WO2018161936A1 - 一种电驱动四足机器人的腿部动力系统结构 - Google Patents

一种电驱动四足机器人的腿部动力系统结构 Download PDF

Info

Publication number
WO2018161936A1
WO2018161936A1 PCT/CN2018/078412 CN2018078412W WO2018161936A1 WO 2018161936 A1 WO2018161936 A1 WO 2018161936A1 CN 2018078412 W CN2018078412 W CN 2018078412W WO 2018161936 A1 WO2018161936 A1 WO 2018161936A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
calf
thigh
assembly
leg
Prior art date
Application number
PCT/CN2018/078412
Other languages
English (en)
French (fr)
Inventor
王兴兴
杨知雨
Original Assignee
杭州宇树科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州宇树科技有限公司 filed Critical 杭州宇树科技有限公司
Priority to US16/492,528 priority Critical patent/US10940582B2/en
Priority to DE212018000182.0U priority patent/DE212018000182U1/de
Priority to DE112018001268.9T priority patent/DE112018001268T5/de
Publication of WO2018161936A1 publication Critical patent/WO2018161936A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0004Braking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0054Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0075Means for protecting the manipulator from its environment or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/108Bearings specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0046Disposition of motor in, or adjacent to, traction wheel the motor moving together with the vehicle body, i.e. moving independently from the wheel axle

Definitions

  • the invention relates to a leg structure of a quadruped robot, in particular to a leg power system structure of an electrically driven quadruped robot.
  • the Cheetah quadruped robot developed by MIT has a coaxial motor and a knee joint that are coaxially integrated with each other. Although it has a high degree of joint integration, the structure is complicated and cannot withstand axial impact.
  • the external protection frame can be used to protect the motor and the joint.
  • the structure of the two joint motor drive unit is integrated, which greatly limits the movement space of the thigh joint and affects the performance of the quadruped robot, and the exposed leg
  • the drive connecting rod is easily damaged by external impact.
  • the object of the present invention is to provide a leg power system structure of a quadruped robot with compact structure, high integration and strong drop resistance.
  • a leg power system structure of an electrically driven quadruped robot comprising four independent leg modules of a fuselage and a first leg module, a second leg module, a third leg module, and a fourth leg module, and four independent leg modules
  • the left and right sides are symmetrically arranged on both sides of the fuselage, and each leg module and the fuselage are fixed by a rotating pair; the leg module comprises a large and small leg assembly and a side swing hip joint motor assembly.
  • the size leg assembly includes a thigh motor assembly, a thrust bearing, a thigh rod assembly, a calf active crank, a calf motor assembly, a calf drive link, a calf assembly, and a calf rotation pin.
  • the calf motor assembly is fixed to the thigh rod assembly
  • the calf active crank is fixed to the output shaft of the calf motor planetary gear reducer of the calf motor assembly, and the output shaft drives the calf active crank to perform a rotary motion.
  • the calf rotation pin is fixed to the end of the thigh rod assembly, and the calf assembly rotates around the calf rotation pin.
  • the thigh rod assembly is provided with a thigh base and a thigh rod for accommodating a calf active crank, a calf drive link, and the thigh rod is a cavity-shaped part penetrating up and down, and the end portion is provided at the end portion for
  • the end shaft hole of the calf rotating pin shaft is worn, and the calf rotating pin shaft sequentially passes through the end shaft hole of the thigh rod assembly and the upper end portion of the calf assembly, and the calf assembly forms a rotating pair through the built-in bearing group and the calf rotating pin shaft.
  • the entire calf drive can be placed inside the thigh bar assembly to avoid damage to the fragile link parts when the quadruped robot falls or is impacted.
  • the calf drive link is disposed inside the thigh bar assembly, and the calf active crank, the calf drive link, the lower leg assembly and the thigh bar assembly together form an anti-parallelogram transmission mechanism, and the calf motor assembly
  • the output shaft is fixedly connected with the active crank of the lower leg, and the output shaft of the calf motor assembly drives the active crank of the calf to perform a rotary motion, which has the advantages of compact structure, small occupied space, small transmission gap, stable and reliable.
  • the output shaft of the thigh motor assembly is fixed to the upper end side of the thigh rod assembly, and a thrust bearing is disposed between the thigh motor assembly and the upper end portion of the thigh rod assembly; It is fixedly mounted on the other side of the upper end of the thigh rod assembly.
  • the thrust bearing directly transmits the external impact force transmitted from the calf motor casing to the thigh rod assembly directly to the thigh motor casing, so that the internal components of the fragile large and small leg motor are not damaged by the external impact force, thereby increasing the anti-drop performance.
  • the thigh rod assembly includes a heat dissipating fan, a fin group 2, a thigh base, and a thigh rod; the thigh rod is fixedly connected with the thigh base; and the fin group 2 is fixed on the thigh base.
  • the cooling fan is fixed on the thigh base; the thigh base is provided with an air inlet, and the cooling fan blows external cold air through the tuyere into the cavity formed by the thigh base and the calf motor assembly; The cold air is carried away from the calf motor casing and the calf motor positive end cap to the heat of the fin group 2 and the fin group, and is discharged to the external environment through the hollow thigh rod.
  • the heat dissipation air circulation is built in, making the power system structure of the present invention more compact and making the heat dissipation system less susceptible to damage by external impact forces.
  • the calf motor assembly includes a motor shatterproof protection plate, a calf motor rear end cover assembly, a calf permanent magnet brushless motor, a calf motor housing, a calf motor planetary gear reducer, a calf motor positive end cover, and Heat sink set one.
  • the motor anti-fall protection plate is fixedly connected with the calf motor rear end cover assembly
  • the lower leg motor rear end cover assembly is fixedly connected with the calf motor housing end surface.
  • the motor shatter resistant shield transmits lateral impact forces from the outside to the calf motor housing through the outer ring of the lower leg motor rear end cover assembly.
  • the stator core winding of the calf permanent magnet brushless motor is fixedly connected with the calf motor casing.
  • the ring gear of the calf motor planetary gear reducer is fixedly connected to the inner end surface of the calf motor housing.
  • the shank permanent magnet brushless motor rotor output shaft inputs the motor rotary motion into the calf motor planetary gear reducer, and the carrier output shaft on the calf motor planetary gear reducer outputs the rotary motion to the calf active crank.
  • the calf motor positive end cap is fixedly coupled to the calf motor housing.
  • the heat sink group is closely attached to the positive end cover of the calf motor, and the heat generated inside the calf motor is transmitted to the front end cover of the calf motor through the calf motor casing, and then the heat is transferred to the heat sink group 1.
  • the thigh motor assembly includes a thigh motor rear end cover assembly, a thigh permanent magnet brushless motor, a thigh motor housing, a hip joint pin 1, a thigh motor planetary gear reducer, a thigh motor positive end cover, and a hip.
  • the joint rotates the pin shaft two.
  • the thigh motor rear end cover assembly is secured to the rear end of the thigh motor housing.
  • the stator iron core winding of the thigh permanent magnet brushless motor is fixedly connected with the thigh motor casing, and the rotor output shaft of the thigh permanent magnet brushless motor inputs the rotary motion of the motor into the thigh motor planetary gear reducer, and the planetary gear reducer outputs the rotary motion to the thigh rod.
  • the thigh motor positive end cap is fixedly connected to the thigh motor housing.
  • the hip joint pin 1 and the hip joint pin 2 are fixedly connected with the other two end faces of the thigh motor casing, and the hip joint pin 1 and the hip joint pin 2 and the robot body together constitute the hip joint of the hip. Rotating pair.
  • the calf motor assembly comprises a calf motor rear end cover assembly, a calf permanent magnet brushless motor, a calf motor housing, a calf motor positive end cover, and a calf motor rear end cover assembly outer end cover.
  • a motor anti-fall protection plate for reducing an impact force of an internal system structure, wherein the motor anti-fall protection plate and the outer end of the rear end assembly of the lower leg motor are provided with an impact force for transmitting an impact force Raised.
  • the motor anti-fall protection plate is fixed on the rear leg cover assembly of the calf motor, and the rear leg cover assembly of the lower leg motor is fixed to the end surface of the calf motor casing.
  • the lateral impact force from the outside is transmitted and transformed by the motor anti-fall protection plate, and then passed through the protrusion. It is transmitted to the outer ring of the rear leg cover assembly of the calf motor, and the outer ring of the rear end cover assembly of the lower leg motor directly transmits the impact force to the outer leg motor casing, thereby avoiding damage to the internal parts of the motor.
  • the leg power system structure is provided with a brake assembly that includes a resilient brake plate, a motor rear end cover, a brake drive, and a brake wire.
  • the brake drive is attached to the rear end cover of the motor (or to the motor housing).
  • One end of the brake wire is connected to the elastic brake plate through the rear end cover of the motor, and the other end is connected to the output of the brake drive.
  • One end of the elastic brake plate is fixed to the rear end cover, and the other end has a brake pad with a high friction coefficient.
  • the elastic brake plate relies on its own elasticity so that one end of the elastic brake plate with the brake pad is pressed against the rotor of the motor, and the motor cannot be rotated and locked.
  • the side swing hip joint motor assembly includes a side swing hip joint motor rear end cover assembly, a side swing hip joint permanent magnet brushless motor, a side swing hip joint motor housing, and a side swing hip joint motor planetary gear.
  • a reducer and a side swing hip motor positive end cover the side swing hip joint rear end cover assembly is fixedly connected with a rear swing hip joint motor housing rear end face; the side swing hip joint permanent magnet brushless motor stator core winding a fixed connection with the side swing hip motor housing; the outer ring gear of the side swing hip planetary reducer is fixedly connected with the inner end surface of the side swing hip motor housing; the side swing hip joint permanent magnet brushless motor rotor output
  • the shaft rotates the motor into the side swing hip planetary gear reducer, and the planetary frame output shaft of the side swing hip planetary reducer outputs the rotary motion to the side swing hip joint active crank; the side swing hip joint positive end cover Fixed connection to the side swing hip motor housing.
  • the side swing hip joint crank is fixedly connected with the thigh motor assembly, and the side swing hip joint active crank, the side swing hip joint link, the side swing hip joint driven crank and the fuselage together form a parallelogram connecting rod transmission mechanism.
  • the parallelogram transmission mechanism has a simple structure, large transmission torque, small transmission gap, and is stable and reliable.
  • the present invention has the following beneficial effects:
  • the invention consists essentially of a fuselage and four separate leg modules, each of which is comprised of a thigh motor assembly, a calf motor assembly, a hip motor assembly and associated linkages and mounts.
  • the hip motor drives the large and small leg assembly through a parallelogram mechanism
  • the thigh motor assembly directly drives the thigh rod assembly
  • the calf motor assembly drives the lower leg assembly through an anti-parallel quadrilateral mechanism.
  • the motor shatterproof shield on the outermost side of the thigh distributes the external impact force to the circumference of the calf motor end cover, and further directly transmits
  • the external impact force of the calf motor casing will be transmitted directly to the thigh motor casing through the calf motor casing, the thigh bar assembly and the thrust bearing, and then transmitted to the fuselage to avoid the impact force on the large and small legs.
  • the damage of the precision structure inside the motor makes the invention have strong external impact resistance.
  • the motor assembly used in the invention has a built-in integrated planetary reducer, and the motor and the reducer have high integration, compact structure and light weight.
  • the joint motor assemblies of the present invention are independent of each other, and the motor assemblies are modularized, which is beneficial to reduce the cost, and the joints of the motor assemblies on the robot body have a large working space, which ensures the flexibility of the robot movement.
  • FIG. 1 Schematic diagram of the four-legged robot
  • Figure 2. a Side view of a single leg module axis
  • Figure 2.b Axial exploded view of a single leg module
  • Figure 2.c is a schematic view of the hip joint drive linkage of a single leg module
  • Figure 3.1 Schematic diagram of the structure of the large and small leg assembly
  • Figure 3.2 Schematic diagram of the side structure of the thigh base and the calf assembly
  • Figure 3.3 is a cross-sectional view taken along line A-A of Figure 3.2 and a schematic diagram of the principle of lateral collision avoidance;
  • FIG.b Schematic diagram of the transmission structure of the anti-parallelogram connecting rod of the lower leg connecting rod
  • FIG. 5 exploded view of the thigh motor assembly
  • Figure 6 exploded view of the knee joint calf motor
  • Figure 7 is a schematic view of the side hip motor
  • Figure 8.b Schematic diagram of the built-in heat dissipation cycle of the thigh rod assembly
  • FIG. 1 Schematic diagram of the rear end cover assembly of each joint motor assembly
  • FIG.2 Schematic diagram of the explosion of the rear end cover assembly of each joint motor assembly
  • Figure 9.3 is a partial cross-sectional view of the rear end cover assembly of each joint motor assembly
  • FIG. 10.1 Schematic diagram of the calf structure
  • FIG.2 Schematic diagram of the structure of the foot assembly.
  • the mechanical structure of the quadruped robot of the present invention comprises a fuselage 1 and four independent leg modules, and the four independent leg modules comprise: a first leg module 2, a second leg module 3, and a third Leg module 4, fourth leg module 5.
  • Four independent leg modules are symmetrically arranged on both sides of the fuselage, and each leg module is fixed to the body by a rotating pair.
  • the leg module structure includes a large and small leg assembly 3.1 and a side swing hip motor assembly 3.5.
  • the side swing hip active crank 3.2, the side swing hip joint link 3.3, the side swing hip joint driven crank 3.4 and the fuselage 1 together constitute a parallelogram connecting rod transmission mechanism.
  • the side swing hip joint crank 3.4 is fixedly connected with the thigh motor assembly 3.5, the side swing hip motor assembly 3.5 is fixed on the fuselage, and the side swing hip joint active crank 3.2 is fixed to the side of the side swing hip joint motor assembly 3.5.
  • the hip joint motor planetary gear reducer 3.5.4 output shaft drives the side swing hip joint crank 3.2 to make a rotary motion, and transmits the motion to the parallel quadrilateral mechanism Size leg assembly 3.1.
  • the parallelogram mechanism has a large transmission torque, a small transmission gap, a simple structure, and is stable and reliable.
  • the leg assembly 3.1 includes a thigh motor assembly 3.1.1, a thrust bearing 3.1.2, a thigh rod assembly 3.1.3, a calf active crank 3.1.4, and a calf motor total.
  • calf drive connecting rod 3.1.7, calf assembly 3.1.8 and calf rotating pin 3.1.6 Into 3.1.5, calf drive connecting rod 3.1.7, calf assembly 3.1.8 and calf rotating pin 3.1.6.
  • the calf motor assembly 3.1.5 is fixedly connected with the thigh rod assembly 3.1.3, the calf active crank 3.1.4 and the calf motor assembly 3.1.5 of the calf motor planetary gear reducer 3.1.5.5 output shaft fixed connection, calf Motor planetary gear reducer 3.1.5.5
  • the output shaft drives the calf active crank 3.1.4 to make a rotary motion.
  • the calf rotation pin 3.1.6 is fixedly connected with the thigh rod assembly 3.1.3 end shaft hole, and the calf assembly 3.1.8 constitutes the rotary pair through the built-in bearing set 3.1.8.1
  • the calf active crank 3.1.4, the calf drive link 3.1.7, the calf assembly 3.1.8 and the thigh rod assembly 3.1.3 form an anti-parallel quadrilateral mechanism.
  • the utility model has the advantages of compact structure, small occupied space, small transmission gap, stability and reliability, and the entire anti-parallel quadrilateral mechanism can be placed inside the thigh rod assembly 3.1.3, when the quadruped robot falls or is impacted, Avoid fragile link parts from damage from external impact.
  • the thigh rod assembly 3.1.3 is fixedly connected with the thigh motor planetary gear reducer 3.1.1.5 output shaft, and the thigh motor planetary gear reducer 3.1.1.5 output shaft drives the thigh rod assembly 3.1. 3
  • the thrust bearing 3.1.2 is arranged between the thigh motor assembly 3.1.1 and the thigh rod assembly 3.1.3.
  • the thigh motor assembly 3.1.1 includes the thigh motor rear end cover assembly 3.1.1.1, the thigh motor permanent magnet brushless motor 3.1.1.2, the thigh motor housing 3.1.1.3, the side swing hip joint pin. 3.1.1.4, thigh motor planetary gear reducer 3.1.1.5, thigh motor positive end cover 3.1.1.6, side swing hip joint rotation pin two 3.1.1.8.
  • the thigh motor rear end cover assembly 3.1.1.1 is fixedly connected to the rear end surface of the thigh motor housing 3.1.1.3.
  • Thigh permanent magnet brushless motor 3.1.1.3 stator core winding and thigh motor housing 3.1.1.3 fixed connection, thigh motor planetary gear reducer 3.1.1.5 outer ring gear fixed on the inner end surface of thigh motor housing 3.1.1.3, thigh Permanent magnet brushless motor 3.1.1.2 Rotor output shaft Input motor rotary motion input thigh motor planetary gear reducer 3.1.1.5, thigh motor planetary gear reducer 3.1.1.5 Then rotate the rotary motion through the planet carrier output shaft to the thigh rod assembly 3.1.3.
  • the thigh motor positive end cap 3.1.1.6 is tightly fixedly connected to the outer ring gear of the thigh motor planetary gear reducer 3.1.1.5 and the thigh motor casing 3.1.1.3.
  • the side swing hip joint pin 3.1.1.4 and the side swing hip joint pin 23.1.1.8 are fixedly connected to the thigh motor housing 3.1.13.
  • the side swing hip joint pin 3.1.1.4 and the side swing hip joint pin 2 3.1.1.8 together with the fuselage 1 constitute a rotating pair.
  • the calf motor assembly 3.1.5 includes the motor anti-fall protection plate 3.1.5.1, the calf motor rear end cover assembly 3.1.5.2, the calf permanent magnet brushless motor 3.1.5.3, the calf motor housing 3.1.5.4 , calf motor planetary gear reducer 3.1.5.5, calf motor positive end cover 3.1.5.6 and heat sink one 3.1.5.7.
  • Motor anti-fall protection board 3.1.5.1 is fixedly connected with the lower leg motor rear end cover assembly 3.1.5.2
  • the lower leg motor rear end cover assembly 3.1.5.2 is fixedly connected with the lower leg motor housing end face 3.1.5.4
  • the external lateral impact force The outer ring of the motor anti-fall protection plate 3.1.5.1 and the lower leg motor rear end cover assembly 3.1.5.2 is transmitted to the lower leg motor housing 3.1.5.4.
  • Calf permanent magnet brushless motor 3.1.5.3 stator core winding and calf motor housing 3.1.5.4 fixed connection
  • calf permanent magnet Brushless motor 3.1.5.3 Rotor output shaft Input motor rotary motion input to the calf motor planetary gear reducer 3.1.5.5, the lower leg motor planetary gear reducer 3.1.5.5 on the planet carrier output shaft and then output the rotary motion to the calf active crank 3.1. 4 on.
  • the side swing hip motor assembly 3.5 includes a side swing hip joint rear end cover assembly 3.5.1, a side swing hip joint permanent magnet brushless motor 3.5.2, a side swing hip joint motor housing 3.5.3 The side swing hip planetary gear reducer 3.5.4 and the side swing hip joint end cover 3.5.5.
  • the side sway hip joint rear end cover assembly 3.5.1 is fixedly connected to the side sway hip motor housing 3.5.3 rear end face.
  • Side swing hip joint permanent magnet brushless motor 3.5.2 stator core winding and side swing hip motor housing 3.5.3 fixed connection.
  • the outer ring gear of the side swing hip planetary gear reducer 3.5.4 is fixedly connected with the inner end surface of the side swing hip motor housing 3.5.3, the side swing hip joint permanent magnet brushless motor 3.5.2 rotor output shaft rotates the motor
  • the input side yaw hip planetary gear reducer 3.5.4, the side yoke hip planetary gear reducer 3.5.4 of the planet carrier output shaft then outputs the rotary motion to the side sway hip joint active crank 3.2.
  • the side slant hip positive end cap 3.5.5 is fixedly connected with the side sway hip motor housing 3.5.3, the side slant hip joint end cap 3.5.5 and the side sway hip planetary gear reducer 3.5.4 outer ring gear and
  • the side swing hip motor housing 3.5.3 is tightly fixed.
  • the thigh rod assembly 3.1.3 includes the cooling fan 3.1.3.1, the fin group II 3.1.3.2, the thigh base 3.1.3.3, and the thigh rod 3.1.3.4.
  • the thigh rod 3.1.3.4 is fixedly connected with the thigh base 3.1.3.3
  • the heat sink group II 3.1.3.2 is fixed on the inner wall of the thigh base 3.1.3.3
  • the cooling fan 3.1.3.1 is fixed on the thigh base 3.1.3.3
  • thigh The air inlet is opened on the base 3.1.3.3
  • the cooling fan 3.1.3.1 blows the external cold air through the air outlet into the cavity formed by the thigh base 3.1.3.3 and the calf motor assembly 3.1.5, thereby taking away the leg from the lower leg.
  • the motor casing 3.1.5.4 and the calf motor positive end cap 3.1.5.6 are transferred to the heat sink group II 3.1.3.2 and the heat sink group 3.1.5.7 heat, and discharged through the hollow thigh rod 3.1.3.4, thus achieving the right Active cooling of the motor system.
  • each rear end cover assembly including the thigh motor rear end cover assembly 3.1.1.1, the calf motor rear end cover assembly 3.1.5.2, the side swing hip motor rear end cover assembly 3.5.1 has a similar structure.
  • Each of the rear end cover assemblies is provided with a brake assembly including a resilient brake plate 3.5.1.1, a rear end cover 3.5.1.2, a brake drive 3.5.1.3, a brake rocker arm 3.5.1.4, and a brake line 3.5.1.5.
  • the brake driver 3.5.1.3 is fixed on the rear cover 3.5.1.2 or the motor housing, and the brake driver 3.5.1.3 output shaft drives the brake rocker arm 3.5.1.4 to rotate.
  • One end of the brake wire 3.5.1.5 passes through the hole in the rear cover 3.5.1.2 and is fixedly connected to the elastic brake plate 3.5.1.1, and the other end is connected to the brake drive output.
  • One end of the elastic brake plate 3.5.1.1 is fixedly connected to the rear end cover 3.1.5.2.
  • the foot assembly 3.1.8.4 includes the foot cover 3.1.8.4.1, the force sensor 3.1.8.4.2, the foot base 3.1.8.4.5, and the foot pad 3.1.8.4.6.
  • the calf rod 3.1.8.3, the force sensor 3.1.8.4.2, the foot base 3.1.8.4.5 and the foot pad 3.1.8.4.6 are sequentially fixed together.
  • the foot cover 3.1.8.4.1 is fixed with the upper end of the force sensor 3.1.8.4.2 and the lower leg rod 3.1.8.3.
  • a strain gauge is attached to the force sensor 3.1.8.4.2.
  • Each of the permanent magnet brushless motors according to the present invention may be an inner rotor motor or an outer rotor motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

公开了一种电驱动四足机器人的腿部动力系统结构。其主要由机身(1)和四个独立的腿模块(2,3,4,5)构成,其中每一个独立的腿模块包括大腿电机总成(3.1.1)、小腿电机总成(3.1.5)、侧摆髋关节电机总成(3.5)及其相关连杆和固定座。其中侧摆髋关节电机总成(3.5)通过平行四边形机构驱动大小腿总成(3.1),大腿电机总成(3.1.1)直接驱动大腿杆总成(3.1.3),小腿电机总成(3.1.5)通过反平行四边形机构驱动小腿总成(3.1.8)。该电驱动四足机器人的腿部动力系统结构的各关节电机总成相互独立,各电机总成模块化,有利于降低成本,大小腿电机总成具有较好的防外部冲击的能力,并且各电机总成在机器人身上构成的各关节具有较大的工作空间,保证了机器人运动的灵活性。

Description

一种电驱动四足机器人的腿部动力系统结构 技术领域
本发明涉及一种四足机器人的腿部结构,尤其涉及一种电驱动四足机器人的腿部动力系统结构。
背景技术
相比于轮式机器人,足式机器人地形适应能力更强,能够在复杂的地形环境下灵活运动,国内外各科研机构都在努力推进四足机器人的进程。目前,纯电机驱动动力系统因其噪声小、可靠性高、成本低等众多的优点而逐渐成为了中小型四足机器人的主流动力系统。但受限于当前电机及减速器工艺与结构的限制,现有的四足机器人电驱动关节,尺寸较大,结构复杂,重量大,并难以承受较大的轴向冲击力而损坏。另一方面,目前很多足式机器人采用的腿部传动连杆直接裸露在外的传动机构,很容易受来自外部环境的碰撞而损坏。如MIT研发的猎豹(Cheetah)四足机器人,其正摆髋关节和膝关节两个电机共轴线并列集成在一起,虽具有较高的关节集成度,但结构复杂,不能承受轴向冲击而只能使用外置的保护架来保护电机与关节,其这种两个关节电机驱动单元集成在一起的结构,大大限制了大腿关节的运动空间而影响四足机器人的运动性能,并且裸露在外的腿部传动连杆,很容易被外部冲击损坏。
发明内容
针对现有技术的缺陷,本发明的目的在于提供一种结构紧凑、集成度高、抗摔性强的四足机器人的腿部动力系统结构。
为实现上述目的,本发明的技术方案为:
一种电驱动四足机器人的腿部动力系统结构,包括机身和第一腿模块、第二腿模块、第三腿模块、第四腿模块四个独立的腿模块,四个独立的腿模块左右对称布置在机身的两侧,每一个腿模块与机身通过旋转副连接固定;所述腿模块包括大小腿总成和侧摆髋关节电机总成。
作为优选技术措施,大小腿总成包括大腿电机总成、推力轴承、大腿杆总成、小腿主动曲柄、小腿电机总成、小腿传动连杆、小腿总成和小腿旋转销轴。其中,小腿电机总成固定到大腿杆总成上,小腿主动曲柄固定到小腿电机总成的小腿电机行星轮减速器输出轴上,输出轴带动小腿主动曲柄做旋转运动。小腿旋转销轴固定到大腿杆总成末端,小腿总成绕着小腿旋转销作旋转运动。
作为优选技术措施,所述大腿杆总成设有用于容纳小腿主动曲柄、小腿传动连杆的大腿基座和大腿杆,所述大腿杆为上下贯通的腔体状零件,其端部设有用于穿设小腿旋转销轴的末端轴孔,小腿旋转销轴依次穿过大腿杆总成的末端轴孔、小腿总成上端部,小腿总成通过内置的轴承组与小腿旋转销轴构成旋转副。整个小腿传动机构可以被放置于大腿杆总成内部,当四足机器人摔倒或受到撞击时,可以避免脆弱的连杆零件受损。
作为优选技术措施,所述小腿传动连杆布置在大腿杆总成的内部,小腿主动曲柄、小腿传动连 杆、小腿总成与大腿杆总成共同构成反平行四边形传动机构,小腿电机总成的输出轴与所述小腿主动曲柄固定连接,小腿电机总成的输出轴带动小腿主动曲柄做旋转运动,其优点在于结构紧凑、占用空间小、传动间隙小、稳定可靠。
作为优选技术措施,大腿电机总成的输出轴与大腿杆总成的上端部一侧固定,并且一推力轴承布置在大腿电机总成与大腿杆总成的上端部之间;所述小腿电机总成固定安装于大腿杆总成上端部另一侧。所述推力轴承直接把由小腿电机外壳传递给大腿杆总成的外部冲击力直接传递给大腿电机外壳,使得脆弱的大小腿电机内部组件不会被外部冲击力所损坏,增加了抗摔性能。
作为优选技术措施,所述大腿杆总成包括散热风扇,散热片组二,大腿基座,大腿杆;所述大腿杆与大腿基座固定连接;所述散热片组二固定在大腿基座的内壁上,散热风扇固定在大腿基座上;所述大腿基座上开有进风口,散热风扇将外部冷空气通过此风口吹入大腿基座与小腿电机总成共同构成的腔体内;所述冷空气带走从小腿电机外壳和小腿电机正端盖传递到散热片组二和散热片组一上的热量,并通过中空的大腿杆排出到外部环境。散热空气循环内置,使得本发明的动力系统结构更加紧凑,并且使得散热系统不易被外部冲击力所损坏。
作为优选技术措施,所述小腿电机总成包括电机防摔防护板、小腿电机后端盖总成、小腿永磁无刷电机、小腿电机外壳,小腿电机行星轮减速器,小腿电机正端盖和散热片组一。所述电机防摔防护板与小腿电机后端盖总成固定连接,小腿电机后端盖总成与小腿电机外壳端面固定连接。所述电机防摔防护板把来自外部的侧向冲击力通过小腿电机后端盖总成的外圈传递到小腿电机外壳上。所述小腿永磁无刷电机定子铁芯绕组与小腿电机外壳固定连接。所述小腿电机行星轮减速器的齿圈与小腿电机外壳的内端面固定连接。所述小腿永磁无刷电机转子输出轴将电机旋转运动输入小腿电机行星轮减速器,小腿电机行星轮减速器上的行星架输出轴再将旋转运动输出到小腿主动曲柄上。所述小腿电机正端盖与小腿电机外壳固定连接。所述散热片组一紧贴固定在小腿电机正端盖上,小腿电机内部产生的热量通过小腿电机外壳传递到小腿电机正端盖上,接着热量再传递到散热片组一上。
作为优选技术措施,大腿电机总成包括大腿电机后端盖总成、大腿永磁无刷电机、大腿电机外壳、髋关节旋转销轴一、大腿电机行星轮减速器、大腿电机正端盖、髋关节旋转销轴二。大腿电机后端盖总成固定到大腿电机外壳后端面。大腿永磁无刷电机定子铁芯绕组与大腿电机外壳固定连接,大腿永磁无刷电机转子输出轴将电机旋转运动输入大腿电机行星轮减速器,行星轮减速器再将旋转运动输出到大腿杆总成。大腿电机正端盖与大腿电机外壳固定连接。髋关节旋转销轴一和髋关节旋转销轴二与大腿电机外壳的另外两个端面固定连接,髋关节旋转销轴一和髋关节旋转销轴二与机器人机身共同构成了侧摆髋关节的旋转副。
作为优选技术措施,所述小腿电机总成包括小腿电机后端盖总成、小腿永磁无刷电机、小腿电机外壳、小腿电机正端盖;小腿电机后端盖总成外端部罩设一用于减少内部系统结构所受冲击力的电机防摔防护板,所述电机防摔防护板与小腿电机后端总成外圈相贴合的一端面一周圈之间设有用于传递冲击力的凸起。电机防摔防护板固定在小腿电机后端盖总成上,小腿电机后端盖总成固定到小腿电机外壳端面,来自外界的侧向冲击力被电机防摔防护板传递转化后,通过凸起传递到小腿电 机后端盖总成外圈上,进一步的小腿电机后端盖总成外圈再直接把冲击力传递到小腿电机外壳上,进而避免了电机内部零件受损。
作为优选技术措施,腿部动力系统结构设有刹车组件,其包括弹性刹车板、电机后端盖、刹车驱动器和刹车线。刹车驱动器固定在电机后端盖上(或固定在电机外壳上)。刹车线一端穿过电机后端盖连接到弹性刹车板上,另一端连接到刹车驱动器输出端。弹性刹车板的一端固定在后端盖上,另一端有高摩擦系数的刹车片。当刹车驱动器未作动时,弹性刹车板依靠自身弹性使得弹性刹车板有刹车片的一端顶紧在电机转子上,此时电机无法旋转,被锁死。当刹车驱动器拉动刹车线将弹性刹车板摩擦端拽离电机转子,使得原本被弹性刹车板弹性摩擦预紧的电机转子能自由旋转,此时电机可以开始正常转动,由此该装置实现了对关节电机的制动控制。
作为优选技术措施,所述侧摆髋关节电机总成包括侧摆髋关节电机后端盖总成、侧摆髋关节永磁无刷电机、侧摆髋关节电机外壳、侧摆髋关节电机行星轮减速器和侧摆髋关节电机正端盖;所述侧摆髋关节后端盖总成与侧摆髋关节电机外壳后端面固定连接;所述侧摆髋关节永磁无刷电机定子铁芯绕组与侧摆髋关节电机外壳固定连接;所述侧摆髋关节行星轮减速器的外齿圈与侧摆髋关节电机外壳的内端面固定连接;所述侧摆髋关节永磁无刷电机转子输出轴将电机旋转运动输入侧摆髋关节行星轮减速器,侧摆髋关节行星轮减速器的行星架输出轴再将旋转运动输出到侧摆髋关节主动曲柄;所述侧摆髋关节正端盖与侧摆髋关节电机外壳固定连接。侧摆髋关节从动曲柄与大腿电机总成固定连接,侧摆髋关节主动曲柄、侧摆髋关节连杆、侧摆髋关节从动曲柄与机身共同构成了平行四边形连杆传递机构。平行四边形传动机构结构简单,传递扭矩大,传动间隙小,且稳定可靠。
与现有技术相比,本发明具有以下有益效果:
本发明主要由机身和四个独立的腿模块构成,其中每一个独立的腿模块由大腿电机总成,小腿电机总成,髋关节电机总成及其相关连杆和固定座构成。其中髋关节电机通过平行四边形机构驱动大小腿总成,大腿电机总成直接驱动大腿杆总成,小腿电机总成通过反平行四边形机构驱动小腿总成。当机器人发生侧向摔倒等情况而使机器人大腿部受到侧向冲击时,在大腿最外侧的电机防摔防护板把外部冲击力分散集中到小腿电机端盖周圈上,并进一步直接传递给小腿电机外壳,小腿电机外壳所承受的外部冲击力将通过小腿电机外壳、大腿杆总成和推力轴承直接传递到大腿电机外壳上,再进而传递到机身上,避免了冲击力对大小腿电机内部精密结构的损坏,使得本发明具有较强的抗外部冲击性能。本发明所使用的电机总成,内置集成了紧凑型的行星减速器,电机与减速器整体集成度高,结构紧凑,重量轻。本发明的各关节电机总成相互独立,各电机总成模块化,有利于降低成本,并且各电机总成在机器人身上构成的各关节具有较大的工作空间,保证了机器人运动的灵活性。
附图说明
图1四足机器人整机示意图;
图2.a单个腿模块轴侧图;
图2.b单个腿模块轴测爆炸图;
图2.c单个腿模块的髋关节传动连杆机构示意图;
图3.1大小腿总成结构示意图;
图3.2大腿基座和小腿总成侧面结构示意图;
图3.3为图3.2的A-A面剖视图以及侧向防撞原理示意图;
图4.a小腿连杆轴测图;
图4.b小腿连杆反平行四边形连杆传动结构示意图;
图5大腿电机总成爆炸图;
图6膝关节小腿电机爆炸图;
图7侧摆髋关节电机示意图;
图8.a大腿杆总成爆炸图;
图8.b大腿杆总成内置散热循环示意图;
图9.1各关节电机总成后端盖总成示意图;
图9.2各关节电机总成后端盖总成爆炸示意图;
图9.3各关节电机总成后端盖总成局部剖视图;
图10.1小腿结构示意图;
图10.2足总成结构示意图。
附图标记说明:
机身1,第一腿模块2,第二腿模块3,第三腿模块4,第四腿模块5,大小腿总成3.1,侧摆髋关节主动曲柄3.2,侧摆髋关节连杆3.3,侧摆髋关节从动曲柄3.4,侧摆髋关节电机总成3.5,大腿电机总成3.1.1,推力轴承3.1.2,大腿杆总成3.1.3,小腿主动曲柄3.1.4,小腿电机总成3.1.5,小腿旋转销轴3.1.6,小腿传动连杆3.1.7,小腿总成3.1.8,侧摆髋关节电机后端盖总成3.5.1,侧摆髋关节永磁无刷电机3.5.2,侧摆髋关节电机外壳3.5.3,侧摆髋关节电机行星轮减速器3.5.4,侧摆髋关节电机正端盖3.5.5,大腿电机后端盖总成3.1.1.1,大腿永磁无刷电机3.1.1.2,大腿电机外壳3.1.1.3,髋关节旋转销轴一3.1.1.4,大腿电机行星轮减速器3.1.1.5,大腿电机正端盖3.1.1.6,髋关节旋转销轴二3.1.1.8,电机防摔防护板3.1.5.1,小腿电机后端盖总成3.1.5.2,小腿永磁无刷电机3.1.5.3,小腿电机外壳3.1.5.4,小腿电机行星轮减速器3.1.5.5,小腿电机正端盖3.1.5.6,散热片组一3.1.5.7,散热风扇3.1.3.1,散热片组二3.1.3.2,大腿基座3.1.3.3,大腿杆3.1.3.4,膝关节轴承组3.1.8.1,膝关节座3.1.8.2,小腿杆3.1.8.3,足总成3.1.8.4,弹性刹车板3.5.1.1,电机后端盖3.5.1.2,刹车驱动器3.5.1.3,刹车摇臂3.5.1.4,刹车线3.5.1.5,足套3.1.8.4.1,力传感器3.1.8.4.2,足基座3.1.8.4.5,足垫3.1.8.4.6。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,本发明所述四足机器人机械结构,包括机身1和四个独立的腿模块,四个独立的腿模块包括:第一腿模块2、第二腿模块3、第三腿模块4、第四腿模块5。四个独立的腿模块对称布置在机身的两侧,每一个腿模块与机身通过旋转副连接固定。
如图2.a、2.b、2.c所示,所述腿模块结构,包括大小腿总成3.1和侧摆髋关节电机总成3.5。侧摆髋关节主动曲柄3.2、侧摆髋关节连杆3.3、侧摆髋关节从动曲柄3.4与机身1共同构成了平行四边形连杆传动机构。侧摆髋关节从动曲柄3.4与大腿电机总成3.5固定连接,侧摆髋关节电机总成3.5固定在机身上,侧摆髋关节主动曲柄3.2固定到侧摆髋关节电机总成3.5的侧摆髋关节电机行星轮减速器3.5.4输出轴上,侧摆髋关节行星轮减速器3.5.4输出轴带动侧摆髋关节主动曲柄3.2做旋转运动,并通过平行四边形机构将该运动传递给大小腿总成3.1。平行四边形机构传递扭矩大,传动间隙小,结构简单且稳定可靠。
如图3.1、3.2、3.3所示,所述大小腿总成3.1包括大腿电机总成3.1.1、推力轴承3.1.2、大腿杆总成3.1.3、小腿主动曲柄3.1.4、小腿电机总成3.1.5、小腿传动连杆3.1.7、小腿总成3.1.8和小腿旋转销轴3.1.6。其中,小腿电机总成3.1.5与大腿杆总成3.1.3固定连接,小腿主动曲柄3.1.4与小腿电机总成3.1.5的小腿电机行星轮减速器3.1.5.5输出轴固定连接,小腿电机行星轮减速器3.1.5.5输出轴带动小腿主动曲柄3.1.4做旋转运动。小腿旋转销轴3.1.6与大腿杆总成3.1.3末端轴孔固定连接,小腿总成3.1.8通过内置的轴承组3.1.8.1与小腿旋转销轴3.1.6构成回转副。
如图3.1、4.a、4.b所示,小腿主动曲柄3.1.4、小腿传动连杆3.1.7、小腿总成3.1.8与大腿杆总成3.1.3共同构成了反平行四边形机构,其具有结构紧凑、占用空间小、传动间隙小、稳定可靠等优点,且整个反平行四边形机构可以被放置于大腿杆总成3.1.3内部,当四足机器人摔倒或受到撞击时,可以避免脆弱的连杆零件受到来自外部撞击的损伤。
如图3.1、3.2、3.3所示,大腿杆总成3.1.3与大腿电机行星轮减速器3.1.1.5输出轴固定连接,大腿电机行星轮减速器3.1.1.5输出轴带动大腿杆总成3.1.3做旋转运动,其中,推力轴承3.1.2布置在大腿电机总成3.1.1与大腿杆总成3.1.3之间。当四足机器人摔倒时,地面或障碍物对机器人腿部的冲击力通过电机防摔防护板3.1.5.1、小腿电机后端盖总成3.1.5.2、小腿电机外壳3.1.5.4、大腿基座3.1.3.3、推力轴承3.1.2、大腿电机外壳3.1.1.3、侧摆髋关节旋转销轴一3.1.1.4和侧摆髋关节旋转销轴二3.1.1.8传递到机身上,所述外部冲击直接通过上述强度较好的零部件传递,避免了大小腿电机总成内部转子、减速器、轴承等脆弱结构受到冲击,提高了机器人腿部的抗冲击能力与可靠性。
如图5所示,大腿电机总成3.1.1包括大腿电机后端盖总成3.1.1.1、大腿电机永磁无刷电机3.1.1.2、大腿电机外壳3.1.1.3、侧摆髋关节旋转销轴一3.1.1.4、大腿电机行星轮减速器3.1.1.5、大腿电机正端盖3.1.1.6、侧摆髋关节旋转销轴二3.1.1.8。大腿电机后端盖总成3.1.1.1与大腿电机外壳3.1.1.3后端面固定 连接。大腿永磁无刷电机3.1.1.3定子铁芯绕组与大腿电机外壳3.1.1.3固定连接,大腿电机行星轮减速器3.1.1.5的外齿圈固定在大腿电机外壳3.1.1.3的内端面上,大腿永磁无刷电机3.1.1.2转子输出轴将电机旋转运动输入大腿电机行星轮减速器3.1.1.5,大腿电机行星轮减速器3.1.1.5再将旋转运动通过行星架输出轴输出到大腿杆总成3.1.3。大腿电机正端盖3.1.1.6与大腿电机行星轮减速器3.1.1.5的外齿圈和大腿电机外壳3.1.1.3这三者紧密固定连接。侧摆髋关节旋转销轴一3.1.1.4和侧摆髋关节旋转销轴二3.1.1.8与大腿电机外壳3.1.13固定连接。侧摆髋关节旋转销轴一3.1.1.4和侧摆髋关节旋转销轴二3.1.1.8与机身1共同构成旋转副。
如图6所示,小腿电机总成3.1.5包括电机防摔防护板3.1.5.1、小腿电机后端盖总成3.1.5.2、小腿永磁无刷电机3.1.5.3、小腿电机外壳3.1.5.4、小腿电机行星轮减速器3.1.5.5、小腿电机正端盖3.1.5.6和散热片一3.1.5.7。电机防摔防护板3.1.5.1与小腿电机后端盖总成3.1.5.2固定连接,小腿电机后端盖总成3.1.5.2与小腿电机外壳端面3.1.5.4固定连接,来自外部侧向的冲击力通过电机防摔防护板3.1.5.1和小腿电机后端盖总成3.1.5.2的外圈传递到小腿电机外壳3.1.5.4上。小腿永磁无刷电机3.1.5.3定子铁芯绕组与小腿电机外壳3.1.5.4固定连接,小腿行星轮减速器3.1.5.5的齿圈与小腿电机外壳3.1.5.4的内端面固定连接,小腿永磁无刷电机3.1.5.3转子输出轴将电机旋转运动输入小腿电机行星轮减速器3.1.5.5,小腿电机行星轮减速器3.1.5.5上的行星架输出轴再将旋转运动输出到小腿主动曲柄3.1.4上。小腿电机正端盖3.1.5.6与小腿电机外壳3.1.5.4固定连接,小腿电机正端盖3.1.5.6与小腿电机行星轮减速器3.1.5.5的外齿圈和小腿电机外壳3.1.5.4这三者紧密固定连接。散热片组一3.1.5.7紧贴固定在小腿电机正端盖3.1.5.6上,小腿电机内部产生的热量通过小腿电机外壳3.1.5.4传递到小腿电机正端盖3.1.5.6上,接着热量再传递到散热片组一3.1.5.7上,散热片组一3.1.5.7附近流动的空气将热量带走,从而实现了对小腿电机总成3.1.5的散热。
如图7所示,侧摆髋关节电机总成3.5包括侧摆髋关节后端盖总成3.5.1、侧摆髋关节永磁无刷电机3.5.2、侧摆髋关节电机外壳3.5.3、侧摆髋关节行星轮减速器3.5.4和侧摆髋关节正端盖3.5.5组成。侧摆髋关节后端盖总成3.5.1与侧摆髋关节电机外壳3.5.3后端面固定连接。侧摆髋关节永磁无刷电机3.5.2定子铁芯绕组与侧摆髋关节电机外壳3.5.3固定连接。侧摆髋关节行星轮减速器3.5.4的外齿圈与侧摆髋关节电机外壳3.5.3的内端面固定连接,侧摆髋关节永磁无刷电机3.5.2转子输出轴将电机旋转运动输入侧摆髋关节行星轮减速器3.5.4,侧摆髋关节行星轮减速器3.5.4的行星架输出轴再将旋转运动输出到侧摆髋关节主动曲柄3.2。侧摆髋关节正端盖3.5.5与侧摆髋关节电机外壳3.5.3固定连接,侧摆髋关节正端盖3.5.5与侧摆髋关节行星轮减速器3.5.4的外齿圈和侧摆髋关节电机外壳3.5.3这三者紧密固定连接。
如图8.a、8.b所示,大腿杆总成3.1.3包括散热风扇3.1.3.1、散热片组二3.1.3.2、大腿基座3.1.3.3和大腿杆3.1.3.4。大腿杆3.1.3.4与大腿基座3.1.3.3固定连接,散热片组二3.1.3.2固定在大腿基座3.1.3.3的内壁上,散热风扇3.1.3.1固定在大腿基座3.1.3.3上,大腿基座3.1.3.3上开有进风口,散热风扇3.1.3.1将外部冷空气通过此风口吹入大腿基座3.1.3.3与小腿电机总成3.1.5共同构成的腔体内,从而带走从小腿电机外壳3.1.5.4和小腿电机正端盖3.1.5.6传递到散热片组二3.1.3.2和散热片组一3.1.5.7上的热量,并通过中空的大腿杆3.1.3.4排出,从而实现了对电机系统的主动冷却。
如图9.1、9.2、9.3所示,侧摆髋关节总成3.5、大腿电机总成3.1.1、小腿电机总成3.1.5上的各后端 盖总成,包括大腿电机后端盖总成3.1.1.1、小腿电机后端盖总成3.1.5.2、侧摆髋关节电机后端盖总成3.5.1具有相似的结构。所述各后端盖总成设有刹车组件,其包括弹性刹车板3.5.1.1、后端盖3.5.1.2、刹车驱动器3.5.1.3、刹车摇臂3.5.1.4和刹车线3.5.1.5。刹车驱动器3.5.1.3固定在后端盖3.5.1.2或电机外壳上,刹车驱动器3.5.1.3输出轴带动刹车摇臂3.5.1.4旋转。刹车线3.5.1.5一端穿过后端盖3.5.1.2上的孔而与弹性刹车板3.5.1.1固定连接,另一端连接到刹车驱动器输出端。所述弹性刹车板3.5.1.1的一端与后端盖3.1.5.2固定连接。当刹车驱动器3.5.1.3未作动时,弹性刹车板3.5.1.1上带有摩擦体的一端依靠自身的弹性顶紧在永磁无刷电机3.1.1.2的转子上,从而实现对电机转子的摩擦制动。另一方面当刹车驱动器3.5.1.3拉动刹车线3.5.1.5将弹性刹车板3.5.1.1带有摩擦体的一端拽离电机转子时,使得电机转子可以开始正常转动,由此该装置实现了对各关节的制动控制。
如图10.1、10.2所示,足总成3.1.8.4包括足套3.1.8.4.1、力传感器3.1.8.4.2、足基座3.1.8.4.5和足垫3.1.8.4.6。所述小腿杆3.1.8.3、力传感器3.1.8.4.2、足基座3.1.8.4.5和足垫3.1.8.4.6依次按顺序固定在一起。所述足套3.1.8.4.1与力传感器3.1.8.4.2上端及小腿杆3.1.8.3固定在一起。所述力传感器3.1.8.4.2上粘贴有应变片。
本发明所涉及的各永磁无刷电机,可以是内转子电机,也可以是外转子电机。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种电驱动四足机器人的腿部动力系统结构,包括机身(1)和第一腿模块(2)、第二腿模块(3)、第三腿模块(4)、第四腿模块(5)四个独立的腿模块,其特征在于,四个独立的腿模块左右对称布置在机身的两侧,每一个腿模块与机身通过旋转副连接固定;所述腿模块包括大小腿总成(3.1)和侧摆髋关节电机总成(3.5.)。
  2. 如权利要求1所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,大小腿总成(3.1)包括大腿电机总成(3.1.1)、大腿杆总成(3.1.3)、小腿电机总成(3.1.5)、小腿总成(3.1.8)。
  3. 如权利要求2所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,所述大腿杆总成(3.1.3)设有用于容纳小腿主动曲柄(3.1.4)、小腿传动连杆(3.1.7)的大腿基座(3.1.3.3)和大腿杆(3.1.3.4),所述大腿杆(3.1.3.4)为下端开放的贯通腔体,其端部设有用于穿设一小腿旋转销轴的末端轴孔,小腿旋转销轴依次穿过大腿杆总成(3.1.3)的末端轴孔、小腿总成(3.1.8)上端部,小腿总成(3.1.8)通过内置的轴承组(3.1.8.1)与小腿旋转销轴(3.1.6)构成旋转副。
  4. 如权利要求3所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,所述小腿传动连杆(3.1.7)布置在大腿杆总成(3.1.3)的内部,所述小腿主动曲柄(3.1.4)、小腿传动连杆(3.1.7)、小腿总成(3.1.8)与大腿杆总成(3.1.3)共同构成反平行四边形连杆传动机构,小腿电机总成(3.1.5)的输出轴与所述小腿主动曲柄(3.1.4)固定连接,小腿电机总成(3.1.5)的输出轴带动小腿主动曲柄(3.1.4)做旋转运动。
  5. 如权利要求2所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,大腿电机总成(3.1.1)的输出轴与大腿杆总成(3.1.3)的上端部一侧固定,并且一推力轴承(3.1.2)布置在大腿电机总成(3.1.1)与大腿杆总成(3.1.3)的上端部之间;所述小腿电机总成(3.1.5)固定安装于大腿杆总成(3.1.3)上端部另一侧。
  6. 如权利要求2所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,所述大腿杆总成(3.1.3)包括散热风扇(3.1.3.1)、散热片组二(3.1.3.2)、大腿基座(3.1.3.3)、大腿杆(3.1.3.4);所述大腿杆(3.1.3.4)与大腿基座(3.1.3.3)固定连接;所述散热片组二(3.1.3.2)固定在大腿基座(3.1.3.3)的内壁上,散热风扇(3.1.3.1)固定在大腿基座(3.1.3.3)上;所述大腿基座(3.1.3.3)上开有进风口,散热风扇(3.1.3.1)将外部冷空气通过此风口吹入大腿基座(3.1.3.3)与小腿电机总成(3.1.5)共同构成的腔体内;所述冷空气带走聚集在散热片组二(3.1.3.2)和散热片组一(3.1.5.7)上的热量,并通过中空的大腿杆(3.1.3.4)排出到外部环境。
  7. 如权利要求2.中所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,所述小腿电机总成(3.1.5)包括电机防摔防护板(3.1.5.1)、小腿电机后端盖总成(3.1.5.2)、小腿永磁无刷电机(3.1.5.3)、小腿电机外壳(3.1.5.4)、小腿电机行星轮减速器(3.1.5.5)、小腿电机正端盖(3.1.5.6)和散热片组一(3.1.5.7);所述电机防摔防护板(3.1.5.1)与小腿电机后端盖总成(3.1.5.2)固定连接,小腿电机后端盖总成(3.1.5.2)与小腿电机外壳端面(3.1.5.4)固定连接;所述电机防摔防护板(3.1.5.1)把来自外部的侧向冲击力通过小腿电机后端盖总成(3.1.5.2)的外圈传递到小腿电机外壳 (3.1.5.4)上;所述小腿永磁无刷电机(3.1.5.3)定子铁芯绕组与小腿电机外壳(3.1.5.4)固定连接;所述小腿电机行星轮减速器(3.1.5.5)的齿圈与小腿电机外壳(3.1.5.4)的内端面固定连接;所述小腿永磁无刷电机(3.1.5.3)转子输出轴将电机旋转运动输入小腿电机行星轮减速器(3.1.5.5),小腿电机行星轮减速器(3.1.5.5)上的行星架输出轴再将旋转运动输出到小腿主动曲柄(3.1.4)上;所述小腿电机正端盖(3.1.5.6)与小腿电机外壳(3.1.5.4)固定连接;所述散热片组一(3.1.5.7)紧贴固定在小腿电机正端盖(3.1.5.6)上,小腿电机内部产生的热量通过小腿电机外壳(3.1.5.4)传递到小腿电机正端盖(3.1.5.6)上,接着热量再传递到散热片组一(3.1.5.7)上。
  8. 如权利要求2所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,所述大腿电机总成(3.1.1)包括大腿电机后端盖总成(3.1.1.1)、大腿永磁无刷电机(3.1.1.2)、大腿电机外壳(3.1.1.3)、大腿电机行星轮减速器(3.1.1.5)、大腿电机正端盖(3.1.1.6);所述大腿电机后端盖总成(3.1.1.1)与大腿电机外壳(3.1.1.3)后端面固定连接;所述大腿永磁无刷电机(3.1.1.3)定子铁芯绕组与大腿电机外壳(3.1.1.3)固定连接;所述大腿电机行星轮减速器(3.1.1.5)的外齿圈与大腿电机外壳(3.1.1.3)的内端面固定连接;所述大腿永磁无刷电机(3.1.1.2)转子输出轴将电机旋转运动输入大腿电机行星轮减速器(3.1.1.5);所述大腿电机行星轮减速器(3.1.1.5)再将旋转运动通过行星架输出轴输出到大腿杆总成(3.1.3)上。
  9. 如权利要求2-8任一所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,所述小腿电机总成(3.1.5)包括小腿电机后端盖总成(3.1.5.2)、小腿永磁无刷电机(3.1.5.3)、小腿电机外壳(3.1.5.4);小腿电机后端盖总成(3.1.5.2)外端部罩设一用于减少内部系统结构所受冲击力的电机防摔防护板(3.1.5.1),所述电机防摔防护板(3.1.5.1)与小腿电机后端盖总成相贴合的端面一周圈之间设有用于传递冲击力的凸起。
  10. 如权利要求1-8任一所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,腿部动力系统结构设有刹车组件,其包括弹性刹车板(3.5.1.1)、电机后端盖、刹车驱动器(3.5.1.3)、刹车线(3.5.1.5);刹车驱动器(3.5.1.3)固定在电机后端盖上或固定在电机外壳上,刹车驱动器(3.5.1.3)拉动刹车线(3.5.1.5)而使弹性刹车板(3.5.1.1)上的刹车片脱离电机转子,使得原本被弹性刹车板(3.5.1.1)弹性摩擦预紧的电机转子能自由旋转。
  11. 如权利要求2-8任一所述的一种电驱动四足机器人的腿部动力系统结构,其特征在于,所述侧摆髋关节电机总成(3.5)包括侧摆髋关节电机后端盖总成(3.5.1)、侧摆髋关节永磁无刷电机(3.5.2)、侧摆髋关节电机外壳(3.5.3)、侧摆髋关节电机行星轮减速器(3.5.4)和侧摆髋关节电机正端盖(3.5.5);所述侧摆髋关节后端盖总成(3.5.1)与侧摆髋关节电机外壳(3.5.3)后端面固定连接;所述侧摆髋关节永磁无刷电机(3.5.2)定子铁芯绕组与侧摆髋关节电机外壳(3.5.3)固定连接;所述侧摆髋关节行星轮减速器(3.5.4)的外齿圈与侧摆髋关节电机外壳(3.5.3)的内端面固定连接;所述侧摆髋关节永磁无刷电机(3.5.2)转子输出轴将电机旋转运动输入侧摆髋关节行星轮减速器(3.5.4),侧摆髋关节行星轮减速器(3.5.4)的行星架输出轴再将旋转运动输出到侧摆髋关节主动曲柄(3.2);所述侧摆髋关节正端盖(3.5.5)与侧摆髋关节电机外壳(3.5.3)固定连接。
PCT/CN2018/078412 2017-03-10 2018-03-08 一种电驱动四足机器人的腿部动力系统结构 WO2018161936A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/492,528 US10940582B2 (en) 2017-03-10 2018-03-08 Leg power system structure of electrically driven four-legged robot
DE212018000182.0U DE212018000182U1 (de) 2017-03-10 2018-03-08 Struktur des Beinantriebssystems für einen elektrisch angetriebenen Vierbeinroboter
DE112018001268.9T DE112018001268T5 (de) 2017-03-10 2018-03-08 Struktur des Beinantriebssystems für einen elektrisch angetriebenen Vierbeinroboter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710149070.7A CN106904226B (zh) 2017-03-10 2017-03-10 一种电驱动四足机器人的腿部动力系统结构
CN201710149070.7 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018161936A1 true WO2018161936A1 (zh) 2018-09-13

Family

ID=59187792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078412 WO2018161936A1 (zh) 2017-03-10 2018-03-08 一种电驱动四足机器人的腿部动力系统结构

Country Status (4)

Country Link
US (1) US10940582B2 (zh)
CN (1) CN106904226B (zh)
DE (2) DE212018000182U1 (zh)
WO (1) WO2018161936A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109484510A (zh) * 2018-12-14 2019-03-19 深圳市行者机器人技术有限公司 一种机器人行走机构
CN109823438A (zh) * 2019-03-05 2019-05-31 彭爽 一种仿生四足机器人
CN110386204A (zh) * 2019-07-17 2019-10-29 河北工业大学 基于ipmc与硅胶材料的柔性关节四足机器人单腿系统
WO2020112229A2 (en) 2018-09-26 2020-06-04 Ghost Robotics Llc Legged robot
CN111645773A (zh) * 2019-03-04 2020-09-11 深圳市智擎新创科技有限公司 多足机器人腿部总成
CN111645772A (zh) * 2019-03-04 2020-09-11 深圳市智擎新创科技有限公司 多足机器人
CN112849295A (zh) * 2021-03-08 2021-05-28 吉林大学 一种多相位三维凸轮式仿生足式机器人
CN113120114A (zh) * 2021-05-17 2021-07-16 哈尔滨工业大学(深圳) 一种具有可变躯干的多足机器人
CN113635989A (zh) * 2021-06-18 2021-11-12 哈尔滨工业大学(深圳) 一种集成式多足机器人
CN115195902A (zh) * 2021-04-12 2022-10-18 广东博智林机器人有限公司 一种运动装置及行走机器人
CN115610554A (zh) * 2022-09-23 2023-01-17 哈尔滨工业大学(深圳) 基于吊臂合页式关节的全电机绳驱多足机器人

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904226B (zh) 2017-03-10 2022-12-23 杭州宇树科技有限公司 一种电驱动四足机器人的腿部动力系统结构
CN107651041B (zh) * 2017-10-30 2024-02-20 山东大学 一种电动四足机器人的单腿结构
CN108163080B (zh) * 2017-12-04 2024-01-23 香港中文大学(深圳) 能适应复杂崎岖地形的高负载能力的电驱动四足机器人
CN108032328B (zh) * 2017-12-18 2023-08-04 深圳市优必选科技有限公司 一种舵机组件、机器人关节结构及机器人
CN108407917B (zh) * 2018-02-28 2019-11-08 浙江工业职业技术学院 具有密封冷却关节的机器人腿结构
CN108791561A (zh) * 2018-06-11 2018-11-13 前沿驱动(北京)技术有限公司 一种新型四足机器人
US20210245647A1 (en) * 2018-06-26 2021-08-12 Sony Corporation Robot and control method
CN109176595B (zh) * 2018-10-19 2023-11-24 杭州宇树科技有限公司 机器人双关节单元及应用其的足式机器人和协作机械臂
CN109733496A (zh) * 2018-11-30 2019-05-10 西安电子科技大学 一种六足轮腿变换式自主机器人
EP3696060A1 (en) * 2019-02-18 2020-08-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Robot leg and robotic system
CN109941369A (zh) * 2019-03-07 2019-06-28 杭州宇树科技有限公司 一种机器人集成关节单元及应用其的足式机器人
USD916202S1 (en) * 2019-04-26 2021-04-13 Hangzhou Yushu Technology Co., Ltd. Quadruped robot
CN110155204B (zh) * 2019-05-05 2021-05-07 昆明理工大学 一种四足机器人腿部
USD916203S1 (en) * 2019-05-06 2021-04-13 Hangzhou Yushu Technology Co., Ltd. Quadruped robot
CN110125924B (zh) * 2019-06-11 2021-06-04 哈尔滨工业大学 一种软体仿生足式机器人
CN110304170A (zh) * 2019-07-16 2019-10-08 深圳市爱因派科技有限公司 四足机器人腿部结构及机器人
CN110588828A (zh) * 2019-09-02 2019-12-20 江苏集萃智能制造技术研究所有限公司 一种轻型电动四足机器人
CN110537419A (zh) * 2019-09-04 2019-12-06 南京林业大学 一种自走式自平衡采摘机器人
CN110884588B (zh) * 2019-12-23 2022-03-18 中国科学院空间应用工程与技术中心 一种基于串联机械腿的四足机器人平台
CN113044129A (zh) * 2019-12-26 2021-06-29 沈阳新松机器人自动化股份有限公司 一种机器腿及机器人
CN111409731B (zh) * 2020-03-17 2021-03-16 山东大学 一种电机驱动两自由度机器人关节总成
CN111438572B (zh) * 2020-03-23 2022-03-22 烟台春晖回转支承有限公司 一种用于轴承内壁和外壁打磨的设备
CN112208666A (zh) * 2020-08-26 2021-01-12 深圳市优必选科技股份有限公司 躯干结构及四足机器人
CN111891253B (zh) * 2020-09-02 2023-12-15 上海微电机研究所(中国电子科技集团公司第二十一研究所) 四足机器人
CN213414006U (zh) * 2020-10-29 2021-06-11 杭州宇树科技有限公司 一种结构紧凑的机器人腿部结构以及应用其的四足机器人
CN112319647B (zh) * 2020-11-06 2023-10-03 华南理工大学广州学院 一种多杆四足机器人
CN112623059B (zh) * 2020-11-16 2022-04-01 北京理工大学前沿技术研究院 机动车的轮腿式机构、轮腿式机动车及轮腿式机动车组
CN112498517B (zh) * 2020-12-17 2021-11-16 江苏集萃复合材料装备研究所有限公司 一种三自由度机器人腿结构
CN112519916A (zh) * 2020-12-29 2021-03-19 上海微电机研究所(中国电子科技集团公司第二十一研究所) 一种轮足混合式机器人
CN112519915A (zh) * 2020-12-29 2021-03-19 上海微电机研究所(中国电子科技集团公司第二十一研究所) 基于轮足式混合移动的协作交互机器人
CN112519917A (zh) * 2020-12-29 2021-03-19 上海微电机研究所(中国电子科技集团公司第二十一研究所) 一种基于轮足式混合移动的协作交互机器人
CN112519918A (zh) * 2020-12-29 2021-03-19 上海微电机研究所(中国电子科技集团公司第二十一研究所) 轮足混合式机器人
CN112623063A (zh) * 2021-01-15 2021-04-09 上海微电机研究所(中国电子科技集团公司第二十一研究所) 一种轻量化微小型四足机器人
CN112621811A (zh) * 2021-01-25 2021-04-09 之江实验室 一种新型的机器人模块化关节
JP1732135S (ja) * 2021-03-01 2022-12-13 脚式ロボット
CN113001517B (zh) * 2021-03-11 2023-04-25 南方科技大学 一种过约束运动装置和机器人
CN113001516B (zh) * 2021-03-11 2023-04-25 南方科技大学 一种过约束两栖机器人
WO2022207106A1 (en) * 2021-03-31 2022-10-06 Anybotics Ag Limb portion of robot
CN113147950A (zh) * 2021-05-08 2021-07-23 国铁工建(北京)科技有限公司 一种腿足式机器人的腿部动力系统机构及腿足式机器人
CN113371095B (zh) * 2021-06-18 2022-11-29 哈尔滨工业大学(深圳) 一种关节任意角度旋转的腿部结构及多足机器人
CN113511283B (zh) * 2021-07-14 2022-05-06 昆明理工大学 一种采用多杆机构的腿部结构及其构建的四足机器人
CN113525547B (zh) * 2021-07-25 2023-04-28 青岛工发智能科技有限公司 一种轮腿结合的四足机器人
CN113696993B (zh) * 2021-08-30 2022-06-17 浙江大学 一种足端轨迹可变的组装式多足机器人和控制方法
CN216002828U (zh) * 2021-09-27 2022-03-11 东莞市本末科技有限公司 一种机器人腿部旋转限位结构及机器人
CN114074726A (zh) * 2021-12-06 2022-02-22 北京交通大学 仿蝾螈机器人
CN114313051A (zh) * 2021-12-15 2022-04-12 浙江大学杭州国际科创中心 一种多足机器人
CN114313052B (zh) * 2021-12-31 2023-05-16 杭州未名信科科技有限公司 可自锁的腿足模块及机器人
CN114310963B (zh) * 2022-01-18 2024-02-13 上海交通大学 一种滑雪多足机器人
CN114620160B (zh) * 2022-03-23 2024-04-05 北京理工大学 基于多级电动缸并联式腿足结构的电动四足机器人
CN115056883A (zh) * 2022-05-06 2022-09-16 纯米科技(上海)股份有限公司 腿部结构及四足机器人
CN114771688A (zh) * 2022-05-10 2022-07-22 中国北方车辆研究所 一种无缆三自由度关节模组及仿生腿足结构
CN114852211B (zh) * 2022-05-31 2023-08-18 华南理工大学 一种基于抗扭桁架的并联四足机器人装置及其控制方法
CN115583298A (zh) * 2022-11-03 2023-01-10 哈尔滨工业大学 一种可变构型轮式机器人结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602382A (zh) * 2009-05-13 2009-12-16 上海工程技术大学 一种单驱动四足步行机器人
KR101363873B1 (ko) * 2012-11-09 2014-02-20 한국과학기술원 생체모방형 다리 메커니즘
CN203819377U (zh) * 2014-02-25 2014-09-10 中国人民解放军军事交通学院 四足机器人腿部联动机构
CN104802874A (zh) * 2014-01-26 2015-07-29 上海交通大学 四足救援机器人
CN104890759A (zh) * 2015-07-10 2015-09-09 陕西九立机器人制造有限公司 一种四足机器人
CN105383587A (zh) * 2015-11-25 2016-03-09 济南大学 一种矿用巷道探测四足机器人
CN106476928A (zh) * 2016-12-21 2017-03-08 山东大学 机构构型可变电动四足机器人
CN106904226A (zh) * 2017-03-10 2017-06-30 杭州宇树科技有限公司 一种电驱动四足机器人的腿部动力系统结构
CN206579733U (zh) * 2017-03-10 2017-10-24 杭州宇树科技有限公司 一种电驱动四足机器人的腿部动力系统结构

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2512410A1 (fr) * 1981-09-04 1983-03-11 Kroczynski Patrice Systeme de robots a pattes
US4766775A (en) * 1986-05-02 1988-08-30 Hodge Steven W Modular robot manipulator
JP2957881B2 (ja) * 1994-02-21 1999-10-06 株式会社タカラ 2足歩行ロボット
DE60036599T2 (de) * 1999-05-10 2008-02-07 Sony Corp. Robotervorrichtung, steuerverfahren und aufzeichnungsmedium
US6636781B1 (en) * 2001-05-22 2003-10-21 University Of Southern California Distributed control and coordination of autonomous agents in a dynamic, reconfigurable system
KR101464125B1 (ko) * 2008-06-05 2014-12-04 삼성전자주식회사 보행로봇
CN102897245A (zh) * 2012-10-30 2013-01-30 同济大学 单一驱动的多足机器人机身模块化联动装置
CN103192898A (zh) * 2013-04-09 2013-07-10 北京交通大学 一种具有首尾平衡调节装置的仿生四足机器人
KR101420569B1 (ko) * 2013-04-23 2014-07-17 서강대학교산학협력단 다리유닛 및 이를 포함하는 주행로봇
CN104386157B (zh) * 2014-11-17 2017-02-01 河北工业大学 一种具有柔性关节的四足机器人
CN105853145B (zh) * 2016-04-12 2020-10-09 合肥工业大学 一种可实现履步功能的腿部机械机构
CN106239498A (zh) * 2016-08-18 2016-12-21 佛山智能装备技术研究院 一种重力平衡工业机器人

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602382A (zh) * 2009-05-13 2009-12-16 上海工程技术大学 一种单驱动四足步行机器人
KR101363873B1 (ko) * 2012-11-09 2014-02-20 한국과학기술원 생체모방형 다리 메커니즘
CN104802874A (zh) * 2014-01-26 2015-07-29 上海交通大学 四足救援机器人
CN203819377U (zh) * 2014-02-25 2014-09-10 中国人民解放军军事交通学院 四足机器人腿部联动机构
CN104890759A (zh) * 2015-07-10 2015-09-09 陕西九立机器人制造有限公司 一种四足机器人
CN105383587A (zh) * 2015-11-25 2016-03-09 济南大学 一种矿用巷道探测四足机器人
CN106476928A (zh) * 2016-12-21 2017-03-08 山东大学 机构构型可变电动四足机器人
CN106904226A (zh) * 2017-03-10 2017-06-30 杭州宇树科技有限公司 一种电驱动四足机器人的腿部动力系统结构
CN206579733U (zh) * 2017-03-10 2017-10-24 杭州宇树科技有限公司 一种电驱动四足机器人的腿部动力系统结构

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3856381A4 (en) * 2018-09-26 2022-08-17 Ghost Robotics Corporation LEGED ROBOT
WO2020112229A2 (en) 2018-09-26 2020-06-04 Ghost Robotics Llc Legged robot
US11951621B2 (en) 2018-09-26 2024-04-09 Ghost Robotics Corporation Legged robot
CN109484510A (zh) * 2018-12-14 2019-03-19 深圳市行者机器人技术有限公司 一种机器人行走机构
CN111645773A (zh) * 2019-03-04 2020-09-11 深圳市智擎新创科技有限公司 多足机器人腿部总成
CN111645772A (zh) * 2019-03-04 2020-09-11 深圳市智擎新创科技有限公司 多足机器人
CN109823438A (zh) * 2019-03-05 2019-05-31 彭爽 一种仿生四足机器人
CN110386204A (zh) * 2019-07-17 2019-10-29 河北工业大学 基于ipmc与硅胶材料的柔性关节四足机器人单腿系统
CN110386204B (zh) * 2019-07-17 2024-01-02 河北工业大学 基于ipmc与硅胶材料的柔性关节四足机器人单腿系统
CN112849295A (zh) * 2021-03-08 2021-05-28 吉林大学 一种多相位三维凸轮式仿生足式机器人
CN115195902B (zh) * 2021-04-12 2023-09-12 广东博智林机器人有限公司 一种运动装置及行走机器人
CN115195902A (zh) * 2021-04-12 2022-10-18 广东博智林机器人有限公司 一种运动装置及行走机器人
CN113120114A (zh) * 2021-05-17 2021-07-16 哈尔滨工业大学(深圳) 一种具有可变躯干的多足机器人
CN113635989A (zh) * 2021-06-18 2021-11-12 哈尔滨工业大学(深圳) 一种集成式多足机器人
CN115610554B (zh) * 2022-09-23 2023-07-07 哈尔滨工业大学(深圳) 基于吊臂合页式关节的全电机绳驱多足机器人
CN115610554A (zh) * 2022-09-23 2023-01-17 哈尔滨工业大学(深圳) 基于吊臂合页式关节的全电机绳驱多足机器人

Also Published As

Publication number Publication date
CN106904226A (zh) 2017-06-30
CN106904226B (zh) 2022-12-23
US20200282554A1 (en) 2020-09-10
US10940582B2 (en) 2021-03-09
DE112018001268T5 (de) 2019-12-24
DE212018000182U1 (de) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2018161936A1 (zh) 一种电驱动四足机器人的腿部动力系统结构
CN107651041B (zh) 一种电动四足机器人的单腿结构
US11938621B2 (en) Robot dual-joint unit, and legged robot and cooperative manipulator using the same
CN107363825B (zh) 一种基于谐波减速的欠驱动2r机械臂装置
CN110641571A (zh) 一种十二自由度仿生四足机器人及其工作方法
CN107932551A (zh) 一种七自由度协作机械臂
CN114789761B (zh) 一种电驱动关节及三自由度仿生机器人关节集成模组
CN105882966B (zh) 一种基于物联网的新型无人机
CN1317109C (zh) 多关节仿人型机器人手臂
CN201808064U (zh) 单自由度旋转装置
CN111419652A (zh) 一种无动力源膝关节机构
CN210478873U (zh) 一种十二自由度仿生四足机器人
CN207448507U (zh) 一种七自由度协作机械臂
CN208715324U (zh) 带自主液压分布动力的多关节仿生机械腿
CN108583724A (zh) 一种便装式带自主分布动力的三关节仿生机械腿
CN114291182B (zh) 一种四足机器人
CN107127739B (zh) 一种外骨骼使用的踝关节助力结构
CN219705239U (zh) 一种串并混联机械臂
CN111894821A (zh) 背戴式四驱人体运动能量采集装置及人体增强装备
CN106688163A (zh) 电机、具有电机的云台及具有云台的无人机
CN107932524A (zh) 一种消除重力扭矩的三自由度仿生眼颈部机构
KR101714505B1 (ko) 구동장치 및 이를 포함하는 다관절 주행로봇
CN110385693A (zh) 一种紧凑型动力关节机构及其轻便型下肢助力设备
CN215293351U (zh) 一种防坠拉被机主机
CN208036596U (zh) 一种用于低空监控的新型航拍设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764220

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18764220

Country of ref document: EP

Kind code of ref document: A1