WO2018161864A1 - 随机接入发送方法、接收方法及装置、发射端及接收端 - Google Patents

随机接入发送方法、接收方法及装置、发射端及接收端 Download PDF

Info

Publication number
WO2018161864A1
WO2018161864A1 PCT/CN2018/077929 CN2018077929W WO2018161864A1 WO 2018161864 A1 WO2018161864 A1 WO 2018161864A1 CN 2018077929 W CN2018077929 W CN 2018077929W WO 2018161864 A1 WO2018161864 A1 WO 2018161864A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
pilot
preamble
user equipment
equipment identifier
Prior art date
Application number
PCT/CN2018/077929
Other languages
English (en)
French (fr)
Inventor
曹伟
田力
焦戊臣
陆涛
王沙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/492,075 priority Critical patent/US11272533B2/en
Priority to JP2019548659A priority patent/JP6886033B2/ja
Priority to KR1020197028841A priority patent/KR102241066B1/ko
Priority to EP18763699.8A priority patent/EP3595394A4/en
Publication of WO2018161864A1 publication Critical patent/WO2018161864A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present disclosure relates to a communication technology, and more particularly to a random access transmission method and apparatus, and a transmitting end, a receiving method, a device, a receiving end, and a storage medium.
  • the existing 3GPP Long Term Evolution (LTE) random access procedure efficiency cannot meet the requirements.
  • LTE Long Term Evolution
  • eMBB Enhanced Mobile Broadband
  • Embodiments of the present disclosure provide a random access transmission method and apparatus, and a random access reception method and apparatus, and a storage medium.
  • An embodiment of the present disclosure provides a random access sending method, including:
  • the preamble information, the pilot information, and the data information are combined into a radio frame and transmitted.
  • the embodiment of the present disclosure further provides a random access sending apparatus, including:
  • the first generating unit is configured to acquire a preamble resource and generate preamble information
  • a second generating unit configured to determine a pilot resource according to the preamble resource and the user equipment identifier, to generate pilot information
  • mapping unit configured to acquire data information, where the data information includes the user equipment identification information, and the data information is mapped to a time-frequency resource;
  • a framing unit configured to form the preamble information, the pilot information, and the data information into a radio frame
  • a sending unit configured to send the radio frame.
  • the embodiment of the present disclosure further provides a transmitting end, including a memory and a processor, where the memory stores a random access sending program, and the random access sending program performs the following operations when being read and executed by the processor:
  • the preamble information, the pilot information, and the data information are combined into a radio frame and transmitted.
  • the embodiment of the present disclosure further provides a random access receiving method, including:
  • Determining a preamble resource of the user and determining a possible pilot resource location according to a mapping relationship between the preamble resource and the pilot resource;
  • the user equipment identity is obtained using the corresponding pilot demodulation.
  • the embodiment of the present disclosure further provides a random access device, including:
  • a first detecting unit configured to detect a user on all preamble resources
  • a second detecting unit configured to detect a preamble resource of the user, and determine a possible pilot resource location according to a mapping relationship between the preamble resource and the pilot resource;
  • the third detecting unit is configured to obtain the user equipment identifier by using the corresponding pilot demodulation.
  • the embodiment of the present disclosure further provides a receiving end, including a memory and a processor, where the memory stores a random access receiving program, and the random access receiving program, when being read and executed by the processor, performs the following operations:
  • Determining a preamble resource of the user and determining a possible pilot resource location according to a mapping relationship between the preamble resource and the pilot resource;
  • the user equipment identity is obtained using the corresponding pilot demodulation.
  • Embodiments of the present disclosure also provide a storage medium having stored thereon a computer program that, when executed by a processor, implements the random access sender or random access receiving method described above.
  • the physical layer signal design, the corresponding signal transceiving device and the storage medium proposed in the embodiments of the present disclosure have at least the following advantages:
  • the user can simultaneously support the user discovery and the packet data transmission in one uplink transmission, reduce the resource proportion of the access process signaling, and improve the network resource utilization, that is, It can reduce the signaling cost in the random access process and improve the utilization of network resources.
  • FIG. 1 is a flowchart of a method for randomly accessing a transmitter end according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a possible time domain structure of a signal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing the content of a data portion of an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a receiver-side random access method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a signal time domain structure in an eMBB packet service according to Embodiment 1 of the present disclosure
  • FIG. 6 is a schematic diagram of pilot grouping in an eMBB packet service according to Embodiment 1 of the present disclosure
  • FIG. 7 is a schematic diagram showing the location of a UE ID element in the first embodiment of the present disclosure, taking the UE occupying the pilot group 1 as an example;
  • FIG. 8 is a schematic diagram of a signal time domain structure in an Ultra-Reliable Low Latency Communication (URLLC) service according to Embodiment 2 of the present disclosure
  • FIG. 9 is a schematic diagram of pilot grouping in a URLLC service according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a schematic diagram showing the location of a UE ID element by taking the UE occupying the pilot group 1 as an example in the embodiment 2 of the present disclosure
  • FIG. 11 is a schematic diagram of a signal time domain structure in a Massive Machine Type Communications (MMTC) service according to Embodiment 3 of the present disclosure
  • FIG. 12 is a schematic diagram of pilot grouping in a mMTC service in Embodiment 3 of the present disclosure
  • FIG. 13 is a schematic diagram of locations where all UE IDs occupy occupied elements by extension sharing in Embodiment 3 of the present disclosure.
  • FIG. 14 is a block diagram of a random access transmitting apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a block diagram of a random access receiving apparatus according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a random access sending method, which is applied to a transmitting end, as shown in FIG. 1 , and includes:
  • Step 101 Acquire a preamble resource to generate preamble information.
  • the preamble resources may be randomly selected in the preamble resource pool.
  • Step 102 Determine a pilot resource according to a preamble resource and a user equipment identifier (ie, a UE ID), and generate pilot information.
  • a user equipment identifier ie, a UE ID
  • Step 103 Obtain data information, where the data information includes user equipment identification information, and the data information is mapped to a time-frequency resource;
  • Step 104 The preamble information, the pilot information, and the data information are combined into a radio frame and transmitted.
  • the signaling method provided by the embodiment of the present disclosure enables the uplink transmission to carry the packet data in addition to the function discovered by the user, which helps reduce the resource ratio of the access process signaling and improves the network resource utilization.
  • the time domain structure of the preamble information, the pilot information, and the data information is as shown in FIG. 2, which may be a preamble, a data, a pilot, a data, or may be a preamble, a data, or a pilot. , data, pilots, data.
  • FIG. 2 may be a preamble, a data, a pilot, a data, or may be a preamble, a data, or a pilot.
  • data, pilots data.
  • the preamble resource pool and the pilot resource pool are respectively grouped into resources, and the preamble resource group and the pilot resource group are respectively obtained, where the preamble resource is in multiple preamble resource groups in the preamble resource pool.
  • the pilot resource is one of a plurality of mutually non-overlapping pilot resource groups of the pilot resource pool; and there is a many-to-many mapping relationship between the preamble resource group and the pilot resource group.
  • the preamble resource pool includes at least one root of the ZC (Zadoff-Chu) sequence and at least two cyclic shifts on each root, and the grouping of the preamble resource pool is divided according to the selection of the root and cyclic shift of the ZC sequence.
  • Group N N>1.
  • the pilot resource pool includes a plurality of resource elements (Resource Element, RE for short) in the time-frequency domain, and the pilot resources are divided into M groups that do not overlap each other, and each group includes at least one RE, an optional grouping principle.
  • RE resource Element
  • the determining, according to the preamble resource and the user equipment identifier, the pilot resource includes:
  • the many-to-many mapping relationship between the preamble resource group and the pilot resource group includes 2 remapping: a mapping relationship between the preamble and the pilot, and a mapping relationship between the UE ID and the pilot.
  • a mapping relationship is:
  • the I DMRS is an index of the pilot resource, where the I preamble is an index of the preamble resource, and the n p2d indicates that n p2d preamble resources correspond to one pilot resource, which is determined by the number of preambles and the number of pilots.
  • the ID ue is a user equipment identifier, and the n id 2d is an offset of a pilot resource. Is the maximum value of I DMRS , To round down, mod is a modulo operation.
  • the UE ID is a user equipment identifier, and its specific content may have different choices according to a high-level process that triggers random access.
  • the user identifier in the form of S-TMSI, Resume ID, C_RNTI or other random number used in the LTE system.
  • the UE ID needs to be provided to the physical layer, and at the same time, the high-level message (optional) is provided to the physical layer.
  • the UE ID is an independent bit block whose content may also be present in the higher layer message.
  • the solution provided by the embodiment of the present disclosure can support concurrent user demodulation, advance the conflict resolution time in the conventional random access, and significantly reduce the access delay. At the same time, the collision probability can be reduced, so that the performance is better in a high-density access scenario.
  • an optional implementation of the data information is as shown in FIG. 3, including: a UE ID, a CRC (Cyclic Redundancy Check), an MSG (High Level Message), and CRC2.
  • the UE ID is independently modulated and coded, the independent CRC (the above CRC1), and the relatively robust modulation and coding scheme is used, and the view scenario may include all bits or partial bits of the UE ID; independent modulation and coding of the upper layer message, independent CRC (CRC2 above) And a relatively weak modulation coding scheme can be used.
  • the independent CRC the above CRC1
  • the relatively robust modulation and coding scheme is used, and the view scenario may include all bits or partial bits of the UE ID; independent modulation and coding of the upper layer message, independent CRC (CRC2 above)
  • a relatively weak modulation coding scheme can be used.
  • the time-frequency resource location where the user equipment identification information is located has a preset mapping relationship with the pilot resource.
  • the preset mapping relationship is:
  • the frequency domain location of the user equipment identifier information is consistent with the frequency domain location of the pilot resource, and the time domain location where the user equipment identifier information is located is adjacent to the time domain location of the pilot resource.
  • the resource group reverses the consistency judgment between the UE ID part information and the solved UE ID.
  • the dual judgment of the correctness of the UE ID helps to improve the accuracy of user detection and facilitate HARQ merging to improve reliability.
  • the embodiment of the present disclosure further provides a random access receiving method, which is applied to a receiver, as shown in FIG. 4, and includes:
  • Step 401 Detect a user on all preamble resources
  • Step 402 Determine a pilot resource of the user, and determine a possible pilot resource location according to a mapping relationship between the preamble resource and the pilot resource.
  • step 403 the user equipment identifier is obtained by using the corresponding pilot demodulation.
  • obtaining the user equipment identifier by using the pilot demodulation includes:
  • Corresponding pilot demodulation is used on all possible user equipment identification locations, and the demodulated user equipment identifier is verified according to the check code of the user equipment identifier and the mapping relationship between the user equipment identifier and the pilot resource. Whether the demodulated user equipment identifier is correct. Specifically, the corresponding pilot demodulation is utilized at all possible UE ID positions, and the logical relationship between the CRC1 and the corresponding pilot position is used to determine the correctness of the UE ID. If correct, the correctly solved UE ID+CRC1 is reconstructed and eliminated. And corresponding pilots continue to demodulate other UE IDs.
  • the mapping relationship between the user equipment identifier and the pilot resource may refer to the mapping relationship between the transmitter user equipment identifier and the pilot resource.
  • the all possible user equipment identification locations are: locations that are consistent with a frequency domain location of the pilot resource and that are adjacent to a time domain location of the pilot resource.
  • the method further includes demodulating the corresponding high-level message for all the demodulated user equipment identifiers. Specifically, the method includes: demodulating the MSG part, and using CRC2 to determine the correctness of the MSG part. If the MSG+CRC2 is correctly solved, the correctly solved user is reconstructed and eliminated, and the detected UE is removed to repeat the above operation, and the demodulator Corresponding high-level messages until all UEs are processed.
  • the transceiver needs to support signal processing of different subcarrier spacing.
  • the signal processing includes at least: an FFT module of different sizes, an up-and-down sampling filter module that matches the corresponding sub-carrier spacing, and a MUD (Multi-User Detection) module that is involved in decoding of concurrent users.
  • a random access signal in an eMBB packet service application is taken as an example. It should be noted that the following implementations are only examples, and each corresponding parameter can be changed as needed.
  • the uplink random access signal provided in Embodiment 1 includes a preamble, a pilot, and data.
  • the preamble occupies 0.5ms
  • the pilot and data occupy 1.5ms
  • the total duration is 2ms.
  • the leading subframe contains three consecutive preamble symbols, and the length of a single leading symbol (including CP (Cyclic Prefix)) is 0.1667 ms.
  • the pilot and data are divided into three 0.5 ms time slots, each time slot contains 7 OFDM symbols, and the fourth (positive middle) OFDM symbol is a pilot symbol, which is in accordance with the existing LTE system definition.
  • the system bandwidth is 3.6 MHz
  • the preamble symbol subcarrier spacing is 7.5 kHz
  • the data symbol subcarrier spacing is 15 kHz.
  • the number of available subcarriers in the preamble is 480
  • the number of available subcarriers in the data portion is 240.
  • the preamble symbol uses a ZC sequence with a root sequence length of 479 and a loop length of 480 to occupy 480 subcarriers.
  • An additional delay deflection sequence is applied to each preamble symbol, which is also 480 in length, and the granularity of the delay deflection angle is 2 ⁇ /32.
  • the UE randomly selects 1 u and 1 n cs to construct its preamble sequence.
  • the preamble resource index is
  • the time domain preamble is generated using the selected preamble sequence, the CP is added, and it is repeated 3 times in the time domain, occupying 0.5 ms.
  • the pilot part has 3 OFDM symbols, and each OFDM symbol contains 240 sub-carriers.
  • the 240 subcarriers of each OFDM symbol are divided into 8 groups of subcarriers that are evenly spaced, each group containing 30 subcarriers, as shown in FIG.
  • pilot resource index I DMRS which is in the range of 0 ⁇ I DMRS ⁇ 7, wherein I DMRS selection method:
  • the choice of the visible pilot position depends on the preamble resource index and the UE ID. After the UE randomly selects the preamble resource index, its pilot position is also selected according to the parity of the UE ID. Therefore, if different UEs happen to select the same preamble resource, its pilot resources may not collide because the parity of the UE ID is different.
  • n id2d is the offset of the pilot resource.
  • the offset of the pilot resource may be [0, 1, ... (n id 2d -1)], n id 2d
  • the range of values is In the above mapping relationship, The multi-to-one mapping of the preamble resource and the pilot resource is implemented (that is, the n p2d preamble resources are mapped to the same pilot resource, and n p2d is determined according to the number of preambles and the number of pilots. For example, in this embodiment, the preamble resource is 64. If the pilot resource is 8, then n p2d is 8, and the value is configurable.), Then, the correspondence between the UE ID and the pilot resource is increased (that is, the offset of the pilot resource is related to the UE ID).
  • the probability of collision of the preamble resource and the pilot resource at the same time is reduced with respect to the method of mapping the pilot resource using only the preamble resource. For example, when the leading resources collide, it is still possible to provide the necessary measurement for the demodulation of the subsequent data part by the non-collision pilot. In addition, even if different UEs collide on the pilot resources, and the preamble resources may not collide, the non-collision leading part can provide the necessary measurement amount for the demodulation of the subsequent data part.
  • the data section includes the following information:
  • the UE occupying the pilot group 1 is taken as an example, and the location of the UE ID element is given;
  • the following describes the processing method of the receiver signal at the receiver end.
  • the processing at the receiver includes three processes: preamble processing, pilot processing, and data processing. The following description will be respectively made.
  • the three preamble symbols in the time domain are extracted, the CP is removed, the FFT transform is performed, and the frequency domain is transformed into three frequency domain sequences.
  • the ZC base sequence y u (n) corresponding to each root is sequentially used for local sequence conjugate compensation.
  • the three columns of frequency domain sequences are summed into one column, and the IFFT is used to transform back to the time domain to obtain the noise floor and the detection threshold. Energy is then calculated in each delay deflection time window, compared to the detection threshold, and the leading resource index of the detected signal is output.
  • the frequency offset, time offset, channel estimation and the like are calculated using the three-column frequency domain sequence.
  • the index of the leading resources of all detected signals is sorted according to the energy.
  • the pilot processing process includes:
  • the two pilot resource positions that may be corresponding are calculated according to the index of the detected preamble resources in order, and the measurement quantities such as frequency offset, time offset, and channel estimation are obtained.
  • decoding two possible UE IDs on both sides of the corresponding pilot resource location including:
  • mapping relationship indicates that two UEs with leading collisions are successfully separated.
  • the pilot will calculate the frequency offset, time offset, channel estimation and other measured quantities, and try to demodulate 2 possible UE IDs again.
  • the data receiving process includes:
  • the corresponding frequency offset, time offset, channel estimate, MUSA spreading code is used to demodulate the data.
  • the method includes: performing CRC check on the data, and reconstructing the data that passes the CRC check, removing the demodulated user from all occupied REs, and removing the detected UE to repeat the foregoing operation until all UEs are processed. .
  • the existing LTE random access procedure when the uplink transmission is not scheduled, the existing LTE random access procedure is used, and it is difficult to meet the requirement of low latency.
  • the existing LTE random access procedure does not support Hybrid Automatic Repeat ReQuest (HARQ) merging, which makes reliability requirements difficult to guarantee.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the technical solution provided in the embodiment of the present disclosure can support concurrent user demodulation when a partial collision occurs, and the conventional random access is used.
  • the conflict resolution time is advanced, which significantly reduces the access delay.
  • the technical solution of the present disclosure is described by taking a random access signal in a URLLC service application as an example.
  • the preamble, the pilot, and the data occupy a total of 0.5 ms in the time domain, and a total of 14 OFDM symbols are included.
  • the preamble is the two leading symbols placed consecutively in the front, and the pilots occupy 2 symbols in the subsequent 12 OFDM symbols, and the data occupies 10 symbols.
  • the system bandwidth is 4.32 MHz
  • the interval of all symbol subcarriers is 30 kHz
  • the number of available subcarriers is 144.
  • the preamble symbol uses a ZC sequence whose root sequence length is 139 and the loop is extended to a length of 144 to occupy 144 subcarriers.
  • An additional delay deflection sequence is applied to each preamble symbol, which is also 144 in length, and the granularity of the delay deflection angle is 2 ⁇ /16.
  • the UE randomly selects 1 u and 1 n cs to construct its preamble sequence.
  • the visible preamble resource index is The selected preamble sequence is used to generate the time domain preamble symbol, the CP is added, and it is repeated twice in the time domain, occupying the first 2 OFDM symbols.
  • the pilot part has 2 OFDM symbols, and each OFDM symbol contains 144 sub-carriers. Dividing 144 subcarriers of each OFDM symbol into evenly spaced groups of 2 subcarriers, a total of 144*2 REs are divided into 4 groups, each group containing 72 REs, as shown in FIG.
  • the pilot symbols also employ a ZC sequence with a root sequence length of 71 and a cyclic extension to a length of 72 to account for 72 subcarriers in each group.
  • An additional delay deflection sequence is applied to each pilot symbol, the length of which is also 72, and the granularity of the delay deflection angle is 2 ⁇ /8.
  • 8 delay deflection sequences can be applied (ie In this case ).
  • the pilot resource index is defined as I DMRS , and its value ranges from 0 ⁇ I DMRS ⁇ 31.
  • the method of selecting I DMRS is The choice of the visible pilot position depends on the preamble resource index and the UE ID. After the UE randomly selects the preamble resource index, its pilot resources (in this case, the location resource and the delay deflection resource) are also based on the last 3 bits of the UE ID (because mod 8, so the last 3 bits of information are different, mod 8 The subsequent information changes accordingly) to make a selection.
  • the pilot resources may not collide because the last 3 bits of the UE ID are different. It is easy to know that the selection of the last 3 bits of the UE ID is only a specific case in this embodiment, and the general expression is among them A multi-to-one mapping of preamble resources and pilot resources (ie, n p2d preamble resource groups are mapped to a pilot resource group) Then, the correspondence between the UE ID and the pilot resource is increased (that is, the selection of the pilot delay deflection resource is related to the UE ID).
  • the probability that the preamble resource and the pilot resource collide at the same time is reduced (relative to the method of mapping the pilot resource using only the preamble resource).
  • the preamble resources may not collide, and the non-collision leading part can still provide the necessary measurement amount for the demodulation of the subsequent data part.
  • the data section contains:
  • the data area in FIG. 10 refers to the area occupied by the high-level message of the data part.
  • the processing at the receiver includes three parts: preamble processing, pilot processing, and data processing. Specific steps are as follows:
  • the two preamble symbols in the time domain are extracted, the CP is removed, and the FFT transform frequency domain is obtained, and two frequency domain sequences are obtained.
  • the local sequence conjugate compensation is sequentially performed using the ZC base sequence y u (n) corresponding to each root.
  • the two columns of frequency domain sequences are summed into one column frequency domain sequence, and the one frequency domain sequence is subjected to IFFT transformation back to the time domain to obtain the bottom noise and the detection threshold. Energy is then calculated in each delay deflection time window, compared to the detection threshold, and the leading resource index of the detected signal is output.
  • the two-frequency frequency domain sequence is used to calculate the measured frequency offset, time offset, channel estimation and the like.
  • the index of the leading resources of all detected signals is sorted according to the energy.
  • Base station behavior has the following options:
  • the expected number of users on the current preamble resource index is less than or equal to 8, and decoding of the UE ID may result in the following results:
  • the preamble of the UE is reconstructed by the corresponding pilot and eliminated from the original preamble, and then the reconstructed preamble is used to obtain the frequency offset. Measurements such as time offset, channel estimation, etc., try again to demodulate other UEs that may exist.
  • the pilot will calculate the frequency offset, time offset, channel estimation and other measured quantities, and try to demodulate 8 possible UE IDs again.
  • the corresponding frequency offset, time offset, channel estimate, MUSA spreading code is used to demodulate the data. Specifically include:
  • This embodiment takes the random access signal in the mMTC service application as an example.
  • the mapping relationship between the preamble resource, the UE ID, and the pilot resource can reduce the probability of concurrent user collisions, which is beneficial to performance improvement in a high-density access scenario.
  • the user can simultaneously support the user discovery and the packet data transmission in one uplink transmission, thereby reducing the resource proportion of the access process signaling and improving the network resource utilization. Rate, reduce terminal energy consumption.
  • the specific time domain structure of the uplink signal is as shown in FIG.
  • the preamble occupies 1 ms
  • the pilot and data occupy 1 ms
  • the total duration is 2 ms.
  • the leading sub-frame contains three consecutive preamble symbols, and the length of a single preamble symbol (including CP) is 0.3333 ms.
  • the pilot and data have a total of 14 OFDM symbols, and the pilots are located on the 4th and 11th OFDM symbols, which is in accordance with the existing LTE system definition.
  • the system bandwidth is 720 kHz
  • the preamble symbol subcarrier spacing is 3.75 kHz
  • the data symbol subcarrier spacing is 15 kHz.
  • the number of available subcarriers in the preamble is 192
  • the number of available subcarriers in the data portion is 48.
  • the preamble symbol uses a ZC sequence with a root sequence length of 191, and the loop is extended to a length of 192 to occupy 192 subcarriers.
  • An additional delay deflection sequence is applied to each preamble, the length of which is also 192, and the granularity of the delay deflection angle is 2 ⁇ /32.
  • the UE randomly selects 1 u and 1 n cs to construct its preamble sequence.
  • the visible preamble resource index is The time domain preamble is generated using the selected preamble sequence, the CP is added, and it is repeated 3 times in the time domain, occupying 1 ms.
  • the pilot portion has 2 OFDM symbols, and each OFDM symbol includes 48 subcarriers.
  • the 48 subcarriers of each OFDM symbol are divided into 8 groups of subcarriers that are evenly spaced, each group containing 6 subcarriers, as shown in FIG.
  • the pilot resource index is defined as I DMRS , and its value ranges from 0 ⁇ I DMRS ⁇ 7.
  • the method of selecting I DMRS is:
  • the choice of the visible pilot position depends on the preamble resource index and the UE ID. After the UE randomly selects the preamble resource index, its pilot position is also selected according to the parity of the UE ID.
  • the data section contains:
  • the data area in FIG. 13 refers to an area occupied by high-level messages.
  • the processing of the receiver consists of three parts: preamble processing, pilot processing and data processing.
  • the specific steps are similar to the first embodiment, and only the specific time-frequency resources are differently mapped, and details are not described herein again.
  • the embodiment of the present disclosure further provides a random access sending device, as shown in FIG. 14, comprising:
  • the first generating unit 1401 is configured to acquire a preamble resource and generate preamble information.
  • the second generating unit 1402 is configured to determine pilot resources according to the preamble resource and the user equipment identifier, and generate pilot information.
  • the mapping unit 1403 is configured to acquire data information, where the data information includes the user equipment identification information, and the data information is mapped to a time-frequency resource;
  • a framing unit 1404 configured to form the preamble information, the pilot information, and the data information into a radio frame
  • the sending unit 1405 is configured to send the radio frame.
  • the embodiment of the present disclosure further provides a random access receiving device, as shown in FIG.
  • the first detecting unit 1501 is configured to detect a user on all preamble resources
  • the second detecting unit 1502 is configured to detect a preamble resource of the user, and determine a possible pilot resource location according to a mapping relationship between the preamble resource and the pilot resource;
  • the third detecting unit 1503 is configured to obtain the user equipment identifier by using the corresponding pilot demodulation.
  • the embodiment of the present disclosure further provides a transmitting end, including a processor and a memory; a random access sending program is stored in the memory, and the random access sending method is executed when the random access transmitting program is read and executed by the processor.
  • the embodiment of the present disclosure further provides a receiving end, including a processor and a memory; a random access receiving program is stored in the memory, and the random access receiving method is executed when the random access receiving program is read and executed by the processor.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present disclosure may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes: a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.
  • an embodiment of the present disclosure provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the random access transmission method described above is implemented.
  • Embodiments of the present disclosure also provide a storage medium having stored thereon a computer program that, when executed by a processor, implements the random access receiving method described above.
  • the physical layer signal design, the corresponding signal transceiver device and the storage medium proposed in the embodiments of the present disclosure have the following advantages:
  • the user can simultaneously support the user discovery and the packet data transmission in one uplink transmission, reduce the resource proportion of the access process signaling, and improve the network resource utilization, that is, It can reduce the signaling cost in the random access process and improve the utilization of network resources.
  • the solution in the embodiment of the present disclosure can support concurrent user demodulation, and the conflict resolution time in the conventional random access is advanced. Reduce the access delay; and reduce the probability of concurrent user collisions, which helps improve performance in high-density access scenarios.
  • the UE ID detection accuracy is improved, which facilitates HARQ combining to improve access reliability.
  • the solution provided by the embodiment of the present disclosure can support the user discovery and packet data transmission in one uplink transmission by carrying the preamble, the pilot, and the data in the random access signal, thereby reducing the resource proportion of the access process signaling and improving Network resource utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种随机接入发送方法、装置及发射端,以及一种随机接入接收方法、装置及接收端,以及存储介质。其中,随机接入发送方法包括:获取前导资源,生成前导信息;根据前导资源和用户设备标识确定导频资源,生成导频信息;获取数据信息,所述数据信息中包括用户设备标识信息,将所述数据信息映射到时频资源上;将所述前导信息、所述导频信息和所述数据信息组成无线帧并发送。

Description

随机接入发送方法、接收方法及装置、发射端及接收端
相关申请的交叉引用
本申请基于申请号为201710128595.2、申请日为2017年03月06日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及通信技术,尤指一种随机接入发送方法、装置及发射端、接收方法、装置及接收端、存储介质。
背景技术
对于5G通信的多个主流应用场景,现有的3GPP长期演进(Long Term Evolution,简称LTE)随机接入流程效率已经不能满足需要。比如,增强移动宽带(Enhanced Mobile Broadband,简称eMBB)应用中的上行频繁小包业务在接入时,现有LTE随机接入流程中的信令代价相对所携带的数据量而言过高,使得网络资源利用率较低。
发明内容
本公开实施例提供了一种随机接入发送方法及装置,以及一种随机接入接收方法及装置,以及存储介质。
本公开实施例提供了一种随机接入发送方法,包括:
获取前导资源,生成前导信息;
根据前导资源和用户设备标识确定导频资源,生成导频信息;
获取数据信息,所述数据信息中包括用户设备标识信息,将所述数据信息映射到时频资源上;
将所述前导信息、所述导频信息和所述数据信息组成无线帧并发送。
本公开实施例还提供一种随机接入发送装置,包括:
第一生成单元,配置为获取前导资源,生成前导信息;
第二生成单元,配置为根据前导资源和用户设备标识确定导频资源,生成导频信息;
映射单元,配置为获取数据信息,所述数据信息包括所述用户设备标识信息,将所述数据信息映射到时频资源上;
组帧单元,配置为将所述前导信息、所述导频信息和所述数据信息组成无线帧;
发送单元,配置为发送所述无线帧。
本公开实施例还提供一种发射端,包括存储器和处理器,所述存储器存储有随机接入发送程序,所述随机接入发送程序在被所述处理器读取执行时,执行以下操作:
获取前导资源,生成前导信息;
根据前导资源和用户设备标识确定导频资源,生成导频信息;
获取数据信息,所述数据信息中包括用户设备标识信息,将所述数据信息映射到时频资源上;
将所述前导信息、所述导频信息和所述数据信息组成无线帧并发送。
本公开实施例还提供一种随机接入接收方法,包括:
在所有前导资源上检测用户;
对检测出用户的前导资源,根据前导资源与导频资源的映射关系确定可能的导频资源位置;
使用相应导频解调获得用户设备标识。
本公开实施例还提供一种随机接入装置,包括:
第一检测单元,配置为在所有前导资源上检测用户;
第二检测单元,配置为对检测出用户的前导资源,根据前导资源与导频资源的映射关系确定可能的导频资源位置;
第三检测单元,配置为使用相应导频解调获得用户设备标识。
本公开实施例还提供一种接收端,包括存储器和处理器,所述存储器存储有随机接入接收程序,所述随机接入接收程序在被所述处理器读取执行时,执行以下操作:
在所有前导资源上检测用户;
对检测出用户的前导资源,根据前导资源与导频资源的映射关系确定可能的导频资源位置;
使用相应导频解调获得用户设备标识。
本公开实施例还提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的随机接入发送方或随机接入接收方法。
本公开实施例中提出的物理层信号设计、相应的信号收发装置及存储介质,至少具有如下优势:
通过在随机接入信号中携带前导、导频和数据,使得一次上行发送中能够同时支持用户发现和小包数据传输,降低接入流程信令的资源占比,提升网络资源利用率,也就是说,可以降低随机接入过程中的信令代价,提高网络资源利用率。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案。
图1是本公开实施例发射机端随机接入方法流程图;
图2是本公开实施例信号可能的时域结构示意图;
图3是本公开实施例数据部分消息内容示意;
图4是本公开实施例接收机端随机接入方法流程图;
图5是本公开实施例1中eMBB小包业务中的信号时域结构示意图;
图6是本公开实施例1中eMBB小包业务中的导频分组示意图;
图7是本公开实施例1中以占用导频组1的UE为例给出其UE ID元素位置示意图;
图8是本公开实施例2中低时延高可靠通信(Ultra-Reliable Low Latency Communication,简称URLLC)业务中的信号时域结构示意图;
图9是本公开实施例2中URLLC业务中的导频分组示意图;
图10是本公开实施例2中以占用导频组1的UE为例给出其UE ID元素位置示意图;
图11是本公开实施例3中密集机器间通信(Massive Machine Type Communications,简称mMTC)业务中的信号时域结构示意图;
图12是本公开实施例3中mMTC业务中的导频分组示意图;
图13是本公开实施例3中所有UE ID通过扩展共享占用元素位置示意图。
图14是本公开实施例提供的随机接入发送装置框图;
图15是本公开实施例提供的随机接入接收装置框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本公开实施例提供一种随机接入发送方法,应用于发射端,如图1所示,包括:
步骤101,获取前导资源,生成前导信息;
其中,前导资源可在前导资源池中随机选择。
步骤102,根据前导资源和用户设备标识(即UE ID)确定导频资源,生成导频信息;
步骤103,获取数据信息,所述数据信息中包括用户设备标识信息,将所述数据信息映射到时频资源上;
步骤104,将所述前导信息、所述导频信息和所述数据信息组成无线帧并发送。
本公开实施例提供的信号发送方法,使得一次上行发送中除了具备用户发现的功能,还能携带小包数据,有助于降低接入流程信令的资源占比,提升网络资源利用率。
在本公开的一可选实施例中,前导信息、导频信息和数据信息的时域结构如图2所示,可能为前导、数据、导频、数据,也可能为前导、数据、导频、数据、导频、数据。图2中仅为示例,可以根据需要使用其他时域结构。
在本公开一可选实施例中,前导资源池和导频资源池各自进行资源分组,分别获得前导资源组和导频资源组,所述前导资源为前导资源池中的多个前导资源组中的一个;所述导频资源为导频资源池的多个互不重叠的导频资源组其中之一;且前导资源组与导频资源组之间存在多对多的映射关系。
具体地,前导资源池包含至少1个ZC(Zadoff-Chu)序列的根和每个根上至少2个循环移位,前导资源池的分组依据其ZC序列的根和循环移位的选择平均分为N组,N>1。导频资源池包含时频域上的多个资源元素(Resource Element,简称RE),导频资源分为互不重叠的M组,每一组包含至少1个RE,一种可选的分组原则是:使得任意一组导频RE能够利用频域相干性/时域相干性通过插值获取可靠的未覆盖位置上的信道。
在本公开一可选实施例中,所述根据前导资源和用户设备标识确定导频资源包括:
根据选定的所述前导资源计算导频资源的起始索引,根据所述用户设备标识确定导频资源的偏移量,根据所述起始索引和所述偏移量确定所述导频资源。
前导资源组和导频资源组之间的多对多映射关系包含了2重映射:前导和导频之间的映射关系,以及,UE ID与导频的映射关系。
一种映射关系为:
Figure PCTCN2018077929-appb-000001
所述I DMRS为所述导频资源的索引,所述I preamble为所述前导资源的索引,所述n p2d表示n p2d个前导资源对应一个导频资源,由前导数量和导频数量确定,所述ID ue为用户设备标识,所述n id 2d为导频资源的偏移量,
Figure PCTCN2018077929-appb-000002
为I DMRS的最大取值,
Figure PCTCN2018077929-appb-000003
为向下取整,mod为模运算。
UE ID是用户设备标识,其具体内容根据触发随机接入的高层过程会有不同选择。例如LTE系统中使用的S-TMSI、Resume ID、C_RNTI或者其他随机数形式的用户标识。高层触发随机接入时,需要将UE ID提供给物理层,与此同时将高层消息(可选)提供给物理层。所述UE ID是独立比特(bit)块,其内容可能也存在于所述高层消息中。
UE ID的部分信息跟导频资源组之间存在一对一的函数映射关系,可以使得碰巧选择了同一前导资源的多个UE有可能在导频资源组上不碰撞,有助于识别前导中的用户碰撞。
本公开实施例提供的方案能支持并发用户解调,将常规随机接入中的冲突解决时间提前,明显降低接入时延。同时,还能降低碰撞概率,使得高密度接入场景下性能更好。
在本公开的一可选实施例中,数据信息的一种可选实现如图3所示,包括:UE ID、CRC(Cyclic Redundancy Check,简称循环冗余验证)1、MSG(高层消息)和CRC2。
其中,对UE ID进行独立调制编码、独立CRC(上述CRC1)且使用较为强健调制编码方案,视场景可包含UE ID全部bit或部分bit;对高层 消息进行独立调制编码、独立CRC(上述CRC2)且可以使用相对较弱的调制编码方案。
在本公开的一可选实施例中,所述用户设备标识信息所在的时频资源位置与所述导频资源存在预设映射关系。
在本公开的一可选实施例中,所述预设映射关系为:
所述用户设备标识信息所在的频域位置与所述导频资源的频域位置一致,所述用户设备标识信息所在的时域位置与所述导频资源的时域位置相邻。
由于数据部分的UE ID部分比特信息跟该UE导频位置之间存在映射关系,对于UE ID正确接收的判断准则有2个:(1)UE ID自带的CRC1校验,(2)导频资源组反推出UE ID部分信息和解出的UE ID之间的一致性判断。对于UE ID正确性的两重判断有助于提升用户检测的准确度,便于HARQ合并以提升可靠性。
本公开实施例还提供一种随机接入接收方法,应用于接收机,如图4所示,包括:
步骤401,在所有前导资源上检测用户;
步骤402,对检测出用户的前导资源,根据前导资源与导频资源的映射关系确定可能的导频资源位置;
步骤403,使用相应导频解调获得用户设备标识。
在本公开的一可选实施例中,使用所述导频解调获得用户设备标识包括:
在所有可能的用户设备标识位置上使用对应的导频解调,以及,对解调出的用户设备标识,根据用户设备标识自身的校验码以及用户设备标识和导频资源的映射关系校验解调所得的用户设备标识是否正确。具体地,在所有可能的UE ID位置上利用对应导频解调,使用CRC1和对应导频位置的逻辑关系判断UE ID的正确性,如果正确,重构并消除正确解出的UE ID+CRC1以及对应导频,继续解调出其他UE ID。
所述用户设备标识和导频资源的映射关系可参考前面发射机端用户设 备标识与导频资源的映射关系。
在本公开的一可选实施例中,所述所有可能的用户设备标识位置为:与所述导频资源的频域位置一致,且与所述导频资源的时域位置相邻的位置。
在本公开的一可选实施例中,所述方法还包括,对所有解调出的用户设备标识,解调其对应的高层消息。具体包括:解调MSG部分,并使用CRC2判断MSG部分的正确性,若正确解出MSG+CRC2,重构并消除正确解出的用户,取下一个检测出的UE重复上述操作,解调器对应的高层消息,直至所有UE处理完毕。
由于前导符号子载波间隔可以跟数据符号子载波间隔不同,因此收发装置需要支持不同子载波间隔的信号处理。这些信号处理至少包括:不同尺寸的FFT模块、匹配相应子载波间隔的上下采样滤波器模块、涉及到并发用户解码的MUD(Multi-User Detection,简称多用户检测)模块等。
下面通过具体实施例进一步说明本公开。
实施例1
本实施例,以eMBB小包业务应用中的随机接入信号为例。需要说明的是,下述实现仅为示例,可以根据需要更改各相应参数。
首先说明一下随机接入信号的时频资源。如图5所示,实施例1提供的上行随机接入信号包括前导、导频和数据。其中,前导占用0.5ms,导频和数据占用1.5ms,总时长为2ms。前导子帧中包含连续放置的3个前导符号,单个前导符号(含CP(循环前缀))时长为0.1667ms。导频和数据分为3个0.5ms时隙,每个时隙中包含7个OFDM符号,位于第4个(正中间)的OFDM符号为导频符号,符合现有LTE系统定义。
频域上,系统带宽为3.6MHz,前导符号子载波间隔为7.5kHz,数据符号子载波间隔为15kHz。前导部分可用子载波数目为480个,数据部分可用子载波数目为240个。
下面分别说明一下前导、导频和数据部分的实现。
前导部分
前导符号采用ZC序列,其根序列长度为479,循环拓展到长度为480,以占满480个子载波。每个前导符号上额外应用1个延时偏转序列,其长度也是480,延时偏转角度的粒度为2π/32。对于任意1个小区,为其分配2个ZC根序列(以u={1,2}为例),每个根序列上可应用32个延时偏转序列(即
Figure PCTCN2018077929-appb-000004
本实施例中
Figure PCTCN2018077929-appb-000005
)。因此,对于任意1个终端用户(UE),其可用前导资源池为2*32=64个。
每次上发数据时,UE随机选择1个u和1个n cs来构建其前导序列,前导资源索引为
Figure PCTCN2018077929-appb-000006
使用所选择的前导序列生成时域前导符号,添加CP,并在时域上重复3次,占用0.5ms。
导频部分
按照前述时频资源的分配,导频部分共有3个OFDM符号,每个OFDM符号包含240个子载波。将每个OFDM符号的240个子载波分为均匀间隔的8组子载波,每组含有30个子载波,如图6所示。
定义导频资源索引为I DMRS,其取值范围为0≤I DMRS≤7,其中I DMRS的选取方法为:
Figure PCTCN2018077929-appb-000007
可见导频位置的选择取决于前导资源索引和UE ID。当UE随机选择好前导资源索引之后,其导频位置还要根据UE ID的奇偶性进行选择。因此,如果不同UE碰巧选择了同一个前导资源,则其导频资源有可能因为UE ID的奇偶性不同而不碰撞。
易知,奇偶性选择仅仅是本实施例中的一个特定情况。I DMRS的一般表达式为:
Figure PCTCN2018077929-appb-000008
其中,
Figure PCTCN2018077929-appb-000009
为I DMRS的最大取值,n id2d是导频资源的偏移量,根据用户设备标识,导频资源的偏移可以为[0,1,…(n id 2d-1)],n id 2d的取值范围为
Figure PCTCN2018077929-appb-000010
上述映射关系中,
Figure PCTCN2018077929-appb-000011
体现了前导资源跟导频资源的多对一映射(即n p2d个前导资源映射到同一份导频资源,n p2d根据前导数量和导频数量确定,比如,本实施例中,前导资源为64,导频资源为8,则n p2d为8,该值可配置。),
Figure PCTCN2018077929-appb-000012
则增加了一重UE ID和导频资源的对应关系(即导频资源的偏移跟UE ID有关)。
使用上述映射方法,相对于仅使用前导资源来映射导频资源的方法,使得前导资源和导频资源同时发生碰撞的概率降低了。比如,在前导资源发生碰撞的时候,仍有可能通过不碰撞的导频来为后续数据部分的解调提供必要的测量量。另外,即使不同UE在导频资源上发生碰撞,而其前导资源有可能并未发生碰撞,此时未碰撞的前导部分仍能为后续数据部分的解调提供必要的测量量。
数据部分包括如下信息:
(1)40bit的UE ID,8bit的UE ID CRC,采用BPSK调制,码率为0.27,使得调制编码后的UE ID占用180个RE,其映射位置在该UE导频RE两侧。图7中以占用导频组1的UE为例,给出了其UE ID元素位置;
(2)696bit的高层消息,24bit的高层消息CRC,采用QPSK调制,码率为0.5,使得调制编码后的高层消息包含720个QPSK符号,再采用长度为4的MUSA短码扩展(码资源池大小为64,资源索引跟前导资源索引一一对应),使之占满所有数据可用的RE(2880个)。需要说明的是,图7中的数据区是指高层消息占用的区域。
下面说明一下接收机端对接收信号的处理方法。
接收机端的处理包括3个处理过程:前导处理,导频处理和数据处理。下面分别进行说明。
首先说明一下前导处理过程,包括:
抽取时域上的3个前导符号,去除CP,做FFT变换,变换到频域后得到3列频域序列。对上述3列频域序列,依次使用每个根对应的ZC基序列y u(n)做本地序列共轭补偿。
将3列频域序列求和成为1列,使用IFFT变换回时域,求取底噪和检测阈值。然后在每个延时偏转时间窗内计算能量,跟检测阈值比较,并输出检出信号的前导资源索引。
在检出信号的前导资源索引上,使用3列频域序列计算所对应的频偏,时偏,信道估计等测量量。
根据能量排序所有检出信号的前导资源索引。
导频处理过程包括:
按顺序根据检出的前导资源索引计算出可能对应的2个导频资源位置,求取频偏,时偏,信道估计等测量量。
使用上述测量量,解码相应导频资源位置两侧的2个可能的UE ID,包括:
1)如2个UE ID CRC验证通过并符合
Figure PCTCN2018077929-appb-000013
映射关系,则说明成功分离出了前导碰撞的2个UE。
2)如仅1个UE ID CRC验证通过并符合
Figure PCTCN2018077929-appb-000014
映射关系,则利用相应导频重构该UE的前导并从原始前导中消除,然后利用重构的前导求取频偏,时偏,信道估计等测量量,再次尝试解调可能存在的第2个UE。
3)如没有UE ID CRC验证通过,则直接使用前导计算所得的频偏,时偏,信道估计等测量量,再次尝试解调2个可能的UE ID。
数据接收过程包括:
对于所有解出的UE ID,使用其对应的频偏,时偏,信道估计,MUSA 扩展码来解调数据。具体的,包括:对于数据进行CRC校验,并重构通过CRC校验的数据,从所有占用RE上消除已解调的用户,取下一个检测出的UE重复上述操作,直至所有UE处理完毕。
实施例2
URLLC应用中在免调度上行传输时,使用现有的LTE随机接入流程,很难满足其低时延的需求。此外,现有的LTE随机接入流程中不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)合并,使得可靠性需求也难以保障。本实施例中,通过定义前导资源、UE ID和导频资源之间的映射关系,在发生部分碰撞时,本公开实施例中提供的技术方案能支持并发用户解调,将常规随机接入中的冲突解决时间提前,明显降低接入时延。另外,通过定义数据部分中独立编码的方式,以及UE ID时频位置跟导频时频位置的关系定义,使得UE ID检测准确度提升,便于HARQ合并以提升接入的可靠性。本实施例中,以URLLC业务应用中的随机接入信号为例对本公开技术方案进行说明。
首先说明一下随机接入信号的时频资源。
如图8所示,本实施例中,时域上,前导、导频和数据共占用0.5ms,共包含14个OFDM符号。前导部分为最前面连续放置的2个前导符号,后续12个OFDM符号中导频占用2个符号,数据占用10个符号。
频域上,系统带宽为4.32MHz,所有符号子载波间隔为30kHz,可用子载波个数为144个。
下面分别说明一下前导部分、导频部分和数据部分的实现。
前导部分
前导符号采用ZC序列,其根序列长度为139,循环拓展到长度为144,以占满144个子载波。每个前导符号上额外应用1个延时偏转序列,其长度也是144,延时偏转角度的粒度为2π/16。对于任意1个小区,为其分配4个ZC根序列(以u={1,2,3,4}为例),每个根序列上可应用16个延时偏转序列(即
Figure PCTCN2018077929-appb-000015
本例中
Figure PCTCN2018077929-appb-000016
)。因此,对于任意1个终端用户 (UE),其可用前导资源池为4*16=64个。
每次上发数据时,UE随机选择1个u和1个n cs来构建其前导序列,可见前导资源索引为
Figure PCTCN2018077929-appb-000017
使用所选择的前导序列生成时域前导符号,添加CP,并在时域上重复2次,占用最前面的2个OFDM符号。
导频部分
按照前述时频资源的分配,导频部分共有2个OFDM符号,每个OFDM符号包含144个子载波。将每个OFDM符号的144个子载波分为均匀间隔的2组子载波,则一共将144*2个RE分成了4组,每组包含72个RE,如图9所示。
导频符号也采用ZC序列,其根序列长度为71,循环拓展到长度为72,以占满每组中的72个子载波。每个导频符号上额外应用1个延时偏转序列,其长度也是72,延时偏转角度的粒度为2π/8。则对于任意导频,可应用8个延时偏转序列(即
Figure PCTCN2018077929-appb-000018
本例中
Figure PCTCN2018077929-appb-000019
)。可见导频资源包含4*8=32个。
定义导频资源索引为I DMRS,其取值范围为0≤I DMRS≤31。I DMRS的选取方法为
Figure PCTCN2018077929-appb-000020
可见导频位置的选择取决于前导资源索引和UE ID。当UE随机选择好前导资源索引之后,其导频资源(此例中包含位置资源和延时偏转资源)还要根据UE ID的最后3bit信息(因为mod 8,所以最后3bit信息不同时,mod 8之后的信息相应改变)进行选择。
如果不同UE碰巧选择了同一个前导资源,则其导频资源有可能因为UE ID的最后3bit信息不同而不碰撞。易知,利用UE ID最后3bit进行选择仅仅是本实施例中的一个特定情况,其一般表达式为
Figure PCTCN2018077929-appb-000021
其中
Figure PCTCN2018077929-appb-000022
体现了前导资源跟 导频资源的多对一映射(即n p2d个前导资源组映射到一个导频资源组),
Figure PCTCN2018077929-appb-000023
则增加了一重UE ID和导频资源的对应关系(即导频延时偏转资源的选择跟UE ID有关)。可见使用上述映射方法,使得前导资源和导频资源同时发生碰撞的概率降低了(相对于仅使用前导资源来映射导频资源的方法)。在前导发生碰撞的时候,仍有可能通过不碰撞的导频来为后续数据部分的解调提供必要的测量量。另外,即使不同UE在导频资源上发生碰撞,其前导资源有可能并未发生碰撞,此时未碰撞的前导部分仍能为后续数据部分的解调提供必要的测量量。
下面说明一下数据部分的内容。数据部分包含:
(1)40bit的UE ID,8bit的UE ID CRC,采用BPSK调制,码率为0.33,生成调制编码后的144个符号,其映射位置在导频RE两侧,如图10所示,图10中以占用导频组1的UE为例,给出了其UE ID元素位置。
(2)232bit的高层消息,24bit的高层消息CRC,采用QPSK调制,码率为0.59,使得调制编码后的高层消息包含216个QPSK符号,再采用长度为4的MUSA短码扩展(码资源池大小为64,资源索引跟前导资源索引一一对应),使之占满所有数据可用的RE(本实施例中为864个)。
需要说明的是,图10中的数据区是指数据部分的高层消息所占用的区域。
接收机端的处理
接收机端的处理包括3个部分:前导处理,导频处理和数据处理。具体步骤如下:
前导处理
抽取时域上的2个前导符号,去除CP,做FFT变换频域,得到2列频域序列。对上述2列频域序列,依次使用每个根对应的ZC基序列y u(n)做本地序列共轭补偿。
将2列频域序列求和成为1列频域序列,对该一列频域序列作IFFT变换回时域,求取底噪和检测阈值。然后在每个延时偏转时间窗内计算能量, 跟检测阈值比较,并输出检出信号的前导资源索引。
在检出信号的前导资源索引上,使用2列频域序列计算所对应的频偏,时偏,信道估计等测量量。
根据能量排序所有检出信号的前导资源索引。
导频处理
按顺序根据检出的前导资源索引计算出可能对应的8个导频码资源位置。基站行为有如下选择:
1)使用类似前导检测的方法求取底噪和检测阈值。然后在每个导频延时偏转时间窗内计算能量,跟检测阈值比较,并输出检出信号的导频资源索引。在有用户检出的导频资源上求取频偏,时偏,信道估计等测量量。
2)直接在8个可能的导频资源上求取频偏,时偏,信道估计等测量量,解码相应导频资源位置两侧的8个可能的UE ID。
依据上述行为选择,当前前导资源索引上期待的用户数小于或等于8,对UE ID的解码有可能产生如下结果:
1)如检出UE ID个数(UE ID的判定检出原则:UE ID的CRC验证通过并符合
Figure PCTCN2018077929-appb-000024
映射关系)等于期待用户数,则说明成功分离出了前导碰撞的全部UE;
2)如检出UE ID个数(判定检出原则:同上)小于期待用户数,则利用相应导频重构该UE的前导并从原始前导中消除,然后利用重构的前导求取频偏,时偏,信道估计等测量量,再次尝试解调可能存在的其他UE。
3)如没有UE ID CRC验证通过,则直接使用前导计算所得的频偏,时偏,信道估计等测量量,再次尝试解调8个可能的UE ID。
数据接收
对于所有解出的UE ID,使用其对应的频偏,时偏,信道估计,MUSA扩展码来解调数据。具体包括:
对于数据进行CRC校验,并重构通过CRC校验的数据,从所有占用 RE上消除已解对的用户,取下一个检测出的UE重复上述操作,直至所有UE处理完毕。
实施例3
本实施例以mMTC业务应用中的随机接入信号为例。
mMTC应用中的终端数目多,偶发数据小包且数据率较低。使用相关的LTE随机接入流程,一方面很难支持密集接入时的并发连接,另一方面对于电池驱动的低功耗终端节能非常不利。本公开实施例中,通过前导资源、UE ID和导频资源之间存在的映射关系,能够降低并发用户碰撞概率,有助于高密度接入场景下的性能提升。另外,通过在随机接入信号中携带前导、导频和数据,使得一次上行发送中能够同时支持用户发现和小包数据传输,有助于降低接入流程信令的资源占比,提升网络资源利用率,降低终端能耗。
首先说明一下本实施例随机接入信号的时频资源。
本实施例中,上行信号的具体时域结构如图11所示。时域上,前导占用1ms,导频和数据占用1ms,总时长为2ms。前导子帧中包含连续放置的3个前导符号,单个前导符号(含CP)时长为0.3333ms。导频和数据共14个OFDM符号,导频位于第4个和第11个OFDM符号上,符合现有LTE系统定义。
频域上,系统带宽为720kHz,前导符号子载波间隔为3.75kHz,数据符号子载波间隔为15kHz。前导部分可用子载波数目为192个,数据部分可用子载波数目为48个。
前导部分
前导符号采用ZC序列,其根序列长度为191,循环拓展到长度为192,以占满192个子载波。每个前导符号上额外应用1个延时偏转序列,其长度也是192,延时偏转角度的粒度为2π/32。对于任意1个小区,为其分配4个ZC根序列(以u={1,2,3,4}为例),每个根序列上可应用32个延时偏转序列(即
Figure PCTCN2018077929-appb-000025
本例中
Figure PCTCN2018077929-appb-000026
)。因此,对于任意1个终端用 户(UE),其可用前导资源池为4*32=128个。
每次上发数据时,UE随机选择1个u和1个n cs来构建其前导序列,可见前导资源索引为
Figure PCTCN2018077929-appb-000027
使用所选择的前导序列生成时域前导符号,添加CP,并在时域上重复3次,占用1ms。
导频部分设计
按照前述时频资源的分配,导频部分共有2个OFDM符号,每个OFDM符号包含48个子载波。将每个OFDM符号的48个子载波分为均匀间隔的8组子载波,每组含有6个子载波,如图12所示。
定义导频资源索引为I DMRS,其取值范围为0≤I DMRS≤7。I DMRS的选取方法为:
Figure PCTCN2018077929-appb-000028
可见导频位置的选择取决于前导资源索引和UE ID。当UE随机选择好前导资源索引之后,其导频位置还要根据UE ID的奇偶性进行选择。
如果不同UE碰巧选择了同一个前导资源,则其导频资源有可能因为UE ID的奇偶性不同而不碰撞。易知,奇偶性选择仅仅是本实施例中的一个特定情况。导频资源索引与前导资源索引和UE ID的一般映射关系及其优点跟实施例1中一致,不再累述。
数据部分包含:
(1)40bit的UE ID,8bit的UE ID CRC,采用BPSK调制,码率为0.5,生成调制编码后的96个符号,然后使用长度为4的MUSA短码扩展(码资源池大小为128,资源索引跟前导资源索引一一对应)将其扩展到384个RE,其映射位置在导频RE两侧,图13中示意了所有UE ID通过扩展共享占用的元素位置;
(2)40bit的高层消息,8bit的高层消息CRC,采用QPSK调制,码率为0.5,使得调制编码后的高层消息包含48个QPSK符号,再采用UE ID中使用的长度为4的MUSA短码扩展,使之占满所有数据可用的RE(192 个)。
需要说明的是,图13中的数据区是指高层消息占用的区域。
接收机端的处理
接收机的处理包括3个部分:前导处理,导频处理和数据处理。具体步骤类似实施例1,仅时频资源具体映射上不同,此处不再赘述。
本公开实施例还提供一种随机接入发送装置,如图14所示,包括:
第一生成单元1401,配置为获取前导资源,生成前导信息;
第二生成单元1402,配置为根据前导资源和用户设备标识确定导频资源,生成导频信息;
映射单元1403,配置为获取数据信息,所述数据信息包括所述用户设备标识信息,将所述数据信息映射到时频资源上;
组帧单元1404,配置为将所述前导信息、所述导频信息和所述数据信息组成无线帧;
发送单元1405,配置为发送所述无线帧。
需要说明的是,方法实施例中的实现细节适用于该随机接入发送装置,此处不再赘述。
本公开实施例还提供一种随机接入接收装置,如图15所示,包括:
第一检测单元1501,配置为在所有前导资源上检测用户;
第二检测单元1502,配置为对检测出用户的前导资源,根据前导资源与导频资源的映射关系确定可能的导频资源位置;
第三检测单元1503,配置为使用相应导频解调获得用户设备标识。
各单元具体如何进行检测参见方法实施例中的相关描述,此处不再赘述。
本公开实施例还提供一种发射端,包括处理器及存储器;存储器上存储有随机接入发送程序,所述随机接入发送程序被处理器读取执行时,执行上述随机接入发送方法。
本公开实施例还提供一种接收端,包括处理器及存储器;存储器上存 储有随机接入接收程序,所述随机接入接收程序被处理器读取执行时,执行上述随机接入接收方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
也就是说,本公开实施例提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的随机接入发送方法。
本公开实施例还提供了一种存储介质,其上存储有计算机程序,所述 计算机程序被处理器执行时实现上述的随机接入接收方法。
从上面的描述可以看出,本公开实施例中提出的物理层信号设计、相应的信号收发装置及存储介质,具有如下优势:
通过在随机接入信号中携带前导、导频和数据,使得一次上行发送中能够同时支持用户发现和小包数据传输,降低接入流程信令的资源占比,提升网络资源利用率,也就是说,可以降低随机接入过程中的信令代价,提高网络资源利用率。
另外,前导资源、UE ID和导频资源之间存在映射关系,在发生部分碰撞时,本公开实施例中的方案能支持并发用户解调,将常规随机接入中的冲突解决时间提前,明显降低接入时延;以及,降低并发用户碰撞概率,有助于高密度接入场景下的性能提升。
由于数据部分独立编码,以及UE ID时频位置跟导频时频位置存在映射关系,使得UE ID检测准确度提升,便于HARQ合并以提升接入的可靠性。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本公开实施例提供的方案,通过在随机接入信号中携带前导、导频和数据,使得一次上行发送中能够同时支持用户发现和小包数据传输,降低接入流程信令的资源占比,提升网络资源利用率。

Claims (22)

  1. 一种随机接入发送方法,包括:
    获取前导资源,生成前导信息;
    根据前导资源和用户设备标识确定导频资源,生成导频信息;
    获取数据信息,所述数据信息中包括用户设备标识信息,将所述数据信息映射到时频资源上;
    将所述前导信息、所述导频信息和所述数据信息组成无线帧并发送。
  2. 如权利要求1所述的方法,其中,
    所述前导资源为前导资源池中的多个前导资源组中的一个;
    所述导频资源为导频资源池的多个互不重叠的导频资源组其中之一;
    所述根据前导资源和用户设备标识确定导频资源包括:
    根据选定的所述前导资源计算导频资源的起始索引,根据所述用户设备标识确定导频资源的偏移量,根据所述起始索引和所述偏移量确定所述导频资源。
  3. 如权利要求1所述的方法,其中,所述根据前导资源和用户设备标识确定导频资源包括:
    Figure PCTCN2018077929-appb-100001
    所述I DMRS为所述导频资源的索引,所述I preamble为所述前导资源的索引,所述n p2d根据前导资源数量与导频资源数量确定,所述ID ue为所述用户设备标识,所述n id2d为导频资源的偏移量,
    Figure PCTCN2018077929-appb-100002
    为I DMRS的最大取值,
    Figure PCTCN2018077929-appb-100003
    为向下取整,mod为模运算。。
  4. 如权利要求1至3任一所述的方法,其中,所述用户设备标识信息所在的时频资源位置与所述导频资源存在如下映射关系:
    所述用户设备标识信息所在的频域位置与所述导频资源的频域位置一致,所述用户设备标识信息所在的时域位置与所述导频资源的时域位置相 邻。
  5. 一种随机接入发送装置,包括:
    第一生成单元,配置为获取前导资源,生成前导信息;
    第二生成单元,配置为根据前导资源和用户设备标识确定导频资源,生成导频信息;
    映射单元,配置为获取数据信息,所述数据信息包括所述用户设备标识信息,将所述数据信息映射到时频资源上;
    组帧单元,配置为将所述前导信息、所述导频信息和所述数据信息组成无线帧;
    发送单元,配置为发送所述无线帧。
  6. 如权利要求5所述的装置,其中,
    所述前导资源为前导资源池中的多个前导资源组中的一个;
    所述导频资源为导频资源池的多个互不重叠的导频资源组其中之一;
    所述第二单元根据前导资源和用户设备标识确定导频资源包括:
    根据选定的所述前导资源计算导频资源的起始索引,根据所述用户设备标识确定导频资源的偏移量,根据所述起始索引和所述偏移量确定所述导频资源。
  7. 如权利要求5所述的装置,其中,所述第二单元根据前导资源和用户设备标识确定导频资源包括:
    Figure PCTCN2018077929-appb-100004
    所述I DMRS为所述导频资源的索引,所述I preamble为所述前导资源的索引,所述n p2d根据前导资源数量与导频资源数量确定,所述ID ue为所述用户设备标识,所述n id2d为导频资源的偏移量,
    Figure PCTCN2018077929-appb-100005
    为I DMRS的最大取值,
    Figure PCTCN2018077929-appb-100006
    为向下取整,mod为模运算。
  8. 如权利要求5至7任一所述的装置,其中,所述第三单元根据如下方式确定所述用户设备标识信息所在的时频资源位置:
    所述用户设备标识信息所在的频域位置与所述导频资源的频域位置一致,所述用户设备标识信息所在的时域位置与所述导频资源的时域位置相邻。
  9. 一种发射端,包括存储器和处理器,所述存储器存储有随机接入发送程序,所述随机接入发送程序在被所述处理器读取执行时,执行以下操作:
    获取前导资源,生成前导信息;
    根据前导资源和用户设备标识确定导频资源,生成导频信息;
    获取数据信息,所述数据信息中包括用户设备标识信息,将所述数据信息映射到时频资源上;
    将所述前导信息、所述导频信息和所述数据信息组成无线帧并发送。
  10. 如权利要求9所述的发射端,其中,
    所述前导资源为前导资源池中的多个前导资源组中的一个;
    所述导频资源为导频资源池的多个互不重叠的导频资源组其中之一;
    所述根据前导资源和用户设备标识确定导频资源包括:
    根据选定的所述前导资源计算导频资源的起始索引,根据所述用户设备标识确定导频资源的偏移量,根据所述起始索引和所述偏移量确定所述导频资源。
  11. 如权利要求9所述的发射端,其中,所述根据前导资源和用户设备标识确定导频资源包括:
    Figure PCTCN2018077929-appb-100007
    所述I DMRS为所述导频资源的索引,所述I preamble为所述前导资源的索引,所述n p2d根据前导资源数量与导频资源数量确定,所述ID ue为所述用户设备标识,n id2d为导频资源的偏移量,
    Figure PCTCN2018077929-appb-100008
    为I DMRS的最大取值,
    Figure PCTCN2018077929-appb-100009
    为向下取整,mod为模运算。
  12. 如权利要求9至11任一所述的发射端,其中,所述用户设备标识 信息所在的时频资源位置与所述导频资源存在如下映射关系:
    所述用户设备标识信息所在的频域位置与所述导频资源的频域位置一致,所述用户设备标识信息所在的时域位置与所述导频资源的时域位置相邻。
  13. 一种随机接入接收方法,包括:
    在所有前导资源上检测用户;
    对检测出用户的前导资源,根据前导资源与导频资源的映射关系确定可能的导频资源位置;
    使用相应导频解调获得用户设备标识。
  14. 如权利要求13所述的方法,其中,所述使用相应导频解调获得用户设备标识包括:
    在所有可能的用户设备标识位置上使用对应的导频解调,以及,对解调出的用户设备标识,根据用户设备标识自身的校验码以及用户设备标识和导频资源的映射关系校验解调所得的用户设备标识是否正确。
  15. 如权利要求14所述的方法,其中,所述用户设备标识和导频资源的映射关系为:
    Figure PCTCN2018077929-appb-100010
    所述I DMRS为所述导频资源的索引,所述I preamble为所述前导资源的索引,所述n p2d根据前导资源数量与导频资源数量确定,所述ID ue为所述用户设备标识,所述n id2d为导频资源的偏移量,
    Figure PCTCN2018077929-appb-100011
    为I DMRS的最大取值,
    Figure PCTCN2018077929-appb-100012
    为向下取整,mod为模运算。
  16. 一种随机接入装置,包括:
    第一检测单元,配置为在所有前导资源上检测用户;
    第二检测单元,配置为对检测出用户的前导资源,根据前导资源与导频资源的映射关系确定可能的导频资源位置;
    第三检测单元,配置为使用相应导频解调获得用户设备标识。
  17. 如权利要求16所述的装置,其中,所述第三检测单元使用相应导频解调获得用户设备标识包括:
    在所有可能的用户设备标识位置上使用对应的导频解调,以及,对解调出的用户设备标识,根据用户设备标识自身的校验码以及用户设备标识和导频资源的映射关系校验解调所得的用户设备标识是否正确。
  18. 如权利要求17所述的装置,其中,所述用户设备标识和导频资源的映射关系为:
    Figure PCTCN2018077929-appb-100013
    所述I DMRS为所述导频资源的索引,所述I preamble为所述前导资源的索引,所述n p2d根据前导资源数量与导频资源数量确定,所述ID ue为所述用户设备标识,所述n id2d为导频资源的偏移量,
    Figure PCTCN2018077929-appb-100014
    为I DMRS的最大取值,
    Figure PCTCN2018077929-appb-100015
    为向下取整,mod为模运算。
  19. 一种接收端,包括存储器和处理器,所述存储器存储有随机接入接收程序,所述随机接入接收程序在被所述处理器读取执行时,执行以下操作:
    在所有前导资源上检测用户;
    对检测出用户的前导资源,根据前导资源与导频资源的映射关系确定可能的导频资源位置;
    使用相应导频解调获得用户设备标识。
  20. 如权利要求19所述的接收端,其中,所述使用相应导频解调获得用户设备标识包括:
    在所有可能的用户设备标识位置上使用对应的导频解调,以及,对解调出的用户设备标识,根据用户设备标识自身的校验码以及用户设备标识和导频资源的映射关系校验解调所得的用户设备标识是否正确。
  21. 如权利要求20所述的接收端,其中,所述用户设备标识和导频资源的映射关系为:
    Figure PCTCN2018077929-appb-100016
    所述I DMRS为所述导频资源的索引,所述I preamble为所述前导资源的索引,所述n p2d根据前导资源数量与导频资源数量确定,所述ID ue为所述用户设备标识,所述n id2d为导频资源的偏移量,
    Figure PCTCN2018077929-appb-100017
    为I DMRS的最大取值,
    Figure PCTCN2018077929-appb-100018
    为向下取整,mod为模运算。
  22. 一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至4任一项所述方法的步骤,或者实现权利要求13至15任一项所述方法的步骤。
PCT/CN2018/077929 2017-03-06 2018-03-02 随机接入发送方法、接收方法及装置、发射端及接收端 WO2018161864A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/492,075 US11272533B2 (en) 2017-03-06 2018-03-02 Random-access sending and receiving method and apparatus, transmitting end and receiving end
JP2019548659A JP6886033B2 (ja) 2017-03-06 2018-03-02 ランダムアクセス送信方法、受信方法および装置、送信端および受信端
KR1020197028841A KR102241066B1 (ko) 2017-03-06 2018-03-02 랜덤 액세스 전송 방법, 수신 방법 및 장치, 송신단 및 수신단
EP18763699.8A EP3595394A4 (en) 2017-03-06 2018-03-02 METHOD AND APPARATUS FOR SENDING AND RECEIVING RANDOM ACCESS, TRANSMISSION END AND RECEPTION END

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710128595.2A CN108541074B (zh) 2017-03-06 2017-03-06 随机接入发送方法、接收方法及装置、发射端及接收端
CN201710128595.2 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018161864A1 true WO2018161864A1 (zh) 2018-09-13

Family

ID=63447277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077929 WO2018161864A1 (zh) 2017-03-06 2018-03-02 随机接入发送方法、接收方法及装置、发射端及接收端

Country Status (6)

Country Link
US (1) US11272533B2 (zh)
EP (1) EP3595394A4 (zh)
JP (1) JP6886033B2 (zh)
KR (1) KR102241066B1 (zh)
CN (1) CN108541074B (zh)
WO (1) WO2018161864A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574822A (zh) * 2019-03-13 2021-10-29 中兴通讯股份有限公司 多导频参考信号

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018006742B1 (pt) * 2015-11-13 2024-01-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd Método para alocação de recursos de rádio
CN108541074B (zh) * 2017-03-06 2023-10-31 中兴通讯股份有限公司 随机接入发送方法、接收方法及装置、发射端及接收端
CN111147408B (zh) * 2018-11-05 2022-07-12 中兴通讯股份有限公司 一种非正交多址接入的信号处理方法及装置
CN114499789B (zh) * 2020-10-26 2024-02-13 大唐移动通信设备有限公司 信息传输方法、终端、网络设备和存储介质
CN112351510B (zh) * 2020-11-03 2022-10-21 哈尔滨海能达科技有限公司 一种自组网的组网信号识别方法、系统、存储介质及电子设备
CN114696943B (zh) * 2020-12-25 2024-03-01 大唐移动通信设备有限公司 序列传输方法、接收方法、终端、网络设备和存储介质
CN114666010B (zh) * 2022-03-17 2023-04-28 四川创智联恒科技有限公司 一种nr-5g中pusch时域数据的处理方法、设备及存储介质
CN114710842B (zh) * 2022-04-27 2022-10-28 南京创芯慧联技术有限公司 随机接入过程中用户终端的分辨方法、装置和相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252775A (zh) * 2008-04-02 2008-08-27 中兴通讯股份有限公司 一种时分双工系统物理随机接入信道参数配置及指示方法
CN102498746A (zh) * 2009-06-16 2012-06-13 高通股份有限公司 无线通信系统中的随机接入过程
CN103249169A (zh) * 2012-02-03 2013-08-14 华为技术有限公司 传输随机接入应答消息的方法、基站和用户设备
WO2015190883A1 (en) * 2014-06-12 2015-12-17 Lg Electronics Inc. Method and apparatus for performing blind detection in wireless communication system
CN106059978A (zh) * 2016-05-23 2016-10-26 浙江大学 免许可频段下蜂窝移动通信系统的帧结构及通信协议

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60106706T2 (de) * 2000-02-17 2005-03-10 Samsung Electronics Co., Ltd., Suwon Verfahren und vorrichtung zur zuweisung eines gemeinsames paketkanals in einem cdma-nachrichtensystem
KR100438447B1 (ko) * 2000-10-20 2004-07-03 삼성전자주식회사 이동통신시스템에서 버스트 파일롯 송신장치 및 방법
CN101379746A (zh) * 2006-01-31 2009-03-04 松下电器产业株式会社 无线通信系统、无线发送装置及随机访问信道发送方法
US20070217353A1 (en) * 2006-03-20 2007-09-20 Motorola, Inc. Method and Apparatus for Transmitting Data Within a Multi-Hop Communication System
US7760617B2 (en) * 2006-03-24 2010-07-20 Lg Electronics Inc. Method and structure of configuring preamble to support transmission of data symbol in a wireless communication system
US8218481B2 (en) * 2006-06-09 2012-07-10 Lg Electronics Inc. Method of transmitting data in a mobile communication system
KR101294781B1 (ko) * 2006-08-08 2013-08-09 엘지전자 주식회사 랜덤 액세스 프리앰블 전송 방법
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
US7778151B2 (en) * 2006-10-03 2010-08-17 Texas Instruments Incorporated Efficient scheduling request channel for wireless networks
WO2008052026A2 (en) * 2006-10-24 2008-05-02 Qualcomm Incorporated Acquisition pilots for wireless communication systems
JP4934727B2 (ja) * 2006-12-29 2012-05-16 ノキア コーポレイション パイロット信号またはプリアンブル信号におけるzadoff−chu系列の使用制限を提供する装置、方法、およびコンピュータプログラム
US9281917B2 (en) * 2007-01-03 2016-03-08 Nokia Technologies Oy Shared control channel structure
EP2458805B1 (en) * 2007-01-05 2018-06-27 LG Electronics Inc. Method for setting cyclic shift considering frequency offset
CN102625467B (zh) * 2008-01-07 2015-12-09 三星电子株式会社 传输随机接入前导信号的设备和方法
CN103607766A (zh) * 2008-03-20 2014-02-26 交互数字专利控股公司 在Cell_FACH状态或空闲模式中执行E-DCH传输的E-TFC约束的方法及WTRU
US8891557B2 (en) * 2008-05-21 2014-11-18 Qualcomm Incorporated Method and apparatus for sending information via selection of resources used for transmission
US20090323602A1 (en) * 2008-06-30 2009-12-31 Qinghua Li Efficient bandwith request for broadband wireless networks
KR100939722B1 (ko) * 2008-08-11 2010-02-01 엘지전자 주식회사 데이터 전송 방법 및 이를 위한 사용자 기기
JP5520003B2 (ja) * 2009-10-28 2014-06-11 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信システムの制御方法、基地局装置の制御プログラムおよび移動局装置の制御プログラム
CN102572937B (zh) * 2010-12-23 2015-01-14 普天信息技术研究院有限公司 一种宽带集群系统中随机接入的方法、基站及系统
US9668251B2 (en) * 2011-04-20 2017-05-30 Lg Electronics Inc. Method and apparatus for transmission of signal from device to device in a wireless communication system
US9854446B2 (en) * 2011-07-07 2017-12-26 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
CN104838704B (zh) * 2012-12-11 2019-02-22 Lg 电子株式会社 在支持载波聚合的无线接入系统中获取上行链路同步的方法和装置
WO2015020427A1 (ko) * 2013-08-06 2015-02-12 엘지전자 주식회사 D2d 신호 전송 방법 및 이를 위한 장치
CN106031053B (zh) * 2014-02-18 2019-04-12 Lg电子株式会社 无线通信系统中使用用户特定的灵活tdd技术收发信号的方法及其装置
CN111867120B (zh) * 2014-04-04 2024-05-31 北京三星通信技术研究有限公司 数据传输的方法、基站及终端
US20170171690A1 (en) * 2014-07-20 2017-06-15 Lg Electronics Inc. Method for terminal-condition-based d2d communication, and apparatus therefor in wireless communication system
CN106664568B (zh) 2014-07-31 2021-06-29 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
JP2017175174A (ja) * 2014-08-08 2017-09-28 シャープ株式会社 端末装置、基地局装置および方法
US10034311B2 (en) * 2014-09-22 2018-07-24 Lg Electronics Inc. Method and apparatus for transceiving D2D signal of PRACH resource
WO2016048075A1 (ko) * 2014-09-25 2016-03-31 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 인접 셀 신호 수신 방법 및 장치
EP3249993A4 (en) * 2015-01-23 2018-03-07 Samsung Electronics Co., Ltd. Method and device for supporting data communication in wireless communication system
US10231196B2 (en) * 2015-04-10 2019-03-12 Korea Advanced Institute Of Science And Technology Communication apparatus and method using random access procedure
JP2017017487A (ja) * 2015-06-30 2017-01-19 富士通株式会社 基地局、通信システム及び基地局の処理方法
CN108541074B (zh) * 2017-03-06 2023-10-31 中兴通讯股份有限公司 随机接入发送方法、接收方法及装置、发射端及接收端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252775A (zh) * 2008-04-02 2008-08-27 中兴通讯股份有限公司 一种时分双工系统物理随机接入信道参数配置及指示方法
CN102498746A (zh) * 2009-06-16 2012-06-13 高通股份有限公司 无线通信系统中的随机接入过程
CN103249169A (zh) * 2012-02-03 2013-08-14 华为技术有限公司 传输随机接入应答消息的方法、基站和用户设备
WO2015190883A1 (en) * 2014-06-12 2015-12-17 Lg Electronics Inc. Method and apparatus for performing blind detection in wireless communication system
CN106059978A (zh) * 2016-05-23 2016-10-26 浙江大学 免许可频段下蜂窝移动通信系统的帧结构及通信协议

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574822A (zh) * 2019-03-13 2021-10-29 中兴通讯股份有限公司 多导频参考信号
CN113574822B (zh) * 2019-03-13 2023-06-23 中兴通讯股份有限公司 无线通信方法、装置及计算机可读介质

Also Published As

Publication number Publication date
US20200383138A1 (en) 2020-12-03
CN108541074A (zh) 2018-09-14
EP3595394A1 (en) 2020-01-15
US11272533B2 (en) 2022-03-08
JP2020509715A (ja) 2020-03-26
KR20190119139A (ko) 2019-10-21
KR102241066B1 (ko) 2021-04-19
EP3595394A4 (en) 2020-12-02
JP6886033B2 (ja) 2021-06-16
CN108541074B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2018161864A1 (zh) 随机接入发送方法、接收方法及装置、发射端及接收端
US20220376832A1 (en) Method, apparatus, and system for transmitting or receiving data channel and control channel in wireless communication system
JP6918950B2 (ja) 伝送方法および伝送装置
CN110876200B (zh) 一种传输数据的方法和装置
US10523372B2 (en) Method and apparatus for the transmission of uplink control information
US10972240B2 (en) Pilot sequence transmission method and apparatus
EP2611244B1 (en) Methods of Reliably Sending Control Signal
CN113966587B (zh) 无线通信系统中的下行数据接收和harq-ack传输的方法、装置和系统
EP2827670A1 (en) Terminal device, base station device, and integrated circuit
WO2015113214A1 (en) Methods for enhanced harq mechanism
WO2014161495A1 (zh) 下行数据的传输、传输处理方法及装置
CN108429610B (zh) 一种物理广播信道传输方法、设备和系统
WO2017125090A1 (zh) 一种传输参考信号的方法及网络设备
EP3157277B1 (en) Transmission method and transmission equipment for wireless local area network
US11050538B2 (en) Information sending and receiving method and device
WO2015090199A1 (zh) 传输数据的方法、装置和系统
WO2019179268A1 (zh) 一种传输参考信号的方法、装置和系统
CN106911612A (zh) 信息的发送方法及装置
WO2017121416A1 (zh) 上行控制信息的发送方法及装置
CN116939521A (zh) 一种传输方法、电子设备和存储介质
WO2015042888A1 (zh) 一种信息传输的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028841

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018763699

Country of ref document: EP

Effective date: 20191007