WO2018163364A1 - Filtering device and filtering method - Google Patents

Filtering device and filtering method Download PDF

Info

Publication number
WO2018163364A1
WO2018163364A1 PCT/JP2017/009539 JP2017009539W WO2018163364A1 WO 2018163364 A1 WO2018163364 A1 WO 2018163364A1 JP 2017009539 W JP2017009539 W JP 2017009539W WO 2018163364 A1 WO2018163364 A1 WO 2018163364A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
linear
filtering
phase detection
linear combination
Prior art date
Application number
PCT/JP2017/009539
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 三田村
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2019504232A priority Critical patent/JP7062302B2/en
Priority to PCT/JP2017/009539 priority patent/WO2018163364A1/en
Publication of WO2018163364A1 publication Critical patent/WO2018163364A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to a technique for filtering an AC signal.
  • Analog phase detection and numerical phase detection are known as techniques for performing phase detection (also referred to as synchronous detection) on AC signals.
  • the analog phase detection when the respective frequencies of the signal to be demodulated and omega 0, multiplied by 2cos ⁇ 0 t or 2sin ⁇ 0 t to the original signal, removing the double vibration component (i.e. cos2 ⁇ 0 t and sin2 ⁇ 0 t) By doing so, constant components that do not depend on time are extracted.
  • the analog phase detection since the double vibration component is removed by the low-pass filter, there is a problem that integration for a long time is required.
  • numerical phase detection has a feature that a signal component can be taken out in a short time because a component of double oscillation can be removed by using an integral integral or half integral multiple of a reference period.
  • the noise removal performance is remarkably deteriorated when the cumulative number of vibrations (in short, the number of periods used for the interval integration) is small.
  • the cumulative number of vibrations is increased, there is a problem that it takes time to extract the signal component. That is, in the numerical phase detection, the reduction in processing time and the noise removal performance are in a trade-off relationship.
  • the present invention has been made based on the above situation.
  • the main object of the present invention is to provide a technique capable of efficiently removing noise while performing detection in a short time using numerical phase detection.
  • a filtering device for filtering an AC signal It has a detection unit and a linear combination unit,
  • the detection unit is configured to obtain a plurality of detection results according to the cumulative number of vibrations by performing numerical phase detection on the AC signal.
  • the linear combination unit is configured to perform linear combination of the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
  • (Item 2) In addition, it has an output unit, The filtering device according to item 1, wherein the output unit is configured to output a result obtained by linear combination in the linear combination unit.
  • a linear coefficient determination unit is provided, The linear coefficient determination unit is configured to calculate the linear coefficient using a relationship between the linear coefficients, an overall pass gain in the numerical phase detection, and a target filter characteristic. 2.
  • the filtering device according to 2.
  • a filtering method for filtering an AC signal Obtaining a plurality of detection results according to the cumulative number of vibrations by performing numerical phase detection on the AC signal; and Filtering the AC signal by performing a linear combination of the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
  • a linear coefficient determination method comprising a step of calculating a coefficient.
  • This computer program is stored in an appropriate recording medium (for example, an optical recording medium such as a CD-ROM or a DVD disk, a magnetic recording medium such as a hard disk or a flexible disk, or a magneto-optical recording medium such as an MO disk). Can be stored.
  • This computer program can be transmitted via a communication line such as the Internet.
  • 5 is a graph showing a real part (FIG. 4A) and an imaginary part (FIG.
  • FIGS. 6A and 6B show the real part and the imaginary part of a high-pass filter (Example 2) in which numerical phase detection with a period up to an integer m is linearly combined and the coefficients are optimized.
  • FIGS. 8C and 8D are graphs showing the real part and the imaginary part of the pass gain in the case of FIG.
  • This filtering device is for filtering AC signals.
  • the filtering device of this embodiment includes a detection unit 1 and a linear combination unit 2 as main components (see FIG. 1). Furthermore, the filtering device of this embodiment includes an output unit 3 and a linear coefficient determination unit 4 as additional elements.
  • the detection unit 1 is configured to acquire a plurality of detection results corresponding to the cumulative number of vibrations by performing numerical phase detection on the AC signal. Details of the operation of the detector 1 will be described later.
  • the linear combination unit 2 is configured to linearly combine a plurality of detection results obtained by the detection unit 1 using a linear coefficient corresponding to the filter characteristics. Details of the operation of the linear combination unit 2 will also be described later.
  • the output unit 3 is configured to output the result obtained by the linear combination in the linear combination unit 2.
  • the output destination of the output unit 3 is, for example, a display or a printer, but other storage means or a remote device may be used. In the present embodiment, sending data to some device is also included in the concept of output.
  • the linear coefficient determination unit 4 is configured to calculate the linear coefficient used in the linear combination unit 2 using the relationship between the linear counts, the overall pass gain in numerical phase detection, and the target filter characteristics. Yes. A linear coefficient determination method will also be described later.
  • Step SA-1 in FIG. 2 the linear coefficient determination unit 4 determines a linear coefficient corresponding to the target filtering characteristic.
  • the linear coefficient is determined using the relationship between the linear counts, the overall pass gain in numerical phase detection, and the target filter characteristics. A specific example of determining the linear coefficient will be described later.
  • Step SA-2 in FIG. 2 Before or after the above-described step SA-1, or at the same time, the detection unit 1 performs numerical phase detection on the input AC signal. Thereby, in this embodiment, the some detection result according to the frequency
  • Step SA-3 in FIG. 2 the linear combination unit 2 performs linear combination of a plurality of detection results using a linear coefficient corresponding to the filter characteristic. Thereby, desired filtering with respect to an alternating current signal can be performed.
  • Step SA-4 in FIG. 2 Next, the output unit 3 outputs the obtained filtering result.
  • phase detection if the angular frequency of the signal to be demodulated is ⁇ 0 , the original signal is multiplied by 2 cos ⁇ 0 t or 2 sin ⁇ 0 t and smoothed, and a constant component independent of time is obtained. To extract.
  • the vibration component can be removed by using interval integration at an integral multiple or half integer multiple of the reference period, and detection can be performed in a very short time.
  • G n CC real part gain
  • G n SS imaginary part gain
  • G n SC gain of orthogonal component
  • the characteristics of the gain differ depending on the cumulative number of vibrations (that is, the number of periods in the interval integration) n. The characteristics are different between the real part and the imaginary part of the gain.
  • the actual amplitude of the passing waveform with respect to a specific angular frequency is a value that oscillates between the two values (that is, between the envelopes) (see FIGS. 4A and 4B).
  • the noise removal performance which is said to be the advantage of phase detection, is extremely deteriorated due to the trade-off relationship between the shortening of the integrated vibration frequency n. Therefore, when the numerical phase detection method is used and n is small, a noise removal method must be considered separately as described above.
  • a noise removal method when an analog filter or a normal numerical filter is used, since data at a time far away is required, the advantage of being able to integrate in a short time is sacrificed.
  • the cause of noise generally varies, but it is often the case that the noise is localized at a specific frequency. Therefore, the present embodiment proposes a method for efficiently removing a specific frequency component using data in a limited time range in numerical phase detection.
  • the present embodiment by utilizing the fact that the characteristics of the pass gain differ depending on the difference in the number of integrated vibrations n, and by taking a linear combination of the detection results based on a plurality of integrated vibrations, it is superior to the detection based on a single integrated number of vibrations. New knowledge that it can have a filter function. Note that in this linear combination, no extra phase rotation in the signal component occurs.
  • n is limited to an integer
  • the overall pass gain (G total CC (x) and G total SS (x)) in the case of taking a linear combination of the detection results is as shown in the following relational expression.
  • n is a half integer.
  • * is attached to the formula in the case of a half integer.
  • a 1/2, a 3/2, ... is the equation in order to determine the a m is required after ⁇ -1. It is also a 1/2 to have what kind of function to this value filter, a 3/2, ..., can be considered a variety depending on the conditions imposed on a m.
  • the method of this embodiment is effective for removing noise of a specific angular frequency under a time constant as short as possible in numerical phase detection.
  • a configuration method of a multi-frequency notch filter, a high-pass filter, and a high-order notch filter will be described.
  • acquisition of G n CC or G n SS used for filtering corresponds to an example of “acquisition of a plurality of detection results according to the number of integrated vibrations”.
  • calculating the coefficient of the linear combination of the detection results according to the purpose of filtering corresponds to an example of “determination of linear coefficient”.
  • the parameters of the linear combination were determined.
  • the same processing is not limited to the case where n is an integer, and can be performed in the same manner even when it is a half integer.
  • G total CC (x) It becomes. The same applies to G total CC (x). In this case, terms up to x 2 m can be deleted. Since G total SS (x) has a lower order than G total CC (x), the function as a filter is determined by the characteristic of G total SS (x).
  • FIGS. 6 (a) and 6 (b) show a real part and an imaginary part of a high-pass filter in which numerical phase detection with a period up to an integer m is linearly combined and the coefficients are optimized. It can be seen that each time the period used is increased by one, the order of the filter increases by two.
  • n an integer.
  • the present invention is not limited to this, and the same processing as described above is possible when n is a half integer.
  • each G n CC has a finite value in the direct current limit ⁇ / ⁇ 0 ⁇ 0, so there was a problem that the direct current component could not be dropped, but a plurality of (that is, ⁇ ) integrated vibrations This shows that if the coefficient of the linear combination of the detection result corresponding to the number n is taken well, this can be made zero.
  • a secondary high-pass filter which is realized by integrating data for 3/2 periods.
  • the odd multiple wave functions as a primary notch filter.
  • Example 4 Alternative to orthogonal frequency division division method (OFDM method)
  • OFDM method orthogonal frequency division division method
  • Fig. 8 (c) and (d) show the passing gains of the individual real and imaginary parts designed in the former case.
  • the passing gain is 1 for both the imaginary part and the real part at 5 [Hz]
  • the passing gain is 0 for both the imaginary part and the real part at 8 [Hz].
  • the pass gain of the real part imaginary part is 1 at 8 [Hz]
  • the pass gain of the real part imaginary part is 0 at 5 [Hz].
  • OFDM method orthogonal frequency division division method
  • the frequency ⁇ 1, ⁇ 2, ... the way of taking the [nu N, there is some arbitrariness.
  • the arithmetic sequence is the same as in the OFDM method.
  • data sampling is performed at discrete times, so it is necessary to consider that the phase returns to the original state by N vibrations at each frequency. is there.
  • the reciprocal frequency ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 1 ,..., ⁇ N ⁇ 1 it is convenient to set the reciprocal frequency ⁇ 1 ⁇ 1 , ⁇ 2 ⁇ 1 ,..., ⁇ N ⁇ 1 to be an integral multiple of the reciprocal number of the sampling rate ⁇ 0.
  • a method is possible with this approach.
  • the filter characteristics that are newly created by taking the linear combination of the numerical phase detection results based on multiple accumulated vibration counts are not limited to those shown as examples, and combinations of them can be freely created. is there.
  • using the applied method it is possible to efficiently remove noise at a specific frequency while taking advantage of the feature of numerical phase detection that “integration time can be shortened”.
  • the method of the present embodiment uses the fact that the characteristic of the pass gain varies depending on the number of accumulated vibrations in numerical phase detection, and the detection result of a plurality of (ie, ⁇ ⁇ 2) accumulated vibrations By taking the linear combination, it is possible to have a characteristic of a pass gain that does not exist in the detection based on the single accumulated number of vibrations.
  • phase detection technology for AC signals extends to various industrial fields through measurement and communication.
  • built-in phase detection technology is widely used to demodulate the output of various sensors with high sensitivity.
  • the filtering technique of this embodiment is considered to contribute to the performance improvement of the lock-in amplifier.
  • demodulation including noise removal can be performed with data accumulation in a shorter time than conventional methods. If multiple sensors can be used at the same time to prevent interference and respond quickly, it is expected that all automatic machines and robots can be controlled more accurately and agilely.
  • communication it can be expected that the amount of transmission data can be efficiently increased while preventing interference at a predetermined frequency.
  • the linear coefficient determination unit 4 calculates the linear coefficient.
  • the linear coefficient may be a predetermined value calculated in advance according to the purpose of filtering.
  • the structure which changes a linear coefficient dynamically according to the use of filtering is also possible.
  • each of the above-described constituent elements only needs to exist as a functional block, and does not need to exist as independent hardware.
  • a mounting method hardware or computer software may be used.
  • one functional element in the present invention may be realized by a set of a plurality of functional elements, and a plurality of functional elements in the present invention may be realized by one functional element.
  • the functional elements may be arranged at physically separated positions.
  • the functional elements may be connected by a network. It is also possible to realize functions or configure functional elements by grid computing or cloud computing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The present invention provides technology capable of efficiently removing noise while performing detection in a short time using numerical phase detection with respect to an alternating-current signal. A detection unit 1 performs numeric phase detection with respect to an alternating-current signal. Consequently, a plurality of detection results corresponding to an accumulated number of vibrations in the numerical phase detection can be acquired. A linear combination unit 2 performs a linear combination of the plurality of detection results using a linear coefficient corresponding to a filter characteristic. This makes it possible to filter the alternating-current signal.

Description

フィルタリング装置及びフィルタリング方法Filtering apparatus and filtering method
 本発明は、交流信号に対してフィルタリングを行うための技術に関するものである。 The present invention relates to a technique for filtering an AC signal.
 交流信号に対する位相検波(同期検波ともいう)を行う技術として、アナログ位相検波と数値位相検波(デジタル位相検波ともいう)とが知られている。 Analog phase detection and numerical phase detection (also referred to as digital phase detection) are known as techniques for performing phase detection (also referred to as synchronous detection) on AC signals.
 アナログ位相検波では、復調したい信号の各振動数をωとすると、元の信号に2cosωtあるいは2sinωtを乗算し、2倍振動の成分(すなわちcos2ωtとsin2ωt)を除去することで、時間によらない定数成分を抽出する。ここで、アナログ位相検波では、ローパスフィルタにより、2倍振動の成分を除去しているので、長時間の積算が必要になるという問題がある。 The analog phase detection, when the respective frequencies of the signal to be demodulated and omega 0, multiplied by 2cosω 0 t or 2sinω 0 t to the original signal, removing the double vibration component (i.e. cos2ω 0 t and sin2ω 0 t) By doing so, constant components that do not depend on time are extracted. Here, in the analog phase detection, since the double vibration component is removed by the low-pass filter, there is a problem that integration for a long time is required.
 これに対して、数値位相検波では、基準周期の整数倍あるいは半整数倍の区間積分を用いて2倍振動の成分を除去できるので、短時間で信号成分を取り出すことができるという特長がある。 On the other hand, numerical phase detection has a feature that a signal component can be taken out in a short time because a component of double oscillation can be removed by using an integral integral or half integral multiple of a reference period.
 ところで、数値位相検波では、積算振動回数(要するに、区間積分に用いた周期の数)が少ないと、ノイズ除去性能が顕著に劣化するという問題がある。これに対して、積算振動回数を増やすと、信号成分を取り出す処理に時間を要してしまうという問題が生じる。つまり、数値位相検波では、処理時間の短縮とノイズ除去性能とがトレードオフの関係となっている。 By the way, in the numerical phase detection, there is a problem that the noise removal performance is remarkably deteriorated when the cumulative number of vibrations (in short, the number of periods used for the interval integration) is small. On the other hand, when the cumulative number of vibrations is increased, there is a problem that it takes time to extract the signal component. That is, in the numerical phase detection, the reduction in processing time and the noise removal performance are in a trade-off relationship.
 したがって、数値位相検波を用いながら、短時間での低ノイズの信号抽出処理を行うためには、ノイズを除去するための別の技術が必要になる。 Therefore, in order to perform low-noise signal extraction processing in a short time while using numerical phase detection, another technique for removing noise is required.
 本発明は、前記した状況に基づいてなされたものである。本発明の主な目的は、数値位相検波を用いて、短時間での検波を行いつつ、しかも、ノイズを効率的に除去できる技術を提供することである。 The present invention has been made based on the above situation. The main object of the present invention is to provide a technique capable of efficiently removing noise while performing detection in a short time using numerical phase detection.
 前記した課題を解決する手段は、以下の項目のように記載できる。 The means for solving the above-described problems can be described as the following items.
 (項目1)
 交流信号に対するフィルタリングを行うためのフィルタリング装置であって、
 検波部と、線形結合部とを備えており、
 前記検波部は、前記交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得する構成となっており、
 前記線形結合部は、フィルタ特性に応じた線形係数を用いて前記複数の検波結果の線形結合を行う構成となっている
 フィルタリング装置。
(Item 1)
A filtering device for filtering an AC signal,
It has a detection unit and a linear combination unit,
The detection unit is configured to obtain a plurality of detection results according to the cumulative number of vibrations by performing numerical phase detection on the AC signal.
The linear combination unit is configured to perform linear combination of the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
 (項目2)
 さらに出力部を備えており、
 前記出力部は、前記線形結合部での線形結合により得られた結果を出力する構成となっている
 項目1に記載のフィルタリング装置。
(Item 2)
In addition, it has an output unit,
The filtering device according to item 1, wherein the output unit is configured to output a result obtained by linear combination in the linear combination unit.
 (項目3)
 さらに、線形係数決定部を備えており、
 前記線形係数決定部は、前記線形係数間の関係と、前記数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて、前記線形係数を算出する構成となっている
 項目1又は2に記載のフィルタリング装置。
(Item 3)
Furthermore, a linear coefficient determination unit is provided,
The linear coefficient determination unit is configured to calculate the linear coefficient using a relationship between the linear coefficients, an overall pass gain in the numerical phase detection, and a target filter characteristic. 2. The filtering device according to 2.
 (項目4)
 交流信号に対するフィルタリングを行うためのフィルタリング方法であって、
 前記交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得するステップと、
 フィルタ特性に応じた線形係数を用いて前記複数の検波結果の線形結合を行うことにより、前記交流信号に対するフィルタリングを行うステップと
 を備えるフィルタリング方法。
(Item 4)
A filtering method for filtering an AC signal,
Obtaining a plurality of detection results according to the cumulative number of vibrations by performing numerical phase detection on the AC signal; and
Filtering the AC signal by performing a linear combination of the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
 (項目5)
 項目4に記載のフィルタリング方法のために用いる線形係数決定方法であって
 前記線形計数の間の関係と、前記数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて、前記線形係数を算出するステップを備えている
 線形係数決定方法。
(Item 5)
A linear coefficient determination method used for the filtering method according to item 4, wherein the linear coefficient is determined using a relationship between the linear counts, an overall pass gain in the numerical phase detection, and a target filter characteristic. A linear coefficient determination method comprising a step of calculating a coefficient.
 (項目6)
 項目4又は5に記載の各ステップをコンピュータに実行させるためのコンピュータプログラム。
(Item 6)
A computer program for causing a computer to execute each step according to item 4 or 5.
 このコンピュータプログラムは、適宜な記録媒体(例えばCD-ROMやDVDディスクのような光学的な記録媒体、ハードディスクやフレキシブルディスクのような磁気的記録媒体、あるいはMOディスクのような光磁気記録媒体)に格納することができる。このコンピュータプログラムは、インターネットなどの通信回線を介して伝送されることができる。 This computer program is stored in an appropriate recording medium (for example, an optical recording medium such as a CD-ROM or a DVD disk, a magnetic recording medium such as a hard disk or a flexible disk, or a magneto-optical recording medium such as an MO disk). Can be stored. This computer program can be transmitted via a communication line such as the Internet.
 本発明によれば、数値位相検波を用いて、短時間での検波を行いつつ、しかも、ノイズを効率的に除去する技術を提供することができる。 According to the present invention, it is possible to provide a technique for efficiently removing noise while performing detection in a short time using numerical phase detection.
本発明の一実施形態に係るフィルタリング装置の概略を示すブロック図である。It is a block diagram which shows the outline of the filtering apparatus which concerns on one Embodiment of this invention. 図1のフィルタリング装置を用いて行われるフィルタリング方法を説明するためのフローチャートである。It is a flowchart for demonstrating the filtering method performed using the filtering apparatus of FIG. 数値位相検波の通過利得を示すグラフである。図3(a)及び図3(b)は、整数周期n=1,2,3,4,5に対応する利得の実部と虚部を示す。図3(c)及び 図3(d)は、半整数周期n=1/2,3/2,5/2,7/2,9/2に対応する利得の実部と虚部を示す。It is a graph which shows the passage gain of numerical phase detection. FIGS. 3A and 3B show the real part and imaginary part of the gain corresponding to the integer period n = 1, 2, 3, 4, 5. FIG. FIG. 3C and FIG. 3D show the real part and the imaginary part of the gain corresponding to the half-integer period n = 1/2, 3/2, 5/2, 7/2, 9/2. ω/ω=0.1、振幅1のときの実際の通過波形の実部(図4(a))と虚部(図4(b))を示すグラフである。なお、図4においてaverageは、整数周期n=1とn=2の平均値を示す。5 is a graph showing a real part (FIG. 4A) and an imaginary part (FIG. 4B) of an actual passing waveform when ω / ω 0 = 0.1 and amplitude 1; In FIG. 4, “average” indicates an average value of integer cycles n = 1 and n = 2. 整数周期による数値位相検波における多周波数ノッチフィルタ(実施例1)の実部(図5(a))と虚部(図5(b))の通過利得を示すグラフである。It is a graph which shows the passage gain of the real part (Drawing 5 (a)) and the imaginary part (Drawing 5 (b)) of the multifrequency notch filter (example 1) in numerical phase detection by an integer period. 図6(a)及び図6(b)は、整数mまでの周期による数値位相検波を線形結合し、係数を最適化したハイパスフィルタ(実施例2)の実部と虚部を示す。図6(c)及び図6(d)は、n=1/2とn=3/2の結果を合成したもの(m=3/2、μ=2)の実部と虚部の通過利得を示す。FIGS. 6A and 6B show the real part and the imaginary part of a high-pass filter (Example 2) in which numerical phase detection with a period up to an integer m is linearly combined and the coefficients are optimized. 6 (c) and 6 (d) show the real and imaginary pass gains of the result of combining n = 1/2 and n = 3/2 (m = 3/2, μ = 2). Indicates. 整数周期による数値位相検波における高次ノッチフィルタ(実施例3)の実部(図7(a))と虚部(図7(b))の通過利得を示すグラフである。It is a graph which shows the passage gain of the real part (Drawing 7 (a)) and the imaginary part (Drawing 7 (b)) of the high order notch filter (example 3) in numerical phase detection by an integer period. 図8(a)は、5[Hz]と8[Hz]の信号を分離検波するのに必要な時間を説明するためのグラフであり、図8(b)は、5[Hz]と8.1[Hz]の信号を分離検波するのに必要な時間を説明するためのグラフである。図8(c)及び図8(d)は、図8(a)の場合の通過利得の実部と虚部を示すグラフである。FIG. 8A is a graph for explaining the time required to separately detect signals of 5 [Hz] and 8 [Hz], and FIG. It is a graph for demonstrating time required in order to carry out the separation detection of the signal of 1 [Hz]. FIGS. 8C and 8D are graphs showing the real part and the imaginary part of the pass gain in the case of FIG.
 以下、本発明の一実施形態に係るフィルタリング装置を、図1を参照しながら説明する。このフィルタリング装置は、交流信号に対するフィルタリングを行うためのものである。 Hereinafter, a filtering device according to an embodiment of the present invention will be described with reference to FIG. This filtering device is for filtering AC signals.
 (本実施形態のフィルタリング装置の構成)
 本実施形態のフィルタリング装置は、検波部1と線形結合部2とを主要な構成として備えている(図1参照)。さらに、本実施形態のフィルタリング装置は、出力部3と線形係数決定部4とを追加的な要素として備えている。
(Configuration of the filtering device of the present embodiment)
The filtering device of this embodiment includes a detection unit 1 and a linear combination unit 2 as main components (see FIG. 1). Furthermore, the filtering device of this embodiment includes an output unit 3 and a linear coefficient determination unit 4 as additional elements.
 (検波部)
 検波部1は、交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得する構成となっている。検波部1の動作の詳細については後述する。
(Detection part)
The detection unit 1 is configured to acquire a plurality of detection results corresponding to the cumulative number of vibrations by performing numerical phase detection on the AC signal. Details of the operation of the detector 1 will be described later.
 (線形結合部)
 線形結合部2は、フィルタ特性に応じた線形係数を用いて、検波部1により得られた複数の検波結果の線形結合を行う構成となっている。線形結合部2の動作の詳細についても後述する。
(Linear combination part)
The linear combination unit 2 is configured to linearly combine a plurality of detection results obtained by the detection unit 1 using a linear coefficient corresponding to the filter characteristics. Details of the operation of the linear combination unit 2 will also be described later.
 (出力部)
 出力部3は、線形結合部2での線形結合により得られた結果を出力する構成となっている。出力部3の出力先としては、例えば、ディスプレイやプリンタであるが、それ以外にも、何らかの記憶手段やリモート機器であってもよい。本実施形態では、何らかの機器にデータを送ることも出力の概念に含める。
(Output part)
The output unit 3 is configured to output the result obtained by the linear combination in the linear combination unit 2. The output destination of the output unit 3 is, for example, a display or a printer, but other storage means or a remote device may be used. In the present embodiment, sending data to some device is also included in the concept of output.
 (線形係数決定部)
 線形係数決定部4は、線形計数間の関係と、数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて、線形結合部2で用いられる線形係数を算出する構成となっている。線形係数の決定手法についても後述する。
(Linear coefficient determination unit)
The linear coefficient determination unit 4 is configured to calculate the linear coefficient used in the linear combination unit 2 using the relationship between the linear counts, the overall pass gain in numerical phase detection, and the target filter characteristics. Yes. A linear coefficient determination method will also be described later.
 (本実施形態のフィルタリング方法の手順)
 つぎに、前記したフィルタリング装置を用いたフィルタリング方法を、図2をさらに参照しながら説明する。
(Procedure of the filtering method of this embodiment)
Next, a filtering method using the above-described filtering device will be described with further reference to FIG.
 (図2のステップSA-1)
 まず、線形係数決定部4により、目的とするフィルタリング特性に応じた線形係数を決定する。線形係数の決定は、線形計数の間の関係と、数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて行われる。線形係数の決定の具体例については後述する。
(Step SA-1 in FIG. 2)
First, the linear coefficient determination unit 4 determines a linear coefficient corresponding to the target filtering characteristic. The linear coefficient is determined using the relationship between the linear counts, the overall pass gain in numerical phase detection, and the target filter characteristics. A specific example of determining the linear coefficient will be described later.
 (図2のステップSA-2)
 前記したステップSA-1の前後に、あるいはそれと同時に、検波部1により、入力された交流信号に対する数値位相検波を行なう。これにより、本実施形態では、積算振動回数に応じた複数の検波結果を取得することができる。この検波手法の詳細も後述する。
(Step SA-2 in FIG. 2)
Before or after the above-described step SA-1, or at the same time, the detection unit 1 performs numerical phase detection on the input AC signal. Thereby, in this embodiment, the some detection result according to the frequency | count of integration vibration can be acquired. Details of this detection method will also be described later.
 (図2のステップSA-3)
 ついで、線形結合部2により、フィルタ特性に応じた線形係数を用いて複数の検波結果の線形結合を行う。これにより、交流信号に対する所望のフィルタリングを行うことができる。
(Step SA-3 in FIG. 2)
Next, the linear combination unit 2 performs linear combination of a plurality of detection results using a linear coefficient corresponding to the filter characteristic. Thereby, desired filtering with respect to an alternating current signal can be performed.
 (図2のステップSA-4)
 ついで、出力部3により、得られたフィルタリング結果を出力する。
(Step SA-4 in FIG. 2)
Next, the output unit 3 outputs the obtained filtering result.
 (フィルタリング装置の原理)
 以下、本実施形態におけるフィルタリング装置の原理について詳しく説明し、その後、具体的な実施例を説明する。
(Principle of filtering device)
Hereinafter, the principle of the filtering device in the present embodiment will be described in detail, and then specific examples will be described.
 位相検波の基本的な考え方は、復調したい信号の角振動数をωとすると、元の信号に2cosωtあるいは2sinωtを掛け合わせ、平滑化することで、時間に依らない定数成分を抽出することである。元の信号f(t)を The basic idea of phase detection is that if the angular frequency of the signal to be demodulated is ω 0 , the original signal is multiplied by 2 cos ω 0 t or 2 sin ω 0 t and smoothed, and a constant component independent of time is obtained. To extract. The original signal f (t)
Figure JPOXMLDOC01-appb-I000001
とすると
Figure JPOXMLDOC01-appb-I000002
はそれぞれ
Figure JPOXMLDOC01-appb-I000001
If
Figure JPOXMLDOC01-appb-I000002
Each
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
となる。2倍振動であるcos2ωtとsin2ωtの項を除去できれば、時間に依らない成分としてそれぞれ定数成分(実部及び虚部に対応)A,Bを求めることができる。従来のアナログ式の同期検波では、ローパスフィルタでこの2倍振動成分を除去していたので、ωの基準周期(=2π/ω)に対し長い時間の積算が必要であった。これに対して、最近提案された数値位相検波法(デジタル法)では It becomes. If removing the section twice a vibration cos2ω 0 t and sin2ω 0 t, (corresponding to the real and imaginary parts) are constant component as a component which does not depend on time A, it is possible to obtain the B. The synchronous detection of a conventional analog type, so had to remove the double vibration component by a low-pass filter was required integration of long time with respect to the reference period of ω 0 (= 2π / ω 0 ). In contrast, the recently proposed numerical phase detection method (digital method)
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
の関係式を用い、基準周期のちょうど整数倍あるいは半整数倍での区間積分を用いて振動成分を除去できるようになり、非常に短時間の積算で検波を行えるようになっている。 Using this relational expression, the vibration component can be removed by using interval integration at an integral multiple or half integer multiple of the reference period, and detection can be performed in a very short time.
 ここで、復調角振動数ωのn倍周期での位相検波における一般の角振動数ωに対する通過利得(G CC:実部の利得、G SS:虚部の利得、G SC,G CS:直交成分の利得)をそれぞれ計算してみると Here, a pass gain (G n CC : real part gain, G n SS : imaginary part gain, G n SC , with respect to a general angular frequency ω in phase detection in the n-fold period of the demodulated angular frequency ω 0 . ( GnCS : Gain of orthogonal component)
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
となる。ここで角振動数を無次元化してx=ω/ω0と置く。G SC(x),G CS(x)は常に零なので、n=1,2,3,4,5のときのG CC(x)とG SS(x)を図3(a),(b)に、n=1/2,3/2,5/2,7/2,9/2のときのそれらを図3(c),(d)にそれぞれ示す。積算振動回数(つまり区間積分における周期数)nによってゲインの特性が異なる。またゲインの実部と虚部でも特性が異なる。特定の角振動数についての実際の通過波形の振幅は、両者の値の間(つまり包絡線の間)を振動したものになる(図4(a),(b)参照)。図4によれば、積算振動回数nによって波形が異なることが解る。図4の例ではx=0.1としているので、包絡線の振幅は、G CC(0.1)とG SS(0.1)との間を振動している。このままではあまり大きな減衰効果はないが、n=1とn=2の結果を足して2で割るとほとんど打ち消し合う。これは後述の3次のハイパスフィルタの具体例にもなっている。 It becomes. Here, the angular frequency is made dimensionless and set as x = ω / ω0. Since G n SC (x) and G n CS (x) are always zero, G n CC (x) and G n SS (x) when n = 1, 2, 3, 4, 5 are shown in FIG. ) and (b) show those when n = 1/2, 3/2, 5/2, 7/2 and 9/2, respectively. The characteristics of the gain differ depending on the cumulative number of vibrations (that is, the number of periods in the interval integration) n. The characteristics are different between the real part and the imaginary part of the gain. The actual amplitude of the passing waveform with respect to a specific angular frequency is a value that oscillates between the two values (that is, between the envelopes) (see FIGS. 4A and 4B). According to FIG. 4, it can be seen that the waveform varies depending on the cumulative vibration frequency n. Since x = 0.1 in the example of FIG. 4, the amplitude of the envelope oscillates between G n CC (0.1) and G n SS (0.1). If this is the case, there will be no significant attenuation effect, but when the results of n = 1 and n = 2 are added and divided by 2, they almost cancel each other. This is also a specific example of a third-order high-pass filter described later.
 図3及び図4から解るように、積算振動回数nの短縮とトレードオフの関係で、位相検波の長所と言われるノイズ除去性能は極端に劣化する。従って数値位相検波法を用いかつnが小さい場合には、すでに述べたように、ノイズ除去の方法を別途考えなくてはいけない。ここでアナログフィルタや通常の数値フィルタを用いると、遥か遠く離れた時間のデータを必要とするので、せっかく短時間で積算できる優位性が犠牲になる。ノイズの原因は一般に様々であるが、特定の周波数に局在している場合が少なくない。そこで本実施形態では、数値位相検波において特定の周波数成分を、限られた時間範囲のデータを使って効率よく除去する手法を提案する。 As can be seen from FIG. 3 and FIG. 4, the noise removal performance, which is said to be the advantage of phase detection, is extremely deteriorated due to the trade-off relationship between the shortening of the integrated vibration frequency n. Therefore, when the numerical phase detection method is used and n is small, a noise removal method must be considered separately as described above. Here, when an analog filter or a normal numerical filter is used, since data at a time far away is required, the advantage of being able to integrate in a short time is sacrificed. The cause of noise generally varies, but it is often the case that the noise is localized at a specific frequency. Therefore, the present embodiment proposes a method for efficiently removing a specific frequency component using data in a limited time range in numerical phase detection.
 本実施形態では、積算振動回数nの違いによって通過利得の特性が異なることを利用し、複数の積算振動回数による検波結果の線形結合をとることで、単独の積算振動回数による検波にはない優れたフィルタ機能を持たせることができるという新たな知見を利用している。この線形結合において、信号成分における余計な位相の回転は起こらないことに注意する。 In the present embodiment, by utilizing the fact that the characteristics of the pass gain differ depending on the difference in the number of integrated vibrations n, and by taking a linear combination of the detection results based on a plurality of integrated vibrations, it is superior to the detection based on a single integrated number of vibrations. New knowledge that it can have a filter function. Note that in this linear combination, no extra phase rotation in the signal component occurs.
 ここでnを整数に限定すると、複数(μ(=2,3,4,…)個)の積算振動回数n(ただし1≦n≦m、μ≦m=2,3,4,…)による検波結果の線形結合をとる場合の全体の通過利得(Gtotal CC(x)及びGtotal SS(x))は下の関係式のようになる。 Here, when n is limited to an integer, a plurality of (μ (= 2, 3, 4,...)) Integrated vibration times n (where 1 ≦ n ≦ m, μ ≦ m = 2, 3, 4,...). The overall pass gain (G total CC (x) and G total SS (x)) in the case of taking a linear combination of the detection results is as shown in the following relational expression.
Figure JPOXMLDOC01-appb-I000009
(ここで不等号μ<mの場合はnに欠番があることを意味する。)
Figure JPOXMLDOC01-appb-I000009
(If the inequality sign μ <m, it means that n is missing.)
 一般に
Figure JPOXMLDOC01-appb-I000010
なので、
Figure JPOXMLDOC01-appb-I000011
という条件を課せば自動的に
Figure JPOXMLDOC01-appb-I000012
となる。a,a,…,aを決めるためには方程式があとμ-1個必要である。本実施形態の数値フィルタにどのような機能を持たせるかは、a,a,…,aに課す条件によって様々なものが考えられる。
In general
Figure JPOXMLDOC01-appb-I000010
So,
Figure JPOXMLDOC01-appb-I000011
Automatically imposes the condition
Figure JPOXMLDOC01-appb-I000012
It becomes. a 1, a 2, ..., in order to determine the a m is a μ-1 or necessary after equations. Or to have any function in numeric filter of the present embodiment, a 1, a 2, ... , are conceivable various depending on the conditions imposed on a m.
 本実施形態の手法は、nを半整数にとるときも同様である。以下、半整数の場合の式には※をつける。 The method of this embodiment is the same when n is a half integer. Below, * is attached to the formula in the case of a half integer.
 複数(μ(=2,3,4,…)個)の半整数
Figure JPOXMLDOC01-appb-I000013
による検波結果の線形結合をとる場合の全体の通過利得(Gtotal CC(x)及びGtotal SS(x))は下の関係式のようになる。
Multiple (μ (= 2, 3, 4, ...)) half integers
Figure JPOXMLDOC01-appb-I000013
The total passing gain (G total CC (x) and G total SS (x)) in the case of taking a linear combination of the detection results obtained by (1) is as shown in the following relational expression.
Figure JPOXMLDOC01-appb-I000014
(ここで不等号μ-1/2<mの場合はnに欠番があることを意味する。)
Figure JPOXMLDOC01-appb-I000014
(Here, if the inequality sign μ−1 / 2 <m, it means that n is missing.)
 やはり
Figure JPOXMLDOC01-appb-I000015
なので、
Figure JPOXMLDOC01-appb-I000016
という条件を課せば自動的に
Figure JPOXMLDOC01-appb-I000017
となる。a1/2,a3/2,…,aを決めるためには方程式があとμ-1必要である。この数値フィルタにどういった機能を持たせるかはやはりa1/2,a3/2,…,aに課す条件によって様々なものが考えられる。
also
Figure JPOXMLDOC01-appb-I000015
So,
Figure JPOXMLDOC01-appb-I000016
Automatically imposes the condition
Figure JPOXMLDOC01-appb-I000017
It becomes. a 1/2, a 3/2, ..., is the equation in order to determine the a m is required after μ-1. It is also a 1/2 to have what kind of function to this value filter, a 3/2, ..., can be considered a variety depending on the conditions imposed on a m.
 本実施形態の手法は、数値位相検波において極力短い時定数のもとで特定の角振動数のノイズを除去するのに有効である。以下、実施例として、多周波数ノッチフィルタ、ハイパスフィルタ、高次ノッチフィルタの構成方法を挙げる。また、OFDM法の代替として使用可能な検波方法の実施例も説明する。以下簡単のため、nに欠番がない場合を考える。すなわち整数周期の場合は、μ=mで半整数周期の場合はμ-1/2=mである。 The method of this embodiment is effective for removing noise of a specific angular frequency under a time constant as short as possible in numerical phase detection. Hereinafter, as an example, a configuration method of a multi-frequency notch filter, a high-pass filter, and a high-order notch filter will be described. An embodiment of a detection method that can be used as an alternative to the OFDM method will also be described. For the sake of simplicity, let us consider a case where there is no missing number in n. That is, in the case of an integer period, μ = m and in the case of a half integer period, μ−1 / 2 = m.
 前記の説明において、フィルタリングに用いるG CC又はG SSの取得は、「積算振動回数に応じた複数の検波結果の取得」の例に対応する。また、フィルタリングの目的に応じて検波結果の線形結合の係数を算出すること(計算機により又は人為的に)は、「線形係数の決定」の例に対応する。 In the above description, acquisition of G n CC or G n SS used for filtering corresponds to an example of “acquisition of a plurality of detection results according to the number of integrated vibrations”. Moreover, calculating the coefficient of the linear combination of the detection results according to the purpose of filtering (by a computer or artificially) corresponds to an example of “determination of linear coefficient”.
 以下においては、フィルタリングの目的に応じた線形係数の決定手法のさらに具体的な例を、実施例として説明する。 Hereinafter, a more specific example of a linear coefficient determination method according to the purpose of filtering will be described as an example.
 (実施例1:多周波数ノッチフィルタ)
 除去したいノイズの角振動数
Figure JPOXMLDOC01-appb-I000018
が離散的でかつ有限個(μ-1個)の場合は
(Example 1: Multi-frequency notch filter)
Angular frequency of noise to be removed
Figure JPOXMLDOC01-appb-I000018
Is discrete and finite (μ-1)
という条件を課せばよい。式(7),(8)より一般に You can impose a condition that Generally from equations (7) and (8)
Figure JPOXMLDOC01-appb-I000020
なので、
Figure JPOXMLDOC01-appb-I000021
が成り立つ。これにより除去したいノイズの角振動数をω(≠ω)とすれば、x=ω/ωより、
Figure JPOXMLDOC01-appb-I000020
So,
Figure JPOXMLDOC01-appb-I000021
Holds. If the angular frequency of the noise to be removed is ω i (≠ ω 0 ), then x i = ω i / ω 0 ,
Figure JPOXMLDOC01-appb-I000022
となり、nが整数の場合はGtotal SS(x)の零点だけを考慮すれば良い。この場合はm=μである。同様にnが半整数の場合はGtotal CC(x)の零点だけを考慮すれば良く、この場合はm=μ-1/2である。整数と半整数が混在する場合はこの限りでない。nが整数の場合をまとめて行列で書くと、
Figure JPOXMLDOC01-appb-I000022
When n is an integer, only the zero of G total SS (x i ) needs to be considered. In this case, m = μ. Similarly, when n is a half integer, only the zero point of G total CC (x i ) needs to be considered, and in this case, m = μ−1 / 2. This does not apply when integers and half integers are mixed. When n is an integer and put together in a matrix,
Figure JPOXMLDOC01-appb-I000023
となる。線形係数a,a,…,aに関するこの連立一次方程式は数値的に容易に解くことができる。実施例1によれば、この線形係数を用いて検波結果の線形結合を行う。これにより、任意でかつ既知の角振動数
Figure JPOXMLDOC01-appb-I000024
のノイズ成分を除去するノッチフィルタ機能をもった数値位相検波を、信号の位相を回転させることなしに、最大でも2mπ/ωの時間幅の情報だけを使って行うことができる。例として、x=0.3の角振動数の通過利得を実部虚部共に零にするフィルタの設計例と、x=0.3とx=0.5の角振動数の通過利得を同時に実部虚部共に零にするフィルタの設計例とを図5に示す。ここでは例として、除去したいノイズの角振動数を0.3ω単独とした場合(m=2)と、0.3ωと0.5ωの両方とした場合(m=3)とのそれぞれにおいて、線形結合のパラメータを決定した。同様の処理は、nが整数の場合に限らず、半整数の場合であっても同様に行うことができる。
Figure JPOXMLDOC01-appb-I000023
It becomes. Linear coefficients a 1, a 2, ..., the system of linear equations for a m can be solved numerically with ease. According to the first embodiment, the linear combination of detection results is performed using this linear coefficient. This allows arbitrary and known angular frequency
Figure JPOXMLDOC01-appb-I000024
Numerical phase detection having a notch filter function for removing the noise component can be performed using only information of a time width of 2 mπ / ω 0 at the maximum without rotating the phase of the signal. As an example, a filter design example in which the pass gain of the angular frequency of x = 0.3 is zero for both the real part and the imaginary part, and the pass gain of the angular frequency of x = 0.3 and x = 0.5 are simultaneously FIG. 5 shows a filter design example in which both the real part and the imaginary part are zero. Here, as an example, each of the case where the angular frequency of the noise to be removed is 0.3ω 0 alone (m = 2) and the case where both 0.3ω 0 and 0.5ω 0 are both (m = 3). The parameters of the linear combination were determined. The same processing is not limited to the case where n is an integer, and can be performed in the same manner even when it is a half integer.
 (実施例2:ハイパスフィルタ)
 式(7)のG CC(x)と式(8)のG SS(x)をx=0の回りで展開してみると、
(Example 2: High-pass filter)
Expanding G n CC (x) in Equation (7) and G n SS (x) in Equation (8) around x = 0,
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
となる。ここで注目したいのは、それぞれの最低次の項の係数が2・(-1)n+1ということでn→∞としてもゼロに収束しないことである。これは低周波極限のノイズを抑えるために積算振動回数nを単純に増やしてもその効果はほとんどないことを意味する。しかしここでm=2とし、a=1/2,a=1/2としてみると、式(11),(12),(26),(27)より It becomes. It should be noted here that the coefficient of each lowest-order term is 2 · (−1) n + 1 , so that even if n → ∞, it does not converge to zero. This means that there is almost no effect even if the cumulative number of vibrations n is simply increased in order to suppress noise at the low frequency limit. However, when m = 2, a 1 = 1/2, and a 2 = 1/2, from the equations (11), (12), (26), and (27)
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000026
となり、Gtotal CC=Gtotal SS=1,(ここでa+a=1)を保ったまま最低次の項を消去することができる。このことは、積算に必要な時間域は同じであるにもかかわらず単に積算振動回数nを2にするより遥かに低周波ノイズの除去に効果があることを意味する。 Thus, the lowest order term can be erased while keeping G total CC = G total SS = 1 (where a 1 + a 2 = 1). This means that it is far more effective in removing low-frequency noise than simply setting the integrated vibration frequency n to 2 even though the time range required for integration is the same.
 この考えをさらに押し進めて、任意の次数の係数まで消去することが可能である。式(23)が成り立つので、以下Gtotal SS(ω)を考えればGtotal CC(ω)についても自動的に最適化される。式(12),(27)より、m≧3ならば It is possible to push this idea further and eliminate coefficients of any order. Since equation (23) is established, G total CC (ω) is automatically optimized when G total SS (ω) is considered below. From equations (12) and (27), if m ≧ 3
Figure JPOXMLDOC01-appb-I000027
が成り立つので、
Figure JPOXMLDOC01-appb-I000027
Because
Figure JPOXMLDOC01-appb-I000028
という条件を課せば、式(14)と併せて
Figure JPOXMLDOC01-appb-I000028
In combination with equation (14)
Figure JPOXMLDOC01-appb-I000029
という連立一次方程式になる。この方程式を解けば、x2m-1までの項を落とすことができる。具体的な厳密解は(32)、(33)の結果と併せると、
Figure JPOXMLDOC01-appb-I000029
It becomes the simultaneous linear equation. By solving this equation, terms up to x 2m-1 can be dropped. The specific exact solution is combined with the results of (32) and (33).
Figure JPOXMLDOC01-appb-I000030
となる。Gtotal CC(x)の場合も同様で、この場合はx2mまでの項を消去できる。Gtotal SS(x)の方がGtotal CC(x)より次数が低いので、フィルタとしての機能はGtotal SS(x)の特性で決まる。
Figure JPOXMLDOC01-appb-I000030
It becomes. The same applies to G total CC (x). In this case, terms up to x 2 m can be deleted. Since G total SS (x) has a lower order than G total CC (x), the function as a filter is determined by the characteristic of G total SS (x).
 結果として、2m-1次のハイパスフィルタ機能をもった数値位相検波が、信号の位相を回転させることなしに、最大でも2mπ/ωの時間幅の情報だけを使ってできるようになる。具体的な実部と虚部の通過利得を図6(a),(b)に示す。これらの図は、整数mまでの周期による数値位相検波を線形結合し、係数を最適化したハイパスフィルタの実部と虚部を示す。使用する周期を1つ増やす毎に、フィルタの次数が2つずつ上がることがわかる。 As a result, numerical phase detection having a 2m-1 order high-pass filter function can be performed using only information of a time width of at most 2mπ / ω 0 without rotating the phase of the signal. Specific gains of real part and imaginary part are shown in FIGS. 6 (a) and 6 (b). These figures show a real part and an imaginary part of a high-pass filter in which numerical phase detection with a period up to an integer m is linearly combined and the coefficients are optimized. It can be seen that each time the period used is increased by one, the order of the filter increases by two.
 以上の説明はnが整数の場合を仮定したが、それに限らず、nが半整数の場合も前記と同様の処理が可能である。例としてm=3/2の場合の、実部と虚部の通過利得を、図6(c),(d)に示す。これらは、元のG CC(x)やG SS(x)には無い優れた特性をそれらの線形結合によって作り出したことになる。図6(c),(d)は、n=1/2とn=3/2の結果を合成したもの(m=3/2)の実部と虚部の通過利得を示している。半整数周期の場合は、直流極限ω/ω→0において各々のG CCが有限値になるので、直流成分を落とせないという難点があったが、複数の(つまりμ個の)積算振動回数nに応じた検波結果の線形結合の係数をうまくとれば、これを零にすることが出来ることを示している。これは2次のハイパスフィルタの具体例であり、3/2周期分のデータの積算でこれを実現している。 The above description assumes that n is an integer. However, the present invention is not limited to this, and the same processing as described above is possible when n is a half integer. As an example, the passing gains of the real part and the imaginary part when m = 3/2 are shown in FIGS. 6 (c) and 6 (d). These consist of no excellent characteristics that produced by their linear combination in the original G n CC (x) and G n SS (x). FIGS. 6C and 6D show the pass gains of the real part and the imaginary part of the combination of the results of n = 1/2 and n = 3/2 (m = 3/2). In the case of a half-integer period, each G n CC has a finite value in the direct current limit ω / ω 0 → 0, so there was a problem that the direct current component could not be dropped, but a plurality of (that is, μ) integrated vibrations This shows that if the coefficient of the linear combination of the detection result corresponding to the number n is taken well, this can be made zero. This is a specific example of a secondary high-pass filter, which is realized by integrating data for 3/2 periods.
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000031
となる。ここで、式(12)についてδx2m-1までの係数を落とす条件は、式(31)と同じになる。従って式(33)のタイプのフィルタは、前述のハイパスフィルタとしての機能と同時に、偶数倍波(すなわちx=2k,k=1,2,3,…)における高次ノッチフィルタとしての機能を持つ。なおこのとき奇数倍波については1次のノッチフィルタとして機能する。 It becomes. Here, the condition for dropping the coefficient up to δx2 m−1 in equation (12) is the same as in equation (31). Therefore, the filter of the type of Expression (33) has a function as a high-order notch filter for even harmonics (that is, x = 2k, k = 1, 2, 3,. . At this time, the odd multiple wave functions as a primary notch filter.
 (実施例3:高次ノッチフィルタ)
 或る程度の幅をもって角振動数ω(≠ω)付近に分布するノイズを除去するための高次のノッチフィルタを考える。ここで
(Example 3: High-order notch filter)
Consider a high-order notch filter for removing noise distributed in the vicinity of angular frequency ω 1 (≠ ω 0 ) with a certain width. here
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000032
という条件を課すと、l次のノッチフィルタが実現する。nが整数の場合は、式(23)より If this condition is imposed, an l-th order notch filter is realized. When n is an integer, from equation (23)
Figure JPOXMLDOC01-appb-I000033
となるので
Figure JPOXMLDOC01-appb-I000034
が常に成り立つ。
Figure JPOXMLDOC01-appb-I000033
Because
Figure JPOXMLDOC01-appb-I000034
Always holds.
 なおnが半整数の場合は式(24)より If n is a half-integer, from formula (24)
Figure JPOXMLDOC01-appb-I000035
となり、同様のことができる。整数と半整数が混在する場合はこの限りでない。
Figure JPOXMLDOC01-appb-I000035
The same can be done. This does not apply when integers and half integers are mixed.
 式(12)より、任意の整数jに対し
Figure JPOXMLDOC01-appb-I000036
が成り立つので、a,a,…,aの決定に必要な連立1次方程式は、
From equation (12), for any integer j
Figure JPOXMLDOC01-appb-I000036
So is true, a 1, a 2, ... , the simultaneous linear equations necessary for the determination of a m,
Figure JPOXMLDOC01-appb-I000037
となる。ここでl=m-1である。
Figure JPOXMLDOC01-appb-I000037
It becomes. Here, l = m−1.
 a,a,…,aに関するこの連立一次方程式は数値的に容易に解くことができる。結果として、任意でかつ既知の角振動数ω(≠ω)のノイズ成分を除去するm-1次のノッチフィルタ機能をもった数値位相検波を、信号の位相を回転させることなしに最大でも2mπ/ωの時間幅の情報だけを使って行うことができる。例として、x=0.3の角振動数の通過利得を実部虚部共に零にする1次と2次のフィルタの設計例を図7に示す。ここでは除去したいノイズの角振動数ωを0.3ωとし、1次(m=2)と2次(m=3)のフィルタとなるようにパラメータを決定した。これはnが整数に限らず半整数の場合も同様のことができる。 a 1, a 2, ..., the system of linear equations for a m can be solved numerically with ease. As a result, numerical phase detection with an m−1 order notch filter function that removes noise components of arbitrary and known angular frequency ω 1 (≠ ω 0 ) is maximized without rotating the phase of the signal. However, it can be performed using only information of a time width of 2 mπ / ω 0 . As an example, FIG. 7 shows a design example of a first-order filter and a second-order filter that make the passing gain of the angular frequency of x = 0.3 zero for both the real part and the imaginary part. Here, the angular frequency ω 1 of the noise to be removed is set to 0.3ω 0, and the parameters are determined so as to be a first-order (m = 2) and second-order (m = 3) filter. This is the same when n is not limited to an integer but a half integer.
 (実施例4:直交周波数多重分割法(OFDM法)の代替)
 実施例1に示した例を用いて、複数の周波数を用いて並行して高速で位相検波を行なう際における混信を防ぐことができる。従来、2つの周波数ν,νで位相検波を行なう場合に、ν=(p/p)ν(p,qは互いに素の自然数)だとすると、混信を防ぐには、νに対してはp回、νに対してはp回の積算振動回数が必要であった。しかし本例の手法では、共に最大でも2回の積算振動回数で足りるようになり、ほとんどの場合において、従来よりも短い時間で検波が出来るようになる。
(Example 4: Alternative to orthogonal frequency division division method (OFDM method))
Using the example shown in the first embodiment, it is possible to prevent interference when performing phase detection at high speed in parallel using a plurality of frequencies. Conventionally, when phase detection is performed at two frequencies ν 1 and ν 2 and ν 2 = (p 2 / p 1 ) ν 1 (p and q are relatively prime natural numbers), in order to prevent interference, ν 1 p 1 times for, for the [nu 2 was necessary cumulative number of oscillations twice p. However, in the method of this example, the maximum number of integrated vibrations is sufficient for both, and in most cases, detection can be performed in a shorter time than in the past.
 例えばν=5[Hz],ν=8[Hz]とすると、従来法(図8の「Ordinary method」)ではp=5,p=8で、各々の積算時間(p/ν,p/ν)はともに1[sec]となる。一方、本例の手法(図8の「New method」)では、各々の積算時間(2/ν,2/ν)はそれぞれ、0.4[sec],0.25[sec]となり、従来法より短くできる(図8(a)参照)。 For example, if ν 1 = 5 [Hz] and ν 2 = 8 [Hz], p 1 = 5 and p 2 = 8 in the conventional method (“Ordinary method” in FIG. 8), and each accumulated time (p 1 / (ν 1 , p 2 / ν 2 ) are both 1 [sec]. On the other hand, in the method of this example (“New method” in FIG. 8), the respective integration times (2 / ν 1 , 2 / ν 2 ) are 0.4 [sec] and 0.25 [sec], respectively. It can be shorter than the conventional method (see FIG. 8 (a)).
 次に、ν=8.1[Hz]とした場合について検討する。従来法では、p=50,p=81であり、各々の積算時間はともに10[sec]となって、ν=8[Hz]の場合に比べて非常に長くなる。一方、本例の手法では、各々の積算時間はそれぞれ、0.4[sec],0.24...[sec]となり、ν=8[Hz]の場合と大差がない(図8(b)参照)。したがって、ν=8[Hz]とν=8.1[Hz]のいずれの場合でも、本例の手法では、積算時間の短縮を図ることができる。 Next, the case where ν 2 = 8.1 [Hz] is considered. In the conventional method, p 1 = 50 and p 2 = 81, and the respective integration times are both 10 [sec], which is much longer than that in the case of ν 2 = 8 [Hz]. On the other hand, in the method of this example, each integration time is 0.4 [sec], 0.24. . . [Sec], which is not much different from the case of ν 2 = 8 [Hz] (see FIG. 8B). Therefore, in both cases of ν 2 = 8 [Hz] and ν 2 = 8.1 [Hz], the method of this example can reduce the integration time.
 前者の場合において設計された個々の実部と虚部の通過利得を図8(c), (d)にそれぞれ示す。5[Hz]を通過させるものは5[Hz]において実部虚部共に通過利得は1であるが、8[Hz]において実部虚部共に通過利得は0になることがわかる。他方、8[Hz]を通過させるものは8[Hz]において実部虚部共に通過利得は1であるが、5[Hz]において実部虚部共に通過利得は0になることがわかる。 Fig. 8 (c) and (d) show the passing gains of the individual real and imaginary parts designed in the former case. In the case of passing 5 [Hz], the passing gain is 1 for both the imaginary part and the real part at 5 [Hz], but the passing gain is 0 for both the imaginary part and the real part at 8 [Hz]. On the other hand, in the case of passing 8 [Hz], the pass gain of the real part imaginary part is 1 at 8 [Hz], but the pass gain of the real part imaginary part is 0 at 5 [Hz].
 この考え方をもっと多くの周波数を用いた場合について推し進めると、条件次第では現在ブロードバンド通信等で使われている直交周波数多重分割法(OFDM法)よりも短い積算時間で検波を完了することができる。これは、様々な通信のデータ送信密度の向上に資すると考えられる。以下OFDM法との対比について述べる。 If this idea is advanced for the case where more frequencies are used, detection can be completed in a shorter integrated time than the orthogonal frequency division division method (OFDM method) currently used in broadband communication or the like depending on the conditions. This is considered to contribute to the improvement of the data transmission density of various communications. The comparison with the OFDM method is described below.
 まずN個の周波数ν,ν,…,νを用いてOFDM法で位相検波を行なう場合について考える。この場合
Figure JPOXMLDOC01-appb-I000038
となる整数の組p,p,…,pが存在するように各周波数ν,ν,…,νを選ぶところから始まる。すなわち
Figure JPOXMLDOC01-appb-I000039
である。この時τはN個全ての周波数に対する積算時間である。実用上は用いる周波数帯域をなるべく狭く取りたいので、欠番を設けず
Figure JPOXMLDOC01-appb-I000040
とするのが一般的である。MはM≧Nとなる整数であり、最大周波数を決めるパラメータになる。M=Nの場合は
Figure JPOXMLDOC01-appb-I000041
であるが、一般には1から始まらなくとも良く
Figure JPOXMLDOC01-appb-I000042
である。従って
Figure JPOXMLDOC01-appb-I000043
となる。これをτについて書き換えると
Figure JPOXMLDOC01-appb-I000044
となる。
First, consider a case where phase detection is performed by the OFDM method using N frequencies ν 1 , ν 2 ,..., Ν N. in this case
Figure JPOXMLDOC01-appb-I000038
To become a set of integers p 1, p 2, ..., each frequency ν 1 to p N is present, ν 2, ..., begins with choosing a ν N. Ie
Figure JPOXMLDOC01-appb-I000039
It is. At this time, τ is an integration time for all N frequencies. In practice, we want to make the frequency band to be used as narrow as possible.
Figure JPOXMLDOC01-appb-I000040
Is generally. M is an integer such that M ≧ N, and is a parameter that determines the maximum frequency. When M = N
Figure JPOXMLDOC01-appb-I000041
But in general it doesn't have to start from 1.
Figure JPOXMLDOC01-appb-I000042
It is. Therefore
Figure JPOXMLDOC01-appb-I000043
It becomes. Rewriting this for τ
Figure JPOXMLDOC01-appb-I000044
It becomes.
 次に本実施形態による手法を用いた場合について考察する。この方法では周波数の取り方にある程度任意性があるが、ここではOFDM法と同じくN個の周波数ν,ν,…,ν
Figure JPOXMLDOC01-appb-I000045
ととってみる。実施例1での考察によれば、N個の周波数において互いに干渉せずに検波をするのに必要な積算振動回数は各々の周波数においてN回である。従って各々の周波数における積算時間をτとすると
Figure JPOXMLDOC01-appb-I000046
となる。
Next, the case where the method according to the present embodiment is used will be considered. Although this method has some degree arbitrariness in-taking frequency, where also N frequency [nu 1 and OFDM method, [nu 2, ..., a [nu N
Figure JPOXMLDOC01-appb-I000045
Take it. According to the consideration in the first embodiment, the total number of vibrations required for detection without interfering with each other at N frequencies is N times at each frequency. Therefore, if the integration time at each frequency is τ i
Figure JPOXMLDOC01-appb-I000046
It becomes.
 次に、本例による方法がOFDM法よりも積算時間を短くする条件を考えてみる。N個全ての周波数においてτ≦τとするには、
Figure JPOXMLDOC01-appb-I000047
が成り立てば良い。これをNについて解くとN≦M/2+1/2となる。このことは、最高周波数のおおよそ半分よりは上の周波数を使う場合には、帯域幅が狭いほど、OFDM法よりも、本実施例の手法は、データ転送密度の点で有利になることを意味する。公共の電波を使って通信する場合などでは、利用できる周波数帯域に制約があるため、本例の手法が有用である。
Next, let us consider the conditions under which the method of this example shortens the integration time compared to the OFDM method. To make τ i ≦ τ at all N frequencies,
Figure JPOXMLDOC01-appb-I000047
Should be established. Solving this for N results in N ≦ M / 2 + 1/2. This means that when using a frequency above approximately half of the maximum frequency, the narrower the bandwidth, the more advantageous the method of this embodiment over the OFDM method in terms of data transfer density. To do. In the case of communication using public radio waves, etc., the method of this example is useful because there are restrictions on the frequency band that can be used.
 前述の通り、本例の手法では、周波数ν,ν,…,νの取り方に、ある程度の任意性がある。上記の例では、OFDM法と同じく等差数列にしたが、実用上は離散的な時間でデータサンプリングを行うので、各々の周波数においてN回の振動で位相が元に戻るように配慮する必要がある。この考察に基づくと、周波数の逆数ν -1,ν -1,…,ν -1を、サンプリングレートνの逆数の整数倍になるように設定すると都合がよく、このような設定方法が本手法では可能である。 As described above, in the method of the present embodiment, the frequency ν 1, ν 2, ..., the way of taking the [nu N, there is some arbitrariness. In the above example, the arithmetic sequence is the same as in the OFDM method. However, in practice, data sampling is performed at discrete times, so it is necessary to consider that the phase returns to the original state by N vibrations at each frequency. is there. Based on this consideration, it is convenient to set the reciprocal frequency ν 1 −1 , ν 2 −1 ,..., Ν N −1 to be an integral multiple of the reciprocal number of the sampling rate ν 0. A method is possible with this approach.
 (本実施形態の利点)
 以上のように複数の積算振動回数による数値位相検波結果の線形結合をとることで新たに生まれるフィルタ特性は、例として示したものに限らずそれらの組み合わせのものなどを自在に作ることが可能である。総じて、申請された手法を用いると数値位相検波の「積算時間を短く出来る」という特徴を活かしつつ特定の周波数のノイズを効率よく除去することができるようになる。
(Advantages of this embodiment)
As described above, the filter characteristics that are newly created by taking the linear combination of the numerical phase detection results based on multiple accumulated vibration counts are not limited to those shown as examples, and combinations of them can be freely created. is there. In general, using the applied method, it is possible to efficiently remove noise at a specific frequency while taking advantage of the feature of numerical phase detection that “integration time can be shortened”.
 以上説明したように、本実施形態の手法では、数値位相検波において積算振動回数の違いによって通過利得の特性が異なることを利用し、複数(すなわちμ≧2)個の積算振動回数による検波結果の線形結合をとることにより、単独の積算振動回数による検波にはない通過利得の特性を持たせることが出来る。 As described above, the method of the present embodiment uses the fact that the characteristic of the pass gain varies depending on the number of accumulated vibrations in numerical phase detection, and the detection result of a plurality of (ie, μ ≧ 2) accumulated vibrations By taking the linear combination, it is possible to have a characteristic of a pass gain that does not exist in the detection based on the single accumulated number of vibrations.
 交流信号に対する数値位相検波技術の需要は計測・通信などを通じて様々な産業分野に及んでいる。例えば計測においては、様々なセンサの出力を高感度に復調するために組み込みの位相検波技術が広く使われている。本実施形態のフィルタリング技術は、基本的なところではまずロックインアンプの性能向上に資すると考えられる。本例の方法では、何らかの理由で変調周波数を上げられない場合でも従来に比べ短時間のデータ積算でノイズ除去を含めて復調が可能である。複数のセンサを同時に使いつつ干渉を防ぎ高速応答させることが出来れば、あらゆる自動機械やロボットなどの制御をより正確にかつ俊敏に出来るようになると期待される。通信においては、定められた周波数で混信を防ぎつつ伝送データ量を効率よく増やせることが期待出来る。 Demand for numerical phase detection technology for AC signals extends to various industrial fields through measurement and communication. For example, in measurement, built-in phase detection technology is widely used to demodulate the output of various sensors with high sensitivity. Basically, the filtering technique of this embodiment is considered to contribute to the performance improvement of the lock-in amplifier. In the method of this example, even when the modulation frequency cannot be increased for some reason, demodulation including noise removal can be performed with data accumulation in a shorter time than conventional methods. If multiple sensors can be used at the same time to prevent interference and respond quickly, it is expected that all automatic machines and robots can be controlled more accurately and agilely. In communication, it can be expected that the amount of transmission data can be efficiently increased while preventing interference at a predetermined frequency.
 なお、本発明の内容は、前記各実施形態に限定されるものではない。本発明は、特許請求の範囲に記載された範囲内において、具体的な構成に対して種々の変更を加えうるものである。 The contents of the present invention are not limited to the above embodiments. In the present invention, various modifications can be made to the specific configuration within the scope of the claims.
 例えば、前記した実施形態では、線形係数決定部4により線形係数を算出する構成としたが、例えば、線形係数は、フィルタリングの目的に応じて予め算出された既定値であってもよい。あるいは、線形係数を、フィルタリングの用途に応じて動的に変化させる構成も可能である。 For example, in the above-described embodiment, the linear coefficient determination unit 4 calculates the linear coefficient. However, for example, the linear coefficient may be a predetermined value calculated in advance according to the purpose of filtering. Or the structure which changes a linear coefficient dynamically according to the use of filtering is also possible.
 また、前記した各構成要素は、機能ブロックとして存在していればよく、独立したハードウエアとして存在しなくても良い。また、実装方法としては、ハードウエアを用いてもコンピュータソフトウエアを用いても良い。さらに、本発明における一つの機能要素が複数の機能要素の集合によって実現されても良く、本発明における複数の機能要素が一つの機能要素により実現されても良い。 Further, each of the above-described constituent elements only needs to exist as a functional block, and does not need to exist as independent hardware. As a mounting method, hardware or computer software may be used. Furthermore, one functional element in the present invention may be realized by a set of a plurality of functional elements, and a plurality of functional elements in the present invention may be realized by one functional element.
 さらに、機能要素は、物理的に離間した位置に配置されていてもよい。この場合、機能要素どうしがネットワークにより接続されていても良い。グリッドコンピューティング又はクラウドコンピューティングにより機能を実現し、あるいは機能要素を構成することも可能である。 Furthermore, the functional elements may be arranged at physically separated positions. In this case, the functional elements may be connected by a network. It is also possible to realize functions or configure functional elements by grid computing or cloud computing.
 1 検波部
 2 線形結合部
 3 出力部
 4 線形係数決定部
DESCRIPTION OF SYMBOLS 1 Detection part 2 Linear combination part 3 Output part 4 Linear coefficient determination part

Claims (6)

  1.  交流信号に対するフィルタリングを行うためのフィルタリング装置であって、
     検波部と、線形結合部とを備えており、
     前記検波部は、前記交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得する構成となっており、
     前記線形結合部は、フィルタ特性に応じた線形係数を用いて前記複数の検波結果の線形結合を行う構成となっている
     フィルタリング装置。
    A filtering device for filtering an AC signal,
    It has a detection unit and a linear combination unit,
    The detection unit is configured to obtain a plurality of detection results according to the cumulative number of vibrations by performing numerical phase detection on the AC signal.
    The linear combination unit is configured to perform linear combination of the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
  2.  さらに出力部を備えており、
     前記出力部は、前記線形結合部での線形結合により得られた結果を出力する構成となっている
     請求項1に記載のフィルタリング装置。
    In addition, it has an output unit,
    The filtering device according to claim 1, wherein the output unit is configured to output a result obtained by linear combination in the linear combination unit.
  3.  さらに、線形係数決定部を備えており、
     前記線形係数決定部は、前記線形係数間の関係と、前記数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて、前記線形係数を算出する構成となっている
     請求項1又は2に記載のフィルタリング装置。
    Furthermore, a linear coefficient determination unit is provided,
    2. The linear coefficient determination unit is configured to calculate the linear coefficient using a relationship between the linear coefficients, an overall pass gain in the numerical phase detection, and a target filter characteristic. Or the filtering apparatus of 2.
  4.  交流信号に対するフィルタリングを行うためのフィルタリング方法であって、
     前記交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得するステップと、
     フィルタ特性に応じた線形係数を用いて前記複数の検波結果の線形結合を行うことにより、前記交流信号に対するフィルタリングを行うステップと
     を備えるフィルタリング方法。
    A filtering method for filtering an AC signal,
    Obtaining a plurality of detection results according to the cumulative number of vibrations by performing numerical phase detection on the AC signal; and
    Filtering the AC signal by performing a linear combination of the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
  5.  請求項4に記載のフィルタリング方法のために用いる線形係数決定方法であって
     前記線形計数の間の関係と、前記数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて、前記線形係数を算出するステップを備えている
     線形係数決定方法。
    The linear coefficient determination method used for the filtering method according to claim 4, wherein the relationship between the linear counts, the overall pass gain in the numerical phase detection, and the target filter characteristics are used. A linear coefficient determination method comprising a step of calculating a linear coefficient.
  6.  請求項4又は5に記載の各ステップをコンピュータに実行させるためのコンピュータプログラム。 A computer program for causing a computer to execute each step according to claim 4 or 5.
PCT/JP2017/009539 2017-03-09 2017-03-09 Filtering device and filtering method WO2018163364A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019504232A JP7062302B2 (en) 2017-03-09 2017-03-09 Filtering device and filtering method
PCT/JP2017/009539 WO2018163364A1 (en) 2017-03-09 2017-03-09 Filtering device and filtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009539 WO2018163364A1 (en) 2017-03-09 2017-03-09 Filtering device and filtering method

Publications (1)

Publication Number Publication Date
WO2018163364A1 true WO2018163364A1 (en) 2018-09-13

Family

ID=63448226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009539 WO2018163364A1 (en) 2017-03-09 2017-03-09 Filtering device and filtering method

Country Status (2)

Country Link
JP (1) JP7062302B2 (en)
WO (1) WO2018163364A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198739A1 (en) * 2018-04-10 2019-10-17 国立大学法人東京大学 Filtering device and filtering method
JP7024983B1 (en) * 2021-10-28 2022-02-24 竜太 綿貫 Filtering device and filtering method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186608A (en) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd Adjustment method for orthogonal detector, adjustment auxiliary device and demodulation device with adjustment auxiliary function
JP2004523941A (en) * 2000-11-28 2004-08-05 ソニー エレクトロニクス インク Improving resolution by nearest-neighbor class filtering
JP2009250775A (en) * 2008-04-04 2009-10-29 Panasonic Corp Physical quantity detection circuit, physical quantity sensor device equipped therewith, and physical quantity detection method
JP2013205093A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Digital phase detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003259435A1 (en) * 2002-08-30 2004-03-19 Koninklijke Philips Electronics N.V. Frequency-domain equalization for single carrier signals
FR3010268B1 (en) * 2013-09-03 2015-09-11 Orange METHOD AND DEVICE FOR TRANSMITTING BLOCKS OF COMPLEX DATA SYMBOLS, METHOD AND DEVICE FOR RECEIVING AND CORRESPONDING COMPUTER PROGRAMS.
US9772385B2 (en) * 2015-04-09 2017-09-26 International Business Machines Corporation Rotating magnetic field hall measurement system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186608A (en) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd Adjustment method for orthogonal detector, adjustment auxiliary device and demodulation device with adjustment auxiliary function
JP2004523941A (en) * 2000-11-28 2004-08-05 ソニー エレクトロニクス インク Improving resolution by nearest-neighbor class filtering
JP2009250775A (en) * 2008-04-04 2009-10-29 Panasonic Corp Physical quantity detection circuit, physical quantity sensor device equipped therewith, and physical quantity detection method
JP2013205093A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Digital phase detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198739A1 (en) * 2018-04-10 2019-10-17 国立大学法人東京大学 Filtering device and filtering method
JP2019186742A (en) * 2018-04-10 2019-10-24 国立大学法人 東京大学 Filtering apparatus and filtering method
JP7024983B1 (en) * 2021-10-28 2022-02-24 竜太 綿貫 Filtering device and filtering method
WO2023074598A1 (en) * 2021-10-28 2023-05-04 裕幸 三田村 Filtering device and filtering method

Also Published As

Publication number Publication date
JPWO2018163364A1 (en) 2019-12-26
JP7062302B2 (en) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2018163364A1 (en) Filtering device and filtering method
CN108763720B (en) DDC implementation method with sampling rate capable of being adjusted down at will
JP2005516434A (en) Demodulation of multicarrier phase modulated signals
JP6274818B2 (en) Characteristic measuring device with surface acoustic wave sensor
EP2787410A2 (en) Spurious frequency attenuation servo
JP4169393B2 (en) Angle demodulator
US7440576B2 (en) Apparatus and method for reconstructing high frequency part of signal
US20200378763A1 (en) Bandwidth extension for continuous mode reversal gyroscope
WO2019198739A1 (en) Filtering device and filtering method
US8817913B2 (en) Digital filter-decimator-tuner
CN113612522A (en) Frequency domain deviation processing method and device
Jara et al. Rational inversion of the Laplace transform
JP3717856B2 (en) Frequency measuring device
WO2023074598A1 (en) Filtering device and filtering method
Havskov et al. Correction for instrument response
CN107493118B (en) Signal acquisition method and device
JP3036985B2 (en) Spectrum calculation device
JP2914979B2 (en) Frequency converter
JP2019211300A (en) High-speed lock-in amplifier
JP4277333B2 (en) Digital filter
KR101818656B1 (en) Method and system for performing complex sampling of signals by using two or more sampling channels and for calculating time delays between these channels
JP3060955B2 (en) Passive homodyne demodulation method
Bourrion et al. Electronics and data acquisition for kilopixels kinetic inductance camera
JP5847762B2 (en) Method and apparatus for demodulating an amplitude modulated signal
TWI627836B (en) Carrier frequency offset tracking circuit and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899854

Country of ref document: EP

Kind code of ref document: A1