JP2015108578A - Classification part failure diagnosis device and method in particle classifier - Google Patents

Classification part failure diagnosis device and method in particle classifier Download PDF

Info

Publication number
JP2015108578A
JP2015108578A JP2013252081A JP2013252081A JP2015108578A JP 2015108578 A JP2015108578 A JP 2015108578A JP 2013252081 A JP2013252081 A JP 2013252081A JP 2013252081 A JP2013252081 A JP 2013252081A JP 2015108578 A JP2015108578 A JP 2015108578A
Authority
JP
Japan
Prior art keywords
electrode
classification
gas
suction
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013252081A
Other languages
Japanese (ja)
Other versions
JP6112000B2 (en
Inventor
奥田 浩史
Hiroshi Okuda
浩史 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013252081A priority Critical patent/JP6112000B2/en
Publication of JP2015108578A publication Critical patent/JP2015108578A/en
Application granted granted Critical
Publication of JP6112000B2 publication Critical patent/JP6112000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine whether a predetermined classification voltage is applied or not without directly measuring a classification voltage of a classifier.SOLUTION: A supply voltage to a classification electrode is lowered to a constant voltage for diagnosis lower than voltage at normal measurement, ON/OFF of power supply to the classification electrode is switched, and on the basis of magnitude of change in an output signal of a current detecting circuit connected to a measuring electrode at that time, it is determined whether the classification electrode is normal or not.

Description

本発明は自動車排ガス中のナノ微粒子濃度のモニタリング、ビル衛生管理、労働安全衛生などで使用するのに適する微粒子測定装置、特に微粒子を粒径に応じて分級して測定する微粒子分級測定装置など、電界により微粒子を分級する装置に関し、特に分級電界のための電圧を印加する分級電極が正常であるか否かを診断するための装置と方法に関するものである。   The present invention is a fine particle measuring device suitable for use in monitoring the concentration of nano particles in automobile exhaust gas, building hygiene management, occupational safety and health, etc., in particular, a fine particle classification measuring device for classifying and measuring fine particles according to the particle size, etc. More particularly, the present invention relates to an apparatus and method for diagnosing whether or not a classification electrode for applying a voltage for a classification electric field is normal.

ナノメートルオーダーの微粒子径の微粒子に対して、微粒子サイズの分級を行う分級機構をもつ測定装置として微分型電気移動度分析装置(DMA)又は積分型電気移動度分析装置が知られている。分級機構としては、分級部側壁面から試料ガスを導入し、同じく分級部側壁面から所望の粒径に分離された微粒子を含むガスを吸いだすものが用いられている(特許文献1〜5、非特許文献1、2参照。)。   As a measuring device having a classification mechanism for classifying fine particles with respect to fine particles having a nanometer order fine particle size, a differential type electric mobility analyzer (DMA) or an integral type electric mobility analyzer is known. As the classification mechanism, a gas that introduces a sample gas from the side wall surface of the classification part and sucks out gas containing fine particles separated into a desired particle size from the side wall surface of the classification part is used (Patent Documents 1 to 5, (See Non-Patent Documents 1 and 2.)

DMAによる分級においてはシースガス流に対し垂直に分級電界を印加し、それにより惹起される静電吸引力によって帯電微粒子がシースガス流を横断し、対向電極へ移動する過程において粒径に依存した抵抗をシースガス流から受けることで微粒子を分級するものである。   In the classification by DMA, a classification electric field is applied perpendicularly to the sheath gas flow, and the charged fine particles cross the sheath gas flow by the electrostatic attraction force caused thereby, and the resistance depending on the particle size is moved in the process of moving to the counter electrode. Fine particles are classified by receiving from the sheath gas flow.

一対の電極間に分級電圧を印加し、それにより発生する分級電界によって帯電微粒子を粒子サイズに基づいて分級する原理を利用した分級装置は、DMAに限らず、広く使用されている。   2. Description of the Related Art A classification device using a principle of applying a classification voltage between a pair of electrodes and classifying charged fine particles based on the particle size by a classification electric field generated thereby is widely used, not limited to DMA.

米国特許出願公開第2005/0162173号US Patent Application Publication No. 2005/0162173 米国特許第6,230,572号US Pat. No. 6,230,572 米国特許第6,828,794号US Pat. No. 6,828,794 米国特許第6,230,572号US Pat. No. 6,230,572 米国特許第6,787,763号US Pat. No. 6,787,763

Chen, D-R, D.Y.H. Pui, D. Hummes, H. Fissan, F.R. Quant, and G.J. Sem, [1998], "Design and Evaluation of a Nanometer Aerosol Differential Mobility Analyzer (Nano-DMA), Journal of Aerosol Science 29/5:497-509.Chen, DR, DYH Pui, D. Hummes, H. Fissan, FR Quant, and GJ Sem, [1998], "Design and Evaluation of a Nanometer Aerosol Differential Mobility Analyzer (Nano-DMA), Journal of Aerosol Science 29/5 : 497-509. Fissan, H.J., C. Helsper, and H.J. Thielen [1983], "Determination of Particle Size Distribution by Means of an Electrostatic Classifier." Journal of Aerosol Science, 14:354.Fissan, H.J., C. Helsper, and H.J. Thielen [1983], "Determination of Particle Size Distribution by Means of an Electrostatic Classifier." Journal of Aerosol Science, 14: 354. 粉体工学会誌,Vol.22, No.4, pp.231 - 244 (1985)Journal of Powder Engineering, Vol.22, No.4, pp.231-244 (1985)

分級電極により分級電圧を印加しそれにより発生する分級電界によって帯電微粒子を粒子サイズに基づいて分級するには、所定の分級電圧が安定して印加されなければならない。分級電極は電圧を印加するために、分級装置を構成するボディとは絶縁されている。ボディは通常は金属からなり、接地されている。   In order to classify charged fine particles based on the particle size by a classification electric field generated by a classification electrode and a classification electric field generated thereby, a predetermined classification voltage must be stably applied. The classification electrode is insulated from the body constituting the classification device in order to apply a voltage. The body is usually made of metal and grounded.

しかし、使用中に分級電極とボディの間に試料ガス中の汚れが付着したり結露が生じたりして、分級電極とボディの間の絶縁が低下すると、分級電極に所定の電圧を印加できなくなり、所望の分級機能を発揮できなくなる。分級電極に電圧を印加する電源装置の出力電圧をモニタすることは行われているが、電源装置の出力電圧が一定であっても分級電極とボディの間の絶縁状態が低下すると分極電圧は低下してしまうので、電源装置の出力電圧で分級電極とボディの間の絶縁状態を正しく判断することはできない。   However, if dirt in the sample gas adheres between the classification electrode and the body during use or condensation occurs, and the insulation between the classification electrode and the body decreases, a predetermined voltage cannot be applied to the classification electrode. The desired classification function cannot be exhibited. Although the output voltage of the power supply device that applies a voltage to the classification electrode is monitored, the polarization voltage decreases if the insulation state between the classification electrode and the body decreases even if the output voltage of the power supply device is constant Therefore, the insulation state between the classification electrode and the body cannot be correctly determined by the output voltage of the power supply device.

分級電極に所定の電圧が印加されているか否かは、分級電極にかかっている電圧を直接測定すればわかる。しかし、分級電圧は高圧、例えば数kV、であるため、正確に測定しようとすれば、正しく校正された分圧抵抗を用いて電圧を測定するなど、装置コストを押し上げる要因になる。   Whether or not a predetermined voltage is applied to the classification electrode can be determined by directly measuring the voltage applied to the classification electrode. However, since the classification voltage is a high voltage, for example, several kV, if the measurement is to be performed accurately, the voltage is measured using a correctly calibrated voltage dividing resistor, which increases the apparatus cost.

本発明は、分級装置の分級電圧を測定しなくても所定の分級電圧が印加されているかどうかを判定することのできる装置と方法を提供するものである。   The present invention provides an apparatus and method that can determine whether a predetermined classification voltage is applied without measuring the classification voltage of the classification apparatus.

本発明の対象とする微粒子分級装置は、試料吸込み口から吸引したガスを帯電させる荷電部と、前記荷電部により帯電させられたガスが流れる流路を構成する内面のうちの一つの面に配置された少なくとも1つの吸引電極と、前記内面のうちの他の面上に前記吸引電極に対向して配置され、前記吸引電極との間に前記流路を流れるガス中の帯電粒子を前記吸引電極側に引き付ける電界を発生させる分級電極と、を備えたものである。   The fine particle classifying device as an object of the present invention is arranged on one of a charging part for charging a gas sucked from a sample suction port and an inner surface constituting a flow path through which the gas charged by the charging part flows. The at least one suction electrode formed on the other surface of the inner surface is opposed to the suction electrode, and charged particles in the gas flowing in the flow path between the suction electrode and the suction electrode And a classification electrode for generating an electric field attracted to the side.

本発明は、そのような微粒子分級装置おける分級電極が正常であるか否かを判定する分級部故障診断装置である。吸引電極に吸引された帯電粒子の電荷量を検出するために、吸引電極に検流回路が接続されている。故障診断用の電圧印加のために、分級電源供給制御部が設けられている。分級電源供給制御部は分級電極への供給電圧を通常測定時の電圧よりも低い診断用の一定電圧に下げ、その後、分級電極への電源供給のオン/オフを切り換える。その一定電圧とは、分級部故障診断に必要な程度に帯電微粒子を測定電極に引き付けることができる大きさの分級電圧である。   The present invention is a classification unit failure diagnosis apparatus for determining whether or not a classification electrode in such a particle classification apparatus is normal. In order to detect the charge amount of the charged particles sucked by the suction electrode, a galvanometer circuit is connected to the suction electrode. A classification power supply control unit is provided to apply a voltage for failure diagnosis. The classification power supply control unit lowers the supply voltage to the classification electrode to a constant voltage for diagnosis lower than the voltage at the time of normal measurement, and then switches on / off the power supply to the classification electrode. The constant voltage is a classification voltage having such a magnitude that the charged fine particles can be attracted to the measurement electrode to an extent necessary for classifying part failure diagnosis.

第1の実施形態は、分級部故障診断を自動的に行うように構成されたものであって、分級電極が正常であるか否かを判定するために判定部が設けられている。判定部は、検流回路の出力信号を取り込み、分級電極への電源供給のオン/オフ切換えにおけるその出力信号変化の大きさがしきい値以上であるか否かにより分級電極が正常であるか否かを判定する。判定部が使用するしきい値はしきい値保持部に保持されており、判定部はしきい値保持部に保持されているしきい値を取り込んで分級電極が正常であるか否かを判定する。   The first embodiment is configured to automatically perform classification part failure diagnosis, and a determination unit is provided to determine whether or not the classification electrode is normal. The determination unit takes in the output signal of the galvanometer circuit and determines whether the classification electrode is normal depending on whether the magnitude of the change in the output signal in the on / off switching of the power supply to the classification electrode is greater than or equal to a threshold value. Determine. The threshold used by the determination unit is held in the threshold holding unit, and the determination unit takes in the threshold held in the threshold holding unit and determines whether the classification electrode is normal. To do.

第1の実施形態の分級部故障診断装置では、分級電極が正常であるか否かの判定結果がこの微粒子分級装置を使用している操作者に容易にわかるようにするために、判定部による判定結果を表示する表示部をさらに備えていることが好ましい。   In the classification unit failure diagnosis apparatus of the first embodiment, the determination unit determines whether or not the determination result of whether the classification electrode is normal can be easily understood by an operator who uses the fine particle classification apparatus. It is preferable to further include a display unit for displaying the determination result.

第2の実施形態は、分級部故障診断を作業者が行うように構成されたものである。第2の実施形態は第1の実施形態における判定部を必要としない。検流回路と分級電源供給制御部を備えている点は第1の実施形態と同じであるが、第2の実施形態は、検流回路に接続され検流回路の出力信号を表示する表示装置を備えている。作業者は、その表示装置に表示された検流回路の出力信号変化の大きさがしきい値以上であるか否かにより分級電極が正常であるか否かを判定する。   In the second embodiment, the classifier failure diagnosis is performed by an operator. The second embodiment does not require the determination unit in the first embodiment. Although it is the same as that of the first embodiment in that it includes a current detection circuit and a classification power supply control unit, the second embodiment is a display device that is connected to the current detection circuit and displays an output signal of the current detection circuit. It has. The operator determines whether or not the classification electrode is normal depending on whether or not the magnitude of the change in the output signal of the galvanic circuit displayed on the display device is equal to or greater than a threshold value.

第3の実施形態は、第1、第2の実施形態をともに実現できるものであり、判定部と表示装置の両方を備えている。   The third embodiment can realize both the first and second embodiments, and includes both a determination unit and a display device.

好ましい形態では、試料吸込み口に配置され、吸引するガス中の粒子成分を除去するガスフィルタをさらに備えている。試料吸込み口から吸引されるガス中の粒子濃度は時間的に変化するが、吸引するガス中の粒子成分を除去するガスフィルタを介してガスを吸引することにより、試料ガスが吸引されてもそのガス中の粒子濃度は0となり、時間的な変化を抑えることができる。ガスフィルタ透過後のガスを帯電させガスイオンとする非常に微小なガスイオンを測定するために、測定電極として流路を流れるガスの流れに沿って複数個が配置されている場合には、判定部が出力信号を取り込む検流回路として、流路を流れるガスの流れの最も上流側にある測定電極につながる検流回路を使用することが好ましい。   In a preferred embodiment, the apparatus further includes a gas filter that is disposed in the sample suction port and removes particulate components in the gas to be sucked. Although the particle concentration in the gas sucked from the sample suction port changes with time, even if the sample gas is sucked by sucking the gas through the gas filter that removes the particle components in the sucked gas, The particle concentration in the gas becomes 0, and temporal changes can be suppressed. Judgment is made when a plurality of gas electrodes as measurement electrodes are arranged along the flow of gas in order to measure very small gas ions that are charged as gas ions after passing through the gas filter. It is preferable to use a galvanometer circuit connected to the measurement electrode on the most upstream side of the flow of gas flowing through the flow path as the galvanometer circuit that takes in the output signal.

分級部故障診断装置は、分級電極が正常であるか否かの判定結果がこの微粒子分級装置を使用している操作者に容易にわかるようにするために、判定部による判定結果を表示する表示部をさらに備えていることが好ましい。   The classification unit fault diagnosis device displays the judgment result by the judgment unit so that the judgment result of whether the classification electrode is normal or not can be easily understood by the operator using this fine particle classifier. It is preferable to further include a portion.

本発明の分級部故障診断方法は、微粒子分級装置の測定電極に電荷量を検出する検流回路を接続した状態で、以下のステップ(S1)〜(S3)を行う。
(S1)分級電極への供給電圧を通常測定時の電圧よりも低い診断用の一定電圧に下げるステップ、
(S2)その後、分級電極への電源供給のオン/オフを切り換えるステップ、及び
(S3)検流回路の出力信号に基づき、分級電極への電源供給のオン/オフ切換えにおけるその出力信号変化の大きさに基づいて分級電極が正常であるか否かを判定するステップ。
In the classification part failure diagnosis method of the present invention, the following steps (S1) to (S3) are performed in a state where a galvanometer for detecting the amount of charge is connected to the measurement electrode of the fine particle classifier.
(S1) A step of lowering the supply voltage to the classification electrode to a constant voltage for diagnosis lower than the voltage at the time of normal measurement,
(S2) Thereafter, the step of switching on / off the power supply to the classification electrode, and (S3) the magnitude of the change of the output signal in the on / off switching of the power supply to the classification electrode based on the output signal of the galvanic circuit Determining whether the classification electrode is normal based on the determination.

この分級部故障診断方法のプロセスは、分級装置の専用のコンピュータ又は汎用のパーソナルコンピュータなどのコンピュータのCPUにより自動的に行うようにすることができる。その際、この分級部故障診断方法を定期的に自動で起動するようにプログラムを組んでおいてもよく、又は測定開始前などに操作者が随時、起動するようにしてもよい。また、この分級部故障診断方法は操作者が手動で行うこともできる。   The process of the classifying unit failure diagnosis method can be automatically performed by a CPU of a computer such as a dedicated computer of the classifying device or a general-purpose personal computer. At that time, a program may be set up so that the classifying unit failure diagnosis method is automatically started periodically, or the operator may start it as needed before starting the measurement. Further, the classifying unit failure diagnosis method can be manually performed by an operator.

この分級部故障診断方法を実施する際に、微粒子分級装置の試料吸込み口に、吸引するガス中の粒子成分を除去するガスフィルタを設けることが好ましい。この分級部故障診断方法のプロセスを自動で行うようにした場合には、ガスフィルタの着脱もCPUからの命令により自動で行うようにしてもよく、又はガスフィルタの着脱を手動でおこなって、そのことをコンピュータに入力するようにしてもよい。微粒子分級装置の試料吸込み口にガスフィルタを設ける形態では、測定電極として流路を流れるガスの流れに沿って複数個が配置されている場合は、流路を流れるガスの流れの最も上流側にある測定電極につながる検流回路の出力信号に基づいて分級部故障診断方法を実施することが好ましい。これは、ガスフィルタを透過したガスはほぼ全ての粒子成分が除去された状態となっているので、帯電されたごく微細なガスイオンはガスの流れの最も上流側にある測定電極に引き付けられるからである。   When carrying out this classification part failure diagnosis method, it is preferable to provide a gas filter for removing particulate components in the gas to be sucked in the sample suction port of the fine particle classifier. When the process of the classifying unit failure diagnosis method is automatically performed, the gas filter may be attached / detached automatically by a command from the CPU, or the gas filter is manually attached / detached. You may make it input into a computer. In the form in which a gas filter is provided at the sample suction port of the fine particle classifier, when a plurality of measurement electrodes are arranged along the flow of gas flowing through the flow path, the most upstream side of the flow of gas flowing through the flow path is used. It is preferable to implement the classifying unit failure diagnosis method based on the output signal of the galvanometer circuit connected to a certain measurement electrode. This is because the gas that has passed through the gas filter is in a state in which almost all of the particle components have been removed, so that the charged fine gas ions are attracted to the measurement electrode located on the most upstream side of the gas flow. It is.

本発明では、分級電極への供給電圧を通常測定時の電圧よりも低い診断用の一定電圧に下げ、分級電極への電源供給のオン/オフを切り換え、そのときの測定電極につながる検流回路の出力信号変化の大きさに基づいて分級電極が正常であるか否かを判定するようにしたので、分級電圧を直接測定しなくても分級電極の故障の有無を診断できるようになる。   In the present invention, the supply voltage to the classification electrode is lowered to a constant voltage for diagnosis lower than the voltage at the time of normal measurement, the power supply to the classification electrode is switched on / off, and the galvanometer circuit connected to the measurement electrode at that time Since it is determined whether or not the classification electrode is normal based on the magnitude of the change in the output signal, it is possible to diagnose whether or not the classification electrode has failed without directly measuring the classification voltage.

本発明の分級部故障診断装置が適用される分級測定装置の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the classification measurement apparatus with which the classification part failure diagnostic apparatus of this invention is applied. 一実施例を他の分級測定装置とともに示す概略構成図である。It is a schematic block diagram which shows one Example with another classification | category measuring apparatus. 同分級測定装置における概略平面断面図である。It is a schematic plane sectional view in the classification measuring device. 同分級測定装置の流路に沿った断面図である。It is sectional drawing along the flow path of the classification measuring device. 本発明の分級部故障診断装置が適用されるさらに他の分級測定装置を示す概略斜視図である。It is a schematic perspective view which shows the further another classification measurement apparatus with which the classification part failure diagnostic apparatus of this invention is applied. 一実施例の動作を示すフローチャートである。It is a flowchart which shows operation | movement of one Example.

微粒子分級装置の一例としての微粒子分級測定装置の一例を図1に概略的に示す。流路10は入口12と出口14に開口をもち、流れ方向も流路幅方向もともに断面が長方形の扁平な形状になっている。その流路の寸法、形状は、特に限定されるものではないが、例えば縦(高さ)4mm、横(流路幅)250mm、奥行き(流路長さ)450mmの扁平な直方体である。   An example of a fine particle classification measuring apparatus as an example of a fine particle classification apparatus is schematically shown in FIG. The channel 10 has openings at the inlet 12 and the outlet 14, and has a flat shape with a rectangular cross section in both the flow direction and the channel width direction. The dimensions and shape of the flow path are not particularly limited, but are, for example, flat rectangular parallelepipeds having a length (height) of 4 mm, a width (flow path width) of 250 mm, and a depth (flow path length) of 450 mm.

流路10の出口14側には試料吸引用に送風機構としてのファン15が配置されている。ファン15を回転させるモータ16は駆動回路17により駆動される。ファン15の試料ガス吸入側には流量調整弁18として手動のバタフライ弁が設けられており、流量調整弁18を調節することにより試料ガス流量を変化させることができるようになっている。ファン15は流路10の幅全体にわたって均一に吸引し、流路10の入口12から試料ガスを吸入する。ファン15は、吸入された試料ガスが流路10内を層流となって流れる条件で駆動される。層流となる条件はレイノルズが概ね2000以下となる条件である。   On the outlet 14 side of the flow path 10, a fan 15 is disposed as a blower mechanism for sample suction. A motor 16 that rotates the fan 15 is driven by a drive circuit 17. A manual butterfly valve is provided as a flow rate adjustment valve 18 on the sample gas suction side of the fan 15, and the sample gas flow rate can be changed by adjusting the flow rate adjustment valve 18. The fan 15 sucks uniformly over the entire width of the flow path 10 and sucks the sample gas from the inlet 12 of the flow path 10. The fan 15 is driven under the condition that the sucked sample gas flows in the flow path 10 as a laminar flow. The conditions for the laminar flow are those for which Reynolds is approximately 2000 or less.

流路10の出口側にはファン15の下流に流路を流れる試料ガス流量を測定する流量計19が設けられている。流量計19は流路10の入口側と出口側のいずれに配置してもよいが、試料ガス中の粒子が流量計19にも付着するため出口側に配置する方が好ましい。   A flow meter 19 for measuring the flow rate of the sample gas flowing in the flow path is provided downstream of the fan 15 on the outlet side of the flow path 10. The flow meter 19 may be arranged on either the inlet side or the outlet side of the flow channel 10, but it is preferable to arrange the flow meter 19 on the outlet side because particles in the sample gas adhere to the flow meter 19.

流路10の入口付近には試料ガス中の微粒子を帯電させる帯電器が配置されている。この実施例では、帯電器は単極荷電の様式をとるように構成されている。帯電器は流路10を挟んで一方の側に取り付けられたワイヤー状の放電電極20と、それらの放電電極20に対向して流路10の他方の側に配置された対向電極22とからなる。放電電極20と対向電極22との間で放電を起こさせるように、放電電極20には荷電電源21が接続されている。放電電極20の形状はワイヤー状のものに限らず、対向電極22に垂直に取り付けられた1又は複数の針であってもよい。後述する図2の実施例で示されるような、流路10のガスの流れに垂直に設けられた、中心に開口をもつ対向電極と、その対向電極の開口の中心に針の先端が対向するように配置された放電電極とからなるものであってもよい。帯電器は放電電極と対向電極との間で放電できるものであれば特にその構造は限定されない。   A charger for charging fine particles in the sample gas is disposed near the inlet of the flow path 10. In this embodiment, the charger is configured to take a monopolar charging mode. The charger includes a wire-like discharge electrode 20 attached to one side of the flow channel 10 and a counter electrode 22 disposed on the other side of the flow channel 10 so as to face the discharge electrode 20. . A charging power source 21 is connected to the discharge electrode 20 so as to cause a discharge between the discharge electrode 20 and the counter electrode 22. The shape of the discharge electrode 20 is not limited to a wire shape, and may be one or a plurality of needles attached vertically to the counter electrode 22. As shown in the embodiment of FIG. 2 to be described later, a counter electrode provided perpendicular to the gas flow in the flow path 10 and having an opening at the center, and the tip of the needle is opposed to the center of the opening of the counter electrode It may consist of a discharge electrode arranged in this way. The structure of the charger is not particularly limited as long as it can discharge between the discharge electrode and the counter electrode.

流路10の幅広の対向する一対の底面(実施例では天井面と下底面)は互いに平行で、同じ広さをもっている。その一方の底面である下底面上には、流路方向に沿って入口12から互いに異なる距離の位置に複数の吸引電極24,26が配置されている。吸引電極24,26は流路方向に沿ってそれぞれ所定の電極幅をもち、互いに電気的に分離されている。吸引電極24,26には測定電極24−1〜24−n(測定電極24−1〜24−nの符号は包括的に単に「24」とのみ表示されることもある。検流回路28についても同様である。)とトラップ電極26が含まれる。各測定電極24−1〜24−nには測定電極に到達した微粒子がもつ電荷量を検出するためにそれぞれの検流回路28−1〜28−nが接続されている。測定電極24−1〜24−nは互いに近接して配置することもでき、図示の実施例のように測定電極間に隙間をもって配置することもできる。トラップ電極26には検流回路は接続されていないが、極微小粒径を測定したい場合はここに検流回路を接続してもよい。隣接する吸引電極間には絶縁部材が挟まれて、又は空気層を介して電極間が互いに電気的に分離されている。それらの絶縁部材は電極間を電気的に分離することができればよいので、厚くする必要はなく、例えば0.5mm程度でよいが、もちろんこの厚みは、絶縁部材の体積抵抗率に依存する。   A pair of wide opposing bottom surfaces (in the embodiment, a ceiling surface and a lower bottom surface) of the channel 10 are parallel to each other and have the same width. A plurality of suction electrodes 24 and 26 are disposed on the lower bottom surface, which is one of the bottom surfaces, at different distances from the inlet 12 along the flow path direction. The suction electrodes 24 and 26 each have a predetermined electrode width along the flow path direction and are electrically separated from each other. Measuring electrodes 24-1 to 24-n (the symbols of the measuring electrodes 24-1 to 24-n may be generally indicated simply as “24” on the suction electrodes 24 and 26. About the galvanometer circuit 28) The trap electrode 26 is included. The current detection circuits 28-1 to 28-n are connected to the measurement electrodes 24-1 to 24-n in order to detect the charge amount of the fine particles reaching the measurement electrodes. The measurement electrodes 24-1 to 24-n can be arranged close to each other, and can be arranged with a gap between the measurement electrodes as in the illustrated embodiment. Although no galvanometer circuit is connected to the trap electrode 26, a galvanometer circuit may be connected here if it is desired to measure a very small particle diameter. An insulating member is sandwiched between adjacent suction electrodes, or the electrodes are electrically separated from each other via an air layer. These insulating members only need to be able to electrically separate the electrodes, and need not be thick. For example, the thickness may be about 0.5 mm, but this thickness naturally depends on the volume resistivity of the insulating member.

流路10の幅広の対向する一対の底面の他方の底面である天井面には、吸引電極24,26に対向して分級電極30が配置されている。分級電極30は吸引電極24,26との間に流路10を流れる試料ガス中の帯電微粒子を吸引電極側に引き付ける電界を発生させるものである。この電界が流路10を流れる試料ガスの流れの方向に対して垂直又はほぼ垂直になるように、分級電極30の面積と吸引電極24、26の合計面積がほぼ等しくなり、空間的にも正面どうしで対向していることが好ましい。そのため、吸引電極24、26は互いに電気的には分離されているが、隣接する吸引電極24、26の隙間は少ない方が好ましい。吸引電極24、26は到達した帯電微粒子の電荷量が測定される測定電極24のみで構成してもよいが、この実施例のように、帯電微粒子は到達するが測定電極としては使用されないトラップ電極26を含んでいてもよい。トラップ電極26を含んでいる場合には、流路10を流れる試料ガスの流れの方向に対して垂直方向又はほぼ垂直方向の電界を作用させるためには、トラップ電極26にも測定電極24と同じ電位が与えられる。トラップ電極26と測定電極24の電位にはグランド電位を含む。   A classification electrode 30 is disposed opposite to the suction electrodes 24 and 26 on the ceiling surface, which is the other bottom surface of the pair of bottom surfaces facing each other with a wide width. The classification electrode 30 generates an electric field that attracts charged fine particles in the sample gas flowing in the flow channel 10 to the suction electrode side between the suction electrodes 24 and 26. The area of the classification electrode 30 and the total area of the suction electrodes 24 and 26 are substantially equal so that this electric field is perpendicular or almost perpendicular to the direction of the flow of the sample gas flowing through the flow path 10. It is preferable that they face each other. Therefore, although the suction electrodes 24 and 26 are electrically separated from each other, it is preferable that the gap between the adjacent suction electrodes 24 and 26 is small. The suction electrodes 24 and 26 may be configured only by the measurement electrode 24 that measures the amount of charge of the charged fine particles that have reached. However, as in this embodiment, the trap electrode that reaches the charged fine particles but is not used as a measurement electrode. 26 may be included. When the trap electrode 26 is included, the trap electrode 26 is also the same as the measurement electrode 24 in order to apply an electric field in a direction perpendicular to or substantially perpendicular to the flow direction of the sample gas flowing through the flow path 10. A potential is applied. The potentials of the trap electrode 26 and the measurement electrode 24 include a ground potential.

この実施例において、測定電極24のうちの流路の入口にもっとも近い第1の測定電極24−1より入口側に1つのトラップ電極26が配置され、そのトラップ電極26の入口側の先端位置と、分級電極30の入口側の先端位置は、流路方向の同じ位置になるように位置決めされており、その位置が分級領域の基点となっている。以後の説明において、測定電極24の位置と幅の特定は、この分級領域の基点からの距離として表示される。分級電極30と吸引電極24,26の間が分級領域となっている。流路の入口から分級領域の基点までの距離を助走距離と呼ぶ。助走距離では帯電微粒子は分級領域に達していないので、分級電界の影響を受けずに試料ガスの流れに乗って移動する。   In this embodiment, one trap electrode 26 is arranged on the inlet side of the first measurement electrode 24-1 closest to the inlet of the flow path in the measurement electrode 24, and the tip position on the inlet side of the trap electrode 26 is The tip position on the inlet side of the classification electrode 30 is positioned so as to be the same position in the flow path direction, and that position is the base point of the classification region. In the following description, the position and width of the measurement electrode 24 are specified as a distance from the base point of this classification area. Between the classification electrode 30 and the suction electrodes 24 and 26 is a classification region. The distance from the entrance of the flow path to the base point of the classification area is called the run-up distance. Since the charged fine particles do not reach the classification region at the run-up distance, they move on the flow of the sample gas without being affected by the classification electric field.

この実施例において、測定電極24−1〜24−nとトラップ電極26は同電位とされ、分級電極30との間に流路を流れる試料ガスの流れに対し垂直方向又はほぼ垂直方向の電界が形成される。分級電極30には分級電圧を印加するための分級電源32が接続されており、分級電源32からの電圧印加により、分級電極30と吸引電極24,26の間に試料ガス中の帯電微粒子が吸引電極側に吸引される方向の電界が形成される。例えば、フィルタを設けて粒子成分を除去した後のガスイオンにより動作確認する場合に、ガスイオンとして正の電荷をもったものにて動作確認したいときは分級電極30の電圧が正の電圧となり吸引電極24,26を接地電位とする。逆にガスイオンとして負の電荷をもったものにて動作確認したいときは分級電極30の電圧が負の電圧となるように、分級電源32から分級電極30に電圧印加を行う。   In this embodiment, the measuring electrodes 24-1 to 24-n and the trap electrode 26 are set to the same potential, and an electric field in a direction perpendicular to or substantially perpendicular to the flow of the sample gas flowing through the flow path between the measuring electrode 24-1 and 24-n. It is formed. A classification power source 32 for applying a classification voltage is connected to the classification electrode 30, and charged fine particles in the sample gas are sucked between the classification electrode 30 and the suction electrodes 24 and 26 by applying a voltage from the classification power source 32. An electric field is formed in the direction attracted to the electrode side. For example, when checking the operation with gas ions after removing particulate components by providing a filter, if you want to check the operation with gas ions having a positive charge, the voltage of the classification electrode 30 becomes a positive voltage and sucked The electrodes 24 and 26 are set to the ground potential. Conversely, when it is desired to confirm the operation with gas ions having a negative charge, a voltage is applied from the classification power source 32 to the classification electrode 30 so that the voltage of the classification electrode 30 becomes a negative voltage.

分級電源32は測定時と分級部故障診断時とでは印加電圧値が異なるように、出力電圧を変化させることができるようになっている。流路10の寸法にもよるが、通常測定時の分級電源32への印加電圧値は数kV、例えばこの実施例では1〜4kV、一般には絶縁破壊が起きない範囲の電圧をかけることができる。分級部故障診断時の分級電源32への印加電圧値は数V、例えば3〜10Vとなるように切り換えられる。   The classification power source 32 can change the output voltage so that the applied voltage value is different between the measurement and the classification unit failure diagnosis. Although depending on the dimensions of the flow path 10, the voltage applied to the classification power source 32 during normal measurement is several kV, for example, 1 to 4 kV in this embodiment, and in general, a voltage in a range where dielectric breakdown does not occur can be applied. . The applied voltage value to the classification power source 32 at the time of classifying unit failure diagnosis is switched to several V, for example, 3 to 10V.

通常測定時は分級電源32から分級電極30に対して一定電圧が連続して供給される。一方、分級部故障診断時は分級電源32から分級電極30に対して測定時よりも低い一定電圧の供給がオン/オフと切り換えて供給される。   During normal measurement, a constant voltage is continuously supplied from the classification power source 32 to the classification electrode 30. On the other hand, at the time of classifier failure diagnosis, supply of a constant voltage lower than that at the time of measurement is switched from ON / OFF to the classification electrode 30 from the classification power supply 32.

例えば、対向電極22を接地電位として放電電極20を正側にして単極放電を行うと試料ガス中の微粒子は正の単極荷電をもつので、吸引電極の測定電極24−1〜24−nとトラップ電極26を接地電位として分級電極30を正側にする。   For example, when monopolar discharge is performed with the counter electrode 22 as the ground potential and the discharge electrode 20 on the positive side, the fine particles in the sample gas have positive monopolar charge, so that the measurement electrodes 24-1 to 24-n of the suction electrode are used. The trap electrode 26 is set to the ground potential, and the classification electrode 30 is set to the positive side.

この実施例において、帯電器を作動させ、分級電界を作用させた状態でファン16を作動させると、試料ガスが流路10の入口から導入され、試料ガスは帯電器の放電によって荷電される。分級電極30と吸引電極24、26の間には分級電界がかけられているので、荷電された試料ガスは流れに沿って分級電界中に送られる。帯電器で荷電された試料ガスは、分級電界が存在するところまでは試料ガスの流れの方向に移動し、分級電界に到達すると試料ガス流れ方向に移動しながら分級電界によって吸引電極24、26の方向に移動を始める。   In this embodiment, when the charger 16 is operated and the fan 16 is operated in a state where the classification electric field is applied, the sample gas is introduced from the inlet of the flow path 10 and the sample gas is charged by the discharge of the charger. Since a classification electric field is applied between the classification electrode 30 and the suction electrodes 24 and 26, the charged sample gas is sent along the flow into the classification electric field. The sample gas charged by the charger moves in the direction of the sample gas flow until the classification electric field exists. When the sample gas reaches the classification electric field, it moves in the direction of the sample gas while moving in the direction of the sample gas. Start moving in the direction.

荷電されたイオンは分級部の電界中で、試料ガスの流れに沿って排気側に流されながら、吸引電極に向かって移動する。小さな微粒子は入口に近い吸引電極により多く捕捉される。しかし、吸引電極に近い位置、すなわち流路の下底面側の位置、で吸い込まれた大きな微粒子も入り口に近い吸引電極に捕捉される。吸引電極のうち、測定電極24−1〜24−nに到達した微粒子の電荷がそれぞれの測定電極24−1〜24−nに接続された検流回路28−1〜28−nによって検出される。   The charged ions move toward the suction electrode while flowing toward the exhaust side along the flow of the sample gas in the electric field of the classification unit. Many small particles are trapped by the suction electrode near the inlet. However, large fine particles sucked at a position close to the suction electrode, that is, a position on the lower bottom surface side of the flow path are also captured by the suction electrode near the entrance. Among the suction electrodes, the charges of the fine particles that have reached the measurement electrodes 24-1 to 24-n are detected by the galvanic circuits 28-1 to 28-n connected to the measurement electrodes 24-1 to 24-n. .

図2から図5により微粒子分級装置の他の例に一実施例の分級部故障診断装置を適用した実施例の具体的な構造を示す。図4は流路に沿った断面図を表わしている。   FIG. 2 to FIG. 5 show a specific structure of an embodiment in which the classification unit failure diagnosis device of one embodiment is applied to another example of the particle classification device. FIG. 4 shows a cross-sectional view along the flow path.

流路10は扁平な直方体をなし、その入口12と出口14にはそれぞれ試料ガスの流れを平行流にするために整流抵抗11a、11bが配置されている。整流抵抗11a、11bは試料が流路幅方向に均一に分散するような流路抵抗になるように設定されている。流路につながる試料導入口13aと排出口13bは流れの断面積が流路10よりも小さくなっているが、整流抵抗11a、11bによって流路10での試料ガスの流れは流路幅にわたって均一な平行流となる。   The flow path 10 is a flat rectangular parallelepiped, and rectifying resistors 11a and 11b are arranged at the inlet 12 and the outlet 14 in order to make the flow of the sample gas parallel. The rectifying resistors 11a and 11b are set so as to have channel resistances such that the sample is uniformly dispersed in the channel width direction. The sample introduction port 13a and the discharge port 13b connected to the flow path have a flow cross-sectional area smaller than that of the flow path 10, but the flow of the sample gas in the flow path 10 is uniform over the width of the flow path by the rectifying resistors 11a and 11b. Parallel flow.

流路10の出口14につながる排出口13bには送風機構としてブロア40が接続され、ブロア40の上流に風量センサ42が配置されている。流路10を流れる試料ガス流量を調整して一定にするための流量調整弁18が風量センサ42とブロア40の間に配置されている。流量調整弁18は風量センサ42による検出風量が試料ガスを層流にするように予め定められた一定量になるように調整する。流量調整弁18は手動で調整することもでき、風量センサ42の信号に基づいてフィードバック制御するように構成することもできる。   A blower 40 is connected as a blower mechanism to the discharge port 13 b connected to the outlet 14 of the flow path 10, and an air volume sensor 42 is disposed upstream of the blower 40. A flow rate adjusting valve 18 for adjusting the flow rate of the sample gas flowing through the flow path 10 to be constant is disposed between the air volume sensor 42 and the blower 40. The flow rate adjusting valve 18 adjusts the air volume detected by the air volume sensor 42 so as to be a predetermined constant amount so that the sample gas becomes a laminar flow. The flow rate adjusting valve 18 can be manually adjusted, and can be configured to perform feedback control based on the signal of the air volume sensor 42.

試料導入口13aに試料ガスを導入するために試料吸込み口12がある。分級部故障診断方法を実施する際には、試料吸込み口12に、吸引するガス中の粒子成分を除去するガスフィルタ50を設けることできるように、試料吸込み12口にはフィルタ取付け部(図示略)が設けられている。ガスフィルタ50は、HEPAフィルタ、ULPAフィルタなどが適当である。そのようなガスフィルタ50の例としてアドバンテック東洋製CCGシリーズがある。フィルタ取付け部にはガスフィルタ50が取り付けられたことを検知するマイクロスイッチなどのセンサを設け、そのセンサの出力信号をコンピュータ100に取り込むようにしてもよい。そのようなセンサが設けられていない場合は、ガスフィルタ50が取り付けられたことをコンピュータ100に入力するようにしてもよい。ガスフィルタ50の着脱をコンピュータ100のCPUからの命令により自動で行うようにすることができる。また、ガスフィルタ50の着脱を手動で行なうようにすることもできる。   There is a sample inlet 12 for introducing a sample gas into the sample inlet 13a. When carrying out the classifying part failure diagnosis method, a filter mounting portion (not shown) is provided in the sample suction port 12 so that the sample suction port 12 can be provided with a gas filter 50 for removing particulate components in the sucked gas. ) Is provided. As the gas filter 50, a HEPA filter, a ULPA filter, or the like is appropriate. An example of such a gas filter 50 is the CCG series manufactured by Advantech Toyo. A sensor such as a micro switch that detects that the gas filter 50 is attached may be provided in the filter attaching portion, and an output signal of the sensor may be taken into the computer 100. When such a sensor is not provided, it may be input to the computer 100 that the gas filter 50 is attached. The gas filter 50 can be automatically attached and detached according to a command from the CPU of the computer 100. Further, the gas filter 50 can be manually attached and detached.

試料吸込み口12と試料導入口13aの間にはインパクタ13と帯電部が配置されている。インパクタ13は、流路を遮る板の中央にノズルが開けられ、そのノズルの下流にノズルに対向して捕集板が配置された構造をもっている。ノズルから噴出するエアロゾルの慣性衝突を利用してエアロゾル中の大きい側の微粒子を捕集板に採取して除去し、小さい側の微粒子を通過させる装置である。   An impactor 13 and a charging unit are disposed between the sample suction port 12 and the sample introduction port 13a. The impactor 13 has a structure in which a nozzle is opened at the center of a plate that blocks the flow path, and a collecting plate is disposed downstream of the nozzle so as to face the nozzle. This is an apparatus that collects and removes fine particles on the large side of the aerosol on a collecting plate using inertial collision of the aerosol ejected from the nozzle, and passes the fine particles on the small side.

帯電部は放電電極20aと対向電極22aとからなり、インパクタ13と試料導入口13aの間に配置されている。放電電極20aは針状の形状をもち、対向電極22aは流路を遮る電極板からなり、その中央に開口をもっている。放電電極20aの先端が対向電極22aの開口の中央に向けて配置されている。対向電極22aは接地されている。放電電極20aに荷電電源21から荷電用の電圧が印加される。放電電極20aに正電圧が印加されるとこの荷電部は試料ガス中の微粒子を正に帯電させ、放電電極20aに負電圧が印加されるとこの荷電部は試料ガス中の微粒子を負に帯電させる。放電電極20aと対向電極22aの構造はこれに限定されるものではない。   The charging unit includes a discharge electrode 20a and a counter electrode 22a, and is disposed between the impactor 13 and the sample introduction port 13a. The discharge electrode 20a has a needle shape, and the counter electrode 22a is made of an electrode plate that blocks the flow path, and has an opening at the center thereof. The tip of the discharge electrode 20a is disposed toward the center of the opening of the counter electrode 22a. The counter electrode 22a is grounded. A charging voltage is applied from the charging power source 21 to the discharge electrode 20a. When a positive voltage is applied to the discharge electrode 20a, the charged portion charges the fine particles in the sample gas positively. When a negative voltage is applied to the discharge electrode 20a, the charged portion charges the fine particles in the sample gas negatively. Let me. The structure of the discharge electrode 20a and the counter electrode 22a is not limited to this.

所望のイオン濃度や荷電の極性などに応じて放電電極20aに印加する電圧を調整するために、荷電電源21には荷電電圧調整器23aが接続されており、荷電電源21の出力電圧と電流を表示するための荷電電流・電圧モニタ装置23bが荷電電源21に接続されている。   In order to adjust the voltage applied to the discharge electrode 20a in accordance with the desired ion concentration, charge polarity, etc., a charge voltage regulator 23a is connected to the charge power source 21, and the output voltage and current of the charge power source 21 are adjusted. A charging current / voltage monitoring device 23 b for displaying is connected to the charging power source 21.

流路10の下底面上には、流路方向に沿って入口12から互いに異なる距離の位置に上流側から順にトラップ電極26及び6枚の測定電極24−1〜24−6が配置されている。測定電極24−1〜24−6は互いに近接して配置され、隣接する測定電極間に隙間をもって配置されている。トラップ電極26及び各測定電極24−1〜24−6には、流路方向に対して中央の位置にスタッド46が溶接されている。スタッド46はトラップ電極26及び測定電極24−1〜24−6について流路幅方向に沿って3個ずつ設けられている。各スタッド25はこの測定装置のベース基板48に開けられた穴に嵌め込まれていることによりトラップ電極26及び測定電極24−1〜24−6の流路方向の位置決めがなされている。   On the lower bottom surface of the flow path 10, a trap electrode 26 and six measurement electrodes 24-1 to 24-6 are arranged in order from the upstream side at different distances from the inlet 12 along the flow path direction. . The measurement electrodes 24-1 to 24-6 are arranged close to each other, and are arranged with a gap between adjacent measurement electrodes. A stud 46 is welded to the trap electrode 26 and each of the measurement electrodes 24-1 to 24-6 at a central position with respect to the flow path direction. Three studs 46 are provided along the flow path width direction for the trap electrode 26 and the measurement electrodes 24-1 to 24-6. Each stud 25 is fitted in a hole formed in the base substrate 48 of this measuring device, whereby the trap electrode 26 and the measuring electrodes 24-1 to 24-6 are positioned in the flow path direction.

測定電極24−1〜24−6のスタッド46のうち、流路幅方向の中央に配置されたものは検出した電流を取り出すための端子を兼ねており、それらのスタッド46はそれぞれの検流回路28−1〜28−6に接続されている。検流回路28−1〜28−6は増幅回路(アンプ)を備えている。検流回路28−1〜28−6はここでは全ての測定電極に設けられているが、電流値を検出しようとする測定電極のみに接続してもよい。トラップ電極26のスタッド46には検流回路は接続されておらず、接地されている。トラップ電極26及び各測定電極24−1〜24−6に対向して、流路10の天井面には1つの分級電極30が配置されている。トラップ電極26の入口12側の位置と分級電極30の入口12側の位置とが一致しており、測定電極24−6と分級電極30出口14側の位置が一致している。   Of the studs 46 of the measurement electrodes 24-1 to 24-6, the one arranged at the center in the flow path width direction also serves as a terminal for taking out the detected current, and these studs 46 are respectively galvanic detection circuits. 28-1 to 28-6. The galvanometer circuits 28-1 to 28-6 include an amplifier circuit (amplifier). Although the galvanometers 28-1 to 28-6 are provided for all the measurement electrodes here, they may be connected only to the measurement electrodes for which the current value is to be detected. A current detection circuit is not connected to the stud 46 of the trap electrode 26 and is grounded. One classification electrode 30 is disposed on the ceiling surface of the flow path 10 so as to face the trap electrode 26 and the measurement electrodes 24-1 to 24-6. The position on the inlet 12 side of the trap electrode 26 and the position on the inlet 12 side of the classification electrode 30 coincide with each other, and the positions on the measurement electrode 24-6 and the classification electrode 30 outlet 14 side coincide with each other.

検流回路28−1〜28−6は分級のための計算を行うためにコンピュータ(図示略)に接続されている。通常測定時においては、検流回路28−1〜28−6の検出信号は、流路10を流れる試料ガス中の帯電粒子が分級されて測定電極24−1〜24−6に吸引され結果を反映しているので、それらの検出信号に基づいて分級測定を行うことができる。   The galvanometers 28-1 to 28-6 are connected to a computer (not shown) in order to perform calculation for classification. In the normal measurement, the detection signals of the galvanometers 28-1 to 28-6 are obtained by classifying the charged particles in the sample gas flowing through the flow path 10 and sucking them into the measurement electrodes 24-1 to 24-6. Since it is reflected, classification measurement can be performed based on those detection signals.

本発明は通常測定が目的ではなく、分級電極が正常であるか否かを診断するのが目的であるので、手動でもその診断をできるように、検流回路28−1〜28−6には表示装置としてそれぞれの電流モニタ装置29−1〜29−6が接続されており、検流回路28−1〜28−6の検出電流値が表示されるようになっている。電流モニタ装置29−1〜29−6の少なくとも1つ、好ましくは最も上流側に配置された測定電極24−1に接続された検流回路28−1の電流モニタ装置29−1は、操作者が分級部の故障診断を行う際に利用することができる。   Since the present invention is not intended for normal measurement and is intended to diagnose whether the classification electrode is normal or not, the galvanometers 28-1 to 28-6 are provided so that the diagnosis can be performed manually. The current monitor devices 29-1 to 29-6 are connected as display devices, and the detected current values of the galvanometer circuits 28-1 to 28-6 are displayed. The current monitoring device 29-1 of the galvanometer circuit 28-1 connected to at least one of the current monitoring devices 29-1 to 29-6, preferably the measurement electrode 24-1 disposed on the most upstream side is an operator. Can be used when performing a failure diagnosis of the classification unit.

この微粒子分級装置おいて、分級電極が正常であるか否かを自動で判定する分級部故障診断装置は、検流回路28−1〜28−6のいずれか、分級電源供給制御部102、判定部104及びしきい値保持部106を含んでいる。分級電源供給制御部102及び判定部104は分級装置の専用コンピュータ又はパーソナルコンピュータなどの汎用コンピュータのCPUとブログラムにより実現されるものであり、しきい値保持部106はそのコンピュータのメモリ装置により実現される。   In this fine particle classification device, the classification unit failure diagnosis device that automatically determines whether or not the classification electrode is normal is any one of the galvanic circuits 28-1 to 28-6, the classification power supply control unit 102, and the determination. Part 104 and a threshold value holding part 106. The classification power supply control unit 102 and the determination unit 104 are realized by a CPU and a program of a general-purpose computer such as a dedicated computer of a classification device or a personal computer, and the threshold value holding unit 106 is realized by a memory device of the computer. Is done.

分級部故障診断装置を構成する検流回路としては、検流回路28−1〜28−6のうち、もっとも微小な粒子の電荷量を検出できる検流回路28−1の検出電流を使用する。検流回路28−1は検流回路28−1〜28−6のうちで流路のガスの流れに対して最も上流側に配置された測定電極24−1に接続された検流回路である。   As the galvanic circuit that constitutes the classifying unit failure diagnosis apparatus, the detection current of the galvanometer circuit 28-1 that can detect the charge amount of the smallest particles among the galvanometer circuits 28-1 to 28-6 is used. The galvanometer 28-1 is a galvanometer connected to the measurement electrode 24-1 disposed on the most upstream side of the gas flow in the flow path among the galvanometers 28-1 to 28-6. .

分級電源供給制御部102は、分級電極30への供給電圧を通常測定時の電圧よりも低い診断用の一定電圧に下げるとともに、分級電極30への電源供給のオン/オフを切り換えるように構成されている。分級電極30への供給電圧を変化させることができるように、分級電源32には分級電源供給制御部102が接続されており、分級電源供給制御部102は分級電源32から分級電極30への供給電圧を変化させる。分級電極30への供給電圧を診断用の一定電圧に下げた後、分級電源供給制御部102は分級電源32に命令を出して分級電極30への電源供給のオン/オフを切り換える。   The classification power supply control unit 102 is configured to lower the supply voltage to the classification electrode 30 to a constant voltage for diagnosis lower than the voltage at the time of normal measurement, and to switch on / off the power supply to the classification electrode 30. ing. The classification power supply control unit 102 is connected to the classification power source 32 so that the supply voltage to the classification electrode 30 can be changed. The classification power supply control unit 102 supplies the classification power supply from the classification power source 32 to the classification electrode 30. Change the voltage. After the supply voltage to the classification electrode 30 is lowered to a constant voltage for diagnosis, the classification power supply control unit 102 issues a command to the classification power supply 32 to switch on / off the power supply to the classification electrode 30.

判定部104は、検流回路28−1の出力信号を取り込み、しきい値保持部106からしきい値を取り込み、分級電極30への電源供給のオン/オフ切換えにおける検流回路28−1の出力信号変化の大きさがそのしきい値以上であれば分級電極30とボディ11との間の絶縁が正常に保たれていると判定し、そうでなければが分級電極30とボディ11との間の絶縁が低下していると判定する。   The determination unit 104 captures the output signal of the galvanometer circuit 28-1, captures the threshold value from the threshold value holding unit 106, and the rectifier circuit 28-1 switches on / off the power supply to the classification electrode 30. If the magnitude of the change in the output signal is equal to or greater than the threshold value, it is determined that the insulation between the classification electrode 30 and the body 11 is normally maintained. Otherwise, the separation between the classification electrode 30 and the body 11 is determined. It is determined that the insulation between them has decreased.

分級部故障診断を手動によってもできるように、分級電源供給制御部102は手動によっても分級電源32から分級電極30への供給電圧を変化させることができるように構成されており、分級電源32は手動によっても分級電極30への電源供給のオン/オフを切り換えることができるように構成されている。   The classification power supply control unit 102 is configured to be able to change the supply voltage from the classification power supply 32 to the classification electrode 30 manually so that the classification unit failure diagnosis can be performed manually. The power supply to the classification electrode 30 can be switched on / off manually.

好ましい実施例として、試料吸込み口12にガスフィルタ50を配置することができるようになっている。ガスフィルタ50は、吸引するガス中の濃度変化する粒子成分を除去する。そのため、試料吸込み口12から試料ガスを吸引しながら、濃度変化する粒子成分が除去された後のガスを用いて、帯電したガスイオンを用いて分級部故障診断を行うことができるようになる。その場合、測定電極として流路を流れるガスの流れに沿って複数個26−1〜26−6が配置されている場合には、判定部104が出力信号を取り込む検流回路として、流路を流れるガスの流れの最も上流側にある測定電極26−1につながる検流回路28−1を使用することが好ましい。検流回路28−1には微細な帯電粒子が取り込まれる。   As a preferred embodiment, the gas filter 50 can be disposed in the sample suction port 12. The gas filter 50 removes particle components whose concentration changes in the sucked gas. Therefore, the classifier failure diagnosis can be performed using the charged gas ions using the gas from which the concentration-changing particle component has been removed while sucking the sample gas from the sample inlet 12. In that case, when a plurality of 26-1 to 26-6 are arranged along the flow of gas flowing through the flow path as measurement electrodes, the determination section 104 serves as a galvanometer circuit that captures an output signal. It is preferable to use a galvanometer circuit 28-1 connected to the measurement electrode 26-1 located on the most upstream side of the flowing gas flow. Finely charged particles are taken into the galvanometer circuit 28-1.

分級電極が正常であるか否かの判定結果がこの微粒子分級装置を使用している操作者に容易にわかるようにするために、判定部104による判定結果を表示する表示部108が設けられている。表示部108は、例えば、液晶表示装置、表示する色により判定結果を識別できるランプなどが好ましい。   In order to make it easy for an operator who uses the fine particle classification device to easily determine whether or not the classification electrode is normal, a display unit 108 for displaying the determination result by the determination unit 104 is provided. Yes. The display unit 108 is preferably, for example, a liquid crystal display device or a lamp that can identify the determination result by the color to be displayed.

流路10を流れるガスの流れや検流回路は温度と相対湿度の影響も受ける。そのため、流路10を一定温度に保ち、相対湿度が高くならないようにするために、流路10のボディ11にはヒーター60と温度センサの温度検出端62が設けられている。ボディ11は熱伝導性のよい金属製であり、ヒーター60はボディ11全体が均一な温度になるような形態で設けられている。ヒーター60への通電は温度検出端62が検出する温度が所定の温度になるように、温度調節器64を介してフィードバック制御される。温度調節器64には温度モニタ装置66が接続されており、ボディ11の温度が表示される。   The flow of gas flowing through the flow path 10 and the current detection circuit are also affected by temperature and relative humidity. Therefore, in order to keep the flow path 10 at a constant temperature and prevent relative humidity from increasing, the body 11 of the flow path 10 is provided with a heater 60 and a temperature detection end 62 of the temperature sensor. The body 11 is made of a metal having good thermal conductivity, and the heater 60 is provided in such a form that the entire body 11 has a uniform temperature. The energization of the heater 60 is feedback-controlled through the temperature regulator 64 so that the temperature detected by the temperature detection end 62 becomes a predetermined temperature. A temperature monitor device 66 is connected to the temperature controller 64 and displays the temperature of the body 11.

図5は本発明の分級部故障診断装置が適用される微粒子分級装置のさらに他の例を概略的に示したものである。図1の微粒子分級装置と相違する点は、分級電極30に対向する吸引電極は測定電極24aとトラップ電極26aだけであるという点であり、他の構成は同じである。図1の実施例の構成部分と同じ部分は同じ符号を付し、説明を省略する。   FIG. 5 schematically shows still another example of the fine particle classifier to which the classification unit failure diagnosis apparatus of the present invention is applied. The difference from the fine particle classifier shown in FIG. 1 is that the suction electrode facing the classification electrode 30 is only the measurement electrode 24a and the trap electrode 26a, and the other configurations are the same. The same parts as those of the embodiment of FIG.

分級電極30に対向する吸引電極は、1つの測定電極24aと、流路の試料ガスの流れの方向に対して測定電極24aよりも上流側、すなわち流路10の入口側、に配置されたトラップ電極26aとからなる。図1の実施例と同様に、分級電極30の流路入口側の先端位置とトラップ電極26aの流路入口側の先端位置が流路入口から同じ距離の位置に位置決めされており、その先端位置が分級領域の基点となり、流路入口から分級領域の基点までの距離が助走距離である。   The suction electrode facing the classification electrode 30 is a trap arranged on one measurement electrode 24a and on the upstream side of the measurement electrode 24a with respect to the flow direction of the sample gas in the flow path, that is, on the inlet side of the flow path 10. It consists of an electrode 26a. As in the embodiment of FIG. 1, the tip position of the classification electrode 30 on the channel inlet side and the tip position of the trap electrode 26a on the channel inlet side are positioned at the same distance from the channel inlet. Becomes the base point of the classification region, and the distance from the flow path inlet to the base point of the classification region is the run-up distance.

測定電極24aとトラップ電極26aは同電位とされ、測定電極24aには検流回路28aが接続され、トラップ電極26aには検流回路は接続されていない点も図1の実施例と同様である。   The measurement electrode 24a and the trap electrode 26a are set to the same potential, and the current detection circuit 28a is connected to the measurement electrode 24a, and the current detection circuit is not connected to the trap electrode 26a. .

流路入口から導入された試料ガスに含まれる微粒子は、放電電極20aの放電によって荷電される。分級電極30とトラップ電極26a、測定電極24a間には分級用の電界がかけられており、荷電された微粒子は試料ガス流れに沿ってこの分級電界中に送られる。   Fine particles contained in the sample gas introduced from the channel inlet are charged by the discharge of the discharge electrode 20a. A classification electric field is applied between the classification electrode 30, the trap electrode 26a, and the measurement electrode 24a, and the charged fine particles are sent into the classification electric field along the flow of the sample gas.

荷電された微粒子は分級部の電界中で、試料ガスの流れに沿って排気側に流されながら、トラップ電極26a及び測定電極24aに向かって移動する。非常に小さな微粒子と、非常に大きな微粒子は入口側のトラップ電極26aに捕捉され、特定粒径範囲の微粒子だけが測定電極24aに到達し、その電荷が測定電極24aに接続された検流回路28aによって検出される。   The charged fine particles move toward the trap electrode 26a and the measurement electrode 24a while flowing toward the exhaust side along the flow of the sample gas in the electric field of the classification unit. A very small particle and a very large particle are captured by the trap electrode 26a on the inlet side, and only a particle having a specific particle size range reaches the measurement electrode 24a, and the charge is connected to the measurement electrode 24a. Detected by.

分級部故障診断装置は検流回路28aの出力電流を取り込み、その電流値に基づいて分級電極30の故障の有無を診断する。分級部故障診断装置の構成は図2に示されたものと同じである。   The classifying unit failure diagnosis apparatus takes in the output current of the galvanometer circuit 28a and diagnoses the presence or absence of a failure of the classification electrode 30 based on the current value. The configuration of the classifying unit failure diagnosis apparatus is the same as that shown in FIG.

分級部故障診断を行うプロセスを図6に示す。このプロセスはコンピュータ100により自動的に行う場合も、操作者が電流モニタ装置19−1の表示をみて判断する場合も含んでいる。   FIG. 6 shows a process for performing classifier failure diagnosis. This process includes a case where the process is automatically performed by the computer 100 and a case where the operator makes a judgment by looking at the display on the current monitor device 19-1.

まず、分級部故障診断装置が自動で診断動作を実行する場合を述べる。分級電源供給制御部102は、試料吸込み口12にフィルタ50が装着されていることをセンサ出力により、又は操作者によるコンピュータ100への入力による認識すると、分級電源供給制御部102から分級電顕32を介して分級電極30への供給電圧を通常測定時の電圧(数kV)よりも低い診断用の一定電圧(例えば、5V)に下げる。診断用の一定電圧は微細な帯電粒子が流路を流れるガスの流れの最も上流側にある測定電極26−1に取り込まれるには十分な大きさの電界を発生できる分級電圧である。そのような診断用の一定電圧は分級電源供給制御部102に設定しておく。   First, a case will be described in which the classifying unit failure diagnosis apparatus automatically executes a diagnosis operation. When the classification power supply control unit 102 recognizes that the filter 50 is attached to the sample suction port 12 by sensor output or input by the operator to the computer 100, the classification power supply control unit 102 sends the classification electron microscope 32. Then, the supply voltage to the classification electrode 30 is lowered to a constant voltage for diagnosis (for example, 5 V) lower than the voltage (several kV) during normal measurement. The constant voltage for diagnosis is a classification voltage that can generate an electric field large enough to allow fine charged particles to be taken into the measurement electrode 26-1 at the most upstream side of the gas flow through the flow path. Such a constant voltage for diagnosis is set in the classified power supply control unit 102 in advance.

分級電極30への供給電圧の低下後、分級電源供給制御部102は分級電極30への電源供給のオン/オフを切り換える。分級電極30とボディ11との間の絶縁が正常に保たれておれば、分級電極30への電源供給をオンからオフに切り換えると、電源供給のオン時に検流回路28−1に流れていた電流がなくなるので、その変化が大きいのに対し、分級電極30とボディ11との間の絶縁が正常に保たれていなければ、分級電極30への電源供給がオンのときも検流回路28−1に所定の電流が流れていないので、分級電極30への電源供給をオンからオフに切り換えてもその電流値の変化は小さい。分級電極30への電源供給のオンからオフへの切り換えに伴う電流値の変化の大きさをしきい値と比較し、しきいち値以上であれば分級電極30は正常であると判定し、そうでなければ故障と判定し、それぞれを表示部108に表示する。   After the supply voltage to the classification electrode 30 decreases, the classification power supply control unit 102 switches on / off the power supply to the classification electrode 30. If the insulation between the classification electrode 30 and the body 11 is normally maintained, when the power supply to the classification electrode 30 is switched from on to off, the current flows to the galvanometer circuit 28-1 when the power supply is turned on. If the insulation between the classification electrode 30 and the body 11 is not maintained normally, the current is lost because the current disappears. However, if the power supply to the classification electrode 30 is on, the current detection circuit 28- Since a predetermined current does not flow through 1, the change in the current value is small even when the power supply to the classification electrode 30 is switched from on to off. The magnitude of the change in the current value associated with the switching of the power supply to the classification electrode 30 from on to off is compared with a threshold value. If the threshold value is greater than the threshold value, it is determined that the classification electrode 30 is normal. Otherwise, it is determined as a failure, and each is displayed on the display unit 108.

この動作を手動で行う場合は、試料吸込み口12にフィルタ50が装着されていることを目視で確認し、分級電極30への供給電圧を手動で下げ、その後、分級電極30への電源供給のオン/オフを手動で切り換える。その結果に基づく検流回路28−1の電流値の変化が所定の値よりも大きいか否かを電流モニタ装置29−1により目視で判断する。   When this operation is performed manually, it is confirmed visually that the filter 50 is attached to the sample suction port 12, the supply voltage to the classification electrode 30 is manually lowered, and then the power supply to the classification electrode 30 is performed. Switch on / off manually. Whether the change in the current value of the galvanometer circuit 28-1 based on the result is larger than a predetermined value is visually determined by the current monitor device 29-1.

本発明の分級部故障診断装置と方法が適用される微粒子分級装置は、実施例に示したものに限定されない。たとえば、流路は、実施例では流路の流れ方向に対して垂直方向の断面形状が横方向に扁平な形状であるが、流路の断面形状を実施例のものから90度回転させた縦方向に扁平な形状のものとしてもよい。また、流路は、実施例に示したような断面が方形のものに限らず、円形のものや、吸引側電極(測定電極とトラップ電極)と分級電極を2重円筒状に互いに対向するように配した構造でもよい。一対の電極間に分級電圧を印加し、それにより発生する分級電界によって帯電微粒子を粒子サイズに基づいて分級する原理を利用した分級装置であれば、本発明を適用することができる。   The particle classifier to which the classifying unit failure diagnosis apparatus and method of the present invention is applied is not limited to the one shown in the examples. For example, in the embodiment, the cross-sectional shape in the direction perpendicular to the flow direction of the flow channel is flat in the lateral direction in the embodiment, but the cross-sectional shape of the flow channel is 90 degrees rotated from that of the embodiment by 90 degrees. The shape may be flat in the direction. Further, the flow path is not limited to a rectangular cross section as shown in the embodiment, but a circular one, or a suction side electrode (measurement electrode and trap electrode) and a classification electrode are opposed to each other in a double cylindrical shape. The structure arranged in The present invention can be applied to any classification device that uses the principle of applying a classification voltage between a pair of electrodes and classifying charged fine particles based on the particle size by a classification electric field generated thereby.

10 流路
12 試料吸込み口
20,20a 放電電極
22,22a 対向電極
24−1〜24−n 測定電極
28−1〜28−n,28a 検流回路
29−1〜29−6 電流モニタ装置
30 分級電極
32 分級電源
50 ガスフィルタ
100 コンピュータ
102 分級電源供給制御部
104 判定部
106 しきい値保持部
108 表示部
DESCRIPTION OF SYMBOLS 10 Flow path 12 Sample inlet 20, 20a Discharge electrode 22, 22a Counter electrode 24-1-24-n Measuring electrode 28-1 to 28-n, 28a Current detection circuit 29-1 to 29-6 Current monitor apparatus 30 Classification Electrode 32 Classification power supply 50 Gas filter 100 Computer 102 Classification power supply control unit 104 Determination unit 106 Threshold value holding unit 108 Display unit

Claims (6)

試料吸込み口から吸引したガスを帯電させる荷電部と、前記荷電部により帯電させられたガスが流れる流路を構成する内面のうちの一つの面に配置された少なくとも1つの吸引電極と、前記内面のうちの他の面上に前記吸引電極に対向して配置され、前記吸引電極との間に前記流路を流れるガス中の帯電粒子を前記吸引電極側に引き付ける電界を発生させる分級電極と、を備えた微粒子分級装置における前記分級電極が正常であるか否かを判定する分級部故障診断装置であって、
前記吸引電極に接続されて電荷量を検出する検流回路と、
前記分級電極への供給電圧を通常測定時の電圧よりも低い診断用の一定電圧に下げるとともに、前記分級電極への電源供給のオン/オフを切り換える分級電源供給制御部と、
前記検流回路の出力信号を取り込み、前記分級電極への電源供給のオン/オフ切換えにおけるその出力信号変化の大きさがしきい値以上であるか否かにより前記分級電極が正常であるか否かを判定する判定部と、
前記判定部が使用する前記しきい値を保持し、保持したしきい値を前記判定部に供給するしきい値保持部と、
を備えた分級部故障診断装置。
A charging part for charging the gas sucked from the sample suction port, at least one suction electrode arranged on one of the inner surfaces constituting the flow path through which the gas charged by the charging part flows, and the inner surface A classifying electrode that is disposed on the other surface of the gas electrode so as to face the suction electrode, and generates an electric field that attracts charged particles in the gas flowing in the flow path to the suction electrode side between the suction electrode and the suction electrode; A classification unit failure diagnosis apparatus for determining whether or not the classification electrode is normal in a fine particle classification apparatus comprising:
A galvanic circuit connected to the suction electrode to detect the amount of charge;
A classification power supply control unit that switches on / off power supply to the classification electrode while lowering the supply voltage to the classification electrode to a constant voltage for diagnosis lower than the voltage at the time of normal measurement;
Whether or not the classification electrode is normal depending on whether or not the magnitude of the change of the output signal in the on / off switching of the power supply to the classification electrode is greater than or equal to a threshold value is taken in the output signal of the galvanometer circuit A determination unit for determining;
A threshold value holding unit that holds the threshold value used by the determination unit and supplies the held threshold value to the determination unit;
Classification unit fault diagnosis device equipped with.
前記判定部による判定結果を表示する表示部をさらに備えている請求項1に記載の分級部故障診断装置。   The classification unit failure diagnosis apparatus according to claim 1, further comprising a display unit configured to display a determination result by the determination unit. 試料吸込み口から吸引したガスを帯電させる荷電部と、前記荷電部により帯電させられたガスが流れる流路を構成する内面のうちの一つの面に配置された少なくとも1つの吸引電極と、前記内面のうちの他の面上に前記吸引電極に対向して配置され、前記吸引電極との間に前記流路を流れるガス中の帯電粒子を前記吸引電極側に引き付ける電界を発生させる分級電極と、を備えた微粒子分級装置における前記分級電極が正常であるか否かを判定する分級部故障診断装置であって、
前記吸引電極に接続されて電荷量を検出する検流回路と、
前記分級電極への供給電圧を通常測定時の電圧よりも低い診断用の一定電圧に下げるとともに、前記分級電極への電源供給のオン/オフを切り換える分級電源供給制御部と、
前記検流回路に接続され前記検流回路の出力信号を表示する表示装置と、を備えた分級部故障診断装置。
A charging part for charging the gas sucked from the sample suction port, at least one suction electrode arranged on one of the inner surfaces constituting the flow path through which the gas charged by the charging part flows, and the inner surface A classifying electrode that is disposed on the other surface of the gas electrode so as to face the suction electrode, and generates an electric field that attracts charged particles in the gas flowing in the flow path to the suction electrode side between the suction electrode and the suction electrode; A classification unit failure diagnosis apparatus for determining whether or not the classification electrode is normal in a fine particle classification apparatus comprising:
A galvanic circuit connected to the suction electrode to detect the amount of charge;
A classification power supply control unit that switches on / off power supply to the classification electrode while lowering the supply voltage to the classification electrode to a constant voltage for diagnosis lower than the voltage at the time of normal measurement;
A classifier failure diagnosis apparatus comprising: a display device connected to the galvanometer circuit and displaying an output signal of the galvanometer circuit.
前記試料吸込み口に配置され、吸引するガス中の粒子成分を除去するガスフィルタをさらに備えており、
前記測定電極は前記流路を流れるガスの流れに沿って複数個が配置されており、前記判定部が出力信号を取り込む前記検流回路は、前記流路を流れるガスの流れの最も上流側にある測定電極につながる検流回路である請求項1から3のいずれか一項に記載の分級部故障診断装置。
A gas filter that is disposed in the sample suction port and that removes particulate components in the gas to be sucked;
A plurality of the measurement electrodes are arranged along the flow of the gas flowing through the flow path, and the galvanometer circuit in which the determination unit captures an output signal is located on the most upstream side of the flow of gas flowing through the flow path. The classification part fault diagnosis apparatus according to any one of claims 1 to 3, which is a galvanometer circuit connected to a certain measurement electrode.
試料吸込み口から吸引したガスを帯電させる荷電部と、前記荷電部により帯電させられたガスが流れる流路を構成する内面のうちの一つの面に配置された少なくとも1つの吸引電極と、前記内面のうちの他の面上に前記吸引電極に対向して配置され、前記吸引電極との間に前記流路を流れるガス中の帯電粒子を前記吸引電極側に引き付ける電界を発生させる分級電極と、を備えた微粒子分級装置における前記分級電極が正常であるか否かを判定する分級部故障診断方法であって、
前記吸引電極に電荷量を検出する検流回路を接続し、
(S1)前記分級電極への供給電圧を通常測定時の電圧よりも低い診断用の一定電圧に下げるステップ、
(S2)その後、前記分級電極への電源供給のオン/オフを切り換えるステップ、及び
(S3)前記検流回路の出力信号に基づき、前記分級電極への電源供給のオン/オフ切換えにおけるその出力信号変化の大きさに基づいて前記分級電極が正常であるか否かを判定するステップ、
を含む分級部故障診断方法。
A charging part for charging the gas sucked from the sample suction port; at least one suction electrode arranged on one of the inner surfaces constituting the flow path through which the gas charged by the charging part flows; and the inner surface A classifying electrode that is disposed on the other surface of the gas electrode so as to face the suction electrode, and generates an electric field that attracts charged particles in the gas flowing in the flow path to the suction electrode side between the suction electrode and the suction electrode; A classification unit failure diagnosis method for determining whether or not the classification electrode is normal in a fine particle classification apparatus comprising:
Connect a galvanometer circuit that detects the amount of charge to the suction electrode,
(S1) lowering the supply voltage to the classification electrode to a constant voltage for diagnosis lower than the voltage at the time of normal measurement;
(S2) Thereafter, a step of switching on / off the power supply to the classification electrode; and (S3) an output signal in switching on / off of the power supply to the classification electrode based on the output signal of the galvanic circuit Determining whether the classification electrode is normal based on the magnitude of the change;
Classification part fault diagnosis method including
この分級部故障診断方法を実施する際に、前記試料吸込み口に、吸引するガス中の粒子成分を除去するガスフィルタを設け、
前記測定電極として前記流路を流れるガスの流れに沿って複数個が配置されている場合は、前記流路を流れるガスの流れの最も上流側にある測定電極につながる検流回路の出力信号に基づいて前記ステップS3の判定を行う請求項5に記載の分級部故障診断方法。
When carrying out this classification part failure diagnosis method, the sample suction port is provided with a gas filter for removing particulate components in the gas to be sucked,
When a plurality of the measurement electrodes are arranged along the flow of gas flowing through the flow path, the output signal of the galvanometer circuit connected to the measurement electrode at the most upstream side of the flow of gas flowing through the flow path The classification part failure diagnosis method according to claim 5, wherein the determination in step S <b> 3 is performed based on the determination.
JP2013252081A 2013-12-05 2013-12-05 Classification section failure diagnosis apparatus and method in fine particle classification apparatus Expired - Fee Related JP6112000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252081A JP6112000B2 (en) 2013-12-05 2013-12-05 Classification section failure diagnosis apparatus and method in fine particle classification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252081A JP6112000B2 (en) 2013-12-05 2013-12-05 Classification section failure diagnosis apparatus and method in fine particle classification apparatus

Publications (2)

Publication Number Publication Date
JP2015108578A true JP2015108578A (en) 2015-06-11
JP6112000B2 JP6112000B2 (en) 2017-04-12

Family

ID=53439024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252081A Expired - Fee Related JP6112000B2 (en) 2013-12-05 2013-12-05 Classification section failure diagnosis apparatus and method in fine particle classification apparatus

Country Status (1)

Country Link
JP (1) JP6112000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717001A (en) * 2016-01-05 2016-06-29 南京大学(苏州)高新技术研究院 Characterization method of atmospheric solid particulate matter [PM 2.5] indexes measured according to conductivity
WO2018163661A1 (en) * 2017-03-10 2018-09-13 日本碍子株式会社 Microparrticle number detector
CN110765699A (en) * 2019-10-17 2020-02-07 中国石油大学(北京) Method and device for evaluating health state of fracturing equipment during operation
WO2022230655A1 (en) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 Fine particle sampling device and fine particle sampling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119094A (en) * 1977-03-28 1978-10-18 Hitachi Ltd Particle size distribution measuring instrument
US5214386A (en) * 1989-03-08 1993-05-25 Hermann Singer Apparatus and method for measuring particles in polydispersed systems and particle concentrations of monodispersed aerosols
JP2011506954A (en) * 2007-12-12 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus for characterizing the size distribution of charged suspended particles in air flow.
JP2013213763A (en) * 2012-04-03 2013-10-17 Shimadzu Corp Particle classification concentration measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119094A (en) * 1977-03-28 1978-10-18 Hitachi Ltd Particle size distribution measuring instrument
US5214386A (en) * 1989-03-08 1993-05-25 Hermann Singer Apparatus and method for measuring particles in polydispersed systems and particle concentrations of monodispersed aerosols
JP2011506954A (en) * 2007-12-12 2011-03-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus for characterizing the size distribution of charged suspended particles in air flow.
JP2013213763A (en) * 2012-04-03 2013-10-17 Shimadzu Corp Particle classification concentration measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717001A (en) * 2016-01-05 2016-06-29 南京大学(苏州)高新技术研究院 Characterization method of atmospheric solid particulate matter [PM 2.5] indexes measured according to conductivity
WO2018163661A1 (en) * 2017-03-10 2018-09-13 日本碍子株式会社 Microparrticle number detector
CN110765699A (en) * 2019-10-17 2020-02-07 中国石油大学(北京) Method and device for evaluating health state of fracturing equipment during operation
CN110765699B (en) * 2019-10-17 2021-07-30 中国石油大学(北京) Method and device for evaluating health state of fracturing equipment during operation
WO2022230655A1 (en) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 Fine particle sampling device and fine particle sampling method

Also Published As

Publication number Publication date
JP6112000B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6112000B2 (en) Classification section failure diagnosis apparatus and method in fine particle classification apparatus
JP6168208B2 (en) Sample preparation apparatus with uniform particle concentration distribution, and nanoparticle film deposition apparatus
JP4561835B2 (en) Classification device and fine particle measuring device
US20150192508A1 (en) Apparatus and Process for Producing Acknowledged Air Flow and The Use of Such Apparatus in Measuring Particle Concentration in Acknowledged Air Flow
WO2015146456A1 (en) Fine-particle number measurement device and fine-particle number measurement method
US20120274933A1 (en) Detection system for airborne particles
EP2815226B1 (en) Apparatus and process for producing air flow and the use of such apparatus in measuring particle concentration in air flow
US20170115198A1 (en) Method and apparatus for measuring aerosol particles of exhaust gas
US20170138831A1 (en) Particle charging device and particle classification device using the charging device
Lanki et al. An electrical sensor for long-term monitoring of ultrafine particles in workplaces
KR20160091142A (en) System for measuring fine particulate and gas particulate
US20190293537A1 (en) Ion generator and fine particle sensor including the same
JP2008145347A (en) Faraday cup ammeter and particle measuring apparatus
KR20150004254A (en) Fet ion detector and system by using the same
JP2008096322A (en) Particle classifier
JPWO2009118821A1 (en) Fine particle measuring device
JP2020060475A (en) Fine particle classification measuring device
Kumar et al. MEMS based flow cytometer with instrumentation system for detection of micro particles for health care applications
JP5453597B2 (en) Differential electric mobility measuring device, measuring method using differential electric mobility measuring device, program used for differential electric mobility measuring device, and computer-readable recording medium recording the program
Hyun et al. Design and performance evaluation of a PN1 sensor for real-time measurement of indoor aerosol size distribution
US20230047306A1 (en) Electrostatic Precipitation-Based Sampler for Bioaerosol Monitoring
JP2020051784A (en) Fine particle classification measurement device
JP5821755B2 (en) Particle classification concentration measuring instrument
Lobov Study of the corona discharge phenomenon for application in pathogen and narcotic detection in aerosol
JP4655738B2 (en) Charged particle amount evaluation apparatus and charged particle amount evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160229

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R151 Written notification of patent or utility model registration

Ref document number: 6112000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees