WO2018161405A1 - 一种基于dml的高速pam4光收发模块 - Google Patents

一种基于dml的高速pam4光收发模块 Download PDF

Info

Publication number
WO2018161405A1
WO2018161405A1 PCT/CN2017/080288 CN2017080288W WO2018161405A1 WO 2018161405 A1 WO2018161405 A1 WO 2018161405A1 CN 2017080288 W CN2017080288 W CN 2017080288W WO 2018161405 A1 WO2018161405 A1 WO 2018161405A1
Authority
WO
WIPO (PCT)
Prior art keywords
pam4
unit
signal
dml
electrical signal
Prior art date
Application number
PCT/CN2017/080288
Other languages
English (en)
French (fr)
Inventor
徐红春
陈土泉
刘成刚
宿志成
张武平
陈奔
Original Assignee
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉电信器件有限公司 filed Critical 武汉电信器件有限公司
Publication of WO2018161405A1 publication Critical patent/WO2018161405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/524Pulse modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver

Definitions

  • the present invention relates to the field of optical modules, and in particular, to a high-speed PAM4 optical transceiver module based on DML.
  • the commonly used 40G/100G transceiver module adopts a parallel 4-channel 10G/25G NRZ code transmission, which requires four sets of transmitting and receiving components, and has high cost and complicated structure.
  • PAM4 transmission only half of the components can be used to achieve the same data transmission as the NRZ code.
  • the scheme for transmitting the module using the PAM4 system generally includes: driving the EML laser with an EML driver to transmit a high-speed optical signal (CN 106100747A PAM4-modulated optical transceiver module); the EML scheme uses a voltage signal to drive the advantage of having a linear domain width, but the same Faced with the problem of complex structure, high power consumption and high cost.
  • the transmitting unit implemented by the linear DML driver and the DML laser used in this case has obvious advantages of small power consumption and low cost with respect to the EML transmission scheme relative to the EML transmission scheme.
  • PAM4 system transmission under the same maximum signal amplitude, PAM4 signal will use 4 levels for signal transmission, the amplitude difference between each adjacent two levels is only 1/3 of NRZ. Signals are susceptible to noise and error. Therefore, it is required to ensure the continuity of the high-frequency electrical signal at the transmitting end and the receiving end of the module, and reduce the high-frequency loss to maximize the amplitude of the output signal.
  • Optical transmitter The LD is connected to the driver, the driver and the ceramic package by a gold wire bonding method; the photodetector inside the optical receiver and the transimpedance amplifier, the transimpedance amplifier and the ceramic tube are also passed through the gold wire state. Connected in a fixed way. The ceramic tube and the module PCB are connected by a high frequency soft band. High-frequency signal amplitudes are attenuated as they travel across gold and softband, and the attenuation increases as the signal rate increases.
  • the embodiment of the present invention is used to solve the problem that the high-speed optical module adopting the traditional NRZ system has a complicated structure and high cost as the transmission rate increases, and the high-speed (10 Gbps to 60 Gbps) electroabsorption modulation laser EML and the PAM4 mode have a complicated working principle. Big problem.
  • the embodiment of the present invention is also used to solve the problem of high frequency signal transmission loss caused by the sensitivity of the PAM4 system signal to noise and transmission amplitude attenuation.
  • an embodiment of the present invention provides a high-speed PAM4 optical transceiver module based on DML.
  • the optical transceiver module includes an interface unit, a PAM4 standard conversion unit, a DML optical transmission unit, and a light receiving unit:
  • the interface unit is connected to the PAM4 standard conversion unit for transmitting the NRZ electrical signal of the first code rate transmitted through the interface unit to the PAM4 standard conversion unit;
  • the PAM4 system conversion unit is further connected to the DML light emitting unit and the light receiving unit, configured to convert the NRZ electrical signal of the first code rate into an electrical signal of a first PAM4 modulation pattern format, and forward the signal to the DML light emission.
  • a unit wherein the DML light emitting unit transmits the PAM4 encoded signal with a laser signal; wherein a code rate of the electrical signal of the first PAM4 modulation pattern format is a first code rate;
  • the PAM4 system conversion unit is further configured to receive an electrical signal of a second PAM4 modulation pattern format generated by the light receiving unit, and convert the electrical signal of the second PAM4 modulation pattern format into a second NRZ encoded electrical signal, Passed to the interface unit; wherein the code rate of the second NRZ encoded electrical signal is a first code rate.
  • the PAM4 standard conversion unit includes a PAM4 standard coding unit and a PAM4 standard decoding unit, where the interface unit includes a host receiving port and a host sending port.
  • the PAM4 standard coding unit is connected to the host receiving port, and is configured to obtain the receiving end through the host
  • the two first-rate NRZ electrical signals received by the port are converted into an electrical signal of a first PAM4 modulation pattern format, which is output by the transmission port on the line side;
  • the PAM4 standard decoding unit is configured to acquire an electrical signal of a second PAM4 modulation pattern format received by the receiving port on the line side, and decode the signal into two second NRZ electrical signals, and the host sends the port output.
  • the PAM4 standard coding unit includes a CAUI receiving unit, two clock data recovery circuits, a 2:1 electrical signal multiplexer, a forward error correction coding unit, and a PAM4 encoder.
  • the CAUI receiving unit acquires two first-rate NRZ electrical signals of the host receiving port; the two clock data recovery circuits are configured to recover clock data of the NRZ electrical signal of the first code rate, and after recovery,
  • the two first-rate NRZ electrical signals are transmitted to the 2:1 electrical signal multiplexer; the 2:1 electrical signal multiplexer is used to multiplex the two first-rate NRZ electrical signals into one second
  • the NRZ electrical signal of the code rate, the multiplexed electrical signal transmission code is added to the redundant error correction code by the forward error correction coding unit, and transmitted to the PAM4 encoder; the PAM4 encoder is used to transmit the NRZ of the second code rate.
  • the signal is converted to an electrical signal of a first PAM4 modulation pattern format of a first code rate and transmitted by the line side transmission port to the DML light emitting unit; wherein the rate of the second code rate is twice the first rate rate.
  • the PAM4 standard decoding unit includes an analog-to-digital converter, a digital signal processing unit, a 1:2 electrical signal demultiplexer, a forward error correction decoding unit, and a CAUI transmitting unit.
  • An analog-to-digital conversion unit configured to convert the electrical signal of the second PAM4 modulation pattern format of the first code rate sent by the line side interface receiving light receiving unit into a digital signal
  • the digital signal processing unit is configured to convert the digital signal obtained by the analog-to-digital conversion unit into an electrical signal of a second code rate in an NRZ modulation format;
  • the 1:2 electrical signal demultiplexer is configured to demultiplex the electrical signal of the second code rate into two second NRZ encoded electrical signals of the first code rate, and correct by the forward error correction decoding unit.
  • the error decoding process is sent to the host sending port by the host side CAUI transmitting unit;
  • the rate of the second code rate is twice the rate of the first code rate.
  • the DML light emitting unit comprises a linear DML driver and a DML laser;
  • the DML linear driver receives the differential voltage signal sent by the line side port of the PAM4 coding unit and converts it into a current drive signal to drive the DML laser, and the laser transmits the first code rate through the module optical interface.
  • the optical signal is to an external optical network; wherein the differential voltage signal corresponds to an electrical signal of the first PAM4 modulation pattern format.
  • the DML linear driver and the DML laser are fixed in the ceramic tube by using gold tin solder, and the ceramic tube has a layer of gold fingers inside and outside, the two layers of gold fingers are connected by a high frequency transmission line, and the external gold fingers pass the heat.
  • the method of pressure welding is directly connected with the gold finger of the module PCB board to realize power supply, monitoring and electrical signal transmission; the internal gold finger is electrically connected with the DML linear driver through the gold wire bonding mode, and the DML linear driver is connected by the gold wire bonding method. DML laser connection.
  • the light receiving unit comprises a linear transimpedance amplifier and a photodetector
  • the photodetector is configured to receive an optical signal of a first code rate transmitted by an external optical network and convert the signal into a weak transimpedance amplifier for transmitting a current signal to a differential voltage signal transmission a line side interface to the PAM4 standard decoding unit; wherein the differential voltage signal corresponds to an electrical signal of the second PAM4 modulation pattern format.
  • the linear transimpedance amplifier is fixed in the ceramic tube by conductive silver glue; the photodetector electrode is directly connected to the linear transimpedance amplifier electrode by flip chip bonding; the linear transimpedance amplifier and the ceramic tube case are internally connected
  • the gold fingers are connected by a gold wire bonding method; the photodetector transmits the photoelectrically converted current signal to the transimpedance amplifier via the bonding gold wire, and the high frequency voltage signal generated by the transimpedance amplifier is transmitted to the bonding gold wire to the bonding gold wire.
  • the gold finger inside the shell, the high frequency signal is transmitted from the internal gold finger to the external gold finger via the high frequency transmission line.
  • the external gold finger of the ceramic tube shell is directly connected with the gold finger of the module PCB by thermocompression welding to realize power supply, monitoring and high-frequency signal transmission.
  • the photodetector pad structure may be a GS or GSG structure, and the corresponding transimpedance amplifier RF input pad structure is also a corresponding size GS or GSG structure.
  • the module adopting the PAM4 modulation mode only needs one 25G transmitting component and one 25G receiving component to achieve a signal transmission rate of 50 Gbit rate, and has a simple module structure and small volume compared with the NRZ modulation mode module of the same rate. And the advantages of low cost.
  • the embodiment of the present invention implements the emission of a 50G bps PAM4 optical signal by using a 25G linear DML driver and a 25G DML TOSA.
  • This solution has lower power consumption than the EML solution. With cost.
  • the light receiving unit adopts a flip-chip process to realize the RF connection between the photodetector and the linear transimpedance amplifier (IC), and reduces the attenuation of the high frequency signal introduced by the gold wire bonding connection mode; the optical device shell gold finger and the module PCB gold finger directly use
  • the hot-press welding method realizes the connection of the two gold fingers, and reduces the electric signal loss introduced by the ordinary soft-belt connection mode.
  • FIG. 1 is a schematic diagram of a DML-based high-speed PAM4 optical transceiver module according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a PAM4 standard conversion unit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a DML light emitting unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a light receiving unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of flip-chip connection of a photodetector and a transimpedance amplifier according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a gold finger connection between an optical device gold finger and a module PCB board according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of another DML-based high-speed PAM4 optical transceiver module according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another DML-based high-speed PAM4 optical transceiver module according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another DML-based high speed PAM4 optical transceiver module according to an embodiment of the present invention.
  • the embodiment 1 of the present invention provides a high-speed PAM4 optical transceiver module based on DML.
  • the optical transceiver module includes an interface unit 11, a PAM4 standard conversion unit 12, a DML light emitting unit 13 and a light receiving unit 14:
  • the interface unit 11 is connected to the PAM4 standard conversion unit 12 for transmitting the NRZ electrical signal of the first code rate transmitted through the interface unit 11 to the PAM4 system conversion unit 12;
  • the PAM4 system conversion unit 12 is further connected to the DML light emitting unit 13 and the light receiving unit 14 for converting the NRZ electrical signal of the first code rate into an electrical signal of a first PAM4 modulation pattern format, and transferring the electrical signal to the a DML light emitting unit 13 such that the DML light emitting unit 13 transmits the PAM4 encoded signal with a laser signal; wherein a code rate of the electrical signal of the first PAM4 modulation pattern format is a first code rate;
  • the PAM4 system conversion unit 12 is further configured to receive an electrical signal of a second PAM4 modulation pattern format generated by the light receiving unit 14, and convert the electrical signal of the second PAM4 modulation pattern format into a second NRZ encoded electrical signal. Then, it is delivered to the interface unit 11; wherein the code rate of the second NRZ encoded electrical signal is the first code rate.
  • the module adopting the PAM4 modulation mode only needs a first code rate (for example, 25 Gbps) transmitting component and a first rate receiving component to achieve a signal rate of a second code rate (for example, 50 Gbps).
  • a first code rate for example, 25 Gbps
  • a second code rate for example, 50 Gbps.
  • the first code rate is 25 Gbps and the second code rate is 50 Gbps, for example, DMG-based 50G
  • the high-speed PAM4 optical transceiver module adopts a higher-order modulation technology than NRZ, and only needs one 25G transmitting component and one 25G receiving component to achieve a signal transmission rate of 50G bit rate.
  • the PAM4 modulation mode makes the structure of the optical module simpler.
  • the combination of a 25G linear DML driver and a 25G DML laser can achieve a further reduction in power consumption and cost of the optical module relative to the EML transmission scheme.
  • the PAM4 system conversion unit 12 includes a PAM4 standard coding unit 121 and a PAM4 standard coding unit 122
  • the interface unit 11 includes a host receiving port and a host sending port
  • the PAM4 standard coding unit 121 is connected to the host receiving port, and is configured to acquire two NRZ electrical signals of the first code rate received by the host receiving port, and convert the electrical signals into a first PAM4 modulation pattern format. Output port output on the line side;
  • the PAM4 standard encoding unit 122 is configured to obtain an electrical signal of a second PAM4 modulation pattern received by the receiving port on the line side, and decode the signal into two second NRZ electrical signals, and the host sends the port output.
  • the embodiment of the present invention further provides a specific structural implementation manner of the PAM4 standard encoding unit 121 and the PAM4 standard encoding unit 122.
  • the PAM4 standard encoding unit 121 includes a CAUI receiving unit, two clock data recovery circuits, 2:1 electrical signal multiplexer, forward error correction coding unit and PAM4 encoder,
  • the CAUI receiving unit acquires two first-rate NRZ electrical signals of the host receiving port; the two clock data recovery circuits are configured to recover clock data of the NRZ electrical signal of the first code rate, and after recovery,
  • the two first-rate NRZ electrical signals are transmitted to the 2:1 electrical signal multiplexer; the 2:1 electrical signal multiplexer is used to multiplex the two first-rate NRZ electrical signals into one second
  • the NRZ electrical signal of the code rate, the multiplexed electrical signal transmission code is added to the redundant error correction code by the forward error correction coding unit, and transmitted to the PAM4 encoder; the PAM4 encoder is used to transmit the NRZ of the second code rate.
  • the signal is converted into an electrical signal of a first PAM4 modulation pattern format of a first code rate and transmitted by the line side transmission port to the DML light emitting unit 13; wherein the rate of the second code rate is twice the rate of the first code rate
  • the first code rate is 25 Gbps and the second code rate is 50 Gbps.
  • the first code rate may take values from 10 Gbps to 60 Gbps.
  • the PAM4 standard encoding unit 122 includes an analog to digital converter, a digital signal processing unit, a 1:2 electrical signal demultiplexer, a forward error correction decoding unit, and a CAUI transmitting unit.
  • an analog-to-digital conversion unit configured to convert the electrical signal of the second PAM4 modulation pattern format of the first code rate sent by the line side interface receiving light receiving unit 14 into a digital signal;
  • the digital signal processing unit is configured to: Converting the digital signal obtained by the analog-to-digital conversion unit into an electrical signal of a second code rate in an NRZ modulation format; the 1:2 electrical signal demultiplexer for demultiplexing the electrical signal of the second code rate
  • the second NRZ encoded electrical signal of the first channel of the second code rate is subjected to error correction decoding processing by the forward error correction decoding unit, and is sent to the host transmission port by the host side CAUI transmitting unit; wherein, the rate of the second code rate is The first rate rate is twice, for example, the first code rate is 25 Gbps, and the second code rate is 50 Gbps.
  • the DML light emitting unit 13 includes a linear DML driver 131 and a DML laser 132;
  • the DML linear driver receives the differential voltage signal sent by the line side port of the PAM4 standard encoding unit 121 and converts it into a current driving signal to drive the DML laser 132, and the laser transmits the optical signal of the first bit rate to the external optical network through the module optical interface;
  • the differential voltage signal corresponds to an electrical signal of the first PAM4 modulation pattern format.
  • a 50G bps PAM4 optical signal is transmitted by using a 25G linear DML driver 131 and a 25G DML TOSA.
  • This solution has lower power consumption and cost than the EML solution.
  • the first code rate is 25 Gbps and the second code rate is 50 Gbps as an example
  • an implementation structure of the light receiving unit 14 is provided in the embodiment of the present invention, where the light receiving unit is 14 includes a linear transimpedance amplifier 141 and a photodetector 142.
  • the photodetector 142 is configured to receive an optical signal of a first code rate transmitted by an external optical network and convert it into a weak current signal and transmit the signal to the linear transimpedance amplifier 141.
  • the linear transimpedance amplifier 141 is configured to convert the current signal into The differential voltage signal is transmitted to a line side interface of the PAM4 standard encoding unit 122; wherein the differential voltage signal corresponds to an electrical signal in a format of the second PAM4 modulation pattern.
  • the DML linear driver and the DML laser 132 are fixed in a ceramic tube by using a gold-tin solder.
  • the ceramic tube has a layer of gold fingers inside and outside, and the two layers of gold fingers are The high-frequency transmission line is connected, and the external gold finger is directly connected with the gold finger of the module PCB by means of hot-welding to realize power supply, monitoring and electrical signal transmission; the internal gold finger is electrically connected with the DML linear driver through the gold bonding mode, DML
  • the linear driver is connected to the DML laser 132 by means of a gold wire bond.
  • the optical signal emitted by the DML laser 132 is concentrated by an aspherical condenser lens into a ceramic optical fiber ferrule outside the envelope, and an isolator is disposed between the lens and the ferrule.
  • a preferred implementation manner is also provided for the connection manner of the linear transimpedance amplifier 141 and the photodetector 142.
  • the linear transimpedance amplifier 141 passes through the conductive silver.
  • the glue is fixed in the ceramic tube; the photodetector 142 electrode is directly connected to the electrode of the linear transimpedance amplifier 141 by flip chip bonding, as shown in FIG.
  • the photo-detector 142 transmits the photoelectrically converted current signal to the transimpedance amplifier via the bonding gold wire, and the high-frequency voltage signal generated by the transimpedance amplifier is transmitted to the inside of the package via the bonding gold wire.
  • the gold finger, the high frequency signal is transmitted from the internal gold finger to the external gold finger via the high frequency transmission line.
  • the external gold finger of the ceramic tube shell is directly connected with the gold finger of the module PCB board by hot pressure welding to realize power supply, monitoring and high-frequency signal transmission, as shown in Fig. 6.
  • the photodetector 142 pad structure may be a GS or GSG structure, and the corresponding transimpedance amplifier RF input pad structure is also a corresponding size GS or GSG structure.
  • the flip-chip solder Due to the temperature limit that the chip can withstand, the flip-chip solder must use low-temperature solder, so Au-Sn alloy is used as the solder material.
  • the Au-Sn alloy has a proportional relationship of 80% Au and 20% Sn, and the co-dissolution temperature is 280 °C.
  • the soldering process is as follows: the soldering of the chip is performed under the protection of high-purity nitrogen.
  • the pre-formed gold-tin solder is first placed on the pad of the transimpedance amplifier (IC), and the soldering device suction head picks up the photodetector 142.
  • the quasi-system aligns the photodetector 142 with the pad position of the transimpedance amplifier, and then the tip sinks so that the two pad spacers are soldered together.
  • the heating stage is gradually heated to above the melting point, for example, 330 ° C.
  • Sn is first melted, and the molten Sn dissolves the Au layer to form crystals. After the temperature is lowered, the crystals solidify to realize the connection of the two pads.
  • the embodiment of the present invention further provides a DML-based high-speed PAM4 optical transceiver module with internal testing functions. As shown in Figure 7,
  • the light receiving unit 14 receives the optical signal of the 25 Gbaud rate transmitted by the external optical network, and outputs a differential 50 Gbps PAM4 electrical signal to the line side receiving end of the PAM system conversion unit 12 through photoelectric conversion and linear transimpedance amplification processing.
  • the PAM system conversion unit loops back the received electrical signal to the line side transmitting end and transmits it to the DML light emitting unit 13.
  • the 25G linear driver of the DML light emitting unit 13 receives the 50 Gbps PAM4 voltage signal and converts it into a current signal to drive the 25G direct modulation laser DML, and the direct modulation laser transmits a 25 Gbaud rate optical signal to the external optical network.
  • a switch circuit is established between the CAUI receiving unit of the PAM4 standard coding unit and the PAM4 standard decoding unit CAUI transmitting unit, and when the high-speed PAM4 optical transceiver module of the DML enters the internal test, the CAUI receiving unit of the PAM4 standard coding unit is controlled.
  • the switching circuit between the PAM4 system decoding unit CAUI transmitting unit is closed, so that the electrical signal transmitted by the PAM4 standard decoding unit CAUI transmitting unit can be directly received by the CAUI receiving unit of the PAM4 standard encoding unit; and when the DML high-speed PAM4 optical transceiver module When in the normal working mode, the switching circuit between the CAUI receiving unit of the PAM4 standard encoding unit and the PAM4 standard decoding unit CAUI transmitting unit will be disconnected.
  • the embodiment of the present invention further provides a DML-based high-speed PAM4 optical transceiver module with a loopback test function. As shown in Figure 8,
  • the PAM4 standard conversion unit 12 also includes a 50 Gbps PAM4 pattern generator and a 50 Gbps PAM4 error code test unit.
  • the PAM4 pattern generator emits a 50 Gbps PAM4 electrical signal to the DML light emitting unit 13, and the 25G linear driver inside the DML light emitting unit 13 receives the voltage signal and converts it into a current signal to drive the 25G direct modulation laser DML.
  • the DML laser 132 emits an optical signal of a 25 Gbaud rate back to the light receiving unit 14 through the optical fiber.
  • the photodetection chip 142 inside the light receiving unit 14 converts the optical signal into a current signal, and then the current signal is converted into a differential voltage signal by the linear transimpedance amplifier 141.
  • PAM4 error code The test unit receives the differential voltage signal output by the light receiving unit 14 and tests its bit error rate, thereby finally implementing the module internal loopback test function.
  • the embodiment of the invention further provides a high-speed PAM4 optical transceiver module based on DML, as shown in FIG.
  • the system includes: an interface unit 11, a transmitting unit 13, and a linear receiving unit 13.
  • One channel 50 Gbps PAM4 electrical signal is directly sent to the transmitting unit 13 through the interface unit 11, the transmitting unit integrates a 25G linear driver and a 25G direct modulation laser DML, and the linear driver receives 50 Gbps.
  • the voltage signal is converted into a drive current to drive the DML, and finally the optical signal is emitted by the DML.
  • the linear receiving unit 14 receives the optical signal transmitted by the external optical network, and first converts the optical signal into a current signal by the high speed photodetector 142, and then the linear transimpedance amplifier 141 converts the current signal into a 50 Gbps PAM electrical signal and passes through the interface unit 11 Output.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • disk optical disk

Abstract

本发明涉及光模块技术领域,提供了一种基于DML的高速PAM4光收发模块。其中光收发模块包括接口单元、PAM4制式转换单元、DML光发射单元和光接收单元:接口单元连接PAM4制式转换单元,用于传递通过接口单元传递过来的第一码率的NRZ电信号给PAM4制式转换单元;PAM4制式转换单元还连接DML光发射单元和光接收单元,PAM4制式转换单元还用于接收光接收单元生成的第二PAM4调制码型格式的电信号。本发明实施例采用PAM4调制模式的模块可以实现只需要一路25G发射组件及一路25G接收组件即可达到50G比特率的信号传输速率,与相同速率的NRZ调制模式模块相比,具有模块结构简单,体积小以及成本低等的优势。

Description

一种基于DML的高速PAM4光收发模块 【技术领域】
本发明涉及光模块技术领域,特别是涉及一种基于DML的高速PAM4光收发模块。
【背景技术】
互联网和智能终端的快速应用使全球数据量呈爆发式增长,这对互联网带宽的要求就越来越高。如何最大化的利用现有的网络基础资源优化成本,并实现数据传输速率翻倍成为最大挑战。目前在背板、系统、以及短距离的光纤传输中,普遍使用的是10Gbps/25Gbps/28Gbps的NRZ传输方式。但是当传输速率超过28G并向更高速率演化时,背板等电信号传输会对高频信号产生更恶劣的损耗,而采用更高阶的调制,如PAM4制式,在相同的带宽下可以传输更多的数据。
目前常用的40G/100G收发模块采用的解决方案为并行的4通道10G/25G NRZ码传输,需要用到4组发射及接收组件,成本高,结构复杂。采用PAM4制式传输,只需要一半的组件即可实现与NRZ码相同的数据传输。
采用PAM4制式的模块发射部分的方案一般有:利用EML驱动器驱动EML激光器发射高速光信号(CN 106100747A基于PAM4调制的光收发模块);EML方案采用电压信号驱动具有线性域宽的优势,但是其同样面临着构造复杂,功耗大,成本高昂的问题。本案采用的线性DML驱动器与DML激光器组合实现的发射单元相对于EML发射方案相对于EML方案具有明显的功耗小,成本低的优势。
另外采用PAM4制式传输,在相同的最大信号幅度下,PAM4信号会使用4个电平进行信号传输,每相邻两个电平间的幅度差异只有NRZ情况下的1/3。信号很容易受到噪声的干扰而产生误码。因此要求在模块的发射端和接收端保证高频电信号的连续性,减少高频损耗,以达到输出信号幅度最大化。光发射机内 部的LD与驱动器、驱动器与陶瓷管壳之间一般通过金线邦定的方式连接;光接收机内部的光电探测器与跨阻放大器、跨阻放大器与陶瓷管壳之间也是通过金线邦定的方式连接。而陶瓷管壳与模块PCB板则通过高频软带连接。高频信号幅度在金线和软带上传输时都会产生衰减,而且衰减会随着信号速率增加而增加。
【发明内容】
本发明实施例用于解决随着传输速率的增加,采用传统NRZ制式的高速光模块结构复杂,成本高昂;以及采用高速(10Gbps~60Gbps)电吸收调制激光器EML配合PAM4模式工作原理复杂,功耗大的问题。
进一步,本发明实施例还用于解决针对PAM4制式信号对噪声及传输幅度衰减的敏感性,造成的高频信号传输损耗问题。
本发明实施例采用如下技术方案:
第一方面,本发明实施例提供了一种基于DML的高速PAM4光收发模块,光收发模块包括接口单元、PAM4制式转换单元、DML光发射单元和光接收单元:
所述接口单元连接PAM4制式转换单元,用于传递通过所述接口单元传递过来的第一码率的NRZ电信号给所述PAM4制式转换单元;
所述PAM4制式转换单元还连接DML光发射单元和光接收单元,用于将所述第一码率的NRZ电信号转换成第一PAM4调制码型格式的电信号,并转交给所述DML光发射单元,以便所述DML光发射单元以激光信号发射所述PAM4编码信号;其中,所述第一PAM4调制码型格式的电信号的码率为第一码率;
所述PAM4制式转换单元还用于接收光接收单元生成的第二PAM4调制码型格式的电信号,并将所述第二PAM4调制码型格式的电信号转换成第二NRZ编码电信号后,传递给所述接口单元;其中,第二NRZ编码电信号的码率为第一码率。
可选的,所述PAM4制式转换单元包括PAM4制式编码单元和PAM4制式解码单元,所述接口单元包括主机接收端口和主机发送端口,
PAM4制式编码单元连接所述主机接收端口,用于获取通过所述主机接收端 口接收的两路第一码率的NRZ电信号,并转换为一路第一PAM4调制码型格式的电信号,由线路侧的发送端口输出;
PAM4制式解码单元用于获取线路侧的接收端口接收的一路第二PAM4调制码型格式的电信号,并解码为两路第二NRZ电信号,由主机发送端口输出。
可选的,所述PAM4制式编码单元包括CAUI接收单元、两个时钟数据恢复电路、2:1电信号复用器、前向纠错编码单元和PAM4编码器,
所述CAUI接收单元获取主机接收端口的两路第一码率的NRZ电信号;所述两个时钟数据恢复电路用于对所述第一码率的NRZ电信号进行时钟数据的恢复,恢复后的两路第一码率的NRZ电信号传至2:1电信号复用器;2:1电信号复用器用于将所述两路第一码率的NRZ电信号复用为一路第二码率的NRZ电信号,复用后的电信号传输码经过前向纠错编码单元加入冗余纠错码,并传给PAM4编码器;所述PAM4编码器用于将第二码率的NRZ电信号转换为第一码率的第一PAM4调制码型格式的电信号,并由线路侧发送端口发送至DML光发射单元;其中,第二码率的速率为第一码率速率的两倍。
可选的,所述PAM4制式解码单元包括模数转换器、数字信号处理单元、1:2电信号解复用器、前向纠错解码单元和CAUI发射单元,
模数转换单元,用于将所述线路侧接口接收光接收单元发送的一路第一码率的第二PAM4调制码型格式的电信号转换为数字信号;
所述数字信号处理单元,用于将模数转换单元得到的所述数字信号转换为NRZ调制格式的第二码率的电信号;
所述1:2电信号解复用器,用于将第二码率的电信号解复用为2路第一码率的第二NRZ编码电信号,并由前向纠错解码单元进行纠错解码处理,通过主机侧CAUI发射单元发送到主机发送端口;
其中,第二码率的速率为第一码率速率的两倍。
可选的,所述DML光发射单元包括线性DML驱动器和DML激光器;
DML线性驱动器接收PAM4制式编码单元线路侧端口发送的差分电压信号并转换为电流驱动信号驱动DML激光器,激光器通过模块光接口发射第一码率的 光信号到外部光网络;其中,所述差分电压信号对应于所述第一PAM4调制码型格式的电信号。
可选的,所述DML线性驱动器与DML激光器利用金锡焊料固定在陶瓷管壳内,陶瓷管壳内部和外部分别有一层金手指,两层金手指由高频传输线连接,外部金手指通过热压焊的方式与模块PCB板金手指直接连接实现供电、监控及电信号传输;内部金手指通过金线邦定的方式与DML线性驱动器实现电气连接,DML线性驱动器通过金线邦定的方式与DML激光器连接。
可选的,所述光接收单元包括线性跨阻放大器和光电探测器,
所述光电探测器用于接收外部光网络发送的第一码率的光信号并转换为微弱的电流信号传送给线性跨阻放大器;所述线性跨阻放大器用于将电流信号转换为差分电压信号传送给PAM4制式解码单元的线路侧接口;其中,所述差分电压信号对应与所述第二PAM4调制码型格式的电信号。
可选的,所述线性跨阻放大器通过导电银胶固定在陶瓷管壳内;所述光电探测器电极采用倒装焊接方式与线性跨阻放大器电极直接连接;线性跨阻放大器与陶瓷管壳内部的金手指之间通过金线邦定的方式进行连接;光电探测器将光电转换后的电流信号经由邦定金线传送给跨阻放大器,跨阻放大器产生的高频电压信号经由邦定金线传送给管壳内部金手指,高频信号经由高频传输线从内部金手指传送给外部金手指。
可选的,陶瓷管壳外部金手指则通过热压焊的方式与模块PCB板金手指直接连接实现供电、监控与高频信号传输。
可选的,所述光电探测器焊盘结构可为GS或GSG结构,对应的跨阻放大器射频输入焊盘结构也为对应尺寸的GS或GSG结构。
本发明实施例采用PAM4调制模式的模块只需要一路25G发射组件及一路25G接收组件即可达到50G比特率的信号传输速率,与相同速率的NRZ调制模式模块相比,具有模块结构简单,体积小以及成本低等的优势。
另外,本发明实施例采用25G线性DML驱动器与25G DML TOSA组成的发射单元实现50G bps PAM4光信号的发射。该方案相对于EML方案具有更低的功耗 与成本。
还有,本发明实施例为提高模块高频信号传输的连续性,取得更大的输出信号幅度。光接收单元采用倒装工艺实现光电探测器与线性跨阻放大器(IC)的射频连接,减少金线邦定连接方式引入的高频信号衰减;光器件管壳金手指与模块PCB金手指直接用热压焊接方式实现两者金手指的连接,减少普通软带连接方式引入的电信号损耗。
【附图说明】
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种基于DML的高速PAM4光收发模块的示意图;
图2是本发明实施例提供的一种PAM4制式转换单元的结构示意图;
图3是本发明实施例提供的一种DML光发射单元的结构示意图;
图4是本发明实施例提供的一种光接收单元的结构示意图;
图5是本发明实施例提供的一种光电探测器与跨阻放大器倒装连接的示意图;
图6是本发明实施例提供的一种光器件金手指与模块PCB板金手指连接示意图;
图7是本发明实施例提供的另一种基于DML的高速PAM4光收发模块的示意图;
图8是本发明实施例提供的另一种基于DML的高速PAM4光收发模块的示意图;
图9是本发明实施例提供的另一种基于DML的高速PAM4光收发模块的示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
本发明实施例1提供了一种基于DML的高速PAM4光收发模块,如图1所示,所述光收发模块包括接口单元11、PAM4制式转换单元12、DML光发射单元13和光接收单元14:
所述接口单元11连接PAM4制式转换单元12,用于传递通过所述接口单元11传递过来的第一码率的NRZ电信号给所述PAM4制式转换单元12;
所述PAM4制式转换单元12还连接DML光发射单元13和光接收单元14,用于将所述第一码率的NRZ电信号转换成第一PAM4调制码型格式的电信号,并转交给所述DML光发射单元13,以便所述DML光发射单元13以激光信号发射所述PAM4编码信号;其中,所述第一PAM4调制码型格式的电信号的码率为第一码率;
所述PAM4制式转换单元12还用于接收光接收单元14生成的第二PAM4调制码型格式的电信号,并将所述第二PAM4调制码型格式的电信号转换成第二NRZ编码电信号后,传递给所述接口单元11;其中,第二NRZ编码电信号的码率为第一码率。
本发明实施例采用PAM4调制模式的模块只需要一路第一码率(例如25Gbps)发射组件及一路第一码率接收组件即可达到第二码率(例如50Gbps)的信号传输速率。与相同速率的NRZ调制模式模块相比,具有模块结构简单,体积小以及成本低等的优势。
其中,以第一码率为25Gbps和第二码率为50Gbps为例,基于DML的50G 高速PAM4光收发模块,由于采用比NRZ更高阶的调制技术,只需要一路25G发射组件及一路25G接收组件即可达到50G比特率的信号传输速率。PAM4调制模式可以使光模块的结构更简单。另外采用25G线性DML驱动器与25G DML激光器组合实现的发射单元相对于EML发射方案可以让光模块的功耗与成本实现进一步的下降。
如图2所示,为本发明实施例提供的一种PAM4制式转换单元12的实现方式,其中,所述PAM4制式转换单元12包括PAM4制式编码单元121和PAM4制式编码单元122,所述接口单元11包括主机接收端口和主机发送端口,
PAM4制式编码单元121连接所述主机接收端口,用于获取通过所述主机接收端口接收的两路第一码率的NRZ电信号,并转换为一路第一PAM4调制码型格式的电信号,由线路侧的发送端口输出;
PAM4制式编码单元122用于获取线路侧的接收端口接收的一路第二PAM4调制码型格式的电信号,并解码为两路第二NRZ电信号,由主机发送端口输出。
进一步的,本发明实施例还提供了所述PAM4制式编码单元121和PAM4制式编码单元122的一种具体结构实现方式,所述PAM4制式编码单元121包括CAUI接收单元、两个时钟数据恢复电路、2:1电信号复用器、前向纠错编码单元和PAM4编码器,
所述CAUI接收单元获取主机接收端口的两路第一码率的NRZ电信号;所述两个时钟数据恢复电路用于对所述第一码率的NRZ电信号进行时钟数据的恢复,恢复后的两路第一码率的NRZ电信号传至2:1电信号复用器;2:1电信号复用器用于将所述两路第一码率的NRZ电信号复用为一路第二码率的NRZ电信号,复用后的电信号传输码经过前向纠错编码单元加入冗余纠错码,并传给PAM4编码器;所述PAM4编码器用于将第二码率的NRZ电信号转换为第一码率的第一PAM4调制码型格式的电信号,并由线路侧发送端口发送至DML光发射单元13;其中,第二码率的速率为第一码率速率的两倍,例如所述第一码率为25Gbps,所述第二码率为50Gbps。在本发明实施例中,第一码率可以从10Gbps~60Gbps范围内取值。
所述PAM4制式编码单元122包括模数转换器、数字信号处理单元、1:2电信号解复用器、前向纠错解码单元和CAUI发射单元,
模数转换单元,用于将所述线路侧接口接收光接收单元14发送的一路第一码率的第二PAM4调制码型格式的电信号转换为数字信号;所述数字信号处理单元,用于将模数转换单元得到的所述数字信号转换为NRZ调制格式的第二码率的电信号;所述1:2电信号解复用器,用于将第二码率的电信号解复用为2路第一码率的第二NRZ编码电信号,并由前向纠错解码单元进行纠错解码处理,通过主机侧CAUI发射单元发送到主机发送端口;其中,第二码率的速率为第一码率速率的两倍,例如所述第一码率为25Gbps,所述第二码率为50Gbps。
如图3所示(图中以第一码率为25Gbps,第二码率为50Gbps为例进行展示),为本发明实施例提供的一种DML光发射单元13的实现结构,其中,所述DML光发射单元13包括线性DML驱动器131和DML激光器132;
DML线性驱动器接收PAM4制式编码单元121线路侧端口发送的差分电压信号并转换为电流驱动信号驱动DML激光器132,激光器通过模块光接口发射第一码率的光信号到外部光网络;其中,所述差分电压信号对应于所述第一PAM4调制码型格式的电信号。
本发明实施例采用25G线性DML驱动器131与25G DML TOSA组成的发射单元实现50G bps PAM4光信号的发射。该方案相对于EML方案具有更低的功耗与成本。
如图4所示(图中以第一码率为25Gbps,第二码率为50Gbps为例进行展示),为本发明实施例提供的一种光接收单元14的实现结构,其中,光接收单元14包括线性跨阻放大器141和光电探测器142。
所述光电探测器142用于接收外部光网络发送的第一码率的光信号并转换为微弱的电流信号传送给线性跨阻放大器141;所述线性跨阻放大器141用于将电流信号转换为差分电压信号传送给PAM4制式编码单元122的线路侧接口;其中,所述差分电压信号对应与所述第二PAM4调制码型格式的电信号。
结合本发明实施例,就DML线性驱动器与DML激光器132的连接方式来说, 还提供了一种优选的实现方式,具体的:所述DML线性驱动器与DML激光器132利用金锡焊料固定在陶瓷管壳内,陶瓷管壳内部和外部分别有一层金手指,两层金手指由高频传输线连接,外部金手指通过热压焊的方式与模块PCB板金手指直接连接实现供电、监控及电信号传输;内部金手指通过金线邦定的方式与DML线性驱动器实现电气连接,DML线性驱动器通过金线邦定的方式与DML激光器132连接。其中,DML激光器132发射的光信号由非球汇聚透镜汇聚到管壳外的陶瓷光纤插芯内,透镜与插芯中间布置一个隔离器。
另一方面,结合本发明实施例,就线性跨阻放大器141与光电探测器142的连接方式来说,也提供了一种优选的实现方式,具体的:所述线性跨阻放大器141通过导电银胶固定在陶瓷管壳内;所述光电探测器142电极采用倒装焊接方式与线性跨阻放大器141电极直接连接,如图5所示;线性跨阻放大器141与陶瓷管壳内部的金手指之间通过金线邦定的方式进行连接;光电探测器142将光电转换后的电流信号经由邦定金线传送给跨阻放大器,跨阻放大器产生的高频电压信号经由邦定金线传送给管壳内部金手指,高频信号经由高频传输线从内部金手指传送给外部金手指。
其中,陶瓷管壳外部金手指则通过热压焊的方式与模块PCB板金手指直接连接实现供电、监控与高频信号传输,如图6所示。
在本发明实施例实现方式中,所述光电探测器142焊盘结构可为GS或GSG结构,同样对应的跨阻放大器射频输入焊盘结构也为对应尺寸的GS或GSG结构。由于芯片所能承受的温度所限,倒装焊料必须采用低温焊料,故选用Au-Sn合金作为焊接材料。Au-Sn合金比例关系为80%Au与20%Sn,共溶温度在280℃。焊接过程如下:芯片的焊接在高纯氮气的保护下进行,先将预制好的金锡焊料放置在跨阻放大器(IC)的焊盘上,焊接设备吸头吸起光电探测器142,利用对准系统对准光电探测器142与跨阻放大器的焊盘位置,接着吸头下沉使得两者焊盘间隔焊料压接到一起。然后加热台逐渐升温到熔点以上如330℃,加温过程中Sn首先溶化,熔化的Sn可溶解Au层,从而形成结晶,温度下降后结晶凝固实现两者焊盘的连接。
实施例2:
本发明实施例基于实施例1所述的一种基于DML的高速PAM4光收发模块基础上,还提供了一种具备内部测试功能的基于DML的高速PAM4光收发模块。如图7所示,
光接收单元14接收外部光网络发送的25Gbaud速率的光信号,通过光电转换、线性跨阻放大处理输出差分50Gbps PAM4电信号至PAM制式转换单元12线路侧接收端。PAM制式转换单元将接收到的电信号环回至线路侧发射端并发送给DML光发射单元13。DML光发射单元13的25G线性驱动器接收50Gbps PAM4电压信号并转换为电流信号驱动25G直调激光器DML,直调激光器发射25Gbaud速率的光信号至外部光网络。
其中,PAM4制式编码单元的CAUI接收单元和PAM4制式解码单元CAUI发射单元之间建立有开关电路,当DML的高速PAM4光收发模块进入所述内部测试时,则控制PAM4制式编码单元的CAUI接收单元和PAM4制式解码单元CAUI发射单元之间的开关电路闭合,使得PAM4制式解码单元CAUI发射单元发射的电信号能够直接被PAM4制式编码单元的CAUI接收单元接收到;而当DML的高速PAM4光收发模块处于普通工作模式时,则PAM4制式编码单元的CAUI接收单元和PAM4制式解码单元CAUI发射单元之间的开关电路将会被断开。
实施例3:
本发明实施例基于实施例1所述的一种基于DML的高速PAM4光收发模块基础上,还提供了一种具备环回测试功能的基于DML的高速PAM4光收发模块。如图8所示,
PAM4制式转换单元12还包括50Gbps PAM4码型发生器与50Gbps PAM4误码测试单元。PAM4码型发生器发出50Gbps PAM4电信号至DML光发射单元13,DML光发射单元13内部的25G线性驱动器接收该电压信号并转换为电流信号驱动25G直调激光器DML。DML激光器132发射25Gbaud速率的光信号通过光纤环回给光接收单元14。光接收单元14内部的光电探测芯片142将光信号转换为电流信号,然后由线性跨阻放大器141把电流信号转化为差分电压信号。PAM4误码 测试单元接收光接收单元14输出的差分电压信号并测试其误码率,最终实现模块内部环回测试功能。
实施例4:
本发明实施例还提供了一种基于DML的高速PAM4光收发模块,如图9所示。包括:接口单元11、发射单元13、线性接收单元13。1路50Gbps PAM4电信号直接通过接口单元11发向发射单元13,发射单元集成了25G线性驱动器与25G直调激光器DML,线性驱动器接收50Gbps的电压信号并将其转换为驱动电流驱动DML,最终由DML发出光信号。反之,线性接收单元14接收外部光网络发送的光信号,先由高速光电探测器142将光信号转换为电流信号,接着线性跨阻放大器141将电流信号转换为50Gbps PAM电信号并经由接口单元11输出。
值得说明的是,上述装置和系统内的模块、单元之间的信息交互、执行过程等内容,由于与本发明的处理方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
本领域普通技术人员可以理解实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种基于DML的高速PAM4光收发模块,其特征在于,光收发模块包括接口单元、PAM4制式转换单元、DML光发射单元和光接收单元:
    所述接口单元连接PAM4制式转换单元,用于传递通过所述接口单元传递过来的第一码率的NRZ电信号给所述PAM4制式转换单元;
    所述PAM4制式转换单元还连接DML光发射单元和光接收单元,用于将所述第一码率的NRZ电信号转换成第一PAM4调制码型格式的电信号,并转交给所述DML光发射单元,以便所述DML光发射单元以激光信号发射所述PAM4编码信号;其中,所述第一PAM4调制码型格式的电信号的码率为第一码率;
    所述PAM4制式转换单元还用于接收光接收单元生成的第二PAM4调制码型格式的电信号,并将所述第二PAM4调制码型格式的电信号转换成第二NRZ编码电信号后,传递给所述接口单元;其中,第二NRZ编码电信号的码率为第一码率。
  2. 根据权利要求1所述的光收发模块,其特征在于,所述PAM4制式转换单元包括PAM4制式编码单元和PAM4制式解码单元,所述接口单元包括主机接收端口和主机发送端口,
    PAM4制式编码单元连接所述主机接收端口,用于获取通过所述主机接收端口接收的两路第一码率的NRZ电信号,并转换为一路第一PAM4调制码型格式的电信号,由线路侧的发送端口输出;
    PAM4制式解码单元用于获取线路侧的接收端口接收的一路第二PAM4调制码型格式的电信号,并解码为两路第二NRZ电信号,由主机发送端口输出。
  3. 根据权利要求2所述的光收发模块,其特征在于,所述PAM4制式编码单元包括CAUI接收单元、两个时钟数据恢复电路、2:1电信号复用器、前向纠错编码单元和PAM4编码器,
    所述CAUI接收单元获取主机接收端口的两路第一码率的NRZ电信号;所述 两个时钟数据恢复电路用于对所述第一码率的NRZ电信号进行时钟数据的恢复,恢复后的两路第一码率的NRZ电信号传至2:1电信号复用器;2:1电信号复用器用于将所述两路第一码率的NRZ电信号复用为一路第二码率的NRZ电信号,复用后的电信号传输码经过前向纠错编码单元加入冗余纠错码,并传给PAM4编码器;所述PAM4编码器用于将第二码率的NRZ电信号转换为第一码率的第一PAM4调制码型格式的电信号,并由线路侧发送端口发送至DML光发射单元;其中,第二码率的速率为第一码率速率的两倍。
  4. 根据权利要求3所述的光收发模块,其特征在于,PAM4制式编码单元的CAUI接收单元和PAM4制式解码单元CAUI发射单元之间建立有开关电路,当DML的高速PAM4光收发模块进入所述内部测试时,则控制PAM4制式编码单元的CAUI接收单元和PAM4制式解码单元CAUI发射单元之间的开关电路闭合,使得PAM4制式解码单元CAUI发射单元发射的电信号能够直接被PAM4制式编码单元的CAUI接收单元接收到;而当DML的高速PAM4光收发模块处于普通工作模式时,则PAM4制式编码单元的CAUI接收单元和PAM4制式解码单元CAUI发射单元之间的开关电路将会被断开。
  5. 根据权利要求2所述的光收发模块,其特征在于,所述PAM4制式解码单元包括模数转换器、数字信号处理单元、1:2电信号解复用器、前向纠错解码单元和CAUI发射单元,
    模数转换单元,用于将所述线路侧接口接收光接收单元发送的一路第一码率的第二PAM4调制码型格式的电信号转换为数字信号;
    所述数字信号处理单元,用于将模数转换单元得到的所述数字信号转换为NRZ调制格式的第二码率的电信号;
    所述1:2电信号解复用器,用于将第二码率的电信号解复用为2路第一码率的第二NRZ编码电信号,并由前向纠错解码单元进行纠错解码处理,通过主机侧CAUI发射单元发送到主机发送端口;
    其中,第二码率的速率为第一码率速率的两倍。
  6. 根据权利要求1所述的光收发模块,其特征在于,所述DML光发射单元包括线性DML驱动器和DML激光器;
    DML线性驱动器接收PAM4制式编码单元线路侧端口发送的差分电压信号并转换为电流驱动信号驱动DML激光器,激光器通过模块光接口发射第一码率的光信号到外部光网络;其中,所述差分电压信号对应于所述第一PAM4调制码型格式的电信号。
  7. 根据权利要求6所述的光收发模块,其特征在于,所述DML线性驱动器与DML激光器利用金锡焊料固定在陶瓷管壳内,陶瓷管壳内部和外部分别有一层金手指,两层金手指由高频传输线连接,外部金手指通过热压焊的方式与模块PCB板金手指直接连接实现供电、监控及电信号传输;内部金手指通过金线邦定的方式与DML线性驱动器实现电气连接,DML线性驱动器通过金线邦定的方式与DML激光器连接。
  8. 根据权利要求7所述的光收发模块,其特征在于,DML激光器发射的光信号由非球汇聚透镜汇聚到管壳外的陶瓷光纤插芯内,透镜与插芯中间布置一个隔离器。
  9. 根据权利要求1所述的光收发模块,其特征在于,所述光接收单元包括线性跨阻放大器和光电探测器,
    所述光电探测器用于接收外部光网络发送的第一码率的光信号并转换为电流信号传送给线性跨阻放大器;所述线性跨阻放大器用于将电流信号转换为差分电压信号传送给PAM4制式解码单元的线路侧接口;其中,所述差分电压信号对应与所述第二PAM4调制码型格式的电信号。
  10. 根据权利要求9所述的光收发模块,其特征在于,所述线性跨阻放大器通过导电银胶固定在陶瓷管壳内;所述光电探测器电极采用倒装焊接方式与线性跨阻放大器电极直接连接;线性跨阻放大器与陶瓷管壳内部的金手指之间通过金线邦定的方式进行连接;光电探测器将光电转换后的电流信号经由邦定金线传送给跨阻放大器,跨阻放大器产生的高频电压信号经由邦定金线传送给管壳内部金手指,高频信号经由高频传输线从内部金手指传送给外部金手指。
  11. 根据权利要求1所述的光收发模块,其特征在于,陶瓷管壳外部金手指则通过热压焊的方式与模块PCB板金手指直接连接实现供电、监控与高频信号传输。
  12. 根据权利要求10所述的光收发模块,其特征在于,所述光电探测器焊盘结构可为GS或GSG结构,对应的跨阻放大器射频输入焊盘结构也为对应尺寸的GS或GSG结构。
  13. 根据权利要求12所述的光收发模块,其特征在于,焊料选用Au-Sn合金作为焊接材料,Au-Sn合金比例关系为80%Au与20%Sn,共溶温度在280℃。
  14. 根据权利要求1-13任一所述的光收发模块,其特征在于,所述第一码率为10Gbps~60Gbps,所述第二码率对应取值为20Gbps~120Gbps,其中,所述第二码率为第一码率的两倍。
  15. 根据权利要求1所述的光收发模块,其特征在于,所述PAM4制式转换单元12还包括50Gbps PAM4码型发生器与50Gbps PAM4误码测试单元,
    PAM4码型发生器发出50Gbps PAM4电信号至DML光发射单元,DML光发射单元内部的25G线性驱动器接收该电压信号并转换为电流信号驱动25G直调激 光器DML;
    DML激光器发射25Gbaud速率的光信号通过光纤环回给光接收单元,光接收单元内部的光电探测芯片将光信号转换为电流信号;
    线性跨阻放大器把电流信号转化为差分电压信号,PAM4误码测试单元接收光接收单元输出的差分电压信号并测试其误码率,实现模块内部环回测试功能。
PCT/CN2017/080288 2017-03-08 2017-04-12 一种基于dml的高速pam4光收发模块 WO2018161405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710133814.6A CN107124225A (zh) 2017-03-08 2017-03-08 一种基于dml的高速pam4光收发模块
CN201710133814.6 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018161405A1 true WO2018161405A1 (zh) 2018-09-13

Family

ID=59717405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080288 WO2018161405A1 (zh) 2017-03-08 2017-04-12 一种基于dml的高速pam4光收发模块

Country Status (2)

Country Link
CN (1) CN107124225A (zh)
WO (1) WO2018161405A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732322B (zh) * 2019-09-24 2021-07-01 政 李 主動式光纜與主動式電纜的複合系統與其光收發系統

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547114A (zh) * 2017-09-22 2019-03-29 深圳市欧凌克光电科技有限公司 一种sfp封装100g光电接收模块
CN109586795A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 一种光信号发送模块及相关方法
CN108259084B (zh) * 2017-12-26 2020-06-30 武汉电信器件有限公司 一种高速光接收机测试的评估板结构及其测试系统
CN108306685B (zh) * 2018-01-11 2020-08-07 青岛海信宽带多媒体技术有限公司 光模块及twdm无源光网络
CN110635847B (zh) 2018-06-21 2021-08-03 华为技术有限公司 一种光网络装置和光模块
WO2020103312A1 (zh) * 2018-11-20 2020-05-28 江苏亨通光网科技有限公司 单波长100g光模块及5g前传网络
CN110401486B (zh) * 2019-08-07 2022-06-24 青岛海信宽带多媒体技术有限公司 一种光模块及光发射控制方法
CN112968732B (zh) * 2019-12-13 2022-07-29 海思光电子有限公司 光电信号转换器及网络交互设备
CN113346954B (zh) * 2021-08-05 2021-12-17 深圳市迅特通信技术股份有限公司 一种用于50g以上无源光网络中的局端设备
CN113346955B (zh) * 2021-08-05 2021-12-17 深圳市迅特通信技术股份有限公司 一种用于50g以上无源光网络中的onu模块
CN116015470A (zh) * 2022-12-30 2023-04-25 深圳市光为光通信科技有限公司 一种400g光通信模块及信号优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412051B2 (en) * 2006-10-13 2013-04-02 Menara Networks, Inc. 40G/100G optical transceivers with integrated framing and forward error correction
CN105393475A (zh) * 2013-03-17 2016-03-09 菲尼萨公司 可插拔光学主机与网络i/o光电子模块
CN106130644A (zh) * 2016-07-20 2016-11-16 上海交通大学 基于色散过补偿的频域均衡方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9304950B2 (en) * 2012-09-12 2016-04-05 Broadcom Corporation Overclocked line rate for communication with PHY interfaces
CN204231356U (zh) * 2014-10-16 2015-03-25 武汉电信器件有限公司 一种用于光纤通道的高速光模块
CN105553561A (zh) * 2015-12-24 2016-05-04 武汉光迅科技股份有限公司 一种2×100g光收发模块
CN106375017A (zh) * 2016-08-29 2017-02-01 武汉光迅科技股份有限公司 一种基于pam4调制的光收发模块

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412051B2 (en) * 2006-10-13 2013-04-02 Menara Networks, Inc. 40G/100G optical transceivers with integrated framing and forward error correction
CN105393475A (zh) * 2013-03-17 2016-03-09 菲尼萨公司 可插拔光学主机与网络i/o光电子模块
CN106130644A (zh) * 2016-07-20 2016-11-16 上海交通大学 基于色散过补偿的频域均衡方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732322B (zh) * 2019-09-24 2021-07-01 政 李 主動式光纜與主動式電纜的複合系統與其光收發系統

Also Published As

Publication number Publication date
CN107124225A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2018161405A1 (zh) 一种基于dml的高速pam4光收发模块
WO2018040385A1 (zh) 一种基于pam4调制的光收发模块
US6947672B2 (en) High-speed optical data links
CN110176960B (zh) 一种新型单纤双向多通道输入光模块
US20210175973A1 (en) Integrated compact in-package light engine
US20190391348A1 (en) Heterogeneous common substrate multi-chip package including photonic integrated circuit and digital signal processor
WO2020042492A1 (zh) 基于pam4调制技术的双向光收发模块
US20220283982A1 (en) Monolithically integrated system on chip for silicon photonics
US11333907B2 (en) Optical engine
CN110971304A (zh) 一种基于硅光的光收发组件
WO2021115454A1 (zh) 光电信号转换器、光驱动处理和接收模组及网络交互设备
CN113759475B (zh) 内封装型光电模块
CN110780398A (zh) 一种直调模拟电光转换集成组件
CN104348553A (zh) Cfp光收发模块
US20200174205A1 (en) Optical component and optical module using the same
CN101145848B (zh) 千兆无源光网络局端光收发一体模块
CN107294611A (zh) 基于pam4调制的400gdml光收发模块
CN210518344U (zh) 一种基于pam4的100g-qsfp28光传输模块
CN104467972A (zh) 100g qsfp28 sr4并行光收发模块及其封装方法
CN117278892B (zh) 一种硅光集成芯片、pon硅光olt模块及其工作方法
CN113037387A (zh) 一种光通信装置
US10365446B2 (en) Optical module structure
CN206533371U (zh) 100g cfp密集波分复用带前行纠错功能的光模块
CN214626994U (zh) 25g cwdm光模块
CN212905591U (zh) 一种光电收发一体模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899742

Country of ref document: EP

Kind code of ref document: A1