒子Pは粒径10~20nmのものと推測される。 Here, the relationship between the particle size of the fine particles and the transmittance is shown in the graph of FIG. When the voltage application to the counter electrode 44 is zero, when the channel thickness is 4 mm, almost all the fine particles having a particle diameter of 10 to 100 nm are transmitted without being collected by the collecting electrode. It can be seen that when the channel thickness is 0.1 mm, the smaller the particle size, the lower the transmittance and the easier it is to be collected by the collecting electrode 42. There are two peaks in the particle size distribution of the fine particles, one is a peak of 10 to 20 nm (condensed nucleus mode) and the other is a peak of 50 to 100 nm (accumulation mode). Therefore, when the voltage application to the counter electrode 44 is zero and the channel thickness is 0.1 mm, the charged fine particles P collected by the collecting electrode 42 are estimated to have a particle diameter of 10 to 20 nm.
 個数検出装置50は、電流計52と個数測定装置54とを備えている。電流計52は、一方の端子が捕集電極42に接続され、もう一方の端子がグランドに接続されている。この電流計52は、捕集電極42に捕集された帯電微粒子Pの電荷18に基づく電流を測定する。個数測定装置54は、電流計52の電流に基づいて微粒子16の個数を演算する。 The number detection device 50 includes an ammeter 52 and a number measurement device 54. The ammeter 52 has one terminal connected to the collecting electrode 42 and the other terminal connected to the ground. The ammeter 52 measures the current based on the charge 18 of the charged fine particles P collected by the collecting electrode 42. The number measuring device 54 calculates the number of fine particles 16 based on the current of the ammeter 52.
 ヒータ60は、捕集電極42の近傍の位置にて通気管12の壁内に埋設されている。ヒータ60は、図示しない給電装置に接続され、その給電装置によって通電されると発熱して捕集電極42を加熱する。 The heater 60 is embedded in the wall of the vent pipe 12 at a position in the vicinity of the collecting electrode 42. The heater 60 is connected to a power supply device (not shown), and generates heat when the power supply device is energized to heat the collecting electrode 42.
 次に、微粒子数検出器10の使用例について説明する。自動車の排ガスに含まれる微粒子を計測する場合、エンジンの排気管内に微粒子数検出器10を取り付ける。このとき、排ガスが微粒子数検出器10のガス導入口12aから通気管12内に導入され、ガス排出口12bから排出されるように微粒子数検出器10を取り付ける。 Next, a usage example of the particle number detector 10 will be described. When measuring particulates contained in the exhaust gas of an automobile, the particulate number detector 10 is attached in the exhaust pipe of the engine. At this time, the particulate matter detector 10 is attached so that the exhaust gas is introduced into the vent pipe 12 from the gas inlet 12a of the particulate detector 10 and discharged from the gas outlet 12b.
 ガス導入口12aから通気管12内に導入された排ガスに含まれる微粒子16は、電荷発生素子20の放電によって発生した電荷18(ここでは正電荷)を帯びて帯電微粒子Pになったあと中空部12cに入る。中空部12cに入った帯電微粒子Pのうち粒径10~20nmのものは、図2に示すように透過率が低いため、捕集電極42と対向電極44との間を通過する際、両電極42,44に電界が発生していなくても捕集電極42に捕集される。一方、粒径50~100nmの帯電微粒子Pは、図2に示すように透過率が0.9を超えているため捕集電極42に捕集されることなくそのまま通過する。 The fine particles 16 contained in the exhaust gas introduced into the ventilation pipe 12 from the gas introduction port 12a are charged with the charge 18 (positive charge in this case) generated by the discharge of the charge generation element 20 and become the charged fine particles P and then the hollow portion. Enter 12c. Among the charged fine particles P entering the hollow portion 12c, those having a particle diameter of 10 to 20 nm have a low transmittance as shown in FIG. 2, and therefore when passing between the collecting electrode 42 and the counter electrode 44, both electrodes Even if no electric field is generated at 42 and 44, they are collected by the collecting electrode 42. On the other hand, the charged fine particles P having a particle diameter of 50 to 100 nm pass through without being collected by the collecting electrode 42 because the transmittance exceeds 0.9 as shown in FIG.
 そして、捕集電極42に付着された帯電微粒子Pの電荷18に基づく電流が電流計52で測定され、その電流に基づいて個数測定装置54が微粒子16の個数を演算する。電流Iと電荷量qの関係は、I=dq/(dt)、q=∫Idtである。個数測定装置54は、所定期間にわたって電流値を積分(累算)してその積分値(蓄積電荷量)を求め、蓄積電荷量を素電荷で除算して電荷の総数(捕集電荷数)を求め、その捕集電荷数を1つの微粒子16に付加する電荷の数の平均値で除算することで、捕集電極42に付着していた粒径10~20nmの微粒子16の個数Ntを求める。但し、図2に示すように、粒径10~20nmの微粒子16の一部は、捕集電極42に捕集されることなく通過してしまう。そのため、求めた個数Ntを補正して粒径10~20nmの微粒子の総数Naを求める必要がある。例えば、粒径10~20nmの微粒子16の透過率の平均値を1から差し引くことにより粒径10~20nmの微粒子16の捕集率の平均値を求め、個数Ntをその捕集率の平均値で除した値を総数Naとしてもよい。 The current based on the charge 18 of the charged fine particles P attached to the collecting electrode 42 is measured by an ammeter 52, and the number measuring device 54 calculates the number of the fine particles 16 based on the current. The relationship between the current I and the charge amount q is I = dq / (dt), q = ∫Idt. The number measuring device 54 integrates (accumulates) the current value over a predetermined period to obtain the integrated value (accumulated charge amount), and divides the accumulated charge amount by the elementary charge to obtain the total number of charges (collected charge number). The number Nt of fine particles 16 having a particle diameter of 10 to 20 nm attached to the collecting electrode 42 is obtained by dividing the number of collected charges by the average value of the number of charges added to one fine particle 16. However, as shown in FIG. 2, some of the fine particles 16 having a particle diameter of 10 to 20 nm pass through without being collected by the collecting electrode. Therefore, it is necessary to obtain the total number Na of fine particles having a particle diameter of 10 to 20 nm by correcting the obtained number Nt. For example, the average value of the collection rate of the fine particles 16 having a particle size of 10 to 20 nm is obtained by subtracting the average value of the transmittance of the fine particles 16 having a particle size of 10 to 20 nm from 1, and the number Nt is the average value of the collection rates. The value divided by may be the total number Na.
 微粒子16等が捕集電極42に数多く堆積すると、新たに帯電微粒子Pが捕集電極42に捕集されないことがある。そのため、定期的にあるいは堆積量が所定量に達したタイミングで、捕集電極42をヒータ60によって加熱することにより、捕集電極42上の堆積物を加熱して焼却し捕集電極42の電極面をリフレッシュする。 When a large number of fine particles 16 and the like are deposited on the collecting electrode 42, the charged fine particles P may not be newly collected on the collecting electrode 42. Therefore, the collection electrode 42 is heated and incinerated by heating the collection electrode 42 with the heater 60 periodically or at the timing when the accumulation amount reaches a predetermined amount. Refresh the face.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の電荷発生素子20が本発明の電荷発生部に相当し、捕集装置40が帯電微粒子捕集部に相当し、個数検出装置50が個数検出部に相当し、ヒータ60が加熱部に相当する。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The charge generation element 20 of the present embodiment corresponds to a charge generation unit of the present invention, the collection device 40 corresponds to a charged particle collection unit, the number detection device 50 corresponds to a number detection unit, and the heater 60 serves as a heating unit. It corresponds to.
 以上詳述した本実施形態の微粒子数検出器10では、捕集電極42と対向電極44との間をブラウン運動しながら通過する所定の粒径範囲(粒径10~20nm)の帯電微粒子Pは、捕集電極42に捕集される。そして、捕集電極42に捕集された帯電微粒子Pの数に応じて変化する電流に基づいてガス中の微粒子16の数を検出する。この微粒子数検出器10はヒータ60を備えている。そのため、捕集電極42に微粒子16等が堆積した場合、ヒータ60で捕集電極42を加熱して堆積物を燃焼することにより捕集電極42をリフレッシュすることができる。したがって、捕集電極42を取り外して清掃して堆積物を除去する作業が不要となり、捕集電極42のメンテナンスが容易になる。 In the fine particle number detector 10 of the present embodiment described in detail above, the charged fine particles P having a predetermined particle size range (particle size of 10 to 20 nm) passing between the collecting electrode 42 and the counter electrode 44 while performing Brownian motion are as follows. And collected by the collecting electrode 42. Then, the number of fine particles 16 in the gas is detected based on a current that changes according to the number of charged fine particles P collected by the collecting electrode 42. The particle number detector 10 includes a heater 60. Therefore, when the fine particles 16 or the like are deposited on the collecting electrode 42, the collecting electrode 42 can be refreshed by heating the collecting electrode 42 with the heater 60 and burning the deposit. Therefore, it is not necessary to remove the collection electrode 42 and clean it to remove the deposit, and the maintenance of the collection electrode 42 is facilitated.
 また、捕集電極42と対向電極44とは、0.01mm以上0.2mm未満の範囲内で設定された所定距離を隔てて配置されているため、捕集電極42と対向電極44との間をブラウン運動している帯電微粒子Pを捕集しやすいし、圧損が高くなりすぎることもない。なお、この距離が0.1mm以下であれば、より一層捕集しやすくなる。 In addition, since the collection electrode 42 and the counter electrode 44 are arranged with a predetermined distance set within a range of 0.01 mm or more and less than 0.2 mm, the collection electrode 42 and the counter electrode 44 are disposed between the collection electrode 42 and the counter electrode 44. It is easy to collect the charged fine particles P that are in a Brownian motion, and the pressure loss does not become too high. In addition, if this distance is 0.1 mm or less, it becomes easier to collect.
 更に、電荷発生素子20で発生した電荷18のうち微粒子16に付加されなかった余剰の電荷18は、除去電極36によって除去されるため、捕集装置40の捕集電極42に捕集されて微粒子16の数にカウントされてしまうことがない。 Furthermore, since the surplus charges 18 that have not been added to the fine particles 16 among the charges 18 generated by the charge generation element 20 are removed by the removal electrode 36, they are collected by the collection electrode 42 of the collection device 40. It is not counted as a number of 16.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、ヒータ60を通気管12の壁内に埋設したが、図3に示す微粒子数検出器110のように、ヒータ160を通気管12の外周面に設けてもよい。図3では、上述した実施形態と同じ構成要素については同じ符号を付した。この場合も、上述した実施形態と同様の効果が得られる。但し、上述した実施形態のヒータ60の方が捕集電極42の近くに設置することができるため効率よく捕集電極42を加熱することができる。 For example, in the above-described embodiment, the heater 60 is embedded in the wall of the vent pipe 12, but the heater 160 may be provided on the outer peripheral surface of the vent pipe 12 as in the particle number detector 110 shown in FIG. In FIG. 3, the same components as those in the above-described embodiment are denoted by the same reference numerals. Also in this case, the same effect as the above-described embodiment can be obtained. However, since the heater 60 of the embodiment described above can be installed near the collecting electrode 42, the collecting electrode 42 can be efficiently heated.
 上述した実施形態では、捕集電極42と対向電極44とを備えた捕集装置40を採用したが、図4に示す微粒子数検出器210のように、捕集電極241,242と対向電極244とを備えた捕集装置240を採用してもよい。図4では、上述した実施形態と同じ構成要素については同じ符号を付した。この捕集装置240では、対向電極244は、中空部12cを2分する仕切り電極板であり、捕集電極241,242は、対向電極244の表裏それぞれに対向して設けられている。また、ヒータ261,262は、それぞれの捕集電極241,242の近傍に設けられている。個数検出装置251,252も、それぞれの捕集電極241,242に接続されている。この場合、上述した実施形態に比べて捕集電極241,242の総面積が広くなるため、ヒータ261,262によって捕集電極241,242をリフレッシュする頻度を下げることができる。なお、対向電極244の代わりに、セラミック板の上下両面に対向電極を支持した部材を配置し、両方の対向基板に電圧V1を印加可能としてもよい。この場合、セラミック板の下面の対向電極は捕集電極241と対向し、セラミック板の上面の対向電極は捕集電極242と対向する。 In the above-described embodiment, the collection device 40 including the collection electrode 42 and the counter electrode 44 is employed. However, like the particle number detector 210 illustrated in FIG. 4, the collection electrodes 241 and 242 and the counter electrode 244 are used. You may employ | adopt the collection apparatus 240 provided with these. In FIG. 4, the same components as those in the above-described embodiment are denoted by the same reference numerals. In the collection device 240, the counter electrode 244 is a partition electrode plate that divides the hollow portion 12 c into two, and the collection electrodes 241 and 242 are provided to face the front and back of the counter electrode 244, respectively. The heaters 261 and 262 are provided in the vicinity of the collecting electrodes 241 and 242. The number detection devices 251 and 252 are also connected to the respective collecting electrodes 241 and 242. In this case, since the total area of the collection electrodes 241 and 242 is larger than that in the embodiment described above, the frequency with which the collection electrodes 241 and 242 are refreshed by the heaters 261 and 262 can be reduced. Instead of the counter electrode 244, members supporting the counter electrode may be arranged on both the upper and lower surfaces of the ceramic plate so that the voltage V1 can be applied to both counter substrates. In this case, the counter electrode on the lower surface of the ceramic plate faces the collecting electrode 241, and the counter electrode on the upper surface of the ceramic plate faces the collecting electrode 242.
 上述した実施形態では、対向電極44に印加する電圧V1をゼロとしたが、帯電微粒子Pの粒径範囲ごとに予め設定された電圧を対向電極44に印加するようにしてもよい。例えば、図5は流路厚0.1mmで電圧を変化させた場合の微粒子の粒径と透過率との関係を示すグラフである。電圧V1がゼロの場合には粒径10~20nmの微粒子16が流路を通過しにくい(つまり捕集されやすい)。これに対して、電圧V1が所定電圧Va(>0)の場合には、粒径10~50nmの微粒子が流路を通過しにくく(つまり捕集されやすく)、電圧V1が所定電圧Vb(>Va)の場合には、粒径10~100nmの微粒子が流路を通過しにくい(つまり捕集されやすい)。そのため、粒径10~20nmの微粒子数を検出したい場合には電圧V1をゼロに設定し、粒径10~50nmの微粒子数を検出したい場合には電圧V1を所定電圧Vaに設定し、粒径10~100nmの微粒子数を検出したい場合には電圧V1を所定電圧Vbに設定すればよい。すなわち、帯電微粒子Pの粒径範囲ごとに予め設定された電圧を捕集電極42と対向電極44との間に印加することにより、所望の粒径範囲の微粒子数を検出することができる。また、時間の経過に伴って電圧V1の設定値を段階的に切り替えることにより、異なる粒径範囲の粒子数を把握することができ、粒度分布を求めることができる。 In the above-described embodiment, the voltage V1 applied to the counter electrode 44 is zero, but a voltage set in advance for each particle size range of the charged fine particles P may be applied to the counter electrode 44. For example, FIG. 5 is a graph showing the relationship between the particle size of the fine particles and the transmittance when the voltage is changed with a flow channel thickness of 0.1 mm. When the voltage V1 is zero, the fine particles 16 having a particle diameter of 10 to 20 nm hardly pass through the flow path (that is, are easily collected). In contrast, when the voltage V1 is the predetermined voltage Va (> 0), fine particles having a particle size of 10 to 50 nm are unlikely to pass through the flow path (that is, are easily collected), and the voltage V1 is equal to the predetermined voltage Vb (> 0). In the case of Va), fine particles having a particle size of 10 to 100 nm hardly pass through the flow path (that is, are easily collected). Therefore, when it is desired to detect the number of fine particles having a particle size of 10 to 20 nm, the voltage V1 is set to zero, and when it is desired to detect the number of fine particles having a particle size of 10 to 50 nm, the voltage V1 is set to a predetermined voltage Va. When it is desired to detect the number of fine particles of 10 to 100 nm, the voltage V1 may be set to the predetermined voltage Vb. That is, by applying a preset voltage between the collection electrode 42 and the counter electrode 44 for each particle size range of the charged fine particles P, the number of particles in a desired particle size range can be detected. Further, by switching the set value of the voltage V1 stepwise with time, the number of particles in different particle size ranges can be grasped, and the particle size distribution can be obtained.
 上述した実施形態では、捕集電極42を1枚の電極として設けたが、ガスの流れの上流側から下流側に向かって複数個間隔をあけて設けてもよい。その一例を図6に示す。図6の微粒子数検出器310は、3個の捕集電極421,422,423を備えている。また、捕集電極421,422,423はそれぞれ電流計521,522,523に接続され、電流計521,522,523はそれぞれ個数測定装置541,542,543に接続されている。なお、図6では、上述した実施形態と同じ構成要素には同じ符号を付した。こうすれば、流体力学上、小さな帯電微粒子Pほど上流側の捕集電極421に捕集され、大きな帯電微粒子Pほど下流側の捕集電極423に捕集される。そのため、帯電微粒子Pを分級することができる。また、捕集電極421,422,423のそれぞれに個数測定装置541,542,543が設けられているため、小サイズの微粒子16の数、中サイズの微粒子16の数、大サイズの微粒子16の数をそれぞれ測定することができる。 In the embodiment described above, the collecting electrode 42 is provided as a single electrode, but a plurality of gaps may be provided from the upstream side to the downstream side of the gas flow. An example is shown in FIG. The fine particle number detector 310 of FIG. 6 includes three collection electrodes 421, 422, and 423. The collection electrodes 421, 422, and 423 are connected to ammeters 521, 522, and 523, respectively, and the ammeters 521, 522, and 523 are connected to the number measuring devices 541, 542, and 543, respectively. In FIG. 6, the same components as those in the above-described embodiment are denoted by the same reference numerals. In this way, in terms of fluid dynamics, the smaller charged fine particle P is collected by the upstream collecting electrode 421, and the larger charged fine particle P is collected by the downstream collecting electrode 423. Therefore, the charged fine particles P can be classified. Further, since the collection electrodes 421, 422, and 423 are provided with the number measuring devices 541, 542, and 543, the number of the small-sized fine particles 16, the number of the medium-sized fine particles 16, and the large-sized fine particles 16, respectively. Each number can be measured.
 上述した実施形態において、図7に示すように、ガス排出口12bの手前(ガスの流れの上流側)に、捕集装置40で捕集されなかった帯電微粒子Pを捕集してその数を検出する残粒子数検出装置70を設けてもよい。残粒子数検出装置70は、一対の電界発生電極72,74と、回収電極76とを有している。一対の電界発生電極72,74は、通気管12の壁の互いに向かい合う位置に埋設されており、両電極72,74の間に電位差が生じるように電圧が印加される。これにより、両電極72,74の間には電界が発生する。回収電極76は、両電極72,74の間に配置され、通気管12の壁に露出している。捕集装置40(図1参照)を通過して両電極72,74の間に到達した帯電微粒子Pは、両電極72,74の間に発生している電界によって電極74に引き寄せられ、その途中に設置された回収電極76に回収される。回収電極76には、個数検出装置50(図1参照)と同様の個数検出装置78が接続されている。この個数検出装置78は、捕集装置40で捕集されなかった帯電微粒子Pの数を検出する。そのため、2つの個数検出装置50,78で算出された微粒子数を合算することにより、ガス中に含まれる全微粒子数を知ることができる。また、個数検出装置50で検出された粒径10~20nmの微粒子数の全微粒子数に占める割合を求めることもできる。 In the embodiment described above, as shown in FIG. 7, the number of charged fine particles P that have not been collected by the collection device 40 are collected before the gas discharge port 12b (upstream side of the gas flow). You may provide the residual particle number detection apparatus 70 to detect. The residual particle number detection device 70 has a pair of electric field generating electrodes 72 and 74 and a recovery electrode 76. The pair of electric field generating electrodes 72 and 74 are embedded at positions facing each other on the wall of the vent pipe 12, and a voltage is applied so that a potential difference is generated between the electrodes 72 and 74. As a result, an electric field is generated between the electrodes 72 and 74. The collection electrode 76 is disposed between the electrodes 72 and 74 and is exposed to the wall of the vent pipe 12. The charged fine particles P that have passed through the collecting device 40 (see FIG. 1) and have reached between the electrodes 72 and 74 are attracted to the electrode 74 by the electric field generated between the electrodes 72 and 74, and in the middle It is recovered by a recovery electrode 76 installed in A number detection device 78 similar to the number detection device 50 (see FIG. 1) is connected to the collection electrode 76. The number detection device 78 detects the number of charged fine particles P that have not been collected by the collection device 40. Therefore, the total number of particles contained in the gas can be known by adding the number of particles calculated by the two number detection devices 50 and 78. Further, the ratio of the number of fine particles having a particle diameter of 10 to 20 nm detected by the number detection device 50 to the total number of fine particles can be obtained.
 なお、残粒子数検出装置70は、捕集電極42と対向電極44との間隔よりも小さい目開きを有するメッシュによって構成してもよい。その場合、帯電微粒子Pはブラウン運動でメッシュに到達するため、電圧を印加しなくとも粒子を捕集できる。さらに、帯電微粒子Pと逆極性の電圧をメッシュに印加すれば、より確実に帯電微粒子Pを捕集できる。 The residual particle number detection device 70 may be configured by a mesh having an opening smaller than the interval between the collection electrode 42 and the counter electrode 44. In this case, since the charged fine particles P reach the mesh by Brownian motion, the particles can be collected without applying a voltage. Furthermore, if a voltage having a polarity opposite to that of the charged fine particles P is applied to the mesh, the charged fine particles P can be collected more reliably.
 上述した実施形態では、正に帯電した帯電微粒子Pの個数を測定する場合について説明したが、負に帯電した帯電微粒子Pであっても同様にして微粒子16の個数を測定することができる。 In the above-described embodiment, the case of measuring the number of positively charged fine particles P has been described, but the number of fine particles 16 can be measured in the same manner even for negatively charged charged fine particles P.
 上述した実施形態では、中空部12cに1つの捕集装置40を設けたが、図8に示すように、中空部12cの高さをn段(nは2以上の整数、図8ではn=3)に仕切り、各段に捕集装置40(捕集電極42と対向電極44)を設けてもよい。こうすれば、上述した実施形態と同様の効果を得るのに中空部12cのガス流れ方向の長さを上述した実施形態の1/nにすることができるため、微粒子数検出器をコンパクト化できる。 In the embodiment described above, one collecting device 40 is provided in the hollow portion 12c. However, as shown in FIG. 8, the height of the hollow portion 12c is set to n stages (n is an integer equal to or larger than 2, n = in FIG. 3), and a collecting device 40 (collecting electrode 42 and counter electrode 44) may be provided at each stage. In this way, the length of the hollow portion 12c in the gas flow direction can be reduced to 1 / n that of the above-described embodiment in order to obtain the same effect as that of the above-described embodiment, so that the particle number detector can be made compact. .
 本出願は、2017年3月10日に出願された日本国特許出願第2017-45632号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on Japanese Patent Application No. 2017-45632 filed on Mar. 10, 2017, the contents of which are incorporated herein by reference.
 本発明は、例えば自動車などの動力機械の排ガス中の微粒子の数を検出するのに利用可能である。 The present invention can be used to detect the number of fine particles in exhaust gas from a power machine such as an automobile.
10,110,210,310 微粒子数検出器、12 通気管、12a ガス導入口、12b ガス排出口、12c 中空部、16 微粒子、18 電荷、22 針状電極、24 対向電極、26 放電用電源、30 余剰電荷除去装置、32 印加電極、34 接地電極、36 除去電極、40,240 捕集装置、42,242,421~423 捕集電極、44,244 対向電極、50,251,252 個数検出装置、52,521~523 電流計、54,541~543 個数測定装置、60,160,261,262 ヒータ、70 残粒子数検出装置、72,74 電界発生電極、76 回収電極、78 個数検出装置、P 帯電微粒子。 10, 110, 210, 310 Fine particle number detector, 12 vent tube, 12a gas inlet, 12b gas outlet, 12c hollow part, 16 fine particles, 18 charges, 22 needle electrodes, 24 counter electrode, 26 discharge power supply, 30 surplus charge removal device, 32 applied electrode, 34 ground electrode, 36 removal electrode, 40,240 collection device, 42,242,421-423 collection electrode, 44,244 counter electrode, 50,251,252 number detection device 52, 521 to 523 ammeter, 54, 541 to 543 number measuring device, 60, 160, 261, 262 heater, 70 remaining particle number detecting device, 72, 74 electric field generating electrode, 76 collecting electrode, 78 number detecting device, P Charged fine particles.

Claims (6)

  1.  通気管内に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
     前記電荷発生部よりも前記ガスの流れの下流側に設けられ、捕集電極と前記捕集電極に対向する対向電極とを有し、前記捕集電極と前記対向電極との間隔は0.01mm以上0.2mm未満であり、前記捕集電極と前記対向電極との間をブラウン運動しながら通過する前記帯電微粒子を前記捕集電極に捕集する帯電微粒子捕集部と、
     前記捕集電極に捕集された前記帯電微粒子の数に応じて変化する物理量に基づいて、前記微粒子の数を検出する個数検出部と、
     前記捕集電極を加熱する加熱部と、
     を備えた微粒子数検出器。
    A charge generation unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the vent pipe to form charged fine particles;
    Provided on the downstream side of the gas flow with respect to the charge generation unit, and has a collecting electrode and a counter electrode facing the collecting electrode, and the distance between the collecting electrode and the counter electrode is 0.01 mm. Less than 0.2 mm, a charged particle collection unit that collects the charged particles passing through the Browning motion between the collection electrode and the counter electrode on the collection electrode;
    A number detection unit that detects the number of the fine particles based on a physical quantity that changes according to the number of the charged fine particles collected by the collection electrode;
    A heating unit for heating the collecting electrode;
    Particle number detector equipped with.
  2.  前記捕集電極と前記対向電極とは、0.01mm以上0.1mm以下の範囲内で設定された所定距離を隔てて配置されている、
     請求項1に記載の微粒子数検出器。
    The collection electrode and the counter electrode are arranged with a predetermined distance set in a range of 0.01 mm or more and 0.1 mm or less,
    The fine particle number detector according to claim 1.
  3.  前記対向電極は、前記通路を2分する仕切り電極板であり、前記捕集電極は、前記仕切り電極板の表裏それぞれに対向して設けられ、前記ヒータは、それぞれの前記捕集電極に設けられている、
     請求項1又は2に記載の微粒子数検出器。
    The counter electrode is a partition electrode plate that bisects the passage, the collection electrode is provided to face each of the front and back sides of the partition electrode plate, and the heater is provided to each of the collection electrodes. ing,
    The fine particle number detector according to claim 1 or 2.
  4.  前記帯電微粒子捕集部は、前記捕集電極と前記対向電極との間に電圧を印加可能であり、前記微粒子の粒径範囲ごとに予め設定された電圧が前記捕集電極と前記対向電極との間に印加される、
     請求項1~3のいずれか1項に記載の微粒子数検出器。
    The charged particulate collection unit is capable of applying a voltage between the collection electrode and the counter electrode, and a preset voltage for each particle size range of the particulate is between the collection electrode and the counter electrode. Applied during
    The fine particle number detector according to any one of claims 1 to 3.
  5.  前記捕集電極は、前記ガスの流れの上流側から下流側に向かって複数個、間隔をあけて設けられている、
     請求項1~4のいずれか1項に記載の微粒子数検出器。
    A plurality of the collecting electrodes are provided at intervals from the upstream side to the downstream side of the gas flow,
    The fine particle number detector according to any one of claims 1 to 4.
  6.  請求項1~5のいずれか1項に記載の微粒子数検出器であって、
     前記電荷発生部と前記帯電微粒子捕集部との間に設けられ、一対の除去電界生成電極の間に除去電極が配置され、前記一対の除去電界生成電極の間に除去電圧が印加されると前記微粒子に付加されなかった余剰の電荷が前記除去電極によって除去される余剰電荷除去部
     を備えた微粒子数検出器。
    The fine particle number detector according to any one of claims 1 to 5,
    When the removal electrode is disposed between the charge generation unit and the charged particulate collection unit, the removal electrode is disposed between the pair of removal electric field generation electrodes, and the removal voltage is applied between the pair of removal electric field generation electrodes. A fine particle number detector comprising a surplus charge removing unit that removes surplus charges not added to the fine particles by the removal electrode.
PCT/JP2018/002891 2017-03-10 2018-01-30 Microparrticle number detector WO2018163661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019504387A JPWO2018163661A1 (en) 2017-03-10 2018-01-30 Particle count detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045632 2017-03-10
JP2017-045632 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018163661A1 true WO2018163661A1 (en) 2018-09-13

Family

ID=63448586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002891 WO2018163661A1 (en) 2017-03-10 2018-01-30 Microparrticle number detector

Country Status (2)

Country Link
JP (1) JPWO2018163661A1 (en)
WO (1) WO2018163661A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119094A (en) * 1977-03-28 1978-10-18 Hitachi Ltd Particle size distribution measuring instrument
JP2006194882A (en) * 2005-01-13 2006-07-27 Matter Engineering Ag Method and instrument for measuring numerical concentration and average diameter of aerosol particle
JP2015108578A (en) * 2013-12-05 2015-06-11 株式会社島津製作所 Classification part failure diagnosis device and method in particle classifier
WO2015146456A1 (en) * 2014-03-26 2015-10-01 日本碍子株式会社 Fine-particle number measurement device and fine-particle number measurement method
JP5906087B2 (en) * 2008-11-25 2016-04-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Sensor for detecting suspended particles
JP2016169707A (en) * 2015-03-13 2016-09-23 トヨタ自動車株式会社 Failure diagnosis device of exhaust emission control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119094A (en) * 1977-03-28 1978-10-18 Hitachi Ltd Particle size distribution measuring instrument
JP2006194882A (en) * 2005-01-13 2006-07-27 Matter Engineering Ag Method and instrument for measuring numerical concentration and average diameter of aerosol particle
JP5906087B2 (en) * 2008-11-25 2016-04-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Sensor for detecting suspended particles
JP2015108578A (en) * 2013-12-05 2015-06-11 株式会社島津製作所 Classification part failure diagnosis device and method in particle classifier
WO2015146456A1 (en) * 2014-03-26 2015-10-01 日本碍子株式会社 Fine-particle number measurement device and fine-particle number measurement method
JP2016169707A (en) * 2015-03-13 2016-09-23 トヨタ自動車株式会社 Failure diagnosis device of exhaust emission control system

Also Published As

Publication number Publication date
JPWO2018163661A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6505082B2 (en) Particle counting device
US9574986B2 (en) Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow
US6761752B2 (en) Gas particle partitioner
US20110072786A1 (en) Exhaust gas treatment apparatus
JP7199353B2 (en) electrostatic particle filtering
KR200484692Y1 (en) Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow
EP2606344A1 (en) Process and apparatus for particle measurement
Najafabadi et al. Effects of geometric parameters and electric indexes on performance of a vertical wet electrostatic precipitator
US20190145858A1 (en) Fine-particle number detector
WO2018139345A1 (en) Device for detecting number of fine particles
KR101559765B1 (en) Particles Collecting Apparatus Using Bipolar Discharge for Increasing Filtration Efficiency, and Particles Collecting System Having the Same
WO2018163661A1 (en) Microparrticle number detector
WO2019239588A1 (en) Fine particle number detector
US20200200664A1 (en) Particle counter
JP6317567B2 (en) Particle sensor
US20200200668A1 (en) Particle detection element and particle detector
KR102027975B1 (en) Electrostatic Carbon Filter, Dust Collecting Device and Dust Collecting Method thereof
WO2019049567A1 (en) Microparticle detection element and microparticle detector
JPH08108094A (en) Method for detecting time to clean electrostatic precipitator and device therefor
De Ferron et al. Optimizing the operation of an electrostatic precipitator by developing a multipoint electrode supplied by a hybrid generator
WO2020090438A1 (en) Microparticle detector
WO2020137416A1 (en) Fine particle detection element and fine particle detector
JPWO2019155920A1 (en) Particle detector
JP2021043123A (en) Detector for detecting number of fine particles
Davidson Electrostatic precipitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763141

Country of ref document: EP

Kind code of ref document: A1