WO2018163563A1 - Evaporation solid-liquid separation method - Google Patents

Evaporation solid-liquid separation method Download PDF

Info

Publication number
WO2018163563A1
WO2018163563A1 PCT/JP2017/045887 JP2017045887W WO2018163563A1 WO 2018163563 A1 WO2018163563 A1 WO 2018163563A1 JP 2017045887 W JP2017045887 W JP 2017045887W WO 2018163563 A1 WO2018163563 A1 WO 2018163563A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
liquid separation
seawater
solid
container
Prior art date
Application number
PCT/JP2017/045887
Other languages
French (fr)
Japanese (ja)
Inventor
康文 福本
Original Assignee
株式会社F・E・C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社F・E・C filed Critical 株式会社F・E・C
Priority to JP2019504338A priority Critical patent/JP6847474B2/en
Publication of WO2018163563A1 publication Critical patent/WO2018163563A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation

Definitions

  • the present invention relates to an evaporative solid-liquid separation method in which seawater is evaporated at a specific temperature and a specific pressure to separate into mineral water and a salt mixture having a useful and novel composition. Furthermore, the present invention relates to a mineral water and salt mixture having a novel composition obtained by using the evaporative solid / liquid separation method, and an evaporative solid / liquid separation device for the evaporative solid / liquid separation method.
  • Patent Documents 1 to 3 describe a desalination treatment method, a method for producing a salt concentrate, a fresh water combined water purifier using a reverse osmosis membrane, and the like.
  • Patent Document 4 describes a seawater treatment method using a mosaic charged membrane
  • Patent Documents 5 and 6 describe a method for producing a mineral component-containing composition (such as mineral water) using an ion exchange membrane.
  • Patent Document 7 describes an apparatus and a method related to flash evaporation.
  • Patent Document 8 describes an evaporator for a multi-effect fresh water generator
  • Patent Documents 9 and 10 describe osmosis as materials that heat and evaporate water in seawater and liquefy the water vapor obtained.
  • An evaporator and a fresh water generator that use a membrane together are described.
  • the subject is the mineral water and salt mixture which can be used also for the use where a slight component ratio is important, and the use where the presence or absence of a trace amount component (element) is important. It is to provide.
  • the present inventor has found that the “specific pressure range necessary for suitably evaporating solid-liquid separation while maintaining the temperature of the object at 25 ° C. or more and 60 ° C. or less. And (more preferably gas discharge capacity) ", and an apparatus capable of achieving such a condition (even in industrial quantities) could be realized for the first time. And at least during the main evaporative solid-liquid separation, as a result of applying the evaporation conditions to seawater, surprisingly, a mineral with a novel composition in which trace amounts of components (elements) can remain (maintain) as natural products It has been found that water (and a salt mixture) can be obtained, leading to the present invention.
  • the present invention is an evaporative solid-liquid separation method in which seawater is separated into evaporated solid and liquid, and separated into a salt mixture and mineral water, At least during the main evaporative solid-liquid separation, the temperature of the seawater is maintained at 25 ° C. or higher and 60 ° C. or lower, and the pressure in the container is maintained at 1 kPa or higher and 20 kPa or lower using a decompressor.
  • a separation method is provided.
  • the present invention also provides the above-described method for evaporating solid-liquid separation, in which seawater is subjected to evaporative solid-liquid separation by performing at least all of the following operations (1) to (4).
  • the water ejector is decompressed using a decompressor to maintain the inside of the container at 1 kPa or more and 20 kPa or less, and the seawater is removed by the evaporation heat of water contained in the seawater.
  • a cooling operation for cooling and maintaining the temperature of the seawater in a temperature range of 25 ° C. or higher and 60 ° C. or lower; (3) A liquefaction operation for liquefying the gas flowing out of the container using a cooler to obtain mineral water; (4) Taking out the salt mixture remaining in the container from the powder outlet of the container to obtain a salt mixture
  • the present invention also provides a method for producing a salt mixture and a method for producing mineral water, characterized in that seawater is separated by evaporating solid / liquid using the above evaporative solid / liquid separation method.
  • the present invention is an evaporative solid-liquid separation apparatus for the above evaporative solid-liquid separation method
  • the present invention provides an evaporative solid-liquid separation device comprising: a container having at least a stirrer, a heating unit, and a powder outlet; a decompressor that is a water ejector; and a cooler.
  • the present invention also provides a salt mixture and mineral water characterized by being obtained by evaporating solid-liquid separation of seawater using the above evaporative solid-liquid separation method.
  • the present invention solves the above-mentioned conventional problems and problems, and provides a mineral water holding a trace component (element) contained in natural seawater and a salt mixture close to natural seawater. it can. As a result, it is possible to provide a mineral water and salt mixture having a novel component composition that can be used for applications where a trace component composition is important.
  • a trace component composition is important.
  • metal ions in seawater exist (remain) that is, trace metal ions that would be removed by the original evaporation are also included in “evaporated”.
  • mineral water evaporated matter obtained by evaporation
  • mineral water of the present invention exerts an excellent effect on the living organism as described later.
  • a method of obtaining fresh water by evaporating water at 60 ° C. or less at a sufficiently reduced pressure for example, about 1 Pa (10 ⁇ 2 mmHg) with a rotary pump
  • a sufficiently reduced pressure for example, about 1 Pa (10 ⁇ 2 mmHg) with a rotary pump
  • the lower limit of pressure is important.
  • the pressure is 1 kPa or more and 20 kPa or less at a relatively high pressure (without increasing the degree of decompression), and the industrially applicable amount of seawater is industrially used. Evaporating within a working time requires a special pressure reducer; and it has not been predicted that the resulting product was excellent;
  • the mineral water produced by using the evaporative solid-liquid separation method of the present invention has characteristics such as adapting to a living body, and therefore can be suitably used for the above-mentioned high added value fine chemicals.
  • the mineral water produced by using the evaporation solid-liquid separation method of the present invention has a calcium (Ca) content generally lower than that of commercially available mineral water, but sodium (Na), magnesium (Mg), potassium (K). ) Content is certainly high. In addition, other seawater components are likely to remain without being dissipated.
  • the mineral water produced by using the evaporative solid-liquid separation method of the present invention is obtained by reducing only the overwhelming main component sodium chloride (NaCl) from seawater, and other seawater (trace) components are dissipated. It remains without.
  • the mineral water of the present invention has almost no dissipative material from “natural seawater”. For this reason, it is considered that trace components (elements) necessary for the living body remain as they are.
  • the "(trace) component” has not been clarified, but the growth rate of plants (vegetables, etc.) in the sprinkled soil, the flavor of the vegetable; the flavor of the mineral water itself of the present invention, a dish using the mineral water It is clear from the fact that the taste and the taste of pickles are completely different from those obtained from "soil that has not been supplemented with trace components (elements) for many years". It is highly possible that the “other (trace) component” is not an organic component but a specific element (for example, a metal or a metal salt). The (trace) component is not specifically clarified in the present invention, but is not yet clarified by the current (analytical) advanced technology.
  • the antibacterial agent is an antibiotic which is a natural product. It depends on seawater, which is a natural product.
  • the salt mixture produced by using the evaporative solid-liquid separation method of the present invention has much less sodium chloride (NaCl) content and sodium (Na) content than commercially available salt (practice). See example).
  • the salt mixture produced using the evaporation solid-liquid separation method of the present invention has a magnesium (Mg) content, calcium (Ca) content, potassium ( The content of K) is also large (see Examples).
  • both mineral water which is an evaporation component produced using the evaporation solid-liquid separation method of the present invention
  • the remaining salt mixture have a novel composition and water structure, for example, makeup such as lotion (Raw materials); health food (raw materials); general foods (raw materials) such as pickles and drinking water, water for agricultural products; water for fish farming (raw materials);
  • the content ratio can be particularly preferably used for “uses that are important for (becomes important for) the performance”.
  • the mineral water and salt mixture produced using the evaporative solid-liquid separation method of the present invention will all have a novel composition, a cluster structure of water, etc. It has been confirmed from the fact that it has a different flavor from conventional products and has an effect on humans (such as its skin). In addition, the difference in "taste and smell" (flavor) that can be perceived by humans and the effect on human (skin) etc. are beyond the capabilities of current instrumental analysis (below the detection limit). ) Is technical common sense, it is impossible or almost impractical to directly specify the trace component and the subtle component content ratio that show the excellent effect (“impossible / unpractical circumstances”) There).
  • the evaporative solid-liquid separation method of the present invention is an evaporative solid-liquid separation method in which seawater is separated into evaporative solid-liquid and separated into a salt mixture and mineral water, and the temperature of the seawater is set at least during main evaporative solid-liquid separation. While maintaining at 25 degreeC or more and 60 degrees C or less, the pressure in a container is maintained at 1 kPa or more and 20 kPa or less using a decompressor.
  • the evaporative solid-liquid separator used in the present invention is an apparatus whose use is limited to the “evaporated solid-liquid separation method of the present invention”.
  • the evaporative solid / liquid separation apparatus used in the present invention is an evaporative solid / liquid separation apparatus having an ability that can be used in the evaporative solid / liquid separation method of the present invention, and includes at least a stirrer, a heating unit, and a powder outlet.
  • a decompressor preferably a decompressor which is a water ejector
  • a cooler preferably a decompressor which is a water ejector
  • a preferred example of the apparatus used in the present invention is at least as shown in FIGS.
  • a stirrer 110 that stirs the seawater A, a heating unit 120 that heats the seawater A and the container 100, a gas outlet 130 that extracts the gas generated from the seawater A, and a powder outlet 140 that extracts the salt mixture B after processing.
  • Container 100 A cooler 200 for cooling the gas taken out from the gas outlet 130; A decompressor 300 for decompressing the inside of the container 100; and;
  • a recovery container 400 for recovering the mineral water C cooled and liquefied by the cooler 200.
  • the evaporative solid-liquid separation method of the present invention preferably performs at least all of the following operations (1) to (4).
  • the water ejector is decompressed using a decompressor to maintain the inside of the container at 1 kPa or more and 20 kPa or less, and the seawater is removed by the evaporation heat of water contained in the seawater.
  • the particularly preferable method of producing the salt mixture B and the mineral water C by evaporating solid-liquid separation of the seawater A of the present invention is not limited to the following, but specifically, for example, as follows.
  • the cooling water supply device is filled with cooling water, and the cooling water is circulated through the cooler 200.
  • seawater A is introduced into the container 100 from the seawater inlet 103 and the lid 104 is closed.
  • the stirrer 110 is rotated if necessary, and the stirring operation for stirring the seawater A in the container 100 is performed.
  • a stirring operation and (particularly) preferable conditions and structure of the stirrer 110 will be described later.
  • a heating operation is performed in which the inside of the container 100 is heated by the heating unit 120 so that the temperature of the seawater A is maintained within a temperature range of 25 ° C. or more and 60 ° C. or less.
  • main evaporative solid-liquid separation refers to the period from the initial stage of evaporative solid-liquid separation until evaporating solid-liquid separation of 70% by mass or more of seawater charged into the container. Moreover, it is preferably maintained at a specific temperature condition and a specific pressure condition described later until 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 98% by mass or more is evaporated and solid-liquid separated. desirable.
  • Heat is applied from the outside by supplying steam for heating into the steam chamber 121 from the steam supply device.
  • the container 100 is provided with a heating unit 120 that heats the seawater A and the inside of the container 100.
  • water vapor heated by the steam supply device 122 is converted into the container 100 (preferably the lower half of the container 100. It is fed into a steam chamber installed around the cylindrical part 101).
  • the heat applied to the container 100 is transferred to the seawater A, and the seawater A is stirred by the stirrer 110 or by boiling, whereby water in the seawater A evaporates and the (concentrated) seawater A Temperature, concentration, viscosity, etc. become uniform.
  • the temperature of the seawater A is maintained at 25 ° C. or more and 60 ° C. or less and distilled off at the same or slightly lower pressure (for example, 10% lower pressure) than the vapor pressure of water at the temperature. At that time, the seawater A boils. Therefore, since stirring is performed by the boiling, the stirrer 110 is not essential, but it is preferable that the stirrer 110 is present for more uniform temperature transmission, final removal, and the like.
  • Seawater A is heated by appropriately adjusting the temperature and amount of the steam for heating fed into the steam chamber 121.
  • the seawater A is cooled with the heat of evaporation. That is, at least during main evaporative solid-liquid separation, the inside of the vessel 100 is maintained at 1 kPa or more and 20 kPa or less, and the seawater A is cooled with the heat of evaporation of water contained in the seawater A, so that the temperature of the seawater A is increased. It is maintained in a temperature range of 25 ° C. or more and 60 ° C. or less.
  • the seawater A is rapidly heated by the heating unit 120. Even when the temperature is likely to rise, the temperature of the seawater A can be lowered to a predetermined temperature or less by the evaporation heat of the water in the seawater A.
  • the substantial volume of the container 100 is not particularly limited, but the range is important from the viewpoint of whether or not the evaporating solid-liquid separation conditions in the present invention are effective.
  • the maximum input capacity (L) of seawater A that is, the bulk (L) of seawater A that can be input, is preferably 20L to 5000L, preferably 35L to 4000L, and particularly preferably 50L to 3000L.
  • the maximum input capacity (L) of the seawater A is preferably substantially equal to the volume of the lower semi-cylindrical portion 101 of the container 100 described above.
  • the decompressor 300 that can exhibit the above-described effect of the present invention does not exist or becomes extremely expensive so as to be impractical; When the decompressor 300 having the “gas discharge capacity and degree of decompression commensurate with the size of the container” does not exist or becomes extremely expensive unrealistically; when the decompression load is excessively applied to the casing of the container 100, etc. .
  • the mass of the seawater A to be evaporated and solid-liquid separated in one treatment depends on the volume of the container 100 to be used, and is not particularly limited, but is preferably 5 kg to 300 kg, more preferably 20 kg to 200 kg, more preferably 30 kg to 100 kg. The following are particularly preferred: If the amount is too small or too large, the same thing as the case where “the volume of the container 100 or the lower semi-cylindrical portion 101” is too small or too large may occur. In particular, when there is too little seawater A, there are (preferred) requirements / features such as “pressure during main evaporative solid-liquid separation”, decompressor type, gas discharge capacity, and heat of evaporation used for cooling in the present invention. It may not be alive. The present invention is particularly effective when the amount of seawater A is not less than the above lower limit.
  • V [L] when the volume of the vessel is V [L] and the mass of seawater A charged into the vessel is M [kg], V [L] is M [kg]. 2 times or more and 5 times or less, more preferably 2.2 times or more and 3.5 times or less, and particularly preferably 2.5 times or more and 3.0 times or less. If the value of V [L] / M [kg] is too small, stirring and evaporation may not be performed satisfactorily.
  • V [L] / M [kg] the large container 100 is wasted; the container 100 is too large and the gas discharge capacity of the decompressor 300 cannot be fully exhibited, and as a result
  • the seawater A cannot be cooled by the heat of evaporation, and the temperature of the seawater A exceeds the upper limit of the temperature range.
  • the same thing as the case where the above-mentioned "volume of the container 100 or the lower semi-cylindrical part 101" is too small or too large may occur.
  • the container 100 is provided with a vacuum gauge 108 and thermometers 109a and 109b for measuring the pressure (decompression degree) in the container 100. These are provided to measure the pressure (decompression degree) and temperature in the container 100 and indirectly measure the temperature of the seawater A, and also determine the start and end of the operation of evaporating solid-liquid separation. Also provided to do.
  • thermometers 109a and 109b are installed so that the temperature of the seawater A can be accurately measured using heat conduction or the like of the container 100 (including the stirrer 110). That is, even if the seawater A is likely to be rapidly cooled by the evaporation heat of water, or conversely, even if the seawater A is likely to be rapidly heated by the heating unit 120, the temperature of the seawater A is measured sufficiently accurately. It can be so.
  • the temperature of the seawater A is maintained at 25 ° C. or more and 60 ° C. or less during at least main evaporation solid-liquid separation, but preferably 27 ° C. or more and 50 ° C. or less, more preferably 29 ° C.
  • the temperature is maintained at 45 ° C. or lower, more preferably 31 ° C. or higher and 40 ° C. or lower, particularly preferably 33 ° C. or higher and 37 ° C. or lower.
  • the temperature is too high, the amount of evaporation will be the same or similar to that of fresh water (soft water) by the conventional distillation method, and the residue will have the same or similar component composition as the natural salt by the conventional manufacturing method. Thus, the effects of the present invention may not be exhibited.
  • the salt mixture B and the mineral water C can be manufactured by the processing time (operation time) which is accept
  • the processing time operation time
  • the upper temperature limit of the seawater A unlike the conventional “distilled water of seawater” and the conventional “natural salt by evaporation and drying of seawater”
  • a new component composition can be obtained. If the temperature is too high, the obtained salt mixture B or mineral water C may be similar to or similar to the conventional one.
  • the obtained salt mixture The flavor of the “food such as pickles” used was not improved, the flavor of fish cultured with water obtained by dissolving the obtained salt mixture was not improved, or the mineral water obtained was sprinkled (supplied) The flavor may not be improved.
  • the container 100 is provided with a gas outlet 130 for extracting gas generated from the seawater A. It is preferable that the vicinity of the gas outlet 130 is also maintained in the temperature range with sufficient heat conduction or the like so that water droplets are not generated (no condensation) in the vicinity of the gas outlet 130.
  • a liquefaction operation is performed to liquefy the gas flowing out of the container 100 using the cooler 200.
  • a cooler 200 for cooling the gas taken out from the gas outlet 130 provided in the container 100 is provided behind the container 100.
  • the container 100 is preferably liquefied and the pressure inside the container 100 is reduced.
  • the cooling medium of the cooler 200 is water having a temperature of “10 ° C. or higher and 5 ° C. or lower (particularly preferably 7 ° C. or higher) lower than the temperature of the gas taken out from the gas outlet 130 of the container 100”. Is preferable from the viewpoint of efficiency of cooling and liquefying. If the temperature of water as the cooling medium is too high, part of the gas may not be liquefied.
  • Such a cooler 200 may be a known one.
  • the water ejector 301 is decompressed using the decompressor 300 to maintain the inside of the container 100 at 1 kPa or more and 20 kPa or less to evaporate water contained in the seawater A.
  • the seawater A is cooled by heat, and a cooling operation for maintaining the temperature of the seawater A in a temperature range of 25 ° C. or more and 60 ° C. or less is performed.
  • a decompressor 300 for decompressing the inside of the container 100 is provided behind the cooler 200.
  • the decompressor 300 is preferably a water ejector 301
  • the water ejector 301 is particularly preferably a lateral injection type water ejector 301 having a water circulation pump.
  • the degree of pressure reduction pressure in the container
  • the water ejector 301, particularly the lateral injection type water ejector 301 having a water circulation pump is optimal because the capacity is extremely large.
  • the gas in the container 100 that is, the water vapor and air containing minerals in the seawater A are sucked through the gas pipe 131, and the water contained in the seawater A in the container 100 Evaporate other components (metal ions, etc.).
  • the pressure (decompression degree) in the container 100 is adjusted by adjusting the amount and suction force to be sucked by the decompressor 300.
  • the injection nozzle diameter, the injection amount and temperature of the water to be injected, the size of the water ejector 301 itself, etc. are adjusted so as to have a sufficient gas discharge capacity to be described later.
  • the inside of the container 100 is maintained at a predetermined pressure (range).
  • the decompressor 300 is converted when a container having an internal volume of 1 m 3 is used so that the temperature of the seawater A does not exceed 60 ° C. (preferably not exceeding 45 ° C.) due to the heat of evaporation of water.
  • a container having an internal volume of 1 m 3 is used so that the temperature of the seawater A does not exceed 60 ° C. (preferably not exceeding 45 ° C.) due to the heat of evaporation of water.
  • the decompressor 300 having a large gas discharge capacity.
  • the decompressor 300 having only a small gas discharge capacity compared to the internal volume of the container 100 is used (unless the gas discharge capacity is increased according to the internal volume of the container 100), the seawater A is generated by the heat of evaporation of water. It may become difficult to cool the seawater A, and the temperature of the seawater A may increase.
  • a water ejector 301 having a gas discharge capacity of 20 m 3 / hour or more of normal pressure is preferable, and a container having an internal volume of 0.1 m 3 is used.
  • a water ejector 301 having a gas discharge capacity of at least 2 m 3 / hour of atmospheric pressure is preferable.
  • a container having an internal volume of 0.5 m 3 is used, a gas having an atmospheric pressure of 10 m 3 / hour or more is used.
  • a water ejector 301 having a discharge capacity is preferable, and when a container having an internal volume of 2 m 3 is used, a water ejector 301 having a gas discharge capacity of a normal pressure volume of 40 m 3 / hour or more is preferable.
  • water preferably water previously cooled by a water chilling unit
  • water is stored in a water tank 303
  • water pressurized by a water circulation pump 302 is fed, and the pressurized water is ejected by a water ejector 301.
  • the pressure is reduced by blowing out the water.
  • a flowing liquid uses a property (Bernoulli's theorem) that has a lower pressure than a stationary liquid to exhaust a gas such as water vapor.
  • the internal pressure (decompression degree) of the container by the decompressor 300 is preferably 0.1 to 1 times, more preferably 0.2 to 0.99 times the vapor pressure at the temperature of the seawater A, at least during main evaporative solid-liquid separation.
  • the following is more preferable, 0.4 times or more and 0.95 times or less is more preferable, and 0.6 times or more and 0.9 times or less is particularly preferable.
  • the pressure in the container is equal to or higher than the lower limit, a decompressor having such ability can be realized.
  • the internal pressure of the container is not more than the above upper limit, the seawater A gently boils and the distillation is efficient.
  • the pressure in the container (decompression degree) by the decompressor 300 is 1 kPa ( ⁇ 100.3 kPa with respect to 1 atm (101.3 kPa)) or more and 20 kPa (1) during at least main evaporation solid-liquid separation. It is essential to perform evaporation / solid separation while maintaining the pressure ( ⁇ 81.3 kPa) or less with respect to the atmospheric pressure (101.3 kPa).
  • the pressure in the container 100 is maintained at 1.5 kPa ( ⁇ 99.8 kPa with respect to 1 atm (101.3 kPa)) or more and 15 kPa ( ⁇ 86.3 kPa with respect to 1 atm (101.3 kPa)). It is preferable to do.
  • it is 2 kPa ( ⁇ 99.3 kPa with respect to 1 atm) or more and 10 kPa ( ⁇ 90.3 kPa with respect to 1 atm), More preferably, it is 2.5 kPa ( ⁇ 98.8 kPa with respect to 1 atm) or more and 8.6 kPa ( ⁇ 92.7 kPa with respect to 1 atm), It is particularly preferably 3.3 kPa ( ⁇ 98 kPa with respect to 1 atm) or more and 8.3 kPa ( ⁇ 93 kPa with respect to 1 atm).
  • the resulting salt mixture or mineral water may be similar to or approximate to the conventional one. Specifically, for example, the same thing as the case where the above-described temperature is too high may occur.
  • the decompressor 300 is a lateral injection type water ejector 301 having a water circulation pump 302 because it has a high gas discharge capacity as well as a high degree of decompression. That is, it is preferable from the viewpoint that both the degree of decompression and the gas discharge capacity can be achieved and the effects of the present invention can be easily achieved. It is particularly easy to increase the gas discharge capacity when the water circulation pump 302 is provided and the horizontal injection type is used.
  • the decompressor includes a rotary pump, an oil diffusion pump, a mercury diffusion pump, a differential pump, and the like.
  • the rotary pump can achieve about 1 Pa (10 ⁇ 2 mmHg) and the oil diffusion pump about 0.1 mPa (10 ⁇ 6 mmHg), a high vacuum can be achieved, but the gas discharge capacity is extremely low.
  • the pressure is usually higher than 20 kPa (the degree of decompression cannot be increased).
  • the coexistence of the gas discharge capability and the degree of pressure reduction can be achieved only by the “water ejector 301”. Particularly, by using the lateral injection type water ejector 301 having the water circulation pump 302, both can be suitably achieved.
  • the numerical value of the high gas discharge capacity described above is not a general-purpose numerical value although it can be achieved by the water ejector 301.
  • the numerical value of the high gas discharge capacity described above is obtained by adjusting the temperature of the water to be injected, the injection nozzle diameter, the injection speed, the injection amount per unit time, the injection distance, and the like.
  • FIGS. 4 and 5 A particularly preferable aspect of the “lateral injection type water ejector” in the present invention is shown in FIGS.
  • the “lateral injection type water ejector” shown in FIGS. 4 and 5 is provided with a cylindrical driving water inlet piece 1 for receiving driving water and a downstream side of the driving water inlet piece 1.
  • 1 has a main pipe throat 6 for mixing driving water and suction gas flowing in from 1 and an output piece 7 formed by connecting to the downstream end of the main pipe throat 6 and having a pipe whose inner diameter is widened toward the end. Yes.
  • it has a cylindrical shape and is provided at the downstream end portion of the output piece 7, and is attached to the silencer 12 for flowing a mixed gas of driving water and suction gas, and attached to the silencer 12.
  • An air intake pipe 11 is provided to take in air into the silencer 12 when it flows out and to prevent a sudden change in atmospheric pressure in the silencer 12.
  • the water ejector 301 described above includes a jacket pipe 8 that accommodates the driving water inlet piece 1, the main pipe throat 6, and the output piece 7, and a suction pipe 3 that supplies suction gas to the jacket pipe 8.
  • the outer pipe 8 is connected to the silencer 12, and the main pipe throat 6 is formed by a cylindrical pipe having a plurality of gas suction holes 4 provided to be connected to the terminal end of the driving water inlet piece 1.
  • a circulation pump 16 that sucks water from the water tank 303 and discharges the water from the drive water inlet piece 1, the drive water inlet piece 1, the main pipe throat 6, the output piece 7, and the silencer 12.
  • the path is preferably set lower than the water level 17 in the water tank 302.
  • FIG. 4 shows an outline of the water ejector 301 and the silencer 12 connected thereto
  • FIG. 5 shows a form in which the water ejector 301 is installed in the lateral direction and connected to the water tank 303.
  • the drive water inlet piece 1 is chamfered to reduce water flow resistance.
  • a main pipe throat 6 having a diameter larger than that of the driving water inlet piece 1 is connected to the inlet piece 1.
  • the shape of the main pipe throat 6 is a simple pipe shape.
  • a plurality of suction holes 4 penetrating the pipe tube wall are opened at the inlet of the main pipe throat 6, and the suction holes 4 receive suction gas when evacuated (reduced pressure) through the suction pipe 3. This is for sucking into the main pipe throat 6.
  • a pipe-shaped exit piece 7 having a diameter larger than that of the main pipe throat 6 is connected.
  • the outlet piece 7 has an internal shape that widens toward the outlet.
  • covers the drive water inlet piece 1, the main pipe throat 6, and the outlet piece 7 is connected cylindrically outside.
  • a water ejector 301 is constituted by these members 1 to 8.
  • Reference numeral 12 denotes a silencer. As shown in FIG. 4, the silencer 12 has a pipe shape whose inner diameter is thicker than the inner diameter of the outlet of the output piece 7 of the water ejector 301.
  • a discharge pipe 15 from the circulation pump 16 shown in FIG. 5 is connected to the water ejector inlet piece 1 shown in FIG.
  • a hollow circular partition plate 5 is provided so that the evacuation function is performed only through the suction tube 3.
  • the inner part of the partition plate 5 is fixed to the outer part of the main pipe throat 6, and the outer peripheral part of the partition plate 5 is fixed to the jacket tube 8 so that sufficient airtightness is maintained.
  • the decompressor 300 includes a water tank 303 in which water is stored so that the silencer 12 can be immersed in order to achieve a very high gas discharge capacity of the water ejector, and is used in the water ejector 301.
  • the driving water is once stored in the water tank 303.
  • the water ejector 301 is fixed from the outside of the water tank 303 using the output side flange 9 at the end thereof.
  • the silencer 12 is fixed at the same position as the output side flange 9 from the inside of the water tank 303 with the flange 10. Thereby, in the water tank 303, the water ejector 301 and the silencer 12 are connected inside the water tank 303.
  • the silencer 12 has a horizontal portion 12a and a vertical portion 12b bent downward at a right angle at the tip thereof, and the driving water mixed with suction gas flows out into the water in the water tank 303 from the end 12c. It has become. Further, the drive water is circulated and reused through a return pipe 14 connected to a circulation pump 16 that creates a water flow. A circulation path including the return pipe 14, the circulation pump 16, the discharge pipe 15, the water ejector 301, and the silencer 12 is set lower than the water level 17 in the water tank 303.
  • An intake pipe 11 for taking in air is provided near the connection part of the water ejector 301 in the silencer 12, and the intake port of the intake pipe 11 is positioned above the water tank water level 17 so that the intake port is below the water surface.
  • the water tank 303 is provided with an overflow vent 18 for setting the water level 17.
  • a preferred water ejector 301 in the present invention is provided with a suction hole 4 in the main pipe throat 6 as shown in FIG. Thereby, it has a higher (larger) gas discharge capacity than a conventional ejector that sucks gas from the gap between the tubes.
  • the preferred water ejector 301 of the present invention and the silencer 12 connected to the water ejector 301 have a water circulation path lower than the water level 17 of the water tank 303 as shown in FIG.
  • the “lateral injection type water ejector having a water circulation pump” has a higher (larger) gas discharge capacity than a decompressor such as a conventional ejector.
  • the outflow rate when the gas flowing out from the container 100 is liquefied using the cooler 200 to obtain the mineral water C is determined by giving priority to the temperature and pressure. Although depending on the amount of seawater A, 3 to 50 L / hr is preferable, 10 to 40 L / hr is more preferable, and 20 to 30 L / hr is particularly preferable. “L” is the volume of mineral water C to be obtained.
  • the evaporative solid-liquid separation method of the present invention takes into consideration the vapor pressure of water at the “optimum temperature for evaporative solid-liquid separation of seawater”, and lowers the pressure (decompression degree) in the container 100 more than necessary with respect to the vapor pressure. Regardless of this, it was possible to achieve this on an industrial (commercial) scale for the first time by cooling the seawater A with evaporative heat while turning that amount toward improving the gas discharge capacity.
  • “Seawater” and “liquid in which the water in the seawater evaporates to a high viscosity” is preferably boiled at least during the main evaporation solid-liquid separation, so stirring is not essential. Is preferably performed.
  • the stirrer may be of a horizontal blade type or a screw type, but is preferably agitated by the rotating concave portions 113a and 113b and the fixed convex portion 111 using the stirrer 110 as shown in FIG. Is particularly preferred.
  • the stirrer 110 is rotated in the rotation direction indicated by the arrow R in FIGS. 2 and 3, and the seawater A in the container 100 is agitated between the rotating concave portions 113 a and 113 b and the fixed convex portion 111. Seawater A is agitated.
  • the stirring is performed by “a plurality of rotating recesses 112a and 112b having a plurality of rotating recesses 113a and 113b” and “a plurality of fixed protrusions 111 provided on the inner surface of the container 100 (preferably the lower inner surface of the lower semi-cylindrical portion 101). In order to obtain the above-mentioned effect.
  • FIG. 3 is a perspective view showing the configuration of the stirrer 110, and the stirrer 110 is rotated by a motor provided outside the container 100, and rotates on the end walls 105 a and 105 b of the container 100.
  • the center axis is constituted by left and right end plates 106a and 106b that are supported, and rotating recesses 112a and 112b that are substantially in the shape of a " ⁇ " shape 115 that are fixed at both ends between the ends. (A structure that can be rotated without a central axis).
  • the apparatus shown in FIG. 3 has two rotating concave bodies (112a and 112b), but the number of rotating concave bodies 112 may be one.
  • the seawater A can be easily stirred, and the salt mixture B can be scraped off from the inner wall of the container 100 after the evaporative solid-liquid separation operation is completed.
  • the salt mixture B can be suitably obtained from the powder outlet 140 with good yield by scraping it toward the powder outlet 140 (located substantially at the lower center of the container 100).
  • the agitator 110 has two or more rotating recesses, and the seawater A is stirred by rotating the rotating recesses in the same direction. It is preferable to scrape the salt mixture B from the inner wall of the container 100 and scrape it toward the powder outlet.
  • the rotation speed of the agitator 110 that is, the rotation speed of the left and right end plates 106a and 106b rotatably supported by the left and right end walls 105a and 105b of the container 100 is 1 to 8 rotations / minute. It is preferably 2 revolutions / minute or more and 6 revolutions / minute or less, more preferably 4 revolutions / minute or more and 5 revolutions / minute or less.
  • the rotational speed is too low, the efficiency of stirring may be deteriorated, temperature unevenness may occur in the seawater A, and when the rotational speed is too high, an excessive load may be applied to the stirrer 110. is there.
  • the evaporative solid-liquid separation method of the present invention is not limited, but the lower portion of the container 100 is cylindrical, has a plurality of fixed projections 111 on its inner wall, and the stirrer 110 is one.
  • the rotating recesses 112a and 112b having a plurality of rotating recesses 113a and 113b are provided. By rotating the rotating recesses 112a and 112b, the seawater A in the container 100 is converted into the fixed protrusion 111 and the rotating recess 113a. , 113b.
  • Reference numeral 111 in FIG. 3 denotes a plurality of fixed convex portions fixed to the inner surface of the lower semi-cylindrical portion 101.
  • the portions corresponding to the fixed convex portions 111 in the rotary concave portions 112a and 112b are arranged in the rotary concave portions 112a and 112b.
  • Rotating recess grooves 114a and 114b for passing through the fixed protrusion 111 are formed, and rotating recesses 113a and 113b for stirring the seawater A between the fixed protrusions 111 are provided on both sides of the groove.
  • the fixed convex portion 111 and the rotational concave portions 113a and 113b are disposed at different positions in the circumferential direction so that the meshing is sequentially performed at different times. The momentary increase in power is prevented from occurring.
  • the logarithm of the rotating recesses provided in one rotating recess body depends on the size of the container 100, the stirrer 110, the rotating recess bodies 112a and 112b, and the type of seawater A to be subjected to evaporation solid-liquid separation. It is preferable that one rotary recess body is provided with 5 to 20 pairs, and particularly preferably 8 to 14 pairs. If there are too few rotating recesses provided in one rotating recess body, the efficiency of stirring may deteriorate, evaporation may be suppressed and the temperature may rise, and if too much, excessive stirring will occur. Therefore, when a load is applied to the rotation, the evaporation rate may increase too much, and the temperature of the seawater A may decrease too much due to the evaporation heat of water.
  • the logarithm of the rotating recess provided in the rotating recess is assumed to be a pair of rotating recesses in one rotating recess groove.
  • the logarithm of the rotating recess provided in the rotating recess is assumed to be a pair of rotating recesses in one rotating recess groove.
  • 10 rotation recess grooves are provided in one rotation recess body
  • 10 pairs of rotation recesses are provided in one rotation recess body.
  • the stirrer 110 can suitably stir the seawater A by the special structure of the two or more rotating recesses of the stirrer 110 and scrape the obtained salt mixture B from the container 100. It is preferable that the powder can be suitably scraped toward the powder outlet 140.
  • the time required for main evaporative solid-liquid separation depends on (proportional to) the input amount. However, it is preferably 1 hour or longer and 20 hours or shorter, more preferably 2 hours or longer and 13 hours or shorter, and particularly preferably 3 hours or longer and 8 hours or shorter.
  • the above-described evaporation solid-liquid separation method of the present invention may be a batch type (batch type) or a continuous type.
  • a batch type the operation can be performed reliably, and in the case of a continuous type, the operation can be performed smoothly.
  • seawater A since the bulk density of the salt mixture B is large, it is difficult for the container 100 to be full, so a continuous type is also preferable.
  • the seawater A is continuously fed into the container 100 while maintaining the pressure in the container 100 within the above range.
  • the container 100 is provided with a powder outlet 140 for taking out the salt mixture B.
  • the powder outlet 140 is preferably provided at the substantially lower center of the container 100 (near the lower center of the lower semi-cylindrical portion 101).
  • the rotating recesses 112a and 112b are formed in the shape of “U” 115a and 115b, thereby evaporating solid-liquid separation.
  • the salt mixture B after completion can be easily collected in the lower center of the container 100, and the salt mixture B can be easily taken out.
  • the powder outlet 140 may be provided near the lower center of the container 100. preferable.
  • the rotary recesses 112a and 112b having such a shape can be obtained by scraping the salt mixture B well from the inner wall of the container 100 and scraping it well toward the powder outlet 140 provided near the lower center of the container 100.
  • a good (smooth) salt mixture B can be obtained.
  • the temperature in the container 100 is set higher than the above upper limit temperature.
  • the water is completely evaporated to achieve good powdering.
  • the present invention is also a salt mixture obtained by evaporating solid-liquid separation of seawater using the above-mentioned evaporative solid-liquid separation method.
  • the salt mixture is obtained at least under conditions that do not experience a high temperature such as “above 60 ° C.”, for example, a pressure range such as “1 kPa to 20 kPa” is limited. As a result, it has an excellent effect as described above.
  • the gas is sucked into the container 100 through the gas pipe 131, introduced into the cooler 200, liquefied, and stored in the recovery container 400 as a recovery liquid.
  • the suction by the decompressor 300 is stopped and the mineral water C is acquired from the liquid outlet 404.
  • the present invention is also mineral water characterized by being obtained by evaporating solid-liquid separation of seawater using the above-mentioned evaporative solid-liquid separation method. Since the mineral water is obtained at least under a condition where a high temperature such as “higher than 60 ° C.” is not experienced, for example, a pressure range such as “1 kPa or more and 20 kPa or less” is limited. It has a novel component composition and water structure (clusters, etc.), and as a result, exhibits excellent effects as described above.
  • Example 1 Remove 30.0 kg of seawater collected off the coast of Shodoshima, remove dust dispersed by filtration, and put it into the container shown in Figs. 1 to 3 (input capacity 500L, container volume (internal volume) 1m 3 ).
  • the rotating concave body was rotated at 4 rotations / minute by the stirrer 110 (1.5 kW) having the two rotating concave bodies 112a and 112b as shown in FIG.
  • the used water ejector 301 is a lateral injection type water ejector (3.7 kW) as shown in FIG. 4, and water that has a gas discharge capacity of a normal pressure volume of 20 m 3 / hour or more when pulled is open. It was the ejector 301.
  • the pressure in the vessel 100 is kept at least 3.3 kPa ( ⁇ 98.0 kPa with respect to 1 atm) to 6.3 kPa ( ⁇ 95.0 kPa with respect to 1 atm) at least during main evaporative solid-liquid separation. It was. The time required for main evaporative solid-liquid separation was 5 hours.
  • Example 2 In Example 1, instead of using 30.0 kg of seawater collected off Shodoshima, salt mixture and mineral water were used in the same manner as in Example 1 except that 30.0 kg of seawater collected in the Seto Inland Sea was used. And evaluated as described below.
  • Example 3 In Example 1, instead of using 30.0 kg of seawater collected off the coast of Shodoshima, the salt mixture and mineral water were used in the same manner as in Example 1 except that 30.0 kg of seawater collected off the coast of Okinawa was used. And evaluated as described below.
  • Table 1 shows the average contents of sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) in seawater.
  • Table 1 shows the contents of only the above-mentioned four elements (four kinds of metal ions) of commercially available “water obtained by desalting deep sea water with an ion exchange resin”.
  • Evaluation Example 1 The contents of sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) contained in the “water such as mineral water” obtained in the above examples, comparative examples and reference examples are shown. It is described in 1. The contents of sodium (Na) and potassium (K) were measured using atomic absorption spectrophotometry, and the contents of calcium (Ca) and magnesium (Mg) were measured using ICP emission spectrometry.
  • Table 1 are the contents containing only four kinds of limited metal ions, and thus do not sufficiently show the above-mentioned effects of the present invention, but Examples 1 to 3 and Comparative Examples 1 to 13 are compared.
  • the content of sodium (Na) Examples 1 to 3 were large, but Comparative Examples 1 to 13 were all less.
  • the contents of magnesium (Mg) were large in Examples 1 to 3, but were lower in all of Comparative Examples 1 to 13 except for Comparative Example 9.
  • the content of potassium (K) was large in Examples 1 to 3, but was lower in all of Comparative Examples 1 to 13 except for Comparative Examples 7 and 11.
  • Examples 1 to 3 were small, but except for Comparative Example 6, all of Comparative Examples 1 to 13 were larger than them.
  • Evaluation of mineral water The three types of mineral water obtained in Examples 1 to 3 were each taken in 100 mL portions and slowly drunk and examined for flavor. Further, the water obtained in Comparative Examples 1 to 5 and Comparative Example 21 was also drunk in the same manner as described above, and its flavor was examined and compared. As a result, the mineral water obtained in Examples 1 to 3 had a flavor (taste and fragrance) that was clearly different from the water obtained in the comparative example.
  • Evaluation Example 3 50 g of ethanol and 10 g of glycerin were added to 1 L of each of the three types of mineral water obtained in Examples 1 to 3 and applied to the back of the hand 5 times a day for 10 days for evaluation. Further, the water obtained in Comparative Examples 1 to 5 and Comparative Example 21, commercially available purified water for medical use, and tap water were also evaluated in the same manner as described above and compared. As a result, the mineral water obtained in Examples 1 to 3 was different from the water obtained in Comparative Examples and was similar to a living body, and thus was found to be excellent as a raw material for skin lotion.
  • Evaluation Example 4 In a field of about 2 m 2 , using the same soil and the same fertilizer, the three mineral waters obtained in Examples 1 to 3 were always sprinkled, and the green onions and spinach were grown and harvested. The harvested long onion and spinach were boiled and evaluated under the same conditions. Moreover, the long onion and spinach which were grown by sprinkling water obtained in Comparative Example 21 and normal agricultural water were also evaluated and compared in the same manner as described above. As a result, the mineral water obtained in Examples 1 to 3 was different from those obtained using Comparative Example 21 and ordinary agricultural water, and the flavor (especially smell) of the long onion and spinach differed. It was delicious.
  • Evaluation Example 5 The salt mixture of Example 1 and the metals of each of Comparative Examples 31 to 33 and sodium chloride were analyzed by the method described in the salt test method 4th edition at the salt business center and seawater research institute, which are analytical institutions. Quantitative analysis was performed. The measurement method is shown in the bottom row of Table 2. The measurement results are shown in Table 2.
  • the amount of sodium chloride (NaCl) and sodium (Na) in the salt mixture of Example 1 obtained by using the evaporation solid-liquid separation method was smaller than the salt of Comparative Examples 31 to 33, which are commercially available products. .
  • the amounts of magnesium (Mg), potassium (K), and calcium (Ca) all of the salt mixture of Example 1 was more than potassium (K) of Comparative Example 33.
  • the salt mixture and mineral water obtained by the evaporating solid-liquid separation method of the present invention are considered to be different from the conventional salt mixture and mineral water in that they have different component compositions, water cluster structures, etc. It is useful as cosmetics, health foods, general foods, agricultural water, fish water, etc. Therefore, the present invention is widely used in the fields of health foods, general foods, cosmetics, medicines and agricultural chemicals, agriculture, fisheries, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention addresses the problem of providing mineral water and a salt mixture that can be used for applications where a trace constituent composition is important, and a production method therefor. The problem is solved by an evaporation solid-liquid separation method for carrying out evaporation solid-liquid separation of sea water into a salt mixture and mineral water, characterized in that, at least during a main evaporation solid-liquid separation step, the temperature of the sea water is maintained at a temperature between 25°C and 60°C and the pressure in a vessel is maintained within 1-20 kPa using a pressure reducer, and by a salt mixture and mineral water produced by the production method.

Description

蒸発固液分離方法Evaporative solid-liquid separation method
 本発明は、特定の温度と特定の圧力で海水を蒸発させて、有用で新規な組成のミネラル水と塩混合物とに分離する蒸発固液分離方法に関するものである。また更に、該蒸発固液分離方法を用いて得られた新規の組成のミネラル水と塩混合物、及び、該蒸発固液分離方法用の蒸発固液分離装置に関するものである。 The present invention relates to an evaporative solid-liquid separation method in which seawater is evaporated at a specific temperature and a specific pressure to separate into mineral water and a salt mixture having a useful and novel composition. Furthermore, the present invention relates to a mineral water and salt mixture having a novel composition obtained by using the evaporative solid / liquid separation method, and an evaporative solid / liquid separation device for the evaporative solid / liquid separation method.
 海水から塩化ナトリウムを除去し淡水を得る方法は多く知られている。
 例えば、特許文献1~3には、逆浸透膜を用いる、脱塩処理方法、塩分濃縮液の製造方法、淡水兼用浄水装置等が記載されている。
 また、特許文献4には、モザイク荷電膜を用いた海水の処理方法が記載され、特許文献5、6には、イオン交換膜を用いたミネラル成分含有組成物(ミネラル水等)の製造方法が記載されている。
Many methods for removing sodium chloride from seawater to obtain fresh water are known.
For example, Patent Documents 1 to 3 describe a desalination treatment method, a method for producing a salt concentrate, a fresh water combined water purifier using a reverse osmosis membrane, and the like.
Patent Document 4 describes a seawater treatment method using a mosaic charged membrane, and Patent Documents 5 and 6 describe a method for producing a mineral component-containing composition (such as mineral water) using an ion exchange membrane. Are listed.
 また、例えば、特許文献7等には、フラッシュ蒸発に関する装置や方法が記載されている。
 加熱して海水中の水を蒸発させ、得られた水蒸気を液化させるものとして、例えば特許文献8には、多重効用型造水装置用蒸発器が記載され、特許文献9、10には、浸透膜を併用する蒸発装置や造水装置が記載されている。
Further, for example, Patent Document 7 describes an apparatus and a method related to flash evaporation.
For example, Patent Document 8 describes an evaporator for a multi-effect fresh water generator, and Patent Documents 9 and 10 describe osmosis as materials that heat and evaporate water in seawater and liquefy the water vapor obtained. An evaporator and a fresh water generator that use a membrane together are described.
 しかしながら、これらの技術は、単純に海水から淡水を得ることが目的であり、得られた淡水は主に塩化ナトリウム濃度が飲料等に使用できるまでに減少していればよいものであり、また、残渣として得られる塩類の組成、微量元素の有無等にまで配慮したものではなかった。
 すなわち、これらの従来技術は、単なる通常の飲料を確保したり、単に河水代替の農業用水を確保したりするものであり、得られた「淡水(軟水)と言った液」を、例えば、化粧料(の原料)、健康食品(の原料)等、微量な成分(の含有比)が重要になる分野に使用するものではなかった。
However, the purpose of these techniques is simply to obtain fresh water from seawater, and the obtained fresh water should mainly be reduced so that the sodium chloride concentration can be used for beverages, etc. It did not consider the composition of salts obtained as a residue, the presence or absence of trace elements, and the like.
In other words, these conventional technologies merely secure ordinary drinks or simply secure agricultural water instead of river water. The obtained “liquid called fresh water (soft water)” It was not used in fields where trace amounts of components (content ratio) such as food (raw materials) and health food (raw materials) are important.
 すなわち、微量の成分組成が重要な用途にも優位性をもって使用できる海水の固液分離方法は、今までに殆ど存在しない。 That is, there is almost no solid-liquid separation method for seawater that can be used with superiority in applications where a small amount of component composition is important.
特開2007-267747号公報JP 2007-267747 A 特開2015-029935号公報JP2015-029935A 特開2016-203056号公報JP 2016-203056 A 特開2006-007084号公報JP 2006-007084 A 特開2002-238515号公報JP 2002-238515 A 特開2015-019638号公報JP2015-019638A 特開2000-107502号公報JP 2000-107502 A 特開2007-198701号公報JP 2007-198701 A 特開2015-150553号公報JP2015-150553A 特開2016-097328号公報JP 2016-097328 A
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、僅かの成分比が重要な用途や微量の成分(元素)の有無が重要な用途にも使用できるミネラル水と塩混合物を提供することにある。 This invention is made | formed in view of the said background art, The subject is the mineral water and salt mixture which can be used also for the use where a slight component ratio is important, and the use where the presence or absence of a trace amount component (element) is important. It is to provide.
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、対象物の温度を25℃以上60℃以下に維持しつつ好適に蒸発固液分離するために必要な「特定の圧力範囲と(より好ましくは気体排出能力)」を見出し、そのような条件を(工業的な量でも)達成できる装置を初めて実現できた。
 そして、少なくとも主たる蒸発固液分離中は、その蒸発条件等を海水に適用させた結果、意外にも、微量の成分(元素)が天然物のまま残存(維持)できている新規な組成のミネラル水(と塩混合物)が得られることを見出して本発明に至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the “specific pressure range necessary for suitably evaporating solid-liquid separation while maintaining the temperature of the object at 25 ° C. or more and 60 ° C. or less. And (more preferably gas discharge capacity) ", and an apparatus capable of achieving such a condition (even in industrial quantities) could be realized for the first time.
And at least during the main evaporative solid-liquid separation, as a result of applying the evaporation conditions to seawater, surprisingly, a mineral with a novel composition in which trace amounts of components (elements) can remain (maintain) as natural products It has been found that water (and a salt mixture) can be obtained, leading to the present invention.
 すなわち、本発明は、海水を蒸発固液分離して、塩混合物とミネラル水に分離する蒸発固液分離方法であって、
 少なくとも主たる蒸発固液分離中は、該海水の温度を25℃以上60℃以下に維持すると共に、減圧器を用いて容器内の圧力を1kPa以上20kPa以下に維持することを特徴とする蒸発固液分離方法を提供するものである。
That is, the present invention is an evaporative solid-liquid separation method in which seawater is separated into evaporated solid and liquid, and separated into a salt mixture and mineral water,
At least during the main evaporative solid-liquid separation, the temperature of the seawater is maintained at 25 ° C. or higher and 60 ° C. or lower, and the pressure in the container is maintained at 1 kPa or higher and 20 kPa or lower using a decompressor. A separation method is provided.
 また、本発明は、少なくとも以下の操作(1)ないし(4)の全てを行って海水を蒸発固液分離する上記の蒸発固液分離方法を提供するものである。
(1)少なくとも主たる蒸発固液分離中は、該海水の温度を25℃以上60℃以下の温度範囲を維持するように上記容器内を加熱ユニットで加熱する加熱操作、
(2)少なくとも主たる蒸発固液分離中は、水エジェクタを減圧器として用いて減圧して、該容器内を1kPa以上20kPa以下に維持し、該海水に含有される水の蒸発熱で該海水を冷却して該海水の温度を25℃以上60℃以下の温度範囲に維持する冷却操作、
(3)該容器から流出された気体を、冷却器を用いて液化してミネラル水を得る液化操作、
(4)該容器内に残った塩混合物を、該容器の粉末取出口から取り出して塩混合物を得る取出操作
The present invention also provides the above-described method for evaporating solid-liquid separation, in which seawater is subjected to evaporative solid-liquid separation by performing at least all of the following operations (1) to (4).
(1) A heating operation for heating the inside of the container with a heating unit so that the temperature of the seawater is maintained within a temperature range of 25 ° C. or more and 60 ° C. or less during at least main evaporation solid-liquid separation;
(2) During at least main evaporative solid-liquid separation, the water ejector is decompressed using a decompressor to maintain the inside of the container at 1 kPa or more and 20 kPa or less, and the seawater is removed by the evaporation heat of water contained in the seawater. A cooling operation for cooling and maintaining the temperature of the seawater in a temperature range of 25 ° C. or higher and 60 ° C. or lower;
(3) A liquefaction operation for liquefying the gas flowing out of the container using a cooler to obtain mineral water;
(4) Taking out the salt mixture remaining in the container from the powder outlet of the container to obtain a salt mixture
 また、本発明は、上記の蒸発固液分離方法を使用して海水を蒸発固液分離することを特徴とする塩混合物の製造方法及びミネラル水の製造方法を提供するものである。 The present invention also provides a method for producing a salt mixture and a method for producing mineral water, characterized in that seawater is separated by evaporating solid / liquid using the above evaporative solid / liquid separation method.
 また、本発明は、上記の蒸発固液分離方法用の蒸発固液分離装置であって、
 少なくとも、撹拌機、加熱ユニット及び粉末取出口を有する容器;水エジェクタである減圧器;並びに;冷却器を具備するものであることを特徴とする蒸発固液分離装置を提供するものである。
Further, the present invention is an evaporative solid-liquid separation apparatus for the above evaporative solid-liquid separation method,
The present invention provides an evaporative solid-liquid separation device comprising: a container having at least a stirrer, a heating unit, and a powder outlet; a decompressor that is a water ejector; and a cooler.
 また、本発明は、上記の蒸発固液分離方法を使用して海水を蒸発固液分離して得られるものであることを特徴とする塩混合物及びミネラル水を提供するものである。 The present invention also provides a salt mixture and mineral water characterized by being obtained by evaporating solid-liquid separation of seawater using the above evaporative solid-liquid separation method.
 本発明は、前記した従来の問題点や課題を解決し、天然の海水に含まれている微量成分(元素)を保持しているミネラル水や、天然の海水に近い塩混合物を提供することができる。その結果、微量の成分組成が重要な用途にも使用できる新規な成分組成のミネラル水と塩混合物を提供することができる。
 (常圧等で)水の沸点まで加熱する従来の蒸留とは異なり、過度の加熱による海水内の微量成分の変質・逸失もなく、また、かかる汎用(通常)の蒸留に比較して、「得られる蒸発分」の中にも、海水内の金属イオン等が存在(残存)するので、すなわち本来の蒸発では除去されてしまうような微量金属イオン等も「蒸発されるものの中」に含有されるので、「圧倒的に多い塩化ナトリウムの性質以外の性質」に関して、「原料となる自然界の海水の性質」を、より有したままのミネラル水(蒸発で得られる蒸発分)が得られる。その結果、本発明のミネラル水を生物に適用した結果、後述するように該生物に優れた効果を及ぼす。
The present invention solves the above-mentioned conventional problems and problems, and provides a mineral water holding a trace component (element) contained in natural seawater and a salt mixture close to natural seawater. it can. As a result, it is possible to provide a mineral water and salt mixture having a novel component composition that can be used for applications where a trace component composition is important.
Unlike conventional distillation that heats to the boiling point of water (at normal pressure, etc.), there is no alteration or loss of trace components in seawater due to excessive heating, and compared to such general-purpose (normal) distillation, In the “evaporation obtained”, metal ions in seawater exist (remain), that is, trace metal ions that would be removed by the original evaporation are also included in “evaporated”. Therefore, mineral water (evaporated matter obtained by evaporation) can be obtained that has more “nature of seawater as a raw material” with respect to “properties other than the properties of sodium chloride overwhelmingly”. As a result, as a result of applying the mineral water of the present invention to a living organism, it exerts an excellent effect on the living organism as described later.
 一方、60℃以下で、十分に減圧(例えばロータリーポンプで約1Pa(10-2mmHg))して水を蒸発させ淡水を得るような方法は当然知られている。しかしながら、このような方法では、本発明のような優れたミネラル水や塩混合物が得られない。すなわち、圧力の下限が重要である。
 しかも、温度を25℃以上60℃以下と言う低温に維持しつつ、圧力を1kPa以上20kPa以下と言う比較的高圧で(減圧度を上げずに)、工業的に通用する海水量を工業的に通用する時間内で蒸発させることは、特殊の減圧器が必要である;また得られたものが優れたものであるという予想がつかなかった;等の理由から従来行われていない。
On the other hand, a method of obtaining fresh water by evaporating water at 60 ° C. or less at a sufficiently reduced pressure (for example, about 1 Pa (10 −2 mmHg) with a rotary pump) is known. However, such a method cannot provide an excellent mineral water or salt mixture as in the present invention. That is, the lower limit of pressure is important.
Moreover, while maintaining the temperature at a low temperature of 25 ° C. or more and 60 ° C. or less, the pressure is 1 kPa or more and 20 kPa or less at a relatively high pressure (without increasing the degree of decompression), and the industrially applicable amount of seawater is industrially used. Evaporating within a working time requires a special pressure reducer; and it has not been predicted that the resulting product was excellent;
 従来の海水の蒸発は、蒸発効率、コストダウン等を重視し、飲み水を確保したり、農業用の水(塩化ナトリウム濃度を一定濃度以下にしただけの水)を確保したりするものであったが、本発明の蒸発固液分離方法を用いて製造されるミネラル水は、生体に適応する等の特徴があるため、上記したような高付加価値のファインケミカルに好適に利用できるものである。 Conventional seawater evaporation focuses on evaporative efficiency, cost reduction, etc., and ensures drinking water and water for agriculture (water with a sodium chloride concentration below a certain level). However, the mineral water produced by using the evaporative solid-liquid separation method of the present invention has characteristics such as adapting to a living body, and therefore can be suitably used for the above-mentioned high added value fine chemicals.
 本発明の蒸発固液分離方法を用いて製造されるミネラル水は、市販のミネラル水に比べ、カルシウム(Ca)の含有量は概ね少ないが、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)の含有量については確実に多いことが確かめられている。また、その他の海水の成分も散逸せずに残存している可能性が高い。 The mineral water produced by using the evaporation solid-liquid separation method of the present invention has a calcium (Ca) content generally lower than that of commercially available mineral water, but sodium (Na), magnesium (Mg), potassium (K). ) Content is certainly high. In addition, other seawater components are likely to remain without being dissipated.
 本発明の蒸発固液分離方法を用いて製造されるミネラル水は、海水からその圧倒的主成分である塩化ナトリウム(NaCl)だけを減らしたものであり、その他の海水の(微量)成分は散逸せずに残存している。
 一方、海水を100℃で蒸発させたり、膜を使用して淡水化させたりした水は、塩化ナトリウム(NaCl)のみならず、他の(微量)成分(金属元素である可能性が高い)まで除去されてしまっている。
 本発明のミネラル水は、「天然物である海水」からの散逸物質が殆どない。そのため、生体に必要な微量成分(元素)がそのまま残存していると考えられる。
The mineral water produced by using the evaporative solid-liquid separation method of the present invention is obtained by reducing only the overwhelming main component sodium chloride (NaCl) from seawater, and other seawater (trace) components are dissipated. It remains without.
On the other hand, water obtained by evaporating seawater at 100 ° C. or using a membrane to desalinate not only sodium chloride (NaCl) but also other (trace) components (highly likely to be metal elements) It has been removed.
The mineral water of the present invention has almost no dissipative material from “natural seawater”. For this reason, it is considered that trace components (elements) necessary for the living body remain as they are.
 該「(微量)成分」は明らかになっていないが、散水した土壌での植物(野菜等)の生長速度、該野菜の風味;本発明のミネラル水自体の風味、該ミネラル水を使用した料理の味や漬物の味;等が、「微量成分(元素)を長年補っていない土壌」から得られたものとは全く異なることから明らかである。なお、該「他の(微量)成分」は、有機成分ではなく、特定の元素(例えば、金属又は金属塩)である可能性が高い。
 該(微量)成分は、本発明において具体的には明らかになっていないが、現在の(分析)先端技術でも全て明らかにはなっていない。本発明は、現在の(分析)技術では到底分からない上記したような生体に関する作用向上について、該(微量)成分の特定(分析)からアプローチすることは諦め、抗菌剤を天然物である抗生物質に頼るように、天然物である海水に頼ってなされたものである。
The "(trace) component" has not been clarified, but the growth rate of plants (vegetables, etc.) in the sprinkled soil, the flavor of the vegetable; the flavor of the mineral water itself of the present invention, a dish using the mineral water It is clear from the fact that the taste and the taste of pickles are completely different from those obtained from "soil that has not been supplemented with trace components (elements) for many years". It is highly possible that the “other (trace) component” is not an organic component but a specific element (for example, a metal or a metal salt).
The (trace) component is not specifically clarified in the present invention, but is not yet clarified by the current (analytical) advanced technology. In the present invention, with respect to the improvement of the action on the living body as described above, which cannot be fully understood by the current (analytical) technique, we give up approaching from the identification (analysis) of the (trace) component, and the antibacterial agent is an antibiotic which is a natural product. It depends on seawater, which is a natural product.
 本発明の蒸発固液分離方法を用いて製造される塩混合物は、市販の塩(しお)に比べ、塩化ナトリウム(NaCl)の含有量も、ナトリウム(Na)の含有量も極めて少ない(実施例参照)。一方、本発明の蒸発固液分離方法を用いて製造される塩混合物は、市販の塩(しお)に比べ、マグネシウム(Mg)の含有量も、カルシウム(Ca)の含有量も、カリウム(K)の含有量も多い(実施例参照)。 The salt mixture produced by using the evaporative solid-liquid separation method of the present invention has much less sodium chloride (NaCl) content and sodium (Na) content than commercially available salt (practice). See example). On the other hand, the salt mixture produced using the evaporation solid-liquid separation method of the present invention has a magnesium (Mg) content, calcium (Ca) content, potassium ( The content of K) is also large (see Examples).
 本発明の蒸発固液分離方法を用いて製造される蒸発分であるミネラル水も、その残余である塩混合物も、何れも新規の組成や水の構造を有するため、例えば、化粧水等の化粧料(の原料);健康食品(の原料);漬物、飲用水等の一般食品(の原料)、農産物用の水;魚類等の養殖用の水(の原料);等、「微量成分(の含有比)が、その性能を左右する(ために重要になる)用途」に特に好適に使用できる。 Since both mineral water, which is an evaporation component produced using the evaporation solid-liquid separation method of the present invention, and the remaining salt mixture have a novel composition and water structure, for example, makeup such as lotion (Raw materials); health food (raw materials); general foods (raw materials) such as pickles and drinking water, water for agricultural products; water for fish farming (raw materials); The content ratio) can be particularly preferably used for “uses that are important for (becomes important for) the performance”.
 本発明の蒸発固液分離方法を用いて製造されるミネラル水と塩混合物は、何れも新規の組成や水のクラスター構造等を有するであろうことは、上記用途に使用したときに、実際に従来品と異なる風味やヒト(の肌等)への効果等を示したことから確かめられている。
 なお、ヒトが感知することができる「味と臭い」(風味)の差異や、ヒト(の肌)等への影響の差異は、現在の機器分析の能力を超えている(検出限界以下である)ことは技術常識であるところ、該優れた効果を示す微量成分や微妙な成分含有比を直接特定することは、不可能であるか又はおよそ実際的でない(「不可能・非実際的事情」がある)。
The mineral water and salt mixture produced using the evaporative solid-liquid separation method of the present invention will all have a novel composition, a cluster structure of water, etc. It has been confirmed from the fact that it has a different flavor from conventional products and has an effect on humans (such as its skin).
In addition, the difference in "taste and smell" (flavor) that can be perceived by humans and the effect on human (skin) etc. are beyond the capabilities of current instrumental analysis (below the detection limit). ) Is technical common sense, it is impossible or almost impractical to directly specify the trace component and the subtle component content ratio that show the excellent effect ("impossible / unpractical circumstances") There).
本発明に使用される装置の全体の一形態を示す概略図である。It is the schematic which shows one form of the whole apparatus used for this invention. 本発明に使用される装置に具備されている容器、冷却器、回収容器等の一形態を示す概略断面図である。It is a schematic sectional drawing which shows one form of the container, cooler, collection | recovery container, etc. with which the apparatus used for this invention is equipped. 本発明に使用される装置に具備されている容器が有する撹拌機の一形態を示す概略斜視図である。It is a schematic perspective view which shows one form of the stirrer which the container with which the apparatus used for this invention is equipped has. 本発明に使用される装置に具備されている好ましい減圧器である横噴射型の水エジェクタの一形態を示す概略断面図である。It is a schematic sectional drawing which shows one form of the horizontal injection type water ejector which is a preferable pressure reducer with which the apparatus used for this invention is equipped. 本発明に使用される装置に具備されている好ましい減圧器である横噴射型の水エジェクタと水タンクと循環ポンプ等の一形態を示す概略断面図である。It is a schematic sectional drawing which shows one form, such as a lateral injection type water ejector, a water tank, a circulation pump, etc. which are the preferable pressure reducers with which the apparatus used for this invention is equipped.
 以下、本発明について説明するが、本発明は、以下の具体的態様に限定されるものではなく、技術的思想の範囲内で任意に変形することができる。 Hereinafter, the present invention will be described, but the present invention is not limited to the following specific embodiments, and can be arbitrarily modified within the scope of the technical idea.
 本発明の蒸発固液分離方法は、海水を蒸発固液分離して、塩混合物とミネラル水に分離する蒸発固液分離方法であって、少なくとも主たる蒸発固液分離中は、該海水の温度を25℃以上60℃以下に維持すると共に、減圧器を用いて容器内の圧力を1kPa以上20kPa以下に維持することを特徴とする。 The evaporative solid-liquid separation method of the present invention is an evaporative solid-liquid separation method in which seawater is separated into evaporative solid-liquid and separated into a salt mixture and mineral water, and the temperature of the seawater is set at least during main evaporative solid-liquid separation. While maintaining at 25 degreeC or more and 60 degrees C or less, the pressure in a container is maintained at 1 kPa or more and 20 kPa or less using a decompressor.
 本発明に用いる蒸発固液分離装置は、用途が「本発明の蒸発固液分離方法」に限定された装置である。本発明に用いる蒸発固液分離装置は、本発明の蒸発固液分離方法に用いられ得る能力を有する蒸発固液分離装置であって、少なくとも、撹拌機、加熱ユニット及び粉末取出口を有する容器;減圧器(好ましくは水エジェクタである減圧器);並びに;冷却器を具備する。 The evaporative solid-liquid separator used in the present invention is an apparatus whose use is limited to the “evaporated solid-liquid separation method of the present invention”. The evaporative solid / liquid separation apparatus used in the present invention is an evaporative solid / liquid separation apparatus having an ability that can be used in the evaporative solid / liquid separation method of the present invention, and includes at least a stirrer, a heating unit, and a powder outlet. A decompressor (preferably a decompressor which is a water ejector); and; a cooler.
 本発明に用いる装置の好ましい一例は、例えば図1及び図2に示したように、少なくとも、
 海水Aを撹拌する撹拌機110、海水A及び容器100内を加熱する加熱ユニット120、海水Aから発生する気体を取り出す気体取出口130、及び、処理後に塩混合物Bを取り出す粉末取出口140を有する容器100;
 該気体取出口130から取り出された気体を冷却する冷却器200;
 該容器100内を減圧する減圧器300;並びに;
 該冷却器200で冷却されて液化したミネラル水Cを回収する回収容器400;を具備している。
A preferred example of the apparatus used in the present invention is at least as shown in FIGS.
A stirrer 110 that stirs the seawater A, a heating unit 120 that heats the seawater A and the container 100, a gas outlet 130 that extracts the gas generated from the seawater A, and a powder outlet 140 that extracts the salt mixture B after processing. Container 100;
A cooler 200 for cooling the gas taken out from the gas outlet 130;
A decompressor 300 for decompressing the inside of the container 100; and;
A recovery container 400 for recovering the mineral water C cooled and liquefied by the cooler 200.
 本発明の蒸発固液分離方法は、好ましくは、少なくとも以下の操作(1)ないし(4)の全てを行うものである。
(1)少なくとも主たる蒸発固液分離中は、該海水の温度を25℃以上60℃以下の温度範囲を維持するように該容器内を加熱ユニットで加熱する加熱操作、
(2)少なくとも主たる蒸発固液分離中は、水エジェクタを減圧器として用いて減圧して、該容器内を1kPa以上20kPa以下に維持し、該海水に含有される水の蒸発熱で該海水を冷却して該海水の温度を25℃以上60℃以下の温度範囲に維持する冷却操作、
(3)該容器から流出された気体を、冷却器を用いて液化してミネラル水を得る液化操作、
(4)該容器内に残った塩混合物を、該容器の粉末取出口から取り出して塩混合物を得る取出操作
The evaporative solid-liquid separation method of the present invention preferably performs at least all of the following operations (1) to (4).
(1) A heating operation for heating the inside of the container with a heating unit so that the temperature of the seawater is maintained within a temperature range of 25 ° C. or more and 60 ° C. or less during at least main evaporation solid-liquid separation;
(2) During at least main evaporative solid-liquid separation, the water ejector is decompressed using a decompressor to maintain the inside of the container at 1 kPa or more and 20 kPa or less, and the seawater is removed by the evaporation heat of water contained in the seawater. A cooling operation for cooling and maintaining the temperature of the seawater in a temperature range of 25 ° C. or higher and 60 ° C. or lower;
(3) A liquefaction operation for liquefying the gas flowing out of the container using a cooler to obtain mineral water;
(4) Taking out the salt mixture remaining in the container from the powder outlet of the container to obtain a salt mixture
 本発明の、海水Aを蒸発固液分離して塩混合物Bとミネラル水Cを製造する特に好ましい方法は、下記に限定はされないが、具体的には例えば下記のように行なわれる。 The particularly preferable method of producing the salt mixture B and the mineral water C by evaporating solid-liquid separation of the seawater A of the present invention is not limited to the following, but specifically, for example, as follows.
 まず、操作開始に当り、冷却水供給装置に冷却水を充填し、冷却器200に冷却水を循環させる。次いで、海水Aを海水投入口103から容器100内に投入して蓋104を閉じる。
 海水Aを容器100内に投入したら、要すれば撹拌機110を回転させ、該海水Aを容器100内で撹拌する撹拌操作を行う。撹拌操作と撹拌機110の(特に)好ましい条件・構造については後述する。
 次いで、少なくとも主たる蒸発固液分離中は、該海水Aの温度を25℃以上60℃以下の温度範囲を維持するように該容器100内を加熱ユニット120で加熱する加熱操作を行う。
First, at the start of operation, the cooling water supply device is filled with cooling water, and the cooling water is circulated through the cooler 200. Next, seawater A is introduced into the container 100 from the seawater inlet 103 and the lid 104 is closed.
When the seawater A is put into the container 100, the stirrer 110 is rotated if necessary, and the stirring operation for stirring the seawater A in the container 100 is performed. A stirring operation and (particularly) preferable conditions and structure of the stirrer 110 will be described later.
Next, during at least main evaporation solid-liquid separation, a heating operation is performed in which the inside of the container 100 is heated by the heating unit 120 so that the temperature of the seawater A is maintained within a temperature range of 25 ° C. or more and 60 ° C. or less.
 本発明で、「主たる蒸発固液分離」とは、蒸発固液分離操作の初期から容器に投入した海水の70質量%以上が蒸発固液分離されるまでを言う。また、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは98質量%以上が蒸発固液分離されるまで後記する特定の温度条件、特定の圧力条件に維持しておくことが望ましい。 In the present invention, “main evaporative solid-liquid separation” refers to the period from the initial stage of evaporative solid-liquid separation until evaporating solid-liquid separation of 70% by mass or more of seawater charged into the container. Moreover, it is preferably maintained at a specific temperature condition and a specific pressure condition described later until 80% by mass or more, more preferably 90% by mass or more, and particularly preferably 98% by mass or more is evaporated and solid-liquid separated. desirable.
 蒸気供給装置から蒸気室121内に加熱用蒸気を供給することにより、外部から熱を加える。容器100には、海水A及び容器100内を加熱する加熱ユニット120が設置されており、該加熱ユニット120では、蒸気供給装置122によって加熱された水蒸気が、容器100(好ましくは容器100の下部半円筒部101)の周囲に設置された蒸気室に送り込まれる。 Heat is applied from the outside by supplying steam for heating into the steam chamber 121 from the steam supply device. The container 100 is provided with a heating unit 120 that heats the seawater A and the inside of the container 100. In the heating unit 120, water vapor heated by the steam supply device 122 is converted into the container 100 (preferably the lower half of the container 100. It is fed into a steam chamber installed around the cylindrical part 101).
 容器100に加えられた熱は、海水Aに伝達され、海水Aが撹拌機110によって又は沸騰によって撹拌されることにより、海水A中の水の蒸発が起こると共に、(濃縮された)海水Aの温度、濃度、粘度等が均一になる。
 なお、本発明では、海水Aの温度を25℃以上60℃以下に維持し、該温度での水の蒸気圧と同じ又は若干低い圧力(例えば10%低い圧力)で留去することが好ましいが、その際、海水Aは沸騰する。従って、該沸騰によって撹拌がなされるので、撹拌機110は必須ではないが、より均一な温度伝達、最後の取出し等のために撹拌機110が存在することが好ましい。
The heat applied to the container 100 is transferred to the seawater A, and the seawater A is stirred by the stirrer 110 or by boiling, whereby water in the seawater A evaporates and the (concentrated) seawater A Temperature, concentration, viscosity, etc. become uniform.
In the present invention, it is preferable that the temperature of the seawater A is maintained at 25 ° C. or more and 60 ° C. or less and distilled off at the same or slightly lower pressure (for example, 10% lower pressure) than the vapor pressure of water at the temperature. At that time, the seawater A boils. Therefore, since stirring is performed by the boiling, the stirrer 110 is not essential, but it is preferable that the stirrer 110 is present for more uniform temperature transmission, final removal, and the like.
 蒸気室121内に送り込む加熱用蒸気の温度や量を適宜調整して海水Aを加熱する。
 一方、減圧器300である水エジェクタ301に供給する水の量・圧力・噴射速度等を調整して気体排出能力や容器100内の圧力を適切に設定して、蒸発速度を調整することによってその蒸発熱で海水Aを冷却する。
 すなわち、少なくとも主たる蒸発固液分離中は、該容器100内を1kPa以上20kPa以下に維持し、該海水Aに含有される水の蒸発熱で該海水Aを冷却して、該海水Aの温度を25℃以上60℃以下の温度範囲に維持する。
Seawater A is heated by appropriately adjusting the temperature and amount of the steam for heating fed into the steam chamber 121.
On the other hand, by adjusting the amount of water supplied to the water ejector 301, which is the decompressor 300, the pressure, the injection speed, etc., and appropriately setting the gas discharge capacity and the pressure in the container 100, The seawater A is cooled with the heat of evaporation.
That is, at least during main evaporative solid-liquid separation, the inside of the vessel 100 is maintained at 1 kPa or more and 20 kPa or less, and the seawater A is cooled with the heat of evaporation of water contained in the seawater A, so that the temperature of the seawater A is increased. It is maintained in a temperature range of 25 ° C. or more and 60 ° C. or less.
 減圧器300の気体排出能力を、「内容積が1mの容器を用いた場合に換算して、常圧体積20m/時間以上」とすることによって、加熱ユニット120によって海水Aが急速に加熱(昇温)されそうになっても、海水A中の水の蒸発熱で該海水Aの温度を所定温度以下に下げることができる。 By setting the gas discharge capacity of the decompressor 300 to “normal pressure volume of 20 m 3 / hour or more when converted to a container having an internal volume of 1 m 3 ”, the seawater A is rapidly heated by the heating unit 120. Even when the temperature is likely to rise, the temperature of the seawater A can be lowered to a predetermined temperature or less by the evaporation heat of the water in the seawater A.
 容器100の実質体積は、特に限定はないが、その範囲は本発明における蒸発固液分離の条件が有効に効くか否かの点から重要である。
 海水Aの最大投入容量(L)として、すなわち投入できる海水Aの嵩(L)として、20L以上5000L以下が好ましく、35L以上4000L以下が好ましく、50L以上3000L以下が特に好ましい。なお、海水Aの最大投入容量(L)は、前記した容器100の下部半円筒部101の体積にほぼ等しいことが好ましい。
The substantial volume of the container 100 is not particularly limited, but the range is important from the viewpoint of whether or not the evaporating solid-liquid separation conditions in the present invention are effective.
The maximum input capacity (L) of seawater A, that is, the bulk (L) of seawater A that can be input, is preferably 20L to 5000L, preferably 35L to 4000L, and particularly preferably 50L to 3000L. The maximum input capacity (L) of the seawater A is preferably substantially equal to the volume of the lower semi-cylindrical portion 101 of the container 100 described above.
 容器100の実質体積、又は、図2、図3のような形状の容器を用いるときはその下部半円筒部101の体積が小さ過ぎると、1回の処理量が少なくなり過ぎてコストアップになるので商業的に使用できなくなる。また、本発明における前記又は後記する特殊な蒸発固液分離の条件(容器内圧力、気体排出能力等)や装置(撹拌機、減圧器等)を適用する意味が薄れる場合がある。
 一方、大き過ぎると、本発明の前記効果を発揮できるような、減圧器300が存在しない又は現実的でないほど極めて高価となる場合;特に、海水Aの昇温を水の蒸発熱で抑制できるだけの「容器の大きさに見合った気体排出能力と減圧度」を有する減圧器300が存在しない又は現実的でないほど極めて高価となる場合;容器100の筐体に減圧負荷がかかり過ぎる場合;等がある。
When using the substantial volume of the container 100 or the container having the shape as shown in FIGS. 2 and 3, if the volume of the lower semi-cylindrical portion 101 is too small, the amount of processing at one time becomes too small and the cost increases. So it can not be used commercially. In addition, the meaning of applying the above-mentioned or later-described special evaporative solid-liquid separation conditions (pressure in the container, gas discharge capability, etc.) and apparatus (stirrer, decompressor, etc.) in the present invention may be reduced.
On the other hand, if the pressure is too large, the decompressor 300 that can exhibit the above-described effect of the present invention does not exist or becomes extremely expensive so as to be impractical; When the decompressor 300 having the “gas discharge capacity and degree of decompression commensurate with the size of the container” does not exist or becomes extremely expensive unrealistically; when the decompression load is excessively applied to the casing of the container 100, etc. .
 1回の処理で蒸発固液分離する海水Aの質量は、使用する容器100の体積に依存するので特に限定はないが、5kg以上300kg以下が好ましく、20kg以上200kg以下がより好ましく、30kg以上100kg以下が特に好ましい。
 少な過ぎても多過ぎても、上記した「容器100又は下部半円筒部101の体積」が小さ過ぎる場合や大き過ぎる場合と同様のことが起こる場合がある。
 特に、海水Aが少な過ぎる場合は、本発明における「主たる蒸発固液分離中の圧力」、減圧器種類、気体排出能力、蒸発熱を冷却に利用すること、等の(好ましい)要件・特徴が生かされない場合がある。本発明は、海水Aの量が上記下限以上の時に特にその効果を奏する。
The mass of the seawater A to be evaporated and solid-liquid separated in one treatment depends on the volume of the container 100 to be used, and is not particularly limited, but is preferably 5 kg to 300 kg, more preferably 20 kg to 200 kg, more preferably 30 kg to 100 kg. The following are particularly preferred:
If the amount is too small or too large, the same thing as the case where “the volume of the container 100 or the lower semi-cylindrical portion 101” is too small or too large may occur.
In particular, when there is too little seawater A, there are (preferred) requirements / features such as “pressure during main evaporative solid-liquid separation”, decompressor type, gas discharge capacity, and heat of evaporation used for cooling in the present invention. It may not be alive. The present invention is particularly effective when the amount of seawater A is not less than the above lower limit.
 本発明の蒸発固液分離方法においては、上記容器の体積をV[L]とし、該容器に投入される海水Aの質量をM[kg]とするときに、V[L]をM[kg]の2倍以上5倍以下に設定することが好ましく、2.2倍以上3.5倍以下がより好ましく、2.5倍以上3.0倍以下が特に好ましい。
 V[L]/M[kg]の値が小さ過ぎると、撹拌、蒸発等を良好に実行できない場合がある。一方、V[L]/M[kg]の値が大き過ぎると、大きな容器100が無駄になる場合;容器100が大き過ぎて、減圧器300の気体排出能力が十分に発揮できず、その結果、蒸発熱による海水Aの冷却ができず、該海水Aの温度が前記温度範囲の上限を超えてしまう場合;等がある。また、小さ過ぎても大き過ぎても、上記した「容器100又は下部半円筒部101の体積」が小さ過ぎる場合や大き過ぎる場合と同様のことが起こる場合がある。
In the evaporative solid-liquid separation method of the present invention, when the volume of the vessel is V [L] and the mass of seawater A charged into the vessel is M [kg], V [L] is M [kg]. 2 times or more and 5 times or less, more preferably 2.2 times or more and 3.5 times or less, and particularly preferably 2.5 times or more and 3.0 times or less.
If the value of V [L] / M [kg] is too small, stirring and evaporation may not be performed satisfactorily. On the other hand, if the value of V [L] / M [kg] is too large, the large container 100 is wasted; the container 100 is too large and the gas discharge capacity of the decompressor 300 cannot be fully exhibited, and as a result The seawater A cannot be cooled by the heat of evaporation, and the temperature of the seawater A exceeds the upper limit of the temperature range. Moreover, even if it is too small or too large, the same thing as the case where the above-mentioned "volume of the container 100 or the lower semi-cylindrical part 101" is too small or too large may occur.
 このように、加熱ユニット120による海水Aに対する加熱操作と、減圧器300による海水Aに対する冷却操作を行い、海水Aの温度を25℃以上60℃以下の範囲(更には、後述するより好ましい範囲や特に好ましい範囲)に維持する。
 容器100には、容器100内の圧力(減圧度)を計測する真空計108と温度計109a、109bが設けられている。これらは、容器100内の圧力(減圧度)と温度を測定し、海水Aの温度を間接的に測定するために設けられたものであり、また、蒸発固液分離の操作開始と終了を判定するためにも設ける。
 温度計109a、109bは、(撹拌機110を含む)容器100の熱伝導等を利用して海水Aの温度を正確に測定できるように設置する。すなわち、水の蒸発熱で海水Aが急速に冷却されそうになっても、逆に、上記加熱ユニット120によって海水Aが急速に加熱されそうになっても、海水Aの温度を十分正確に測定できるようにする。
Thus, the heating operation for the seawater A by the heating unit 120 and the cooling operation for the seawater A by the decompressor 300 are performed, and the temperature of the seawater A is in the range of 25 ° C. to 60 ° C. Particularly preferred range).
The container 100 is provided with a vacuum gauge 108 and thermometers 109a and 109b for measuring the pressure (decompression degree) in the container 100. These are provided to measure the pressure (decompression degree) and temperature in the container 100 and indirectly measure the temperature of the seawater A, and also determine the start and end of the operation of evaporating solid-liquid separation. Also provided to do.
The thermometers 109a and 109b are installed so that the temperature of the seawater A can be accurately measured using heat conduction or the like of the container 100 (including the stirrer 110). That is, even if the seawater A is likely to be rapidly cooled by the evaporation heat of water, or conversely, even if the seawater A is likely to be rapidly heated by the heating unit 120, the temperature of the seawater A is measured sufficiently accurately. It can be so.
 本発明においては、少なくとも主たる蒸発固液分離中は、該海水Aの温度を25℃以上60℃以下に維持することが必須であるが、好ましくは27℃以上50℃以下、より好ましくは29℃以上45℃以下、更に好ましくは31℃以上40℃以下、特に好ましくは33℃以上37℃以下に維持する。 In the present invention, it is essential that the temperature of the seawater A is maintained at 25 ° C. or more and 60 ° C. or less during at least main evaporation solid-liquid separation, but preferably 27 ° C. or more and 50 ° C. or less, more preferably 29 ° C. The temperature is maintained at 45 ° C. or lower, more preferably 31 ° C. or higher and 40 ° C. or lower, particularly preferably 33 ° C. or higher and 37 ° C. or lower.
 該温度が低過ぎると、商業的規模や工業的規模を考えた場合、蒸発固液分離に時間がかかり過ぎる場合;低い温度における水の蒸気圧の低さに適応した低圧力まで、「商業的規模や工業的規模の海水Aの量に十分に対応した気体排出能力の大きさを有しつつ、真空度(減圧度)を上げられる減圧器」が存在しない又は極めて大型になる場合;等がある。 If the temperature is too low, evaporative solid-liquid separation takes too long when considering commercial or industrial scale; up to low pressure adapted to the low vapor pressure of water at low temperature If there is no "exhaust pressure reducer that can increase the degree of vacuum (decompression degree) while having a large gas discharge capacity that corresponds sufficiently to the amount of seawater A on a scale or industrial scale" or is there.
 一方、該温度が高過ぎると、蒸発分は、従来の蒸留法による淡水(軟水)と同様又は近似のものになってしまい、残渣は、従来の製法による天然塩と同様又は近似の成分組成になってしまい、本発明の効果を示さない場合がある。 On the other hand, if the temperature is too high, the amount of evaporation will be the same or similar to that of fresh water (soft water) by the conventional distillation method, and the residue will have the same or similar component composition as the natural salt by the conventional manufacturing method. Thus, the effects of the present invention may not be exhibited.
 本発明では、海水Aの温度下限を規定することによって、商業的な量であっても許容される処理時間(操作時間)で、塩混合物Bとミネラル水Cとを製造できる。
 一方、海水Aの温度上限を規定することによって、従来の「海水の蒸留水」や、従来の「海水の蒸発乾固による天然塩」とは異なり、新規の成分組成のものができる。
 温度が高過ぎると、得られる塩混合物Bやミネラル水Cが従来のものと同様又は近似のものになってしまう場合があり、その結果として、具体的には、例えば、得られた塩混合物を使用した「漬物等の食品」の風味改善がなされなかったり、得られた塩混合物を溶解した水で養殖した魚の風味改善がなされなかったり、得られたミネラル水を撒いた(給水した)農産物の風味改善がなされなかったりする場合等がある。
In this invention, the salt mixture B and the mineral water C can be manufactured by the processing time (operation time) which is accept | permitted even if it is a commercial quantity by prescribing the temperature lower limit of the seawater A.
On the other hand, by defining the upper temperature limit of the seawater A, unlike the conventional “distilled water of seawater” and the conventional “natural salt by evaporation and drying of seawater”, a new component composition can be obtained.
If the temperature is too high, the obtained salt mixture B or mineral water C may be similar to or similar to the conventional one. As a result, specifically, for example, the obtained salt mixture The flavor of the “food such as pickles” used was not improved, the flavor of fish cultured with water obtained by dissolving the obtained salt mixture was not improved, or the mineral water obtained was sprinkled (supplied) The flavor may not be improved.
 容器100には、海水Aから発生する気体を取り出す気体取出口130が設置されている。気体取出口130の近傍も、十分な熱伝導等で前記温度範囲に維持して、気体取出口130の近傍で水滴が生じないようにする(結露させないようにする)ことが好ましい。 The container 100 is provided with a gas outlet 130 for extracting gas generated from the seawater A. It is preferable that the vicinity of the gas outlet 130 is also maintained in the temperature range with sufficient heat conduction or the like so that water droplets are not generated (no condensation) in the vicinity of the gas outlet 130.
 該容器100から流出された気体を、冷却器200を用いて液化する液化操作を行う。本発明の蒸発固液分離方法においては、例えば図1に示したように、上記容器100の後ろに、該容器100に設けられた気体取出口130から取り出した気体を冷却する冷却器200を設けて液化すると共に容器100内を減圧することが好ましい。
 該冷却器200の冷却媒体としては、「10℃以上であり、上記容器100の気体取出口130から取り出された気体の温度より5℃以上低い(特に好ましくは7℃以上低い)温度」の水を用いることが、冷却して液化する効率の点から好ましい。
 冷却媒体である水の温度が高過ぎると、気体の一部が液化されない場合がある。このような冷却器200は、公知のものが用いられ得る。
A liquefaction operation is performed to liquefy the gas flowing out of the container 100 using the cooler 200. In the evaporative solid-liquid separation method of the present invention, for example, as shown in FIG. 1, a cooler 200 for cooling the gas taken out from the gas outlet 130 provided in the container 100 is provided behind the container 100. The container 100 is preferably liquefied and the pressure inside the container 100 is reduced.
The cooling medium of the cooler 200 is water having a temperature of “10 ° C. or higher and 5 ° C. or lower (particularly preferably 7 ° C. or higher) lower than the temperature of the gas taken out from the gas outlet 130 of the container 100”. Is preferable from the viewpoint of efficiency of cooling and liquefying.
If the temperature of water as the cooling medium is too high, part of the gas may not be liquefied. Such a cooler 200 may be a known one.
 本発明においては、少なくとも主たる蒸発固液分離中は、水エジェクタ301を減圧器300として用いて減圧して、該容器100内を1kPa以上20kPa以下に維持し、海水Aに含有される水の蒸発熱で該海水Aを冷却して、該海水Aの温度を25℃以上60℃以下の温度範囲に維持する冷却操作を行う。 In the present invention, during at least main evaporation solid-liquid separation, the water ejector 301 is decompressed using the decompressor 300 to maintain the inside of the container 100 at 1 kPa or more and 20 kPa or less to evaporate water contained in the seawater A. The seawater A is cooled by heat, and a cooling operation for maintaining the temperature of the seawater A in a temperature range of 25 ° C. or more and 60 ° C. or less is performed.
 本発明に使用する装置には、例えば図1に示したように、上記冷却器200の後ろに、容器100内を減圧する減圧器300が具備されている。
 図1に示したように、減圧器300は水エジェクタ301であることが好ましく、該水エジェクタ301は、水循環ポンプを有する横噴射型の水エジェクタ301であることが特に好ましい。
 水エジェクタ301、特に水循環ポンプを有する横噴射型の水エジェクタ301であれば、減圧度(容器内の圧力)については、水の蒸気圧や減圧下での水の沸点を勘案すれば最適であり、気体排出能力については、水エジェクタ301、特に水循環ポンプを有する横噴射型の水エジェクタ301が、該能力が極めて大きいために最適である。
In the apparatus used in the present invention, for example, as shown in FIG. 1, a decompressor 300 for decompressing the inside of the container 100 is provided behind the cooler 200.
As shown in FIG. 1, the decompressor 300 is preferably a water ejector 301, and the water ejector 301 is particularly preferably a lateral injection type water ejector 301 having a water circulation pump.
In the case of the water ejector 301, particularly the lateral injection type water ejector 301 having a water circulation pump, the degree of pressure reduction (pressure in the container) is optimal considering the vapor pressure of water and the boiling point of water under reduced pressure. Regarding the gas discharge capacity, the water ejector 301, particularly the lateral injection type water ejector 301 having a water circulation pump, is optimal because the capacity is extremely large.
 減圧器300で吸引することにより、容器100内の気体、すなわち、海水A中のミネラル等を含む水蒸気及び空気を、気体配管131を通じて吸引し、容器100内の海水Aに含まれている水と他の成分(金属イオン等)を蒸発させる。
 その際、減圧器300で吸引する量や吸引力を調節して、該容器100内の圧力(減圧度)を調整する。水エジェクタ301を減圧器300として用いる場合は、噴射ノズル径、噴射する水の噴射量や温度、水エジェクタ301自体の大きさ等を調節して、後記する十分な気体排出能力を有するようにし、容器100内を所定の圧力(範囲)に保つようにする。
By sucking with the decompressor 300, the gas in the container 100, that is, the water vapor and air containing minerals in the seawater A are sucked through the gas pipe 131, and the water contained in the seawater A in the container 100 Evaporate other components (metal ions, etc.).
At that time, the pressure (decompression degree) in the container 100 is adjusted by adjusting the amount and suction force to be sucked by the decompressor 300. When the water ejector 301 is used as the decompressor 300, the injection nozzle diameter, the injection amount and temperature of the water to be injected, the size of the water ejector 301 itself, etc. are adjusted so as to have a sufficient gas discharge capacity to be described later. The inside of the container 100 is maintained at a predetermined pressure (range).
 該減圧器300としては、水の蒸発熱で海水Aの温度が60℃を超えないように(好ましくは45℃を超えないように)、内容積が1mの容器を用いた場合に換算して、常圧体積20m/時間以上の気体排出能力を有するものを用いることが好ましい。 The decompressor 300 is converted when a container having an internal volume of 1 m 3 is used so that the temperature of the seawater A does not exceed 60 ° C. (preferably not exceeding 45 ° C.) due to the heat of evaporation of water. Thus, it is preferable to use one having a gas discharge capacity of 20 m 3 / hour or more at normal pressure.
 容器100の内容積が大きければ、大きい気体排出能力を有する減圧器300を用いる必要がある。容器100の内容積に比較して小さい気体排出能力しか有さない減圧器300を用いると(容器100の内容積に応じて気体排出能力を大きくしていかないと)、水の蒸発熱で海水Aを冷却することができ難くなり、海水Aが昇温してしまう場合等がある。 If the internal volume of the container 100 is large, it is necessary to use a decompressor 300 having a large gas discharge capacity. When the decompressor 300 having only a small gas discharge capacity compared to the internal volume of the container 100 is used (unless the gas discharge capacity is increased according to the internal volume of the container 100), the seawater A is generated by the heat of evaporation of water. It may become difficult to cool the seawater A, and the temperature of the seawater A may increase.
 具体的には、例えば、内容積が1mの容器を用いた場合は、常圧体積20m/時間以上の気体排出能力を有する水エジェクタ301が好ましく、内容積が0.1mの容器を用いた場合は、常圧体積2m/時間以上の気体排出能力を有する水エジェクタ301が好ましく、内容積が0.5mの容器を用いた場合は、常圧体積10m/時間以上の気体排出能力を有する水エジェクタ301が好ましく、内容積が2mの容器を用いた場合は、常圧体積40m/時間以上の気体排出能力を有する水エジェクタ301が好ましい。 Specifically, for example, when a container having an internal volume of 1 m 3 is used, a water ejector 301 having a gas discharge capacity of 20 m 3 / hour or more of normal pressure is preferable, and a container having an internal volume of 0.1 m 3 is used. When used, a water ejector 301 having a gas discharge capacity of at least 2 m 3 / hour of atmospheric pressure is preferable. When a container having an internal volume of 0.5 m 3 is used, a gas having an atmospheric pressure of 10 m 3 / hour or more is used. A water ejector 301 having a discharge capacity is preferable, and when a container having an internal volume of 2 m 3 is used, a water ejector 301 having a gas discharge capacity of a normal pressure volume of 40 m 3 / hour or more is preferable.
 「内容積が1mの容器を用いた場合に換算して、常圧体積20m/時間以上の気体排出能力」が好ましいが、該値は、常圧体積22m/時間以上300m/時間以下がより好ましく、常圧体積25m/時間以上200m/時間以下が更に好ましく、常圧体積27m/時間以上150m/時間以下が特に好ましい。
 減圧器300の気体排出能力が小さ過ぎると、処理時間が長くなる場合、水の蒸発熱による海水Aの過昇温防止効果が得られ難くなって、該海水Aの温度が上がり過ぎる場合等がある。
 減圧器300の気体排出能力が大き過ぎると、そもそも下記する減圧度を達成しつつ、このような大きな気体排出能力を有する減圧器300が存在しない、又は、極めて高価若しくは極めて大型となる場合等がある。
"In terms of when the internal volume was used containers 1 m 3, normal pressure body volume 20 m 3 / time or more gas discharge capability" is preferred, that value is always pressure body volume 22m 3 / time than 300 meters 3 / time more preferably not more than atmospheric pressure body volume 25 m 3 / time than 200 meters 3 / time or less are more preferred, atmospheric pressure body volume 27m 3 / time than 150 meters 3 / time or less is particularly preferred.
When the gas discharge capacity of the decompressor 300 is too small, when the processing time is long, it is difficult to obtain the effect of preventing the excessive increase in temperature of the seawater A due to the heat of evaporation of water, and the temperature of the seawater A is too high. is there.
If the gas discharge capacity of the decompressor 300 is too large, there may be no decompressor 300 having such a large gas discharge capacity while achieving the following degree of decompression, or it may be very expensive or extremely large. is there.
 図1に一例を示したように、水タンク303に水(好ましくは、予め水チリングユニットで冷却した水)を貯め、水循環ポンプ302で加圧した水を送液し、水エジェクタ301において該加圧水を噴出させることにより減圧する。流動液体は静止液体より圧力が低い性質(ベルヌーイの定理)を用いて水蒸気等の気体を排気する。 As shown in FIG. 1, water (preferably water previously cooled by a water chilling unit) is stored in a water tank 303, water pressurized by a water circulation pump 302 is fed, and the pressurized water is ejected by a water ejector 301. The pressure is reduced by blowing out the water. A flowing liquid uses a property (Bernoulli's theorem) that has a lower pressure than a stationary liquid to exhaust a gas such as water vapor.
 減圧器300による容器内圧力(減圧度)は、少なくとも主たる蒸発固液分離中は、海水Aの温度における蒸気圧の0.1倍以上1倍以下が好ましく、0.2倍以上0.99倍以下がより好ましく、0.4倍以上0.95倍以下が更に好ましく、0.6倍以上0.9倍以下が特に好ましい。
 容器内圧力が上記下限以上であると、そのような能力を有する減圧器が実現できる。また、過度の蒸発熱による海水Aの冷却がない。一方、容器内圧力が上記上限以下であると、海水Aが穏やかに沸騰して留去が効率的である。
The internal pressure (decompression degree) of the container by the decompressor 300 is preferably 0.1 to 1 times, more preferably 0.2 to 0.99 times the vapor pressure at the temperature of the seawater A, at least during main evaporative solid-liquid separation. The following is more preferable, 0.4 times or more and 0.95 times or less is more preferable, and 0.6 times or more and 0.9 times or less is particularly preferable.
When the pressure in the container is equal to or higher than the lower limit, a decompressor having such ability can be realized. Moreover, there is no cooling of the seawater A by excessive evaporation heat. On the other hand, when the internal pressure of the container is not more than the above upper limit, the seawater A gently boils and the distillation is efficient.
 具体的には、減圧器300による容器内圧力(減圧度)は、少なくとも主たる蒸発固液分離中は、1kPa(1気圧(101.3kPa)に対して、-100.3kPa)以上、20kPa(1気圧(101.3kPa)に対して、-81.3kPa)以下に維持して蒸発固液分離することが必須である。
 該容器100内の圧力を1.5kPa(1気圧(101.3kPa)に対して、-99.8kPa)以上、15kPa(1気圧(101.3kPa)に対して、-86.3kPa)以下に維持することが好ましい。
 より好ましくは2kPa(1気圧に対して、-99.3kPa)以上、10kPa(1気圧に対して、-90.3kPa)以下であり、
 更に好ましくは2.5kPa(1気圧に対して、-98.8kPa)以上、8.6kPa(1気圧に対して、-92.7kPa)以下であり、
 特に好ましくは3.3kPa(1気圧に対して、-98kPa)以上、8.3kPa(1気圧に対して、-93kPa)以下である。
Specifically, the pressure in the container (decompression degree) by the decompressor 300 is 1 kPa (−100.3 kPa with respect to 1 atm (101.3 kPa)) or more and 20 kPa (1) during at least main evaporation solid-liquid separation. It is essential to perform evaporation / solid separation while maintaining the pressure (−81.3 kPa) or less with respect to the atmospheric pressure (101.3 kPa).
The pressure in the container 100 is maintained at 1.5 kPa (−99.8 kPa with respect to 1 atm (101.3 kPa)) or more and 15 kPa (−86.3 kPa with respect to 1 atm (101.3 kPa)). It is preferable to do.
More preferably, it is 2 kPa (−99.3 kPa with respect to 1 atm) or more and 10 kPa (−90.3 kPa with respect to 1 atm),
More preferably, it is 2.5 kPa (−98.8 kPa with respect to 1 atm) or more and 8.6 kPa (−92.7 kPa with respect to 1 atm),
It is particularly preferably 3.3 kPa (−98 kPa with respect to 1 atm) or more and 8.3 kPa (−93 kPa with respect to 1 atm).
 容器内圧力(減圧度)が低過ぎると(圧力が高過ぎると)、水の蒸発熱による海水Aの冷却が期待できずに、海水Aの温度が高くなり過ぎる場合、蒸発固液分離に時間がかかり過ぎる場合等があり、その結果、得られる塩混合物やミネラル水が従来のものと同様又は近似のものになってしまう場合がある。具体的には、例えば、前記した温度が高過ぎる場合と同様のことが起こる場合がある。 If the pressure in the vessel (the degree of decompression) is too low (if the pressure is too high), the cooling of the seawater A due to the evaporation heat of water cannot be expected, and if the temperature of the seawater A becomes too high, it takes time to separate the evaporated solid and liquid. As a result, the resulting salt mixture or mineral water may be similar to or approximate to the conventional one. Specifically, for example, the same thing as the case where the above-described temperature is too high may occur.
 一方、容器内圧力(減圧度)が高過ぎると(圧力が低過ぎると)、下記する「該圧力における水の沸点」と「海水の前記した必須温度範囲又は好ましい温度範囲」との関係で、そこまで低圧力にする必要がない場合があり、また、前記した工業的・商業的に通用する1回の海水処理量の下限を満たした上で、そもそも前記した気体排出能力を有し、かつ、そこまで減圧度を上げられる減圧器300が存在しない、又は、非現実的なほど極めて大型で高価になる場合等がある。 On the other hand, when the pressure in the container (the degree of pressure reduction) is too high (when the pressure is too low), the relationship between the “boiling point of water at the pressure” and the “essential temperature range or preferred temperature range of seawater” described below, There is a case where it is not necessary to make the pressure so low, and after satisfying the above-mentioned lower limit of one seawater treatment amount that is industrially and commercially applicable, it has the above-mentioned gas discharge capability in the first place, and There are cases where the decompressor 300 that can increase the degree of decompression does not exist, or it is unrealistically very large and expensive.
 水の蒸気圧の温度依存性を下記に示す。
 水の温度(℃)  水の蒸気圧(kPa)
  15       1.7
  20       2.3
  25       3.2
  30       4.2
  35       5.6
  40       7.4
  45       9.6
  50      12.3
  55      15.7
  60      19.9
  65      25.0
The temperature dependence of the water vapor pressure is shown below.
Water temperature (℃) Water vapor pressure (kPa)
15 1.7
20 2.3
25 3.2
30 4.2
35 5.6
40 7.4
45 9.6
50 12.3
55 15.7
60 19.9
65 25.0
 上記減圧器300は、水循環ポンプ302を有する横噴射型の水エジェクタ301であることが、高い減圧度と共に高い気体排出能力を有するために好ましい。すなわち、減圧度と気体排出能力の両立ができ、前記本発明の効果を奏し易い点から好ましい。水循環ポンプ302を有して横噴射型であると、特に気体排出能力を上げ易い。 It is preferable that the decompressor 300 is a lateral injection type water ejector 301 having a water circulation pump 302 because it has a high gas discharge capacity as well as a high degree of decompression. That is, it is preferable from the viewpoint that both the degree of decompression and the gas discharge capacity can be achieved and the effects of the present invention can be easily achieved. It is particularly easy to increase the gas discharge capacity when the water circulation pump 302 is provided and the horizontal injection type is used.
 減圧器には、一般的に、ロータリーポンプ、オイル拡散ポンプ、水銀拡散ポンプ、差動ポンプ等がある。例えば、ロータリーポンプでは約1Pa(10-2mmHg)、オイル拡散ポンプでは約0.1mPa(10-6mmHg)という何れも高真空度は達成できるものの気体排出能力が極めて低い。一方、市販の又は一般的なエジェクタでは、通常は20kPaより高い圧力にしかならない(減圧度を上げられない)場合がある。 In general, the decompressor includes a rotary pump, an oil diffusion pump, a mercury diffusion pump, a differential pump, and the like. For example, although the rotary pump can achieve about 1 Pa (10 −2 mmHg) and the oil diffusion pump about 0.1 mPa (10 −6 mmHg), a high vacuum can be achieved, but the gas discharge capacity is extremely low. On the other hand, in a commercially available or general ejector, there are cases where the pressure is usually higher than 20 kPa (the degree of decompression cannot be increased).
 上記気体排出能力と減圧度の両立は、「水エジェクタ301」でしか達成し得ないし、特に、水循環ポンプ302を有する横噴射型の水エジェクタ301を用いることによって、好適に両立が可能である。
 前記した高い気体排出能力の数値は、かかる水エジェクタ301で達成できるとは言っても汎用的な数値ではない。前記した高い気体排出能力の数値は、噴射する水の温度、噴射ノズル径、噴射速度、単位時間当たりの噴射量、噴射距離等を調整して得られる。
The coexistence of the gas discharge capability and the degree of pressure reduction can be achieved only by the “water ejector 301”. Particularly, by using the lateral injection type water ejector 301 having the water circulation pump 302, both can be suitably achieved.
The numerical value of the high gas discharge capacity described above is not a general-purpose numerical value although it can be achieved by the water ejector 301. The numerical value of the high gas discharge capacity described above is obtained by adjusting the temperature of the water to be injected, the injection nozzle diameter, the injection speed, the injection amount per unit time, the injection distance, and the like.
 本発明における特に好ましい「横噴射型の水エジェクタ」の態様を図4と図5に示す。
 図4と図5に示した「横噴射型の水エジェクタ」は、駆動水を受ける筒形の駆動水入口片1と、該駆動水入口片1の下流側に設けられ、該駆動水入口片1から流入する駆動水と吸引ガスとを混合する主管スロート6と、該主管スロート6の下流側端部に接続して設けられ、内径が末広がり形状をなすパイプからなる出力片7を有している。
 更に要すれば、円筒形状をなし、該出力片7の下流側端部に設けられ、駆動水と吸引ガスとの混合気体を流す消音器12と、該消音器12に取付けられ、駆動水が流出する際に該消音器12内に空気を取り入れて、該消音器12内の気圧の急変を防止する吸気管11とを備えている。
A particularly preferable aspect of the “lateral injection type water ejector” in the present invention is shown in FIGS.
The “lateral injection type water ejector” shown in FIGS. 4 and 5 is provided with a cylindrical driving water inlet piece 1 for receiving driving water and a downstream side of the driving water inlet piece 1. 1 has a main pipe throat 6 for mixing driving water and suction gas flowing in from 1 and an output piece 7 formed by connecting to the downstream end of the main pipe throat 6 and having a pipe whose inner diameter is widened toward the end. Yes.
Further, if necessary, it has a cylindrical shape and is provided at the downstream end portion of the output piece 7, and is attached to the silencer 12 for flowing a mixed gas of driving water and suction gas, and attached to the silencer 12. An air intake pipe 11 is provided to take in air into the silencer 12 when it flows out and to prevent a sudden change in atmospheric pressure in the silencer 12.
 また、上記した水エジェクタ301においては、駆動水入口片1と主管スロート6と出力片7とを収容する外被管8を備え、該外被管8に、吸引ガスを供給する吸引管3を取付け、該外被管8を消音器12に接続し、主管スロート6は、駆動水入口片1の終端部に連接して設けられ複数個のガス吸引孔4を有する円筒形パイプからなる。 Further, the water ejector 301 described above includes a jacket pipe 8 that accommodates the driving water inlet piece 1, the main pipe throat 6, and the output piece 7, and a suction pipe 3 that supplies suction gas to the jacket pipe 8. The outer pipe 8 is connected to the silencer 12, and the main pipe throat 6 is formed by a cylindrical pipe having a plurality of gas suction holes 4 provided to be connected to the terminal end of the driving water inlet piece 1.
 また、前記水タンク303からの水を吸込んで駆動水入口片1より吐出する循環ポンプ16、前記駆動水入口片1、前記主管スロート6、前記出力片7、及び、前記消音器12を含む循環路を、前記水タンク302内の水位17より低く設定してあることが好ましい。 A circulation pump 16 that sucks water from the water tank 303 and discharges the water from the drive water inlet piece 1, the drive water inlet piece 1, the main pipe throat 6, the output piece 7, and the silencer 12. The path is preferably set lower than the water level 17 in the water tank 302.
 図4は、水エジェクタ301とそれに連結される消音器12の概略を、図5には、水エジェクタ301を横方向に設置して水タンク303に接続する形態を示す。図4の水エジェクタ301において、駆動水入口片1は、水の流れ抵抗を減少させるため面取りが施されている。 FIG. 4 shows an outline of the water ejector 301 and the silencer 12 connected thereto, and FIG. 5 shows a form in which the water ejector 301 is installed in the lateral direction and connected to the water tank 303. In the water ejector 301 of FIG. 4, the drive water inlet piece 1 is chamfered to reduce water flow resistance.
 該駆動水入口片1よりも直径の太い主管スロート6が入口片1に接続されている。該主管スロート6の形状は単純なパイプ形状である。
 該主管スロート6の入口部には、パイプ管壁を貫通する複数個の吸引孔4が開けられており、該吸引孔4は、吸引管3を通じ真空引き(減圧)する際に、吸込みガスを主管スロート6内に吸引するためのものである。
A main pipe throat 6 having a diameter larger than that of the driving water inlet piece 1 is connected to the inlet piece 1. The shape of the main pipe throat 6 is a simple pipe shape.
A plurality of suction holes 4 penetrating the pipe tube wall are opened at the inlet of the main pipe throat 6, and the suction holes 4 receive suction gas when evacuated (reduced pressure) through the suction pipe 3. This is for sucking into the main pipe throat 6.
 主管スロート6の終端付近には、直径が主管スロート6より太いパイプ状の出方片7が連結されている。該出口片7は、出口方向に向かって末広がり状に広がる内部形状を有している。
 また、駆動水入口片1、主管スロート6、及び、出口片7を被覆する外被管8が、外側に円筒状に接続されている。これら1~8で示す部材により、水エジェクタ301が構成される。
 12は消音器であり、図4のように、該消音器12の内径は、水エジェクタ301の出力片7の出口の内径より太いパイプ形状を有する。
In the vicinity of the end of the main pipe throat 6, a pipe-shaped exit piece 7 having a diameter larger than that of the main pipe throat 6 is connected. The outlet piece 7 has an internal shape that widens toward the outlet.
Moreover, the jacket pipe 8 which coat | covers the drive water inlet piece 1, the main pipe throat 6, and the outlet piece 7 is connected cylindrically outside. A water ejector 301 is constituted by these members 1 to 8.
Reference numeral 12 denotes a silencer. As shown in FIG. 4, the silencer 12 has a pipe shape whose inner diameter is thicker than the inner diameter of the outlet of the output piece 7 of the water ejector 301.
 図4に示す水エジェクタ入口片1には、図5に示す循環ポンプ16からの吐出配管15を、入口側フランジ2を介して接続されている。
 真空引き機能は、吸引管3だけを通じて行うように、中空円形状の仕切板5が設けられている。該仕切板5の内側部は、主管スロート6の外側部に固着され、該仕切板5の外周部は、外被管8に固着され十分な気密性が保たれるようになっている。
A discharge pipe 15 from the circulation pump 16 shown in FIG. 5 is connected to the water ejector inlet piece 1 shown in FIG.
A hollow circular partition plate 5 is provided so that the evacuation function is performed only through the suction tube 3. The inner part of the partition plate 5 is fixed to the outer part of the main pipe throat 6, and the outer peripheral part of the partition plate 5 is fixed to the jacket tube 8 so that sufficient airtightness is maintained.
 本発明における減圧器300は、図5に示すように、水エジェクタの極めて高い気体排出能力を図るために、消音器12を漬ける水を溜めた水タンク303を備え、水エジェクタ301で使用された駆動水は、一旦、水タンク303に蓄えられる構造になっている。
 水エジェクタ301は、その終端の出力側フランジ9を使い、該水タンク303の外側より固着されている。
 消音器12は、フランジ10で水タンク303の内側より、出力側フランジ9と同位置に固着されている。これにより水タンク303内では、水エジェクタ301と消音器12は、水タンク303の内部で連結されている。
As shown in FIG. 5, the decompressor 300 according to the present invention includes a water tank 303 in which water is stored so that the silencer 12 can be immersed in order to achieve a very high gas discharge capacity of the water ejector, and is used in the water ejector 301. The driving water is once stored in the water tank 303.
The water ejector 301 is fixed from the outside of the water tank 303 using the output side flange 9 at the end thereof.
The silencer 12 is fixed at the same position as the output side flange 9 from the inside of the water tank 303 with the flange 10. Thereby, in the water tank 303, the water ejector 301 and the silencer 12 are connected inside the water tank 303.
 消音器12は、水平部12aとその先端で直角に下方に曲げた垂直部12bとを有し、終端12cからは、吸引ガスが混合された駆動水が水タンク303内の水中に流出する構成となっている。
 また、水流を作る循環ポンプ16に接続されている戻り配管14を通じて、駆動水が循環して再利用される構造となっている。
 戻り配管14、循環ポンプ16、吐出配管15、水エジェクタ301、及び、消音器12からなる循環路は、水タンク303内の水位17より低く設定されている。
The silencer 12 has a horizontal portion 12a and a vertical portion 12b bent downward at a right angle at the tip thereof, and the driving water mixed with suction gas flows out into the water in the water tank 303 from the end 12c. It has become.
Further, the drive water is circulated and reused through a return pipe 14 connected to a circulation pump 16 that creates a water flow.
A circulation path including the return pipe 14, the circulation pump 16, the discharge pipe 15, the water ejector 301, and the silencer 12 is set lower than the water level 17 in the water tank 303.
 消音器12における水エジェクタ301の連接部近くに、空気を取入れる吸気管11が設けられ、吸気管11の吸気口は、水タンク水位17より上部に位置させることにより、吸気口が水面下に浸らない構造とする。水タンク303には、水位17の設定のためのオーバーフロー通風口18が設置されている。 An intake pipe 11 for taking in air is provided near the connection part of the water ejector 301 in the silencer 12, and the intake port of the intake pipe 11 is positioned above the water tank water level 17 so that the intake port is below the water surface. A structure that does not soak. The water tank 303 is provided with an overflow vent 18 for setting the water level 17.
 本発明における好ましい水エジェクタ301は、図4に示したように、主管スロート6に吸引孔4が設けられている。それによって、管同士の隙間からガスを吸込む従来のエジェクタと比べて高い(大きい)気体排出能力を有する。 A preferred water ejector 301 in the present invention is provided with a suction hole 4 in the main pipe throat 6 as shown in FIG. Thereby, it has a higher (larger) gas discharge capacity than a conventional ejector that sucks gas from the gap between the tubes.
 また、本発明の好ましい水エジェクタ301とそれに連結される消音器12は、図5のように、水の循環路が水タンク303の水位17より低く、横向き水平に使用設置することが可能となり、該「水循環ポンプを有する横噴射型の水エジェクタ」は、従来のエジェクタ等の減圧器と比べて高い(大きい)気体排出能力を有する。 Further, the preferred water ejector 301 of the present invention and the silencer 12 connected to the water ejector 301 have a water circulation path lower than the water level 17 of the water tank 303 as shown in FIG. The “lateral injection type water ejector having a water circulation pump” has a higher (larger) gas discharge capacity than a decompressor such as a conventional ejector.
 容器100から流出された気体を、冷却器200を用いて液化してミネラル水Cを得る際の流出速度は、前記温度と圧力を優先して決定されるが、また、容器100の大きさと容器内の海水Aの量にも依存するが、3~50L/hrが好ましく、10~40L/hrがより好ましく、20~30L/hrが特に好ましい。「L」は、得られてくるミネラル水Cの体積である。 The outflow rate when the gas flowing out from the container 100 is liquefied using the cooler 200 to obtain the mineral water C is determined by giving priority to the temperature and pressure. Although depending on the amount of seawater A, 3 to 50 L / hr is preferable, 10 to 40 L / hr is more preferable, and 20 to 30 L / hr is particularly preferable. “L” is the volume of mineral water C to be obtained.
 本発明の蒸発固液分離方法は、「海水の蒸発固液分離における最適温度」における水の蒸気圧を勘案して、該蒸気圧に対し必要以上に容器100内の圧力(減圧度)を低くすることに拘らず、その分を気体排出能力の向上に振り向けて、海水Aを蒸発熱で冷却することで初めて工業的(商業的)規模で達成できた(完成した)。 The evaporative solid-liquid separation method of the present invention takes into consideration the vapor pressure of water at the “optimum temperature for evaporative solid-liquid separation of seawater”, and lowers the pressure (decompression degree) in the container 100 more than necessary with respect to the vapor pressure. Regardless of this, it was possible to achieve this on an industrial (commercial) scale for the first time by cooling the seawater A with evaporative heat while turning that amount toward improving the gas discharge capacity.
 「海水」や「該海水中の水等が蒸発して高粘度になった液」は、少なくとも主たる蒸発固液分離中は、沸騰していることが好ましいので、撹拌は必須ではないが、撹拌は行うことが好ましい。
 撹拌機は、横羽根型のものでもスクリュー型のものでもよいが、好ましくは、図3に示したような撹拌機110を用い、回転凹部113a、113bと固定凸部111とによって撹拌されるものが特に好ましい。
“Seawater” and “liquid in which the water in the seawater evaporates to a high viscosity” is preferably boiled at least during the main evaporation solid-liquid separation, so stirring is not essential. Is preferably performed.
The stirrer may be of a horizontal blade type or a screw type, but is preferably agitated by the rotating concave portions 113a and 113b and the fixed convex portion 111 using the stirrer 110 as shown in FIG. Is particularly preferred.
 蒸発の操作中は、撹拌機110を図2及び図3の矢印Rの回転方向に回転させ、容器100内の海水Aを撹拌しながら、回転凹部113a、113bと固定凸部111との間で海水Aを撹拌する。
 該撹拌は、「複数の回転凹部113a、113bを有する回転凹部体112a、112b」及び「容器100の内面(好ましくは上記下部半円筒部101の下内面)に設けられた複数の固定凸部111」を備えた容器100内で行うことが、上記効果を得るために特に好ましい。
During the evaporation operation, the stirrer 110 is rotated in the rotation direction indicated by the arrow R in FIGS. 2 and 3, and the seawater A in the container 100 is agitated between the rotating concave portions 113 a and 113 b and the fixed convex portion 111. Seawater A is agitated.
The stirring is performed by “a plurality of rotating recesses 112a and 112b having a plurality of rotating recesses 113a and 113b” and “a plurality of fixed protrusions 111 provided on the inner surface of the container 100 (preferably the lower inner surface of the lower semi-cylindrical portion 101). In order to obtain the above-mentioned effect.
 例えば、図3は、撹拌機110の構成を示す斜視図であり、撹拌機110は、容器100の外部に設けられたモータにより回転されるものであり、容器100の端壁105a、105bに回転可能に支持される左右の端板106a、106bと、その先端間に両端が固定された、ほぼ「く」の字115の形をなす回転凹部体112a、112bとによって構成することにより、中心軸を有しない構造(中心軸なしで回転可能の構造)に構成されている。図3記載の装置は、回転凹部体が2個(112a、112b)あるが、回転凹部体112は1個でもよい。 For example, FIG. 3 is a perspective view showing the configuration of the stirrer 110, and the stirrer 110 is rotated by a motor provided outside the container 100, and rotates on the end walls 105 a and 105 b of the container 100. The center axis is constituted by left and right end plates 106a and 106b that are supported, and rotating recesses 112a and 112b that are substantially in the shape of a "<" shape 115 that are fixed at both ends between the ends. (A structure that can be rotated without a central axis). The apparatus shown in FIG. 3 has two rotating concave bodies (112a and 112b), but the number of rotating concave bodies 112 may be one.
 回転凹部体112a、112bをほぼ「く」の字形にすることによって、海水Aを撹拌し易くすると共に、蒸発固液分離の操作完了後は、塩混合物Bを容器100の内壁から良好に掻き取り、(容器100の下側のほぼ中央に位置する)粉末取出口140に向けて掻き寄せることによって、歩留まり良く好適に塩混合物Bを粉末取出口140から獲得できる。 By making the rotary recesses 112a and 112b substantially “<”-shaped, the seawater A can be easily stirred, and the salt mixture B can be scraped off from the inner wall of the container 100 after the evaporative solid-liquid separation operation is completed. The salt mixture B can be suitably obtained from the powder outlet 140 with good yield by scraping it toward the powder outlet 140 (located substantially at the lower center of the container 100).
 本発明の蒸発固液分離方法は、上記撹拌機110が2個以上の回転凹部体を有し、該回転凹部体を同方向に回転させることで上記海水Aを撹拌し、蒸発固液分離後には、上記塩混合物Bを上記容器100の内壁から掻き取り、上記粉末取出口に向けて掻き寄せることが好ましい。 In the evaporative solid-liquid separation method of the present invention, the agitator 110 has two or more rotating recesses, and the seawater A is stirred by rotating the rotating recesses in the same direction. It is preferable to scrape the salt mixture B from the inner wall of the container 100 and scrape it toward the powder outlet.
 撹拌機110の回転速度、すなわち、容器100の左右の端壁105a、105bに回転可能に支持されている左右の端板106a、106bの回転速度は、1回転/分以上8回転/分以下が好ましく、2回転/分以上6回転/分以下がより好ましく、4回転/分以上5回転/分以下が特に好ましい。
 回転速度が低過ぎるときは、撹拌の効率が悪くなる場合、海水Aに温度ムラが生じる場合等があり、一方、回転速度が高過ぎるときは、撹拌機110に過剰の負荷がかかる場合等がある。
The rotation speed of the agitator 110, that is, the rotation speed of the left and right end plates 106a and 106b rotatably supported by the left and right end walls 105a and 105b of the container 100 is 1 to 8 rotations / minute. It is preferably 2 revolutions / minute or more and 6 revolutions / minute or less, more preferably 4 revolutions / minute or more and 5 revolutions / minute or less.
When the rotational speed is too low, the efficiency of stirring may be deteriorated, temperature unevenness may occur in the seawater A, and when the rotational speed is too high, an excessive load may be applied to the stirrer 110. is there.
 本発明の蒸発固液分離方法は、限定はされないが、上記容器100の下部が円筒状になっており、その内壁に複数の固定凸部111を有すると共に、上記撹拌機110は、1個に複数の回転凹部113a、113bを有する回転凹部体112a、112bを有し、該回転凹部体112a、112bを回転させることによって、容器100内の海水Aを、該固定凸部111と該回転凹部113a、113bとで撹拌することが好ましい。 The evaporative solid-liquid separation method of the present invention is not limited, but the lower portion of the container 100 is cylindrical, has a plurality of fixed projections 111 on its inner wall, and the stirrer 110 is one. The rotating recesses 112a and 112b having a plurality of rotating recesses 113a and 113b are provided. By rotating the rotating recesses 112a and 112b, the seawater A in the container 100 is converted into the fixed protrusion 111 and the rotating recess 113a. , 113b.
 図3における111は、下部半円筒部101の内面に固着された複数の固定凸部であり、回転凹部体112a、112bにおける固定凸部111に対応する箇所には、回転凹部体112a、112bにおける固定凸部111の部分を通過するための回転凹部溝114a、114bが形成され、その溝の両側に、固定凸部111との間で海水Aを撹拌するための回転凹部113a、113bが設けられている。
 なお、図3では、固定凸部111と回転凹部113a、113bとは、噛み合いが時間をずらして順次行なわれるように、周方向に位置をずらして配設し、これにより撹拌機110の駆動モータの動力の瞬間的増大が起こらないようにしている。
Reference numeral 111 in FIG. 3 denotes a plurality of fixed convex portions fixed to the inner surface of the lower semi-cylindrical portion 101. The portions corresponding to the fixed convex portions 111 in the rotary concave portions 112a and 112b are arranged in the rotary concave portions 112a and 112b. Rotating recess grooves 114a and 114b for passing through the fixed protrusion 111 are formed, and rotating recesses 113a and 113b for stirring the seawater A between the fixed protrusions 111 are provided on both sides of the groove. ing.
In FIG. 3, the fixed convex portion 111 and the rotational concave portions 113a and 113b are disposed at different positions in the circumferential direction so that the meshing is sequentially performed at different times. The momentary increase in power is prevented from occurring.
 1個の回転凹部体に設けられる回転凹部の対数は、容器100、撹拌機110、回転凹部体112a、112bの大きさや、蒸発固液分離の対象となる海水Aの種類にも依存するが、1個の回転凹部体に、回転凹部が、5対以上20対以下で設けられていることが好ましく、8対以上14対以下が特に好ましい。
 1個の回転凹部体に設けられた回転凹部が少な過ぎると、撹拌の効率が悪くなる場合、蒸発が抑制されて温度が上昇する場合等があり、一方、多過ぎると、過度の撹拌が行われるために、回転に負荷がかかる場合、蒸発速度が上がり過ぎて水の蒸発熱で海水Aの温度が下がり過ぎる場合等がある。
The logarithm of the rotating recesses provided in one rotating recess body depends on the size of the container 100, the stirrer 110, the rotating recess bodies 112a and 112b, and the type of seawater A to be subjected to evaporation solid-liquid separation. It is preferable that one rotary recess body is provided with 5 to 20 pairs, and particularly preferably 8 to 14 pairs.
If there are too few rotating recesses provided in one rotating recess body, the efficiency of stirring may deteriorate, evaporation may be suppressed and the temperature may rise, and if too much, excessive stirring will occur. Therefore, when a load is applied to the rotation, the evaporation rate may increase too much, and the temperature of the seawater A may decrease too much due to the evaporation heat of water.
 なお、回転凹部体に設けられた回転凹部の上記対数は、1個の回転凹部溝に1対の回転凹部があるとする。例えば、図3では、1個の回転凹部体に回転凹部溝が10個設けられているので、1個の回転凹部体に回転凹部は10対設けられていることになる。 Note that the logarithm of the rotating recess provided in the rotating recess is assumed to be a pair of rotating recesses in one rotating recess groove. For example, in FIG. 3, since 10 rotation recess grooves are provided in one rotation recess body, 10 pairs of rotation recesses are provided in one rotation recess body.
 操作の最後に、該容器100内の塩混合物Bを該容器100の粉末取出口から取り出す取出操作を行う。本発明における撹拌機110は、該撹拌機110が有する2個以上の回転凹部体の特殊構造によって、海水Aを好適に撹拌できると共に、得られた塩混合物Bを、好適に容器100から掻き取り、粉末取出口140に向けて好適に掻き寄せることができるようになっていることが好ましい。 At the end of the operation, an extraction operation for taking out the salt mixture B in the container 100 from the powder outlet of the container 100 is performed. The stirrer 110 according to the present invention can suitably stir the seawater A by the special structure of the two or more rotating recesses of the stirrer 110 and scrape the obtained salt mixture B from the container 100. It is preferable that the powder can be suitably scraped toward the powder outlet 140.
 主たる蒸発固液分離(蒸発固液分離操作の初期から、容器に投入した海水中の水の90質量%が蒸発固液分離されるまで)に要する時間は、投入量にも依存(比例)するが、(投入する海水30kg換算で)、1時間以上20時間以下が好ましく、2時間以上13時間以下がより好ましく、3時間以上8時間以下が特に好ましい。 The time required for main evaporative solid-liquid separation (from the beginning of the evaporative solid-liquid separation operation until 90% by mass of water in the seawater charged in the container is separated by evaporative solid-liquid) depends on (proportional to) the input amount. However, it is preferably 1 hour or longer and 20 hours or shorter, more preferably 2 hours or longer and 13 hours or shorter, and particularly preferably 3 hours or longer and 8 hours or shorter.
 該時間が短過ぎる場合は、水の蒸発熱による冷却ができないで過度に昇温してしまう場合等がある。また、そもそも本格生産規模で、60℃以下(好ましくは前記温度以下)と言う比較的低温で、短時間で水を蒸発させるだけの減圧器がない又は現実的でないほど極めて大型になる場合がある。
 一方、時間が長過ぎる場合は、時間が無駄でコストアップになる場合がある。また、本発明における前記又は後記する特殊な蒸発固液分離の条件(容器内圧力や温度、気体排出能力等)や装置(撹拌機、減圧器等)を適用する意味が薄れる場合がある。言い換えると、本発明における「主たる蒸発固液分離中の圧力」、減圧器種類、気体排出能力等による蒸発熱(吸熱)を冷却に利用することの(好ましい)要件・特徴が生かされない場合等がある。
When the time is too short, there is a case where the temperature is excessively increased because the water cannot be cooled by the evaporation heat. In the first place, there is a case where there is no decompressor that can evaporate water in a short time at a relatively low temperature of 60 ° C. or less (preferably the temperature or less) on a full-scale production scale, or it may become extremely large so that it is not realistic. .
On the other hand, if the time is too long, time may be wasted and cost may increase. In addition, the meaning of applying the above-mentioned or later special evaporative solid-liquid separation conditions (pressure and temperature in the container, gas discharge capacity, etc.) and apparatus (stirrer, decompressor, etc.) in the present invention may be reduced. In other words, there are cases where the (preferred) requirements / features of utilizing the heat of evaporation (endotherm) due to “pressure during main evaporative solid-liquid separation”, decompressor type, gas discharge capacity, etc. in the present invention are not utilized. is there.
 上記した本発明の蒸発固液分離方法は、バッチ式(回分式)でも、連続式でもよい。バッチ式(回分式)の場合には、操作を確実に行うことができ、連続式の場合には、操作を円滑に行うことができる。
 海水Aの場合には、塩混合物Bの嵩密度が大きいため容器100が満杯になり難いので、連続式も好ましい。連続式の場合は、容器100内の圧力を前記範囲に保ちつつ、海水Aを容器100内に連続的にフィードする。
The above-described evaporation solid-liquid separation method of the present invention may be a batch type (batch type) or a continuous type. In the case of a batch type (batch type), the operation can be performed reliably, and in the case of a continuous type, the operation can be performed smoothly.
In the case of seawater A, since the bulk density of the salt mixture B is large, it is difficult for the container 100 to be full, so a continuous type is also preferable. In the case of the continuous type, the seawater A is continuously fed into the container 100 while maintaining the pressure in the container 100 within the above range.
 容器100には、塩混合物Bを取り出す粉末取出口140が設けられている。粉末取出口140は、図3に示したように、容器100のほぼ下部中央(下部半円筒部101の下部中央近傍)に設けることが好ましい。
 撹拌機110を前記したような構造にすることによって、すなわち、図3に示したように、回転凹部体112a、112bを「く」の字115a、115bの形にすることによって、蒸発固液分離終了後の塩混合物Bを、容器100の下部中央に集め易くなり、該塩混合物Bの取り出しが容易となるが、そのために、粉末取出口140は、容器100の下部中央近傍に設けられることが好ましい。
 かかる形状の回転凹部体112a、112bは、塩混合物Bを容器100の内壁から良好に掻き取り、容器100の下部中央近傍に設けられた粉末取出口140に向けて良好に掻き寄せることによって、歩留まり良く(さらさらの)塩混合物Bが獲得できる。
The container 100 is provided with a powder outlet 140 for taking out the salt mixture B. As shown in FIG. 3, the powder outlet 140 is preferably provided at the substantially lower center of the container 100 (near the lower center of the lower semi-cylindrical portion 101).
By making the stirrer 110 structured as described above, that is, as shown in FIG. 3, the rotating recesses 112a and 112b are formed in the shape of “U” 115a and 115b, thereby evaporating solid-liquid separation. The salt mixture B after completion can be easily collected in the lower center of the container 100, and the salt mixture B can be easily taken out. For this purpose, the powder outlet 140 may be provided near the lower center of the container 100. preferable.
The rotary recesses 112a and 112b having such a shape can be obtained by scraping the salt mixture B well from the inner wall of the container 100 and scraping it well toward the powder outlet 140 provided near the lower center of the container 100. A good (smooth) salt mixture B can be obtained.
 回収液の蒸気が容器100の気体取出口130から殆ど出てしまった後は、すなわち前記した「主たる蒸発固液分離」が終わった後は、容器100内の温度は上記上限温度よりも高くして、水を完全に蒸発させて良好な粉末化を図ることも好ましい。 After the vapor of the recovered liquid has almost come out from the gas outlet 130 of the container 100, that is, after the above-mentioned “main evaporative solid-liquid separation” is finished, the temperature in the container 100 is set higher than the above upper limit temperature. Thus, it is also preferable that the water is completely evaporated to achieve good powdering.
 本発明は、前記の蒸発固液分離方法を使用して海水を蒸発固液分離して得られるものであることを特徴とする塩混合物でもある。該塩混合物は、少なくとも、例えば「60℃より高い」と言った高温を経験していないこと、例えば「1kPa以上20kPa以下」と言った圧力範囲が限定されている条件下で得られているので、新規な成分組成のものであり、その結果、前記したような優れた効果を奏する。 The present invention is also a salt mixture obtained by evaporating solid-liquid separation of seawater using the above-mentioned evaporative solid-liquid separation method. The salt mixture is obtained at least under conditions that do not experience a high temperature such as “above 60 ° C.”, for example, a pressure range such as “1 kPa to 20 kPa” is limited. As a result, it has an excellent effect as described above.
 一方、気体の方は、容器100内を、気体配管131を通して吸引し、冷却器200に導入して液化し、回収液として回収容器400内に溜める。
 回収容器400内に、回収液であるミネラル水Cが貯まったら、減圧器300での吸引を停止し、ミネラル水Cを液取出口404から獲得する。
On the other hand, the gas is sucked into the container 100 through the gas pipe 131, introduced into the cooler 200, liquefied, and stored in the recovery container 400 as a recovery liquid.
When the mineral water C, which is the recovered liquid, is stored in the recovery container 400, the suction by the decompressor 300 is stopped and the mineral water C is acquired from the liquid outlet 404.
 本発明は、前記の蒸発固液分離方法を使用して海水を蒸発固液分離して得られるものであることを特徴とするミネラル水でもある。該ミネラル水は、少なくとも、例えば「60℃より高い」と言った高温を経験していないこと、例えば「1kPa以上20kPa以下」と言った圧力範囲が限定されている条件下で得られているので、新規の成分組成、水の構造(クラスター等)であり、その結果、前記したような優れた効果を奏する。 The present invention is also mineral water characterized by being obtained by evaporating solid-liquid separation of seawater using the above-mentioned evaporative solid-liquid separation method. Since the mineral water is obtained at least under a condition where a high temperature such as “higher than 60 ° C.” is not experienced, for example, a pressure range such as “1 kPa or more and 20 kPa or less” is limited. It has a novel component composition and water structure (clusters, etc.), and as a result, exhibits excellent effects as described above.
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.
<ミネラル水の製造と評価>
実施例1
 小豆島沖で採取した海水30.0kgを、フィルター濾過により分散されているゴミを取り除き、図1~3に示した容器(投入容量500L、容器の体積(内容積)1m)に投入し、図3に示したような2個の回転凹部体112a、112bを有する撹拌機110(1.5kW)によって、回転凹部体を4回転/分で回転させ、撹拌しながら蒸発固液分離を行った。
<Manufacture and evaluation of mineral water>
Example 1
Remove 30.0 kg of seawater collected off the coast of Shodoshima, remove dust dispersed by filtration, and put it into the container shown in Figs. 1 to 3 (input capacity 500L, container volume (internal volume) 1m 3 ). The rotating concave body was rotated at 4 rotations / minute by the stirrer 110 (1.5 kW) having the two rotating concave bodies 112a and 112b as shown in FIG.
 蒸気量28~140kg/hrの加熱ユニット120で加熱すると共に、図4と図5に示した水エジェクタ301で真空引きし、水の蒸発熱で海水の温度を35℃±2℃に保った。
 その際、水エジェクタ301の水温と、冷却器200の冷却水の水温は、共に10℃±2℃に保った。
 使用した水エジェクタ301は、図4に示すような横噴射型の水エジェクタ(3.7kW)であり、引かれる方がオープンの場合、常圧体積20m/時間以上の気体排出能力を有する水エジェクタ301であった。
While heating by the heating unit 120 having a steam amount of 28 to 140 kg / hr, the water was ejected by the water ejector 301 shown in FIGS. 4 and 5, and the temperature of the seawater was maintained at 35 ° C. ± 2 ° C. by the evaporation heat of water.
At that time, the water temperature of the water ejector 301 and the water temperature of the cooling water of the cooler 200 were both kept at 10 ° C. ± 2 ° C.
The used water ejector 301 is a lateral injection type water ejector (3.7 kW) as shown in FIG. 4, and water that has a gas discharge capacity of a normal pressure volume of 20 m 3 / hour or more when pulled is open. It was the ejector 301.
 容器100内の圧力は、少なくとも主たる蒸発固液分離中は、3.3kPa(1気圧に対して、-98.0kPa)以上6.3kPa(1気圧に対して、-95.0kPa)以下に保った。
 主たる蒸発固液分離に要した時間は、5時間であった。
The pressure in the vessel 100 is kept at least 3.3 kPa (−98.0 kPa with respect to 1 atm) to 6.3 kPa (−95.0 kPa with respect to 1 atm) at least during main evaporative solid-liquid separation. It was.
The time required for main evaporative solid-liquid separation was 5 hours.
 最後に、容器100の粉末取出口140から塩混合物を1.0kg得た。
 また、回収容器に貯まったミネラル水を、液取出口404から、29.0kg得て、後記のように評価した。
Finally, 1.0 kg of a salt mixture was obtained from the powder outlet 140 of the container 100.
Further, 29.0 kg of mineral water stored in the collection container was obtained from the liquid outlet 404 and evaluated as described below.
実施例2
 実施例1において、小豆島沖で採取した海水30.0kgを使用したことに代えて、瀬戸内海で採取した海水30.0kgを使用した以外は、実施例1と同様にして、塩混合物とミネラル水を得て、後記のように評価した。
Example 2
In Example 1, instead of using 30.0 kg of seawater collected off Shodoshima, salt mixture and mineral water were used in the same manner as in Example 1 except that 30.0 kg of seawater collected in the Seto Inland Sea was used. And evaluated as described below.
実施例3
 実施例1において、小豆島沖で採取した海水30.0kgを使用したことに代えて、沖縄沖で採取した海水30.0kgを使用した以外は、実施例1と同様にして、塩混合物とミネラル水を得て、後記のように評価した。
Example 3
In Example 1, instead of using 30.0 kg of seawater collected off the coast of Shodoshima, the salt mixture and mineral water were used in the same manner as in Example 1 except that 30.0 kg of seawater collected off the coast of Okinawa was used. And evaluated as described below.
比較例1~13
 表1に記載した市販品であるミネラル水を入手し、それらを使用して後記のように評価した。
Comparative Examples 1-13
The mineral water which is the commercial item described in Table 1 was obtained, and evaluated as described later using them.
比較例21
 海水を、常法に従って、常圧で100℃に加熱して蒸留した後、冷却して蒸留水を得て、後記のように評価した。
Comparative Example 21
Seawater was distilled by heating to 100 ° C. at normal pressure according to a conventional method, and then cooled to obtain distilled water, which was evaluated as described below.
参考例1
 平均的な海水のナトリウム(Na)、マグネシウム(Mg)、カリウム(K)及びカルシウム(Ca)のみの含有量を表1に記載する。
Reference example 1
Table 1 shows the average contents of sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) in seawater.
参考例2
 市販の「海洋深層水をイオン交換樹脂で脱塩した水」の上記4元素(4種の金属イオン)のみの含有量を表1に記載する。
Reference example 2
Table 1 shows the contents of only the above-mentioned four elements (four kinds of metal ions) of commercially available “water obtained by desalting deep sea water with an ion exchange resin”.
評価例1
 上記実施例、上記比較例及び上記参考例で得られた「ミネラル水等の水」に含有されるナトリウム(Na)、マグネシウム(Mg)、カリウム(K)及びカルシウム(Ca)の含有量を表1に記載する。ナトリウム(Na)とカリウム(K)の含有量は、原子吸光光度法を用いて測定し、カルシウム(Ca)とマグネシウム(Mg)の含有量は、ICP発光分析法を用いて測定した。
Evaluation Example 1
The contents of sodium (Na), magnesium (Mg), potassium (K) and calcium (Ca) contained in the “water such as mineral water” obtained in the above examples, comparative examples and reference examples are shown. It is described in 1. The contents of sodium (Na) and potassium (K) were measured using atomic absorption spectrophotometry, and the contents of calcium (Ca) and magnesium (Mg) were measured using ICP emission spectrometry.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果は、限られた4種の金属イオンのみの含有濃度であるので、本発明の前記した効果を十分に示すものではないが、実施例1~3と比較例1~13を比べると、ナトリウム(Na)の含有量については、実施例1~3は多いが、比較例1~13では全てそれらより少なかった。
 また、マグネシウム(Mg)の含有量については、実施例1~3は多いが、比較例9を除き比較例1~13では全てそれらより少なかった。
 また、カリウム(K)の含有量については、実施例1~3は多いが、比較例7と11を除き比較例1~13では全てそれらより少なかった。
 また、カルシウム(Ca)の含有量については、実施例1~3は少ないが、比較例6を除き比較例1~13では全てそれらより多かった。
The results in Table 1 are the contents containing only four kinds of limited metal ions, and thus do not sufficiently show the above-mentioned effects of the present invention, but Examples 1 to 3 and Comparative Examples 1 to 13 are compared. As for the content of sodium (Na), Examples 1 to 3 were large, but Comparative Examples 1 to 13 were all less.
Further, the contents of magnesium (Mg) were large in Examples 1 to 3, but were lower in all of Comparative Examples 1 to 13 except for Comparative Example 9.
Further, the content of potassium (K) was large in Examples 1 to 3, but was lower in all of Comparative Examples 1 to 13 except for Comparative Examples 7 and 11.
Further, regarding the content of calcium (Ca), Examples 1 to 3 were small, but except for Comparative Example 6, all of Comparative Examples 1 to 13 were larger than them.
 また、比較例21は、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)及びカルシウム(Ca)の含有量は何れも検出限界以下だった。 In Comparative Example 21, the contents of sodium (Na), magnesium (Mg), potassium (K), and calcium (Ca) were all below the detection limit.
 また、測定していないその他の微量成分(の組成)が本発明の前記した効果に影響している可能性がある。 Further, other trace components (composition) that have not been measured may influence the above-described effects of the present invention.
<<ミネラル水の評価>>
評価例2
 実施例1~3で得られた3種のミネラル水をそれぞれ100mL、何回かに分けてゆっくり飲んでその風味を調べた。
 また、比較例1~5、比較例21で得られた水も上記と同様に飲んでその風味を調べ比較した。
 その結果、実施例1~3で得られたミネラル水は、何れも比較例で得られた水とは、明らかに異なる風味(味や香り)を有していた。
<< Evaluation of mineral water >>
Evaluation example 2
The three types of mineral water obtained in Examples 1 to 3 were each taken in 100 mL portions and slowly drunk and examined for flavor.
Further, the water obtained in Comparative Examples 1 to 5 and Comparative Example 21 was also drunk in the same manner as described above, and its flavor was examined and compared.
As a result, the mineral water obtained in Examples 1 to 3 had a flavor (taste and fragrance) that was clearly different from the water obtained in the comparative example.
評価例3
 実施例1~3で得られた3種のミネラル水のそれぞれ1Lに、エタノール50gとグリセリン10gを加え、化粧水として、1日5回毎日10日間、手の甲に塗って評価した。
 また、比較例1~5、比較例21で得られた水、市販の医療用精製水、水道水も上記と同様に評価してそれぞれを比較した。
 その結果、実施例1~3で得られたミネラル水は何れも、比較例で得られた水とは異なり、生体に近似しているため、化粧水の原料として優れていることが分かった。
Evaluation Example 3
50 g of ethanol and 10 g of glycerin were added to 1 L of each of the three types of mineral water obtained in Examples 1 to 3 and applied to the back of the hand 5 times a day for 10 days for evaluation.
Further, the water obtained in Comparative Examples 1 to 5 and Comparative Example 21, commercially available purified water for medical use, and tap water were also evaluated in the same manner as described above and compared.
As a result, the mineral water obtained in Examples 1 to 3 was different from the water obtained in Comparative Examples and was similar to a living body, and thus was found to be excellent as a raw material for skin lotion.
評価例4
 約2mの畑で、同じ土壌と同じ肥料を用いて、実施例1~3で得られた3種のミネラル水を常に散水し、長ねぎとほうれん草を育て収穫した。収穫した長ねぎとほうれん草を、それぞれ同じ条件で茹でて味わって評価した。
 また、比較例21で得られた水、通常の農業用水を散水して育てた長ねぎとほうれん草も、上記と同様に評価して比較した。
 その結果、実施例1~3で得られたミネラル水は、何れも比較例21や通常の農業用水を用いて得られたものとは異なり、長ねぎとほうれん草の風味(特に臭い)が異なっており、美味しかった。
Evaluation Example 4
In a field of about 2 m 2 , using the same soil and the same fertilizer, the three mineral waters obtained in Examples 1 to 3 were always sprinkled, and the green onions and spinach were grown and harvested. The harvested long onion and spinach were boiled and evaluated under the same conditions.
Moreover, the long onion and spinach which were grown by sprinkling water obtained in Comparative Example 21 and normal agricultural water were also evaluated and compared in the same manner as described above.
As a result, the mineral water obtained in Examples 1 to 3 was different from those obtained using Comparative Example 21 and ordinary agricultural water, and the flavor (especially smell) of the long onion and spinach differed. It was delicious.
 実施例1~3で得られた3種のミネラル水を常に散水して育てた長ねぎとほうれん草は、比較例21や通常の農業用水を散水して育てた長ねぎとほうれん草に比べ、成長速度が、10%~100%(2倍)も速かった。
 水耕栽培をした場合、根の体積が実施例は比較例に比べて約2倍あった。
The long onion and spinach grown by constantly sprinkling the three mineral waters obtained in Examples 1 to 3 are faster than Comparative Example 21 and the long onion and spinach grown by sprinkling normal agricultural water. However, it was 10% to 100% (twice) faster.
When hydroponically cultivated, the root volume was about twice that of the comparative example.
<塩混合物の製造と評価>
比較例31、32、33
 表2に記載した市販品である食塩を入手し、それらを使用して後記のように評価した。
<Production and evaluation of salt mixture>
Comparative Examples 31, 32, 33
Commercially available salt described in Table 2 was obtained and used to evaluate as described below.
評価例5
 分析機関である公益財団法人塩事業センター、海水総合研究所にて、塩試験方法第4版に記載の方法で、実施例1の塩混合物、比較例31~33それぞれの金属と塩化ナトリウムとを定量分析した。
 測定方法は表2の最下行に示す。また、測定結果を表2に示す。
Evaluation Example 5
The salt mixture of Example 1 and the metals of each of Comparative Examples 31 to 33 and sodium chloride were analyzed by the method described in the salt test method 4th edition at the salt business center and seawater research institute, which are analytical institutions. Quantitative analysis was performed.
The measurement method is shown in the bottom row of Table 2. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 蒸発固液分離方法を用いて得られた実施例1の塩混合物には、市販品である比較例31~33の食塩に比べて、塩化ナトリウム(NaCl)とナトリウム(Na)の量が少なかった。
 それに対して、マグネシウム(Mg)、カリウム(K)、カルシウム(Ca)の量については、比較例33のカリウム(K)を除き、全て実施例1の塩混合物の方が多かった。
The amount of sodium chloride (NaCl) and sodium (Na) in the salt mixture of Example 1 obtained by using the evaporation solid-liquid separation method was smaller than the salt of Comparative Examples 31 to 33, which are commercially available products. .
On the other hand, regarding the amounts of magnesium (Mg), potassium (K), and calcium (Ca), all of the salt mixture of Example 1 was more than potassium (K) of Comparative Example 33.
評価例6
 実施例1~3で得られた塩混合物、及び、比較例31の市販食塩それぞれ30gを用いて、25℃で、それぞれ同量の水にできるだけ多く溶解し、同じ固形分濃度の無色透明の濃厚水溶液を作製した。該濃厚水溶液は飽和水溶液に近いものであった。
 10日間25℃に放置したところ、実施例1~3で得られた塩混合物の濃厚水溶液には、全く変化が見られなかったが、比較例31の市販食塩の濃厚水溶液は、結晶が容器壁一面に析出していた。
 実施例1~3で得られた塩混合物は、多くの塩の混合物であるため、塩化ナトリウム(NaCl)の結晶化(析出)が阻害された。
Evaluation Example 6
Using each of the salt mixture obtained in Examples 1 to 3 and 30 g of the commercial salt of Comparative Example 31, each of them was dissolved as much as possible in the same amount of water at 25 ° C. An aqueous solution was prepared. The concentrated aqueous solution was close to a saturated aqueous solution.
When the solution was allowed to stand at 25 ° C. for 10 days, no change was observed in the concentrated aqueous solutions of the salt mixtures obtained in Examples 1 to 3, but the concentrated aqueous solution of the commercial salt of Comparative Example 31 was not crystallized in the container wall. It was deposited on one side.
Since the salt mixture obtained in Examples 1 to 3 was a mixture of many salts, crystallization (precipitation) of sodium chloride (NaCl) was inhibited.
評価例7
 実施例1~3及び比較例31で得られた塩混合物をそれぞれ用いて、ナスの漬物を作った。
 両者を食して比較したところ、実施例1~3で得られた塩混合物の方が、市販の塩(比較例31)に比べて風味が良かった。
Evaluation Example 7
Eggplant pickles were made using the salt mixtures obtained in Examples 1 to 3 and Comparative Example 31, respectively.
When both were eaten and compared, the salt mixture obtained in Examples 1 to 3 had a better flavor than the commercially available salt (Comparative Example 31).
 本発明の蒸発固液分離方法で得られた塩混合物とミネラル水は、何れも今までの塩混合物やミネラル水とは、成分組成や水のクラスター構造等が異なると考えられるため、それを用いて調製した化粧料、健康食品、一般食品、農業用水、魚類等の養殖用水等として有用である。
 そのため、本発明は、健康食品分野、一般食品分野、化粧料分野、医農薬分野、農業分野、漁業分野等において広く利用されるものである。
The salt mixture and mineral water obtained by the evaporating solid-liquid separation method of the present invention are considered to be different from the conventional salt mixture and mineral water in that they have different component compositions, water cluster structures, etc. It is useful as cosmetics, health foods, general foods, agricultural water, fish water, etc.
Therefore, the present invention is widely used in the fields of health foods, general foods, cosmetics, medicines and agricultural chemicals, agriculture, fisheries, and the like.
  1  駆動水入口片
  2  入口側フランジ
  3  吸引管
  4  吸引孔
  5  仕切板
  6  主管スロート
  7  出方片
  8  外被管
  9  出力側フランジ
 10  フランジ
 11  吸気管
 12  消音器
 12a 水平部
 12b 垂直部
 12c 終端
 14  戻り配管
 15  吐出配管
 16  循環ポンプ
 17  水タンク水位
 18  オーバーフロー通風口
100  容器
101  下部半円筒部
102  上部角形部
103  海水投入口
104  蓋
105a 端壁
105b 端壁
106a 端板
106b 端板
107  傾斜面
108  真空計
109a 温度計
109b 温度計
110  撹拌機
111  固定凸部
112a 回転凹部体
112b 回転凹部体
113a 回転凹部
113b 回転凹部
114a 回転凹部溝
114b 回転凹部溝
115a 「く」の字
115b 「く」の字
120  加熱ユニット
121  蒸気室
122  蒸気供給装置
130  気体取出口
131  気体配管
140  粉末取出口
200  冷却器
300  減圧器
301  水エジェクタ
302  水循環ポンプ
303  水タンク
400  回収容器
404  液取出口
  A  海水
  B  塩混合物
  C  ミネラル水
  R  回転方向
DESCRIPTION OF SYMBOLS 1 Drive water inlet piece 2 Inlet side flange 3 Suction pipe 4 Suction hole 5 Partition plate 6 Main pipe throat 7 Outlet piece 8 Outer pipe 9 Output side flange 10 Flange 11 Intake pipe 12 Muffler 12a Horizontal part 12b Vertical part 12c Termination 14 Return pipe 15 Discharge pipe 16 Circulation pump 17 Water tank water level 18 Overflow vent 100 Container 101 Lower semi-cylindrical part 102 Upper square part 103 Seawater inlet 104 Lid 105a End wall 105b End wall 106a End plate 106b End plate 107 Inclined surface 108 Vacuum Total 109a Thermometer 109b Thermometer 110 Stirrer 111 Fixed convex portion 112a Rotating concave portion 112b Rotating concave portion 113a Rotating concave portion 113b Rotating concave portion 114a Rotating concave portion groove 114b Rotating concave portion groove 115a "C" shape 115b "C" shape 120 heating Unit 12 Steam chamber 122 steam supply device 130 gas outlet 131 gas pipe 140 powder outlet 200 condenser 300 the pressure reducer 301 water ejector 302 water circulation pump 303 water tank 400 collection container 404 Ekito outlet A sea B salt mixture C mineral water R rotational direction

Claims (10)

  1.  海水を蒸発固液分離して、塩混合物とミネラル水に分離する蒸発固液分離方法であって、
     少なくとも主たる蒸発固液分離中は、該海水の温度を25℃以上60℃以下に維持すると共に、減圧器を用いて容器内の圧力を1kPa以上20kPa以下に維持することを特徴とする蒸発固液分離方法。
    An evaporative solid-liquid separation method in which seawater is separated into evaporated solid and liquid, and separated into a salt mixture and mineral water,
    At least during the main evaporative solid-liquid separation, the temperature of the seawater is maintained at 25 ° C. or higher and 60 ° C. or lower, and the pressure in the container is maintained at 1 kPa or higher and 20 kPa or lower using a decompressor. Separation method.
  2.  少なくとも以下の操作(1)ないし(4)の全てを行って海水を蒸発固液分離する請求項1に記載の蒸発固液分離方法。
    (1)少なくとも主たる蒸発固液分離中は、該海水の温度を25℃以上60℃以下の温度範囲を維持するように上記容器内を加熱ユニットで加熱する加熱操作、
    (2)少なくとも主たる蒸発固液分離中は、水エジェクタを減圧器として用いて減圧して、該容器内を1kPa以上20kPa以下に維持し、該海水に含有される水の蒸発熱で該海水を冷却して該海水の温度を25℃以上60℃以下の温度範囲に維持する冷却操作、
    (3)該容器から流出された気体を、冷却器を用いて液化してミネラル水を得る液化操作、
    (4)該容器内に残った塩混合物を、該容器の粉末取出口から取り出して塩混合物を得る取出操作
    The evaporative solid-liquid separation method according to claim 1, wherein seawater is subjected to evaporative solid-liquid separation by performing at least all of the following operations (1) to (4).
    (1) A heating operation for heating the inside of the container with a heating unit so that the temperature of the seawater is maintained within a temperature range of 25 ° C. or more and 60 ° C. or less during at least main evaporation solid-liquid separation;
    (2) During at least main evaporative solid-liquid separation, the water ejector is decompressed using a decompressor to maintain the inside of the container at 1 kPa or more and 20 kPa or less, and the seawater is removed by the evaporation heat of water contained in the seawater. A cooling operation for cooling and maintaining the temperature of the seawater in a temperature range of 25 ° C. or higher and 60 ° C. or lower;
    (3) A liquefaction operation for liquefying the gas flowing out of the container using a cooler to obtain mineral water;
    (4) Taking out the salt mixture remaining in the container from the powder outlet of the container to obtain a salt mixture
  3.  上記水エジェクタの気体排出能力が、内容積が1mの容器を用いた場合に換算して、常圧体積20m/時間以上を有するものである請求項2に記載の蒸発固液分離方法。 The evaporative solid-liquid separation method according to claim 2, wherein the water ejector has a gas discharge capacity of at least 20 m 3 / hour of atmospheric pressure when converted into a container having an internal volume of 1 m 3 .
  4.  上記水エジェクタが、水循環ポンプを有する横噴射型の水エジェクタである請求項2又は請求項3に記載の蒸発固液分離方法。 The evaporative solid-liquid separation method according to claim 2 or 3, wherein the water ejector is a lateral injection type water ejector having a water circulation pump.
  5.  上記容器の体積をV[L]とし、該容器に投入される海水の質量をM[kg]とするときに、V[L]をM[kg]の2倍以上5倍以下に設定する請求項1ないし請求項4の何れかの請求項に記載の蒸発固液分離方法。 When the volume of the container is V [L] and the mass of seawater charged into the container is M [kg], V [L] is set to be 2 to 5 times M [kg]. The evaporative solid-liquid separation method according to any one of claims 1 to 4.
  6.  請求項1ないし請求項5の何れかの請求項に記載の蒸発固液分離方法を使用して海水を蒸発固液分離することを特徴とする塩混合物の製造方法。 A method for producing a salt mixture, characterized in that seawater is subjected to evaporative solid-liquid separation using the evaporative solid-liquid separation method according to any one of claims 1 to 5.
  7.  請求項1ないし請求項5の何れかの請求項に記載の蒸発固液分離方法を使用して海水を蒸発固液分離することを特徴とするミネラル水の製造方法。 A method for producing mineral water, characterized by evaporating solid-liquid separation of seawater using the evaporative solid-liquid separation method according to any one of claims 1 to 5.
  8.  請求項1ないし請求項5の何れかの請求項に記載の蒸発固液分離方法用の蒸発固液分離装置であって、
     少なくとも、撹拌機、加熱ユニット及び粉末取出口を有する容器;水エジェクタである減圧器;並びに;冷却器を具備するものであることを特徴とする蒸発固液分離装置。
    An evaporative solid-liquid separation device for an evaporative solid-liquid separation method according to any one of claims 1 to 5,
    An evaporative solid-liquid separation device comprising: a container having at least a stirrer, a heating unit, and a powder outlet; a decompressor that is a water ejector; and a cooler.
  9.  請求項1ないし請求項5の何れかの請求項に記載の蒸発固液分離方法を使用して海水を蒸発固液分離して得られるものであることを特徴とする塩混合物。 A salt mixture obtained by evaporating solid-liquid separation of seawater using the evaporating solid-liquid separation method according to any one of claims 1 to 5.
  10.  請求項1ないし請求項5の何れかの請求項に記載の蒸発固液分離方法を使用して海水を蒸発固液分離して得られるものであることを特徴とするミネラル水。

     
    A mineral water obtained by evaporating solid-liquid separation of seawater using the evaporating solid-liquid separation method according to any one of claims 1 to 5.

PCT/JP2017/045887 2017-03-08 2017-12-21 Evaporation solid-liquid separation method WO2018163563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019504338A JP6847474B2 (en) 2017-03-08 2017-12-21 Evaporation solid-liquid separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043958 2017-03-08
JP2017-043958 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018163563A1 true WO2018163563A1 (en) 2018-09-13

Family

ID=63448911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045887 WO2018163563A1 (en) 2017-03-08 2017-12-21 Evaporation solid-liquid separation method

Country Status (2)

Country Link
JP (1) JP6847474B2 (en)
WO (1) WO2018163563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754120A (en) * 2021-09-14 2021-12-07 重庆华捷地热能开发有限公司 Negative pressure reinforced scale separation method on hot spring well

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4613543Y1 (en) * 1966-10-20 1971-05-14
JPH11169850A (en) * 1997-12-11 1999-06-29 Hyuunetto Kk Treatment of sea water
JP2002121019A (en) * 2000-10-13 2002-04-23 Shuzo Nakazono Method of recovering salt and mineral water from sea water
JP2003212537A (en) * 2002-01-21 2003-07-30 Ichinoshio Kk Method and apparatus for manufacturing salt from seawater
JP2006007084A (en) * 2004-06-25 2006-01-12 Dainichiseika Color & Chem Mfg Co Ltd Mineral composition, manufacturing method therefor and usage thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634597U (en) * 1979-08-25 1981-04-04
JP4361761B2 (en) * 2003-06-06 2009-11-11 室戸海洋深層水株式会社 Salt making equipment
JP4280868B2 (en) * 2004-07-30 2009-06-17 株式会社 畠中醤油 Seawater concentration apparatus and seawater concentration method
JP5754038B2 (en) * 2009-02-03 2015-07-22 国立大学法人佐賀大学 Granular salt and method for producing the same
JP2010252752A (en) * 2009-04-28 2010-11-11 Owase Shinsosui Shio Gakusha Kk Method producing edible salt containing plant-based raw material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4613543Y1 (en) * 1966-10-20 1971-05-14
JPH11169850A (en) * 1997-12-11 1999-06-29 Hyuunetto Kk Treatment of sea water
JP2002121019A (en) * 2000-10-13 2002-04-23 Shuzo Nakazono Method of recovering salt and mineral water from sea water
JP2003212537A (en) * 2002-01-21 2003-07-30 Ichinoshio Kk Method and apparatus for manufacturing salt from seawater
JP2006007084A (en) * 2004-06-25 2006-01-12 Dainichiseika Color & Chem Mfg Co Ltd Mineral composition, manufacturing method therefor and usage thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754120A (en) * 2021-09-14 2021-12-07 重庆华捷地热能开发有限公司 Negative pressure reinforced scale separation method on hot spring well

Also Published As

Publication number Publication date
JP6847474B2 (en) 2021-03-24
JPWO2018163563A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
KR100604353B1 (en) The manufacturing method of calcium ionic water using a shell and equipment thereof
JP2018007654A (en) Method for acquiring organism derived-liquid
US20100063163A1 (en) Extract Solution Comprising a B-Cryptoxanthin Component and Food and Drink Soaps
WO2018163563A1 (en) Evaporation solid-liquid separation method
AU2014368384A1 (en) A sea water harvesting process
JP6533936B2 (en) High concentration, large volume processing freeze concentrator
JP2018028004A (en) Method for producing aroma oil
ES2257977B1 (en) METHOD AND SYSTEM FOR OBTAINING A LIQUID SALT, AND SALTS OBTAINED.
US2764880A (en) Freezing apparatus
JP2013507982A (en) Desalination of salted fermented foods using sake
JP2009249259A (en) Mineral salt and method of manufacturing the same
Dette et al. Freeze concentration of black currant juice
CN109350990A (en) A kind of succinic acid purification system and technique
WO2020026519A1 (en) Hydrogen generator and method for producing hydrogen generator
JP2008289407A (en) Method and system for producing concentrated seawater having preservation function, and method for preserving marine product using the concentrated seawater
JP2019097538A (en) Production method of biological growth material
TW201228944A (en) Method of preparing seawater concentrate and seawater mineral powder
Hamid et al. Application of progressive freeze concentration for water purification using rotating crystallizer with anti-supercooling holes
CN207286702U (en) A kind of magnesium nitrate evaporation equipment
JP4280868B2 (en) Seawater concentration apparatus and seawater concentration method
JP2004073121A (en) Plant extract-containing salt, method for producing planting extract-containing brine, method for producing plant extract-containing salt, method for producing plant extract-containing bittern and apparatus for producing plant extract-containing brine
CN104256417B (en) A kind of garlic, the preparation method of onion slurry
CN103966026A (en) Method for preparing osmanthus concrete by using low-temperature falling film evaporation technology
CN209005220U (en) A kind of food evaporation concentration device
JP2006219391A (en) Deep water powder and deep water tablet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504338

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900206

Country of ref document: EP

Kind code of ref document: A1