WO2019239588A1 - Fine particle number detector - Google Patents

Fine particle number detector Download PDF

Info

Publication number
WO2019239588A1
WO2019239588A1 PCT/JP2018/022967 JP2018022967W WO2019239588A1 WO 2019239588 A1 WO2019239588 A1 WO 2019239588A1 JP 2018022967 W JP2018022967 W JP 2018022967W WO 2019239588 A1 WO2019239588 A1 WO 2019239588A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fine particles
gas
particle number
discharge
Prior art date
Application number
PCT/JP2018/022967
Other languages
French (fr)
Japanese (ja)
Inventor
英正 奥村
和幸 水野
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2018/022967 priority Critical patent/WO2019239588A1/en
Priority to JP2020525065A priority patent/JPWO2019239588A1/en
Publication of WO2019239588A1 publication Critical patent/WO2019239588A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A fine particle number detector comprises a case, a charge generating part, a collecting electrode part, a storage part, and a number detecting part. The case has a ventilation passage. The charge generating part imparts a charge, which is generated by discharging electricity, to fine particles which are in a gas introduced into the ventilation passage, and makes the fine particles into charged fine particles. The collecting electrode part is provided farther downstream a flow of the gas than the charge generating part, and collects the charged fine particles and excess charge which was not imparted to the fine particles. The storage part stores a correspondence relationship between a number concentration of the fine particles in the gas, which was found in advance, and a current which flows in the collecting electrode. The number detecting part finds the number of fine particles which are included in the gas on the basis of the correspondence relationship which is stored in the storage unit and the current which actually flows in the collecting electrode.

Description

微粒子数検出器Particle count detector
 本発明は、微粒子数検出器に関する。 The present invention relates to a particle number detector.
 微粒子数検出器としては、電荷発生素子でコロナ放電によりイオンを発生させ、そのイオンによりガス中の微粒子を帯電させて帯電微粒子とし、その帯電微粒子を測定電極で捕集し、捕集された帯電微粒子の電荷の量に基づいて微粒子の個数を測定するものが知られている。例えば、特許文献1では、q=∫Idtに基づき、測定電極に流れる電流を時間で積分して蓄積電荷量を求め、その蓄積電荷量を素電荷で除算することで、その時間にわたって測定電極に付着した微粒子数を求めている。すなわち、測定電極に帯電微粒子のみを捕集することを前提としている。そのため、特許文献1では、電荷発生素子と測定電極との間に除去電極を設け、微粒子に帯電しなかった電荷(余剰電荷)を除去電極で捕集することにより、微粒子数の検出精度を向上することも提案されている。 As the particle number detector, ions are generated by corona discharge with a charge generation element, and the particles in the gas are charged with charged ions to form charged particles. The charged particles are collected by a measuring electrode, and the collected charged particles are collected. A device that measures the number of fine particles based on the amount of charge of the fine particles is known. For example, in Patent Document 1, based on q = ∫Idt, the amount of accumulated charge is obtained by integrating the current flowing through the measurement electrode with time, and the amount of accumulated charge is divided by the elementary charge. The number of attached fine particles is obtained. That is, it is assumed that only charged fine particles are collected on the measurement electrode. For this reason, in Patent Document 1, a removal electrode is provided between the charge generation element and the measurement electrode, and charges that have not been charged in the fine particles (excess charge) are collected by the removal electrode, thereby improving the detection accuracy of the number of fine particles. It has also been proposed to do.
国際公開第2015/146456号パンフレットInternational Publication No. 2015/146456 Pamphlet
 しかしながら、除去電極で余剰電荷のみを捕集し測定電極で帯電微粒子のみを捕集することは、理論的には可能ではあるが、実現するのは容易ではなかった。そのため、ガス中の微粒子数を測定する新たな技術が待望されていた。 However, it is theoretically possible to collect only the surplus charges with the removal electrode and only the charged fine particles with the measurement electrode, but it was not easy to realize. Therefore, a new technique for measuring the number of fine particles in the gas has been awaited.
 本発明はこのような課題を解決するためになされたものであり、従来に比べて容易にガス中の微粒子数を測定することを主目的とする。 The present invention has been made to solve such a problem, and has as its main object to easily measure the number of fine particles in a gas as compared with the prior art.
 本発明は、上述した主目的を達成するために以下の手段を採った。 The present invention adopts the following means in order to achieve the above-mentioned main object.
 本発明の微粒子数検出器は、
 通気路を有する筐体と、
 前記通気路に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
 前記電荷発生部よりも前記ガスの流れの下流側に設けられ、前記帯電微粒子と前記微粒子に付加しなかった余剰電荷とを捕集する捕集電極と、
 予め求めた前記ガス中の微粒子数濃度と前記捕集電極を流れる電流との対応関係を記憶する記憶部と、
 前記対応関係と実際に前記捕集電極を流れる電流とに基づいて前記ガスに含まれる微粒子の数を求める個数検出部と、
 を備えたものである。
The particle number detector of the present invention is
A housing having a ventilation path;
A charge generating unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the air passage to form charged fine particles;
A collecting electrode provided on the downstream side of the gas flow with respect to the charge generation unit and collecting the charged fine particles and surplus charges not added to the fine particles;
A storage unit for storing a correspondence relationship between the concentration of fine particles in the gas obtained in advance and a current flowing through the collection electrode;
A number detection unit for determining the number of fine particles contained in the gas based on the correspondence and the current actually flowing through the collection electrode;
It is equipped with.
 この微粒子数検出器では、帯電微粒子と微粒子に付加しなかった余剰電荷とを捕集電極で捕集し、予め求めたガス中の微粒子数濃度と捕集電極を流れる電流との対応関係と実際に捕集電極を流れる電流とに基づいてガスに含まれる微粒子の数を求める。捕集電極は、帯電微粒子のみを捕集する必要はなく、帯電微粒子と余剰電荷の両方を捕集する。したがって、従来に比べて容易にガス中の微粒子数を測定することができる。このような方法でガス中の微粒子の数を求めることができるようになったのは、本発明者らが、ガス中の微粒子数濃度と、帯電微粒子及び余剰電荷の両方を捕集電極に捕集したときの捕集電極に流れる電流との間に、対応関係があることを見いだしたからである。 In this particle number detector, charged particles and surplus charges that have not been added to the particles are collected by a collecting electrode, and the correspondence between the concentration of the number of particles in the gas determined in advance and the current flowing through the collecting electrode are actually measured. The number of fine particles contained in the gas is determined based on the current flowing through the collection electrode. The collecting electrode does not need to collect only the charged fine particles, and collects both the charged fine particles and surplus charges. Therefore, the number of fine particles in the gas can be measured more easily than in the past. The number of fine particles in the gas can be obtained by such a method because the present inventors have captured the concentration of fine particles in the gas and both the charged fine particles and the surplus charges in the collecting electrode. This is because it has been found that there is a correspondence between the current flowing through the collecting electrode when collected.
 なお、本明細書において、「電荷」とは、正電荷や負電荷のほかイオンを含むものとする。 In this specification, “charge” includes positive charges and negative charges as well as ions.
 本発明の微粒子数検出器において、前記対応関係は、前記ガスの微粒子数濃度をx(個/cc)、前記捕集電極を流れる電流をy(pA)としたときにy=ax+b(a,bは定数、a>0,b>0)で表されるものとしてもよい。このような式は、例えば、微粒子数濃度が既知のガスと捕集電極を流れる電流との関係から最小2乗法により求めることができる。 In the particle number detector of the present invention, the correspondence relationship is as follows: y = ax + b (a, a, where x is the particle number concentration of the gas and y (pA) is the current flowing through the collection electrode. b may be a constant, a> 0, b> 0). Such an expression can be obtained, for example, by the method of least squares from the relationship between the gas having a known fine particle number concentration and the current flowing through the collection electrode.
 本発明の微粒子数検出器において、前記捕集電極は、電界によって前記帯電微粒子と前記余剰電荷とを捕集してもよい。こうすれば、帯電微粒子と余剰電荷の両方を効率よく捕集電極に捕集することができる。 In the fine particle number detector of the present invention, the collection electrode may collect the charged fine particles and the excess charge by an electric field. In this way, both the charged fine particles and the surplus charges can be efficiently collected on the collecting electrode.
 本発明の微粒子数検出器において、前記電荷発生部は、放電電極と、誘導電極と、前記放電電極と前記誘導電極とによって挟まれた誘電体層とを備えていてもよい。このような電荷発生部を採用すれば、ガス中の微粒子数濃度と捕集電極を流れる電流との間に良好な対応関係が生じる。この場合、前記放電電極には、放電電圧として正弦波電圧を印加することが好ましい。正弦波電圧はパルス電圧に比べてノイズが発生しにくいからである。 In the fine particle number detector of the present invention, the charge generation unit may include a discharge electrode, an induction electrode, and a dielectric layer sandwiched between the discharge electrode and the induction electrode. When such a charge generation part is employed, a good correspondence between the concentration of the number of fine particles in the gas and the current flowing through the collecting electrode occurs. In this case, it is preferable to apply a sinusoidal voltage as a discharge voltage to the discharge electrode. This is because the sine wave voltage is less likely to generate noise than the pulse voltage.
微粒子数検出器10の説明図。FIG. 3 is an explanatory diagram of the particle number detector 10. 微粒子検出素子20の斜視図。FIG. 6 is a perspective view of the particle detection element 20. 図2のA-A断面図。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図2のB-B断面図。FIG. 3 is a sectional view taken along line BB in FIG. 2. 微粒子検出素子20の分解斜視図。FIG. 3 is an exploded perspective view of the particle detection element 20. 正弦波電圧の一例を示す説明図。Explanatory drawing which shows an example of a sine wave voltage. ガス中の微粒子数濃度と捕集電極54を流れる電流との対応関係の一例を示すグラフ。The graph which shows an example of the correspondence of the fine particle number density | concentration in gas, and the electric current which flows through the collection electrode. 実験装置80の概略構成図。The schematic block diagram of the experimental apparatus 80. FIG.
 次に、本発明の実施形態について、図面を用いて説明する。図1は本発明の一実施形態である微粒子数検出器10の説明図、図2は微粒子検出素子20の斜視図、図3は図2のA-A断面図、図4は図2のB-B断面図、図5は微粒子検出素子20の分解斜視図である。なお、本実施形態において、上下方向,左右方向及び前後方向は、図1~図2に示した通りとする。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a particle number detector 10 according to an embodiment of the present invention, FIG. 2 is a perspective view of a particle detector 20, FIG. 3 is a cross-sectional view taken along the line AA in FIG. FIG. 5 is an exploded perspective view of the particle detecting element 20. In the present embodiment, the vertical direction, the horizontal direction, and the front-rear direction are as shown in FIGS.
 微粒子数検出器10は、図1に示すように、エンジンの排気管12を流れる排ガスに含まれる微粒子26(図5参照)の数を検出するものである。この微粒子数検出器10は、微粒子検出素子20と、各種電源36,56や個数検出部60を含む付属ユニット70とを備えている。 As shown in FIG. 1, the fine particle number detector 10 detects the number of fine particles 26 (see FIG. 5) contained in the exhaust gas flowing through the exhaust pipe 12 of the engine. The particle number detector 10 includes a particle detection element 20 and an accessory unit 70 including various power sources 36 and 56 and a number detection unit 60.
 微粒子検出素子20は、図1に示すように、円柱状の支持体14に差し込まれた状態で、排気管12に固定されたリング状の台座16に取り付けられている。微粒子検出素子20は、保護カバー18によって保護されている。保護カバー18には図示しない穴が設けられており、この穴を介して排気管12を流通する排ガスが微粒子検出素子20の下端に設けられた通気路24を通過する。微粒子検出素子20は、図4に示すように、筐体22に、電荷発生部30と、捕集部50と、ヒータ電極72とを備えたものである。 As shown in FIG. 1, the fine particle detection element 20 is attached to a ring-shaped pedestal 16 fixed to the exhaust pipe 12 while being inserted in a columnar support 14. The particulate detection element 20 is protected by a protective cover 18. A hole (not shown) is provided in the protective cover 18, and the exhaust gas flowing through the exhaust pipe 12 passes through the ventilation path 24 provided at the lower end of the particulate detection element 20 through the hole. As shown in FIG. 4, the particle detection element 20 includes a housing 22 including a charge generation unit 30, a collection unit 50, and a heater electrode 72.
 筐体22は、図1に示すように、排気管12の軸方向と交差する方向(ここでは略直交する方向)に長い直方体である。筐体22は絶縁体であり、例えばアルミナなどのセラミックス製である。筐体22の下端22aは排気管12の内部に配置され、上端22bは排気管12の外部に配置される。筐体22の下端22aには、通気路24が設けられている。筐体22の上端22bには、各種端子が設けられている。 As shown in FIG. 1, the housing 22 is a rectangular parallelepiped that is long in a direction intersecting with the axial direction of the exhaust pipe 12 (here, a direction substantially orthogonal). The housing 22 is an insulator, and is made of ceramics such as alumina. A lower end 22 a of the housing 22 is disposed inside the exhaust pipe 12, and an upper end 22 b is disposed outside the exhaust pipe 12. An air passage 24 is provided at the lower end 22 a of the housing 22. Various terminals are provided on the upper end 22 b of the housing 22.
 通気路24の軸方向は、排気管12の軸方向と一致している。通気路24は、図2に示すように、筐体22の前方の面に設けられた矩形のガス導入口24aから、筐体22の後方の面に設けられた矩形のガス排出口24bまで連なる直方体形状の空間である。筐体22は、通気路24を構成する左右一対の壁22c,22dを備えている(図2参照)。 The axial direction of the air passage 24 coincides with the axial direction of the exhaust pipe 12. As shown in FIG. 2, the air passage 24 extends from a rectangular gas inlet 24 a provided on the front surface of the housing 22 to a rectangular gas outlet 24 b provided on the rear surface of the housing 22. It is a rectangular parallelepiped space. The housing 22 includes a pair of left and right walls 22c and 22d that constitute the air passage 24 (see FIG. 2).
 電荷発生部30は、通気路24内のガス導入口24aの近くに電荷が発生するように、左右一対の壁22c,22dのそれぞれに設けられている。以下には説明の便宜上、壁22cに設けられた電荷発生部30について説明するが、壁22dに設けられた電荷発生部30もこれと同様である。電荷発生部30は、放電電極32と2つの誘導電極34,34とを有している。放電電極32は、壁22cの内面に沿って設けられ、図3に示すように、矩形の周囲に複数の微細突起を有している。2つの誘導電極34,34は、矩形電極であり、壁22cに間隔をあけて放電電極32と平行となるように埋設されている。電荷発生部30では、放電電極32と2つの誘導電極34,34との間に放電用電源36(付属ユニット70の1つ)の高周波高電圧として正弦波電圧が印加されることで、両電極間の電位差による気中放電が発生する。このとき、筐体22のうち放電電極32と誘導電極34,34との間の部分が誘電体層の役割を果たす。この気中放電によって、放電電極32の周囲に存在するガスがイオン化されて正の電荷28が発生する。誘導電極34,34は、ここではグランドに接続されている。正弦波電圧の一例を図6に示す。図6では、ゼロボルトを点線ではなく実線(正弦波の真ん中のライン(1点鎖線)よりも下側の線)としている。そのため、正のピーク電圧の絶対値の方が負のピーク電圧の絶対値よりも大きい。正電圧によって発生した電荷の一部は電極上に堆積するが、その堆積電荷が残っていると次回の放電時に電荷が発生しにくくなる。図6の正弦波電圧を用いると、堆積電荷は負電圧の期間で消失する。そのため、電荷を継続的に効率よく発生させることができる。 The charge generator 30 is provided on each of the pair of left and right walls 22c and 22d so that charges are generated near the gas inlet 24a in the air passage 24. Hereinafter, for convenience of explanation, the charge generation unit 30 provided on the wall 22c will be described, but the charge generation unit 30 provided on the wall 22d is the same as this. The charge generation unit 30 includes a discharge electrode 32 and two induction electrodes 34 and 34. The discharge electrode 32 is provided along the inner surface of the wall 22c, and has a plurality of fine protrusions around a rectangle as shown in FIG. The two induction electrodes 34 and 34 are rectangular electrodes, and are embedded so as to be parallel to the discharge electrode 32 with a space in the wall 22c. In the charge generation unit 30, a sine wave voltage is applied between the discharge electrode 32 and the two induction electrodes 34, 34 as a high-frequency high voltage of the discharge power source 36 (one of the attached units 70), whereby both electrodes Air discharge occurs due to the potential difference between them. At this time, a portion of the housing 22 between the discharge electrode 32 and the induction electrodes 34 and 34 serves as a dielectric layer. By this air discharge, the gas existing around the discharge electrode 32 is ionized to generate a positive charge 28. Here, the induction electrodes 34 are connected to the ground. An example of the sine wave voltage is shown in FIG. In FIG. 6, the zero volt is not a dotted line but a solid line (a line below the middle line of the sine wave (one-dot chain line)). Therefore, the absolute value of the positive peak voltage is larger than the absolute value of the negative peak voltage. A part of the electric charge generated by the positive voltage is deposited on the electrode, but if the accumulated electric charge remains, the electric charge is hardly generated at the next discharge. When the sine wave voltage of FIG. 6 is used, the deposited charge disappears in a negative voltage period. Therefore, electric charges can be generated continuously and efficiently.
 図4に示すように、ガスに含まれる微粒子26は、ガス導入口24aから通気路24内に入り、電荷発生部30を通過する際に電荷発生部30の気中放電によって発生した電荷28が付加されて帯電微粒子Pとなったあと後方に移動する。また、発生した電荷28のうち微粒子26に付加されなかったものは、余剰電荷Qとしてそのまま後方に移動する。 As shown in FIG. 4, the fine particles 26 contained in the gas enter the air passage 24 through the gas introduction port 24 a, and the charges 28 generated by the air discharge of the charge generation unit 30 when passing through the charge generation unit 30. After being added to become charged fine particles P, they move backward. Further, among the generated charges 28, those not added to the fine particles 26 move rearward as surplus charges Q.
 捕集部50は、通気路24のうち電荷発生部30よりも下流に設けられている。捕集部50は、帯電微粒子Pや余剰電荷Qを捕集するものであり、電界発生電極52と捕集電極54とを有している。電界発生電極52は、右側の壁22dの内面に沿って設けられ、通気路24内に露出している。捕集電極54は、左側の壁22cの内面に沿って設けられ、通気路24内に露出している。電界発生電極52と捕集電極54とは互いに向かい合う位置に配設されている。電界発生電極52は、電圧V1(正電位)が捕集用電源56(付属ユニット70の1つ)によって印加される電極である。捕集電極54は、電流計62を介してグランドに接続された電極である。これにより、捕集部50の電界発生電極52と捕集電極54との間には比較的強い電界が発生する。したがって、通気路24を流れる帯電微粒子Pや余剰電荷Qは、この電界によって捕集電極54に引き寄せられて捕集される。 The collection unit 50 is provided downstream of the charge generation unit 30 in the ventilation path 24. The collection unit 50 collects charged fine particles P and surplus charges Q, and has an electric field generating electrode 52 and a collection electrode 54. The electric field generating electrode 52 is provided along the inner surface of the right wall 22 d and is exposed in the air passage 24. The collecting electrode 54 is provided along the inner surface of the left wall 22 c and is exposed in the air passage 24. The electric field generating electrode 52 and the collecting electrode 54 are disposed at positions facing each other. The electric field generating electrode 52 is an electrode to which a voltage V1 (positive potential) is applied by a collecting power source 56 (one of the attached units 70). The collection electrode 54 is an electrode connected to the ground via an ammeter 62. Thereby, a relatively strong electric field is generated between the electric field generating electrode 52 and the collecting electrode 54 of the collecting unit 50. Therefore, the charged fine particles P and surplus charges Q flowing through the air passage 24 are attracted to and collected by the collecting electrode 54 by this electric field.
 なお、捕集部50の各電極52,54のサイズ、両電極52,54の間に発生させる電界の強さは、帯電微粒子Pや余剰電荷Qの両方が捕集電極54に捕集されるように設定される。 Note that the size of the electrodes 52 and 54 of the collection unit 50 and the strength of the electric field generated between the electrodes 52 and 54 are such that both the charged fine particles P and the surplus charges Q are collected by the collection electrode 54. Is set as follows.
 個数検出部60は、付属ユニット70の1つであり、電流計62と記憶部64と演算部66とを備えている。電流計62は、一方の端子が捕集電極54に接続され、もう一方の端子がグランドに接続されている。この電流計62は、捕集電極54に捕集された帯電微粒子Pの電荷28及び余剰電荷Qの両方に基づく電流を測定する。記憶部64は、予め求めたガス中の微粒子数濃度と捕集電極54を流れる電流との対応関係を記憶している。演算部66は、記憶部64に記憶された対応関係と実際に電流計62で測定された電流とに基づいて、粒子数濃度を求める。 The number detection unit 60 is one of the attached units 70 and includes an ammeter 62, a storage unit 64, and a calculation unit 66. The ammeter 62 has one terminal connected to the collecting electrode 54 and the other terminal connected to the ground. The ammeter 62 measures a current based on both the charge 28 and the surplus charge Q of the charged fine particles P collected by the collecting electrode 54. The storage unit 64 stores a correspondence relationship between the concentration of the number of fine particles in the gas obtained in advance and the current flowing through the collection electrode 54. The calculation unit 66 obtains the particle number concentration based on the correspondence stored in the storage unit 64 and the current actually measured by the ammeter 62.
 ヒータ電極72は、筐体22に埋設されている。ヒータ電極72は、ジグザグに引き回された帯状の発熱体(図5参照)である。ヒータ電極72は、図示しない給電装置に接続され、その給電装置によって通電されると発熱する。ヒータ電極72は、筐体22や捕集電極54などの各電極を加熱する。 The heater electrode 72 is embedded in the housing 22. The heater electrode 72 is a belt-like heating element (see FIG. 5) drawn in a zigzag manner. The heater electrode 72 is connected to a power supply device (not shown), and generates heat when energized by the power supply device. The heater electrode 72 heats each electrode such as the housing 22 and the collecting electrode 54.
 次に、微粒子検出素子20の構成について、図5の分解斜視図を用いて更に説明する。微粒子検出素子20は、7枚のシートS1~S7で構成されている。各シートS1~S7は、筐体22と同じ材料で形成されている。説明の便宜上、左から右に向かって第1シートS1、第2シートS2、…と称し、各シートS1~S7における右側の面を表面、左側の面を裏面と称する。各シートS1~S7の厚みは適宜設定すればよく、例えばすべて同じであってもよいし、それぞれ異なっていてもよい。 Next, the configuration of the particle detection element 20 will be further described with reference to the exploded perspective view of FIG. The fine particle detecting element 20 is composed of seven sheets S1 to S7. Each of the sheets S1 to S7 is formed of the same material as that of the housing 22. For convenience of explanation, the first sheet S1, the second sheet S2,... Are referred to from the left to the right, and the right side surface of each of the sheets S1 to S7 is referred to as the front surface, and the left side surface is referred to as the back surface. The thicknesses of the sheets S1 to S7 may be set as appropriate. For example, all the sheets S1 to S7 may be the same or different.
 第1シートS1の表面には、ヒータ電極72が設けられている。ヒータ電極72の一端及び他端は、第1シートS1の表面の上方に配置されており、第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられたヒータ電極端子75,75にそれぞれ接続されている。 A heater electrode 72 is provided on the surface of the first sheet S1. One end and the other end of the heater electrode 72 are disposed above the surface of the first sheet S1, and a heater electrode terminal 75 provided above the back surface of the first sheet S1 through a through hole of the first sheet S1. , 75 are connected to each other.
 第2シートS2の表面には、誘導電極34,34が設けられている。誘導電極34,34は1本の配線34aにまとめられている。その配線34aの端部は、第2シートS2の表面の上方に配置されており、第2シートS2及び第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられた誘導電極端子35に接続されている。第2シートS2の表面には、捕集電極54の配線54aが上下方向に沿って設けられている。配線54aの上端は、第2シートS2及び第1シートS1のスルーホールを介して第1シートS1の裏面の上方に設けられた捕集電極端子55にそれぞれ接続されている。 The induction electrodes 34 and 34 are provided on the surface of the second sheet S2. The induction electrodes 34, 34 are combined into one wiring 34a. The end of the wiring 34a is disposed above the surface of the second sheet S2, and is provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1. It is connected to the electrode terminal 35. On the surface of the second sheet S2, the wiring 54a of the collecting electrode 54 is provided along the vertical direction. The upper end of the wiring 54a is connected to the collecting electrode terminal 55 provided above the back surface of the first sheet S1 through the through holes of the second sheet S2 and the first sheet S1.
 第3シートS3の表面には、放電電極32及び捕集電極54が設けられている。捕集電極54は、第3シートS3のスルーホールを介して第2シートS2の配線54aに接続され、更にこの配線54aを介して捕集電極端子55に接続されている。 The discharge electrode 32 and the collection electrode 54 are provided on the surface of the third sheet S3. The collection electrode 54 is connected to the wiring 54a of the second sheet S2 through the through hole of the third sheet S3, and is further connected to the collection electrode terminal 55 through this wiring 54a.
 第4シートS4の下端側には、通気路24すなわち直方体形状の空間が設けられている。 The air passage 24, that is, a rectangular parallelepiped space is provided on the lower end side of the fourth sheet S4.
 第5シートS5の裏面には、放電電極32及び電界発生電極52が設けられている。 The discharge electrode 32 and the electric field generating electrode 52 are provided on the back surface of the fifth sheet S5.
 第6シートS6の裏面には、誘導電極34,34が設けられている。誘導電極34,34は1本の配線34aにまとめられている。その配線34aの端部は、第6シートS6の裏面の上方に配置されており、第3~第6シートS3~S6のスルーホールを介して第2シートS2の誘導電極34の配線34aに接続されている。そのため、第6シートS6に設けられた誘導電極34,34も、第1シートS1の裏面の上方に設けられた誘導電極端子35に接続されている。 The induction electrodes 34 and 34 are provided on the back surface of the sixth sheet S6. The induction electrodes 34, 34 are combined into one wiring 34a. The end of the wiring 34a is disposed above the back surface of the sixth sheet S6 and is connected to the wiring 34a of the induction electrode 34 of the second sheet S2 through the through holes of the third to sixth sheets S3 to S6. Has been. Therefore, the induction electrodes 34 and 34 provided on the sixth sheet S6 are also connected to the induction electrode terminal 35 provided above the back surface of the first sheet S1.
 第7シートS7の裏面には、放電電極32の配線32aと電界発生電極52の配線52aとが上下方向に沿ってそれぞれ設けられている。配線32aの下端は、第4~第6シートS4~S6のスルーホールを介して第3及び第5シートS3,S5にそれぞれ設けられた放電電極32に接続されている。配線52aの下端は、第5及び第6シートS5,S6のスルーホールを介して第5シートS5の裏面に設けられた電界発生電極52に接続されている。各配線32a,52aの上端は、第7シートS7のスルーホールを介して第7シートS7の表面の上方に設けられた放電電極端子33及び電界発生電極端子53にそれぞれ接続されている。 The wiring 32a of the discharge electrode 32 and the wiring 52a of the electric field generating electrode 52 are provided on the back surface of the seventh sheet S7 in the vertical direction. The lower end of the wiring 32a is connected to the discharge electrodes 32 provided on the third and fifth sheets S3 and S5 through the through holes of the fourth to sixth sheets S4 to S6. The lower end of the wiring 52a is connected to the electric field generating electrode 52 provided on the back surface of the fifth sheet S5 through the through holes of the fifth and sixth sheets S5 and S6. The upper ends of the wires 32a and 52a are connected to the discharge electrode terminal 33 and the electric field generating electrode terminal 53 provided above the surface of the seventh sheet S7 through the through holes of the seventh sheet S7.
 ここで、ガス中の微粒子数濃度と捕集電極54を流れる電流との対応関係の一例を図7に示す。図7に示したデータを取得するのに利用した実験装置80の構成及び全検出電流の測定手順について、図8を用いて説明する。 Here, an example of the correspondence relationship between the concentration of the number of fine particles in the gas and the current flowing through the collecting electrode 54 is shown in FIG. The configuration of the experimental apparatus 80 used to acquire the data shown in FIG. 7 and the procedure for measuring the total detected current will be described with reference to FIG.
 実験装置80は、粒子発生装置81(PALAS製、DNP digital3000)と、希釈装置82(TESTO製、MD19-3E)と、コンプレッサ83と、マスフローコントローラ84と、粒子カウンタ86(TSI製3776)と、微粒子数検出器10とを備えたものとした。具体的には、粒子発生装置81の出口を希釈装置82の入口に接続し、コンプレッサ83の出口をマスフローコントローラ84を介して希釈装置82の入口に接続した。希釈装置82の出口を、バルブ85を介して粒子カウンタ86と微粒子数検出器10とに接続した。微粒子数検出器10の出口には、マスフローコントローラ87と真空ポンプ88をこの順に接続した。粒子カウンタ86は、マスフローコントローラと真空ポンプとを内蔵しているものを用いた。 The experimental apparatus 80 includes a particle generator 81 (manufactured by PALAS, DNP digital 3000), a diluter 82 (manufactured by TESTO, MD19-3E), a compressor 83, a mass flow controller 84, a particle counter 86 (manufactured by TSI 3776), The particle number detector 10 was provided. Specifically, the outlet of the particle generator 81 was connected to the inlet of the diluter 82, and the outlet of the compressor 83 was connected to the inlet of the diluter 82 via the mass flow controller 84. The outlet of the diluter 82 was connected to the particle counter 86 and the particle number detector 10 via a valve 85. A mass flow controller 87 and a vacuum pump 88 were connected to the outlet of the particle number detector 10 in this order. As the particle counter 86, a built-in mass flow controller and a vacuum pump were used.
 全検出電流の測定手順は以下のとおりである。まず、希釈装置82の出口と粒子カウンタ86とが連通し希釈装置82の出口と微粒子数検出器10とが遮断するようにバルブ85を設定した。そして、粒子発生装置81に窒素ガスを供給し、粒子発生装置81内に組み込まれている一対のカーボン電極に所定の高電圧パルス波を印加した。これにより、放電により電荷が発生し、その電荷がカーボン電極をスパッタリングすることで単位時間当たり一定量のカーボン粒子を発生させた。粒子発生装置81内で発生したカーボン粒子を希釈装置82に流入させ、コンプレッサ83からマスフローコントローラ84を介して希釈装置82に供給されたエアとカーボン粒子とを混合し、カーボン粒子を含んだガスを生成した。こうしたガスを希釈装置82から粒子カウンタ86に流入させ、粒子カウンタ86で粒子数を計測しながら、所望の粒子数濃度になるように希釈装置82に内蔵されている回転ディスクの回転数でエアの流量を調整した。ガスの粒子数濃度が所望の濃度になった後、希釈装置82の出口と微粒子数検出器10とが連通し希釈装置82の出口と粒子カウンタ86とが遮断するようにバルブ85を設定し、微粒子数検出器10の電流計62で電流を測定した。粒子カウンタ86及び微粒子数検出器10をそれぞれ通過するガスの流量は、測定中、一定の流量になるように調整した。この調整は、粒子カウンタ86に内蔵されたマスフローコントローラ及び真空ポンプ、微粒子数検出器10に接続されたマスフローコントローラ87及び真空ポンプ88により行った。 The measurement procedure for all detected currents is as follows. First, the valve 85 was set so that the outlet of the diluting device 82 and the particle counter 86 communicated and the outlet of the diluting device 82 and the particle number detector 10 were shut off. Then, nitrogen gas was supplied to the particle generator 81, and a predetermined high voltage pulse wave was applied to a pair of carbon electrodes incorporated in the particle generator 81. As a result, electric charges were generated by the discharge, and the electric charges sputtered the carbon electrode to generate a certain amount of carbon particles per unit time. The carbon particles generated in the particle generator 81 are caused to flow into the diluter 82, the air supplied from the compressor 83 to the diluter 82 via the mass flow controller 84 and the carbon particles are mixed, and the gas containing the carbon particles is mixed. Generated. Such gas is introduced from the diluting device 82 into the particle counter 86, and the particle counter 86 measures the number of particles. The flow rate was adjusted. After the gas particle number concentration reaches the desired concentration, the valve 85 is set so that the outlet of the diluter 82 and the particle number detector 10 communicate with each other and the outlet of the diluter 82 and the particle counter 86 are blocked. The current was measured by the ammeter 62 of the particle number detector 10. The flow rates of the gas passing through the particle counter 86 and the particle number detector 10 were adjusted so as to be constant during the measurement. This adjustment was performed by a mass flow controller and a vacuum pump built in the particle counter 86, and a mass flow controller 87 and a vacuum pump 88 connected to the particle number detector 10.
 図7に示したグラフは、粒子数濃度x(個/cc)が既知のガスを通気路24に流したときに捕集電極54に流れる全検出電流y(pA))を測定し、それらの測定データをプロットしたものである。図7に示した回帰直線の式y=ax+b(a,bは定数、a>0,b>0)は、それらの測定データを用いて最小2乗法により求めた。a,bは定数であるが、これらの数値は測定条件(例えばガスの流量など)によって変わる。記憶部64は、この式を対応関係として記憶している。なお、式の代わりにマップやテーブルを記憶していてもよい。捕集電極54は帯電微粒子Pだけでなく余剰電荷Qも捕集するが、その捕集電極54を流れる電流yと粒子数濃度xとの間には良好な相関関係があることが本発明者らの実験により初めて明らかになった。捕集電極54が帯電微粒子Pだけでなく余剰電荷Qも捕集しているにもかかわらず、なぜ電流yと粒子数濃度xとの間に良好な相関関係が得られるかは定かではないが、何らかの理由でガス中の余剰電荷Qの濃度が帯電微粒子Pの濃度によらず一定になっているためと推測される。 The graph shown in FIG. 7 measures the total detected current y (pA) flowing through the collecting electrode 54 when a gas having a known particle number concentration x (number / cc) is passed through the air passage 24. It is a plot of measured data. The regression line equation y = ax + b (a and b are constants, a> 0, b> 0) shown in FIG. 7 was obtained by the least square method using those measured data. Although a and b are constants, these numerical values vary depending on measurement conditions (for example, gas flow rate). The storage unit 64 stores this expression as a correspondence relationship. A map or table may be stored instead of the formula. The collecting electrode 54 collects not only the charged fine particles P but also the surplus charge Q. The present inventor has a good correlation between the current y flowing through the collecting electrode 54 and the particle number concentration x. It became clear for the first time by these experiments. Although the collecting electrode 54 collects not only the charged fine particles P but also the surplus charges Q, it is not clear why a good correlation is obtained between the current y and the particle number concentration x. This is presumably because the concentration of the surplus charge Q in the gas is constant regardless of the concentration of the charged fine particles P for some reason.
 次に、微粒子数検出器10の製造例について説明する。微粒子検出素子20は、複数枚のセラミックグリーンシートを用いて作製することができる。具体的には、複数枚のセラミックグリーンシートの各々について、必要に応じて切欠や貫通孔や溝を設けたり電極や配線パターンをスクリーン印刷したりした後、それらを積層して焼成する。なお、切欠や貫通孔や溝については、焼成時に焼失するような材料(例えば有機材料)で充填しておいてもよい。こうして、微粒子検出素子20を得る。続いて、微粒子検出素子20の放電電極端子33及び電界発生電極端子53をそれぞれ付属ユニット70の放電用電源36及び捕集用電源56に接続する。また、微粒子検出素子20の誘導電極端子35をグランドに接続し、捕集電極端子55を電流計62を介して個数検出部60に接続する。更に、ヒータ電極端子75,75を図示しない給電装置に接続する。こうすることにより、微粒子数検出器10を製造することができる。 Next, a manufacturing example of the fine particle number detector 10 will be described. The fine particle detection element 20 can be manufactured using a plurality of ceramic green sheets. Specifically, each of the plurality of ceramic green sheets is provided with notches, through-holes, grooves or screen printing of electrodes and wiring patterns as necessary, and then laminated and fired. Note that the notches, the through holes, and the grooves may be filled with a material (for example, an organic material) that is burned off during firing. In this way, the fine particle detection element 20 is obtained. Subsequently, the discharge electrode terminal 33 and the electric field generating electrode terminal 53 of the particulate detection element 20 are connected to the discharge power source 36 and the collection power source 56 of the attached unit 70, respectively. In addition, the induction electrode terminal 35 of the particle detection element 20 is connected to the ground, and the collection electrode terminal 55 is connected to the number detection unit 60 via the ammeter 62. Further, the heater electrode terminals 75 and 75 are connected to a power supply device (not shown). By doing so, the particle number detector 10 can be manufactured.
 次に、微粒子数検出器10の使用例について説明する。自動車の排ガスに含まれる微粒子26を計測する場合、上述したようにエンジンの排気管12に微粒子検出素子20を取り付ける(図1参照)。図4に示すように、ガス導入口24aから筐体22内に導入された排ガスに含まれる微粒子26は、電荷発生部30の放電によって発生した電荷28(ここでは正電荷)を帯びて帯電微粒子Pになる。帯電微粒子Pは、ガスの流れに沿って移動して捕集部50に至る。一方、微粒子26に付加されなかった余剰電荷Qも、ガスの流れに沿って移動して捕集部50に至る。捕集部50に到達した帯電微粒子P及び余剰電荷Qは、電界発生電極52によって発生した捕集用電界によって捕集電極54に捕集される。そして、捕集電極54に捕集された帯電微粒子Pの電荷28及び余剰電荷Qに基づく電流が電流計62で測定され、その電流に基づいて演算部66が微粒子26の個数を演算する。演算部66は、記憶部64に記憶された対応関係と実際に電流計62で測定された電流とに基づいて、その電流に対応する粒子数濃度を求める。 Next, a usage example of the particle number detector 10 will be described. When measuring the particulates 26 contained in the exhaust gas of the automobile, the particulate detection element 20 is attached to the exhaust pipe 12 of the engine as described above (see FIG. 1). As shown in FIG. 4, the fine particles 26 contained in the exhaust gas introduced into the casing 22 from the gas inlet 24a are charged with fine particles 28 (positive charge in this case) generated by the discharge of the charge generator 30. Become P. The charged fine particles P move along the gas flow and reach the collection unit 50. On the other hand, the surplus charge Q that has not been added to the fine particles 26 also moves along the gas flow and reaches the collection unit 50. The charged fine particles P and the surplus charge Q that have reached the collection unit 50 are collected by the collection electrode 54 by the collection electric field generated by the electric field generation electrode 52. Then, the current based on the charge 28 and the surplus charge Q of the charged fine particles P collected by the collecting electrode 54 is measured by the ammeter 62, and the calculation unit 66 calculates the number of the fine particles 26 based on the current. Based on the correspondence stored in the storage unit 64 and the current actually measured by the ammeter 62, the calculation unit 66 obtains the particle number concentration corresponding to the current.
 微粒子検出素子20の使用に伴い、帯電微粒子Pが捕集電極54に数多く堆積すると、新たに帯電微粒子Pが捕集電極54に捕集されないことがある。そのため、定期的にあるいは堆積量が所定量に達したタイミングで、捕集電極54をヒータ電極72によって加熱することにより、捕集電極54上の堆積物を加熱して焼却し捕集電極54の電極面をリフレッシュする。また、ヒータ電極72により、筐体22の内周面に付着した微粒子26を焼却することもできる。 When a large number of charged fine particles P are deposited on the collecting electrode 54 with the use of the fine particle detecting element 20, new charged fine particles P may not be collected on the collecting electrode 54. For this reason, the collection electrode 54 is heated by the heater electrode 72 periodically or at the timing when the deposition amount reaches a predetermined amount, whereby the deposit on the collection electrode 54 is heated and incinerated. Refresh the electrode surface. In addition, the fine particles 26 attached to the inner peripheral surface of the housing 22 can be incinerated by the heater electrode 72.
 以上説明した微粒子数検出器10では、帯電微粒子Pと余剰電荷Qとを捕集電極54で捕集し、予め求めたガス中の微粒子数濃度と捕集電極54を流れる電流との対応関係と実際に捕集電極54を流れる電流とに基づいてガスに含まれる微粒子の数(粒子数濃度)を求める。捕集電極54は、帯電微粒子Pのみを捕集する必要はなく、帯電微粒子Pと余剰電荷Qの両方を捕集する。したがって、従来に比べて容易にガス中の微粒子数を測定することができる。 In the fine particle number detector 10 described above, the charged fine particle P and the surplus charge Q are collected by the collecting electrode 54, and the correspondence relationship between the particle number concentration in the gas determined in advance and the current flowing through the collecting electrode 54 is as follows. The number of particles (particle number concentration) contained in the gas is determined based on the current actually flowing through the collecting electrode 54. The collection electrode 54 does not need to collect only the charged fine particles P, but collects both the charged fine particles P and the surplus charges Q. Therefore, the number of fine particles in the gas can be measured more easily than in the past.
 また、捕集電極54は、電界によって帯電微粒子Pと余剰電荷Qとを捕集するため、これらを効率よく捕集することができる。 Moreover, since the collection electrode 54 collects the charged fine particles P and the surplus charges Q by an electric field, these can be collected efficiently.
 更に、電荷発生部30として、放電電極32と、誘導電極34,34と、放電電極32と誘導電極34,34とによって挟まれた誘電体層(筐体22の一部)とを備えたものを採用したため、ガス中の微粒子数濃度と捕集電極54を流れる電流との間に良好な対応関係が生じやすい。また、放電電極32には、放電電圧として正弦波電圧を印加するようにしたため、パルス電圧に比べて高周波成分を含まず、ノイズが発生しにくい。 Further, the charge generation unit 30 includes a discharge electrode 32, induction electrodes 34 and 34, and a dielectric layer (a part of the casing 22) sandwiched between the discharge electrode 32 and the induction electrodes 34 and 34. Therefore, a good correspondence tends to occur between the concentration of fine particles in the gas and the current flowing through the collecting electrode 54. Further, since a sinusoidal voltage is applied to the discharge electrode 32 as a discharge voltage, it does not contain a high frequency component compared to the pulse voltage, and noise is less likely to occur.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、捕集部50として電界発生電極52と捕集電極54とを備えたものを用いたが、電界発生電極52を省略し、ブラウン運動している帯電微粒子Pや余剰電荷Qを捕集電極54で捕集するようにしてもよい。この場合、筐体22の壁22c,22dを接近させるのが好ましい。あるいは、電界発生電極52を省略し、捕集電極54としてガスの通過を許容するが帯電微粒子Pや余剰電荷Qを捕集するフィルタを採用し、そのフィルタを通気路24の軸方向すなわちガスの流れる方向と交差するように(例えば直交するように)を設けてもよい。この場合、捕集電極54をメッシュ状にしてもよいしハニカム状にしてもよい。あるいは、電界発生電極52を省略し、通気路24をL字形状、すなわち排ガスの流れに沿った第1部分とその第1部分から約90°折れ曲がって向きが変わった第2部分とを有する形状とし、通気路24のうち折れ曲がった部分(排ガスが衝突する部分)に捕集電極54を設けてもよい。こうすれば、排ガス中の帯電微粒子Pや余剰電荷Qはガスの流れの慣性力によって捕集電極54に衝突して捕集される。 For example, in the above-described embodiment, the collector 50 including the electric field generating electrode 52 and the collecting electrode 54 is used. However, the electric field generating electrode 52 is omitted, and the charged fine particles P that are in Brownian motion or surplus The charge Q may be collected by the collecting electrode 54. In this case, it is preferable to make the walls 22c and 22d of the housing 22 approach each other. Alternatively, the electric field generating electrode 52 is omitted, and a filter that allows the passage of gas as the collecting electrode 54 but collects the charged fine particles P and surplus charges Q is adopted. You may provide so that it may cross | intersect the flow direction (for example, orthogonally crossing). In this case, the collecting electrode 54 may be mesh-shaped or honeycomb-shaped. Alternatively, the electric field generating electrode 52 is omitted, and the air passage 24 is L-shaped, that is, a shape having a first portion along the flow of exhaust gas and a second portion bent by about 90 ° from the first portion and changed in direction. The collecting electrode 54 may be provided in a bent portion (portion where the exhaust gas collides) of the air passage 24. By doing so, the charged fine particles P and the surplus charges Q in the exhaust gas collide with the collecting electrode 54 and are collected by the inertial force of the gas flow.
 上述した実施形態では、通気路24の断面形状を四角形としたが、四角形以外の多角形にしてもよいし、円形や楕円形にしてもよい。 In the above-described embodiment, the cross-sectional shape of the air passage 24 is a quadrangle, but it may be a polygon other than a quadrangle, or a circle or an ellipse.
 上述した実施形態では、筐体22をセラミック製としたが、筐体22のうち電荷発生部30が設けられた部分をセラミック製、捕集部50が設けられた部分を金属製とし、金属製の部分の全体が捕集電極54を兼ねるようにしてもよい。この場合、捕集部50の電界発生電極52は省略する。 In the above-described embodiment, the housing 22 is made of ceramic. However, the portion of the housing 22 where the charge generation unit 30 is provided is made of ceramic, and the portion of the housing 22 where the collection unit 50 is provided is made of metal. The entire portion may also serve as the collecting electrode 54. In this case, the electric field generating electrode 52 of the collecting unit 50 is omitted.
 上述した実施形態では、電荷発生部30として、通気路24の内面に沿って設けられた放電電極32と筐体22に埋設された2つの誘導電極34,34とにより構成したが、気中放電により電荷を発生するものであれば特にどのような構成でも構わない。例えば、特許文献1に記載されているように、電荷発生部を針状電極と対向電極とで構成してもよい。 In the above-described embodiment, the charge generation unit 30 is configured by the discharge electrode 32 provided along the inner surface of the ventilation path 24 and the two induction electrodes 34 and 34 embedded in the housing 22. Any structure may be used as long as it generates electric charges by the above. For example, as described in Patent Document 1, the charge generation unit may be composed of a needle electrode and a counter electrode.
 上述した実施形態では、電界発生電極52は通気路24に露出していたが、これに限らず筐体22に埋設されていてもよい。また、電界発生電極52に代えて、捕集電極54を上下から挟むように配設された一対の電界発生電極を筐体22に設け、この一対の電界発生電極間に印加した電圧により生じる電界で、帯電微粒子P及び余剰電荷Qを捕集電極54に向けて移動させてもよい。 In the embodiment described above, the electric field generating electrode 52 is exposed to the air passage 24, but is not limited thereto, and may be embedded in the housing 22. Further, instead of the electric field generating electrode 52, a pair of electric field generating electrodes arranged so as to sandwich the collecting electrode 54 from above and below are provided in the housing 22, and an electric field generated by a voltage applied between the pair of electric field generating electrodes. Thus, the charged fine particles P and the surplus charges Q may be moved toward the collecting electrode 54.
 上述した実施形態では、捕集部50として、電界発生電極52と捕集電極54を備えたものを例示したが、捕集電極54を複数の小捕集電極に分割してもよい。その場合、演算部66は、各小捕集電極を流れる電流を合算した総電流に基づいて、記憶部64に記憶された対応関係から微粒子数を演算すればよい。 In the above-described embodiment, an example in which the collecting unit 50 includes the electric field generating electrode 52 and the collecting electrode 54 is illustrated, but the collecting electrode 54 may be divided into a plurality of small collecting electrodes. In that case, the calculating part 66 should just calculate the number of fine particles from the corresponding relationship memorize | stored in the memory | storage part 64 based on the total electric current which added the electric current which flows through each small collection electrode.
 上述した実施形態では、捕集部50として、一対の電極(電界発生電極52と捕集電極54)を1組備えたものを例示したが、捕集部50は、このような一対の電極を複数組備え、電荷発生部30の下流側領域において各組を上流側から下流側に順に並べたものとしてもよい。その場合、演算部66は、各組の捕集電極を流れる電流を合算した総電流に基づいて、記憶部64に記憶された対応関係から微粒子数を演算すればよい。 In the above-described embodiment, the collection unit 50 is illustrated as having a pair of electrodes (the electric field generation electrode 52 and the collection electrode 54). However, the collection unit 50 includes such a pair of electrodes. A plurality of sets may be provided, and the sets may be arranged in order from the upstream side to the downstream side in the downstream region of the charge generation unit 30. In that case, the calculating part 66 should just calculate the number of microparticles | fine-particles from the corresponding relationship memorize | stored in the memory | storage part 64 based on the total electric current which added the electric current which flows through each collection electrode.
 上述した実施形態では、電荷発生部30に正弦波電圧を印加したが、正弦波電圧の代わりにパルス電圧を用いてもよい。パルス電圧の波形としては、矩形を用いてもよいが、台形、三角形、のこぎり歯などの各種形状を採用することができる。 In the above-described embodiment, the sine wave voltage is applied to the charge generation unit 30, but a pulse voltage may be used instead of the sine wave voltage. As the waveform of the pulse voltage, a rectangle may be used, but various shapes such as a trapezoid, a triangle, and a sawtooth can be adopted.
 上述した実施形態では、微粒子数検出器10をエンジンの排気管12に取り付ける場合を例示したが、特にエンジンの排気管12に限定されるものではなく、微粒子を含むガスが流通する管であればどのような管であってもよい。 In the above-described embodiment, the case where the particle number detector 10 is attached to the exhaust pipe 12 of the engine is exemplified. However, the present invention is not limited to the exhaust pipe 12 of the engine. Any tube may be used.
 上述した実施形態では、ガス中の微粒子数濃度x(個/cc)と捕集電極54を流れる電流y(pA)との対応関係として、y=ax+b(a,bは定数、a>0,b>0)を例示したが、特にこの式に限定されるものではなく、例えば測定条件等によっては対応関係を表す式として二次曲線がふさわしいことがある。 In the above-described embodiment, y = ax + b (a and b are constants, a> 0, as a correspondence relationship between the number concentration x (particles / cc) of the fine particles in the gas and the current y (pA) flowing through the collecting electrode 54. Although b> 0) has been exemplified, the present invention is not particularly limited to this formula. For example, a quadratic curve may be suitable as a formula representing a correspondence relationship depending on measurement conditions and the like.
 本発明は、例えば自動車などの動力機械の排ガス中の微粒子の数を検出する微粒子数検出器に利用可能である。 The present invention is applicable to a particle number detector that detects the number of particles in exhaust gas from a power machine such as an automobile.
10 微粒子数検出器、12 排気管、14 支持体、16 台座、18 保護カバー、20 微粒子検出素子、22 筐体、22a 下端、22b 上端、22c,22d 壁、24 通気路、24a ガス導入口、24b ガス排出口、26 微粒子、28 電荷、30 電荷発生部、32 放電電極、32a 配線、33 放電電極端子、34 誘導電極、34a 配線、35 誘導電極端子、36 放電用電源、50 捕集部、52 電界発生電極、52a 配線、53 電界発生電極端子、54 捕集電極、54a 配線、55 捕集電極端子、56 捕集用電源、60 個数検出部、62 電流計、64 記憶部、66 演算部、70 付属ユニット、72 ヒータ電極、75 ヒータ電極端子、80 実験装置、81 粒子発生装置、82 希釈装置、83 コンプレッサ、84 マスフローコントローラ、85 バルブ、86 粒子カウンタ、87 マスフローコントローラ、88 真空ポンプ。 10 particle number detector, 12 exhaust pipe, 14 support, 16 pedestal, 18 protective cover, 20 particle detection element, 22 housing, 22a lower end, 22b upper end, 22c, 22d wall, 24 air passage, 24a gas inlet, 24b gas discharge port, 26 fine particles, 28 charge, 30 charge generation part, 32 discharge electrode, 32a wiring, 33 discharge electrode terminal, 34 induction electrode, 34a wiring, 35 induction electrode terminal, 36 discharge power supply, 50 collecting part, 52 electric field generating electrode, 52a wiring, 53 electric field generating electrode terminal, 54 collecting electrode, 54a wiring, 55 collecting electrode terminal, 56 collecting power source, 60 number detecting unit, 62 ammeter, 64 storage unit, 66 computing unit , 70 accessory unit, 72 heater electrode, 75 heater electrode terminal, 80 experimental device, 81 particle emission Device, 82 diluter, 83 compressor, 84 mass flow controllers, 85 valves, 86 particle counter, 87 a mass flow controller, 88 a vacuum pump.

Claims (5)

  1.  通気路を有する筐体と、
     前記通気路に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
     前記電荷発生部よりも前記ガスの流れの下流側に設けられ、前記帯電微粒子と前記微粒子に付加しなかった余剰電荷とを捕集する捕集電極と、
     予め求めた前記ガス中の微粒子数濃度と前記捕集電極を流れる電流との対応関係を記憶する記憶部と、
     前記対応関係と実際に前記捕集電極を流れる電流とに基づいて前記ガスに含まれる微粒子の数を求める個数検出部と、
     を備えた微粒子数検出器。
    A housing having a ventilation path;
    A charge generating unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the air passage to form charged fine particles;
    A collecting electrode provided on the downstream side of the gas flow with respect to the charge generation unit and collecting the charged fine particles and surplus charges not added to the fine particles;
    A storage unit for storing a correspondence relationship between the concentration of fine particles in the gas obtained in advance and a current flowing through the collection electrode;
    A number detection unit for determining the number of fine particles contained in the gas based on the correspondence and the current actually flowing through the collection electrode;
    Particle number detector equipped with.
  2.  前記対応関係は、前記ガスの微粒子数濃度をx(個/cc)、前記捕集電極を流れる電流をy(pA)としたときにy=ax+b(a,bは定数、a>0,b>0)で表される、
     請求項1に記載の微粒子数検出器。
    The correspondence relationship is as follows: y = ax + b (a and b are constants, a> 0, b, where x (number / cc) is the fine particle number concentration of the gas and y (pA) is the current flowing through the collecting electrode. > 0),
    The fine particle number detector according to claim 1.
  3.  前記捕集電極は、電界によって前記帯電微粒子と前記余剰電荷とを捕集する、
     請求項1又は2に記載の微粒子数検出器。
    The collecting electrode collects the charged fine particles and the surplus charges by an electric field;
    The fine particle number detector according to claim 1 or 2.
  4.  前記電荷発生部は、放電電極と、誘導電極と、前記放電電極と前記誘導電極とによって挟まれた誘電体層とを備える、
     請求項1~3のいずれか1項に記載の微粒子数検出器。
    The charge generation unit includes a discharge electrode, an induction electrode, and a dielectric layer sandwiched between the discharge electrode and the induction electrode.
    The fine particle number detector according to any one of claims 1 to 3.
  5.  前記放電電極には、放電電圧として正弦波電圧が印加される、
     請求項4に記載の微粒子数検出器。
    A sinusoidal voltage is applied as a discharge voltage to the discharge electrode.
    The fine particle number detector according to claim 4.
PCT/JP2018/022967 2018-06-15 2018-06-15 Fine particle number detector WO2019239588A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/022967 WO2019239588A1 (en) 2018-06-15 2018-06-15 Fine particle number detector
JP2020525065A JPWO2019239588A1 (en) 2018-06-15 2018-06-15 Particle count detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022967 WO2019239588A1 (en) 2018-06-15 2018-06-15 Fine particle number detector

Publications (1)

Publication Number Publication Date
WO2019239588A1 true WO2019239588A1 (en) 2019-12-19

Family

ID=68842830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022967 WO2019239588A1 (en) 2018-06-15 2018-06-15 Fine particle number detector

Country Status (2)

Country Link
JP (1) JPWO2019239588A1 (en)
WO (1) WO2019239588A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781107A (en) * 2020-08-06 2020-10-16 南京大得科技有限公司 Charge induction-based pulverized coal fineness on-line measuring device and method
CN115876658A (en) * 2023-03-02 2023-03-31 北京复兰环保科技有限公司 Particulate matter concentration detection device and method, storage medium and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115261A (en) * 1976-03-24 1977-09-27 Hitachi Ltd Fine particle monitor
WO2015146456A1 (en) * 2014-03-26 2015-10-01 日本碍子株式会社 Fine-particle number measurement device and fine-particle number measurement method
JP2016114367A (en) * 2014-12-11 2016-06-23 日野自動車株式会社 Particle sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115261A (en) * 1976-03-24 1977-09-27 Hitachi Ltd Fine particle monitor
WO2015146456A1 (en) * 2014-03-26 2015-10-01 日本碍子株式会社 Fine-particle number measurement device and fine-particle number measurement method
JP2016114367A (en) * 2014-12-11 2016-06-23 日野自動車株式会社 Particle sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781107A (en) * 2020-08-06 2020-10-16 南京大得科技有限公司 Charge induction-based pulverized coal fineness on-line measuring device and method
CN111781107B (en) * 2020-08-06 2024-04-30 南京大得科技有限公司 Online pulverized coal fineness measurement device and method based on charge induction
CN115876658A (en) * 2023-03-02 2023-03-31 北京复兰环保科技有限公司 Particulate matter concentration detection device and method, storage medium and electronic equipment

Also Published As

Publication number Publication date
JPWO2019239588A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP5976619B2 (en) Method and apparatus for measuring the number concentration and average diameter of aerosol particles
JP6505082B2 (en) Particle counting device
WO2019239588A1 (en) Fine particle number detector
US20190285534A1 (en) Particulate detector
US20150192508A1 (en) Apparatus and Process for Producing Acknowledged Air Flow and The Use of Such Apparatus in Measuring Particle Concentration in Acknowledged Air Flow
US20190145858A1 (en) Fine-particle number detector
WO2013121095A1 (en) Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow
WO2018163466A1 (en) Microparticle detecting element and microparticle detector
KR101557124B1 (en) Plasma wire and dust collector using the same
JP6420525B1 (en) Fine particle detection element and fine particle detector
WO2020036092A1 (en) Fine particle detector
WO2020137416A1 (en) Fine particle detection element and fine particle detector
JP2019163976A (en) Fine particle detector
WO2020090438A1 (en) Microparticle detector
WO2020179502A1 (en) Fine particle detection element and fine particle detector
WO2019155920A1 (en) Fine particle detector
WO2019049567A1 (en) Microparticle detection element and microparticle detector
WO2020137418A1 (en) Fine particle detector
JPWO2019049566A1 (en) Particle detection element and particle detector
JP2020159726A (en) Fine particle detection element
JP2019045504A (en) Fine particle detection element and fine particle detector
WO2018163661A1 (en) Microparrticle number detector
JPWO2019049570A1 (en) Particle count detector
JPH07155641A (en) Electrostatic precipitator
WO2018163704A1 (en) Microparticle number detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922223

Country of ref document: EP

Kind code of ref document: A1