WO2017049713A1 - 像素电极及阵列基板 - Google Patents

像素电极及阵列基板 Download PDF

Info

Publication number
WO2017049713A1
WO2017049713A1 PCT/CN2015/093321 CN2015093321W WO2017049713A1 WO 2017049713 A1 WO2017049713 A1 WO 2017049713A1 CN 2015093321 W CN2015093321 W CN 2015093321W WO 2017049713 A1 WO2017049713 A1 WO 2017049713A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment unit
pixel
electric field
alignment
pixel electrode
Prior art date
Application number
PCT/CN2015/093321
Other languages
English (en)
French (fr)
Inventor
陈政鸿
姚晓慧
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/897,741 priority Critical patent/US10209579B2/en
Publication of WO2017049713A1 publication Critical patent/WO2017049713A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to the field of liquid crystal display, and in particular to a pixel electrode and an array substrate.
  • a pixel electrode of a conventional VA type liquid crystal display can be generally divided into four pixel domains.
  • Each of the pixel regions respectively forms one display domain, and liquid crystal molecules located in different display domains are directed differently, and mutual compensation between the liquid crystal molecules is used to increase the viewing angle of the VA liquid crystal display.
  • the birefringence of liquid crystal molecules has a large difference in various directions, when the orientation of the liquid crystal molecules is different, different degrees of color distortion appear in the display screen from different viewing angles.
  • each pixel area of the pixel electrode is designed in two parts, as shown in FIG. One part is the main area of the pixel area, and the other part is the sub area.
  • the driving elements are respectively disposed in the two areas, and the color distortion is corrected by applying different voltages to the main area and the sub-area.
  • This method is generally referred to as a Low Color Shift (LCS) design.
  • the LCS design improves the color distortion of the liquid crystal display at a large viewing angle, since each pixel region is further divided, and the driving circuits are separately provided in the main region and the sub-region, the pixel aperture ratio is inevitably lowered. Moreover, in the LCS design, the effective potential of the liquid crystal molecules applied to the sub-region is generally lower than the effective potential of the liquid crystal molecules in the main region, so that the display luminance of the sub-region is lowered, thereby affecting the transmittance of the liquid crystal display. Improving the viewing angle and increasing the transmittance are equally important for large-size LCDs, especially for high-resolution TV products.
  • One of the technical problems to be solved by the present invention is to provide a new method for improving color distortion of a VA type liquid crystal display at a large viewing angle.
  • an embodiment of the present application first provides a pixel electrode, including four pixel regions, each of which is divided into a first alignment unit and a second alignment unit, wherein the first alignment unit Can be used to form a first electric field, the second alignment unit can be used to form a second electric field, and the electric field strength of the first electric field is not equal to the electric field strength of the second electric field.
  • a plurality of branch electrodes having the same pitch and parallel to each other are disposed in each of the alignment units of each of the pixel regions, and a pitch between the branch electrodes of the first alignment unit and the first pixel region The spacing between the branch electrodes of the two alignment units is not equal.
  • the spacing between the branch electrodes of the first alignment unit located in different pixel regions is equal, and the spacing between the branch electrodes of the second alignment unit located in different pixel regions is equal.
  • the areas of the first alignment units located in different pixel regions are equal, and the areas of the second alignment units located in different pixel regions are equal.
  • the first alignment units located in different pixel regions are respectively symmetric with respect to the horizontal direction in the vertical direction
  • the second alignment units located in different pixel regions are respectively symmetric with respect to the horizontal direction in the vertical direction.
  • each of the pixel regions is adjacent to each other in a vertical direction or in a horizontal direction, and a vertical intersecting trunk electrode is disposed at a peripheral edge of each of the pixel regions, the first alignment unit and the first The branch electrodes of the two alignment units each extend radially from a plurality of perpendicular intersections of the trunk electrodes.
  • the branch electrodes of each first alignment unit are disposed at a vertical intersection of the torso electrodes in the middle of the word " ⁇ ", and the branch electrodes of each second alignment unit are disposed in the "field” word four The vertical intersection of the torso electrodes of the corners.
  • the branch electrodes of the first alignment unit and the branch electrodes of the second alignment unit respectively extend to the boundary of the respective alignment unit, and the extended ends of the branch electrodes are in the A plurality of gaps are formed at the boundary, and the plurality of gaps are distributed in a substantially straight line.
  • the plurality of gaps are distributed in a substantially arc or fold line.
  • An embodiment of the present application further provides an array substrate including a pixel unit array, and the pixel electrode according to any one of claims 1 to 9 is disposed in each pixel unit.
  • the aperture ratio of the pixels is effectively improved, and the color distortion of the large-size liquid crystal display at a large viewing angle is effectively improved, thereby improving the competitiveness of the product.
  • FIG. 1 is a schematic diagram showing the principle of realizing multi-domain display in the prior art
  • FIG. 2 is a schematic structural diagram of a pixel electrode according to an embodiment of the present application.
  • FIG. 3 is a schematic view showing the distribution of an electric field formed in the embodiment of the present application.
  • FIG. 4 is a schematic diagram showing the relationship between transmittance and wavelength of a VA type liquid crystal display
  • 5a-5b are schematic structural diagrams of pixel electrodes according to other embodiments of the present application.
  • Figure 6 is a schematic diagram of the comparison of gamma curves.
  • the driving is performed by the pixel electrode on one side substrate and the common electrode on the other side substrate.
  • the structure of the pixel electrode is intended to be described, and the specific form of the common electrode is not limited.
  • the common electrode may take any form, such as a planar electrode, without departing from the spirit and essence of the invention.
  • each pixel region of the pixel electrode is divided into a first alignment unit and a second alignment unit. That is to say, for the pixel electrode including four pixel regions, eight alignment units can be formed correspondingly.
  • a first electric field is formed by using the first alignment unit of each pixel region, and a second electric field is formed by the second alignment unit of each pixel region, and the electric field intensity of the first electric field and the electric field strength of the second electric field are not equal. Description will be made below with reference to FIG. 2.
  • FIG. 2 is a schematic structural diagram of a pixel electrode according to an embodiment of the present application.
  • the pixel electrode 20 has four pixel areas ABCD of equal area, which are divided by the vertically intersecting trunk electrodes 21, and rectangular body electrodes 21 are also disposed at the outer edges of the pixel electrodes 20, that is, The pixel regions are adjacent to each other in the vertical direction or in the horizontal direction.
  • the trunk electrode 21 is mainly used to support the branch electrode 22.
  • the branch electrodes 22 are strip electrodes arranged in parallel with each other, and the plurality of branch electrodes 22 are equally spaced apart. If the pitch distribution between the branch electrodes 22 is uneven, the liquid crystal display is liable to be unevenly displayed.
  • the plurality of branch electrodes 22 radially extend from a plurality of perpendicular intersections of the trunk electrodes 21, and the extending ends of the plurality of branch electrodes 22 extending oppositely are formed with a plurality of gaps at a diagonal of the pixel region, and a plurality of The gap is distributed in a substantially straight line.
  • the branch electrodes 22 in the area extend from the positions of the two apex angles of the pixel area A to the inside of the pixel area A, respectively, and form a substantially straight line at the diagonal of the pixel area A. .
  • the regions each including the two-part branch electrodes 22 are denoted as the first alignment unit A1 and the second alignment unit A2, respectively, as shown by the respective regions enclosed by the broken line frames in FIG.
  • the branch electrode 22 in the first alignment unit A1 is disposed at a vertical intersection of the trunk electrode 21 at the middle position of the "Tian" shape
  • the branch electrode 22 in the second alignment unit A2 is disposed at the top corner of the "Tian” shape.
  • the vertical intersection of the electrodes 21 is.
  • the pixel area BCD is also set correspondingly, as shown in FIG. 2, and will not be described again.
  • the pixel area ABCD and the first alignment unit and the second alignment unit respectively located in the pixel area ABCD are generally disposed in a form symmetrical with respect to the horizontal direction in the vertical direction.
  • the pixel area A and the pixel area B, and the first alignment units A1 and B1, the second alignment Units A2 and B2 are symmetrical along the axis in the vertical direction.
  • the pixel area A and the pixel area D, and the first alignment units A1 and D1, and the second alignment units A2 and D2 are symmetrical in the horizontal direction.
  • the VA liquid crystal display mainly utilizes the working state when the liquid crystal molecules are symmetrically deflected to compensate the viewing angle. Only when the liquid crystal domains are highly symmetrically arranged, the display of the liquid crystal display in the up, down, left, and right directions can be balanced.
  • the pitch between the branch electrodes of the first alignment unit in the pixel area ABCD and the pitch between the branch electrodes of the second alignment unit in each pixel area are not desired.
  • the pitch D1 between the branch electrodes 22 in the first alignment unit A1 and the pitch D2 between the branch electrodes 22 in the second alignment unit A2 are not equal.
  • a certain gray scale voltage is applied to the pixel electrode 20
  • an electric field of unequal electric field strength is formed in the range of the first alignment unit A1 and the second alignment unit A2 due to the influence of the pitches D1 and D2, respectively.
  • the intensity of the electric field formed between the pixel electrode and the common electrode generally depends on the value of the gray scale voltage applied to the pixel electrode, the thickness of the liquid crystal cell (the combined effect of the liquid crystal working states of the respective layers), and the protrusions on the pixel electrode. / or the size of the slit. Since the value of the gray scale voltage applied to the pixel electrode 20 in the embodiment of the present application is equal to the thickness of the liquid crystal cell, the intensity of the electric field in the range of the first alignment unit and the second alignment unit is determined by the pixel electrode 20 The size of the slit is determined by the size of the spacing between the branch electrodes 22.
  • FIG. 3 is a schematic diagram showing the distribution of an electric field formed in the embodiment of the present application.
  • the electric field lines of the electric field formed at the pitch D1 are more densely distributed, that is, the intensity of the electric field in the range of the pixel unit A1 is larger than the intensity of the electric field in the range of the pixel unit A2.
  • the liquid crystal molecules in the range of the first alignment unit A1 and the liquid crystal molecules in the range of the second alignment unit A2 will be deflected at different angles, that is, the pixel region A can form two display domains, respectively.
  • the distance between the first alignment unit of the pixel region BCD and the branch electrode 22 in the second alignment unit is D1 and D2, respectively, and an electric field of unequal intensity is also formed in the pixel region BCD, respectively.
  • FIG. 4 is a schematic diagram showing the relationship between transmittance and wavelength of a VA liquid crystal display.
  • the horizontal axis is the wavelength
  • the vertical axis is the transmittance
  • ⁇ nd is a comprehensive index that affects the transmittance of the VA liquid crystal display, where ⁇ n represents the birefringence of the liquid crystal, and d represents the thickness of the liquid crystal cell (each layer of liquid crystal) The combined effect of the working status). It can be seen that as the ⁇ nd increases, the dependence of the transmittance and the wavelength of the liquid crystal display is more obvious. The original white balance of the liquid crystal display after RGB color mixing is broken, and thus different degrees of color distortion will be generated.
  • the liquid crystal molecules have as fine and uniform orientation as possible within a range of 360 degrees, and optical compensation between light of different wavelengths is the main way to improve color distortion.
  • the pixels having four pixel regions are electrically
  • the pole 20 can be displayed in eight domains, thereby effectively improving the color distortion of the large-sized liquid crystal display.
  • the electric field intensity in the first alignment unit A1 will be greater than the electric field intensity in the second alignment unit A2, and thus the deflection angle of the liquid crystal molecules in the range of the first alignment unit A1.
  • the deflection angle of the liquid crystal molecules in the range of the second alignment unit A2 is larger.
  • the larger the deflection angle of the liquid crystal molecules the more light is transmitted from the liquid crystal layer, that is, the higher the transmittance of the liquid crystal display, the greater the brightness of the liquid crystal screen, and the more beautiful and clear the displayed image. Therefore, the transmittance of the liquid crystal display can be adjusted by adjusting the pitch between the branch electrodes 22 to meet the display requirements.
  • the boundary line between the first alignment unit A1 and the second alignment unit A2 substantially passes through the diagonal of the pixel area A, that is, the area of the first alignment unit A1 is equal to the area of the second alignment unit A2. That is, it can be considered that the number of liquid crystal molecules in the first alignment unit is equal to the number of liquid crystal molecules in the second alignment unit.
  • the areas of the first alignment unit A1 and the second alignment unit A2 may also be adjusted to be unequal. The more liquid crystal molecules are included in the range of the alignment unit, the more light is transmitted from the liquid crystal layer, the higher the transmittance of the liquid crystal display, the greater the brightness of the liquid crystal display, and the more beautiful and clear the displayed image. Therefore, in order to make the liquid crystal display meet the display requirements, it can be realized by adjusting the size of the pitch between the branch electrodes 22 and/or changing the areas of the first alignment unit and the second alignment unit according to the result of the simulation.
  • first alignment unit A1 and the second alignment unit A2 have the same orientation of the liquid crystal molecules
  • first alignment unit A1 and the second alignment unit A2 are interchangeably disposed, that is, the first The pitch D1 of the branch electrodes 22 in the alignment unit A1 is larger than the pitch D2 of the branch electrodes 22 in the second alignment unit A2, or the area of the first alignment unit A1 is larger (or smaller) than the area of the second alignment unit A2, or the branch is changed at the same time.
  • the same adjustment can also be achieved by the spacing between the electrodes and the area of the alignment unit.
  • FIG. 5a-5b are schematic structural views of a pixel electrode according to another embodiment of the present application.
  • the boundary line of the alignment unit formed by the gap between the extended ends of the branch electrodes is no longer located at the diagonal of the pixel region.
  • the dividing line has the form of a substantially broken line.
  • the pixel electrode 20 of such a structure facilitates fine adjustment of the area of the first alignment unit and the area of the second alignment unit.
  • the dividing line has the form of a substantially arc.
  • the continuous smooth boundary can make the electric field uniform, thereby continuously changing the orientation of the liquid crystal molecules, which is beneficial to improving the display effect of the liquid crystal display. Therefore, it is preferred to have The structure of the pixel electrode of the smooth boundary line.
  • boundary line of the alignment unit formed by the gap between the extended ends of the branch electrodes may be in other forms as long as the area of each of the first alignment units located in different pixel regions is equal and located in different pixel regions.
  • the area of each of the second alignment units is equal, so that the liquid crystal domains can be symmetrical, thereby achieving the purpose of improving color distortion.
  • the pixel electrode in the embodiment of the present application can increase the aperture ratio of the pixel and improve the color distortion at a large viewing angle. Since the voltage driving of the pixel electrode in the sub-region is not required, the design of the process and the driving circuit can be simplified, the production cost can be reduced, and the competitiveness of the product can be improved.
  • an array substrate is further provided, and an array of pixel cells is disposed on the array substrate, and a pixel electrode 20 having the above structure is disposed in each pixel unit, and details are not described herein.
  • curve 1 is a standard gamma curve when the liquid crystal display is viewed from a front view direction
  • curve 2 is a gamma curve displayed by using an eight-domain method in the prior art.
  • Curve 3 is a gamma curve of a liquid crystal display made by using the pixel electrode of the embodiment of the present application. It can be seen that the liquid crystal display can better approximate the standard gamma curve shown by the curve 1, and the liquid crystal is improved. The effect displayed.

Abstract

一种像素电极(20)及阵列基板,该像素电极(20)包括四个像素区域(A,B,C,D),每个像素区域(A,B,C,D)各自划分为第一配向单元与第二配向单元,所述第一配向单元和所述第二配向单元能够分别用于形成电场强度不相等的第一电场和第二电场。该像素电极(20)在保证像素的开口率的同时有效地改善了大尺寸液晶显示器在大视角下的颜色失真,提高了产品的竞争力。

Description

像素电极及阵列基板
相关申请的交叉引用
本申请要求享有2015年09月25日提交的名称为“像素电极及阵列基板”的中国专利申请CN201510617574.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及液晶显示领域,尤其涉及一种像素电极及阵列基板。
背景技术
目前,常规的VA型液晶显示器的像素电极一般可以划分为四个像素区域(domain)。每个像素区域各自形成一个显示畴,位于不同显示畴内的液晶分子指向不同,利用液晶分子之间的相互补偿来增大VA型液晶显示器的视野角。但由于液晶分子的双折射率在各个方向上存在着比较大的差异,因此当液晶分子的指向不同时,从不同视角观察显示屏会出现不同程度的颜色失真。
为改善大视角下的颜色失真,通常采用增加显示畴的方式。即将像素电极的每个像素区域设计成两部分,如图1所示。一部分为像素区域的主区域(main),另一部分为子区域(sub),在两个区域内分别设置有驱动元件,通过对主区域和子区域施加不同的电压来改善大视角下的颜色失真,这种方式一般称之为低色偏(Low Color Shift,LCS)设计。
LCS设计虽然改善了液晶显示器在大视角下的颜色失真,但由于每个像素区域被进一步划分,且在主区域和子区域内需要分别设置驱动电路,因此必然导致像素开口率的下降。而且,在LCS设计中,施加于子区域内液晶分子的有效电位一般低于主区域内液晶分子的有效电位,使子区域的显示亮度下降,进而影响液晶显示器的穿透率。而改善视野角和提高穿透率对大尺寸液晶显示器来说同样重要,尤其是对高解析度的TV产品。
综上,亟需一种新的改善VA型液晶显示器在大视角下发生颜色失真的方法以解决上述问题。
发明内容
本发明所要解决的技术问题之一是需要提供一种新的改善VA型液晶显示器在大视角下发生颜色失真的方法。
为了解决上述技术问题,本申请的实施例首先提供了一种像素电极,包括四个像素区域,每个像素区域各自划分为第一配向单元与第二配向单元,其中,所述第一配向单元能够用于形成第一电场,所述第二配向单元能够用于形成第二电场,且所述第一电场的电场强度与所述第二电场的电场强度不相等。
优选地,在各像素区域的每个配向单元内分别设置有多个间距相等且相互平行的分支电极,且所述第一配向单元的各分支电极之间的间距与同一像素区域的所述第二配向单元的各分支电极之间的间距不相等。
优选地,位于不同像素区域的所述第一配向单元的所述各分支电极之间的间距相等,位于不同像素区域的所述第二配向单元的所述各分支电极之间的间距相等。
优选地,位于不同像素区域的所述第一配向单元的面积相等,位于不同像素区域的所述第二配向单元的面积相等。
优选地,位于不同像素区域的所述第一配向单元沿垂直方向与水平方向分别对称,位于不同像素区域的所述第二配向单元沿垂直方向与水平方向分别对称。
优选地,各像素区域沿垂直方向或沿水平方向呈“田”字形相邻,在每个所述像素区域的外围边缘处设置有垂直相交的躯干电极,所述第一配向单元与所述第二配向单元的分支电极分别从所述躯干电极的多个垂直相交处呈放射状延伸。
优选地,每个第一配向单元的所述分支电极设置于“田”字中间的所述躯干电极的垂直相交处,每个第二配向单元的所述分支电极设置于“田”字四个角的所述躯干电极的垂直相交处。
优选地,在每个像素区域内,所述第一配向单元的分支电极与所述第二配向单元的分支电极分别延伸至各自所属配向单元的边界处,且各分支电极的延伸端在所述边界处形成有多个间隙,所述多个间隙呈大致直线分布。
优选地,多个间隙呈大致弧线或折线分布。
本申请的实施例还提供了一种阵列基板,包括像素单元阵列,在每个像素单元内设置有如权利要求1至9中任一项所述的像素电极。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
通过利用像素电极在同一个像素区域内分别形成强度不相等的电场,在保证像素的开口率的同时有效地改善了大尺寸液晶显示器在大视角下的颜色失真,提高了产品的竞争力。
本发明的其他优点、目标,和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书,权利要求书,以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1为现有技术中实现多畴显示的原理示意图;
图2为本申请实施例的像素电极的结构示意图;
图3为本申请实施例所形成的电场的分布示意图;
图4为VA型液晶显示器的透过率与波长的关系示意图;
图5a-图5b为本申请其他实施例的像素电极的结构示意图;
图6为伽马曲线的对比示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如“上”、“下”、“左”、“右”等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
另外,可以理解的是,在采用多畴显示的VA型液晶显示器中,通过位于一侧基板上的像素电极与位于另一侧基板上的公共电极相互配合来形成用于驱动 显示畴内的液晶分子转动的电场。而在本申请的下述各实施例中,旨在说明像素电极的结构,对公共电极的具体形式并未做限定。在不背离本发明的精神及实质的情况下,公共电极可以采用任意的形式,例如平面电极。
在本申请的实施例中,借助像素电极的结构在同一像素区域内形成两种电场强度不相等的电场。当上述强度不等的电场同时作用于像素区域内的液晶分子时,将使位于不同电场范围内的液晶分子发生不同角度的偏转,实现光学互补以改善大视角下的颜色失真。具体的,将像素电极的每个像素区域各自划分为第一配向单元与第二配向单元。也就是说,对于包含四个像素区域的像素电极可以对应形成八个配向单元。分别利用每个像素区域的第一配向单元形成第一电场,利用每个像素区域的第二配向单元形成第二电场,并使第一电场的电场强度与第二电场的电场强度不相等。下面结合图2进行说明。
图2为本申请实施例的像素电极的结构示意图。从图中可以看出,该像素电极20具有四个面积相等的像素区域ABCD,以垂直相交的躯干电极21进行划分,在像素电极20的外部边缘处还设置有矩形的躯干电极21,即各像素区域沿垂直方向或沿水平方向呈“田”字形相邻。躯干电极21主要用于支撑分支电极22。分支电极22是相互平行设置的条状电极,且多个分支电极22之间等间距分布,若各分支电极22之间的间距分布不均匀,则液晶显示器很容易出现显示不均的现象。
进一步地,多个分支电极22从躯干电极21的多个垂直相交处呈放射状延伸,相对延伸的多个分支电极22的延伸端在像素区域的对角线处形成有多个间隙,且多个间隙呈大致直线分布。以像素区域A为例,该区域内的分支电极22分别从像素区域A相对的两个顶角的位置向像素区域A的内部延伸,在像素区域A的对角线处形成大致直线的分界线。将各自包含两部分分支电极22的区域分别记为第一配向单元A1与第二配向单元A2,如图2中虚线框各自围成的区域所示。其中,第一配向单元A1内的分支电极22设置于“田”字形中间位置的躯干电极21的垂直相交处,第二配向单元A2内的分支电极22设置于“田”字形顶角位置的躯干电极21的垂直相交处。像素区域BCD也分别做了相应设置,如图2所示,不再赘述。
需要注意的是,像素区域ABCD以及分别位于像素区域ABCD内的第一配向单元与第二配向单元一般设置为沿垂直方向与沿水平方向分别对称的形式。如图2所示,像素区域A与像素区域B,以及第一配向单元A1与B1,第二配向 单元A2与B2沿垂直方向的轴线对称。同理,像素区域A与像素区域D,以及第一配向单元A1与D1,第二配向单元A2与D2沿水平方向的轴线对称。这是因为VA液晶显示器主要利用液晶分子产生对称偏转时的工作状态来进行视野角的补偿,只有液晶域高度对称排列,才能使液晶显示器在上下左右四个方向上的显示均衡。
在本申请的实施例中,像素区域ABCD内的第一配向单元的分支电极之间的间距与各像素区域内的第二配向单元的分支电极之间的间距不想等。如图2所示,第一配向单元A1内的分支电极22之间的间距D1与第二配向单元A2内的分支电极22之间的间距D2不相等。当以一定的灰阶电压施加于像素电极20时,由于间距D1和D2的影响,会分别在第一配向单元A1与第二配向单元A2的范围内形成电场强度不等的电场。形成于像素电极与公共电极之间的电场的强度一般取决于施加于像素电极上的灰阶电压的数值、液晶盒的厚度(各层液晶工作状态的综合效果)以及像素电极上的突起物和/或狭缝(slit)的尺寸。由于本申请实施例中的施加于像素电极20上的灰阶电压的数值与液晶盒的厚度均相等,因此,第一配向单元与第二配向单元范围内的电场的强度由像素电极20上的狭缝的尺寸决定,即由分支电极22之间的间距的大小来决定。
图3为本申请实施例所形成的电场的分布示意图。如图3所示,在间距D1处所形成的电场的电场线的分布更密集,即像素单元A1范围内的电场的强度大于像素单元A2范围内的电场的强度。在上述电场的影响下,第一配向单元A1范围内的液晶分子与第二配向单元A2范围内的液晶分子将发生不同角度的偏转,即像素区域A能够分别形成两个显示畴。进一步地,像素区域BCD的第一配向单元内与第二配向单元内的分支电极22之间的间距分别为D1和D2,并且也将分别在像素区域BCD内形成强度不相等的电场。
图4为VA型液晶显示器的透过率与波长的关系示意图。如图所示,横轴为波长,纵轴为透过率,Δnd是影响VA型液晶显示器的透过率的综合指标,其中Δn表示液晶的双折射率,d表示液晶盒厚(各层液晶工作状态的综合效果)。可以看出,随着Δnd的增大,液晶显示器的透过率与波长的依存关系越明显,液晶显示器原有的经过RGB混色后的白平衡被打破,因而将产生不同程度的颜色失真。使液晶分子在360度的范围内具有尽可能细致与均等的取向,利用不同波长的光之间进行光学补偿是改善颜色失真的主要方式。通过将四个像素区域(四种液晶分子的取向)进一步划分为八个配向单元,使具有四个像素区域的像素电 极20能够以八畴进行显示,进而有效地改善大尺寸液晶显示器的颜色失真。
另外,相比于现有技术中通过对同一像素区域的不同部分施加不同的驱动电压进行八畴显示的方式(如图1所示),由于不需要分别设置驱动电路,因而可以简化工艺制程以及驱动方式,同时提高像素的开口率。
进一步地,如图2所示,当D2大于D1时,第一配向单元A1内的电场强度将大于第二配向单元A2内的电场强度,因此第一配向单元A1范围内的液晶分子的偏转角度大于第二配向单元A2范围内的液晶分子的偏转角度。而液晶分子的偏转角度越大,从液晶层透过的光线越多,即液晶显示器的透过率就越高,液晶屏的亮度就越大,显示的画面就越靓丽与清晰。因此可以通过调节分支电极22之间的间距,进而调整液晶显示器的透过率来满足显示的要求。
从图2中还可以看出,第一配向单元A1与第二配向单元A2的分界线大致通过像素区域A的对角线,即第一配向单元A1的面积等于第二配向单元A2的面积,也就是说,可以认为第一配向单元内的液晶分子的数量与第二配向单元内的液晶分子的数量相等。在本申请的其他实施例中,还可以调节第一配向单元A1和第二配向单元A2的面积不相等。配向单元范围内所包含的液晶分子越多,从液晶层透过的光线越多,液晶显示器的透过率就越高,液晶屏的亮度就越大,显示的画面就越靓丽与清晰。因此,为了使液晶显示器满足显示的要求,可以根据模拟仿真的结果,通过调节分支电极22之间的间距的大小和/或改变第一配向单元和第二配向单元的面积来实现。
还需要注意的是,由于第一配向单元A1与第二配向单元A2内液晶分子的指向一致,因此将第一配向单元A1与第二配向单元A2互换位置设置,也就是说,使第一配向单元A1内分支电极22的间距D1大于第二配向单元A2内分支电极22的间距D2,或者使第一配向单元A1的面积大于(或小于)第二配向单元A2的面积,或者同时改变分支电极之间的间距与配向单元的面积也可以实现同样的调节作用。
图5a-图5b为本申请其他实施例的像素电极的结构示意图。如图所示,由分支电极的延伸端之间的间隙所形成的配向单元的分界线不再位于像素区域的对角线处。在图5a中,该分界线具有大致折线的形式。这种结构的像素电极20有利于对第一配向单元的面积和第二配向单元的面积进行微调。在图5b中,该分界线具有大致弧线的形式。一般的,连续光滑的边界能够使电场均匀,进而使液晶分子的取向连续变化,有利于改善液晶显示器的显示效果。因此优先采用具有 光滑的边界线的像素电极的结构。进一步地,由分支电极的延伸端之间的间隙所形成的配向单元的分界线还可以为采用其他形式,只要保证,位于不同像素区域的各第一配向单元的面积相等,以及位于不同像素区域的各第二配向单元的面积相等,就可以使液晶域对称,进而实现改善颜色失真的目的。
本申请实施例中的像素电极能够提高像素的开口率以及改善大视野角下的颜色失真。由于不需要对像素电极进行分区域的电压驱动,因此可以简化工艺制程与驱动电路的设计,降低生产的成本,提升产品的竞争力。
在本申请的其他实施例中,还提供了一种阵列基板,在阵列基板上设置有像素单元阵列,在每个像素单元内设置有具有上述结构的像素电极20,此处不再赘述。
图6为伽马曲线的对比示意图,其中曲线1为从正视的方向观察液晶显示屏时的标准伽马曲线,曲线2为采用现有技术中的八畴方式进行显示的伽马曲线,可以看出,相比于正视液晶显示屏时的标准伽马曲线,仍然存在较大的波动。曲线3为采用本申请实施例的像素电极制成的液晶显示器进行显示的伽马曲线,可以看出,该液晶显示器能够更好地与曲线1所示的标准伽马曲线进行近似,改善了液晶显示的效果。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种像素电极,包括四个像素区域,每个像素区域各自划分为第一配向单元与第二配向单元,其中,
    所述第一配向单元能够用于形成第一电场,所述第二配向单元能够用于形成第二电场,且所述第一电场的电场强度与所述第二电场的电场强度不相等。
  2. 根据权利要求1所述的像素电极,其中,在各像素区域的每个配向单元内分别设置有多个间距相等且相互平行的分支电极,且所述第一配向单元的各分支电极之间的间距与同一像素区域的所述第二配向单元的各分支电极之间的间距不相等。
  3. 根据权利要求2所述的像素电极,其中,位于不同像素区域的所述第一配向单元的所述各分支电极之间的间距相等,位于不同像素区域的所述第二配向单元的所述各分支电极之间的间距相等。
  4. 根据权利要求3所述的像素电极,其中,位于不同像素区域的所述第一配向单元的面积相等,位于不同像素区域的所述第二配向单元的面积相等。
  5. 根据权利要求4所述的像素电极,其中,位于不同像素区域的所述第一配向单元沿垂直方向与水平方向分别对称,位于不同像素区域的所述第二配向单元沿垂直方向与水平方向分别对称。
  6. 根据权利要求2所述的像素电极,其中,各像素区域沿垂直方向或沿水平方向呈“田”字形相邻,在每个所述像素区域的外围边缘处设置有垂直相交的躯干电极,所述第一配向单元与所述第二配向单元的分支电极分别从所述躯干电极的多个垂直相交处呈放射状延伸。
  7. 根据权利要求6所述的像素电极,其中,每个第一配向单元的所述分支电极设置于“田”字中间的所述躯干电极的垂直相交处,每个第二配向单元的所述分支电极设置于“田”字四个角的所述躯干电极的垂直相交处。
  8. 根据权利要求7所述的像素电极,其中,在每个像素区域内,所述第一配向单元的分支电极与所述第二配向单元的分支电极分别延伸至各自所属配向单元的边界处,且各分支电极的延伸端在所述边界处形成有多个间隙,所述多个间隙呈大致直线分布。
  9. 根据权利要求8所述的像素电极,其中,所述多个间隙呈大致弧线或折线分布。
  10. 一种阵列基板,包括像素单元阵列,在每个像素单元内设置像素电极,所述像素电极包括四个像素区域,每个像素区域各自划分为第一配向单元与第二配向单元,其中,
    所述第一配向单元能够用于形成第一电场,所述第二配向单元能够用于形成第二电场,且所述第一电场的电场强度与所述第二电场的电场强度不相等。
PCT/CN2015/093321 2015-09-25 2015-10-30 像素电极及阵列基板 WO2017049713A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/897,741 US10209579B2 (en) 2015-09-25 2015-10-30 Pixel electrode and array substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510617574.8 2015-09-25
CN201510617574.8A CN105137674B (zh) 2015-09-25 2015-09-25 像素电极及阵列基板

Publications (1)

Publication Number Publication Date
WO2017049713A1 true WO2017049713A1 (zh) 2017-03-30

Family

ID=54723070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093321 WO2017049713A1 (zh) 2015-09-25 2015-10-30 像素电极及阵列基板

Country Status (3)

Country Link
US (1) US10209579B2 (zh)
CN (1) CN105137674B (zh)
WO (1) WO2017049713A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221189A (zh) * 2019-12-11 2020-06-02 Tcl华星光电技术有限公司 像素结构、阵列基板及显示面板
CN111443527A (zh) * 2020-04-23 2020-07-24 Tcl华星光电技术有限公司 像素电极及液晶显示面板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487298A (zh) * 2016-01-25 2016-04-13 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置
WO2018176462A1 (en) * 2017-04-01 2018-10-04 Boe Technology Group Co., Ltd. Liquid crystal array substrate, liquid crystal display panel, and liquid crystal display apparatus
CN112703446A (zh) * 2018-09-14 2021-04-23 堺显示器制品株式会社 液晶显示面板及其制造方法
CN110346993A (zh) * 2019-06-19 2019-10-18 深圳市华星光电半导体显示技术有限公司 液晶显示面板
CN111025790A (zh) 2019-12-26 2020-04-17 Tcl华星光电技术有限公司 一种像素电极及显示面板
CN111338135B (zh) * 2020-04-10 2021-07-06 Tcl华星光电技术有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199550A1 (en) * 2011-01-26 2011-08-18 Fan Shih-Hung Liquid crystal display device
CN102305983A (zh) * 2011-08-29 2012-01-04 深圳市华星光电技术有限公司 液晶显示面板及其应用的显示装置
CN102540585A (zh) * 2010-12-09 2012-07-04 奇美电子股份有限公司 液晶面板及应用该液晶面板的液晶显示装置
CN102768443A (zh) * 2012-07-09 2012-11-07 深圳市华星光电技术有限公司 液晶显示面板及其应用的显示装置
CN103529603A (zh) * 2013-10-23 2014-01-22 友达光电股份有限公司 一种聚合物稳定配向的液晶面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130050629A1 (en) 2011-08-29 2013-02-28 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display panel and display apparatus using the same
CN104272179A (zh) * 2012-04-24 2015-01-07 夏普株式会社 液晶显示面板、液晶显示装置和薄膜晶体管阵列基板
US8743329B2 (en) 2012-07-09 2014-06-03 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display panel and apparatus having the liquid crystal display panel
KR102104928B1 (ko) 2013-03-15 2020-04-28 삼성디스플레이 주식회사 액정 표시 장치
CN104375340B (zh) * 2014-11-14 2017-04-12 友达光电股份有限公司 像素结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102540585A (zh) * 2010-12-09 2012-07-04 奇美电子股份有限公司 液晶面板及应用该液晶面板的液晶显示装置
US20110199550A1 (en) * 2011-01-26 2011-08-18 Fan Shih-Hung Liquid crystal display device
CN102305983A (zh) * 2011-08-29 2012-01-04 深圳市华星光电技术有限公司 液晶显示面板及其应用的显示装置
CN102768443A (zh) * 2012-07-09 2012-11-07 深圳市华星光电技术有限公司 液晶显示面板及其应用的显示装置
CN103529603A (zh) * 2013-10-23 2014-01-22 友达光电股份有限公司 一种聚合物稳定配向的液晶面板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111221189A (zh) * 2019-12-11 2020-06-02 Tcl华星光电技术有限公司 像素结构、阵列基板及显示面板
CN111443527A (zh) * 2020-04-23 2020-07-24 Tcl华星光电技术有限公司 像素电极及液晶显示面板
CN111443527B (zh) * 2020-04-23 2022-09-27 Tcl华星光电技术有限公司 像素电极及液晶显示面板

Also Published As

Publication number Publication date
CN105137674A (zh) 2015-12-09
US10209579B2 (en) 2019-02-19
CN105137674B (zh) 2019-02-22
US20180136523A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2017049713A1 (zh) 像素电极及阵列基板
US10629142B2 (en) Liquid crystal display device
US8537317B2 (en) Multi-domain vertical alignment liquid crystal display comprising slanting slits extending along diagonals of a plurality of pixel electrodes wherein the slanting slits have a length of ⅓ the total length of the diagonals of the pixel electrodes
KR101006202B1 (ko) 수평 전계형 액정 표시 장치용 픽셀 구조체
US9678395B1 (en) Array substrate and curved liquid crystal display panel
WO2017071016A1 (zh) 像素电极及阵列基板
WO2019075781A1 (zh) 一种具有新型像素设计的液晶显示面板
CN109283756B (zh) 多畴液晶显示器
KR20040098728A (ko) 수평 전계 인가형 액정 표시 패널
WO2021077510A1 (zh) 像素结构及液晶显示面板
US7683990B2 (en) Multi-domain vertical alignment liquid crystal display panel
US9995972B2 (en) Display device
US20100195027A1 (en) Liquid crystal display device
JP2018506739A (ja) 液晶表示パネル及び装置
TWI585499B (zh) 顯示面板
KR20160043232A (ko) 표시 장치
US10061169B2 (en) Array substrate, liquid crystal display panel and liquid crystal display
CN108957875B (zh) 一种画素结构与液晶显示装置
US10229935B2 (en) Curved display device having plurality of subpixel electrodes formed in plurality of columns
CN107170372A (zh) 曲面显示面板和显示装置
US20090296035A1 (en) Backlight driving circuit and driving method thereof
TWI480648B (zh) 配向平衡之多視域液晶顯示器
WO2020215556A1 (zh) 像素电极结构及液晶显示面板
US11892734B2 (en) Display panel, manufacturing method thereof, and display device
US11520188B2 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897741

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904588

Country of ref document: EP

Kind code of ref document: A1