WO2023074598A1 - Filtering device and filtering method - Google Patents

Filtering device and filtering method Download PDF

Info

Publication number
WO2023074598A1
WO2023074598A1 PCT/JP2022/039434 JP2022039434W WO2023074598A1 WO 2023074598 A1 WO2023074598 A1 WO 2023074598A1 JP 2022039434 W JP2022039434 W JP 2022039434W WO 2023074598 A1 WO2023074598 A1 WO 2023074598A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
signal
frequency
period
extracted
Prior art date
Application number
PCT/JP2022/039434
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 三田村
竜太 綿貫
Original Assignee
裕幸 三田村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 裕幸 三田村 filed Critical 裕幸 三田村
Publication of WO2023074598A1 publication Critical patent/WO2023074598A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to a technique for filtering AC signals.
  • Analog phase detection and numerical phase detection are known as techniques for performing phase detection (also called synchronous detection) for AC signals.
  • analog phase detection if each frequency of the signal to be demodulated is ⁇ 0 , the original signal is multiplied by 2 cos ⁇ 0 t or 2 sin ⁇ 0 t to remove the double vibration components (i.e., cos 2 ⁇ 0 t and sin 2 ⁇ 0 t). By doing so, a constant component that does not depend on time is extracted.
  • the analog phase detection since the component of double vibration is removed by the low-pass filter, there is a problem that integration for a long time is required.
  • numerical phase detection has the advantage of being able to extract signal components in a short period of time because it is possible to remove components of double vibrations by using integral multiples or half-integer multiples of the reference period.
  • Patent Document 1 proposes a technique in Patent Document 1 below that can perform low-noise signal extraction processing in a short period of time while using numerical phase detection. That is, in the technique of Patent Document 1 below, by taking advantage of the fact that the characteristics of the pass-through gain differ depending on the difference in the number of integrated vibrations in numerical phase detection, a single integrated vibration is obtained by linearly combining the detection results from a plurality of the number of integrated vibrations. It was shown that it is possible to give a pass gain characteristic that is not found in the detection by the number of times.
  • Patent Document 2 the position of the frequency component is set to a specific position, thereby shortening the time required to separate the multiplexed frequency components. showed how it can be done.
  • the AC signal to be filtered is generally a continuous function of time.
  • actual signal acquisition that is, sampling
  • Patent Document 1 paragraph 0090 proposes a solution of setting the frequency so that the reciprocal of the frequency is an integral multiple of the reciprocal of the sampling rate.
  • the restrictions on possible frequencies become severe.
  • a main object of the present invention is to provide a technique for accurately realizing demodulation in numerical phase detection.
  • Another object of the present invention is to provide a technique capable of increasing the degree of freedom in setting frequencies to be extracted in numerical phase detection.
  • a filtering device for filtering an AC signal for filtering an AC signal, a sampling unit, a detection unit, and a linear combination unit
  • the sampling unit is configured to sample the AC signal at a sampling period corresponding to each frequency to be extracted, Here, the sampling period is set so that one period or half period of each frequency to be extracted is an integral multiple of the sampling period
  • the detection unit is configured to obtain a plurality of detection results corresponding to the number of integrated vibrations by performing numerical phase detection on the sampled AC signal
  • the filtering device wherein the linear combination unit linearly combines the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
  • (Item 4) 4. The filtering device according to any one of items 1 to 3, wherein the frequency components to be extracted in the AC signal are arranged at regular intervals.
  • the linear coefficient determination unit is configured to calculate the linear coefficient using the relationship between the linear coefficients, the overall pass gain in the numerical phase detection, and the target filter characteristics. 6.
  • the filtering device according to any one of 5.
  • a filtering method for filtering an AC signal comprising: sampling the AC signal with a sampling period corresponding to each frequency to be extracted, wherein the sampling period is such that one period or half period of each frequency to be extracted is an integral multiple of the sampling period; is set to obtaining a plurality of detection results corresponding to the number of integrated vibrations by performing numerical phase detection on the sampled AC signal; and linearly combining the plurality of detection results using linear coefficients according to filter characteristics.
  • a filtering method for filtering an AC signal comprising: sampling the AC signal with a sampling period corresponding to each frequency to be extracted, wherein the sampling period is such that one period or half period of each frequency to be extracted is an integral multiple of the sampling period; is set to Filtering the sampled AC signal by performing numerical phase detection on the AC signal to obtain frequency components to be extracted.
  • This computer program is recorded on an appropriate recording medium (for example, an optical recording medium such as a CD-ROM or DVD disk, a magnetic recording medium such as a hard disk or flexible disk, or a magneto-optical recording medium such as an MO disk).
  • an appropriate recording medium for example, an optical recording medium such as a CD-ROM or DVD disk, a magnetic recording medium such as a hard disk or flexible disk, or a magneto-optical recording medium such as an MO disk.
  • This computer program can be transmitted via a communication line such as the Internet.
  • a filtering device for filtering an AC signal It comprises a sampling section and a filter section,
  • the sampling unit is configured to sample the AC signal at a sampling period corresponding to each frequency to be extracted, wherein the sampling period is one period or half period of each frequency to be extracted. It is set to be an integral multiple of the period,
  • the filter unit filters the AC signal by performing numerical phase detection on the sampled AC signal, and acquires a frequency component to be extracted.
  • the present invention it is possible to accurately realize demodulation in numerical phase detection. Moreover, according to the present invention, it is possible to increase the degree of freedom in setting the frequencies to be extracted in the numerical phase detection.
  • FIG. 2 is a block diagram showing an outline of a filter unit in the filtering device of FIG. 1;
  • FIG. 2 is a flowchart for explaining a filtering method performed using the filtering device of FIG. 1;
  • FIG. 4 is an explanatory diagram for explaining a procedure for sampling and demodulating a mixed signal in which AC signals are mixed;
  • FIG. 4 is an explanatory diagram for explaining a procedure for sampling a plurality of AC signals whose frequencies are evenly spaced, in comparison with the OFDM method;
  • the numbers on the vertical axis in these figures represent frequency (Hz), and the vertical axis represents amplitude for each frequency.
  • FIG. 10 is an explanatory diagram for explaining an example in which the filtering method of the present embodiment is applied to frequency sweep;
  • the vertical axis in these figures indicates normalized signal intensity.
  • a filtering device according to an embodiment of the present invention will be described below with reference to FIG.
  • the filtering device of this embodiment includes a sampling unit 1 and a filter unit 3 as main components (see FIG. 1). Furthermore, the filtering device of this embodiment includes a sampling rate storage unit 2, an output unit 4, and a linear coefficient determination unit 5 as additional elements.
  • the sampling unit 1 is configured to sample an AC signal at a sampling period corresponding to each frequency to be extracted.
  • the sampling period is set so that one period of each frequency to be extracted is an integral multiple of the sampling period.
  • suitable sampling periods corresponding to different frequencies are generally considered to be different from each other.
  • sampling rate storage unit 2 stores the sampling period corresponding to the frequency to be extracted (which is usually known).
  • the sampling rate storage unit 2 provides the sampling unit 1 with a predetermined sampling period.
  • the filter section 3 of this embodiment is composed of a detection section 31 and a linear combination section 32 (see FIG. 2).
  • the detection unit 31 acquires a plurality of detection results corresponding to the cumulative number of vibrations by performing numerical phase detection on the sampled AC signal.
  • the linear combining unit 32 linearly combines a plurality of detection results using linear coefficients according to filter characteristics.
  • the detection section 31 and the linear coupling section 32 can be configured basically in the same manner as in Patent Documents 1 and 2 described above. Detailed operations of the filter unit 3 will also be described later.
  • the output unit 4 is configured to output the result obtained by the linear combination in the linear combination unit 32 .
  • the output destination of the output unit 4 is, for example, a display or a printer, but may also be some storage means or a remote device. In this embodiment, the concept of output also includes sending data to some device.
  • the linear coefficient determination unit 5 is configured to calculate the linear coefficients used in the linear combining unit 32 using the relationship between the linear coefficients, the overall pass gain in the numerical phase detection, and the target filter characteristics. there is A method for determining the linear coefficients may be the same as that in Patent Document 1 described above.
  • Steps SA-1 and SA-2 in FIG. 3 Upon receiving an input of an AC signal to be detected, the sampling unit 1 receives the sampling period corresponding to the frequency to be extracted from the sampling rate storage unit 2, and samples the AC signal at this sampling period.
  • the sampling period is set so that one period of each frequency to be extracted is an integral multiple of the sampling period.
  • Step SA-3 in FIG. 3 Then, by performing numerical phase detection on the sampled AC signal, a plurality of detection results corresponding to the number of integrated vibrations are acquired. After that, a plurality of detection results are linearly combined using linear coefficients according to filter characteristics.
  • the methods described in Patent Document 1 or Patent Document 2 can be used, so detailed description thereof will be omitted.
  • the linear coefficients to be used are determined by the linear coefficient determination unit 5 in the same manner as in Patent Document 1. After that, the output unit 4 outputs the obtained filtering result.
  • the real part and the imaginary part of the signal component to be detected must have a finite and equal passing gain. for simplicity If the condition is imposed, A-(15) automatically holds.
  • each frequency be arranged at regular intervals and be biased to the high frequency side in the possible frequency band. By doing so, the overall integration time can be further shortened compared to the method of Patent Document 1.
  • n half-integer sequences
  • n is assumed to be an integer to avoid complication, but when n is a half-integer, one cycle can be read as a half-cycle as described above.
  • OFDM orthogonal frequency-division multiplexing
  • DFT discrete Fourier transform
  • each frequency can be selected so that the period of each frequency is an integral multiple of ⁇ t.
  • the reciprocals of the frequencies are integer ratios.
  • equal frequency intervals are a requirement for efficient transmission and reception of data. In this case, there arises a problem that it becomes difficult to simultaneously satisfy the period of each frequency being an integral multiple of ⁇ t. The following example shows how to solve this problem.
  • one period of the frequency to be extracted needs to be an integer multiple of ⁇ t, but one period of the target frequency to be removed does not necessarily have to be an integer multiple of ⁇ t. Focused on As a result, by independently sampling and demodulating the same input signal before detection with different sampling periods for each frequency to be extracted, one period is always an integral multiple of the sampling period for each frequency to be extracted. can be made to be That is, for frequencies to be extracted, both ends of the integration interval can be reserved as data points.
  • each sampling period is set so that one period of the frequency to be extracted is an integral multiple of the sampling period.
  • Example 2 Next, an example in which frequencies are arranged at regular intervals will be described with reference to FIG. For this example, assume that frequencies between 11 Hz and 15 Hz are used.
  • the light gray indicates the number of oscillation integration times required in the conventional OFDM method (Fig. 5(a)).
  • the integration interval required for detection is an integral multiple of the sampling period for all frequency components under consideration, so interpolation is not necessary in the first place (Fig. 5 (b )). That is, there is no need to adjust the sampling period.
  • the number of vibration integration times required in the signal separation method shown in Patent Document 1 or 2 is shown in dark gray in FIG.
  • demodulation can be performed with data in a shorter time than the OFDM method (FIG. 5(a)).
  • FIG. 5(a) when data acquisition is performed at a single sampling rate, it is difficult to set the integration interval required for detection of all the frequency components under consideration to an integral multiple of the sampling period. In particular, it is difficult when the frequency components are arranged at regular intervals as shown in FIG. 5 (see FIG. 5(c)).
  • the integration interval can always be an integral multiple of the sampling period (see FIG. 5(d)).
  • the sampled data points can be used to extract the AC signal of the target frequency. Therefore, according to the method of this embodiment, it is possible to increase the degree of freedom in setting the frequencies to be extracted in the numerical phase detection.
  • Example 3 The concept of interlocking the sampling period with the frequency to be extracted is also effective when the frequency is swept continuously/discontinuously. An example for frequency sweeping will now be described with reference to FIG.
  • the sampling rate is interlocked according to frequency changes, and the sampling unit 1 samples data so that one period of the frequency is always an integral multiple of the sampling period ⁇ t (see FIG. 6A). ).
  • the horizontal axis is the actual time.
  • FIG. 6B shows a diagram in which the intervals between samplings are rearranged.
  • the horizontal axis of FIG. 6(b) is the converted time.
  • the period of the frequency to be extracted is always an integral multiple of the sampling period. It can be an integer multiple of the oscillation period. However, as described above, it is possible to use a common sampling period for a plurality of frequencies.
  • Patent Documents 1 and 2 are particularly effective.
  • various frequency components are obtained using information of a shorter time width than the orthogonal frequency-division multiplexing (OFDM) currently used in the field of broadcasting and communication.
  • OFDM orthogonal frequency-division multiplexing
  • imaging devices such as ultrasonic diagnostic equipment and MRI will increase in speed and resolution.
  • it is thought that it will contribute to improving the sensitivity, time response, and crosstalk prevention performance of devices necessary for autonomous driving technology such as electronic compasses, acceleration sensors, millimeter wave radars, and ultrasonic sonars.
  • the filter section 3 is composed of the detection section 31 and the linear combination section 32, but both functions can be realized by one functional block.
  • the filter unit 3 of this embodiment includes a unit that performs processing that is mathematically equivalent to the detection and linear combination described above, and for example, it is not necessary to perform detection and linear combination separately as separate processing.
  • the filter unit 3 may be configured to filter the AC signal by performing numerical phase detection on the sampled AC signal and acquire the frequency component to be extracted.
  • each of the components described above may exist as a functional block, and does not have to exist as independent hardware.
  • either hardware or computer software may be used.
  • one functional element in the present invention may be implemented by a set of multiple functional elements, and multiple functional elements in the present invention may be implemented by one functional element.
  • the functional elements may be arranged at physically separated positions.
  • functional elements may be connected by a network. It is also possible to implement functions or configure functional elements by means of grid computing or cloud computing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

The purpose of the present invention is to accurately realize demodulation in numerical phase detection. A sampling unit 1 samples an alternating current signal with a sampling period corresponding to each frequency to be extracted. Here, the sampling period is set such that one or half period of each frequency to be extracted is an integral multiple of the sampling period. A filtering unit 3 performs numerical phase detection on the sampled alternating current signal to filter the alternating current signal and thus acquire a frequency component to be extracted.

Description

フィルタリング装置及びフィルタリング方法Filtering device and filtering method
 本発明は、交流信号に対してフィルタリングを行うための技術に関するものである。 The present invention relates to a technique for filtering AC signals.
 交流信号に対する位相検波(同期検波ともいう)を行う技術として、アナログ位相検波と数値位相検波(デジタル位相検波ともいう)とが知られている。 Analog phase detection and numerical phase detection (also called digital phase detection) are known as techniques for performing phase detection (also called synchronous detection) for AC signals.
 アナログ位相検波では、復調したい信号の各振動数をωとすると、元の信号に2cosωtあるいは2sinωtを乗算し、2倍振動の成分(すなわちcos2ωtとsin2ωt)を除去することで、時間によらない定数成分を抽出する。ここで、アナログ位相検波では、ローパスフィルタにより、2倍振動の成分を除去しているので、長時間の積算が必要になるという問題がある。 In analog phase detection, if each frequency of the signal to be demodulated is ω 0 , the original signal is multiplied by 2 cos ω 0 t or 2 sin ω 0 t to remove the double vibration components (i.e., cos 2 ω 0 t and sin 2 ω 0 t). By doing so, a constant component that does not depend on time is extracted. Here, in the analog phase detection, since the component of double vibration is removed by the low-pass filter, there is a problem that integration for a long time is required.
 これに対して、数値位相検波では、基準周期の整数倍あるいは半整数倍の区間積分を用いて2倍振動の成分を除去できるので、短時間で信号成分を取り出すことができるという特長がある。 On the other hand, numerical phase detection has the advantage of being able to extract signal components in a short period of time because it is possible to remove components of double vibrations by using integral multiples or half-integer multiples of the reference period.
 ところで、数値位相検波では、積算振動回数(要するに、区間積分に用いた周期の数)が少ないと、ノイズ除去性能が顕著に劣化するという問題がある。これに対して、積算振動回数を増やすと、信号成分を取り出す処理に時間を要してしまうという問題が生じる。つまり、数値位相検波では、処理時間の短縮とノイズ除去性能とがトレードオフの関係となっている。 By the way, in numerical phase detection, if the number of integrated vibrations (in other words, the number of cycles used for interval integration) is small, there is a problem that the noise removal performance is significantly degraded. On the other hand, if the number of integrated vibrations is increased, there arises a problem that it takes time to extract the signal component. In other words, in numerical phase detection, there is a trade-off relationship between reduction in processing time and noise removal performance.
 そこで、本発明者は、数値位相検波を用いながら、短時間での低ノイズの信号抽出処理を行うことができる技術を、下記特許文献1において提案した。すなわち、下記特許文献1の技術では、数値位相検波において積算振動回数の違いによって通過利得の特性が異なることを利用し、複数の積算振動回数による検波結果の線形結合をとることで単独の積算振動回数による検波にはない通過利得の特性を持たせることが出来ることを示した。 Therefore, the inventor of the present invention proposed a technique in Patent Document 1 below that can perform low-noise signal extraction processing in a short period of time while using numerical phase detection. That is, in the technique of Patent Document 1 below, by taking advantage of the fact that the characteristics of the pass-through gain differ depending on the difference in the number of integrated vibrations in numerical phase detection, a single integrated vibration is obtained by linearly combining the detection results from a plurality of the number of integrated vibrations. It was shown that it is possible to give a pass gain characteristic that is not found in the detection by the number of times.
 また、本発明者は、下記特許文献1の技術の発展として、下記特許文献2において、周波数成分の位置を特定の位置とすることにより、多重化された周波数成分の分離に要する時間をより短くできる方法を示した。 In addition, as a development of the technique of Patent Document 1 below, the present inventors have found in Patent Document 2 below that the position of the frequency component is set to a specific position, thereby shortening the time required to separate the multiplexed frequency components. showed how it can be done.
国際公開2018/163364公報International Publication 2018/163364 特許第6905265号公報Japanese Patent No. 6905265
 ところで、これらの技術において、フィルタリングの対象となる交流信号は、一般に、時間に対して連続的な関数である。一方、実際の信号の取得(つまりサンプリング)は離散的に行われる。すると、複数の周波数の分離復調において、それぞれ整数値(あるいは半整数値)の積算振動回数を実現できるように、サンプリングの方法を調整する必要が生じる。前記特許文献1(0090段落)では、周波数の逆数がサンプリングレートの逆数の整数倍となるように周波数を設定するという解決方法を提案している。しかしながらこの場合において、前記特許文献2のような効率的なフィルタリングのための周波数配置の条件と整合させようとすると、取りうる周波数の制約が厳しくなってしまう。 By the way, in these techniques, the AC signal to be filtered is generally a continuous function of time. On the other hand, actual signal acquisition (that is, sampling) is performed discretely. Then, in the separation and demodulation of a plurality of frequencies, it becomes necessary to adjust the sampling method so that an integral value (or a half-integer value) of integrated vibration counts can be realized. The aforementioned Patent Document 1 (paragraph 0090) proposes a solution of setting the frequency so that the reciprocal of the frequency is an integral multiple of the reciprocal of the sampling rate. However, in this case, if it is attempted to match the frequency allocation conditions for efficient filtering as in Patent Document 2, the restrictions on possible frequencies become severe.
 本発明は、前記した状況に鑑みてなされたものである。本発明の主な目的は、数値位相検波における復調を正確に実現するための技術を提供することである。また、本発明の他の目的は、数値位相検波において抽出する周波数についての設定の自由度を高めることができる技術を提供することである。 The present invention has been made in view of the situation described above. A main object of the present invention is to provide a technique for accurately realizing demodulation in numerical phase detection. Another object of the present invention is to provide a technique capable of increasing the degree of freedom in setting frequencies to be extracted in numerical phase detection.
 前記した課題を解決する手段は、以下の項目のように記載できる。 The means for solving the above problems can be described as the following items.
 (項目1)
 交流信号に対するフィルタリングを行うためのフィルタリング装置であって、
 サンプリング部と、検波部と、線形結合部とを備えており、
 前記サンプリング部は、抽出すべき周波数ごとに対応するサンプリング周期で、前記交流信号のサンプリングを行う構成となっており、
 ここで、前記サンプリング周期は、抽出すべき各周波数の1周期又は半周期がサンプリング周期の整数倍となるように設定されており、
 前記検波部は、サンプリングされた前記交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得する構成となっており、
 前記線形結合部は、フィルタ特性に応じた線形係数を用いて前記複数の検波結果の線形結合を行う構成となっている
 フィルタリング装置。
(Item 1)
A filtering device for filtering an AC signal,
a sampling unit, a detection unit, and a linear combination unit,
The sampling unit is configured to sample the AC signal at a sampling period corresponding to each frequency to be extracted,
Here, the sampling period is set so that one period or half period of each frequency to be extracted is an integral multiple of the sampling period,
The detection unit is configured to obtain a plurality of detection results corresponding to the number of integrated vibrations by performing numerical phase detection on the sampled AC signal,
The filtering device, wherein the linear combination unit linearly combines the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
 (項目2)
 前記サンプリング部は、前記交流信号のサンプリングを、前記抽出すべき周波数ごとに対応するサンプリング周期で、並列に行う構成となっている
 項目1に記載のフィルタリング装置。
(Item 2)
The filtering device according to item 1, wherein the sampling section is configured to perform sampling of the AC signal in parallel at a sampling period corresponding to each frequency to be extracted.
 (項目3)
 前記サンプリング部は、前記交流信号の周波数の変動に応じて、この変動に追随するように、前記サンプリング周期を変化させるようになっている
 項目1に記載のフィルタリング装置。
(Item 3)
The filtering device according to item 1, wherein the sampling unit changes the sampling period according to fluctuations in the frequency of the AC signal so as to follow the fluctuations.
 (項目4)
 前記交流信号において抽出すべき周波数成分は、等間隔で配置されている
 項目1~3のいずれか1項に記載のフィルタリング装置。
(Item 4)
4. The filtering device according to any one of items 1 to 3, wherein the frequency components to be extracted in the AC signal are arranged at regular intervals.
 (項目5)
 さらに出力部を備えており、
 前記出力部は、前記線形結合部での線形結合により得られた結果を出力する構成となっている
 項目1~4のいずれか1項に記載のフィルタリング装置。
(Item 5)
In addition, it has an output section,
5. The filtering device according to any one of items 1 to 4, wherein the output unit is configured to output a result obtained by linear combination in the linear combination unit.
 (項目6)
 さらに、線形係数決定部を備えており、
 前記線形係数決定部は、前記線形係数間の関係と、前記数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて、前記線形係数を算出する構成となっている
 項目1~5のいずれか1項に記載のフィルタリング装置。
(Item 6)
Furthermore, it has a linear coefficient determination part,
The linear coefficient determination unit is configured to calculate the linear coefficient using the relationship between the linear coefficients, the overall pass gain in the numerical phase detection, and the target filter characteristics. 6. The filtering device according to any one of 5.
 (項目7)
 異なる前記抽出すべき周波数に対応する前記サンプリング周期のうちの少なくとも二つが共通となっている
 項目1~6のいずれか1項に記載のフィルタリング装置。
(Item 7)
The filtering device according to any one of items 1 to 6, wherein at least two of the sampling periods corresponding to the different frequencies to be extracted are common.
 (項目8)
 交流信号に対するフィルタリングを行うためのフィルタリング方法であって、
 抽出すべき周波数ごとに対応するサンプリング周期で、前記交流信号のサンプリングを行うステップと、ここで、前記サンプリング周期は、抽出すべき各周波数の1周期又は半周期がサンプリング周期の整数倍となるように設定されており、
 サンプリングされた前記交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得するステップと、
 フィルタ特性に応じた線形係数を用いて前記複数の検波結果の線形結合を行うステップと
 を備えるフィルタリング方法。
(Item 8)
A filtering method for filtering an AC signal, comprising:
sampling the AC signal with a sampling period corresponding to each frequency to be extracted, wherein the sampling period is such that one period or half period of each frequency to be extracted is an integral multiple of the sampling period; is set to
obtaining a plurality of detection results corresponding to the number of integrated vibrations by performing numerical phase detection on the sampled AC signal;
and linearly combining the plurality of detection results using linear coefficients according to filter characteristics.
 (項目9)
 交流信号に対するフィルタリングを行うためのフィルタリング方法であって、
 抽出すべき周波数ごとに対応するサンプリング周期で、前記交流信号のサンプリングを行うステップと、ここで、前記サンプリング周期は、抽出すべき各周波数の1周期又は半周期がサンプリング周期の整数倍となるように設定されており、
 サンプリングされた前記交流信号に対する数値位相検波を行なうことにより、前記交流信号に対するフィルタリングを行い、抽出すべき周波数成分を取得するステップと
 を備えるフィルタリング方法。
(Item 9)
A filtering method for filtering an AC signal, comprising:
sampling the AC signal with a sampling period corresponding to each frequency to be extracted, wherein the sampling period is such that one period or half period of each frequency to be extracted is an integral multiple of the sampling period; is set to
Filtering the sampled AC signal by performing numerical phase detection on the AC signal to obtain frequency components to be extracted.
 (項目10)
 項目8又は9に記載の各ステップをコンピュータに実行させるためのコンピュータプログラム。
(Item 10)
A computer program for causing a computer to execute each step according to item 8 or 9.
 このコンピュータプログラムは、適宜な記録媒体(例えばCD-ROMやDVDディスクのような光学的な記録媒体、ハードディスクやフレキシブルディスクのような磁気的記録媒体、あるいはMOディスクのような光磁気記録媒体)に格納することができる。このコンピュータプログラムは、インターネットなどの通信回線を介して伝送されることができる。 This computer program is recorded on an appropriate recording medium (for example, an optical recording medium such as a CD-ROM or DVD disk, a magnetic recording medium such as a hard disk or flexible disk, or a magneto-optical recording medium such as an MO disk). can be stored. This computer program can be transmitted via a communication line such as the Internet.
 (項目11)
 交流信号に対するフィルタリングを行うためのフィルタリング装置であって、
 サンプリング部と、フィルタ部とを備えており、
 前記サンプリング部は、抽出すべき周波数ごとに対応するサンプリング周期で、前記交流信号のサンプリングを行う構成となっており
 ここで、前記サンプリング周期は、抽出すべき各周波数の1周期又は半周期がサンプリング周期の整数倍となるように設定されており、
 前記フィルタ部は、サンプリングされた前記交流信号に対する数値位相検波を行なうことにより、前記交流信号に対するフィルタリングを行い、抽出すべき周波数成分を取得する構成となっている
 フィルタリング装置。
(Item 11)
A filtering device for filtering an AC signal,
It comprises a sampling section and a filter section,
The sampling unit is configured to sample the AC signal at a sampling period corresponding to each frequency to be extracted, wherein the sampling period is one period or half period of each frequency to be extracted. It is set to be an integral multiple of the period,
The filter unit filters the AC signal by performing numerical phase detection on the sampled AC signal, and acquires a frequency component to be extracted.
 本発明によれば、数値位相検波における復調を正確に実現することが可能になる。また、本発明によれば、数値位相検波において抽出する周波数についての設定の自由度を高めることも可能になる。 According to the present invention, it is possible to accurately realize demodulation in numerical phase detection. Moreover, according to the present invention, it is possible to increase the degree of freedom in setting the frequencies to be extracted in the numerical phase detection.
本発明の一実施形態に係るフィルタリング装置の概略を示すブロック図である。It is a block diagram showing an outline of a filtering device concerning one embodiment of the present invention. 図1のフィルタリング装置におけるフィルタ部の概略を示すブロック図である。2 is a block diagram showing an outline of a filter unit in the filtering device of FIG. 1; FIG. 図1のフィルタリング装置を用いて行われるフィルタリング方法を説明するための流れ図である。2 is a flowchart for explaining a filtering method performed using the filtering device of FIG. 1; 交流信号が混合された混合信号をサンプリングして復調する手順を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a procedure for sampling and demodulating a mixed signal in which AC signals are mixed; 周波数が等間隔である複数の交流信号をサンプリングする手順を、OFDM法と対比して説明するための説明図である。これらの図における縦軸の数字は周波数(Hz)を表しており、縦軸は、周波数ごとの振幅を表している。FIG. 4 is an explanatory diagram for explaining a procedure for sampling a plurality of AC signals whose frequencies are evenly spaced, in comparison with the OFDM method; The numbers on the vertical axis in these figures represent frequency (Hz), and the vertical axis represents amplitude for each frequency. 周波数掃引に本実施形態のフィルタリング方法を適用した例を説明するための説明図である。これらの図における縦軸は正規化された信号強度を示す。FIG. 10 is an explanatory diagram for explaining an example in which the filtering method of the present embodiment is applied to frequency sweep; The vertical axis in these figures indicates normalized signal intensity.
 以下、本発明の一実施形態に係るフィルタリング装置を、図1を参照しながら説明する。 A filtering device according to an embodiment of the present invention will be described below with reference to FIG.
 (本実施形態のフィルタリング装置の構成)
 本実施形態のフィルタリング装置は、サンプリング部1と、フィルタ部3とを主要な構成として備えている(図1参照)。さらに、本実施形態のフィルタリング装置は、サンプリングレート記憶部2と出力部4と線形係数決定部5とを追加的な要素として備えている。
(Configuration of filtering device of this embodiment)
The filtering device of this embodiment includes a sampling unit 1 and a filter unit 3 as main components (see FIG. 1). Furthermore, the filtering device of this embodiment includes a sampling rate storage unit 2, an output unit 4, and a linear coefficient determination unit 5 as additional elements.
 (サンプリング部)
 サンプリング部1は、抽出すべき周波数ごとに対応するサンプリング周期で、交流信号のサンプリングを行う構成となっている。ここで、サンプリング周期は、抽出すべき各周波数の1周期がサンプリング周期の整数倍となるように設定されている。ここで、異なる周波数に対応する適切なサンプリング周期は、通常は互いに異なると考えられる。ただし、「抽出すべき各周波数の1周期がサンプリング周期の整数倍である」という条件を満たす限り、いずれかのサンプリング周期どうしが共通となっていてもよい。したがって、N個の周波数に対応するサンプリング周期の数Mは、N=M、N>M、M=1のいずれの場合もありうる。詳しいサンプリング動作については後述する。
(Sampling section)
The sampling unit 1 is configured to sample an AC signal at a sampling period corresponding to each frequency to be extracted. Here, the sampling period is set so that one period of each frequency to be extracted is an integral multiple of the sampling period. Here, suitable sampling periods corresponding to different frequencies are generally considered to be different from each other. However, as long as the condition that "one period of each frequency to be extracted is an integral multiple of the sampling period" is satisfied, any of the sampling periods may be common. Therefore, the number M of sampling periods corresponding to N frequencies can be any of N=M, N>M, and M=1. A detailed sampling operation will be described later.
 (サンプリングレート記憶部)
 サンプリングレート記憶部2は、抽出すべき周波数(これは通常既知である)に対応するサンプリング周期を記憶するものである。サンプリングレート記憶部2は、サンプリング部1に、所定のサンプリング周期を提供するようになっている。
(Sampling rate storage unit)
The sampling rate storage unit 2 stores the sampling period corresponding to the frequency to be extracted (which is usually known). The sampling rate storage unit 2 provides the sampling unit 1 with a predetermined sampling period.
 (フィルタ部)
 本実施形態のフィルタ部3は、検波部31と線形結合部32とから構成されている(図2参照)。
(filter part)
The filter section 3 of this embodiment is composed of a detection section 31 and a linear combination section 32 (see FIG. 2).
 検波部31は、サンプリングされた交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得するものである。 The detection unit 31 acquires a plurality of detection results corresponding to the cumulative number of vibrations by performing numerical phase detection on the sampled AC signal.
 線形結合部32は、フィルタ特性に応じた線形係数を用いて複数の検波結果の線形結合を行うものである。 The linear combining unit 32 linearly combines a plurality of detection results using linear coefficients according to filter characteristics.
 検波部31及び線形結合部32は、前記した特許文献1又は2と基本的に同様に構成することができる。フィルタ部3の詳しい動作についても後述する。 The detection section 31 and the linear coupling section 32 can be configured basically in the same manner as in Patent Documents 1 and 2 described above. Detailed operations of the filter unit 3 will also be described later.
 (出力部)
 出力部4は、線形結合部32での線形結合により得られた結果を出力する構成となっている。出力部4の出力先としては、例えば、ディスプレイやプリンタであるが、それ以外にも、何らかの記憶手段やリモート機器であってもよい。本実施形態では、何らかの機器にデータを送ることも出力の概念に含める。
(output section)
The output unit 4 is configured to output the result obtained by the linear combination in the linear combination unit 32 . The output destination of the output unit 4 is, for example, a display or a printer, but may also be some storage means or a remote device. In this embodiment, the concept of output also includes sending data to some device.
 (線形係数決定部)
 線形係数決定部5は、線形係数間の関係と、数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて、線形結合部32で用いられる線形係数を算出する構成となっている。線形係数の決定手法は前記特許文献1と同様でよい。
(Linear coefficient determination unit)
The linear coefficient determination unit 5 is configured to calculate the linear coefficients used in the linear combining unit 32 using the relationship between the linear coefficients, the overall pass gain in the numerical phase detection, and the target filter characteristics. there is A method for determining the linear coefficients may be the same as that in Patent Document 1 described above.
 (本実施形態のフィルタリング方法の手順)
 つぎに、前記したフィルタリング装置を用いたフィルタリング方法を、図3をさらに参照しながら説明する。
(Procedure of the filtering method of the present embodiment)
Next, a filtering method using the filtering device described above will be described with further reference to FIG.
 (図3のステップSA-1及びSA-2)
 検波対象としての交流信号の入力を受け付けると、サンプリング部1は、抽出すべき周波数に対応するサンプリング周期をサンプリングレート記憶部2から受領し、このサンプリング周期で交流信号のサンプリングを行う。ここで、サンプリング周期は、抽出すべき各周波数の1周期がサンプリング周期の整数倍となるように設定されている。
(Steps SA-1 and SA-2 in FIG. 3)
Upon receiving an input of an AC signal to be detected, the sampling unit 1 receives the sampling period corresponding to the frequency to be extracted from the sampling rate storage unit 2, and samples the AC signal at this sampling period. Here, the sampling period is set so that one period of each frequency to be extracted is an integral multiple of the sampling period.
 (図3のステップSA-3)
 ついで、サンプリングされた交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得する。その後、フィルタ特性に応じた線形係数を用いて複数の検波結果の線形結合を行う。これらの数値位相検波及び線形結合については、前記した特許文献1又は特許文献2に記載の方法を使用できるので、詳しい説明は省略する。用いられる線形係数は、特許文献1と同様にして、線形係数決定部5により決定される。その後、出力部4により、得られたフィルタリング結果を出力する。
(Step SA-3 in FIG. 3)
Then, by performing numerical phase detection on the sampled AC signal, a plurality of detection results corresponding to the number of integrated vibrations are acquired. After that, a plurality of detection results are linearly combined using linear coefficients according to filter characteristics. For these numerical phase detection and linear combination, the methods described in Patent Document 1 or Patent Document 2 can be used, so detailed description thereof will be omitted. The linear coefficients to be used are determined by the linear coefficient determination unit 5 in the same manner as in Patent Document 1. After that, the output unit 4 outputs the obtained filtering result.
 (フィルタリング装置の原理)
 ここで、本実施形態におけるフィルタリング装置の原理について詳しく説明し、その後、具体的な実施例を説明する。以下においては、前記特許文献1における式の引用をA-(**)とし、前記特許文献2における式の引用をB-(**)の形で表記する。
(Principle of filtering device)
Here, the principle of the filtering device according to this embodiment will be described in detail, and then specific examples will be described. Hereinafter, the citation of the formula in Patent Document 1 is expressed as A-(**), and the citation of the formula in Patent Document 2 is expressed in the form of B-(**).
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
で与えられる(注意:n=半整数の場合も同様の議論は可能であるがここでは簡単化のため自然数の場合のみを考える。)。また簡単化のため以後角振動数を無次
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
(Note: A similar argument can be made for the case of n=half integer, but here only the case of natural numbers is considered for the sake of simplification.). For the sake of simplification, hereafter the angular frequency is assumed to be infinite
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 一般に検波したい信号成分の通過利得は実部と虚部で有限かつ等しくある必要がある。簡単のため
Figure JPOXMLDOC01-appb-I000006
という条件を課せば自動的にA-(15)が成り立つ。
In general, the real part and the imaginary part of the signal component to be detected must have a finite and equal passing gain. for simplicity
Figure JPOXMLDOC01-appb-I000006
If the condition is imposed, A-(15) automatically holds.
Figure JPOXMLDOC01-appb-I000007
が成り立てばこれらのノイズを全て除去できることになる。
Figure JPOXMLDOC01-appb-I000007
If this holds, all these noises can be removed.
Figure JPOXMLDOC01-appb-I000008
が成り立てばB-(1)が言える。従って、A-(14)とA-(21)の連立
Figure JPOXMLDOC01-appb-I000009
求める特性のフィルタが完成する。
Figure JPOXMLDOC01-appb-I000008
holds, B-(1) can be said. Therefore, the coalition of A-(14) and A-(21)
Figure JPOXMLDOC01-appb-I000009
A filter with desired characteristics is completed.
Figure JPOXMLDOC01-appb-I000010
が成り立つ必要性がある。ここで
Figure JPOXMLDOC01-appb-I000011
が成り立つため
Figure JPOXMLDOC01-appb-I000012
フィルタが出来上がる。
Figure JPOXMLDOC01-appb-I000010
must be established. here
Figure JPOXMLDOC01-appb-I000011
because
Figure JPOXMLDOC01-appb-I000012
A filter is created.
Figure JPOXMLDOC01-appb-I000013
数にある。従って除去したい周波数をうまく選べば、より積算時間を短縮することが可能である(前記特許文献2参照)。これは、ブロードバンド通信などのように使用する周波数の組をあらかじめ選べる場合に有効である。以下その方法の概要を示す。
Figure JPOXMLDOC01-appb-I000013
in numbers. Therefore, if the frequency to be removed is selected well, it is possible to further shorten the integration time (see Patent Document 2 mentioned above). This is effective when a group of frequencies to be used can be selected in advance such as in broadband communication. The outline of the method is shown below.
 A-(8)とA-(12)より、
Figure JPOXMLDOC01-appb-I000014
From A-(8) and A-(12),
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
 従って
Figure JPOXMLDOC01-appb-I000016
となる。これより、
Figure JPOXMLDOC01-appb-I000017
成分も同時に除去されることを意味する(このことは積算周期が半整数の組の場合でも同様に成り立つ。)。
Therefore
Figure JPOXMLDOC01-appb-I000016
becomes. Than this,
Figure JPOXMLDOC01-appb-I000017
This means that the components are also removed at the same time (this holds true even in the case where the integration period is a set of half-integers).
Figure JPOXMLDOC01-appb-I000018
と置くと、
Figure JPOXMLDOC01-appb-I000019
となる。従って、
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000018
and
Figure JPOXMLDOC01-appb-I000019
becomes. Therefore,
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
ることを意味する。この関係式をうまく利用するには、各々の周波数が一定間隔に並んでいてとりうる周波数帯域の中で高周波側に片寄せされているのが望ましい。そうすることで前記特許文献1の方式よりも全体の積算時間を更に短縮することが出来る。
Figure JPOXMLDOC01-appb-I000022
means that In order to make good use of this relational expression, it is desirable that each frequency be arranged at regular intervals and be biased to the high frequency side in the possible frequency band. By doing so, the overall integration time can be further shortened compared to the method of Patent Document 1.
 前記の理論的説明では、信号が時間に対して連続的な関数として扱われている。一方、実際の信号の取得は垂直・水平軸共に離散的に行われるため、理想的な状況からのずれの影響を考慮する必要がある。とりわけ、有限のサンプリング周期Δtで時系列データを取得した場合に、式A-(7~10)を計算するためには、積分区間がサンプリング周期Δtのちょうど整数倍でなければ非常に困難が伴う。仮に整数倍でない場合、信号の位相と振幅が既知でノイズが全くなければ種々の補間法が使えるが、これはすでに復調・信号分離が済んでいる場合であり解決策にならない。したがって、前記特許文献1の手法で任意の自然数nに対して
Figure JPOXMLDOC01-appb-I000023
整数倍でなければいけない。なお、n=半整数の系列の場合、「復調すべき信号の半周期がサンプリング周期の整数倍になる」ようにする。本実施形態の説明においては、煩雑を避けるためn=整数を仮定しているが、n=半整数の場合は、前記の通り、1周期を半周期と読み替えればよい。ちなみに、離散的Fourier変換(DFT)を基本とした直交周波数分割多重方式(orthogonal frequency- division multiplexing, OFDM)では、Δtの整数倍の区間の中で、最初と最後の位相が同じになる周波数のみを扱うので、そもそもこういった問題は起きない(後述の図5(b)参照)。
The theoretical discussion above treats the signal as a continuous function of time. On the other hand, since actual signal acquisition is performed discretely on both vertical and horizontal axes, it is necessary to consider the influence of deviations from the ideal situation. In particular, when time-series data is acquired with a finite sampling period Δt, it is very difficult to calculate Equations A-(7 to 10) unless the integration interval is just an integer multiple of the sampling period Δt . If it is not an integer multiple, and if the phase and amplitude of the signal are known and there is no noise, various interpolation methods can be used. Therefore, for any natural number n by the method of Patent Document 1,
Figure JPOXMLDOC01-appb-I000023
Must be an integer multiple. In the case of n=half-integer sequences, "the half-cycle of the signal to be demodulated is an integral multiple of the sampling period". In the description of this embodiment, n is assumed to be an integer to avoid complication, but when n is a half-integer, one cycle can be read as a half-cycle as described above. Incidentally, in orthogonal frequency-division multiplexing (OFDM), which is based on the discrete Fourier transform (DFT), only frequencies where the first and last phases are the same within the interval of integer multiples of Δt are , this kind of problem does not occur in the first place (see FIG. 5(b), which will be described later).
 複数の周波数の分離復調を考える場合、各々の周波数の周期がΔtの整数倍であるように各周波数を選択できれば良い。これは、周波数の逆数が整数比になることを意味する。しかしながら、前記特許文献2が示唆するところは、周波数が等間隔であることが、データを効率よく送受信する要件となる。この場合は、各周波数の周期が同時にΔtの整数倍となることを満たすことが難しくなるという問題が生じる。この問題を解決する方法として以下の例を示す。 When considering separation and demodulation of a plurality of frequencies, it is sufficient if each frequency can be selected so that the period of each frequency is an integral multiple of Δt. This means that the reciprocals of the frequencies are integer ratios. However, as suggested by the above-mentioned Patent Document 2, equal frequency intervals are a requirement for efficient transmission and reception of data. In this case, there arises a problem that it becomes difficult to simultaneously satisfy the period of each frequency being an integral multiple of Δt. The following example shows how to solve this problem.
 (実施例1)
 まず、特許文献1の方法において抽出すべき周波数の1周期がΔtの整数倍である必要性はあるが、除去されるべき対象の周波数の1周期は必ずしもΔtの整数倍である必要がないことに着目した。これにより、検波前の同一の入力信号に対し抽出すべき周波数ごとに別々のサンプリング周期でそれぞれ独立にサンプリング及び復調することで、抽出すべき各周波数に対して常に1周期がサンプリング周期の整数倍となるようにすることができる。つまり、抽出されるべき周波数については、積分区間の両端をデータ点として確保することができる。
(Example 1)
First, in the method of Patent Document 1, one period of the frequency to be extracted needs to be an integer multiple of Δt, but one period of the target frequency to be removed does not necessarily have to be an integer multiple of Δt. Focused on As a result, by independently sampling and demodulating the same input signal before detection with different sampling periods for each frequency to be extracted, one period is always an integral multiple of the sampling period for each frequency to be extracted. can be made to be That is, for frequencies to be extracted, both ends of the integration interval can be reserved as data points.
 この点を、図4を参照してさらに詳しく説明する。二つの交流信号(図4(a)及び(b)参照)の混合信号(図4(c))から、これら二つの交流信号を検波することを考える。この場合、第1の交流信号(図4(a))に対応するサンプリング周期でのサンプリング(図4(d))を混合信号に対して行う。また、これと前後してあるいは並行して、第2の交流信号(図4(b))に対応するサンプリング周期でのサンプリング(図4(e))を行う。図4において白丸はサンプリング点を示す。ここで、それぞれのサンプリング周期は、抽出すべき周波数の1周期がサンプリング周期の整数倍となるように設定されている。フィルタ部3において、サンプリングされたデータを用いて数値位相検波を行うことにより、図4(f)及び図4(g)に示すように、それぞれの交流信号を抽出することができる。つまり、サンプリングデータを基にして復調を行い、元の波形を再現することができる。 This point will be explained in more detail with reference to FIG. Consider the detection of two AC signals from a mixed signal (FIG. 4(c)) of two AC signals (see FIGS. 4(a) and (b)). In this case, the mixed signal is sampled (FIG. 4(d)) at a sampling period corresponding to the first AC signal (FIG. 4(a)). Before, after, or in parallel with this, sampling (FIG. 4(e)) is performed at a sampling period corresponding to the second AC signal (FIG. 4(b)). White circles in FIG. 4 indicate sampling points. Here, each sampling period is set so that one period of the frequency to be extracted is an integral multiple of the sampling period. By performing numerical phase detection using the sampled data in the filter section 3, each AC signal can be extracted as shown in FIGS. 4(f) and 4(g). In other words, demodulation is performed based on sampling data, and the original waveform can be reproduced.
 (実施例2)
 次に、周波数が等間隔で配置されている例を、図5を参照しながら説明する。この例では、11Hz~15Hzの周波数が使用されているとする。従来のOFDM法で必要な振動積算回数を薄い灰色で示す(図5(a))。OFDM法では、同じサンプリング周期を用いていても、考慮しているすべての周波数成分について、検波に必要な積算区間がサンプリング周期の整数倍となるので、そもそも補間の必要がない(図5(b))。つまり、サンプリング周期を調整する必要がない。
(Example 2)
Next, an example in which frequencies are arranged at regular intervals will be described with reference to FIG. For this example, assume that frequencies between 11 Hz and 15 Hz are used. The light gray indicates the number of oscillation integration times required in the conventional OFDM method (Fig. 5(a)). In the OFDM method, even if the same sampling period is used, the integration interval required for detection is an integral multiple of the sampling period for all frequency components under consideration, so interpolation is not necessary in the first place (Fig. 5 (b )). That is, there is no need to adjust the sampling period.
 一方、前記特許文献1又は2で示される信号分離方法において必要な振動積算回数を図5において濃い灰色で示す。この方法によればOFDM法より短い時間のデータで復調を行うことができる(図5(a))。ただし、単一のサンプリングレートでデータ取得を行う場合、考慮している全ての周波数成分について検波に必要な積算区間をサンプリング周期の整数倍とすることは難しい。特に、図5のように周波数成分が等間隔で配置されている場合には難しい(図5(c)参照)。 On the other hand, the number of vibration integration times required in the signal separation method shown in Patent Document 1 or 2 is shown in dark gray in FIG. According to this method, demodulation can be performed with data in a shorter time than the OFDM method (FIG. 5(a)). However, when data acquisition is performed at a single sampling rate, it is difficult to set the integration interval required for detection of all the frequency components under consideration to an integral multiple of the sampling period. In particular, it is difficult when the frequency components are arranged at regular intervals as shown in FIG. 5 (see FIG. 5(c)).
 そこで、考慮している各々の周波数成分についてそれぞれ別々のサンプリングレートを用いることで、常に積算区間をサンプリング周期の整数倍とすることができる(図5(d)参照)。以降は、実施例1の場合と同様に、サンプリングされたデータ点を用いて、目的とする周波数の交流信号を抽出することができる。したがって、本実施形態の方法によれば、数値位相検波において抽出する周波数についての設定の自由度を高めることが可能になる。 Therefore, by using a different sampling rate for each frequency component under consideration, the integration interval can always be an integral multiple of the sampling period (see FIG. 5(d)). Thereafter, as in the case of the first embodiment, the sampled data points can be used to extract the AC signal of the target frequency. Therefore, according to the method of this embodiment, it is possible to increase the degree of freedom in setting the frequencies to be extracted in the numerical phase detection.
 (実施例3)
 サンプリング周期を抽出すべき周波数に連動させるという考え方は、周波数を連続/不連続に掃引する場合にも有効である。周波数掃引の場合の例を、図6を参照して説明する。
(Example 3)
The concept of interlocking the sampling period with the frequency to be extracted is also effective when the frequency is swept continuously/discontinuously. An example for frequency sweeping will now be described with reference to FIG.
 掃引の場合、周波数の変化に応じてサンプリングレートを連動させ、常に周波数の1周期がサンプリング周期Δtのちょうど整数倍になるように、サンプリング部1がデータのサンプリングを行う(図6(a)参照)。図6(a)において横軸は実際の時間である。参考のため、サンプリングの間を等間隔に置き直した図を図6(b)に示す。図6(b)の横軸は変換された時間である。周波数の変化に応じてサンプリングレートを連動させることにより、常に周波数の1周期がサンプリング周期のちょうど整数倍になるようにデータのサンプリングを行うことができる。以降は、実施例1の場合と同様に、サンプリングされたデータ点を用いて、目的とする周波数の交流信号を抽出することができる。 In the case of sweeping, the sampling rate is interlocked according to frequency changes, and the sampling unit 1 samples data so that one period of the frequency is always an integral multiple of the sampling period Δt (see FIG. 6A). ). In FIG. 6(a), the horizontal axis is the actual time. For reference, FIG. 6B shows a diagram in which the intervals between samplings are rearranged. The horizontal axis of FIG. 6(b) is the converted time. By interlocking the sampling rate according to the frequency change, data can be sampled so that one period of the frequency is exactly an integral multiple of the sampling period. Thereafter, as in the case of the first embodiment, the sampled data points can be used to extract the AC signal of the target frequency.
 以上説明したように、本実施形態の方法では、周波数ごとに別々のサンプリング周期を与えるので、抽出したい周波数の周期が常にサンプリング周期の整数倍となり、結果として各々の周波数に対し積分区間を正確に振動周期の整数倍にすることができる。ただし、前記したように、複数の周波数に対して共通のサンプリング周期を用いることはありうる。 As described above, in the method of the present embodiment, since a separate sampling period is given for each frequency, the period of the frequency to be extracted is always an integral multiple of the sampling period. It can be an integer multiple of the oscillation period. However, as described above, it is possible to use a common sampling period for a plurality of frequencies.
 一般に、信号検出の時間分解能を上げるには変調に用いる周波数を上げるのが常道であるが、放送や電気通信のように法的に使用を許可された周波数帯域が限定されているなどの理由から安易に周波数を上げられない場合には、前記特許文献1及び2の信号処理方式はとりわけ効力を発揮する。例えば、これらの文献の技術によれば、放送・通信分野で現在使用されている直交周波数分割多重方式(orthogonal frequency-division multiplexing, OFDM)よりも短い時間幅の情報を用いて、さまざまな周波数成分で構成されるいわゆるブロードバンド信号を復調できる。したがって、ビヨンド5Gを含む放送・通信分野において、信号密度向上による通信の高速化・耐障害性・耐干渉性の改善が期待できる。また、医療分野では超音波診断装置、MRIなどのイメージング装置において高速化・高解像度化が期待できる。センサ分野では電子コンパス、加速度センサ、ミリ波レーダー、超音波ソナーなどの自動運転技術に必要なデバイスにおける感度、時間応答および混線防止性能の向上に資すると考えられる。 In general, the usual way to increase the time resolution of signal detection is to increase the frequency used for modulation. If the frequency cannot be increased easily, the signal processing methods of Patent Documents 1 and 2 are particularly effective. For example, according to the techniques of these documents, various frequency components are obtained using information of a shorter time width than the orthogonal frequency-division multiplexing (OFDM) currently used in the field of broadcasting and communication. can demodulate a so-called broadband signal composed of Therefore, in the field of broadcasting and communication, including Beyond 5G, it is expected to improve communication speed, fault tolerance, and interference resistance by improving signal density. Also, in the medical field, it is expected that imaging devices such as ultrasonic diagnostic equipment and MRI will increase in speed and resolution. In the sensor field, it is thought that it will contribute to improving the sensitivity, time response, and crosstalk prevention performance of devices necessary for autonomous driving technology such as electronic compasses, acceleration sensors, millimeter wave radars, and ultrasonic sonars.
 ブロードバンド信号の復調における数値処理部分がシングルコア主流の時代は、高速Fourier変換(FFT)による離散的Fourier変換(DFT)を基本としたOFDMが圧倒的に効率的な信号復調・分離の方法であった。他方、マルチコア(並列処理)が主流の現在においては、本実施形態のように、抽出したい周波数ごとに別々のサンプリング周期で同一信号を並列してデータ取得・処理する場合は、各コア間の処理が独立に行えるので有利である。例えば、前記した実施例2において、各々のサンプリングレートを各コア(つまりサンプリング部1)に割り当てて並列処理を行うことにより、複数周波数の抽出に要する時間を短縮することができる。 In the days when the numerical processing part of broadband signal demodulation was mainly single-core, OFDM based on discrete Fourier transform (DFT) by fast Fourier transform (FFT) was an overwhelmingly efficient method of signal demodulation and separation. rice field. On the other hand, at present, when multi-core (parallel processing) is the mainstream, as in this embodiment, when the same signal is acquired and processed in parallel at different sampling periods for each frequency to be extracted, the processing between each core is can be performed independently. For example, in the second embodiment described above, by assigning each sampling rate to each core (that is, the sampling unit 1) and performing parallel processing, it is possible to shorten the time required to extract a plurality of frequencies.
 また、ミリ波レーダー、超音波ソナーなどでよく用いられる周波数掃引技法では数値位相検波を短時間で効率的に扱う手法がなかった。これらにおいても前記実施例3の方法を適用することにより実用化を図ることができる。 In addition, there was no method for efficiently handling numerical phase detection in a short time in the frequency sweep technique often used in millimeter-wave radar, ultrasonic sonar, etc. Practical use can be achieved also in these cases by applying the method of the third embodiment.
 なお、本発明の内容は、前記実施形態に限定されるものではない。本発明は、特許請求の範囲に記載された範囲内において、具体的な構成に対して種々の変更を加えうるものである。 The contents of the present invention are not limited to the above embodiments. The present invention allows various changes to be made to the specific configuration within the scope of the claims.
 例えば、前記した実施形態では、フィルタ部3を検波部31と線形結合部32とから構成したが、両者の機能を一つの機能ブロックで実現することができる。本実施形態のフィルタ部3は、前記した検波及び線形結合と数学的に等価な処理を行うものを含んでおり、例えば、検波と線形結合を別々の処理として分離して行う必要はない。要するに、フィルタ部3としては、サンプリングされた交流信号に対する数値位相検波を行なうことにより、交流信号に対するフィルタリングを行い、抽出すべき周波数成分を取得する構成であればよい。 For example, in the above-described embodiment, the filter section 3 is composed of the detection section 31 and the linear combination section 32, but both functions can be realized by one functional block. The filter unit 3 of this embodiment includes a unit that performs processing that is mathematically equivalent to the detection and linear combination described above, and for example, it is not necessary to perform detection and linear combination separately as separate processing. In short, the filter unit 3 may be configured to filter the AC signal by performing numerical phase detection on the sampled AC signal and acquire the frequency component to be extracted.
 また、前記した各構成要素は、機能ブロックとして存在していればよく、独立したハードウエアとして存在しなくても良い。また、実装方法としては、ハードウエアを用いてもコンピュータソフトウエアを用いても良い。さらに、本発明における一つの機能要素が複数の機能要素の集合によって実現されても良く、本発明における複数の機能要素が一つの機能要素により実現されても良い。 Also, each of the components described above may exist as a functional block, and does not have to exist as independent hardware. Moreover, as an implementation method, either hardware or computer software may be used. Furthermore, one functional element in the present invention may be implemented by a set of multiple functional elements, and multiple functional elements in the present invention may be implemented by one functional element.
 さらに、機能要素は、物理的に離間した位置に配置されていてもよい。この場合、機能要素どうしがネットワークにより接続されていても良い。グリッドコンピューティング又はクラウドコンピューティングにより機能を実現し、あるいは機能要素を構成することも可能である。 Furthermore, the functional elements may be arranged at physically separated positions. In this case, functional elements may be connected by a network. It is also possible to implement functions or configure functional elements by means of grid computing or cloud computing.
 1 サンプリング部
 2 サンプリングレート記憶部
 3 フィルタ部
 31 検波部
 32 線形結合部
 4 出力部
 5 線形係数決定部
1 Sampling Section 2 Sampling Rate Storage Section 3 Filter Section 31 Detection Section 32 Linear Combining Section 4 Output Section 5 Linear Coefficient Determining Section

Claims (11)

  1.  交流信号に対するフィルタリングを行うためのフィルタリング装置であって、
     サンプリング部と、検波部と、線形結合部とを備えており、
     前記サンプリング部は、抽出すべき周波数ごとに対応するサンプリング周期で、前記交流信号のサンプリングを行う構成となっており、
     ここで、前記サンプリング周期は、抽出すべき各周波数の1周期又は半周期がサンプリング周期の整数倍となるように設定されており、
     前記検波部は、サンプリングされた前記交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得する構成となっており、
     前記線形結合部は、フィルタ特性に応じた線形係数を用いて前記複数の検波結果の線形結合を行う構成となっている
     フィルタリング装置。
    A filtering device for filtering an AC signal,
    a sampling unit, a detection unit, and a linear combination unit,
    The sampling unit is configured to sample the AC signal at a sampling period corresponding to each frequency to be extracted,
    Here, the sampling period is set so that one period or half period of each frequency to be extracted is an integral multiple of the sampling period,
    The detection unit is configured to obtain a plurality of detection results corresponding to the number of integrated vibrations by performing numerical phase detection on the sampled AC signal,
    The filtering device, wherein the linear combination unit linearly combines the plurality of detection results using a linear coefficient corresponding to a filter characteristic.
  2.  前記サンプリング部は、前記交流信号のサンプリングを、前記抽出すべき周波数ごとに対応するサンプリング周期で、並列に行う構成となっている
     請求項1に記載のフィルタリング装置。
    The filtering device according to claim 1, wherein the sampling section is configured to perform sampling of the AC signal in parallel at sampling periods corresponding to the frequencies to be extracted.
  3.  前記サンプリング部は、前記交流信号の周波数の変動に応じて、この変動に追随するように、前記サンプリング周期を変化させるようになっている
     請求項1に記載のフィルタリング装置。
    The filtering device according to claim 1, wherein the sampling section changes the sampling period according to fluctuations in the frequency of the AC signal so as to follow the fluctuations.
  4.  前記交流信号において抽出すべき周波数成分は、等間隔で配置されている
     請求項1~3のいずれか1項に記載のフィルタリング装置。
    The filtering device according to any one of claims 1 to 3, wherein the frequency components to be extracted from the AC signal are arranged at regular intervals.
  5.  さらに出力部を備えており、
     前記出力部は、前記線形結合部での線形結合により得られた結果を出力する構成となっている
     請求項1~4のいずれか1項に記載のフィルタリング装置。
    In addition, it has an output section,
    The filtering device according to any one of claims 1 to 4, wherein the output section is configured to output a result obtained by linear combination in the linear combination section.
  6.  さらに、線形係数決定部を備えており、
     前記線形係数決定部は、前記線形係数間の関係と、前記数値位相検波における全体の通過利得と、目的とするフィルタ特性とを用いて、前記線形係数を算出する構成となっている
     請求項1~5のいずれか1項に記載のフィルタリング装置。
    Furthermore, it has a linear coefficient determination part,
    2. The linear coefficient determination unit is configured to calculate the linear coefficient using the relationship between the linear coefficients, the overall pass gain in the numerical phase detection, and the target filter characteristics. 6. The filtering device according to any one of 1 to 5.
  7.  異なる前記抽出すべき周波数に対応する前記サンプリング周期のうちの少なくとも二つが共通となっている
     請求項1~6のいずれか1項に記載のフィルタリング装置。
    The filtering device according to any one of claims 1 to 6, wherein at least two of said sampling periods corresponding to said different frequencies to be extracted are common.
  8.  交流信号に対するフィルタリングを行うためのフィルタリング方法であって、
     抽出すべき周波数ごとに対応するサンプリング周期で、前記交流信号のサンプリングを行うステップと、ここで、前記サンプリング周期は、抽出すべき各周波数の1周期又は半周期がサンプリング周期の整数倍となるように設定されており、
     サンプリングされた前記交流信号に対する数値位相検波を行なうことにより、積算振動回数に応じた複数の検波結果を取得するステップと、
     フィルタ特性に応じた線形係数を用いて前記複数の検波結果の線形結合を行うステップと
     を備えるフィルタリング方法。
    A filtering method for filtering an AC signal, comprising:
    sampling the AC signal with a sampling period corresponding to each frequency to be extracted, wherein the sampling period is such that one period or half period of each frequency to be extracted is an integral multiple of the sampling period; is set to
    obtaining a plurality of detection results corresponding to the number of integrated vibrations by performing numerical phase detection on the sampled AC signal;
    and linearly combining the plurality of detection results using linear coefficients according to filter characteristics.
  9.  交流信号に対するフィルタリングを行うためのフィルタリング方法であって、
     抽出すべき周波数ごとに対応するサンプリング周期で、前記交流信号のサンプリングを行うステップと、ここで、前記サンプリング周期は、抽出すべき各周波数の1周期又は半周期がサンプリング周期の整数倍となるように設定されており、
     サンプリングされた前記交流信号に対する数値位相検波を行なうことにより、前記交流信号に対するフィルタリングを行い、抽出すべき周波数成分を取得するステップと
     を備えるフィルタリング方法。
    A filtering method for filtering an AC signal, comprising:
    sampling the AC signal with a sampling period corresponding to each frequency to be extracted, wherein the sampling period is such that one period or half period of each frequency to be extracted is an integral multiple of the sampling period; is set to
    Filtering the sampled AC signal by performing numerical phase detection on the AC signal to obtain frequency components to be extracted.
  10.  請求項8又は9に記載の各ステップをコンピュータに実行させるためのコンピュータプログラム。 A computer program for causing a computer to execute each step according to claim 8 or 9.
  11.  交流信号に対するフィルタリングを行うためのフィルタリング装置であって、
     サンプリング部と、フィルタ部とを備えており、
     前記サンプリング部は、抽出すべき周波数ごとに対応するサンプリング周期で、前記交流信号のサンプリングを行う構成となっており
     ここで、前記サンプリング周期は、抽出すべき各周波数の1周期又は半周期がサンプリング周期の整数倍となるように設定されており、
     前記フィルタ部は、サンプリングされた前記交流信号に対する数値位相検波を行なうことにより、前記交流信号に対するフィルタリングを行い、抽出すべき周波数成分を取得する構成となっている
     フィルタリング装置。
    A filtering device for filtering an AC signal,
    It comprises a sampling section and a filter section,
    The sampling unit is configured to sample the AC signal at a sampling period corresponding to each frequency to be extracted, wherein the sampling period is one period or half period of each frequency to be extracted. It is set to be an integral multiple of the period,
    The filter unit filters the AC signal by performing numerical phase detection on the sampled AC signal, and acquires a frequency component to be extracted.
PCT/JP2022/039434 2021-10-28 2022-10-24 Filtering device and filtering method WO2023074598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021176709A JP7024983B1 (en) 2021-10-28 2021-10-28 Filtering device and filtering method
JP2021-176709 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074598A1 true WO2023074598A1 (en) 2023-05-04

Family

ID=81124367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039434 WO2023074598A1 (en) 2021-10-28 2022-10-24 Filtering device and filtering method

Country Status (2)

Country Link
JP (1) JP7024983B1 (en)
WO (1) WO2023074598A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163364A1 (en) * 2017-03-09 2018-09-13 国立大学法人東京大学 Filtering device and filtering method
WO2019198739A1 (en) * 2018-04-10 2019-10-17 国立大学法人東京大学 Filtering device and filtering method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186608A (en) * 1994-12-28 1996-07-16 Matsushita Electric Ind Co Ltd Adjustment method for orthogonal detector, adjustment auxiliary device and demodulation device with adjustment auxiliary function
US6519368B1 (en) * 2000-11-28 2003-02-11 Sony Corporation Resolution enhancement by nearest neighbor classified filtering
US7869497B2 (en) * 2002-08-30 2011-01-11 Nxp B.V. Frequency-domain decision feedback equalizing device and method
JP4794596B2 (en) * 2008-04-04 2011-10-19 パナソニック株式会社 Physical quantity detection circuit, physical quantity sensor device
JP2013205093A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Digital phase detector
FR3010268B1 (en) * 2013-09-03 2015-09-11 Orange METHOD AND DEVICE FOR TRANSMITTING BLOCKS OF COMPLEX DATA SYMBOLS, METHOD AND DEVICE FOR RECEIVING AND CORRESPONDING COMPUTER PROGRAMS.
US9772385B2 (en) * 2015-04-09 2017-09-26 International Business Machines Corporation Rotating magnetic field hall measurement system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163364A1 (en) * 2017-03-09 2018-09-13 国立大学法人東京大学 Filtering device and filtering method
WO2019198739A1 (en) * 2018-04-10 2019-10-17 国立大学法人東京大学 Filtering device and filtering method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIDET E., ET AL.: "FDF, A 512-TAP FIR USING A MIXED TEMPORAL-FREQUENTIAL APPROACH.", PROCEEDINGS OF THE CUSTOM INTEGRATED CIRCUITS CONFERENCE, vol. CONF. 17, 1 May 1995 (1995-05-01), US , pages 173 - 176., XP000536789, ISBN: 978-0-7803-2585-2, DOI: 10.1109/CICC.1995.518161 *
MITAMURA HIROYUKI; WATANUKI RYUTA; KAMPERT ERIK; FöRSTER TOBIAS; MATSUO AKIRA; ONIMARU TAKAHIRO; ONOZAKI NORIMICHI; AMOU YUTA: "Improved accuracy in high-frequency AC transport measurements in pulsed high magnetic fields", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 91, no. 12, 11 December 2020 (2020-12-11), XP012252194, ISSN: 0034-6748, DOI: 10.1063/5.0014986 *

Also Published As

Publication number Publication date
JP7024983B1 (en) 2022-02-24
JP2023066157A (en) 2023-05-15

Similar Documents

Publication Publication Date Title
JP4081526B2 (en) Sampling method, reconstruction method and apparatus for sampling and / or reconfiguring a signal
TW200421756A (en) Frequency synchronization apparatus and method for OFDM systems
GB2443869A (en) OFDM receiver which noise filters received pilots located along a diagonal path in the time/frequency plane
KR100256470B1 (en) Ofdm demodulation circuit
JP3970842B2 (en) Demodulation of multicarrier phase modulated signals
WO2003081906A1 (en) Signal receiver for reveiveg simultaneously a plurality of broadcast signals
CN109076040A (en) Phase compensation device, phase compensating method and communication device
WO2023074598A1 (en) Filtering device and filtering method
CN108292991A (en) Data phase hunting gear, data phase follow method and communication device
JP6726131B2 (en) Wireless communication system
JP7062302B2 (en) Filtering device and filtering method
CN101789833B (en) Whip transmission characteristics measurement device
JP2001045081A (en) Signal processing method
JP6905265B2 (en) Filtering device and filtering method
CN102307164A (en) Digital frequency estimation method and system
JP6233820B2 (en) Sensing data transfer capability of phase generated carrier
Susaki A fast algorithm for high-accuracy frequency measurement: Application to ultrasonic Doppler sonar
KR20160070604A (en) Phase rotation beamformer and beamforming method for envelope error compensating
FR2840475A1 (en) METHOD FOR DETERMINING A TIME OFFSET AND / OR A SIGNAL POWER, CIRCUIT AND RECEIVING DEVICE
JP2914979B2 (en) Frequency converter
JP5218020B2 (en) Apparatus and program for embedding and extracting digital watermark information
JP2000252950A (en) Synchronizing circuit for multi-carrier reception device and multi-carrier reception device
CN106230483A (en) A kind of high-speed sampling playback device
WO2007077686A1 (en) Measuring device, measuring method and testing device
Bourrion et al. Electronics and data acquisition for kilopixels kinetic inductance camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE