JP2021043123A - Detector for detecting number of fine particles - Google Patents

Detector for detecting number of fine particles Download PDF

Info

Publication number
JP2021043123A
JP2021043123A JP2019166735A JP2019166735A JP2021043123A JP 2021043123 A JP2021043123 A JP 2021043123A JP 2019166735 A JP2019166735 A JP 2019166735A JP 2019166735 A JP2019166735 A JP 2019166735A JP 2021043123 A JP2021043123 A JP 2021043123A
Authority
JP
Japan
Prior art keywords
fine particle
gas
protective cover
flow path
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019166735A
Other languages
Japanese (ja)
Inventor
和幸 水野
Kazuyuki Mizuno
和幸 水野
英正 奥村
Hidemasa Okumura
英正 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2019166735A priority Critical patent/JP2021043123A/en
Publication of JP2021043123A publication Critical patent/JP2021043123A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

To increase the accuracy of detection of a detector for detecting the number of fine particles.SOLUTION: The detector for detecting the number of fine particles has a bottomed cylindrical protective cover 80 surrounding a region around a gas flow passage 24 of a detection element 20 for detecting the number of fine particles. The protective cover 80 has gas inlet ports 81 and gas exhaust ports 82. The gas inlet ports 81 are provided on an exist 24b side of the gas flow passage 24 not to face the detection element 20 but to face the spaces on both sides of the detection element 20. The gas exhaust ports 82 are provided on an entrance 24a side of the gas flow passage 24 and face the detection element 20.SELECTED DRAWING: Figure 6

Description

本発明は、微粒子数検出器に関する。 The present invention relates to a fine particle number detector.

微粒子数検出器としては、微粒子数検出素子のガス流路に設けた電荷発生素子でコロナ放電により電荷を発生させ、その電荷により被測定ガス中の微粒子を帯電させて帯電微粒子とし、その帯電微粒子を捕集電極で捕集し、捕集された帯電微粒子の電荷の量に基づいて微粒子の個数を測定するものが知られている(例えば特許文献1参照)。特許文献1には、こうした微粒子数検出素子を保護カバーによって保護することや、その保護カバーに設けられた穴を介して排気管を流通する排ガスが微粒子数検出素子の下端に設けられたガス流路を通過することが記載されている。一方、特許文献2,3には、保護カバーを備えた微粒子量検出器が開示されている。 As the fine particle number detector, a charge generating element provided in the gas flow path of the fine particle number detecting element generates an electric charge by corona discharge, and the fine particles in the gas to be measured are charged by the electric charge to obtain charged fine particles. Is known to be collected by a collecting electrode and the number of fine particles is measured based on the amount of electric charge of the collected charged fine particles (see, for example, Patent Document 1). Patent Document 1 describes that such a fine particle number detecting element is protected by a protective cover, and an exhaust gas flowing through an exhaust pipe through a hole provided in the protective cover is provided at the lower end of the fine particle number detecting element. It is stated that it will pass through the road. On the other hand, Patent Documents 2 and 3 disclose a fine particle amount detector provided with a protective cover.

特許第6420525号公報Japanese Patent No. 6420525 米国特許第8225648号明細書U.S. Pat. No. 8225648 特開2013−160617号公報Japanese Unexamined Patent Publication No. 2013-160617

特許文献1には、微粒子数検出素子を保護する保護カバーが記載されているものの、その保護カバーは微粒子数の検出精度を向上させるために工夫されたものではない。また、特許文献2,3に開示された保護カバーは、微粒子量検出素子に適用されるものであって、微粒子数検出素子に適用されるものではなく、ましてや微粒子数の検出精度を向上させるものではない。 Although Patent Document 1 describes a protective cover that protects the fine particle number detecting element, the protective cover is not devised to improve the detection accuracy of the fine particle number. Further, the protective cover disclosed in Patent Documents 2 and 3 is applied to the fine particle amount detecting element, not applied to the fine particle number detecting element, much less to improve the detection accuracy of the fine particle number. is not it.

本発明はこのような課題を解決するためになされたものであり、微粒子数検出器の検出精度を向上させることを主目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to improve the detection accuracy of the fine particle number detector.

本発明の微粒子数検出器は、
微粒子数検出素子のガス流路の入口から流入してきた排ガス中の微粒子に電荷を付加して帯電微粒子とし、前記帯電微粒子と前記微粒子に付加されなかった電荷とのいずれかである捕集対象を前記ガス流路内に設けた捕集電極に電界を利用して捕集し、前記捕集電極に流れる電流に基づいて前記微粒子の数を検出する微粒子数検出器であって、
前記微粒子数検出素子の前記ガス流路の周囲を取り囲むように設けられた筒状の保護カバーと、
前記保護カバーのうち前記ガス流路の出口側に設けられ、前記微粒子数検出素子に正対せず前記微粒子数検出素子の両側の空間に正対するガス導入口と、
前記保護カバーのうち前記ガス流路の入口側に設けられ、前記微粒子数検出素子に正対するガス排出口と、
を備えたものである。
The fine particle number detector of the present invention
Charges are added to the fine particles in the exhaust gas flowing in from the inlet of the gas flow path of the fine particle number detection element to form charged fine particles, and the collection target, which is either the charged fine particles or the charge not added to the fine particles, is collected. A fine particle number detector that collects particles by using an electric charge on a collection electrode provided in the gas flow path and detects the number of the fine particles based on the current flowing through the collection electrode.
A tubular protective cover provided so as to surround the gas flow path of the fine particle number detecting element, and
A gas introduction port provided on the outlet side of the gas flow path of the protective cover and facing the spaces on both sides of the fine particle number detecting element without facing the fine particle number detecting element.
A gas discharge port provided on the inlet side of the gas flow path of the protective cover and facing the fine particle number detection element, and a gas discharge port.
It is equipped with.

この微粒子数検出器では、ガス導入口から保護カバー内に導入された排ガスの主流は、微粒子数検出素子の両側の空間を通過したあとガス排出口から保護カバーの外へ排出される。一方、ガス導入口から保護カバー内に導入された排ガスの傍流は、ガス排出口側に設けられたガス流路の入口からガス流路を通過したあとガス導入口側に設けられたガス流路の出口からガス流路の外へ出る。排ガスの傍流は、排ガスの主流に比べて流速が低下する。ここで、拡散荷電による粒子の帯電数を示す下記のホワイト(White)の式によれば、帯電数すなわち微粒子に帯電する電荷の数は、時間が大きいほど(つまりガス流速が低いほど)大きくなる。そのため、ガス流路を通過するガスの流速が低いほど、微粒子1つあたりに付加される平均電荷の数が大きくなる。本発明では、上述したように、ガス流路を流れる排ガスは流速が低いため、ガス流路を流れる排ガス中の微粒子に付加される平均電荷の数が大きくなる。その結果、捕集対象が帯電微粒子の場合には、帯電微粒子1つあたりの捕集電流が大きくなるため、検出精度が高くなる。また、捕集対象が微粒子に付加されなかった電荷(余剰電荷)の場合には、帯電微粒子1つあたりの電流減少分が大きくなるため、検出精度が高くなる。なお、「筒状」には、例えば円筒(断面が円形)、楕円筒(断面が楕円形)、角筒(断面が多角形)などが含まれる。 In this fine particle number detector, the mainstream of the exhaust gas introduced into the protective cover from the gas introduction port passes through the spaces on both sides of the fine particle number detection element and then is discharged from the gas discharge port to the outside of the protective cover. On the other hand, the side flow of the exhaust gas introduced into the protective cover from the gas introduction port passes through the gas flow path from the inlet of the gas flow path provided on the gas discharge port side, and then passes through the gas flow path, and then the gas flow path provided on the gas introduction port side. It goes out of the gas flow path from the outlet of. The flow velocity of the sidestream of the exhaust gas is lower than that of the mainstream of the exhaust gas. Here, according to the following White equation indicating the number of charges of particles due to diffusion charging, the number of charges, that is, the number of charges charged on fine particles, increases as the time increases (that is, as the gas flow velocity decreases). .. Therefore, the lower the flow velocity of the gas passing through the gas flow path, the larger the number of average charges added to each fine particle. In the present invention, as described above, since the exhaust gas flowing through the gas flow path has a low flow velocity, the number of average charges added to the fine particles in the exhaust gas flowing through the gas flow path is large. As a result, when the collection target is charged fine particles, the collection current per charged fine particle is large, so that the detection accuracy is high. Further, when the collection target is a charge (surplus charge) that is not added to the fine particles, the amount of decrease in current per charged fine particle becomes large, so that the detection accuracy becomes high. The "cylindrical shape" includes, for example, a cylinder (circular cross section), an elliptical cylinder (oval cross section), a square cylinder (polygonal cross section), and the like.

本発明の微粒子数検出器において、前記保護カバーは、側壁の下方位置又は底面に排水口を有していてもよい。こうすれば、ガス導入口から導入された排ガスに含まれる水が保護カバー内に溜まったとしてもその溜まった水は排水口を介して保護カバーの外へ排出される。 In the fine particle number detector of the present invention, the protective cover may have a drain port at a position below the side wall or at the bottom surface. In this way, even if the water contained in the exhaust gas introduced from the gas inlet is accumulated in the protective cover, the accumulated water is discharged to the outside of the protective cover through the drain port.

本発明の微粒子数検出器において、前記保護カバーは、断面が円形又は楕円形である有底筒状のカバーであってもよい。こうすれば、保護カバーが排気管内を流れる排ガスの圧力損失を小さく抑えることができる。 In the fine particle number detector of the present invention, the protective cover may be a bottomed tubular cover having a circular or elliptical cross section. In this way, the protective cover can suppress the pressure loss of the exhaust gas flowing in the exhaust pipe to a small extent.

微粒子数検出器10の説明図。Explanatory drawing of the fine particle number detector 10. 微粒子数検出器10の排気管12への取付構造の断面図。FIG. 3 is a cross-sectional view of a structure for attaching the fine particle number detector 10 to the exhaust pipe 12. 微粒子数検出素子20の斜視図。The perspective view of the fine particle number detection element 20. 図3のA−A断面図。FIG. 3 is a sectional view taken along the line AA of FIG. 図3のB−B断面図。BB sectional view of FIG. 保護カバー80の内部構造を示す斜視図。The perspective view which shows the internal structure of the protective cover 80. 保護カバー80の斜視図。The perspective view of the protective cover 80. 図6のD−D断面図。FIG. 6 is a sectional view taken along line DD of FIG.

次に、本発明の実施形態について、図面を用いて説明する。図1は本発明の一実施形態である微粒子数検出器10の説明図、図2は微粒子数検出器10の排気管12への取付構造の断面図、図3は微粒子数検出素子20の斜視図、図4は図3のA−A断面図、図5は図3のB−B断面図である。なお、本実施形態において、上下方向,左右方向及び前後方向は、図1及び図3に示した通りとする。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a fine particle number detector 10 according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a structure of mounting the fine particle number detector 10 to an exhaust pipe 12, and FIG. 3 is a perspective view of the fine particle number detection element 20. FIG. 4 is a sectional view taken along the line AA of FIG. 3, and FIG. 5 is a sectional view taken along the line BB of FIG. In this embodiment, the vertical direction, the horizontal direction, and the front-rear direction are as shown in FIGS. 1 and 3.

微粒子数検出器10は、図1に示すように、エンジンの排気管12を流れる排ガスに含まれる微粒子26(図5参照)の数を検出するものである。この微粒子数検出器10は、微粒子数検出素子20と、各種電源36,56や個数検出部60を含む付属ユニット68とを備えている。 As shown in FIG. 1, the fine particle number detector 10 detects the number of fine particles 26 (see FIG. 5) contained in the exhaust gas flowing through the exhaust pipe 12 of the engine. The fine particle number detector 10 includes a fine particle number detecting element 20, and an accessory unit 68 including various power supplies 36 and 56 and a number detecting unit 60.

微粒子数検出素子20は、図2に示すように、主体金具70を上下方向に貫通する貫通孔72の内部にサポータ74を介して支持されている。主体金具70は、外周面にボルト部(雄ネジ)70aを備えており、排気管12に固定されたリング状のボス76のナット部(雌ネジ)76aに螺合されている。これにより、微粒子数検出素子20は、排気管12に取り付けられている。なお、主体金具70とボス76との間にはガスケット78が装着されている。主体金具70の下端には、有底筒状の保護カバー80が固定されている。保護カバー80は、微粒子数検出素子20のガス流路24の周囲を取り囲むように設けられている。そのため、保護カバー80は、微粒子数検出素子20に異物が当たったり水がかかったりするのを防止する。保護カバー80の詳細については後述する。 As shown in FIG. 2, the fine particle number detecting element 20 is supported inside a through hole 72 that penetrates the main metal fitting 70 in the vertical direction via a supporter 74. The main metal fitting 70 is provided with a bolt portion (male screw) 70a on the outer peripheral surface, and is screwed into a nut portion (female screw) 76a of a ring-shaped boss 76 fixed to the exhaust pipe 12. As a result, the fine particle number detecting element 20 is attached to the exhaust pipe 12. A gasket 78 is mounted between the main metal fitting 70 and the boss 76. A bottomed tubular protective cover 80 is fixed to the lower end of the main metal fitting 70. The protective cover 80 is provided so as to surround the gas flow path 24 of the fine particle number detecting element 20. Therefore, the protective cover 80 prevents foreign matter from hitting the fine particle number detecting element 20 or splashing water on it. Details of the protective cover 80 will be described later.

微粒子数検出素子20は、図5に示すように、筐体22に、電荷発生部30と、余剰電荷除去部40と、捕集部50と、ヒータ電極66とを備えたものである。 As shown in FIG. 5, the fine particle number detecting element 20 includes a charge generating unit 30, a surplus charge removing unit 40, a collecting unit 50, and a heater electrode 66 in a housing 22.

筐体22は、図1に示すように、排気管12の中心軸と交差する方向(ここでは略直交する方向)に長い長尺の直方体である。筐体22は絶縁体であり、例えばアルミナなどのセラミック製である。筐体22の下端22aは排気管12の内部に配置され、上端22bは排気管12の外部に配置されている。筐体22の下端22aには、ガス流路24が設けられている。筐体22の上端22bには、各種端子が設けられている。 As shown in FIG. 1, the housing 22 is a long rectangular parallelepiped that is long in a direction intersecting the central axis of the exhaust pipe 12 (here, in a direction substantially orthogonal to each other). The housing 22 is an insulator and is made of ceramic such as alumina. The lower end 22a of the housing 22 is arranged inside the exhaust pipe 12, and the upper end 22b is arranged outside the exhaust pipe 12. A gas flow path 24 is provided at the lower end 22a of the housing 22. Various terminals are provided on the upper end 22b of the housing 22.

ガス流路24の中心軸は、排気管12の中心軸と略一致している。ガス流路24は、図3に示すように、筐体22の後方の面に設けられた矩形の入口24aから、筐体22の前方の面に設けられた矩形の出口24bまで連なる直方体形状の空間である。筐体22は、ガス流路24を構成する左右一対の流路壁22c,22dを備えている(図3参照)。 The central axis of the gas flow path 24 substantially coincides with the central axis of the exhaust pipe 12. As shown in FIG. 3, the gas flow path 24 has a rectangular parallelepiped shape extending from a rectangular inlet 24a provided on the rear surface of the housing 22 to a rectangular outlet 24b provided on the front surface of the housing 22. It is a space. The housing 22 includes a pair of left and right flow path walls 22c and 22d that form the gas flow path 24 (see FIG. 3).

電荷発生部30は、図4及び図5に示すように、ガス流路24内の入口24aの近傍に電荷が発生するように、流路壁22cに設けられている。電荷発生部30は、放電電極32と2つのグランド電極34,34とを有している。放電電極32は、流路壁22cの内面に沿って設けられ、図4に示すように、矩形の周囲に複数の微細突起を有している。2つのグランド電極34,34は、矩形電極であり、流路壁22cに間隔をあけて放電電極32と平行となるように埋設されている。電荷発生部30では、放電電極32と2つのグランド電極34,34との間に放電用電源36(付属ユニット68の1つ)の高周波高電圧(周期性電圧)が印加されることで、両電極間の電位差による気中放電が発生する。このとき、筐体22のうち放電電極32とグランド電極34,34との間の部分が誘電体層の役割を果たす。この気中放電によって、放電電極32の周囲に存在するガスがイオン化されて正の電荷28が発生する。放電電極32は、筐体22の上端22bに設けられた放電電極端子33(図3参照)に筐体22内の配線を経由して接続されている。放電電極32は、放電電極端子33を介して放電用電源36に接続されている。グランド電極34,34は、筐体22の上端22bに設けられたグランド電極端子35(図3参照)に筐体22内の配線を経由して接続されている。グランド電極34,34は、グランド電極端子35を介してグランド(アース)に接続されている。 As shown in FIGS. 4 and 5, the charge generation unit 30 is provided on the flow path wall 22c so that the charge is generated in the vicinity of the inlet 24a in the gas flow path 24. The charge generation unit 30 has a discharge electrode 32 and two ground electrodes 34 and 34. The discharge electrode 32 is provided along the inner surface of the flow path wall 22c, and has a plurality of fine protrusions around the rectangle as shown in FIG. The two ground electrodes 34, 34 are rectangular electrodes, and are embedded in the flow path wall 22c at intervals so as to be parallel to the discharge electrode 32. In the charge generation unit 30, a high-frequency high voltage (periodic voltage) of the discharge power supply 36 (one of the accessory units 68) is applied between the discharge electrode 32 and the two ground electrodes 34 and 34, so that both of them are used. Air discharge occurs due to the potential difference between the electrodes. At this time, the portion of the housing 22 between the discharge electrode 32 and the ground electrodes 34, 34 serves as a dielectric layer. By this air discharge, the gas existing around the discharge electrode 32 is ionized to generate a positive charge 28. The discharge electrode 32 is connected to the discharge electrode terminal 33 (see FIG. 3) provided at the upper end 22b of the housing 22 via the wiring inside the housing 22. The discharge electrode 32 is connected to the discharge power supply 36 via the discharge electrode terminal 33. The ground electrodes 34, 34 are connected to the ground electrode terminals 35 (see FIG. 3) provided at the upper end 22b of the housing 22 via wiring in the housing 22. The ground electrodes 34 and 34 are connected to the ground (earth) via the ground electrode terminal 35.

ガスに含まれる微粒子26は、図5に示すように、入口24aからガス流路24内に入り、電荷発生部30を通過する際に電荷発生部30の気中放電によって発生した電荷28が付加されて帯電微粒子Pとなったあと出口24bに向かって移動する。また、発生した電荷28のうち微粒子26に付加されなかったものは、電荷28のまま出口24bに向かって移動する。発生した電荷28のうち微粒子26に付加されなかったものを余剰電荷という。 As shown in FIG. 5, the fine particles 26 contained in the gas enter the gas flow path 24 from the inlet 24a, and when passing through the charge generation unit 30, the charge 28 generated by the aerial discharge of the charge generation unit 30 is added. After being formed into charged fine particles P, they move toward the outlet 24b. Further, among the generated charges 28, those not added to the fine particles 26 move toward the outlet 24b with the charges 28 as they are. Of the generated charges 28, those that are not added to the fine particles 26 are called surplus charges.

余剰電荷除去部40は、電荷発生部30の下流で且つ捕集部50の上流に設けられている。余剰電荷除去部40は、一対の除去電極42,42を有している。一方の除去電極42は、左側の流路壁22cの内面に沿って設けられ、ガス流路24内に露出している。他方の除去電極42は、右側の流路壁22dの内面に沿って設けられ、ガス流路24内に露出している。一対の除去電極42,42は、互いに向かい合う位置に配設され、筐体22の上端22bに設けられた除去電極端子45(図3参照)に筐体22内の配線を経由して接続されている。除去電極42,42は、除去電極端子45を介してグランド(アース)に接続されている。 The surplus charge removing unit 40 is provided downstream of the charge generating unit 30 and upstream of the collecting unit 50. The excess charge removing unit 40 has a pair of removing electrodes 42, 42. One of the removal electrodes 42 is provided along the inner surface of the left flow path wall 22c and is exposed in the gas flow path 24. The other removal electrode 42 is provided along the inner surface of the right flow path wall 22d and is exposed in the gas flow path 24. The pair of removal electrodes 42, 42 are arranged at positions facing each other, and are connected to the removal electrode terminals 45 (see FIG. 3) provided at the upper end 22b of the housing 22 via wiring in the housing 22. There is. The removal electrodes 42 and 42 are connected to the ground (earth) via the removal electrode terminals 45.

捕集部50は、ガス流路24のうち電荷発生部30及び余剰電荷除去部40よりも下流に設けられている。捕集部50は、帯電微粒子Pを捕集するものであり、電界発生電極52と捕集電極54とを有している。電界発生電極52は、左側の流路壁22cの内面に沿って設けられ、ガス流路24内に露出している。捕集電極54は、右側の流路壁22dの内面に沿って設けられ、ガス流路24内に露出している。電界発生電極52と捕集電極54とは互いに向かい合う位置に配設されている。電界発生電極52は、筐体22の上端22bに設けられた電界発生電極端子53(図3参照)に筐体22内の配線を経由して接続されている。電界発生電極52には、電界発生電極端子53を介して直流電圧V1(正電位、例えば2kV程度)が捕集用電源56(付属ユニット68の1つ)によって印加される。捕集電極54は、筐体22の上端22bに設けられた捕集電極端子55(図3参照)に筐体22内の配線を経由して接続され、捕集電極端子55を介してグランド(アース)に接続された電流計62に接続されている。これにより、捕集部50の電界発生電極52と捕集電極54との間には比較的強い電界が発生する。したがって、ガス流路24を流れる帯電微粒子Pは、この比較的強い電界によって捕集電極54に引き寄せられて捕集される。 The collecting unit 50 is provided downstream of the charge generating unit 30 and the excess charge removing unit 40 in the gas flow path 24. The collecting unit 50 collects the charged fine particles P, and has an electric field generating electrode 52 and a collecting electrode 54. The electric field generation electrode 52 is provided along the inner surface of the left flow path wall 22c and is exposed in the gas flow path 24. The collection electrode 54 is provided along the inner surface of the flow path wall 22d on the right side and is exposed in the gas flow path 24. The electric field generating electrode 52 and the collecting electrode 54 are arranged at positions facing each other. The electric field generating electrode 52 is connected to the electric field generating electrode terminal 53 (see FIG. 3) provided at the upper end 22b of the housing 22 via wiring in the housing 22. A DC voltage V1 (positive potential, for example, about 2 kV) is applied to the electric field generating electrode 52 via the electric field generating electrode terminal 53 by the collecting power source 56 (one of the accessory units 68). The collection electrode 54 is connected to the collection electrode terminal 55 (see FIG. 3) provided at the upper end 22b of the housing 22 via the wiring inside the housing 22, and is grounded via the collection electrode terminal 55. It is connected to the ammeter 62 connected to the ground). As a result, a relatively strong electric field is generated between the electric field generating electrode 52 and the collecting electrode 54 of the collecting unit 50. Therefore, the charged fine particles P flowing through the gas flow path 24 are attracted to the collection electrode 54 by this relatively strong electric field and collected.

電荷発生部30で発生した電荷28のうち、微粒子26に付加されなかった余剰の電荷28は、放電電極32と除去電極42との間に発生する電界によって除去電極42に引き寄せられて捕獲されグランドに捨てられるか、電界発生電極52と除去電極42との間に生じる電界によって除去電極42に引き寄せられて捕獲されグランドに捨てられる。つまり、除去電極42は、放電用電源36や捕集用電源56を利用して余剰の電荷28を除去するものであり、除去電極42に電界を発生させる独自の電源を有さない。このようにして、余剰電荷除去部40は、余剰の電荷28が捕集部50の捕集電極54に捕集されて微粒子26の数にカウントされてしまうことを抑制する。 Of the charges 28 generated by the charge generation unit 30, the surplus charge 28 that was not added to the fine particles 26 is attracted to the removal electrode 42 by the electric field generated between the discharge electrode 32 and the removal electrode 42, and is captured and grounded. Or it is attracted to the removal electrode 42 by the electric charge generated between the electric field generation electrode 52 and the removal electrode 42, and is captured and thrown to the ground. That is, the removal electrode 42 removes the excess electric charge 28 by using the discharge power supply 36 and the collection power supply 56, and the removal electrode 42 does not have its own power supply that generates an electric field. In this way, the surplus charge removing unit 40 suppresses that the surplus charge 28 is collected by the collection electrode 54 of the collection unit 50 and is counted in the number of fine particles 26.

個数検出部60は、付属ユニット68の1つであり、図5に示すように、電流計62と個数測定装置64とを備えている。電流計62は、一方の端子が捕集電極54に接続され、もう一方の端子がグランドに接続されている。この電流計62は、捕集電極54に捕集された帯電微粒子Pの電荷28に基づく電流を測定する。個数測定装置64は、電流計62の電流に基づいて微粒子26の個数を演算する。 The number detection unit 60 is one of the accessory units 68, and includes an ammeter 62 and a number measuring device 64 as shown in FIG. In the ammeter 62, one terminal is connected to the collection electrode 54 and the other terminal is connected to the ground. The ammeter 62 measures the current based on the charge 28 of the charged fine particles P collected on the collection electrode 54. The number measuring device 64 calculates the number of fine particles 26 based on the current of the ammeter 62.

ヒータ電極66は、筐体22に埋設されている。ヒータ電極66は、筐体22の全面にわたって引き回された帯状の発熱体である。ヒータ電極66の両端は、それぞれ筐体22の上端22bに設けられたヒータ電極端子67,67(図3参照)に接続されている。ヒータ電極66は、ヒータ電極端子67,67を介して図示しない給電装置に接続され、その給電装置によって通電されると発熱する。ヒータ電極66は、筐体22や除去電極42,電界発生電極52,捕集電極54などの各電極を加熱する。 The heater electrode 66 is embedded in the housing 22. The heater electrode 66 is a band-shaped heating element that is routed over the entire surface of the housing 22. Both ends of the heater electrode 66 are connected to heater electrode terminals 67 and 67 (see FIG. 3) provided at the upper end 22b of the housing 22, respectively. The heater electrode 66 is connected to a power feeding device (not shown) via the heater electrode terminals 67 and 67, and generates heat when energized by the power feeding device. The heater electrode 66 heats each electrode such as the housing 22, the removal electrode 42, the electric field generating electrode 52, and the collecting electrode 54.

ここで、保護カバー80について、詳細に説明する。図6は保護カバー80の内部構造を示す斜視図(図2をC−C面で切断したときの斜視図)、図7は保護カバー80の斜視図、図8は図6のD−D断面図である。 Here, the protective cover 80 will be described in detail. 6 is a perspective view showing the internal structure of the protective cover 80 (a perspective view when FIG. 2 is cut along the CC plane), FIG. 7 is a perspective view of the protective cover 80, and FIG. 8 is a DD cross section of FIG. It is a figure.

保護カバー80は、有底で円筒状の部材すなわちコップ状の部材であり、微粒子数検出素子20のガス流路24の周囲を取り囲むように設けられている。保護カバー80は、本実施形態では金属製であるが、特に金属製に限定されるものではなく、例えば絶縁材料製であってもよい。保護カバー80は、ガス導入口81とガス排出口82と排水口83とを備えている。ガス導入口81は、保護カバー80のうちガス流路24の出口24b側に設けられている。ガス導入口81は縦方向に複数個(ここでは3つ)並んで列をなしており、その列が2列設けられている。ガス導入口81の中心軸は、排気管12の中心軸と略平行になっている。左側の列のガス導入口81は、微粒子数検出素子20と正対せず微粒子数検出素子20の左側の空間と正対する領域80aに設けられている。右側の列のガス導入口81は、微粒子数検出素子20と正対せず微粒子数検出素子20の右側の空間と正対する領域80bに設けられている。ガス排出口82は、保護カバー80のうちガス流路24の入口24a側に設けられている。ガス排出口82は縦方向に複数個(ここでは3つ)並んで列をなしており、その列は微粒子数検出素子20(ここではガス流路24の入口24a)と正対する領域に設けられている。ガス排出口82の中心軸は、排気管12の中心軸と略平行になっている。排水口83は、保護カバー80のガス導入口81側の側壁の下方とガス排出口82側の側壁の下方にそれぞれ設けられている。微粒子数検出素子20の下面は、保護カバー80の底面から浮いている。 The protective cover 80 is a bottomed and cylindrical member, that is, a cup-shaped member, and is provided so as to surround the gas flow path 24 of the fine particle number detecting element 20. Although the protective cover 80 is made of metal in this embodiment, it is not particularly limited to metal, and may be made of, for example, an insulating material. The protective cover 80 includes a gas introduction port 81, a gas discharge port 82, and a drain port 83. The gas introduction port 81 is provided on the outlet 24b side of the gas flow path 24 in the protective cover 80. A plurality of gas inlets 81 (three in this case) are arranged in a row in the vertical direction, and the rows are provided in two rows. The central axis of the gas introduction port 81 is substantially parallel to the central axis of the exhaust pipe 12. The gas introduction port 81 in the left column is provided in a region 80a that does not face the fine particle number detecting element 20 but faces the space on the left side of the fine particle number detecting element 20. The gas inlet 81 in the right column is provided in a region 80b that does not face the fine particle number detecting element 20 but faces the space on the right side of the fine particle number detecting element 20. The gas discharge port 82 is provided on the inlet 24a side of the gas flow path 24 in the protective cover 80. A plurality of gas discharge ports 82 (three in this case) are arranged in a row in the vertical direction, and the rows are provided in a region facing the fine particle number detecting element 20 (here, the inlet 24a of the gas flow path 24). ing. The central axis of the gas discharge port 82 is substantially parallel to the central axis of the exhaust pipe 12. The drainage port 83 is provided below the side wall on the gas introduction port 81 side and below the side wall on the gas discharge port 82 side of the protective cover 80, respectively. The lower surface of the fine particle number detecting element 20 floats from the bottom surface of the protective cover 80.

次に、微粒子数検出器10の使用例について説明する。自動車の排ガスに含まれる微粒子26を計測する場合、上述したようにエンジンの排気管12に微粒子数検出素子20を取り付ける(図1参照)。 Next, an example of using the fine particle number detector 10 will be described. When measuring the fine particles 26 contained in the exhaust gas of an automobile, the fine particle number detecting element 20 is attached to the exhaust pipe 12 of the engine as described above (see FIG. 1).

排気管12を流通する排ガスは、図8に示すように、保護カバー80のガス導入口81から保護カバー80の内部に入る。左側の列をなすガス導入口81から保護カバー80の内部に入った排ガスの主流は、図8の実線矢印で示すように、微粒子数検出素子20の左側の空間を通過したあとガス排出口82から保護カバー80の外へ排出される。右側の列をなすガス導入口81から保護カバー80の内部に入った排ガスの主流は、図8の実線矢印で示すように、微粒子数検出素子20の右側の空間を通過したあとガス排出口82から保護カバー80の外へ排出される。一方、排ガスの傍流は、図8の点線矢印で示すように、ガス排出口82側に設けられたガス流路24の入口24aからガス流路24を主流とは逆方向に通過したあとガス導入口81側に設けられたガス流路24の出口24bからガス流路24の外へ出て、排ガスの主流に合流する。排ガスの傍流は、排ガスの主流に比べて流速が低下する。このような保護カバー80の内部における排ガスの流れについてはシミュレーションにより確認した。なお、図8においてガス導入口81から保護カバー80内に導入される排ガスがガス導入口81の中心軸に対して斜めに(左右に拡がって)進行するのは、排ガスが保護カバー80の外周面に沿って流れたあとガス導入口81から保護カバー80内に導入されるからである。但し、排ガスがガス導入口81の中心軸に沿って保護カバー80内に導入されたとしても、特に問題はない。 As shown in FIG. 8, the exhaust gas flowing through the exhaust pipe 12 enters the inside of the protective cover 80 through the gas introduction port 81 of the protective cover 80. As shown by the solid arrow in FIG. 8, the mainstream of the exhaust gas that has entered the inside of the protective cover 80 from the gas introduction port 81 forming the left row passes through the space on the left side of the fine particle number detection element 20 and then the gas discharge port 82. Is discharged to the outside of the protective cover 80. As shown by the solid arrow in FIG. 8, the mainstream of the exhaust gas that has entered the inside of the protective cover 80 from the gas introduction port 81 forming the right column passes through the space on the right side of the fine particle number detection element 20 and then the gas discharge port 82. Is discharged to the outside of the protective cover 80. On the other hand, as shown by the dotted arrow in FIG. 8, the side flow of the exhaust gas is introduced after passing through the gas flow path 24 in the direction opposite to the main flow from the inlet 24a of the gas flow path 24 provided on the gas discharge port 82 side. It goes out of the gas flow path 24 from the outlet 24b of the gas flow path 24 provided on the port 81 side and joins the main stream of the exhaust gas. The flow velocity of the sidestream of the exhaust gas is lower than that of the mainstream of the exhaust gas. The flow of exhaust gas inside the protective cover 80 was confirmed by simulation. In FIG. 8, the exhaust gas introduced into the protective cover 80 from the gas introduction port 81 travels diagonally (spreads to the left and right) with respect to the central axis of the gas introduction port 81, because the exhaust gas travels diagonally (spreads to the left and right) to the outer circumference of the protective cover 80. This is because the gas is introduced into the protective cover 80 from the gas introduction port 81 after flowing along the surface. However, even if the exhaust gas is introduced into the protective cover 80 along the central axis of the gas introduction port 81, there is no particular problem.

図5に示すように、入口24aから筐体22内に導入された排ガスに含まれる微粒子26は、電荷発生部30の放電によって発生した電荷28(ここでは正電荷)を帯びて帯電微粒子Pになる。帯電微粒子Pは、余剰電荷除去部40をそのまま通過して、捕集部50に至る。一方、微粒子26に付加されなかった電荷28は、余剰電荷除去部40の除去電極42,42に引き寄せられ、除去電極42,42を介してグランドに捨てられる。これにより、微粒子26に付加されなかった不要な電荷28は捕集部50にほとんど到達することがない。 As shown in FIG. 5, the fine particles 26 contained in the exhaust gas introduced into the housing 22 from the inlet 24a carry a charge 28 (here, a positive charge) generated by the discharge of the charge generation unit 30 to become the charged fine particles P. Become. The charged fine particles P pass through the excess charge removing unit 40 as they are and reach the collecting unit 50. On the other hand, the electric charge 28 not added to the fine particles 26 is attracted to the removal electrodes 42 and 42 of the excess charge removal unit 40 and is discarded to the ground via the removal electrodes 42 and 42. As a result, the unnecessary electric charge 28 not added to the fine particles 26 hardly reaches the collecting portion 50.

捕集部50に到達した帯電微粒子Pは、電界発生電極52によって発生した捕集用電界によって捕集電極54に捕集される。そして、捕集電極54に捕集された帯電微粒子Pの電荷28に基づく電流が電流計62で測定され、その電流に基づいて個数測定装置64が微粒子26の個数を演算する。電流Iと電荷量qの関係は、I=dq/(dt)、q=∫Idtである。個数測定装置64は、所定期間にわたって電流値を積分(累算)してその積分値(蓄積電荷量)を求め、蓄積電荷量を素電荷で除算して電荷の総数(捕集電荷数)を求め、その捕集電荷数を1つの微粒子26に付加する電荷の数の平均値(平均帯電数)で除算することで、捕集電極54に捕集された微粒子26の個数Ntを求める(下記式(1)参照)。個数測定装置64は、この個数Ntを排ガス中の微粒子26の数として検出する。
Nt=(蓄積電荷量)/{(素電荷)×(平均帯電数)} …(1)
The charged fine particles P that have reached the collection unit 50 are collected by the collection electrode 54 by the collection electric field generated by the electric field generation electrode 52. Then, the current based on the electric charge 28 of the charged fine particles P collected by the collecting electrode 54 is measured by the ammeter 62, and the number measuring device 64 calculates the number of the fine particles 26 based on the current. The relationship between the current I and the amount of electric charge q is I = dq / (dt) and q = ∫Idt. The number measuring device 64 integrates (accumulates) the current values over a predetermined period to obtain the integrated value (accumulated charge amount), divides the accumulated charge amount by the elementary charge, and obtains the total number of charges (collected charge number). By dividing the number of collected charges by the average value (average number of charges) of the number of charges added to one fine particle 26, the number Nt of the fine particles 26 collected on the collection electrode 54 is obtained (below). See equation (1)). The number measuring device 64 detects this number Nt as the number of fine particles 26 in the exhaust gas.
Nt = (accumulated charge) / {(elementary charge) x (average charge number)} ... (1)

微粒子数検出素子20の使用に伴い、ガス流路24の壁へ数多く堆積すると電極間の絶縁が不十分となり、粒子数を正常に測定できない場合がある。そのため、定期的にあるいは堆積量が所定量に達したタイミングで、ガス流路24の壁の堆積物を加熱して焼却しガス流路24の壁及び電極32,42,52,54をリフレッシュする。 With the use of the fine particle number detecting element 20, if a large number of particles are deposited on the wall of the gas flow path 24, the insulation between the electrodes becomes insufficient, and the number of particles may not be measured normally. Therefore, the deposits on the wall of the gas flow path 24 are heated and incinerated to refresh the walls of the gas flow path 24 and the electrodes 32, 42, 52, 54 at regular intervals or when the accumulated amount reaches a predetermined amount. ..

以上説明したこの微粒子数検出器10では、ガス導入口81から保護カバー80内に導入された排ガスの主流は、図8の実線矢印に示すように、微粒子数検出素子20の左右両側の空間を通過したあとガス排出口82から保護カバー80の外へ排出される。一方、ガス導入口81から保護カバー80内に導入された排ガスの傍流は、図8の点線矢印に示すように、ガス排出口82側に設けられたガス流路24の入口24aからガス流路24を通過したあとガス導入口81側に設けられたガス流路24の出口24bからガス流路24の外へ出る。排ガスの傍流は、排ガスの主流に比べて流速が低下する。ここで、上述したホワイト(White)の式によれば、帯電数すなわち微粒子に帯電する電荷の数は、時間が大きいほど(つまりガス流速が低いほど)大きくなる。そのため、ガス流路24を通過するガスの流速が低いほど、微粒子1つあたりに付加される平均電荷の数が大きくなる。本実施形態では、上述したように、ガス流路を流れる排ガスは流速が低いため、ガス流路を流れる排ガス中の微粒子に付加される平均電荷の数が大きくなる。その結果、帯電微粒子1つあたりの捕集電流が大きくなるため、検出精度が高くなる。 In the fine particle number detector 10 described above, the mainstream of the exhaust gas introduced into the protective cover 80 from the gas introduction port 81 passes through the spaces on both the left and right sides of the fine particle number detection element 20 as shown by the solid line arrow in FIG. After passing through, the gas is discharged from the gas discharge port 82 to the outside of the protective cover 80. On the other hand, the side flow of the exhaust gas introduced into the protective cover 80 from the gas introduction port 81 is a gas flow path from the inlet 24a of the gas flow path 24 provided on the gas discharge port 82 side as shown by the dotted line arrow in FIG. After passing through 24, the gas flows out of the gas flow path 24 from the outlet 24b of the gas flow path 24 provided on the gas introduction port 81 side. The flow velocity of the sidestream of the exhaust gas is lower than that of the mainstream of the exhaust gas. Here, according to the above-mentioned White equation, the number of electric charges, that is, the number of electric charges charged on the fine particles, increases as the time increases (that is, as the gas flow velocity decreases). Therefore, the lower the flow velocity of the gas passing through the gas flow path 24, the larger the number of average charges added to each fine particle. In the present embodiment, as described above, since the exhaust gas flowing through the gas flow path has a low flow velocity, the number of average charges added to the fine particles in the exhaust gas flowing through the gas flow path is large. As a result, the collection current per charged fine particle becomes large, so that the detection accuracy becomes high.

また、保護カバー80は排水口83を有しているため、ガス導入口81から導入された排ガスに含まれる水が保護カバー80内に溜まったとしてもその溜まった水は排水口83を介して保護カバー80の外へ排出される。特に、微粒子数検出素子20は下面が排水口83よりも高い位置にあるため、保護カバー80内に溜まった水は微粒子数検出素子20に接触することなく排水口83から排出される。 Further, since the protective cover 80 has the drain port 83, even if the water contained in the exhaust gas introduced from the gas introduction port 81 collects in the protective cover 80, the accumulated water passes through the drain port 83. It is discharged to the outside of the protective cover 80. In particular, since the lower surface of the fine particle number detecting element 20 is located higher than the drain port 83, the water collected in the protective cover 80 is discharged from the drain port 83 without coming into contact with the fine particle number detecting element 20.

更に、保護カバー80は円筒状(つまり断面が円形)であるため、排気管12内を流れる排ガスの圧力損失を小さく抑えることができる。 Further, since the protective cover 80 has a cylindrical shape (that is, a circular cross section), the pressure loss of the exhaust gas flowing in the exhaust pipe 12 can be suppressed to a small value.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various aspects as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、排水口83を保護カバー80の側壁の下方位置に設けたが、排水口83を保護カバー80の底面に設けてもよい。 For example, in the above-described embodiment, the drain port 83 is provided at a position below the side wall of the protective cover 80, but the drain port 83 may be provided on the bottom surface of the protective cover 80.

上述した実施形態では、保護カバー80は断面が円形の筒状としたが、断面が楕円形の筒状としてもよい。このようにしても、排気管12内を流れる排ガスの圧力損失を小さく抑えることができる。また、保護カバー80は有底筒状の部材としたが、底のない筒状の部材としてもよい。 In the above-described embodiment, the protective cover 80 has a tubular shape with a circular cross section, but may have a tubular shape with an elliptical cross section. Even in this way, the pressure loss of the exhaust gas flowing in the exhaust pipe 12 can be suppressed to a small value. Further, although the protective cover 80 is a bottomed tubular member, it may be a bottomless tubular member.

上述した実施形態では、縦方向に3つのガス導入口81が並んだ列を、微粒子数検出素子20の左右それぞれの空間に正対する領域80a,80bに設けたが、特に列に並べるガス導入口81の個数は3つに限定されるものではなく、2つでもよいし、4つ以上でもよい。あるいは、微粒子数検出素子20の左右それぞれの空間に正対する領域80a,80bにガス導入口81を1つずつ設けてもよい。ガス導入口81は、丸穴でも角穴でもよい。あるいは、ガス導入口81を、縦方向に延びるスリットとしてもよい。また、上述した実施形態では、ガス導入口81の列を、微粒子数検出素子20の左右それぞれの空間に正対する領域80a,80bに1列ずつ設けたが、複数列ずつ設けてもよい。また、上述した実施形態では、3つのガス導入口81を縦方向に並べたが、特にこれに限定されない。例えば、微粒子数検出素子20の左右それぞれの空間に正対する領域80a,80bに、複数のガス導入口81をジグザグに設けたりランダムに設けたりしてもよい。 In the above-described embodiment, rows of three gas inlets 81 arranged in the vertical direction are provided in the regions 80a and 80b facing the left and right spaces of the fine particle number detection element 20, but the gas inlets arranged in a row are particularly provided. The number of 81 is not limited to three, and may be two or four or more. Alternatively, one gas introduction port 81 may be provided in each of the regions 80a and 80b facing the left and right spaces of the fine particle number detection element 20. The gas inlet 81 may be a round hole or a square hole. Alternatively, the gas introduction port 81 may be a slit extending in the vertical direction. Further, in the above-described embodiment, the rows of the gas introduction ports 81 are provided one by one in the regions 80a and 80b facing the left and right spaces of the fine particle number detection element 20, but a plurality of rows may be provided. Further, in the above-described embodiment, the three gas introduction ports 81 are arranged in the vertical direction, but the present invention is not particularly limited to this. For example, a plurality of gas introduction ports 81 may be provided in a zigzag pattern or randomly in the regions 80a and 80b facing the left and right spaces of the fine particle number detection element 20.

上述した実施形態において、ガス導入口81の中心軸を、排気管12の中心軸と略平行にしたが、排気管12の中心軸から外を向くようにしてもよい。例えば、ガス導入口81の中心軸を、図8のガス導入口81を通過する排ガスの主流を示す実線矢印方向と平行にしてもよい。こうすれば、ガス導入口81から導入された排ガスは微粒子数検出素子20の左右の空間により進みやすくなる。 In the above-described embodiment, the central axis of the gas introduction port 81 is substantially parallel to the central axis of the exhaust pipe 12, but the central axis of the exhaust pipe 12 may be directed outward. For example, the central axis of the gas introduction port 81 may be parallel to the direction of the solid arrow indicating the mainstream of the exhaust gas passing through the gas introduction port 81 of FIG. In this way, the exhaust gas introduced from the gas introduction port 81 can easily advance in the spaces on the left and right of the fine particle number detecting element 20.

上述した実施形態では、微粒子数検出器10をエンジンの排気管12に取り付ける場合を例示したが、特にエンジンの排気管12に限定されるものではなく、微粒子を含むガスが流通する管であればどのような管であってもよい。 In the above-described embodiment, the case where the fine particle number detector 10 is attached to the exhaust pipe 12 of the engine has been illustrated, but the present invention is not particularly limited to the exhaust pipe 12 of the engine, as long as it is a pipe through which a gas containing fine particles flows. It can be any tube.

上述した実施形態では、捕集対象を帯電微粒子として微粒子の数を求めたが、捕集対象を余剰電荷として微粒子の数を求めてもよい。例えば、上述した第1実施形態において、除去電極42を省略し、捕集用電源56が電界発生電極52に印加する電圧を電圧V1よりも低く設定し、余剰電荷が捕集電極54に捕集され、帯電微粒子Pが捕集電極54に捕集されずに出口24bから排出されるようにしてもよい。その場合、まず、電荷発生部30で発生する電荷28の総数を測定しておき、その後、微粒子26を含むガスをガス流路24に流したときに捕集電極54に流れる電流から余剰電荷の数を測定し、電荷28の総数から余剰電荷の数を引くことにより微粒子の数を求めることができる。この場合、帯電微粒子Pの1つあたりの電流減少分が大きくなる。その結果、電荷28の総数から余剰電荷の数を引いた値が大きくなるため、検出精度が高くなる。但し、この場合、電荷28の総数の測定と余剰電荷の数の測定の両方が必要になるうえ、電荷28は微粒子26よりも軽く挙動も不安定であり、さらに微粒子26の数がこれらの数と比べて数桁小さいことを考慮すると、捕集対象を帯電微粒子Pとした方が誤差を小さくすることができる。 In the above-described embodiment, the number of fine particles is determined by setting the collection target as charged fine particles, but the number of fine particles may be obtained by using the collection target as surplus charge. For example, in the first embodiment described above, the removal electrode 42 is omitted, the voltage applied to the electric field generation electrode 52 by the collection power supply 56 is set lower than the voltage V1, and the excess charge is collected by the collection electrode 54. The charged fine particles P may be discharged from the outlet 24b without being collected by the collection electrode 54. In that case, first, the total number of charges 28 generated by the charge generation unit 30 is measured, and then, when the gas containing the fine particles 26 is passed through the gas flow path 24, the surplus charge is generated from the current flowing through the collection electrode 54. The number of fine particles can be obtained by measuring the number and subtracting the number of surplus charges from the total number of charges 28. In this case, the amount of current decrease per charged fine particle P becomes large. As a result, the value obtained by subtracting the number of surplus charges from the total number of charges 28 becomes large, so that the detection accuracy becomes high. However, in this case, it is necessary to measure both the total number of charges 28 and the number of surplus charges, the charges 28 are lighter than the fine particles 26 and the behavior is unstable, and the number of the fine particles 26 is these numbers. Considering that it is several orders of magnitude smaller than that of the above, the error can be reduced by setting the collection target as the charged fine particles P.

本発明は、例えば自動車などの動力機械の排ガス中の微粒子の数を検出する微粒子数検出器に利用可能である。 The present invention can be used as a fine particle number detector for detecting the number of fine particles in the exhaust gas of a power machine such as an automobile.

10 微粒子数検出器、12 排気管、20 微粒子数検出素子、22 筐体、22a 下端、22b 上端、22c,22d 流路壁、24 ガス流路、24a 入口、24b 出口、26 微粒子、28 電荷、30 電荷発生部、32 放電電極、33 放電電極端子、34 グランド電極、35 グランド電極端子、36 放電用電源、40 余剰電荷除去部、42 除去電極、45 除去電極端子、50 捕集部、52 電界発生電極、53 電界発生電極端子、54 捕集電極、55 捕集電極端子、56 捕集用電源、60 個数検出部、62 電流計、64 個数測定装置、66 ヒータ電極、67 ヒータ電極端子、68 付属ユニット、70 主体金具、70a ボルト部、72 貫通孔、74 サポータ、76 ボス、76a ナット部、78 ガスケット、80 保護カバー、80a,80b 領域、81 ガス導入口、82 ガス排出口、83 排水口。 10 Fine particle number detector, 12 exhaust pipe, 20 fine particle number detection element, 22 housing, 22a lower end, 22b upper end, 22c, 22d flow path wall, 24 gas flow path, 24a inlet, 24b outlet, 26 fine particles, 28 charges, 30 charge generator, 32 discharge electrode, 33 discharge electrode terminal, 34 ground electrode, 35 ground electrode terminal, 36 power supply for discharge, 40 excess charge removal part, 42 removal electrode, 45 removal electrode terminal, 50 collection part, 52 electric field Generating electrode, 53 Electric field generating electrode terminal, 54 Collecting electrode, 55 Collecting electrode terminal, 56 Collecting power supply, 60 Counting detector, 62 Current meter, 64 Counting device, 66 Heater electrode, 67 Heater electrode terminal, 68 Attached unit, 70 main metal fittings, 70a bolt part, 72 through hole, 74 supporter, 76 boss, 76a nut part, 78 gasket, 80 protective cover, 80a, 80b area, 81 gas inlet, 82 gas outlet, 83 drain ..

Claims (3)

微粒子数検出素子のガス流路の入口から流入してきた排ガス中の微粒子に電荷を付加して帯電微粒子とし、前記帯電微粒子と前記微粒子に付加されなかった電荷とのいずれかである捕集対象を前記ガス流路内に設けた捕集電極に電界を利用して捕集し、前記捕集電極に流れる電流に基づいて前記微粒子の数を検出する微粒子数検出器であって、
前記微粒子数検出素子の前記ガス流路の周囲を取り囲むように設けられた筒状の保護カバーと、
前記保護カバーのうち前記ガス流路の出口側に設けられ、前記微粒子数検出素子に正対せず前記微粒子数検出素子の両側の空間に正対するガス導入口と、
前記保護カバーのうち前記ガス流路の入口側に設けられ、前記微粒子数検出素子に正対するガス排出口と、
を備えた微粒子数検出器。
Charges are added to the fine particles in the exhaust gas flowing in from the inlet of the gas flow path of the fine particle number detection element to form charged fine particles, and the collection target, which is either the charged fine particles or the charge not added to the fine particles, is collected. A fine particle number detector that collects particles by using an electric charge on a collection electrode provided in the gas flow path and detects the number of the fine particles based on the current flowing through the collection electrode.
A tubular protective cover provided so as to surround the gas flow path of the fine particle number detecting element, and
A gas introduction port provided on the outlet side of the gas flow path of the protective cover and facing the spaces on both sides of the fine particle number detecting element without facing the fine particle number detecting element.
A gas discharge port provided on the inlet side of the gas flow path of the protective cover and facing the fine particle number detection element, and a gas discharge port.
Particle count detector equipped with.
前記保護カバーは、側壁の下方位置又は底面に排水口を有している、
請求項1に記載の微粒子数検出器。
The protective cover has a drainage port at a lower position on the side wall or on the bottom surface.
The fine particle number detector according to claim 1.
前記保護カバーは、断面が円形又は楕円形である筒状のカバーである、
請求項1又は2に記載の微粒子数検出器。
The protective cover is a tubular cover having a circular or oval cross section.
The fine particle number detector according to claim 1 or 2.
JP2019166735A 2019-09-13 2019-09-13 Detector for detecting number of fine particles Pending JP2021043123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166735A JP2021043123A (en) 2019-09-13 2019-09-13 Detector for detecting number of fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166735A JP2021043123A (en) 2019-09-13 2019-09-13 Detector for detecting number of fine particles

Publications (1)

Publication Number Publication Date
JP2021043123A true JP2021043123A (en) 2021-03-18

Family

ID=74863877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166735A Pending JP2021043123A (en) 2019-09-13 2019-09-13 Detector for detecting number of fine particles

Country Status (1)

Country Link
JP (1) JP2021043123A (en)

Similar Documents

Publication Publication Date Title
US20190285534A1 (en) Particulate detector
FI118278B (en) Method and sensor device for measuring particulate emissions from combustion engine exhaust
US9683962B2 (en) Apparatus for monitoring particles in an aerosol
US10933430B2 (en) Device and method for separating off contaminants
JP6804630B2 (en) Particle detection element and particle detector
WO2018012421A1 (en) Fine particle number detector
JP2021043123A (en) Detector for detecting number of fine particles
US11022535B2 (en) Particulate matter detection sensor
JP2021043150A (en) Detector for detecting number of fine particles
JP2021135130A (en) Fine particle number detector
WO2019239588A1 (en) Fine particle number detector
US20200200710A1 (en) Particle detection element and particle detector
WO2020179356A1 (en) Fine particle detection element and fine particle detector
WO2019049236A1 (en) Fine particle detection element and fine particle detector
WO2021060105A1 (en) Microparticle detection element and microparticle detector
WO2020179502A1 (en) Fine particle detection element and fine particle detector
WO2020137416A1 (en) Fine particle detection element and fine particle detector
JP6366491B2 (en) Particle sensor
WO2020090438A1 (en) Microparticle detector
WO2020137418A1 (en) Fine particle detector
CN111094934A (en) Particle detection element and particle detector
KR102524709B1 (en) Particle Sensor with Planar Exposed Corona Discharge Electrodes
JP2020159726A (en) Fine particle detection element
US10871434B2 (en) Particulate detector
JPWO2019155920A1 (en) Particle detector