WO2018161757A1 - 光学器件、显示装置及其驱动方法 - Google Patents

光学器件、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2018161757A1
WO2018161757A1 PCT/CN2018/075460 CN2018075460W WO2018161757A1 WO 2018161757 A1 WO2018161757 A1 WO 2018161757A1 CN 2018075460 W CN2018075460 W CN 2018075460W WO 2018161757 A1 WO2018161757 A1 WO 2018161757A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
liquid crystal
electrode
substrate
voltage
Prior art date
Application number
PCT/CN2018/075460
Other languages
English (en)
French (fr)
Inventor
王倩
陈小川
赵文卿
李忠孝
牛小辰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/089,891 priority Critical patent/US11269224B2/en
Publication of WO2018161757A1 publication Critical patent/WO2018161757A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • Embodiments of the present disclosure relate to an optical device, a display device, and a method of driving the same.
  • the anti-spy display is a demanding application.
  • the current anti-theft mode is fixed and cannot be switched to the sharing mode. Since the adjustment of the light of the liquid crystal lens can be controlled by the electrodes, the liquid crystal lens can realize the automatic switching of the anti-peep and the sharing, but the moiré is generated.
  • the present disclosure provides an optical device, a display device, and a driving method thereof for solving the problem that a double-layer liquid crystal lens in the prior art generates moiré due to low alignment accuracy of the liquid crystal cell.
  • an optical device including: a first substrate and a second substrate disposed opposite to each other; a liquid crystal filled between the first substrate and the second substrate; At least one set of first electrode groups on the first substrate, the first electrode group including at least two first electrodes for forming a first deflection of liquid crystal molecules driving the first substrate An electric field to form a first liquid crystal lens; at least one set of second electrode groups disposed on the second substrate, the second electrode group including at least two second electrodes, the at least two second electrodes being used A second electric field that drives deflection of liquid crystal molecules adjacent to the second substrate is formed to form a second liquid crystal lens.
  • a display device including a display panel, and an optical device as described above, the optical device being disposed on a display side of the display panel.
  • a driving method of a display device as described above comprising: applying a voltage to at least two first electrodes of each set of first electrode groups to form a deflection of liquid crystal molecules driving the first substrate; a first electric field to form a first liquid crystal lens; a voltage applied to at least two second electrodes of each set of second electrode groups to form a second electric field that drives deflection of liquid crystal molecules adjacent to the second substrate to form a second liquid crystal lens .
  • FIG. 1 is a schematic structural view of an optical device when a voltage is applied according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of the optical device of FIG. 1 when no voltage is applied;
  • FIG. 3 is a schematic structural view of an optical device according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural view of a display device when a voltage is applied according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural view of a display device when no voltage is applied according to an embodiment of the present disclosure.
  • the adjustment of the light by the liquid crystal lens can be controlled by the electrodes, and the double-layer liquid crystal lens achieves a larger sharing angle than the single-layer liquid crystal lens.
  • the liquid crystal lens includes two substrates disposed opposite to each other, a liquid crystal filled between the two substrates, and a plurality of strip electrodes disposed on one of the substrates and a plate electrode disposed on the other substrate.
  • the liquid crystal lens generally includes a plurality of liquid crystal lens units each having a plurality of strip electrodes therein, and the voltages of the strip electrodes loaded into one liquid crystal lens unit are generally symmetrical voltages to drive a liquid crystal lens unit.
  • the liquid crystal molecules are deflected to form a structure having optical characteristics of the lens. When it is required to form a two-layer liquid crystal lens, since the alignment accuracy of the two liquid crystal cells is low, the electrodes of the two liquid crystal lenses are different in spatial frequency, resulting in severe moiré.
  • an embodiment of the present disclosure provides an optical device including: a first substrate 100 and a second substrate 200 disposed opposite to each other; and a liquid crystal 10 filled between the first substrate 100 and the second substrate 200.
  • at least one set of second electrode groups disposed on the second substrate 200, the second electrode group including at least two second electrodes 2 The at least two second electrodes 2 are used to form a second electric field that drives the deflection of the liquid crystal molecules near the second substrate 200 to form the second liquid crystal lens 30.
  • the positions of the first electrode group and the second electrode group may be in one-to-one correspondence, such that the positions of the first liquid crystal lens 20 and the second liquid crystal lens 30 are in one-to-one correspondence, thereby increasing the adjustment effect on the light.
  • the focal points of the first liquid crystal lens 20 and the second liquid crystal lens 30 are located on the side where the light of the optical device is incident, which are both concave lenses, the divergence angle of the light can be increased.
  • the focal points of the first liquid crystal lens 20 and the second liquid crystal lens 30 are located on the side from which the light of the optical device exits, which are convex lenses, the convergence of light can be increased.
  • the technical solution of the embodiments of the present disclosure drives the liquid crystal molecules to be deflected by a transverse electric field, so that liquid crystals close to each substrate can form a liquid crystal lens, so that a liquid crystal cell can be used to form a two-layer liquid crystal lens structure. Since the alignment accuracy of the two substrates of one liquid crystal cell is high, the electrodes on the two substrates can be ensured to be uniform in spatial frequency, thereby overcoming the moiré problem.
  • the liquid crystal 10 can be selected as a positive liquid crystal, and the liquid crystal molecules are arranged along the electric field lines for easy control.
  • a liquid crystal cell has a structure of two substrate pairs and is filled with liquid crystal therein.
  • the liquid crystal that is adjacent to the first substrate 100 and used to form the first liquid crystal lens 20 is defined as the upper liquid crystal 11
  • the liquid crystal that is adjacent to the second substrate 200 and used to form the second liquid crystal lens 30 is the lower liquid crystal 12.
  • the deflections affect each other.
  • the reason why the liquid crystal molecules of the interlayer liquid crystal 13 are not deflected is that the electric field formed by the electrodes on the first substrate 100 and the second substrate 200 is very weakly distributed in the region where the interlayer liquid crystal 13 is located because the thickness of the liquid crystal cell is thick. Can almost be ignored.
  • the liquid crystal cell of the optical device has a thickness of 6 to 10 ⁇ m, that is, the distance between the first substrate 100 and the second substrate 200 is 6 to 10 ⁇ m.
  • the focal points of the first liquid crystal lens 20 and the second liquid crystal lens 30 may be on the same side.
  • the focal points of the first liquid crystal lens 20 and the second liquid crystal lens 30 may both be located on the side of the light incident on the optical device, forming a concave lens for diverging the light, and the double concave lens can obtain a larger divergence angle.
  • the focal points of the first liquid crystal lens and the second liquid crystal lens may also be located on the side of the light emitted by the optical device to form a convex lens for concentrating light, and the double concave lens can obtain a larger convergence angle.
  • the focus of the first liquid crystal lens and the second liquid crystal lens may also be on different sides.
  • the first liquid crystal lens 20 is located on the side where the light of the optical device is incident
  • the second liquid crystal lens 30 is located on the side where the light of the optical device is emitted, or vice versa.
  • the focus of the first liquid crystal lens 20 and the second liquid crystal lens 30 are controlled by the lateral driving electric field to be located on the side of the light incident on the optical device to form a concave lens for diverging the light.
  • the optical device does not adjust the light (see FIG. 2) to realize the anti-spy display mode.
  • the optical device of the embodiment of the present disclosure when the optical device of the embodiment of the present disclosure is applied to the anti-spy display device, switching between the anti-spy and shared display modes can be realized, and the user experience is improved.
  • the focus of the first liquid crystal lens and the second liquid crystal lens are controlled by a lateral driving electric field on both sides of the light emitted from the optical device to form a convex lens for collecting light to achieve a viewing angle. Smaller anti-spy mode.
  • the positions of the first electrode 1 and the second electrode 2 are set to correspond one-to-one, and the electrodes on the first substrate 100 and the second substrate 200 are completely consistent in spatial frequency, and the moiré problem is overcome, see FIG. 1 and Figure 3 shows.
  • the positional correspondence between the first electrode group and the second electrode group may be set such that the positions of the first liquid crystal lens 20 and the second liquid crystal lens 30 are in one-to-one correspondence.
  • the voltages applied to the first electrode 1 and the second electrode 2 corresponding to the position may be set to be the same, so that the first electric field formed by the first electrode 1 is formed.
  • the distribution of the second electric field formed by the second electrode 2 is uniform, the mutual influence between the electric fields is reduced, and the focal position of the first liquid crystal lens 20 and the second liquid crystal lens 30 is achieved, thereby increasing the adjustment effect on the light.
  • each set of the first electrode group is composed of two first electrodes 1
  • each of the second electrode groups is composed of two second electrodes 2.
  • voltages of opposite polarities are applied to the two first electrodes 1 of each electrode group
  • voltages of opposite polarities are also applied to the two second electrodes 2 of each second electrode group, respectively.
  • the left and right first electrodes 1 respectively apply a positive voltage and a negative voltage
  • the left and right second electrodes 2 also apply a positive voltage and a negative voltage, respectively.
  • the principle of forming the first liquid crystal lens 20 is that the two first electrodes 1 of each electrode group form a driving electric field, and the liquid crystal molecules are arranged along the electric field lines, which are close to the first electrode 1.
  • the position liquid crystal molecules have a small retardation amount (ie, the deflection angle of the liquid crystal molecules), and the liquid crystal has a large retardation amount at a position corresponding to the middle of the two first electrodes 1, so that the liquid crystal molecules between the two first electrodes 1 will A gradual change in the amount of retardation is produced to form a liquid crystal lens.
  • a liquid crystal lens having a desired focal length is formed by adjusting the voltage of the first electrode 1 to obtain a desired retardation amount of liquid crystal molecules.
  • the principle of forming the second liquid crystal lens 30 is the same as that of the first liquid crystal lens 20, and will not be described in detail herein.
  • a voltage of the same polarity and having a voltage difference can be applied to the two first electrodes 1 of each electrode group, and the same polarity is applied to the two second electrodes 2 of each second electrode group. And having a voltage of a voltage difference to form a driving electric field.
  • the positions of the first electrode group and the second electrode group are one-to-one correspondence, and the positions of the first electrode 1 and the second electrode 2 are in one-to-one correspondence, and the first electrode 1 and the second electrode 2 corresponding to the position are applied.
  • the voltages are the same, including the magnitude and polarity of the voltages, such that the first electric field formed by the first electrode 1 and the second electric field formed by the second electrode 2 are uniformly distributed without affecting each other, and the first liquid crystal lens 20 and The second liquid crystal lens 30 is of the same type and is a convex lens or a concave lens, and the focus positions of the two are corresponding to each other, thereby increasing the adjustment effect on the light.
  • the first electrode group is disposed to be composed of at least three uniformly distributed first electrodes 1. Applying a voltage of the same polarity to at least three first electrodes 1 of each set of first electrode groups, voltages on the at least three first electrodes 1 in a distribution direction of the at least three first electrodes 1 The increase is first increased and then decreased, and the absolute value of the voltage difference between the adjacent two first electrodes 1 is also increased first and then decreased.
  • the pressure difference between the two adjacent first electrodes 1 is small, so that the corresponding liquid crystal molecules have a small retardation amount; and the larger pressure difference between the adjacent two first electrodes 1 makes The corresponding liquid crystal molecules have a large amount of retardation, which causes a gradual change in the amount of retardation to form a liquid crystal lens.
  • the first electrode group includes an odd number of first electrodes, the electrode voltage at the center is the highest, and the electrode voltages on both sides of the center electrode are successively decreased. As shown in FIG.
  • the first electrode group is composed of seven uniformly distributed first electrodes 1, and in the distribution direction of the seven first electrodes 1, sequentially to the first, second, ..., seventh
  • the first electrode 1 is applied with voltages of 1 V, 3 V, 6 V, 12 V, 6 V, 3 V, and 1 V.
  • homogeneous distribution refers to the same spacing in a certain direction. For example, in the horizontal direction, the pitches of the plurality of first electrodes 1 are the same.
  • the second electrode group is also composed of at least three uniformly distributed second electrodes 2, the working principle of which is the same as above, and will not be described in detail herein.
  • the positions of the first electrode group and the second electrode group are one-to-one correspondence, and the positions of the first electrode 1 and the second electrode 2 are in one-to-one correspondence, and the first electrode 1 and the second electrode 2 corresponding to the position are applied.
  • the voltages are the same, including the magnitude and polarity of the voltages, such that the first electric field formed by the first electrode 1 and the second electric field formed by the second electrode 2 are uniformly distributed without affecting each other, and the first liquid crystal lens 20 and The second liquid crystal lens 30 is of the same type and is a convex lens or a concave lens, and the focus positions of the two are corresponding to each other, thereby increasing the adjustment effect on the light.
  • the first electrode group and the second electrode group are disposed in the first electrode group and the second electrode group, and the positions of the first electrode 1 and the second electrode 2 are in one-to-one correspondence.
  • the first liquid crystal lens 20 and the second liquid crystal lens 30 of the same type can be formed, and the positions of the first liquid crystal lens 20 and the second liquid crystal lens 30 are formed.
  • One-to-one correspondence increasing the adjustment effect on light.
  • the same voltage is applied to the first electrode 1 and the second electrode 2 corresponding to the position, and it is also ensured that the first electric field formed by the first electrode 1 and the second electric field formed by the second electrode 2 are identical, and do not affect each other.
  • Another embodiment of the present disclosure provides a display device including a display panel and the optical device in the above embodiment.
  • the optical device is disposed on the display side of the display panel for switching the size of the viewing angle of the display device to implement switching between the anti-spy and shared display modes, thereby improving the user experience.
  • the positions of the first liquid crystal lens and the second liquid crystal lens formed in the optical device may be one-to-one correspondence and of the same type to increase the adjustment effect on light.
  • each first liquid crystal lens may be disposed in one-to-one correspondence with the position of the pixel unit 40 of the display device, so that the display light of each pixel unit 40 can be adjusted to improve the picture quality.
  • Each pixel unit 40 includes a plurality of sub-pixel units, such as a red sub-pixel unit 41, a green sub-pixel unit 42, and a blue sub-pixel unit 43.
  • the focal length of the concave lens is 52 ⁇ m, and the viewing angle can be increased to ⁇ 50. °.
  • the viewing angle of the sharing mode can be further increased.
  • a further embodiment of the present disclosure provides a driving method of the above display device, including:
  • a voltage is applied to at least two second electrodes of each set of second electrode groups to form a second electric field that drives deflection of liquid crystal molecules adjacent to the second substrate to form a second liquid crystal lens.
  • the above driving method drives the liquid crystal molecules to be deflected by forming a lateral electric field so that liquid crystals close to each substrate can form a liquid crystal lens, so that a liquid crystal cell can be used to form a two-layer liquid crystal lens structure. Since the alignment accuracy of the two substrates of one liquid crystal cell is high, the electrodes on the two substrates can be ensured to be uniform in spatial frequency, thereby overcoming the moiré problem.
  • the positions of the first electrode group and the second electrode group are set to correspond one-to-one, and the positions of the first electrode and the second electrode are in one-to-one correspondence, and the same voltage is applied to the first electrode and the second electrode corresponding to the position, so that the first The first electric field formed by the electrode and the second electric field formed by the second electrode are consistent and do not affect each other.
  • the position of the first liquid crystal lens and the second liquid crystal lens are one-to-one correspondence, and the adjustment effect on the light is increased.
  • the positions of the first electrode and the second electrode are in one-to-one correspondence, it can be ensured that the electrodes on the first electrode and the second electrode are completely uniform in spatial frequency, overcoming the moiré problem.
  • the display device is a peep prevention display device
  • a voltage to the first electrode 1 and the second electrode 2
  • a concave lens is formed, which is used to divergence the display light to achieve a shared display mode, as shown in FIG.
  • the optical device does not adjust the light (see FIG. 5), realizes the anti-spy display mode, switches the display mode of the display device, and improves the user experience.
  • the focus of the first liquid crystal lens 20 and the second liquid crystal lens 30 formed by controlling the voltage applied to the first electrode 1 and the second electrode 2 may be located on a side of the optical device facing away from the display panel.
  • a convex lens is formed, and the optical device is used for concentrating the display light to realize a privacy-observing mode with a smaller viewing angle.
  • each set of the first electrode group is composed of two first electrodes 1
  • each set of the second electrode group is composed of two second electrodes 2 (see FIG. 1). ;
  • the driving method includes:
  • a voltage of opposite polarity is applied to the two second electrodes 2 of each set of second electrode sets.
  • This embodiment forms a lateral driving electric field by two electrodes to drive the liquid crystal molecules near the substrate to be deflected, arranged along the electric field lines, and the liquid crystal molecules have a small retardation near the electrodes, in the middle of the corresponding two electrodes.
  • the position liquid crystal has a large retardation amount, so that liquid crystal molecules between the two electrodes undergo a gradual change in retardation amount to form a liquid crystal lens.
  • the positions of the first electrode group and the second electrode group are set to correspond one-to-one, and the positions of the first electrode 1 and the second electrode 2 are in one-to-one correspondence, and the position corresponds to the first electrode 1 and
  • the second electrode applies the same voltage such that the first electric field formed by the first electrode 1 and the second electric field formed by the second electrode 2 are uniformly distributed without affecting each other, and the first liquid crystal lens 20 and the second liquid crystal lens 30 are made 30.
  • the same type is a convex lens or a concave lens, and the focus positions of the two correspond to each other, which increases the adjustment effect on the light.
  • the first electrode group is composed of at least three first electrodes, and the second electrode group is composed of at least three second electrodes;
  • the driving method includes:
  • the lateral driving electric field is formed by at least three electrodes to drive the liquid crystal molecules near the substrate to be deflected, arranged along the electric field lines, and the smaller pressure difference between the adjacent two electrodes makes the corresponding liquid crystal molecules have smaller The amount of delay; and the larger differential pressure between the adjacent two electrodes causes the corresponding liquid crystal molecules to have a larger amount of retardation, thus causing a gradual change in the amount of retardation to form a liquid crystal lens.
  • the positions of the first electrode group and the second electrode group are one-to-one correspondence
  • the positions of the first electrode and the second electrode are in one-to-one correspondence
  • the first electrode and the second electrode corresponding to the position are correspondingly Applying the same voltage so that the first electric field formed by the first electrode and the second electric field formed by the second electrode are uniform, do not affect each other, and make the first liquid crystal lens and the second liquid crystal lens of the same type, both being convex lenses Or a concave lens, and the focal position of the two corresponds to increase the adjustment effect on the light.
  • liquid crystal molecules near the substrate are deflected by forming electrodes on opposite substrates and applying a voltage to electrodes of each substrate to make liquid crystals close to each substrate. Both of them can form a liquid crystal lens, so that a liquid crystal cell can be used to form a two-layer liquid crystal lens structure. Since the alignment accuracy of the two substrates of one liquid crystal cell is high, the electrodes on the two substrates can be ensured to be uniform in spatial frequency, thereby overcoming the moiré problem.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光学器件、显示装置及其驱动方法。该光学器件包括相对设置的两个基板(100、200),在两个基板(100、200)上分别设置有电极(1、2),并向该电极(1、2)施加电压,形成横向电场,来驱动靠近基板(100、200)的液晶分子偏转,以使靠近两个基板(100、200)的液晶均能够形成液晶透镜(11、12),从而形成双层液晶透镜结构。由于液晶盒的两个基板(100、200)的对位精度较高,能够保证两个基板(100、200)上的电极(1、2)在空间频率上一致,克服摩尔纹问题。

Description

光学器件、显示装置及其驱动方法
相关申请的交叉引用
本申请基于并且要求于2017年3月10日递交的中国专利申请第201710141300.5号的优先权,在此全文引用上述中国专利申请公开的内容。
技术领域
本公开实施例涉及一种光学器件、显示装置及其驱动方法。
背景技术
智能显示功能应用中,防窥显示是一个需求比较高的应用。但是目前的防窥模式都是固定的,不能切换到共享模式。由于液晶透镜对光线的调整是可以通过电极控制的,采用液晶透镜就可以实现防窥与共享的自动切换,但会产生摩尔纹。
发明内容
本公开提供一种光学器件、显示装置及其驱动方法,用以解决现有技术中双层液晶透镜由于液晶盒对位精度较低会产生摩尔纹的问题。
为解决上述技术问题,本公开实施例中提供一种光学器件,包括:相对设置的第一基板和第二基板;填充在所述第一基板和第二基板之间的液晶;设置在所述第一基板上的至少一组第一电极组,所述第一电极组包括至少两个第一电极,所述至少两个第一电极用于形成驱动靠近第一基板的液晶分子偏转的第一电场,以形成第一液晶透镜;设置在所述第二基板上的至少一组第二电极组,所述第二电极组包括至少两个第二电极,所述至少两个第二电极用于形成驱动靠近第二基板的液晶分子偏转的第二电场,以形成第二液晶透镜。
本公开实施例中还提供一种显示装置,包括显示面板,和如上所述的光学器件,所述光学器件设置在所述显示面板的显示侧。
本公开实施例中还提供一种如上所述的显示装置的驱动方法,包括:向 每一组第一电极组的至少两个第一电极施加电压,形成驱动靠近第一基板的液晶分子偏转的第一电场,以形成第一液晶透镜;向每一组第二电极组的至少两个第二电极施加电压,形成驱动靠近第二基板的液晶分子偏转的第二电场,以形成第二液晶透镜。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例中光学器件在施加电压时的结构示意图;
图2为图1中光学器件在未施加电压时的结构示意图;
图3为本公开另一实施例的光学器件的结构示意图;
图4为本公开实施例中显示装置在施加电压时的结构示意图;
图5为本公开实施例中显示装置在未施加电压时的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对 位置改变后,则该相对位置关系也可能相应地改变。
液晶透镜对光线的调整是可以通过电极控制的,而且双层液晶透镜比单层液晶透镜做到更大的共享角度。液晶透镜包括相对设置的两个基板、填充在两个基板之间的液晶,以及设置在其中一个基板上的多个条状电极和设置在另一个基板上的板状电极。液晶透镜通常包括多个液晶透镜单元,每一液晶透镜单元内具有多个条状电极,加载到一个液晶透镜单元内的各条状电极的电压一般为对称电压,以驱动一个液晶透镜单元内的液晶分子偏转,形成具有透镜的光学特性的结构。当需要形成双层液晶透镜时,由于两个液晶盒的对位精度较低,会导致两个液晶透镜的电极在空间频率上存在差异,产生严重的摩尔纹。
结合图1-图3所示,本公开实施例提供一种光学器件,包括:相对设置的第一基板100和第二基板200;填充在第一基板100和第二基板200之间的液晶10;设置在第一基板100上的至少一组第一电极组,所述第一电极组包括至少两个第一电极1,所述至少两个第一电极1用于形成驱动靠近第一基板100的液晶分子偏转的第一电场,以形成第一液晶透镜20;设置在第二基板200上的至少一组第二电极组,所述第二电极组包括至少两个第二电极2,所述至少两个第二电极2用于形成驱动靠近第二基板200的液晶分子偏转的第二电场,以形成第二液晶透镜30。
所述第一电极组和第二电极组的位置可以一一对应,使得第一液晶透镜20和第二液晶透镜30的位置一一对应,增加对光线的调整作用。例如:当第一液晶透镜20和第二液晶透镜30的焦点位于光学器件的光线入射的一侧,均为凹透镜时,可以增加光线的发散角。当第一液晶透镜20和第二液晶透镜30的焦点位于光学器件的光线出射的一侧,均为凸透镜时,可以增加对光线的汇聚作用。
本公开实施例的技术方案通过横向电场驱动液晶分子偏转,以使靠近每一基板的液晶均能够形成液晶透镜,从而能够利用一个液晶盒形成双层液晶透镜结构。由于一个液晶盒的两个基板的对位精度较高,能够保证两个基板上的电极在空间频率上一致,克服摩尔纹问题。
至少一些实施例中,液晶10可以选择正性液晶,液晶分子会沿着电场线排布,便于控制。一个液晶盒的结构为两个基板对盒,并在其中填充液晶。
为了便于描述,定义靠近第一基板100且用于形成第一液晶透镜20的液晶为上层液晶11,靠近第二基板200且用于形成第二液晶透镜30的液晶为下层液晶12。
为了保证能够形成双层液晶透镜结构,需要增加液晶盒的厚度,使得上层液晶11和下层液晶12之间具有液晶分子不发生偏转的中间层液晶13,防止上层液晶11和下层液晶12的液晶分子的偏转互相影响。其中,中间层液晶13的液晶分子不发生偏转的原因是:由于液晶盒的厚度较厚,第一基板100和第二基板200上的电极形成的电场在中间层液晶13所在的区域分布非常弱,几乎可以忽略。
至少一些实施例中,光学器件的液晶盒厚为6~10μm,即,第一基板100和第二基板200之间的距离为6~10μm。
至少一些实施例中,第一液晶透镜20和第二液晶透镜30的焦点可以位于同一侧。例如,第一液晶透镜20和第二液晶透镜30的焦点可以均位于所述光学器件的光线入射的一侧,形成凹透镜,用于对光线进行发散,而且双层凹透镜能够获得更大的发散角,如图1所示。所述第一液晶透镜和第二液晶透镜的焦点也可以均位于所述光学器件的光线出射的一侧,形成凸透镜,用于对光线进行汇聚,而且双层凹透镜能够获得更大的汇聚角。
至少一些实施例中,所述第一液晶透镜和第二液晶透镜的焦点还可以位于不同侧。例如,所述第一液晶透镜20位于所述光学器件的光线入射的一侧,所述第二液晶透镜30位于所述光学器件的光线出射的一侧,反之亦可。
当应用于防窥显示装置上时,通过横向驱动电场控制第一液晶透镜20和第二液晶透镜30的焦点均位于所述光学器件的光线入射的一侧,形成凹透镜,用于对光线进行发散,实现共享显示模式,参见图1所示。当不施加驱动电场时,所述光学器件对光线不进行调整(参见图2所示),实现防窥显示模式。
因此,本公开实施例的光学器件应用于防窥显示装置上时,能够实现防窥和共享显示模式的切换,提高用户体验。
至少一些实施例中,通过横向驱动电场控制所述第一液晶透镜和第二液晶透镜的焦点均位于所述光学器件的光线出射的一侧,形成凸透镜,用于对光线进行汇聚,实现观看角度更小的防窥模式。
本实施例中,设置第一电极1和第二电极2的位置一一对应,保证第一基板100和第二基板200上的电极在空间频率上完全一致,克服摩尔纹问题,参见图1和图3所示。进一步地,还可以设置第一电极组和第二电极组的位置对应,以使得第一液晶透镜20和第二液晶透镜30的位置一一对应。当第一液晶透镜20和第二液晶透镜30为同一类型的透镜结构时,可以设置位置对应的第一电极1和第二电极2上施加的电压相同,使得第一电极1形成的第一电场和第二电极2形成的第二电场的分布一致,减小电场之间的互相影响,并实现第一液晶透镜20和第二液晶透镜30的焦点位置对应,增加对光线的调整作用。
在一个具体的实施方式中,如图1所示,设置每一组所述第一电极组由两个第一电极1组成,每一组所述第二电极组由两个第二电极2组成。例如,在每一电极组的两个第一电极1上分别施加极性相反的电压,在每一第二电极组的两个第二电极2也分别施加极性相反的电压。例如,左右两个第一电极1分别施加正电压和负电压,左右两个第二电极2也分别施加正电压和负电压。
以第一液晶透镜20为例,形成第一液晶透镜20的原理为:每一电极组的两个第一电极1形成驱动电场,液晶分子沿着电场线排布,在接近第一电极1的位置液晶分子具有较小的延迟量(即液晶分子的偏转角度),在对应两个第一电极1中间的位置液晶具有较大的延迟量,这样两个第一电极1之间的液晶分子会产生渐变的延迟量变化,形成液晶透镜。液晶分子对应的延迟量,可以由以下公式确定:f=p2/(8*△n*d),其中,f为液晶透镜的焦距,p为两个第一电极1之间的距离,△n*d为延迟量。通过调整第一电极1的电压获得所需的液晶分子延迟量,形成具有所需焦距的液晶透镜。
形成第二液晶透镜30的原理与第一液晶透镜20相同,在此不在详述。
至少一些实施例中,可以在每一电极组的两个第一电极1上施加极性相同且具有压差的电压,在每一第二电极组的两个第二电极2也施加极性相同且具有压差的电压,以形成驱动电场。
可选的,设置第一电极组和第二电极组的位置一一对应,第一电极1和第二电极2的位置一一对应,且位置对应的第一电极1和第二电极2上施加的电压相同,包括电压的大小和极性相同,以使得第一电极1形成的第一电 场和第二电极2形成的第二电场的分布一致,互不影响,并使得第一液晶透镜20和第二液晶透镜30的类型相同,均为凸透镜或凹透镜,且两者的焦点位置对应,增加对光线的调整作用。
在另一个具体的实施方式中,如图3所示,设置所述第一电极组由至少三个均匀分布的第一电极1组成。向每一组第一电极组的至少三个第一电极1施加极性相同的电压,在所述至少三个第一电极1的分布方向上,所述至少三个第一电极1上的电压先增加后减少,且相邻的两个第一电极1上的电压差的绝对值也先增加后减少。每一第一电极组中,相邻两个第一电极1较小的压差,使得对应的液晶分子具有较小的延迟量;而相邻两个第一电极1较大的压差,使得对应的液晶分子具有较大的延迟量,这样产生渐变的延迟量变化,形成液晶透镜。例如,第一电极组包括奇数个第一电极,位于中心的电极电压最高,位于该中心电极两侧的电极电压依次递减。如图3所示,第一电极组由7个均匀分布的第一电极1组成,在所述7个第一电极1的分布方向上,依次向第1个、第2个……第7个第一电极1施加电压1V、3V、6V、12V、6V、3V、1V。本文中“均匀分布”指在一定方向上间距相同。例如,在水平方向上,多个第一电极1的间距相同。
基于同一原理,也可以设置所述第二电极组也由至少三个均匀分布的第二电极2组成,其工作原理与上述相同,在此不再详述。
可选的,设置第一电极组和第二电极组的位置一一对应,第一电极1和第二电极2的位置一一对应,且位置对应的第一电极1和第二电极2上施加的电压相同,包括电压的大小和极性相同,以使得第一电极1形成的第一电场和第二电极2形成的第二电场的分布一致,互不影响,并使得第一液晶透镜20和第二液晶透镜30的类型相同,均为凸透镜或凹透镜,且两者的焦点位置对应,增加对光线的调整作用。
上述两个具体实施方式中,设置第一电极组和第二电极组中,第一电极1和第二电极2的数量一致,第一电极1和第二电极2的位置一一对应,当在位置对应的第一电极1和第二电极2上施加相同的电压时,能够形成相同类型的第一液晶透镜20和第二液晶透镜30,且第一液晶透镜20和第二液晶透镜30的位置一一对应,增加对光线的调整作用。另外,位置对应的第一电极1和第二电极2上施加相同的电压,还能够保证第一电极1形成的第一电 场和第二电极2形成的第二电场分布一致,互不影响。
本公开另一实施例提供一种显示装置,包括显示面板和上述实施例中的光学器件。所述光学器件设置在所述显示面板的显示侧,用于切换显示装置的观看角度的大小,实现防窥和共享显示模式的切换,提高用户体验。
至少一些实施例中,所述光学器件中形成的第一液晶透镜和第二液晶透镜的位置可以一一对应,且类型相同,以增加对光线的调整作用。
至少一些实施例中,还可以设置每一第一液晶透镜与显示装置的像素单元40的位置一一对应,从而能够对每一像素单元40的显示光线进行调整,提升画面质量。每一像素单元40包括多个子像素单元,例如:红色子像素单元41、绿色子像素单元42、蓝色子像素单元43。
以观看角度为±30°的防窥显示装置为例,采用本公开实施例的技术方案,当所述光学器件形成双层凹透镜结构,凹透镜的焦距为52μm时,可以将观看角度增加到±50°。
本领域技术人员很容易推出,在不考虑摩尔纹问题的前提下,在显示面板的显示侧设置至少两个层叠设置的所述光学器件,能够进一步增加对显示光线的调整作用。例如:当应用于防窥显示装置上时,能够进一步增加共享模式的观看角度。
本公开再一实施例提供一种上述显示装置的驱动方法包括:
向每一组第一电极组的至少两个第一电极施加电压,形成驱动靠近第一基板的液晶分子偏转的第一电场,以形成第一液晶透镜;
向每一组第二电极组的至少两个第二电极施加电压,形成驱动靠近第二基板的液晶分子偏转的第二电场,以形成第二液晶透镜。
上述驱动方法通过形成横向电场驱动液晶分子偏转,以使靠近每一基板的液晶均能够形成液晶透镜,从而能够利用一个液晶盒形成双层液晶透镜结构。由于一个液晶盒的两个基板的对位精度较高,能够保证两个基板上的电极在空间频率上一致,克服摩尔纹问题。
例如,设置第一电极组和第二电极组的位置一一对应,第一电极和第二电极的位置一一对应,向位置对应的第一电极和第二电极施加相同的电压,使第一电极形成的第一电场和第二电极形成的第二电场分布一致,互不影响。并实现第一液晶透镜和第二液晶透镜的位置一一对应,增加对光线的调整作 用。另一方面,由于第一电极和第二电极的位置一一对应,能够保证第一电极和第二电极上的电极在空间频率上完全一致,克服摩尔纹问题。
当所述显示装置为防窥显示装置时,通过向第一电极1和第二电极2施加电压,控制形成的第一液晶透镜20和第二液晶透镜30的焦点位于所述光学器件的靠近显示面板的一侧,形成凹透镜,所述光学器件用于对显示光线进行发散,实现共享显示模式,参见图4所示。当第一电极1和第二电极2上未施加电压时,所述光学器件对光线不进行调整(参见图5所示),实现防窥显示模式,切换显示装置的显示模式,提高用户体验。
至少一些实施例中,也可以通过向第一电极1和第二电极2施加电压,控制形成的第一液晶透镜20和第二液晶透镜30的焦点位于所述光学器件的背离显示面板的一侧,形成凸透镜,所述光学器件用于对显示光线进行汇聚,实现观看角度更小的防窥模式。
在一个具体的实施方式中,每一组所述第一电极组由两个第一电极1组成,每一组所述第二电极组由两个第二电极2组成(参见图1所示);
结合图4所示,所述驱动方法包括:
向每一组第一电极组的两个第一电极1施加极性相反的电压;
向每一组第二电极组的两个第二电极2施加极性相反的电压。
该实施方式通过两个电极形成横向驱动电场,来驱动靠近基板的液晶分子发生偏转,沿着电场线排布,在接近电极的位置液晶分子具有较小的延迟量,在对应两个电极中间的位置液晶具有较大的延迟量,这样两个电极之间的液晶分子会产生渐变的延迟量变化,形成液晶透镜。
该实施方式中,可选的,设置第一电极组和第二电极组的位置一一对应,第一电极1和第二电极2的位置一一对应,并向位置对应的第一电极1和第二电极施加相同的电压,以使得第一电极1形成的第一电场和第二电极2形成的第二电场的分布一致,互不影响,并使得第一液晶透镜20和第二液晶透镜30的类型相同,均为凸透镜或凹透镜,且两者的焦点位置对应,增加对光线的调整作用。
在另一具体的实施方式中,所述第一电极组由至少三个第一电极组成,所述第二电极组由至少三个第二电极组成;
结合图3所示,所述驱动方法包括:
向每一组第一电极组的至少三个第一电极1施加极性相同的电压,在所述至少三个第一电极1的分布方向上,所述至少三个第一电极1上的电压先增加后减少,且相邻的两个第一电极1上的电压差的绝对值也先增加后减少;
向每一组第二电极组的至少三个第二电极2施加极性相同的电压,在所述至少三个第二电极2的分布方向上,所述至少三个第二电极2上的电压先增加后减少,且相邻的两个第二电极2上的电压差的绝对值也先增加后减少。
该实施方式通过至少三个电极形成横向驱动电场,来驱动靠近基板的液晶分子发生偏转,沿着电场线排布,相邻两个电极较小的压差,使得对应的液晶分子具有较小的延迟量;而相邻两个电极较大的压差,使得对应的液晶分子具有较大的延迟量,这样产生渐变的延迟量变化,形成液晶透镜。
该实施方式中,可选的,设置第一电极组和第二电极组的位置一一对应,第一电极和第二电极的位置一一对应,并向位置对应的第一电极和第二电极施加相同的电压,以使得第一电极形成的第一电场和第二电极形成的第二电场的分布一致,互不影响,并使得第一液晶透镜和第二液晶透镜的类型相同,均为凸透镜或凹透镜,且两者的焦点位置对应,增加对光线的调整作用。
本公开实施例中,通过在相对设置的两个基板上均形成电极,并向每一基板的电极施加电压,形成横向电场,来驱动靠近基板的液晶分子偏转,以使靠近每一基板的液晶均能够形成液晶透镜,从而能够利用一个液晶盒形成双层液晶透镜结构。由于一个液晶盒的两个基板的对位精度较高,能够保证两个基板上的电极在空间频率上一致,克服摩尔纹问题。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (12)

  1. 一种光学器件,包括:
    相对设置的第一基板和第二基板;
    填充在所述第一基板和第二基板之间的液晶;
    设置在所述第一基板上的至少一组第一电极组,所述至少一组第一电极组包括至少两个第一电极,所述至少两个第一电极用于形成驱动靠近第一基板的液晶分子偏转的第一电场,以形成第一液晶透镜;
    设置在所述第二基板上的至少一组第二电极组,所述至少一组第二电极组包括至少两个第二电极,所述至少两个第二电极用于形成驱动靠近第二基板的液晶分子偏转的第二电场,以形成第二液晶透镜。
  2. 根据权利要求1所述的光学器件,其中所述至少两个第一电极和至少两个第二电极的位置一一对应。
  3. 根据权利要求2所述的光学器件,其中每一组所述至少一组第一电极组由两个第一电极组成,每一组所述至少一组第二电极组由两个第二电极组成。
  4. 根据权利要求2所述的光学器件,其中,所述至少一组第一电极组由至少三个均匀分布的第一电极组成,所述至少一组第二电极组由至少三个均匀分布的第二电极组成。
  5. 根据权利要求1-4任一项所述的光学器件,其中,所述至少一组第一电极组和所述至少一组第二电极组的位置一一对应。
  6. 一种显示装置,包括显示面板,和权利要求1-5任一项所述的光学器件,所述光学器件设置在所述显示面板的显示侧。
  7. 一种权利要求6所述的显示装置的驱动方法,包括:
    向每一组所述至少一组第一电极组的所述至少两个第一电极施加电压,形成驱动靠近所述第一基板的液晶分子偏转的所述第一电场,以形成所述第一液晶透镜;
    向每一组所述至少一组第二电极组的所述至少两个第二电极施加电压,形成驱动靠近所述第二基板的液晶分子偏转的所述第二电场,以形成所述第二液晶透镜。
  8. 根据权利要求7所述的驱动方法,其中每一组所述至少一组第一电极组由两个第一电极组成,每一组所述至少一组第二电极组由两个第二电极组成。
  9. 根据权利要求8所述的驱动方法,其中所述驱动方法包括:
    向每一组所述至少一组第一电极组的所述两个第一电极分别施加极性相反的电压;
    向每一组所述至少一组第二电极组的所述两个第二电极分别施加极性相反的电压。
  10. 根据权利要求7所述的驱动方法,其中所述至少一组第一电极组由至少三个第一电极组成,所述至少一组第二电极组由至少三个第二电极组成。
  11. 根据权利要求10所述的驱动方法,其中所述驱动方法包括:
    向每一组所述至少一组第一电极组的所述至少三个第一电极施加极性相同的电压,在所述至少三个第一电极的分布方向上,所述至少三个第一电极上的电压先增加后减少,且相邻的两个第一电极上的电压差的绝对值也先增加后减少;
    向每一组所述至少一组第二电极组的所述至少三个第二电极施加极性相同的电压,在所述至少三个第二电极的分布方向上,所述至少三个第二电极上的电压先增加后减少,且相邻的两个第二电极上的电压差的绝对值也先增加后减少。
  12. 根据权利要求7-11任一项所述的驱动方法,其中,所述至少一组第一电极组和所述至少一组第二电极组的位置一一对应,每个第一电极和其中一个第二电极的位置一一对应,且二者被施加相同的电压。
PCT/CN2018/075460 2017-03-10 2018-02-06 光学器件、显示装置及其驱动方法 WO2018161757A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/089,891 US11269224B2 (en) 2017-03-10 2018-02-06 Optical device, display apparatus and method for driving same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710141300.5 2017-03-10
CN201710141300.5A CN106647064B (zh) 2017-03-10 2017-03-10 一种光学器件、显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2018161757A1 true WO2018161757A1 (zh) 2018-09-13

Family

ID=58848184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075460 WO2018161757A1 (zh) 2017-03-10 2018-02-06 光学器件、显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US11269224B2 (zh)
CN (1) CN106647064B (zh)
WO (1) WO2018161757A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647064B (zh) 2017-03-10 2020-04-03 京东方科技集团股份有限公司 一种光学器件、显示装置及其驱动方法
CN108415190B (zh) 2018-03-12 2021-12-10 京东方科技集团股份有限公司 显示面板及其灰阶调控方法和显示装置
CN109375438B (zh) * 2018-12-17 2022-03-08 惠州市华星光电技术有限公司 显示模组及电子装置
CN109782499B (zh) * 2019-02-26 2022-02-01 京东方科技集团股份有限公司 液晶显示装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062985A (zh) * 2010-11-16 2011-05-18 深圳超多维光电子有限公司 液晶透镜及其控制方法以及3d显示装置
CN102385195A (zh) * 2011-09-28 2012-03-21 昆山龙腾光电有限公司 2d/3d可切换显示装置及其制造方法
CN103472636A (zh) * 2013-09-06 2013-12-25 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN105388673A (zh) * 2015-12-01 2016-03-09 武汉华星光电技术有限公司 液晶显示装置及其液晶显示面板
US20160259187A1 (en) * 2015-03-06 2016-09-08 Samsung Display Co., Ltd. Optical modulation device and driving method thereof
CN106647064A (zh) * 2017-03-10 2017-05-10 京东方科技集团股份有限公司 一种光学器件、显示装置及其驱动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101122199B1 (ko) * 2005-07-07 2012-03-19 삼성전자주식회사 2차원/3차원 영상 호환용 입체영상 디스플레이 장치
CN101916014B (zh) * 2010-08-03 2012-06-27 友达光电股份有限公司 可调整视角的液晶显示面板
JP2012098394A (ja) * 2010-10-29 2012-05-24 Sony Corp 液晶レンズアレイ素子、およびその駆動方法ならびに立体画像表示装置
CN102768448B (zh) * 2012-07-16 2015-12-02 天马微电子股份有限公司 液晶透镜和立体显示装置
TWI485490B (zh) 2012-09-04 2015-05-21 Au Optronics Corp 防窺顯示裝置及其驅動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062985A (zh) * 2010-11-16 2011-05-18 深圳超多维光电子有限公司 液晶透镜及其控制方法以及3d显示装置
CN102385195A (zh) * 2011-09-28 2012-03-21 昆山龙腾光电有限公司 2d/3d可切换显示装置及其制造方法
CN103472636A (zh) * 2013-09-06 2013-12-25 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
US20160259187A1 (en) * 2015-03-06 2016-09-08 Samsung Display Co., Ltd. Optical modulation device and driving method thereof
CN105388673A (zh) * 2015-12-01 2016-03-09 武汉华星光电技术有限公司 液晶显示装置及其液晶显示面板
CN106647064A (zh) * 2017-03-10 2017-05-10 京东方科技集团股份有限公司 一种光学器件、显示装置及其驱动方法

Also Published As

Publication number Publication date
CN106647064A (zh) 2017-05-10
CN106647064B (zh) 2020-04-03
US20200301214A1 (en) 2020-09-24
US11269224B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2018161757A1 (zh) 光学器件、显示装置及其驱动方法
US10678086B2 (en) Display panel, display device, and driving method
WO2018184257A1 (zh) 阵列基板
WO2017173792A1 (zh) 显示模组及其控制方法、显示装置
WO2016110256A1 (zh) 显示装置、立体显示装置及其应用的终端
US20180113370A1 (en) Display module and display system
WO2015085700A1 (zh) 一种彩膜基板及液晶显示装置
CN106098708B (zh) 一种薄膜晶体管阵列基板、显示面板和显示装置
KR20130060637A (ko) 2차원/3차원 전환 가능한 디스플레이 장치
WO2017156875A1 (zh) 一种液晶透镜及显示装置
WO2017202201A1 (zh) 显示面板和显示装置
US11921384B2 (en) Light control device and illumination device
WO2017049713A1 (zh) 像素电极及阵列基板
US9971166B2 (en) Liquid crystal lens panel and display device including the same
US10502966B2 (en) Liquid crystal lens and display device
US20120105753A1 (en) Liquid crystal lens array device, driving method thereof and image display device
WO2016173003A1 (zh) 液晶面板及显示装置
US10606136B2 (en) Variable focal length liquid crystal lens assembly comprising a plurality of first and second conductive lines that cross each and structure thereof
TW201816491A (zh) 顯示面板
US10203564B2 (en) Array substrate, liquid crystal module and display device including pixel sub-units having different electric field intensities
US9069178B2 (en) Display device and liquid crystal prism cell panel
US20150116612A1 (en) Display device and method for driving the same
US20150146115A1 (en) Dispaly device and liquid crystal prism cell panel
US9599864B2 (en) Liquid crystal display device
US20160195739A1 (en) Display device and liquid crystal lens panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763462

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18763462

Country of ref document: EP

Kind code of ref document: A1