JP6533936B2 - High concentration, large volume processing freeze concentrator - Google Patents

High concentration, large volume processing freeze concentrator Download PDF

Info

Publication number
JP6533936B2
JP6533936B2 JP2017255358A JP2017255358A JP6533936B2 JP 6533936 B2 JP6533936 B2 JP 6533936B2 JP 2017255358 A JP2017255358 A JP 2017255358A JP 2017255358 A JP2017255358 A JP 2017255358A JP 6533936 B2 JP6533936 B2 JP 6533936B2
Authority
JP
Japan
Prior art keywords
ice
concentrate
concentration
liquid mixture
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017255358A
Other languages
Japanese (ja)
Other versions
JP2019076883A (en
Inventor
正博 手塚
正博 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ice20
Original Assignee
Ice20
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ice20 filed Critical Ice20
Publication of JP2019076883A publication Critical patent/JP2019076883A/en
Application granted granted Critical
Publication of JP6533936B2 publication Critical patent/JP6533936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Centrifugal Separators (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は溶液から濃縮液、または溶質濃度希薄液を得ることに関する。  The present invention relates to obtaining a concentrate or a solute concentration dilute solution from a solution.

凍結による濃縮は、溶液が均一に濃縮される(得られる濃縮液の多成分溶質の混合比(各溶質量/溶質合計量)の変化が少ない)また、低温度の技術でもある。このため、他の濃縮操作に比べ最も品質の良い濃縮物の得られる技術とされている。さらに、凍結による濃縮は省エネルギな技術である(凝固潜熱は蒸発潜熱の約1/7)。しかし、凍結濃縮の技術は氷と濃縮液の分離が難しい。このため高濃度の濃縮液を得るためには装置の構成、操作が複雑となり機動性に欠け、また高装置コストとなり普及していない。(非特許文献1、2)In the concentration by freezing , the solution is uniformly concentrated (the change in the mixing ratio of the multicomponent solutes of the resulting concentrate (each solution mass / total amount of solutes) is small) . It is also a low temperature technology. For this reason, it is considered as the technology which can obtain the highest quality concentrate compared with other concentration operation. Furthermore, concentration by freezing is an energy saving technology (the latent heat of solidification is about 1/7 of the latent heat of evaporation). However, freeze concentration techniques make it difficult to separate ice and concentrate. For this reason, in order to obtain a concentrated liquid having a high concentration, the construction and operation of the apparatus are complicated, the mobility is lacking, and the cost of the apparatus is high and not widespread. (Non-patent documents 1 and 2)

1.1 氷柱生成装置による方法
非特許文献は 掻面型製氷機と縦型円筒フイルタを連結した連続処理の凍結濃縮装置の研究を行っている。しかし、左記装置は海洋深層水(塩分濃度3.6%)への適用の場合、海洋深層水へNaClを加える事により濃縮が可能となり、また上記NaCl付加海洋深層水により得られる濃縮液の塩分濃度は7%が限界であった事を報告している。
1.1 Method by Ice Column Generator Non-Patent Document 3 conducts research on a continuous processing freeze concentration apparatus in which a scraping surface ice making machine and a vertical cylindrical filter are connected. However, in the case of application to deep ocean water (with a salinity of 3.6%), the device described on the left can be concentrated by adding NaCl to deep ocean water, and the salinity of the concentrate obtained by the above-mentioned NaCl added deep ocean water It is reported that the concentration was 7% limit.

1.2 冷却回転円筒による方法
近年、以下の特性を持つ凍結濃縮装置の研究が行われた(非特許文献4,5)。1)処理量が多く、装置コストが安い。2)定常運転までの立ち上がりが速い。3)数時間・数日間単位の断続的運転が可能。
1.2 Method by Cooling Rotating Cylinder In recent years, research has been conducted on a freeze-concentrator having the following characteristics (Non-Patent Documents 4 and 5). 1) There is a large amount of processing and the cost of equipment is low. 2) The start up to steady operation is fast. 3) Intermittent operation of several hours and several days is possible.

上記非特許文献4、5の凍結濃縮装置は基本的に以下の氷生成機と分離機から構成されている。
原液タンクからの原液(被濃縮液)が氷生成機の氷生成機原液槽に送られる。上記氷生成機(冷却回転円筒氷生成機)は、氷生成機原液槽と、その氷生成機原液槽に浸された冷却回転円筒と、その冷却回転円筒外表面に接近して取り付けられた回転円筒掻き取り刃とを備え、上記冷却回転円筒外表面に原液から氷液混合物(氷と濃縮液の混合物)を形成し、形成された氷液混合物を回転円筒掻き取り刃により連続的に掻き取り氷生成機外に排出する。
The freeze concentration apparatus of the above non-patent documents 4 and 5 basically comprises an ice generator and a separator as described below.
The stock solution (concentrated solution) from the stock solution tank is sent to the ice generator stock solution tank of the ice generator. The ice generator (cooling rotary cylinder ice generator) comprises an ice generator stock solution tank, a cooling rotary cylinder immersed in the ice generator stock solution tank, and a rotary cylinder mounted close to the cooling rotary cylinder outer surface An ice liquid mixture (mixture of ice and concentrate) is formed from the stock solution on the outer surface of the cooled rotating cylinder, and the formed ice liquid mixture is continuously scraped off by the rotating cylinder scraping blade. Discharge to the outside of the ice generator.

上記氷生成機で生成された氷液混合物はホッパーと管状スクリューコンベアにより以下の分離機(横型差速掻き取り刃分離機)に送られる。
この分離機は回転軸が水平で高速回転する多孔壁のバスケット(横型多孔壁バスケット)、左記高速回転多孔壁バスケットの内側に取り付けられその高速回転多孔壁バスケットと一体となり回転する多孔性のスクリーン及び左記スクリーンに接近して回転する差速掻き取り刃(左記バスケットの回転と差速回転している)を備えている。
この分離機の動作は以下となる。上記氷生成部からの氷液混合物が(上記ホッパーと管状スクリューコンベアにより)バスケットの奥端部に投入される。投入された氷液混合物は遠心力を受け高速回転多孔壁バスケットの内側にあるスクリーン面上に広がる。広がった氷液混合物は、スクリーンに接近して回転する差速掻き取り刃により排出方向に移動しながら高速回転遠心力により氷液混合物中の液体(濃縮液)を氷液混合物から分離する(液体はスクリーンと高速回転多孔壁バスケットの孔を通過することになる)。分離氷(氷液混合物の脱液物)はバスケットの排出端からバスケットの回転遠心力によりバスケットの外へ排出される。
The ice-liquid mixture produced by the ice generator is fed to the following separator (horizontal differential speed scraping blade separator) by a hopper and a tubular screw conveyor.
This separator is a porous wall basket (horizontal porous wall basket) whose rotation axis is horizontal and rotates at high speed, a porous screen which is attached to the inside of the high speed rotational porous wall basket and left with the high speed rotating porous wall basket It has a differential speed scraping blade (which rotates differentially with the rotation of the left basket) which rotates in close proximity to the screen on the left.
The operation of this separator is as follows. An ice fluid mixture from the ice generator is introduced into the back end of the basket (by the hopper and the tubular screw conveyor). The input ice fluid mixture is subjected to centrifugal force and spreads on the screen surface inside the high speed rotating porous wall basket. The spread ice liquid mixture separates the liquid (concentrate) in the ice liquid mixture from the ice liquid mixture by high-speed rotational centrifugal force while moving in the discharge direction by the differential speed scraping blade rotating close to the screen (liquid Will pass through the holes in the screen and high speed rotating porous wall basket). Separated ice (droplet of ice liquid mixture) is discharged from the discharge end of the basket to the outside of the basket by the rotational centrifugal force of the basket.

上記装置による海水の凍結濃縮試験では、原液濃度(塩分)3.1〜3.4wt%及び3.6〜5.4wt%においてそれぞれ濃縮液濃度8.9〜11.9wt%、9.8〜15.9wt%を得、また溶質回収率(=濃縮液溶質量/原液溶質量)は86%を得ている。  In the freeze concentration test of seawater by the above-mentioned apparatus, the concentrate concentrations of 8.9 to 11.9 wt% and 9.8 to 9.8 to 1 at a stock solution concentration (salt content) of 3.1 to 3.4 wt% and 3.6 to 5.4 wt%, respectively. 15.9 wt% is obtained, and the recovery rate of the solute (= concentrate solution mass / stock solution solution mass) is 86%.

2.Ca及び必須ミネラル成分と海水
Caイオンは、生命活動維持のための細胞への情報伝達物質であり、基本栄養素である。このためCaは人体(生体)のほとんどの機能に関係し、Caの不足は非常に多くの重要な疾患の原因となっている(急増する心筋梗塞、動脈硬化、糖尿病、老人性痴呆症及び骨粗しょう症等々)。また、Caは日本人にとって最も不足とされている必須ミネラル成分である(厚生労働省 2015)。
一方、各種必須ミネラル成分は、生体内で互いに影響しあい(その濃度バランスを保ち)効果を発揮している。ミネラルのアンバランスな摂取は、生体内のミネラルバランスを崩し様々な健康障害を引き起こす(非特許文献6、7)。さらに、近年必須微量ミネラル成分の重要性及びバランスのよい摂取の必要性が明らかにされてきている。
2. Ca and essential mineral components and seawater Ca ion is a signal transmitter to cells for maintaining vital activity and is a basic nutrient . For this reason, Ca is involved in most functions of the human body (living body), and the deficiency of Ca is the cause of a large number of important diseases (surgery myocardial infarction, arteriosclerosis, diabetes, senile dementia and bone Osteoporosis etc.). In addition, Ca is an essential mineral ingredient that is considered to be the most insufficient for Japanese (Ministry of Health, Labor and Welfare 2015).
On the other hand, various essential mineral components exert an effect of mutually affecting each other in the living body (maintaining the concentration balance). Unbalanced intake of minerals disrupts the in vivo mineral balance and causes various health problems (Non-patent Documents 6 and 7). Furthermore, in recent years the importance of essential trace mineral components and the need for a balanced intake have been identified.

海水は以下の特性を持ち人体(及び生体)への優れた天然のミネラル液の供給源となり得る。
a)海水は人体(及び生体)に必要な必須ミネラル成分を全て含有している。
b)海水は人体(及び生体)のミネラルバランス(必須ミネラル成分の相互比)に近 い。
c)海水中のミネラルは消化管からの吸収性に優れたイオン化されたミネラルである 。
d)海水濃縮液は添加物を含まない天然のミネラル液である。
しかし、海水はSO イオンを含有するため濃縮時に(CaSO を析出し)Caイオンが著しく減少する。また、濃縮時にミネラルの相互比が変化してしまう。このため海水からのCaを豊富に含み、かつミネラルバランスに優れたミネラル濃縮液の生産は困難である。
Seawater has the following characteristics and can be a source of excellent natural mineral fluid to the human body (and living body).
a) Seawater contains all the essential mineral components necessary for the human body (and the living body).
b) Seawater is close to the human body (and living body) mineral balance (the mutual ratio of essential mineral components).
c) Minerals in seawater are ionized minerals that are highly absorbable from the digestive tract.
d) seawater concentrate Ru mineral liquid der natural without additives.
However, since seawater contains SO 4 ions, Ca ions are significantly reduced during concentration (precipitating Ca 2 SO 4 ). In addition, the mutual ratio of minerals changes during concentration . For this reason, it is difficult to produce a mineral concentrate which is rich in Ca from seawater and excellent in mineral balance.

3.海水の高濃度濃縮とCaイオンの保持
3.1 蒸発濃縮
海水は、通常の蒸発濃縮においては消費エネルギ量が多く(蒸発潜熱は凝固潜熱の約7倍)、また高温加熱面にCaSO 及びCaCO スケールを析出しCa成分が著しく減少する。さらに、左記析出するスケールは伝熱抵抗による消費熱エネルギの増大(非特許文献2)、及び強固なスケールであることによる除去の困難の問題を生じる。
3. High concentration concentration of seawater and retention of Ca ion 3.1 Evaporative concentration Sea water consumes a large amount of energy in normal evaporation concentration (the latent heat of vaporization is about 7 times the latent heat of solidification), and Ca SO 4 and The Ca 3 O 3 scale precipitates, and the Ca component significantly decreases. Furthermore, the above-mentioned deposited scale causes the problem of the increase of the consumed heat energy due to the heat transfer resistance (Non-Patent Document 2) and the difficulty of removal due to the strong scale.

3.2 海水の淡水化技術
海水の濃縮には海水の淡水化技術としてのフラッシュ蒸発法及びRO膜法(Reverse Osmosis)がある。しかし、海水(塩分濃度3.5wt%)の淡水化の場合、淡水化の残液となる濃縮液の塩分濃度は低く7wt%以下である。左記濃度以上の濃縮液を得るためにはCaSO 析出の問題が生じる事になる。CaSO の析出は蒸発加熱面へのスケールの問題、RO膜の急速な劣化、及び濃縮液中のCa成分の減少の問題となる。
3.2 Seawater Desalination Technology There are two types of seawater concentration: flash evaporation and RO membrane (Reverse Osmosis) as seawater desalination technology. However, in the case of desalination of seawater (a salt concentration of 3.5 wt%), the salinity concentration of the concentrate which is the residual solution of desalination is 7 wt% or less. In order to obtain a concentrate having the above-mentioned concentration or more, the problem of Ca SO 4 precipitation will occur. The deposition of Ca 2 SO 4 leads to problems of scale on the evaporation heating surface, rapid deterioration of the RO film, and problems of reduction of the Ca component in the concentrate.

3.3 NF膜+RO膜による海水の濃縮とCaイオンの保持
NF膜(Nano Filtration)を用い海水からSO イオンを除去し(CaSO 析出の防止)、そのSO イオンの除去された液をRO膜により濃縮する技術がある。しかし、濃縮濃度及びSO イオン除去の限界、回収率の低下と相互比の変動等の課題を抱える。
3.3 Enrichment of seawater with NF membrane + RO membrane and retention of Ca ion The SO 4 ion is removed from seawater using NF membrane (Nano Filtration) (prevention of Ca SO 4 deposition), and the liquid from which the SO 4 ion is removed There is a technology to concentrate it with RO membrane. However, there are problems such as concentration concentration and limit of SO 4 ion removal, reduction of recovery rate and fluctuation of mutual ratio .

a)高濃度濃縮
非特許文献9、10は海洋深層水の濃縮を目的としてNF膜+RO膜使用の開発研究を行っている。NF膜により海洋深層水からSO イオンを除去し、RO膜(高圧)により左記液を高濃度へ濃縮する。試験の結果、濃縮は濃縮液15.1%(塩分濃度)が限界であり、また濃縮液濃度14%の5ヶ月連続安定運転の結果を報告している。なお、この研究ではNF膜処理廃棄液を原液に戻すことにより回収率を高めることが出来るとしている。しかし、この場合RO膜処理後の濃縮液のSO イオン濃度が増加することになる。
a) High concentration concentration Non-patent documents 9 and 10 are carrying out development research of use of NF membrane + RO membrane for the purpose of concentration of deep ocean water. SO 4 ions are removed from deep ocean water by an NF membrane, and the left liquid is concentrated to a high concentration by an RO membrane (high pressure). As a result of the test, the concentration is limited to the concentration of 15.1% (salt concentration) of the concentrate, and the result of 5 months continuous stable operation with a concentration of 14% of the concentrate is reported. In this study, recovery rate can be increased by returning the NF membrane treatment waste solution to the stock solution. However, in this case, the concentration of SO 4 ions in the concentrate after RO membrane treatment will increase.

b)低濃度濃縮
特許文献1は海水(及び海洋深層水)からCa含有量の多い濃縮液を製造する事を目的としてNF膜+RO膜の使用についても記している。NF膜により海水からSO イオンを除去し、RO膜により左記液を低濃度濃縮する。低濃度液(RO膜処理液)からの高濃度液への濃縮は蒸発(実施例においては真空蒸発法)によって行うとしている。
b) Low Concentration Enrichment Patent Document 1 also describes the use of an NF membrane + an RO membrane for the purpose of producing a concentrate having a high Ca content from seawater (and deep ocean water). The SO 4 ions are removed from seawater by the NF membrane, and the left solution is concentrated at a low concentration by the RO membrane. The concentration from the low concentration solution (RO membrane treatment solution) to the high concentration solution is performed by evaporation (in the example, a vacuum evaporation method).

4.凍結による海水の高濃度濃縮とCaイオンの保持
非特許文献11及び12は海水の凍結においてその冷却温度を低下させて行った時、Na SO ・10H の析出が起こり(冷却温度の低下と伴に)濃縮液中のSO イオン濃度が急激に低下することを記している(非特許文献11は塩分濃度23.3wt%、氷点―20.5℃迄、非特許文献12は氷点―40℃迄の実験)。
上記非特許文献11の記述は海水(塩分(全固型物)濃度3.5wt%、SO イオン濃度0.27wt%、Caイオン濃度0.042wt%、Mgイオン濃度0.12wt%)の冷却により濃縮液の塩分濃度約9.8wt%(SO イオン濃度約0.7wt%、Caイオン濃度約0.17wt%、氷点約―6℃)からNa SO ・10H の析出が起こり、さらに冷却温度(氷点)の低下(濃縮液の濃度の上昇)と伴にSO イオン濃度が急激に低下するとしている。同時にSO 濃度の低下によりCa濃度が増加する(濃縮液濃度に正確に比例する)ことを記している。
4. High concentration concentration of seawater by freezing and retention of Ca ion When non-patent documents 11 and 12 are performed by lowering the cooling temperature in freezing of seawater, precipitation of Na 2 SO 4 · 10H 2 O occurs (cooling temperature It is noted that the SO 4 ion concentration in the concentrate drops sharply (with non-patent reference 11) (non-patent document 11: salt concentration 23.3 wt%, freezing point −20.5 ° C., non-patent document 12: freezing point) -Experiment at 40 ° C).
The above description is seawater Non-Patent Document 11 (salinity (total solid matter) concentration of 3.5 wt%, SO 4 ion concentration 0.27 wt%, Ca ion concentration 0.042wt%, Mg ion concentration 0.12 wt%) cooling Precipitation of Na 2 SO 4 · 10H 2 O occurs from a salt concentration of about 9.8 wt% ( SO 4 ion concentration about 0.7 wt%, Ca ion concentration about 0.17 wt%, freezing point about -6 ° C) Furthermore, it is supposed that the concentration of SO 4 ions falls rapidly with the decrease of the cooling temperature (freezing point) (the increase of the concentration of the concentrate). At the same time, it is noted that the concentration of Ca increases with the decrease of the concentration of SO 4 (it is exactly proportional to the concentration of the concentrate).

第5062728号No. 5062728

食品工業42(11),光琳、43−49,1999Food industry 42 (11), Koetsu, 43-49, 1999

日本海水学会誌 第60巻 第5号 p.336,p.340 2006Journal of the Japan Seawater Society Vol. 60, No. 5 p. 336, p. 340 2006

富山県工業技術センタ−研究報告,No.15 III−52〜53 2001Toyama Prefectural Industrial Technology Center-Research report, no. 15 III-52 to 2001

化学工学論文集、Vol.29,No.5,pp.707−710 2003Chemical Engineering Journal, Vol. 29, No. 5, pp. 707-710 2003

化学工学論文集、Vol.33,No.4,pp.319−322 2007Chemical Engineering Journal, Vol. 33, no. 4, pp. 319-322 2007

カルシウムその基礎・臨床・栄養、全国牛乳普及協会、ライフサイエンス出版株式会社、pp.236−251 1999Calcium, Basic, Clinical, Nutrition, National Milk Spreading Association, Life Science Publishing Co., Ltd., pp. 236-251 1999

健康・栄養―知って起きたい基礎知識、国立健康・栄養研究所、第一出版 p.72 平成11年Health and nutrition-basic knowledge that you want to know, National Institute of Health and Nutrition, 1st publication p. 72 1999

水とミネラル新常識、同文書院、pp.79−80,pp.90−92 2000New common knowledge of water and minerals, the document office, pp. 79-80, pp. 90-92 2000

富山県工業技術センタ−研究報告、No.17 III−47〜48 2003Toyama Prefectural Industrial Technology Center-Research report, No. 17 III-47 to 48 2003

富山県工業技術センタ−研究報告、No.18 III−47〜48 2004Toyama Prefectural Industrial Technology Center-Research report, No. 18 III-47 to 48 2004

東京工業試験所報告 第53回、第11号、368−369 1958Tokyo Industrial Research Institute Report No. 53, No. 11, 368-369 1958

T.G.Thompson et al.,Am,Sci.,254,227 1956T. G. Thompson et al. , Am, Sci. , 254, 227 1956

1.冷却回転円筒氷生成機と差速掻き取り刃分離機を用いた凍結濃縮装置
上記記述(0004〜0007)の冷却回転円筒氷生成機と差速掻き取り刃分離機を用いた凍結濃縮装置は以下の課題を抱える。
1.1 濃縮液への氷の混入
分離機において氷液混合物から分離された濃縮液への氷の混入の問題が生じる。
1. Freeze-concentrating device using a cooling-rotating cylindrical ice generator and a differential-speed scraping blade separator A freezing-concentrating device using a cooling-rotating cylindrical ice generator and a differential speed scraping blade separator of the above description (0004 to 0007) Face the challenges of
1.1 Inclusion of ice in the concentrate The problem of incorporation of ice in the concentrate separated from the ice liquid mixture in the separator arises.

1.2 ホッパーとスクリューコンベアの使用
この装置は氷生成機から分離機への氷液混合物の供給がホッパーと管状のスクリューコンベア(以下ホッパー・スクリューコンベアと記す場合もある)によって行われている。このホッパー・スクリューコンベアの使用は以下等の問題を生じる。
a)ホッパーとスクリューコンベアの接続部で氷液混合物の架橋が生じやすい。
b)装置が小型で分離機が小さくなるほどスクリューコンベアの管径が細くなる。このため装置が小型になるほどスクリューコンベアが装置の処理可能量を決める事になる、と同時に装置が小型になるほど装置の処理可能量の減少量が多くなる。また、ホッパー出口の開口幅はスクリューコンベアの管径以下でなければならない。このため装置が小型になるほど氷液混合物がホッパーで詰まることになり氷液混合物の供給が不可能となる。
c)この装置は分離機の氷液混合物の可能処理量に対して氷生成機での氷液混合物の生成量が少ない。このため氷生成機の氷液混合物の生成量を増やす運転及び分離機1台に対して氷生成機を複数台の装置としたいが、上記a)及びb)の問題のために装置の処理量を増やすことができない。
d)(ホッパー・スクリューコンベアの使用による)装置内の接続部及び稼働部の増加は、装置の故障確率を高める事になる。
1.2 Use of Hopper and Screw Conveyor In this device, the supply of ice fluid mixture from the ice generator to the separator is performed by a hopper and a tubular screw conveyor (hereinafter sometimes referred to as a hopper-screw conveyor). The use of the hopper and screw conveyor causes the following problems.
a) Crosslinking of the ice liquid mixture is likely to occur at the connection between the hopper and screw conveyor.
b) The smaller the device and the smaller the separator, the smaller the pipe diameter of the screw conveyor. For this reason, the smaller the size of the device, the screw conveyor determines the throughput of the device, and the smaller the size of the device, the greater the reduction of the throughput of the device. Also, the opening width of the hopper outlet should be equal to or less than the diameter of the screw conveyor. For this reason, the smaller the size of the apparatus, the more the ice liquid mixture is clogged in the hopper, which makes it impossible to supply the ice liquid mixture.
c) This device produces less ice fluid mixture in the ice generator than the possible throughput of the ice fluid mixture in the separator. For this reason, the operation of increasing the amount of ice liquid mixture produced by the ice generator and the ice generator should be a plurality of devices for one separator, but due to the problems a) and b), the throughput of the device Can not increase.
d) The increase of connections and moving parts in the device (by using hopper and screw conveyor) will increase the probability of failure of the device.

2.海水からの天然ミネラル高濃度濃縮液の製造
海水からの天然ミネラル高濃度濃縮液の生産は、従来技術では濃縮液のCaミネラルイオンの保持・濃縮及びミネラルバランス、また装置の機動性、装置コスト、エネルギ消費に問題・限界がある。
2. Production of Concentrated Natural Mineral Concentrate from Seawater Production of concentrated concentrate of natural mineral from seawater is, according to the prior art, retention and concentration of Ca mineral ions in the concentrate and mineral balance, and also operation of the device, cost of the device, There are problems / limits in energy consumption .

本発明の凍結濃縮の方法及び装置は、上記課題を解決するために基本的に以下の氷生成部と分離部から構成する。
氷生成部は上記記述(0005)の氷生成機を用いる。なお、冷却回転円筒外表面の冷却は冷凍機を用い回転円筒内表面にブライン、または冷媒(フレオン等)を流すことにより行う。
この氷生成部は本発明において以下の特性を持つ。
1.以下の理由により装置単位容積及び単位時間当たりの原液の処理量(氷液混合物の 生成量)を非常に多くすることができる。
・単位溶液量及び単位時間当たりの冷却面積(冷却回転円筒外表面の面積)が非常に大きい。
・原液と原液冷却面(冷却回転円筒外表面)の温度差を非常に大きく設定できる。
2.以下の理由により濃縮倍率の高い濃縮液の氷液混合物を生成できる。
・原液と原液冷却面の温度差を非常に大きく設定できる。
・冷却回転円筒は、冷却回転円筒が氷生成機原液槽に浸されている時に冷却回転円筒外表面に氷液混合物を生成し、冷却回転円筒の回転と伴に(冷却回転円筒外表面に形成された)氷液混合物が原液槽の液面を離れ気体中(空気中等)で氷液混合物の冷却が進行する。このため原液槽の液面を離れた氷液混合物は、氷液混合物中の液(濃縮液)が原液槽中に拡散する事なく氷液混合物中で液の割合が減少し(氷の割合が増加し)液(濃縮液)の濃度が増加する。
3.以下の理由により目的とする濃度の濃縮液を容易・迅速に得ることができる。
・単純な操作(生成される氷液混合物の氷と濃縮液の割合を変える冷却回転円筒の冷却温度、回転数、及び原液溶質濃度の調整)により目的とする濃度の濃縮液、または溶質濃度希薄液(以下に記す分離氷を融解した液)を容易・迅速に得ることができる。
The method and apparatus for freeze concentration according to the present invention basically comprises the following ice generating unit and separating unit in order to solve the above problems.
The ice generator uses the ice generator described above (0005). The outer surface of the cooling rotary cylinder is cooled by flowing brine or refrigerant (freon or the like) over the inner surface of the rotating cylinder using a refrigerator.
This ice generating part has the following characteristics in the present invention.
1. The unit volume of the apparatus and the throughput of the undiluted solution per unit time (the volume of the ice liquid mixture) can be extremely increased for the following reasons.
The unit solution volume and the cooling area per unit time (the area of the outer surface of the cooled rotating cylinder) are very large.
The temperature difference between the stock solution and the stock solution cooling surface (the outer surface of the cooling rotary cylinder) can be set extremely large.
2. An ice liquid mixture of concentrated liquid with high concentration ratio can be generated for the following reasons.
・ The temperature difference between the stock solution and the stock solution cooling surface can be set extremely large.
-The cooling rotary cylinder forms an ice-liquid mixture on the outer surface of the cooling rotary cylinder when the cooling rotary cylinder is immersed in the ice generator stock solution tank, and forms with the rotation of the cooling rotary cylinder (formed on the outer surface of the cooling rotary cylinder The ice liquid mixture leaves the liquid surface of the stock solution tank and cooling of the ice liquid mixture proceeds in gas (in air, etc.). For this reason, in the ice-liquid mixture leaving the liquid surface of the stock solution tank, the ratio of the liquid in the ice-liquid mixture decreases (the ratio of ice decreases) without the liquid (concentrate) in the ice-liquid mixture spreading in the stock solution tank. The concentration of the liquid (concentrate) increases.
3. A concentrate having a target concentration can be easily and rapidly obtained for the following reasons.
· Concentrated solution of desired concentration by simple operation (adjustment of the cooling temperature, rotation speed, and undiluted solution solute concentration of the cooling rotating cylinder to change the ratio of ice and concentrated solution of the generated ice liquid mixture), or solute concentration dilution A liquid (a liquid obtained by melting separated ice described below) can be easily and rapidly obtained.

上記氷生成部で生成された氷液混合物は分離部に送られる。以下には氷生成部から分離部への氷液混合物の移動手段を自然落下とした場合について記す。自然落下は氷液混合物の多量移動(処理量の多量化)、また装置の単純化等を可能とする。装置の単純化(装置の接続部及び稼働部を少なくする事)は、装置の故障確率を減少させる事になる。なお、この自然落下は複数の氷生成部と1台の分離部の組み合わせの間で行われてもよい。また自然落下による氷液混合物の移動手段がベルトコンベアを介しての自然落下であっても良い。このため分離部が氷生成部の上方に位置する場合があってもよい。  The ice-liquid mixture produced in the ice producing section is sent to the separating section. The following describes the case where the means for moving the ice-liquid mixture from the ice generation unit to the separation unit is a natural drop. Spontaneous drop enables mass movement of the ice-liquid mixture (multiplication of throughput), simplification of the apparatus, and the like. The simplification of the device (reducing the number of connection and operation parts of the device) will reduce the probability of failure of the device. Note that this natural fall may be performed between the combination of a plurality of ice generating units and one separating unit. Also, the means for moving the ice-liquid mixture by natural fall may be natural fall via a belt conveyor. For this reason, the separation unit may be located above the ice generation unit.

ここでの分離部は氷生成部からの氷液混合物を自然落下により受け連続処理することができる構造となっている(縦型差速掻き取り刃分離機)。この分離機は高速回転する多孔壁のバスケット、左記高速回転多孔壁バスケットの内側に取り付けられその高速回転多孔壁バスケットと一体となり回転する多孔性のスクリーン、左記スクリーンに接近して回転する差速掻き取り刃(バスケットの回転と差速回転している)及び左記高速回転多孔壁バスケットの上端(分離氷の排出口が上部)、または下端(分離氷の排出口が下部)で分離部筐体の内壁に近接して高速回転多孔壁バスケットと一緒に回転する付着氷掻き取り刃を備えている。
この分離機の動作は以下となる。氷生成部からの氷液混合物が自然落下により上記高速回転多孔壁バスケットの底部、または上部に投入される。投入された氷液混合物は回転遠心力を受け高速回転多孔壁バスケットの内側にあるスクリーン面上に広がる。広がった氷液混合物は、スクリーンに接近して回転する差速掻き取り刃により排出方向に移動しながら高速回転遠心力により氷液混合物中の液体(濃縮液)を氷液混合物から分離する(液体はスクリーンと高速回転多孔壁バスケットの孔を通過することになる)。分離氷(氷液混合物の脱液物)は高速回転多孔壁バスケットの排出端(上端、または下端)から高速回転多孔壁バスケットの回転遠心力および付着氷掻き取り刃によりバスケットの外へ排出される。
The separation unit here has a structure capable of receiving the ice-liquid mixture from the ice generation unit by natural fall and continuously processing it (vertical differential speed scraping blade separator). This separator is a high speed rotating porous wall basket, a porous screen mounted on the inside of the high speed rotating porous wall basket and rotated integrally with the high speed rotating porous wall basket, a differential speed scraper rotating close to the left screen. Of the separation housing at the upper end (upper part of the separated ice outlet) or lower end (lower part of the separated ice outlet) of the removal blade (rotating differentially with the rotation of the basket) and left high speed rotating porous wall basket An attached ice scraping blade is provided that rotates with the high speed rotating porous wall basket in close proximity to the inner wall.
The operation of this separator is as follows. An ice-liquid mixture from the ice generator is dropped to the bottom or top of the high-speed rotating porous wall basket by free fall. The input ice fluid mixture is subjected to rotational centrifugal force and spreads on the screen surface inside the high-speed rotating porous wall basket. The spread ice liquid mixture separates the liquid (concentrate) in the ice liquid mixture from the ice liquid mixture by high-speed rotational centrifugal force while moving in the discharge direction by the differential speed scraping blade rotating close to the screen (liquid Will pass through the holes in the screen and high speed rotating porous wall basket). Separated ice (droplet of ice liquid mixture) is discharged from the discharge end (upper end or lower end) of the high speed rotating porous wall basket to the outside of the basket by the rotating centrifugal force and the attached ice scraping blade of the high speed rotating porous wall basket .

上記における付着氷掻き取り刃とは、差速掻き取り刃分離機の分離氷の排出口において分離機筐体の内壁に付着し蓄積する分離氷を掻き取るものである。高速回転多孔壁バスケットの排出端から放出される分離氷(の一部)は、分離機筐体の内壁に付着ししだいにその付着厚みを増加させやがて(通過液室を形成する 高速回転多孔壁バスケットと分離機の静止固定壁を隔てる)クリアランスを通過し濃縮液に混入することになる。本発明では上記の分離氷の濃縮液への混入を防止するために高速回転多孔壁バスケットの排出端に分離機筐体の内壁に近接して高速回転多孔壁バスケットと一緒に回転する付着氷掻き取り刃を設ける。なお、この付着氷掻き取り刃は、本発明の差速掻き取り刃分離機である縦型差速掻き取り刃分離機及び横型差速掻き取り刃分離機のどちらの排出端にも設けることが出来る。The adhered ice scraping blade in the above is to scrape the separated ice which adheres to and accumulates on the inner wall of the separator housing at the separated ice outlet of the differential speed scraping blade separator. The (part of) separated ice discharged from the discharge end of the high-speed rotating porous wall basket adheres to the inner wall of the separator housing as it is attached, and the adhesion thickness is gradually increased (the high-speed rotating porous wall forming the passing liquid chamber) It passes through the clearance (which separates the basket and the stationary fixed wall of the separator) and mixes with the concentrate. In the present invention, in order to prevent mixing of the separated ice into the concentrate, the attached ice scraper rotates together with the high speed rotating porous wall basket close to the inner wall of the separator housing at the discharge end of the high speed rotating porous wall basket. Set up a removal blade. The attached ice scraping blade may be provided at either of the discharge ends of the vertical differential scraping blade separator and the horizontal differential scraping blade separator, which are the differential scraping blade separator of the present invention. It can.

なお、上記高速回転多孔壁バスケットの形状は円柱状、または円錐状のどちらであってもよい。  The shape of the high-speed rotating porous wall basket may be cylindrical or conical.

また、本発明は分離部(氷液混合物を分離氷と濃縮液に分離する)を差速掻き取り刃分離機以外の他の手段(例えば回分式バスケット型固液遠心分離機)としてもよい。Further, in the present invention, the separation part (the ice liquid mixture is separated into the separation ice and the concentrated liquid) may be used as other means (for example, a batch type basket type solid-liquid centrifuge) other than the differential speed scraping blade separator.

分離部の稼働により氷液混合物が液体(濃縮液)と分離氷に分離される。分離された分離氷は融解してもよい。融解された分離氷は(原液よりも溶質濃度の薄い)溶質濃度希薄液となる。本発明はこの分離氷、または溶質濃度希薄液を得ることを目的としてもよい。  The operation of the separation unit separates the ice-liquid mixture into a liquid (concentrate) and separated ice. The separated ice separated may be melted. The melted separated ice becomes a solute concentration dilute liquid (having a lower solute concentration than the stock solution). The present invention may be directed to obtaining this separated ice or a solute concentration dilute solution.

本発明は氷生成部と分離部の組み合わせで得られた濃縮液(または溶質濃度希薄液)をさらに濃縮(または溶質濃度の希薄化)するために氷生成部又は氷生成部と分離部の条件(例えば冷却回転円筒の冷却温度等)を変えて2回以上行う方法及び装置であってもよい。  In the present invention, in order to further concentrate (or dilute the solute concentration) the concentrate (or solute concentration dilute liquid) obtained by the combination of the ice generating part and the separating part, the conditions of the ice generating part or the ice forming part and the separating part The method and apparatus may be performed twice or more by changing (for example, the cooling temperature of the cooling rotary cylinder).

また、本発明の方法及び装置はその工程の途中で得られる濃縮液及び溶質濃度希薄液を第1目的以外の他の製品、または用途のために利用してもよい。  In addition, the method and apparatus of the present invention may utilize the concentrate and solute concentration dilute solution obtained in the middle of the process for other products or applications other than the first purpose.

また、本発明は分離部の分離機1台に対して氷生成部の氷生成機を複数台の方法及び装置としてもよい。  In the present invention, a plurality of ice generators in the ice generator may be used as a method and apparatus for one separator in the separator.

また、本発明は氷生成部から分離部への氷液混合物の供給を自然落下以外の方法としてもよい。例えばホッパー及びスクリューコンベアの使用、また手作業等の人力による氷液混合物の分離部への供給であってもよい。  Further, according to the present invention, the supply of the ice liquid mixture from the ice generation unit to the separation unit may be a method other than the spontaneous fall. For example, use of a hopper and a screw conveyor, or manual supply of an ice liquid mixture to the separation unit by manual operation or the like may be used.

0015の記述から本発明の方法を用いて原液を海水とし冷却回転円筒氷生成機で海水の温度をー6℃以下とし氷液混合物を生成し同時にNa SO ・10H を析出せしめ、次に本発明の分離部を用いて上記氷液混合物から分離氷とNa SO ・10H 析出物を一緒に分離除去することによりSO イオン濃度の少ない(同時にNaイオンの減少した)濃縮液を得ることができる。また、得られる濃縮液をさらに濃縮するために左記手段(冷却回転円筒氷生成機+分離部)を繰り返す(それぞれの手段で得られる濃縮液を次の手段の原液とし、さらに繰り返される各手段は順次冷却回転円筒氷生成機の冷却回転円筒温度を低下させる)ことにより濃縮液の濃縮度を高め、またその濃縮液のSOイオンの濃度をさらに低下させる(同時にNaイオンをさらに減少させる)ことができる。なお、左記工程において濃縮液にNaSO・10HOが混入する場合には、混入したNaSO・10HOを冷却槽での沈殿等により除去してもよい。Using the method of the present invention from the description of the 0015 stock was allowed to precipitate simultaneously Na 2 SO 4 · 10H 2 O to generate the temperature of sea water and over 6 ° C. or less Korieki mixture cooled rotating cylindrical ice generator as seawater, Next, by using the separation part of the present invention, the separated ice and the Na 2 SO 4 · 10H 2 O precipitate are separated and removed together from the above ice-liquid mixture , thereby reducing the concentration of SO 4 ions (at the same time the Na ion is reduced). A concentrate can be obtained. In addition, in order to further concentrate the concentrate obtained, the means described in the left (cooling rotating cylindrical ice generator + separation unit) is repeated (the concentrate obtained by each means is used as a stock solution of the next means, and each means repeated Increasing the concentration of the concentrate by decreasing the cooling rotational cylinder temperature of the sequential cooling cylinder ice generator) and further reducing the concentration of SO 4 ions in the concentrate (while further reducing the Na ion) Can. When Na 2 SO 4 ··· 10 H 2 O is mixed in the concentrated solution in the step on the left, the mixed Na 2 SO 4 ·· 10 H 2 O may be removed by precipitation in a cooling tank or the like.

海水の濃縮における本発明の方法によるSO イオン濃度の低下はCaSO の析出を抑制しCaイオン(健康維持のためにその摂取が求められている)を豊富に含む濃縮液を得ることが可能となる。また、 Na SO ・10H Oの析出は濃縮液中のNaイオンを減少させる。さらに凍結による濃縮は溶質の均一な濃縮が可能であるためミネラルバランス(必須ミネラル成分の相互比)に優れた天然のミネラル液が得られることになる。The reduction of SO 4 ion concentration by the method of the present invention in the concentration of seawater suppresses the precipitation of Ca 2 SO 4 to obtain a concentrate rich in Ca ions (the intake of which is required for health maintenance) It becomes possible. Also, precipitation of Na 2 SO 4 .10H 2 O reduces Na ions in the concentrate. Furthermore, since concentration by freezing enables uniform concentration of solutes, a natural mineral liquid excellent in mineral balance (the mutual ratio of essential mineral components) can be obtained.

飲料及び加工食品等のメーカにおいては添加物を含まない天然のミネラル液が望まれている。また、(飲料及び加工食品等における)CaSO は沈殿物、白濁及び味覚の変化の問題を生じ、CaSO の無いミネラル液(またはCaSO が少ない程よい)が望まれている。For manufacturers of beverages and processed foods, natural mineral liquids containing no additives are desired. Further, (beverages and processed foods, etc. in) Ca SO 4 is precipitate, create problems of cloudiness and taste change, no mineral solution of Ca SO 4 (or modestly less Ca SO 4) is desired.

なお、加工食品(味噌、醤油等)の製造のためには、一般的に塩分濃度10wt%以上の塩水が必要とされている。  In addition, in order to manufacture processed foods (miso, soy sauce, etc.), generally, salt water having a salt concentration of 10 wt% or more is required.

本発明の方法によって生産される天然ミネラル液は飲料(医療用を含む)及び加工食品等の人への利用に限らず各種動物(水産物を含む)用飼料への天然添加物としての利用等、またこの天然ミネラル高濃度液の成分分離による医薬品等への利用も考えられる。The natural mineral liquid produced by the method of the present invention is not limited to human use for beverages (including medical use) and processed foods etc. Use as a natural additive to feeds for various animals (including aquatic products), etc. Moreover, utilization to the pharmaceuticals etc. by component separation of this natural mineral high concentration liquid is also considered.

特許文献1はRO膜とNF膜を用いた海水の濃縮及びSO イオン除去の特許である。この中でNF膜とRO膜の順で処理した低濃度濃縮液のSO イオンの含有量を表として記している。このNF膜とRO膜によって得られた濃縮液を水分だけを除去し濃縮して行ったとした時のSO イオン濃度の上昇と、上記凍結により濃縮しSO イオンの濃度を低下させて行った時(冷却温度を低下させて行った時)のSO イオン濃度の低下はやがて交差する。Caイオン濃度を基準に上記両方法の交点を求めると、その交点はCaイオン濃度約0.27wt%、SO イオン濃度約0.21wt%となる。なお、この交点の凍結法における塩分濃度約22wt%及び氷点が約―18℃となる。
さらに凍結法は濃縮液のSO イオン濃度を上記交差点に比べ1/2以下とすることも出来る。
Patent Document 1 is a patent for concentration of seawater and removal of SO 4 ions using an RO membrane and an NF membrane. Among them, the contents of SO 4 ions in the low concentration concentrated solution treated in the order of the NF membrane and the RO membrane are shown as a table. When the concentrate obtained by the NF membrane and the RO membrane was concentrated by removing only water, the concentration of SO 4 ions was increased, and the concentration was reduced by freezing to reduce the concentration of SO 4 ions. The decrease in SO 4 ion concentration at time (when the cooling temperature is lowered) crosses over time. When the intersection of the above two methods is determined based on the Ca ion concentration, the intersection becomes about 0.27 wt% of Ca ion concentration and about 0.21 wt% of SO 4 ion concentration. The salt concentration in the freezing method at this intersection is about 22 wt% and the freezing point is about -18 ° C.
Furthermore, in the freezing method, the concentration of SO 4 ions in the concentrate can be set to 1/2 or less as compared with the above-mentioned crossing point.

なお、凍結法は海水塩分濃度約25wt%(氷点―23℃)でNaCl・2 を析出し始め(温度の低下と伴に溶液中のNaCl濃度が急速に低下する)。なお、蒸発法による濃縮は塩分濃度約26wt%でNaClを析出し始める。本発明を利用したNaCl(又はNaCl・2 )の析出は本発明の方法及び本発明で得られた濃縮液の蒸発等により行うことができ、NaCl(又はNaCl・2 )析出後のCa等を含む濃縮ミネラル液と嗜好性塩等の分離は遠心分離及び蒸発法等により行うことができる。Incidentally, freezing seawater salinity of about 25 wt% (freezing point -23 ° C.) in NaCl · 2 H 2 O and start to precipitate (the NaCl concentration in the solution to decrease the wake of the temperature decreases rapidly). Concentration by evaporation starts to precipitate NaCl at a salt concentration of about 26 wt%. Precipitation of NaCl (or NaCl · 2H 2 O ) using the present invention can be carried out by evaporation of the concentrated liquid obtained by the method of the present invention and the present invention, etc., and NaCl (or NaCl · 2 H 2 O ) The separation of the concentrated mineral solution containing Ca and the like after precipitation and the palatability salt and the like can be performed by centrifugation, evaporation and the like.

本発明の方法は、海水の濃縮において(膜を用いる方法でその処理能力の低下の原因となる)懸濁有機物等のろ過設備を必要としない(又は簡略化できる)利点も持つ。  The method of the present invention also has the advantage of not requiring (or simplifying) filtration equipment, such as suspended organics, in the concentration of seawater (causing the loss of throughput in the method using membranes).

本発明の方法は各種膜(RO膜、NF膜及び電気透析膜等)処理後の液に用いることも出来る。
例えば海水の濃縮の場合、RO膜によりCaSO が析出(CaSO の析出は膜の使用を困難にする)する濃度以下迄濃縮し(例えば塩分濃度6wt%以下)、その後得られた濃縮液を本発明の凍結の方法により高濃度に濃縮できる。この場合、RO膜処理が低圧で済むため本方法の凍結濃縮を含めた濃縮操作が省エネルギな方法となる。
また、NF膜処理及び電気透析膜処理はその処理時間及び膜の種類により溶液中の溶質濃度の相互割合を変える事が出来る(非特許文献13)。このためNF膜処理及び電気透析膜処理により溶液中の溶質濃度の相互割合を変化させた溶液を得、その溶質濃度の相互割合を変化させた溶液を本方法の凍結濃縮を用いて濃縮することができる。例えば電気透析膜処理を用いて海水(海洋深層水を含む)からCa/Mgが約1〜2(以下Ca/MgはCaとMgの含有重量比率を表す)の溶液を得、その溶液を本方法の凍結濃縮を用いてCa/Mgが約1〜2で、かつCaを豊富に含む濃縮液を得る事ができる。飲料及び食品によるCaの摂取は、Ca/Mgが1〜2付近であることが常用に優れており、急増する虚血性心疾患(心筋梗塞等)及び動脈硬化等を予防することになる(非特許文献6、8)。
The method of the present invention can also be used for the solution after various membrane (RO membrane, NF membrane, electrodialysis membrane, etc.) treatment.
For example, in the case of concentration of seawater, Ca SO 4 is deposited by the RO membrane (precipitation of Ca SO 4 makes it difficult to use the film) and concentrated to a concentration below (e.g. salt concentration 6 wt% or less), then the resulting concentrated The solution can be concentrated to a high concentration by the method of freezing of the present invention. In this case, since the RO membrane treatment can be performed at a low pressure, the concentration operation including freeze concentration of this method is an energy-saving method.
Moreover, NF membrane processing and electrodialysis membrane processing can change the mutual ratio of the solute concentration in a solution with the processing time and the kind of membrane (nonpatent literature 13). For this reason, NF membrane treatment and electrodialysis membrane treatment obtain a solution in which mutual ratio of solute concentration in solution is changed, and concentrate the solution in which mutual ratio of solute concentration is changed using freeze concentration of this method. Can. For example, a solution of Ca / Mg of about 1 to 2 (hereinafter Ca / Mg represents a weight ratio of Ca and Mg) is obtained from seawater (including deep ocean water) using electrodialysis membrane treatment, and the solution is The freeze concentration of the method can be used to obtain a Ca / Mg of about 1 to 2 and a Ca-rich concentrate. It is always good that Ca / Mg is around 1 to 2 for the intake of Ca by beverages and foods, and it will prevent rapidly increasing ischemic heart disease (myocardial infarction etc) and arteriosclerosis etc. Patent documents 6, 8).

豊田勇樹、高知工科大学修士論文 2003Yuuki Toyoda, Master's Thesis, Kochi University of Technology 2003

本発明の装置は低温の維持された冷却室・庫に設置されていてもよい。
また、本発明の装置及び方法を0℃以上の雰囲気中(特に外気温度の高い地域、または時期)で用いる場合、分離部での分離中の氷液混合物の氷の融解が考えられる。この場合、装置運転において氷生成部での氷液混合物の氷の割合を多くすることによってこの問題の解決が可能である(例えば氷生成部での氷液混合物の氷液量割合を9:1とする)。特許文献2には、凍結濃縮装置の氷液混合物の分離部において分離中の氷液混合物のヒーターを用いた氷の融解による分離効率の向上を記している。このことから雰囲気温度の高さは、本方法の氷液混合物の分離効率を低下させる要因にはならない。
The apparatus of the present invention may be installed in a low temperature maintained cooling chamber.
In addition, when the apparatus and method of the present invention are used in an atmosphere of 0 ° C. or higher (in particular, in a region where outdoor temperature is high, or in a period), melting of ice in the ice liquid mixture during separation in the separation part is considered. In this case, it is possible to solve this problem by increasing the proportion of ice in the ice-liquid mixture in the ice-generating part in the operation of the apparatus (for example, the ice-liquid proportion of the ice-liquid mixture in the ice-generating part is 9: 1 And). Patent Document 2 describes improvement of separation efficiency by melting of ice using a heater of the ice liquid mixture being separated in the separation portion of the ice liquid mixture of the freeze concentrator. For this reason, the height of the ambient temperature does not become a factor to reduce the separation efficiency of the ice liquid mixture of the present method.

U.S.Pat No.6387253U. S. Pat No. 6387253

本発明の装置は各種用途・分野への適用において特定の大きさに限定されず、さまざまな大きさがあってよい。  The device of the present invention is not limited to a specific size in various applications and fields of application, and may have various sizes.

本発明の装置は、装置および装置を構成する機器の構造・操作が単純であるため車体及び船体等の移動体への搭載も容易である。  The device of the present invention is easy to mount on a movable body such as a car body and a hull because the structure and operation of the device and the equipment constituting the device are simple.

本発明の凍結濃縮の方法は、高濃度の濃縮液を得る事ができ、被濃縮液(又は被溶質濃度希薄液)を短時間で多量、連続的に処理し、処理量に対して装置コストが安く、装置の機動性に優れている(起動時において定常運転までの立ち上がりが早く、かつ数時間単位の断続的運転も可能である)。また、濃縮液への氷の混入を防ぐことが出来る。
さらに本発明の方法を海水の高濃度濃縮へ用いることにより(CaSO の析出を抑制し)Caイオンを豊富に含み、またミネラルバランスに優れ(Ca/Mg≦1〜2及び必須ミネラル成分の相互比に優れている)、かつNaイオンの少ない天然ミネラル濃縮液の生産、また新規塩を生産する事ができる。
The method of freeze concentration according to the present invention can obtain a concentrated solution of high concentration, continuously treats a large amount of concentrated solution (or diluted solution of solute concentration) in a short time, and costs apparatus cost relative to throughput It is cheap and excellent in the mobility of the device (the start up to steady operation is quick at startup, and intermittent operation of several hours is also possible). In addition, it is possible to prevent the mixing of ice into the concentrate.
Further, by using the method of the present invention to high concentrations concentrated seawater (Ca deposition of SO 4 was suppressed) rich viewing including the Ca ions, also excellent mineral balance (Ca / Mg ≦ 1 to 2 and essential minerals Of natural mineral concentrates , which are excellent in the mutual ratio of Na) and Na ions, and can produce new salts.

本発明の冷却回転円筒氷生成機の概略図である。FIG. 1 is a schematic view of a cooled rotating cylindrical ice generator of the present invention. 同 縦型差速掻き取り刃分離機の概略断面図である。FIG. 2 is a schematic cross-sectional view of the same vertical differential speed scraping blade separator.

図1の冷却回転円筒氷生成機1は氷液混合物1aを生成する冷却回転円筒11、冷却回転円筒から氷液混合物1aを剥離するための回転円筒掻き取り刃13および冷却回転円筒の円周下部が原液(被濃縮液)に浸るように設けられた氷生成機原液槽12よりなる。冷却回転円筒11には回転円筒円周内表面を冷却するためのフレオン冷媒を循環する冷凍機が配管接続されている。以下、上記氷生成機1の動作を説明する。原液タンクからの原液が氷生成機1の氷生成機原液槽12に送られる。氷生成機原液槽12には液位センサー(フロート等)が取り付けられており(原液タンクからの原液の供給により)槽12内の液量が保持されている。原液の凍結は回転する冷却された回転円筒11の円周外表面(冷却面)において行われる。回転する冷却面が氷生成機原液槽12内の溶液に浸されているとき、冷却面上に氷結晶が発生し冷却面上に氷液混合物を形成する。形成された氷液混合物は冷却回転円筒11の回転に伴い、氷生成機原液槽中の溶液から離れ、氷液混合物中の氷結晶が成長する。冷却面に形成された氷液混合物は、(回転による氷液混合物の氷生成機原液槽液面離脱カ所の)円周上の反対方向に位置している回転円筒掻き取り刃13により冷却回転円筒外表面から連続的に剥離され自然落下により冷却回転円筒氷生成機1の外へ排出される。  The cooling rotary cylinder ice generator 1 of FIG. 1 comprises a cooling rotary cylinder 11 for generating an ice liquid mixture 1a, a rotary cylindrical scraping blade 13 for peeling the ice liquid mixture 1a from the cooling rotary cylinder, and a circumferential lower portion of the cooling rotary cylinder. Is an ice generator stock solution tank 12 provided so as to be immersed in the stock solution (concentrated solution). A chiller circulating a freon refrigerant for cooling the inner surface of the rotating cylinder is pipe-connected to the cooling rotating cylinder 11. Hereinafter, the operation of the ice generator 1 will be described. The stock solution from the stock solution tank is sent to the ice generator stock solution tank 12 of the ice generator 1. A liquid level sensor (e.g., float) is attached to the ice producing machine stock solution tank 12, and the amount of liquid in the tank 12 is maintained (by the supply of the stock solution from the stock solution tank). Freezing of the stock solution takes place on the outer circumferential surface (cooling surface) of the rotating cooled rotating cylinder 11. When the rotating cooling surface is immersed in the solution in the ice generator stock solution tank 12, ice crystals are generated on the cooling surface and an ice-liquid mixture is formed on the cooling surface. The formed ice liquid mixture is separated from the solution in the ice generator stock solution tank as the cooling rotary cylinder 11 rotates, and ice crystals in the ice liquid mixture grow. The ice-liquid mixture formed on the cooling surface is cooled by the rotating cylindrical scraping blade 13 positioned in the opposite direction on the circumference (at the ice-producing machine stock solution tank level separation point of the ice-liquid mixture by rotation). It is continuously peeled off from the outer surface and discharged to the outside of the cooled rotating cylindrical ice generator 1 by natural fall.

上記の氷生成機1で生成された氷液混合物2aは、氷生成機1の下に位置する縦型差速掻き取り刃分離機2(図2)に送られる。
この縦型差速掻き取り刃分離機2は高速回転する多孔壁のバスケット20、高速回転多孔壁バスケット20の内側に取り付けられ高速回転多孔壁バスケット20と一体となり回転する多孔性のスクリーン、そのスクリーンに接近して回転する差速掻き取り刃21および分離機筐体の内壁に近接して高速回転多孔壁バスケットと一緒に回転する付着氷掻き取り刃22からなる。この縦型差速掻き取り刃分離機2の動作は以下である。冷却回転円筒氷生成機1からの氷液混合物1aが、自然落下により高速回転多孔壁のバスケット20の底部に投入される。投入された氷液混合物1aは、遠心力を受け高速回転多孔壁バスケット20の内側にあるスクリーン面上に広がる。広がった氷液混合物1aは、該スクリーンに接近して回転する(高速回転多孔壁バスケット20の回転と差速回転している)差速掻き取り刃21により上方向に移動しながら高速回転遠心力により氷液混合物1a中の液体(濃縮液)2bを氷液混合物1aから分離する(液体2bはスクリーンと高速回転多孔壁バスケット20の孔を通過することになる)。氷液混合物1aを脱液した分離氷2aは、高速回転多孔壁バスケット20の上端から付着氷掻き取り刃22を経て縦型差速掻き取り刃分離機2の外へ排出される。
排出された分離氷2aは、縦型差速掻き取り刃分離機2の下に位置する分離氷槽に入れられる。一方、濃縮液2bは濃縮液タンクに送られる。
The ice-liquid mixture 2a generated by the above-mentioned ice generator 1 is sent to the vertical differential speed scraping blade separator 2 (FIG. 2) located below the ice generator 1.
The vertical differential speed scraping blade separator 2 is a high speed rotating porous wall basket 20, a high speed rotating porous wall basket 20 attached to the inside of a porous screen rotating integrally with the high speed rotating porous wall basket 20, the screen And an attached ice scraping blade 22 which rotates together with the high speed rotating porous wall basket close to the inner wall of the separator housing. The operation of the vertical differential speed scraping blade separator 2 is as follows. The ice liquid mixture 1a from the cooled rotating cylindrical ice generator 1 is introduced into the bottom of the high speed rotating porous wall basket 20 by free fall. The introduced ice liquid mixture 1a is spread by centrifugal force on the screen surface inside the high speed rotating porous wall basket 20. The spread ice liquid mixture 1a is moved upward by the differential speed scraping blade 21 which rotates close to the screen (rotating differentially with the rotation of the high speed rotating porous wall basket 20) high speed rotational centrifugal force Separate the liquid (concentrate) 2b in the ice-liquid mixture 1a from the ice-liquid mixture 1a (the liquid 2b will pass through the screen and the holes of the high-speed rotating porous wall basket 20). The separated ice 2a from which the ice-liquid mixture 1a is drained is discharged from the upper end of the high-speed rotating porous wall basket 20 through the attached ice scraping blade 22 to the outside of the vertical differential-speed scraping blade separator 2.
The separated ice 2a discharged is placed in a separation ice tank located below the vertical differential speed scraping blade separator 2. On the other hand, the concentrate 2b is sent to a concentrate tank.

本発明の利用としては、海水(及び海洋深層水)からの各種濃度の天然ミネラル高濃度濃縮液(Caイオンを豊富に含み、Ca/Mg≦1〜2及びNaイオンが少ない)の生産、左記成分を含む嗜好性の高い塩の生産、バイオ研究における目的物質(タンパク質等)を含む溶液の濃縮及び蒸発濃縮において蒸発水へ低沸点有害物質が混入してしまう廃液の処理等がある。The application of the present invention is the production of various concentrations of concentrated natural mineral concentrates ( rich in Ca ions, low in Ca / Mg ≦ 1-2 and Na ions ) from seawater (and deep sea water), left There are production of a highly palatable salt containing components, treatment of waste liquid where low boiling point harmful substances are mixed into evaporation water in concentration and evaporation concentration of a solution containing a target substance (protein etc.) in bioresearch etc.

1 冷却回転円筒氷生成機
11 冷却回転円筒
12 氷生成機原液槽
13 回転円筒掻き取り刃
1a 氷液混合物
2 縦型差速掻き取り刃分離機
20 高速回転する多孔壁のバスケット
21 差速掻き取り刃
22 付着氷掻き取り刃
23 通過液室
24 通過液室を形成する 高速回転多孔壁バスケットと分離機の静止固定壁 を 隔てるクリアランス
2a 分離氷
2b 濃縮液
DESCRIPTION OF SYMBOLS 1 cooled rotating cylindrical ice generator 11 cooled rotating cylinder 12 ice generator stock solution tank 13 rotating cylindrical scraping blade 1a ice liquid mixture 2 vertical differential speed scraping blade separator 20 basket of porous walls rotating at high speed 21 differential speed scraping Blade 22 Adhering ice scraping blade 23 Passing fluid chamber 24 Form passing fluid chamber Clearance separating high speed rotating porous wall basket and stationary fixed wall of separator 2a Separated ice 2b Concentrate

Claims (4)

冷却回転円筒外表面に原液から氷液混合物を形成し、該氷液混合物を回転円筒掻き取り刃により掻き取り排出する冷却回転円筒氷生成機と、
上記排出された該氷液混合物を高速回転する多孔壁のバスケットに投入し、投入された該氷液混合物が差速掻き取り刃により該高速回転多孔壁バスケットの内側に取り付けられたスクリーン面上を排出方向に移動し、同時に該高速回転多孔壁バスケットの回転遠心力により該氷液混合物から濃縮液を該スクリーン及び該高速回転バスケットの多孔壁を通過させ分離し、該スクリーン面上を移動し脱液された分離氷を該濃縮液への該分離氷の混入を防止するための付着氷掻き取り刃を経て外へ排出する差速掻き取り刃分離機からなる、
該濃縮液、または該分離氷を生産する装置
Ice-liquid mixture from a stock solution to a cooling rotating cylinder outer surface to form a cooling rotating cylindrical ice generator for discharging scraped by a rotating cylinder scraper blade the ice-liquid mixture,
The discharged ice liquid mixture is introduced into a high speed rotating porous wall basket, and the input ice liquid mixture is placed on the screen surface attached to the inside of the high speed rotating porous wall basket by a differential speed scraping blade. At the same time, the concentrate is separated from the ice-liquid mixture through the screen and the porous wall of the high-speed rotating basket by the rotational centrifugal force of the high-speed rotating porous wall basket. It comprises a differential speed scraping blade separator which discharges the separated separated ice to the outside through the attached ice scraping blade for preventing the mixing of the separated ice into the concentrate .
An apparatus for producing the concentrate or the separated ice.
海水、または海水をRO膜、NF膜及び電気透析膜を用い処理した溶液から冷却回転円筒外表面に濃縮液と分離氷及びNa SO ・10H の混合物を形成し、該混合物を回転円筒掻き取り刃により掻き取り排出する冷却回転円筒氷生成機と、
該混合物を濃縮液と分離氷及びNa SO ・10H に分離する分離部からなる、
該濃縮液の塩分濃度を10wt%以上、さらにCa/Mg≦1〜2とした該濃縮液、また該分離氷を生産する装置
From seawater or seawater treated seawater using an RO membrane, an NF membrane and an electrodialysis membrane, a mixture of concentrated liquid, separated ice and Na 2 SO 4 · 10H 2 O is formed on the outer surface of a cooled rotating cylinder, and the mixture is rotated A cooled rotating cylindrical ice generator scraped and discharged by a cylindrical scraping blade;
It consists of a separation part which separates this mixture into a concentrate and separation ice and Na 2 SO 4 .10H 2 O ,
The salinity of the concentrate 10 wt% or more, the concentrate was further the Ca / Mg ≦ 1 to 2, or device for producing the separation of ice.
請求項1,2のうちいずれか1項に記載の装置を用いて濃縮液、または分離氷を生産する方法。A method of producing a concentrate or separated ice using the device according to any one of claims 1 and 2. 請求項3で生産される濃縮液から蒸発及び遠心分離を用いて塩及び濃縮液を生産する方法。A method of producing salt and concentrate from the concentrate produced in claim 3 using evaporation and centrifugation.
JP2017255358A 2016-12-24 2017-12-18 High concentration, large volume processing freeze concentrator Active JP6533936B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016257966 2016-12-24
JP2016257966 2016-12-24
JP2017232147 2017-11-14
JP2017232147 2017-11-14

Publications (2)

Publication Number Publication Date
JP2019076883A JP2019076883A (en) 2019-05-23
JP6533936B2 true JP6533936B2 (en) 2019-06-26

Family

ID=66627046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017255358A Active JP6533936B2 (en) 2016-12-24 2017-12-18 High concentration, large volume processing freeze concentrator

Country Status (1)

Country Link
JP (1) JP6533936B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102241118B1 (en) * 2019-08-09 2021-04-19 한국에너지기술연구원 System and method for condensing Toxic Gas using Scraper
CN111076466B (en) * 2019-12-18 2021-07-06 中国科学院广州能源研究所 High-efficient frozen water separator
CN114192290A (en) * 2020-09-17 2022-03-18 内蒙古伊泰煤基新材料研究院有限公司 Centrifugal apparatus, deoiling device and deoiling method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814966A (en) * 1981-07-20 1983-01-28 Seikenshiya:Kk Centrifugal separator type crushing squeezer
JP2003028546A (en) * 2001-07-11 2003-01-29 Mayekawa Mfg Co Ltd Method and device for ice making and concentrating aqueous solution and method for operating the device and ice-melting method
US20060175269A1 (en) * 2003-03-27 2006-08-10 Yoshiharu Shima Concentrated sake, method for producing concentrated sake, centrifuge, and apparatus for concentrating sake or the like
JP4764127B2 (en) * 2005-09-26 2011-08-31 株式会社シマシステム Japanese sake freeze concentration apparatus and freeze concentration method
JP2008119671A (en) * 2006-11-08 2008-05-29 Hokkaido Freeze concentration device enabled to deal with high-concentration undiluted solution
CN108613305B (en) * 2018-06-26 2023-10-17 北京建筑大学 Comprehensive utilization system and method for cold energy of liquefied natural gas

Also Published As

Publication number Publication date
JP2019076883A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP6533936B2 (en) High concentration, large volume processing freeze concentrator
US20080025908A1 (en) Method for extracting minerals with high purity from deep ocean water
Amran et al. Parametric study on the performance of progressive cryoconcentration system
RU2623256C2 (en) Device and method for desalination of water
Mahdavi et al. Application of freezing to the desalination of saline water
CN204417272U (en) A kind of crystallization treatment device of high slat-containing wastewater
CN103466660B (en) Production process for preparing salt by efficiently utilizing desalinated seawater concentrated liquid
KR200398211Y1 (en) Using oceanic deep sea water, oceanic powder mineral salt manufacturing method and decompression mineral condensation frequency system
Chen et al. Recovering olaquindox and decreasing COD and salt concentrations in antibiotic wastewater by multiple freeze-thaw processes and crystallization
JP6311191B6 (en) Method and system for producing a solid-liquid mixture of constant melting point temperature
Wan Osman et al. A review on recent progress in membrane distillation crystallization
Choi et al. Effect of inorganic and organic compounds on the performance of fractional-submerged membrane distillation-crystallizer
JP2017040467A5 (en)
EP2866912B1 (en) System for decontaminating water and generating water vapor
JP2009249259A (en) Mineral salt and method of manufacturing the same
KR20100040504A (en) Method for producing mineral salt by control of contents and sorts of deep seawater minerals
JP2002172392A (en) Method and apparatus for manufacturing mineral- containing solution from seawater
KR101440442B1 (en) Vacuum kiln and System for manufacturing salt
Hamid et al. Application of progressive freeze concentration for water purification using rotating crystallizer with anti-supercooling holes
KR102325865B1 (en) Method for prepairing high density mineral nutrient salt from sea water
JP4453957B2 (en) Aqueous mixed waste liquid treatment apparatus and concentration method of aqueous mixed waste liquid
JP6847474B2 (en) Evaporation solid-liquid separation method
KR100789717B1 (en) Apparatus for effectively extracting mineral of high purity from deep ocean water by using freeze drying method
RU2777112C1 (en) Light and heavy water separation method and water separation device
JP3754953B2 (en) Salt making method and salt making apparatus

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6533936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150