WO2018159844A1 - Arc welding method - Google Patents
Arc welding method Download PDFInfo
- Publication number
- WO2018159844A1 WO2018159844A1 PCT/JP2018/008165 JP2018008165W WO2018159844A1 WO 2018159844 A1 WO2018159844 A1 WO 2018159844A1 JP 2018008165 W JP2018008165 W JP 2018008165W WO 2018159844 A1 WO2018159844 A1 WO 2018159844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- welding
- less
- wire
- mass
- welding method
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/06—Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
- B23K9/073—Stabilising the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
Definitions
- the present invention relates to an arc welding method.
- an arc welding method capable of reducing the occurrence of spatter during welding of a thin steel plate an arc welding method in which welding is performed while controlling feeding in the forward and backward directions of the wire and a pulse control type arc welding method are known.
- Patent Document 1 as an arc welding method for suppressing the generation of pores such as blow holes and the generation of spatter, a short-circuit and an arc are repeatedly arced using a welding wire for a surface-treated member.
- a welding method for performing welding is disclosed. This welding method includes a step of transferring a droplet formed from a wire to the member side, and pressing the molten pool in a direction opposite to the welding progress direction to weld the member so that gas generated from the member escapes from the generation point. And steps.
- the distance between the wire and the molten pool is set within a predetermined range, a predetermined welding current for generating an arc force for pushing the molten pool is supplied, and the welding current is supplied for a predetermined period. In the meantime, it is constant or gradually increases or decreases.
- a welding wire having a predetermined chemical composition is used as a welding method that generates less spatter during welding and has excellent welding workability, and a mixture of an inert gas and carbon dioxide gas is used.
- a gas shielded arc welding method is disclosed in which pulse mag welding is performed by a pulse arc method using a gas as a shielding gas.
- the pulse frequency is preferably controlled to 60 to 120 Hz from the viewpoint of suppressing spatter generation and preventing welding defects.
- the pulse width is preferably controlled to 1.0 to 1.3 msec.
- an electrodeposition coating process may be carried out after arc welding on steel plates used in automobiles, building materials, electrical equipment, and the like.
- the slag does not sufficiently aggregate in the welded part during arc welding, the slag remains in the welded part.
- adhesiveness of the coating film formed by subsequent electrodeposition coating cannot fully be ensured. Therefore, in such a use, it is calculated
- the present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is to provide an arc welding method capable of reducing the occurrence of spatter and improving the slag cohesiveness while increasing the welding speed. There is to do.
- the first embodiment of the present invention is an arc welding method for welding a steel sheet while controlling the feeding of the welding wire in the forward and backward direction, Containing C, % By mass Si: 0.2% to 1.3%, Mn: 0.2% or more and 1.5% or less, and S: 0.01% or more and 0.05% or less, A welding wire with the balance being Fe and inevitable impurities; Using a gas containing Ar, The present invention relates to an arc welding method in which welding is performed with a frequency in the advancing and retreating direction of the welding wire being 35 Hz to 160 Hz.
- the welding wire is in mass%, further Al: 0.1% to 0.5%, Mo: 0.1% to 2.0%, Ti : 0.3% or less, Cu: 0.4% or less may be contained.
- the contents of S and Al in the welding wire may satisfy 0.3 ⁇ S ⁇ 10 + Al ⁇ 0.7.
- the plate thickness of the steel plate may be not less than 0.6 mm and not more than 5 mm.
- welding may be performed with the frequency in the advancing / retreating direction of the welding wire being 45 Hz to 130 Hz, more preferably 70 Hz to 110 Hz.
- welding may be performed with an average value of welding current of 80 A or more and 350 A or less and a welding speed of 60 cm / min or more.
- the second embodiment of the present invention is an arc welding method for arc welding a steel plate by a pulse control method, Containing C, % By mass Si: 0.2% to 1.1%, Mn: 0.2% or more and 1.4% or less, and S: 0.010% or more and 0.050% or less, A welding wire with the balance being Fe and inevitable impurities; Using a gas containing Ar, The present invention relates to an arc welding method in which welding is performed with a voltage pulse frequency of 50 Hz to 200 Hz and a voltage pulse width of 1.5 ms to 10 ms.
- the welding wire is in mass%, further Al: 0.1% to 0.5%, Mo: 0.1% to 2.0%, Cu : 0.4% or less may be contained.
- welding may be performed with a peak current of 380 A or more and 490 A or less.
- welding may be performed with the base current set to 80 A or more and 180 A or less.
- welding may be performed with the duty ratio of the pulse current set to 0.2 or more and 0.6 or less.
- the plate thickness of the steel plate may be not less than 0.6 mm and not more than 5 mm.
- the generation of spatter can be reduced, and the slag cohesiveness can be improved while increasing the welding speed.
- An arc welding method according to the first embodiment of the present invention (hereinafter also referred to as a welding method according to the first embodiment) is an arc welding method in which a steel wire is welded while feeding control of a welding wire in the forward / backward direction is performed.
- a welding method according to the first embodiment is an arc welding method in which a steel wire is welded while feeding control of a welding wire in the forward / backward direction is performed.
- Si 0.2% to 1.3%
- Mn 0.2% to 1.5%
- S 0.01% to 0.05
- arc welding is performed while controlling feeding in the advance and retreat direction of the wire. More specifically, while controlling the feeding of the wire in the forward and backward direction, the wire is advanced (forward feeding) while generating an arc, and the molten metal at the tip of the molten wire is brought into contact with the molten pool to extinguish the arc. Thereafter, the wire is moved backward (reversely fed) to transfer the molten metal.
- the frequency in the wire advance / retreat direction in the welding method according to the first embodiment is defined as one forward (forward feed) and backward (reverse feed) of the wire as one cycle.
- the welding method according to the first embodiment includes, for example, Cold Metal Transfer welding.
- (C) C is an element that improves the strength.
- the content of C should be more than 0%.
- 0.02 mass. % Or more is preferable, and 0.04% by mass or more is more preferable.
- the upper limit of the C content is not particularly limited, but from the viewpoint of suppressing spatter reduction and high-temperature cracking, the C content is preferably 0.15% by mass or less, more preferably 0.10% by mass or less. preferable.
- Si is an effective deoxidizer and is an indispensable element in deoxidation of weld metal.
- the Si content is 0.2% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more.
- Si has a feature that the electrical resistance of the wire decreases as the content decreases, and the wire is less likely to melt as the electrical resistance of the wire decreases (the electrical resistance heat decreases).
- the Si content exceeds 1.3% by mass, the amount of slag generated on the bead surface increases, and the slag cohesiveness also decreases. Therefore, the Si content is 1.3% by mass or less, preferably 1.2% by mass or less, more preferably 1.0% by mass or less.
- Mn Mn is an effective deoxidizer similar to Si, and is an element that easily binds to S.
- the Mn content is 0.2% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more.
- the Mn content is 1.5% by mass or less, preferably 1.3% by mass or less, more preferably 1.1% by mass or less.
- (S) S is an element that contributes to the aggregation of slag, but if it is less than 0.01% by mass, the effect cannot be obtained, so the S content is 0.01% by mass or more, preferably 0.02% by mass. That's it.
- the S content exceeds 0.05 mass%, the flow on the surface of the molten pool is greatly changed, and as a result of the slag coming close to the vicinity of the arc and greatly vibrating, the agglomeration effect is lowered. Therefore, the S content is 0.05% by mass or less, preferably 0.04% by mass or less.
- the remainder of the wire according to the first embodiment is made of Fe and unavoidable impurities.
- the unavoidable impurities include P, Cr, Ni, N, O, and the like, as long as the effects of the present invention are not hindered. It is allowed to contain.
- At least one of the following components may be added to the wire according to the first embodiment.
- Al Al is an element that contributes to slag aggregation.
- the addition of Al is not essential, but when the Al content is less than 0.1% by mass, it is difficult to obtain a coagulation effect of slag.
- the content is preferably 0.1% by mass or more, and more preferably 0.2% by mass or more.
- the Al content exceeds 0.5% by mass, droplet detachment becomes unstable, vibration of the molten pool is disturbed, and as a result of frequent spattering, the slag aggregation effect may be reduced. Therefore, when adding Al, it is preferable to make the content into 0.5 mass% or less, and it is more preferable to set it as 0.4 mass% or less.
- Mo Mo is an element that contributes to improvement in strength.
- the addition of Mo is not essential, but in order to exert such an effect well, when adding Mo, the content may be 0.1% by mass or more. Preferably, it is more preferably 0.3% by mass or more.
- Mo exceeds 2.0 mass%, the effect is saturated because Fe and an intermetallic compound are formed at a high temperature. Therefore, when adding Mo, it is preferable to make the content into 2.0 mass% or less, and it is more preferable to set it as 1.5 mass% or less.
- Ti is a strong deoxidizing element and can reduce the amount of oxygen in the molten metal and reduce the surface tension. Therefore, it is effective when the amount of oxygen in the wire is high. However, if added over 0.3 mass%, a large amount of slag is generated. Therefore, when adding Ti, the content is preferably 0.3% by mass or less, and more preferably 0.2% by mass or less.
- (Cu) Cu is an element that is effective in improving the electrical conductivity and rust resistance.
- the lower limit value of the content is not particularly limited, but is preferably 0.1% by mass or more in order to obtain this effect more favorably.
- content of Cu is 0.4 mass% or less from a viewpoint of suppressing generation
- the wire of the first embodiment may be subjected to Cu plating if desired.
- Cu is a value obtained by adding up the amount contained in the base material of the wire and the amount of Cu plating.
- the S and Al contents preferably satisfy the following relational expression.
- the slag cohesiveness can be further improved by adjusting the S and Al contents so as to satisfy the relational expression.
- the diameter of the wire is not particularly limited, and may be appropriately selected from a range that is usually applied.
- the diameter of the wire is, for example, 0.8 mm to 1.4 mm. The same applies to a second embodiment described later.
- Wire production method As a method for manufacturing the wire, for example, a steel wire having a predetermined composition may be drawn to a predetermined diameter.
- the wire drawing process may be either a method using a hole die or a method using a roller die.
- you may wire-draw after Cu plating. The same applies to a second embodiment described later.
- the shield gas used in the welding method according to the first embodiment only needs to contain Ar, and may consist only of Ar.
- Ar in addition to Ar, CO 2 , O 2, or the like may be contained.
- the shield gas can also contain N 2 , H 2, etc. as inevitable impurities.
- the content ratio of Ar is preferably 70% by volume or more, and more preferably 80% by volume or more.
- the shielding gas may be composed only of Ar (that is, the Ar content may be 100% by volume).
- the Ar content may be 70% by volume or less. . The same applies to a second embodiment described later.
- the frequency in the forward / backward direction of the wire is controlled to be 35 Hz or more and 160 Hz or less.
- the present inventors have found that the natural frequency of the molten metal is about several tens of Hz, and by controlling the frequency in the advancing and retreating direction of the wire to an appropriate range so as to match the natural frequency of the molten pool, It has been found that the vibration of the molten pool surface becomes optimal, the hot water flow on the molten pool surface changes so as to involve slag, and the slag cohesiveness can be improved.
- the frequency in the wire advance / retreat direction is less than 35 Hz, short circuit occurs frequently in the peak current period, regular droplet transfer cannot be performed, the molten pool vibration is disturbed, and good slag cohesiveness cannot be obtained.
- the frequency in the advancing / retreating direction of the wire is 35 Hz or more, preferably 45 Hz or more, more preferably 70 Hz or more.
- the frequency in the wire advance / retreat direction exceeds 160 Hz, the effect of depressing the molten pool by the arc in the peak period is reduced, and sufficient molten pool amplitude cannot be obtained, and good slag cohesiveness is obtained. Therefore, the frequency in the advancing / retreating direction of the wire is 160 Hz or less, preferably 150 Hz or less, more preferably 130 Hz or less, and further preferably 110 Hz or less.
- the base material to be welded may be a steel plate, and the composition and thickness of the steel plate are not particularly limited.
- the thickness is 0.6 mm or more and 5.0 mm or less. It can also be applied to thin steel sheets.
- the steel type may be, for example, mild steel or high-tensile steel up to 590 MPa class.
- the surface of the base material may be subjected to various plating treatments such as galvanization and aluminum plating. The same applies to a second embodiment described later.
- each welding condition in the welding method according to the first embodiment such as a welding current, a welding voltage, a welding speed, and a welding posture, is not particularly limited, and may be appropriately adjusted within a range applicable in the arc welding method.
- the average value of the welding current is, for example, 80 A or more and 350 A or less, and preferably 100 A or more and 300 A or less.
- a welding speed it is 60 cm / min or more, for example. According to the welding method according to the first embodiment, welding can be performed with good slag cohesion even under these welding conditions.
- An arc welding method according to a second embodiment of the present invention (hereinafter also referred to as a welding method according to the second embodiment) is an arc welding method in which a steel plate is arc-welded by a pulse control method, and contains C. In addition, by mass%, Si: 0.2% to 1.1%, Mn: 0.2% to 1.4%, and S: 0.010% to 0.050%, the balance An arc welding method in which welding is performed using a welding wire made of Fe and inevitable impurities and a gas containing Ar, with a voltage pulse frequency of 50 Hz to 200 Hz and a voltage pulse width of 1.5 ms to 10 ms. is there.
- Mn Lower limit: 0.2% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more, and upper limit: 1.4% by mass or less, preferably 1.3% by mass or less, more preferably 1. 1% by mass or less
- S Lower limit: 0.010 mass% or more, preferably 0.020 mass% or more
- the remainder of the wire according to the second embodiment is made of Fe and unavoidable impurities, and examples of the unavoidable impurities include Ti, P, Cr, Ni, N, O, and the like, and do not hinder the effects of the present invention. It is allowed to contain in a range.
- at least one of Al, Mo, and Cu may be added to the wire according to the second embodiment. Is the same as in the first embodiment.
- the voltage pulse frequency (hereinafter, also simply referred to as pulse frequency) is 50 Hz to 200 Hz, and the voltage pulse width (hereinafter simply referred to as pulse).
- the pulse is controlled so that the width is also 1.5 ms to 10 ms.
- the inventors have found that the natural frequency of the molten metal is about several tens of Hz, and by controlling the frequency and width of the pulse within an appropriate range so as to match the natural frequency of the droplet, It has been found that the vibration of the molten pool becomes optimal, the hot water flow on the surface of the molten pool changes so as to involve slag, and the slag cohesiveness can be improved.
- the pulse frequency exceeds 200 Hz and / or the pulse width is less than 1.5 ms, the effect of depressing the molten pool by the arc in the peak period is reduced, and sufficient molten pool amplitude cannot be obtained. It will be difficult to obtain good slag cohesiveness.
- the pulse frequency is 200 Hz or less and the pulse width is 1.5 ms or more.
- the pulse frequency is preferably 180 Hz or less, more preferably 150 Hz or less.
- the pulse width is preferably 3 ms or more, more preferably 5 ms or more.
- the pulse frequency is 50 Hz or more and the pulse width is 10 ms or less.
- the pulse frequency is preferably 55 Hz or more, more preferably 60 Hz or more.
- the pulse width is preferably 9 ms or less, more preferably 8 ms or less.
- the peak current is not particularly limited, but is preferably 380 A or more and 490 A or less from the following viewpoints. That is, if the peak current is less than 380 A, there is a possibility that an arc force sufficient to push down the molten pool cannot be obtained. Therefore, the peak current is preferably 380 A or more, more preferably 400 A or more, and further preferably 410 A or more.
- the peak current is preferably 490 A or less, more preferably 480 A or less, and even more preferably 460 A or less.
- the base current is not particularly limited, but is preferably 80 A or more and 180 A or less from the following viewpoints. That is, if the base current is less than 80 A, the range of the execution current may be greatly limited. Therefore, the base current is preferably 80 A or more, more preferably 90 A or more, and further preferably 100 A or more. On the other hand, when the base current exceeds 180 A, the amount of heat input becomes excessive, and there is a possibility that the burnout is likely to occur when the thin plate is welded. Accordingly, the base current is preferably 180 A or less, more preferably 160 A or less, and even more preferably 150 A or less.
- the duty ratio of the pulse current is not particularly limited, but is preferably 0.2 to 0.6 from the following viewpoints. That is, when the duty ratio is less than 0.2, the peak current period becomes too short compared with the base current period, and the effect of pushing down the molten pool by the arc cannot be sufficiently obtained, and the molten pool can be sufficiently vibrated. As a result, the slag aggregation effect may be reduced. Therefore, the duty ratio of the pulse current is preferably 0.2 or more, and more preferably 0.3 or more.
- the duty ratio of the pulse current is preferably 0.6 or less, more preferably 0.5 or less.
- the average current of the pulse current is not particularly limited, and is appropriately determined according to the respective preferable ranges of the peak current, the base current, and the duty ratio described above. It only has to be decided.
- the average current of the pulse current is, for example, 250 A or more and 350 A or less.
- the welding conditions such as the welding speed and the welding posture in the welding method according to the second embodiment are not particularly limited, and may be appropriately adjusted within a range applicable in the arc welding method.
- a welding speed it is 70 cm / min or more, for example. According to the welding method according to the second embodiment, welding can be performed with good slag cohesion even if the welding speed is increased.
- wire component (mass%) represents each component amount (mass%) per total mass of the wire. “-” Means that the content is less than the detection limit. Further, the Cu content shown in Tables 2 and 3 includes a Cu plating content. The balance is Fe and inevitable impurities.
- Examples 1 to 60 are examples, and Examples 21 to 29 and Examples 52 to 60 are comparative examples. As shown in Tables 1 and 2, in Examples 1 to 20 and Examples 30 to 51, good slag cohesion was obtained.
- Example 21 and 52 the S content in the wire was too low, and in Examples 22 and 53, the S content in the wire was too high, so the slag cohesiveness deteriorated.
- Example 23 and Example 54 the frequency in the wire advance / retreat direction was too large, and in Example 24 and Example 55, the frequency in the wire advance / retreat direction was too small, so the slag cohesiveness deteriorated.
- Example 25 and 56 the Si content in the wire was too low, and in Examples 26 and 57, the Si content in the wire was too high, so the slag cohesiveness deteriorated.
- Example 27 and 58 the Mn content in the wire was too low, and in Examples 28 and 59, the Mn content in the wire was too high, so the slag cohesiveness deteriorated.
- Example 29 and Example 60 100% CO 2 gas containing no Ar was used as the shielding gas, so the slag cohesiveness deteriorated.
- the column of “slag aggregation ratio (% by weight)” in Table 3 shows an example in which the ratio of slag existing (aggregated) in the vicinity of the crater portion was less than 60% by weight and the slag aggregation was poor. The result is described as “x” and the ratio is omitted.
- Examples 61 to 93 are examples, and Examples 83 to 93 are comparative examples. As shown in Table 3, in Examples 61 to 82, good slag cohesion was obtained. The bead appearance was also good.
- Example 83 the S content in the wire was too low, and in Example 84, the S content in the wire was too high, so the slag cohesiveness deteriorated.
- Example 85 the slag cohesiveness deteriorated because the pulse frequency was too large.
- Example 86 since the pulse frequency was too small, the slag cohesiveness deteriorated and the bead appearance was poor.
- Example 87 since the Si content in the wire was too small, the slag cohesiveness deteriorated and the bead appearance was poor.
- Example 88 since there was too much Si content in a wire, slag cohesiveness deteriorated.
- Example 89 the Mn content in the wire was too low, and in Example 90, the Mn content in the wire was too high, so the slag cohesiveness deteriorated.
- Example 91 since using 100% CO 2 gas not containing Ar as the shield gas, slag cohesiveness is deteriorated.
- Example 92 since the pulse width was too small, the slag aggregation was deteriorated.
- Example 93 the pulse width was too large, and the Mn content in the wire was too large, so the slag cohesiveness deteriorated and the bead appearance was poor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Arc Welding In General (AREA)
Abstract
The purpose of the present invention is to provide an arc welding method with which the generation of spatter can be reduced, and which provides good slug agglomeration even at high welding rate. An embodiment of the present invention relates to an arc welding method for welding a steel sheet while a weld wire is feed-controlled in forward and backward directions. The arc welding method includes performing the welding using: a weld wire which contains C and, by mass%, not less than 0.2% and not more than 1.3% of Si, not less than 0.2% and not more than 1.5% of Mn, and not less than 0.01% and not more than 0.05% of S, with the remainder comprising Fe and unavoidable impurities; and a gas including Ar. The frequency of the weld wire in the forward and backward directions is not less than 35 Hz and not more than 160 Hz.
Description
本発明は、アーク溶接方法に関する。
The present invention relates to an arc welding method.
薄鋼板の溶接時のスパッタの発生を低減可能なアーク溶接方法として、ワイヤの進退方向における送給を制御しながら溶接を行うアーク溶接方法やパルス制御方式のアーク溶接方法が知られている。
As an arc welding method capable of reducing the occurrence of spatter during welding of a thin steel plate, an arc welding method in which welding is performed while controlling feeding in the forward and backward directions of the wire and a pulse control type arc welding method are known.
例えば、特許文献1には、ブローホール等の気孔発生およびスパッタの発生の抑制を図るアーク溶接方法として、表面処理が行われた部材を溶接用のワイヤを用いて、短絡とアークとを繰り返しアーク溶接を行う溶接方法が開示されている。この溶接方法は、ワイヤから形成された溶滴を部材側に移行するステップと、溶融プールを溶接進行方向とは反対方向に押して前記部材から発生した気体が発生箇所から抜けるように部材を溶接するステップと、を備えている。そして、ワイヤの後退送給により、ワイヤと溶融プールとの間の距離を所定の範囲とし、溶融プールを押すためのアーク力を生じさせる所定の溶接電流を供給し、当該溶接電流を所定期間の間、一定とする、あるいは、徐々に増加あるいは減少させている。
For example, in Patent Document 1, as an arc welding method for suppressing the generation of pores such as blow holes and the generation of spatter, a short-circuit and an arc are repeatedly arced using a welding wire for a surface-treated member. A welding method for performing welding is disclosed. This welding method includes a step of transferring a droplet formed from a wire to the member side, and pressing the molten pool in a direction opposite to the welding progress direction to weld the member so that gas generated from the member escapes from the generation point. And steps. Then, by retracting the wire, the distance between the wire and the molten pool is set within a predetermined range, a predetermined welding current for generating an arc force for pushing the molten pool is supplied, and the welding current is supplied for a predetermined period. In the meantime, it is constant or gradually increases or decreases.
また、例えば、特許文献2には、溶接時におけるスパッタの発生が少なく、溶接作業性にも優れる溶接方法として、所定の化学組成を有する溶接用ワイヤを用い、不活性ガスと炭酸ガスとの混合ガスをシールドガスとしてパルスアーク方式によりパルスマグ溶接するガスシールドアーク溶接方法が開示されている。ここで、特許文献1に記載のガスシールドアーク溶接方法では、スパッタ発生量の抑制と溶接欠陥の防止の観点から、パルス周波数を好ましくは60~120Hzに制御している。また、スパッタ発生量の抑制と溶け込み安定性の観点から、パルス幅を好ましくは1.0~1.3msecに制御している。
In addition, for example, in Patent Document 2, a welding wire having a predetermined chemical composition is used as a welding method that generates less spatter during welding and has excellent welding workability, and a mixture of an inert gas and carbon dioxide gas is used. A gas shielded arc welding method is disclosed in which pulse mag welding is performed by a pulse arc method using a gas as a shielding gas. Here, in the gas shielded arc welding method described in Patent Document 1, the pulse frequency is preferably controlled to 60 to 120 Hz from the viewpoint of suppressing spatter generation and preventing welding defects. Further, from the viewpoint of suppressing the amount of spatter generated and the stability of penetration, the pulse width is preferably controlled to 1.0 to 1.3 msec.
ところで、自動車や建材、電気機器等に用いられる鋼板には、アーク溶接後に電着塗装工程が実施される場合がある。このような場合において、アーク溶接時の溶接部にスラグが十分に凝集しない場合、溶接部にスラグが残存してしまう。そして、溶接部にスラグが残存していると、その後の電着塗装により形成される塗膜の密着性が十分に確保できなくなるという問題がある。したがって、このような用途においては、溶接時のスラグ凝集性が良好であることが求められる。
By the way, an electrodeposition coating process may be carried out after arc welding on steel plates used in automobiles, building materials, electrical equipment, and the like. In such a case, if the slag does not sufficiently aggregate in the welded part during arc welding, the slag remains in the welded part. And when slag remains in a welding part, there exists a problem that adhesiveness of the coating film formed by subsequent electrodeposition coating cannot fully be ensured. Therefore, in such a use, it is calculated | required that the slag aggregation property at the time of welding is favorable.
しかしながら、特許文献1及び2に記載のアーク溶接方法では、スラグの凝集性については十分に検討されておらず、改善の余地があった。すなわち、溶接時にスラグが十分に凝集しない場合、溶接部にスラグが残存してしまう結果、上記した問題が生じるおそれがある。特に、薄板の溶接では、溶接速度が速いことも求められており、溶接速度を速くしながらも、スラグ凝集性が良好であることも求められている。
However, in the arc welding methods described in Patent Documents 1 and 2, the cohesiveness of the slag has not been sufficiently studied and there is room for improvement. That is, if the slag does not sufficiently aggregate at the time of welding, the slag may remain in the welded portion, resulting in the above-described problem. In particular, in thin plate welding, it is also required that the welding speed is high, and it is also required that the slag cohesiveness is good while increasing the welding speed.
本発明は上記の様な事情に着目してなされたものであって、その目的は、スパッタの発生を低減できるとともに、溶接速度を速くしながらも、スラグ凝集性も良好なアーク溶接方法を提供することにある。
The present invention has been made paying attention to the above-mentioned circumstances, and the object thereof is to provide an arc welding method capable of reducing the occurrence of spatter and improving the slag cohesiveness while increasing the welding speed. There is to do.
本発明の第1の実施形態は、溶接ワイヤを進退方向に送給制御しながら、鋼板を溶接するアーク溶接方法であって、
Cを含有するとともに、
質量%で、
Si:0.2%以上1.3%以下、
Mn:0.2%以上1.5%以下、及び
S: 0.01%以上0.05%以下を含有し、
残部がFeおよび不可避的不純物からなる溶接ワイヤと、
Arを含むガスと、を用いて、
前記溶接ワイヤの進退方向の周波数を35Hz以上160Hz以下として溶接を行うアーク溶接方法に関する。 The first embodiment of the present invention is an arc welding method for welding a steel sheet while controlling the feeding of the welding wire in the forward and backward direction,
Containing C,
% By mass
Si: 0.2% to 1.3%,
Mn: 0.2% or more and 1.5% or less, and S: 0.01% or more and 0.05% or less,
A welding wire with the balance being Fe and inevitable impurities;
Using a gas containing Ar,
The present invention relates to an arc welding method in which welding is performed with a frequency in the advancing and retreating direction of the welding wire being 35 Hz to 160 Hz.
Cを含有するとともに、
質量%で、
Si:0.2%以上1.3%以下、
Mn:0.2%以上1.5%以下、及び
S: 0.01%以上0.05%以下を含有し、
残部がFeおよび不可避的不純物からなる溶接ワイヤと、
Arを含むガスと、を用いて、
前記溶接ワイヤの進退方向の周波数を35Hz以上160Hz以下として溶接を行うアーク溶接方法に関する。 The first embodiment of the present invention is an arc welding method for welding a steel sheet while controlling the feeding of the welding wire in the forward and backward direction,
Containing C,
% By mass
Si: 0.2% to 1.3%,
Mn: 0.2% or more and 1.5% or less, and S: 0.01% or more and 0.05% or less,
A welding wire with the balance being Fe and inevitable impurities;
Using a gas containing Ar,
The present invention relates to an arc welding method in which welding is performed with a frequency in the advancing and retreating direction of the welding wire being 35 Hz to 160 Hz.
本発明の第1の実施形態の好ましい一態様において、溶接ワイヤは、質量%で、さらにAl:0.1%以上0.5%以下、Mo:0.1%以上2.0%以下、Ti:0.3%以下、Cu:0.4%以下、のうち少なくとも一つを含有してもよい。
In a preferred aspect of the first embodiment of the present invention, the welding wire is in mass%, further Al: 0.1% to 0.5%, Mo: 0.1% to 2.0%, Ti : 0.3% or less, Cu: 0.4% or less may be contained.
また、本発明の第1の実施形態の好ましい一態様において、溶接ワイヤにおけるS及びAlの含有量が、0.3≦S×10+Al≦0.7を満足してもよい。
Further, in a preferable aspect of the first embodiment of the present invention, the contents of S and Al in the welding wire may satisfy 0.3 ≦ S × 10 + Al ≦ 0.7.
また、本発明の第1の実施形態の好ましい一態様において、鋼板の板厚は、0.6mm以上5mm以下であってもよい。
Further, in a preferred aspect of the first embodiment of the present invention, the plate thickness of the steel plate may be not less than 0.6 mm and not more than 5 mm.
また、本発明の第1の実施形態の好ましい一態様において、溶接ワイヤの進退方向の周波数を45Hz以上130Hz以下、より好ましくは70Hz以上110Hz以下として溶接を行ってもよい。
Also, in a preferred aspect of the first embodiment of the present invention, welding may be performed with the frequency in the advancing / retreating direction of the welding wire being 45 Hz to 130 Hz, more preferably 70 Hz to 110 Hz.
また、本発明の第1の実施形態の好ましい一態様において、溶接電流の平均値を80A以上350A以下、溶接速度を60cm/min以上として溶接を行ってもよい。
Further, in a preferred aspect of the first embodiment of the present invention, welding may be performed with an average value of welding current of 80 A or more and 350 A or less and a welding speed of 60 cm / min or more.
本発明の第2の実施形態は、鋼板をパルス制御方式でアーク溶接するアーク溶接方法であって、
Cを含有するとともに、
質量%で、
Si:0.2%以上1.1%以下、
Mn:0.2%以上1.4%以下、及び
S:0.010%以上0.050%以下を含有し、
残部がFeおよび不可避的不純物からなる溶接ワイヤと、
Arを含むガスと、を用いて、
電圧パルス周波数を50Hz以上200Hz以下とし、電圧パルス幅を1.5ms以上10ms以下として溶接を行うアーク溶接方法に関する。 The second embodiment of the present invention is an arc welding method for arc welding a steel plate by a pulse control method,
Containing C,
% By mass
Si: 0.2% to 1.1%,
Mn: 0.2% or more and 1.4% or less, and S: 0.010% or more and 0.050% or less,
A welding wire with the balance being Fe and inevitable impurities;
Using a gas containing Ar,
The present invention relates to an arc welding method in which welding is performed with a voltage pulse frequency of 50 Hz to 200 Hz and a voltage pulse width of 1.5 ms to 10 ms.
Cを含有するとともに、
質量%で、
Si:0.2%以上1.1%以下、
Mn:0.2%以上1.4%以下、及び
S:0.010%以上0.050%以下を含有し、
残部がFeおよび不可避的不純物からなる溶接ワイヤと、
Arを含むガスと、を用いて、
電圧パルス周波数を50Hz以上200Hz以下とし、電圧パルス幅を1.5ms以上10ms以下として溶接を行うアーク溶接方法に関する。 The second embodiment of the present invention is an arc welding method for arc welding a steel plate by a pulse control method,
Containing C,
% By mass
Si: 0.2% to 1.1%,
Mn: 0.2% or more and 1.4% or less, and S: 0.010% or more and 0.050% or less,
A welding wire with the balance being Fe and inevitable impurities;
Using a gas containing Ar,
The present invention relates to an arc welding method in which welding is performed with a voltage pulse frequency of 50 Hz to 200 Hz and a voltage pulse width of 1.5 ms to 10 ms.
本発明の第2の実施形態の好ましい一態様において、溶接ワイヤは、質量%で、さらにAl:0.1%以上0.5%以下、Mo:0.1%以上2.0%以下、Cu:0.4%以下、のうち少なくとも一つを含有してもよい。
In a preferred aspect of the second embodiment of the present invention, the welding wire is in mass%, further Al: 0.1% to 0.5%, Mo: 0.1% to 2.0%, Cu : 0.4% or less may be contained.
また、本発明の第2の実施形態の好ましい一態様において、ピーク電流を380A以上490A以下として溶接を行ってもよい。
Further, in a preferred aspect of the second embodiment of the present invention, welding may be performed with a peak current of 380 A or more and 490 A or less.
また、本発明の第2の実施形態の好ましい一態様において、ベース電流を80A以上180A以下として溶接を行ってもよい。
Further, in a preferred aspect of the second embodiment of the present invention, welding may be performed with the base current set to 80 A or more and 180 A or less.
また、本発明の第2の実施形態の好ましい一態様において、パルス電流のDuty比を0.2以上0.6以下として溶接を行ってもよい。
Further, in a preferred aspect of the second embodiment of the present invention, welding may be performed with the duty ratio of the pulse current set to 0.2 or more and 0.6 or less.
また、本発明の第2の実施形態の好ましい一態様において、鋼板の板厚は、0.6mm以上5mm以下であってもよい。
Moreover, in a preferable aspect of the second embodiment of the present invention, the plate thickness of the steel plate may be not less than 0.6 mm and not more than 5 mm.
本発明のアーク溶接方法によれば、スパッタの発生を低減できるとともに、溶接速度を速くしながらも、スラグ凝集性も良好となる。
According to the arc welding method of the present invention, the generation of spatter can be reduced, and the slag cohesiveness can be improved while increasing the welding speed.
以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.
[第1の実施形態]
本発明の第1の実施形態に係るアーク溶接方法(以下、第1の実施形態に係る溶接方法ともいう)は、溶接ワイヤを進退方向に送給制御しながら、鋼板を溶接するアーク溶接方法であって、Cを含有するとともに、質量%で、Si:0.2%以上1.3%以下、Mn:0.2%以上1.5%以下、及びS:0.01%以上0.05%以下を含有し、残部がFeおよび不可避的不純物からなる溶接ワイヤと、Arを含むガスと、を用いて、溶接ワイヤの進退方向の周波数を35Hz以上160Hz以下として溶接を行うアーク溶接方法である。 [First Embodiment]
An arc welding method according to the first embodiment of the present invention (hereinafter also referred to as a welding method according to the first embodiment) is an arc welding method in which a steel wire is welded while feeding control of a welding wire in the forward / backward direction is performed. In addition to containing C, by mass, Si: 0.2% to 1.3%, Mn: 0.2% to 1.5%, and S: 0.01% to 0.05 An arc welding method in which welding is performed with a welding wire frequency of 35 Hz or more and 160 Hz or less using a welding wire containing Fe or less and the balance consisting of Fe and inevitable impurities and a gas containing Ar. .
本発明の第1の実施形態に係るアーク溶接方法(以下、第1の実施形態に係る溶接方法ともいう)は、溶接ワイヤを進退方向に送給制御しながら、鋼板を溶接するアーク溶接方法であって、Cを含有するとともに、質量%で、Si:0.2%以上1.3%以下、Mn:0.2%以上1.5%以下、及びS:0.01%以上0.05%以下を含有し、残部がFeおよび不可避的不純物からなる溶接ワイヤと、Arを含むガスと、を用いて、溶接ワイヤの進退方向の周波数を35Hz以上160Hz以下として溶接を行うアーク溶接方法である。 [First Embodiment]
An arc welding method according to the first embodiment of the present invention (hereinafter also referred to as a welding method according to the first embodiment) is an arc welding method in which a steel wire is welded while feeding control of a welding wire in the forward / backward direction is performed. In addition to containing C, by mass, Si: 0.2% to 1.3%, Mn: 0.2% to 1.5%, and S: 0.01% to 0.05 An arc welding method in which welding is performed with a welding wire frequency of 35 Hz or more and 160 Hz or less using a welding wire containing Fe or less and the balance consisting of Fe and inevitable impurities and a gas containing Ar. .
第1の実施形態に係る溶接方法においては、ワイヤの進退方向における送給を制御しながらアーク溶接が行われる。より具体的には、ワイヤの送給を進退方向において制御しつつ、アークを発生させながらワイヤを前進(正送)させ、溶融したワイヤ先端の溶融金属を溶融池に接触させてアークを消滅させた後、ワイヤを後退(逆送)させて溶融金属を移行させることが繰り返される。このように溶接を行うことによって、溶接時のスパッタの発生を低減することができる。なお、第1の実施形態に係る溶接方法におけるワイヤの進退方向の周波数は、ワイヤの1回の前進(正送)及び後退(逆送)を1周期として規定される。第1の実施形態に係る溶接方法には、例えば、Cold Metal Transfer溶接等が包含される。
In the welding method according to the first embodiment, arc welding is performed while controlling feeding in the advance and retreat direction of the wire. More specifically, while controlling the feeding of the wire in the forward and backward direction, the wire is advanced (forward feeding) while generating an arc, and the molten metal at the tip of the molten wire is brought into contact with the molten pool to extinguish the arc. Thereafter, the wire is moved backward (reversely fed) to transfer the molten metal. By performing welding in this way, it is possible to reduce the occurrence of spatter during welding. Note that the frequency in the wire advance / retreat direction in the welding method according to the first embodiment is defined as one forward (forward feed) and backward (reverse feed) of the wire as one cycle. The welding method according to the first embodiment includes, for example, Cold Metal Transfer welding.
<溶接ワイヤ>
つづいて、以下においては、第1の実施形態に係る溶接方法に用いられる溶接ワイヤ(以下、第1の実施形態に係るワイヤ、又は、単にワイヤともいう)の各元素の含有量を限定した理由について説明する。なお、これら各元素の含有量は、ワイヤ全質量に対する含有量である。また、本明細書において、質量を基準とする百分率(質量%)は、重量を基準とする百分率(重量%)と同義である。 <Welding wire>
Subsequently, in the following, the reason for limiting the content of each element of the welding wire (hereinafter also referred to as the wire according to the first embodiment or simply the wire) used in the welding method according to the first embodiment. Will be described. In addition, content of these each element is content with respect to the wire total mass. Moreover, in this specification, the percentage (mass%) based on mass is synonymous with the percentage (weight%) based on weight.
つづいて、以下においては、第1の実施形態に係る溶接方法に用いられる溶接ワイヤ(以下、第1の実施形態に係るワイヤ、又は、単にワイヤともいう)の各元素の含有量を限定した理由について説明する。なお、これら各元素の含有量は、ワイヤ全質量に対する含有量である。また、本明細書において、質量を基準とする百分率(質量%)は、重量を基準とする百分率(重量%)と同義である。 <Welding wire>
Subsequently, in the following, the reason for limiting the content of each element of the welding wire (hereinafter also referred to as the wire according to the first embodiment or simply the wire) used in the welding method according to the first embodiment. Will be described. In addition, content of these each element is content with respect to the wire total mass. Moreover, in this specification, the percentage (mass%) based on mass is synonymous with the percentage (weight%) based on weight.
(C)
Cは、強度を向上させる元素である。第1の実施形態に係るワイヤにおいては、Cは含有されていればよく、すなわちCの含有量は0%超であればよいが、上記効果をより良好に奏するためには、0.02質量%以上であることが好ましく、0.04質量%以上であることがより好ましい。
また、Cの含有量の上限は特に限定されないが、スパッタの低減や高温割れなどを抑制する観点から、Cの含有量は、0.15質量%以下が好ましく、0.10質量%以下がより好ましい。 (C)
C is an element that improves the strength. In the wire according to the first embodiment, it is sufficient that C is contained, that is, the content of C should be more than 0%. However, in order to achieve the above effect better, 0.02 mass. % Or more is preferable, and 0.04% by mass or more is more preferable.
The upper limit of the C content is not particularly limited, but from the viewpoint of suppressing spatter reduction and high-temperature cracking, the C content is preferably 0.15% by mass or less, more preferably 0.10% by mass or less. preferable.
Cは、強度を向上させる元素である。第1の実施形態に係るワイヤにおいては、Cは含有されていればよく、すなわちCの含有量は0%超であればよいが、上記効果をより良好に奏するためには、0.02質量%以上であることが好ましく、0.04質量%以上であることがより好ましい。
また、Cの含有量の上限は特に限定されないが、スパッタの低減や高温割れなどを抑制する観点から、Cの含有量は、0.15質量%以下が好ましく、0.10質量%以下がより好ましい。 (C)
C is an element that improves the strength. In the wire according to the first embodiment, it is sufficient that C is contained, that is, the content of C should be more than 0%. However, in order to achieve the above effect better, 0.02 mass. % Or more is preferable, and 0.04% by mass or more is more preferable.
The upper limit of the C content is not particularly limited, but from the viewpoint of suppressing spatter reduction and high-temperature cracking, the C content is preferably 0.15% by mass or less, more preferably 0.10% by mass or less. preferable.
(Si)
Siは、有効な脱酸剤であり、溶接金属の脱酸においては不可欠な元素である。Siの含有量が0.2質量%未満であると脱酸効果が損なわれ、表面張力が低下し、ピットやブローホールといった気孔欠陥が発生しやすくなる。また、スラグ凝集性が低下する。したがって、Siの含有量は0.2質量%以上とし、好ましくは0.3質量%以上、より好ましくは0.5質量%以上とする。
一方、Siは、含有量が低くなるほどワイヤの電気抵抗が低くなるという特徴を持ち、ワイヤの電気抵抗が低くなるほどワイヤは溶融し難くなる(電気抵抗熱が低くなる)ため、必要な溶接電流は大きくなり、その結果、アーク力が高くなることにより、ピット、ブローホール等の気孔欠陥を抑制することができる。また、Siの含有量が1.3質量%を超えるとビード表面に発生するスラグ量が多くなってしまい、スラグ凝集性も低下する。したがって、Siの含有量は1.3質量%以下とし、好ましくは1.2質量%以下、より好ましくは1.0質量%以下とする。 (Si)
Si is an effective deoxidizer and is an indispensable element in deoxidation of weld metal. When the Si content is less than 0.2% by mass, the deoxidation effect is impaired, the surface tension is lowered, and pore defects such as pits and blowholes are likely to occur. Moreover, slag cohesiveness falls. Accordingly, the Si content is 0.2% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more.
On the other hand, Si has a feature that the electrical resistance of the wire decreases as the content decreases, and the wire is less likely to melt as the electrical resistance of the wire decreases (the electrical resistance heat decreases). As a result, the arc force is increased, so that pore defects such as pits and blowholes can be suppressed. On the other hand, if the Si content exceeds 1.3% by mass, the amount of slag generated on the bead surface increases, and the slag cohesiveness also decreases. Therefore, the Si content is 1.3% by mass or less, preferably 1.2% by mass or less, more preferably 1.0% by mass or less.
Siは、有効な脱酸剤であり、溶接金属の脱酸においては不可欠な元素である。Siの含有量が0.2質量%未満であると脱酸効果が損なわれ、表面張力が低下し、ピットやブローホールといった気孔欠陥が発生しやすくなる。また、スラグ凝集性が低下する。したがって、Siの含有量は0.2質量%以上とし、好ましくは0.3質量%以上、より好ましくは0.5質量%以上とする。
一方、Siは、含有量が低くなるほどワイヤの電気抵抗が低くなるという特徴を持ち、ワイヤの電気抵抗が低くなるほどワイヤは溶融し難くなる(電気抵抗熱が低くなる)ため、必要な溶接電流は大きくなり、その結果、アーク力が高くなることにより、ピット、ブローホール等の気孔欠陥を抑制することができる。また、Siの含有量が1.3質量%を超えるとビード表面に発生するスラグ量が多くなってしまい、スラグ凝集性も低下する。したがって、Siの含有量は1.3質量%以下とし、好ましくは1.2質量%以下、より好ましくは1.0質量%以下とする。 (Si)
Si is an effective deoxidizer and is an indispensable element in deoxidation of weld metal. When the Si content is less than 0.2% by mass, the deoxidation effect is impaired, the surface tension is lowered, and pore defects such as pits and blowholes are likely to occur. Moreover, slag cohesiveness falls. Accordingly, the Si content is 0.2% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more.
On the other hand, Si has a feature that the electrical resistance of the wire decreases as the content decreases, and the wire is less likely to melt as the electrical resistance of the wire decreases (the electrical resistance heat decreases). As a result, the arc force is increased, so that pore defects such as pits and blowholes can be suppressed. On the other hand, if the Si content exceeds 1.3% by mass, the amount of slag generated on the bead surface increases, and the slag cohesiveness also decreases. Therefore, the Si content is 1.3% by mass or less, preferably 1.2% by mass or less, more preferably 1.0% by mass or less.
(Mn)
Mnは、Siと同じく有効な脱酸剤であり、Sと結合し易い元素である。Mnの含有量が0.2質量%未満であると、脱酸、脱硫効果が損なわれ、表面張力が低下し、ピットやブローホールといった気孔欠陥が発生しやすくなる。また、スラグ凝集性が低下する。したがって、Mnの含有量は0.2質量%以上とし、好ましくは0.3質量%以上、より好ましくは0.5質量%以上とする。
一方、Mnの含有量が1.5質量%を超えると、ビード表面に剥離し難い薄い酸化膜を発生させてしまう。また、スラグ凝集性が低下する。したがって、Mnの含有量は1.5質量%以下とし、好ましくは1.3質量%以下、より好ましくは1.1質量%以下とする。 (Mn)
Mn is an effective deoxidizer similar to Si, and is an element that easily binds to S. When the Mn content is less than 0.2% by mass, the deoxidation and desulfurization effects are impaired, the surface tension is lowered, and pore defects such as pits and blowholes are likely to occur. Moreover, slag cohesiveness falls. Therefore, the Mn content is 0.2% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more.
On the other hand, if the Mn content exceeds 1.5% by mass, a thin oxide film that hardly peels off is generated on the bead surface. Moreover, slag cohesiveness falls. Therefore, the Mn content is 1.5% by mass or less, preferably 1.3% by mass or less, more preferably 1.1% by mass or less.
Mnは、Siと同じく有効な脱酸剤であり、Sと結合し易い元素である。Mnの含有量が0.2質量%未満であると、脱酸、脱硫効果が損なわれ、表面張力が低下し、ピットやブローホールといった気孔欠陥が発生しやすくなる。また、スラグ凝集性が低下する。したがって、Mnの含有量は0.2質量%以上とし、好ましくは0.3質量%以上、より好ましくは0.5質量%以上とする。
一方、Mnの含有量が1.5質量%を超えると、ビード表面に剥離し難い薄い酸化膜を発生させてしまう。また、スラグ凝集性が低下する。したがって、Mnの含有量は1.5質量%以下とし、好ましくは1.3質量%以下、より好ましくは1.1質量%以下とする。 (Mn)
Mn is an effective deoxidizer similar to Si, and is an element that easily binds to S. When the Mn content is less than 0.2% by mass, the deoxidation and desulfurization effects are impaired, the surface tension is lowered, and pore defects such as pits and blowholes are likely to occur. Moreover, slag cohesiveness falls. Therefore, the Mn content is 0.2% by mass or more, preferably 0.3% by mass or more, and more preferably 0.5% by mass or more.
On the other hand, if the Mn content exceeds 1.5% by mass, a thin oxide film that hardly peels off is generated on the bead surface. Moreover, slag cohesiveness falls. Therefore, the Mn content is 1.5% by mass or less, preferably 1.3% by mass or less, more preferably 1.1% by mass or less.
(S)
Sは、スラグの凝集に寄与する元素であるが、0.01質量%未満では、その効果が得られないため、Sの含有量は0.01質量%以上とし、好ましくは0.02質量%以上とする。
一方、Sの含有量が0.05質量%を超えると、溶融池表面の流れが大きく変化し、スラグがアーク直下近傍まで接近して大きく振動する結果、凝集効果が低下してしまう。したがって、Sの含有量は0.05質量%以下とし、好ましくは0.04質量%以下とする。 (S)
S is an element that contributes to the aggregation of slag, but if it is less than 0.01% by mass, the effect cannot be obtained, so the S content is 0.01% by mass or more, preferably 0.02% by mass. That's it.
On the other hand, when the S content exceeds 0.05 mass%, the flow on the surface of the molten pool is greatly changed, and as a result of the slag coming close to the vicinity of the arc and greatly vibrating, the agglomeration effect is lowered. Therefore, the S content is 0.05% by mass or less, preferably 0.04% by mass or less.
Sは、スラグの凝集に寄与する元素であるが、0.01質量%未満では、その効果が得られないため、Sの含有量は0.01質量%以上とし、好ましくは0.02質量%以上とする。
一方、Sの含有量が0.05質量%を超えると、溶融池表面の流れが大きく変化し、スラグがアーク直下近傍まで接近して大きく振動する結果、凝集効果が低下してしまう。したがって、Sの含有量は0.05質量%以下とし、好ましくは0.04質量%以下とする。 (S)
S is an element that contributes to the aggregation of slag, but if it is less than 0.01% by mass, the effect cannot be obtained, so the S content is 0.01% by mass or more, preferably 0.02% by mass. That's it.
On the other hand, when the S content exceeds 0.05 mass%, the flow on the surface of the molten pool is greatly changed, and as a result of the slag coming close to the vicinity of the arc and greatly vibrating, the agglomeration effect is lowered. Therefore, the S content is 0.05% by mass or less, preferably 0.04% by mass or less.
第1の実施形態に係るワイヤの残部は、Feおよび不可避的不純物からなり、当該不可避的不純物としては、P、Cr、Ni、N、O等が挙げられ、本発明の効果を妨げない範囲で含有することが許容される。
The remainder of the wire according to the first embodiment is made of Fe and unavoidable impurities. Examples of the unavoidable impurities include P, Cr, Ni, N, O, and the like, as long as the effects of the present invention are not hindered. It is allowed to contain.
また、第1の実施形態に係るワイヤには、上記した化学成分に加えて、さらに下記の成分の少なくとも1つが添加されていてもよい。
Moreover, in addition to the above-described chemical components, at least one of the following components may be added to the wire according to the first embodiment.
(Al)
Alは、スラグの凝集に寄与する元素である。第1の実施形態に係るワイヤにおいて、Alの添加は必須ではないが、Alの含有量が0.1質量%未満では、スラグの凝集効果が得られにくいため、Alを添加する場合にはその含有量を0.1質量%以上とすることが好ましく、0.2質量%以上とすることがより好ましい。
一方、Alの含有量が0.5質量%を超えると、溶滴離脱が不安定となり、溶融池の振動が乱れ、スパッタが多発する結果、スラグ凝集効果が低下するおそれがある。したがって、Alを添加する場合には、その含有量を0.5質量%以下することが好ましく、0.4質量%以下とすることがより好ましい。 (Al)
Al is an element that contributes to slag aggregation. In the wire according to the first embodiment, the addition of Al is not essential, but when the Al content is less than 0.1% by mass, it is difficult to obtain a coagulation effect of slag. The content is preferably 0.1% by mass or more, and more preferably 0.2% by mass or more.
On the other hand, if the Al content exceeds 0.5% by mass, droplet detachment becomes unstable, vibration of the molten pool is disturbed, and as a result of frequent spattering, the slag aggregation effect may be reduced. Therefore, when adding Al, it is preferable to make the content into 0.5 mass% or less, and it is more preferable to set it as 0.4 mass% or less.
Alは、スラグの凝集に寄与する元素である。第1の実施形態に係るワイヤにおいて、Alの添加は必須ではないが、Alの含有量が0.1質量%未満では、スラグの凝集効果が得られにくいため、Alを添加する場合にはその含有量を0.1質量%以上とすることが好ましく、0.2質量%以上とすることがより好ましい。
一方、Alの含有量が0.5質量%を超えると、溶滴離脱が不安定となり、溶融池の振動が乱れ、スパッタが多発する結果、スラグ凝集効果が低下するおそれがある。したがって、Alを添加する場合には、その含有量を0.5質量%以下することが好ましく、0.4質量%以下とすることがより好ましい。 (Al)
Al is an element that contributes to slag aggregation. In the wire according to the first embodiment, the addition of Al is not essential, but when the Al content is less than 0.1% by mass, it is difficult to obtain a coagulation effect of slag. The content is preferably 0.1% by mass or more, and more preferably 0.2% by mass or more.
On the other hand, if the Al content exceeds 0.5% by mass, droplet detachment becomes unstable, vibration of the molten pool is disturbed, and as a result of frequent spattering, the slag aggregation effect may be reduced. Therefore, when adding Al, it is preferable to make the content into 0.5 mass% or less, and it is more preferable to set it as 0.4 mass% or less.
(Mo)
Moは強度の向上に寄与する元素である。第1の実施形態に係るワイヤにおいて、Moの添加は必須ではないが、かかる効果を良好に発揮するために、Moを添加する場合にはその含有量を0.1質量%以上とすることが好ましく、0.3質量%以上とすることがより好ましい。
一方、Moは、2.0質量%を超えると高温においてFeと金属間化合物を形成するため効果は飽和する。したがって、Moを添加する場合には、その含有量を2.0質量%以下することが好ましく、1.5質量%以下とすることがより好ましい。 (Mo)
Mo is an element that contributes to improvement in strength. In the wire according to the first embodiment, the addition of Mo is not essential, but in order to exert such an effect well, when adding Mo, the content may be 0.1% by mass or more. Preferably, it is more preferably 0.3% by mass or more.
On the other hand, when Mo exceeds 2.0 mass%, the effect is saturated because Fe and an intermetallic compound are formed at a high temperature. Therefore, when adding Mo, it is preferable to make the content into 2.0 mass% or less, and it is more preferable to set it as 1.5 mass% or less.
Moは強度の向上に寄与する元素である。第1の実施形態に係るワイヤにおいて、Moの添加は必須ではないが、かかる効果を良好に発揮するために、Moを添加する場合にはその含有量を0.1質量%以上とすることが好ましく、0.3質量%以上とすることがより好ましい。
一方、Moは、2.0質量%を超えると高温においてFeと金属間化合物を形成するため効果は飽和する。したがって、Moを添加する場合には、その含有量を2.0質量%以下することが好ましく、1.5質量%以下とすることがより好ましい。 (Mo)
Mo is an element that contributes to improvement in strength. In the wire according to the first embodiment, the addition of Mo is not essential, but in order to exert such an effect well, when adding Mo, the content may be 0.1% by mass or more. Preferably, it is more preferably 0.3% by mass or more.
On the other hand, when Mo exceeds 2.0 mass%, the effect is saturated because Fe and an intermetallic compound are formed at a high temperature. Therefore, when adding Mo, it is preferable to make the content into 2.0 mass% or less, and it is more preferable to set it as 1.5 mass% or less.
(Ti)
Tiは、強脱酸元素であり、溶融金属の酸素量を低減し、表面張力を低下させることが可能であるため、ワイヤ中の酸素量が高い場合は効果的である。しかし、0.3質量%を超えて添加すると、スラグが多量に発生する。したがって、Tiを添加する場合にはその含有量を0.3質量%以下とすることが好ましく、0.2質量%以下とすることがより好ましい。 (Ti)
Ti is a strong deoxidizing element and can reduce the amount of oxygen in the molten metal and reduce the surface tension. Therefore, it is effective when the amount of oxygen in the wire is high. However, if added over 0.3 mass%, a large amount of slag is generated. Therefore, when adding Ti, the content is preferably 0.3% by mass or less, and more preferably 0.2% by mass or less.
Tiは、強脱酸元素であり、溶融金属の酸素量を低減し、表面張力を低下させることが可能であるため、ワイヤ中の酸素量が高い場合は効果的である。しかし、0.3質量%を超えて添加すると、スラグが多量に発生する。したがって、Tiを添加する場合にはその含有量を0.3質量%以下とすることが好ましく、0.2質量%以下とすることがより好ましい。 (Ti)
Ti is a strong deoxidizing element and can reduce the amount of oxygen in the molten metal and reduce the surface tension. Therefore, it is effective when the amount of oxygen in the wire is high. However, if added over 0.3 mass%, a large amount of slag is generated. Therefore, when adding Ti, the content is preferably 0.3% by mass or less, and more preferably 0.2% by mass or less.
(Cu)
Cuは、通電性、耐錆性の向上に効果がある元素である。Cuを含有する場合、その含有量の下限値は特に限定されるものではないが、かかる効果をより良好に得るためには、0.1質量%以上であることが好ましい。また、高温割れの発生を抑制する観点から、Cuの含有量は、0.4質量%以下であることが好ましい。なお、第1の実施形態のワイヤには、所望によりCuめっきを施す場合がある。ここで、Cuは、ワイヤの母材に含まれるものと、Cuめっき分とを合計した値とする。 (Cu)
Cu is an element that is effective in improving the electrical conductivity and rust resistance. When Cu is contained, the lower limit value of the content is not particularly limited, but is preferably 0.1% by mass or more in order to obtain this effect more favorably. Moreover, it is preferable that content of Cu is 0.4 mass% or less from a viewpoint of suppressing generation | occurrence | production of a hot crack. The wire of the first embodiment may be subjected to Cu plating if desired. Here, Cu is a value obtained by adding up the amount contained in the base material of the wire and the amount of Cu plating.
Cuは、通電性、耐錆性の向上に効果がある元素である。Cuを含有する場合、その含有量の下限値は特に限定されるものではないが、かかる効果をより良好に得るためには、0.1質量%以上であることが好ましい。また、高温割れの発生を抑制する観点から、Cuの含有量は、0.4質量%以下であることが好ましい。なお、第1の実施形態のワイヤには、所望によりCuめっきを施す場合がある。ここで、Cuは、ワイヤの母材に含まれるものと、Cuめっき分とを合計した値とする。 (Cu)
Cu is an element that is effective in improving the electrical conductivity and rust resistance. When Cu is contained, the lower limit value of the content is not particularly limited, but is preferably 0.1% by mass or more in order to obtain this effect more favorably. Moreover, it is preferable that content of Cu is 0.4 mass% or less from a viewpoint of suppressing generation | occurrence | production of a hot crack. The wire of the first embodiment may be subjected to Cu plating if desired. Here, Cu is a value obtained by adding up the amount contained in the base material of the wire and the amount of Cu plating.
(0.3≦S×10+Al≦0.7)
また、第1の実施形態に係るワイヤは、S及びAlの含有量が、下記の関係式を満足していることが好ましい。この場合、S及びAlの含有量がかかる関係式を満足するように調整することにより、スラグ凝集性をより良好なものとすることができる。
0.3≦S×10+Al≦0.7 (0.3 ≦ S × 10 + Al ≦ 0.7)
In the wire according to the first embodiment, the S and Al contents preferably satisfy the following relational expression. In this case, the slag cohesiveness can be further improved by adjusting the S and Al contents so as to satisfy the relational expression.
0.3 ≦ S × 10 + Al ≦ 0.7
また、第1の実施形態に係るワイヤは、S及びAlの含有量が、下記の関係式を満足していることが好ましい。この場合、S及びAlの含有量がかかる関係式を満足するように調整することにより、スラグ凝集性をより良好なものとすることができる。
0.3≦S×10+Al≦0.7 (0.3 ≦ S × 10 + Al ≦ 0.7)
In the wire according to the first embodiment, the S and Al contents preferably satisfy the following relational expression. In this case, the slag cohesiveness can be further improved by adjusting the S and Al contents so as to satisfy the relational expression.
0.3 ≦ S × 10 + Al ≦ 0.7
(ワイヤの直径)
第1の実施形態において、ワイヤの直径は特に限定されるものではなく、通常適用される範囲から適宜選択すればよい。ワイヤの直径は、例えば0.8mm~1.4mmである。また、後述の第2の実施形態においても同様である。 (Wire diameter)
In the first embodiment, the diameter of the wire is not particularly limited, and may be appropriately selected from a range that is usually applied. The diameter of the wire is, for example, 0.8 mm to 1.4 mm. The same applies to a second embodiment described later.
第1の実施形態において、ワイヤの直径は特に限定されるものではなく、通常適用される範囲から適宜選択すればよい。ワイヤの直径は、例えば0.8mm~1.4mmである。また、後述の第2の実施形態においても同様である。 (Wire diameter)
In the first embodiment, the diameter of the wire is not particularly limited, and may be appropriately selected from a range that is usually applied. The diameter of the wire is, for example, 0.8 mm to 1.4 mm. The same applies to a second embodiment described later.
(ワイヤの製造方法)
ワイヤの製造方法としては、例えば、所定の組成を有する鋼材の素線を所定の直径まで伸線加工すればよい。伸線加工は、孔ダイスを用いる方法やローラダイスを用いる方法のどちらでもよい。また、Cuめっきを施す場合は、Cuめっき後に伸線加工してもよい。また、後述の第2の実施形態においても同様である。 (Wire production method)
As a method for manufacturing the wire, for example, a steel wire having a predetermined composition may be drawn to a predetermined diameter. The wire drawing process may be either a method using a hole die or a method using a roller die. Moreover, when performing Cu plating, you may wire-draw after Cu plating. The same applies to a second embodiment described later.
ワイヤの製造方法としては、例えば、所定の組成を有する鋼材の素線を所定の直径まで伸線加工すればよい。伸線加工は、孔ダイスを用いる方法やローラダイスを用いる方法のどちらでもよい。また、Cuめっきを施す場合は、Cuめっき後に伸線加工してもよい。また、後述の第2の実施形態においても同様である。 (Wire production method)
As a method for manufacturing the wire, for example, a steel wire having a predetermined composition may be drawn to a predetermined diameter. The wire drawing process may be either a method using a hole die or a method using a roller die. Moreover, when performing Cu plating, you may wire-draw after Cu plating. The same applies to a second embodiment described later.
<シールドガス>
第1の実施形態に係る溶接方法に用いられるシールドガスは、Arを含有していればよく、Arのみからなっていてもよい。あるいは、Arに加えて、CO2やO2などを含有していてもよく、例えば、5~30体積%程度のCO2ないしO2と、残部がArであるシールドガスを用いてもよい。なお、シールドガスには、不可避不純物としてのN2、H2等も含有され得る。
ここで、シールドガス中のArの含有割合が高いほど、スラグ量が減少することからシールドガス中のArの含有割合は高い方が望ましい。かかる観点より、Arの含有割合は70体積%以上であることが好ましく、80体積%以上であることがより好ましい。一方、上記したように、シールドガスはArのみからなっていてもよい(すなわち、Arの含有割合が100体積%であってもよい)が、例えばArの含有割合を70体積%以下としてもよい。また、後述の第2の実施形態においても同様である。 <Shield gas>
The shield gas used in the welding method according to the first embodiment only needs to contain Ar, and may consist only of Ar. Alternatively, in addition to Ar, CO 2 , O 2, or the like may be contained. For example, about 5 to 30% by volume of CO 2 to O 2 and the balance of Ar may be used. The shield gas can also contain N 2 , H 2, etc. as inevitable impurities.
Here, since the amount of slag decreases as the content ratio of Ar in the shield gas is higher, it is desirable that the content ratio of Ar in the shield gas is higher. From this viewpoint, the content ratio of Ar is preferably 70% by volume or more, and more preferably 80% by volume or more. On the other hand, as described above, the shielding gas may be composed only of Ar (that is, the Ar content may be 100% by volume). For example, the Ar content may be 70% by volume or less. . The same applies to a second embodiment described later.
第1の実施形態に係る溶接方法に用いられるシールドガスは、Arを含有していればよく、Arのみからなっていてもよい。あるいは、Arに加えて、CO2やO2などを含有していてもよく、例えば、5~30体積%程度のCO2ないしO2と、残部がArであるシールドガスを用いてもよい。なお、シールドガスには、不可避不純物としてのN2、H2等も含有され得る。
ここで、シールドガス中のArの含有割合が高いほど、スラグ量が減少することからシールドガス中のArの含有割合は高い方が望ましい。かかる観点より、Arの含有割合は70体積%以上であることが好ましく、80体積%以上であることがより好ましい。一方、上記したように、シールドガスはArのみからなっていてもよい(すなわち、Arの含有割合が100体積%であってもよい)が、例えばArの含有割合を70体積%以下としてもよい。また、後述の第2の実施形態においても同様である。 <Shield gas>
The shield gas used in the welding method according to the first embodiment only needs to contain Ar, and may consist only of Ar. Alternatively, in addition to Ar, CO 2 , O 2, or the like may be contained. For example, about 5 to 30% by volume of CO 2 to O 2 and the balance of Ar may be used. The shield gas can also contain N 2 , H 2, etc. as inevitable impurities.
Here, since the amount of slag decreases as the content ratio of Ar in the shield gas is higher, it is desirable that the content ratio of Ar in the shield gas is higher. From this viewpoint, the content ratio of Ar is preferably 70% by volume or more, and more preferably 80% by volume or more. On the other hand, as described above, the shielding gas may be composed only of Ar (that is, the Ar content may be 100% by volume). For example, the Ar content may be 70% by volume or less. . The same applies to a second embodiment described later.
<ワイヤの進退方向の周波数>
第1の実施形態に係る溶接方法においては、ワイヤの進退方向の送給を制御するにあたり、ワイヤの進退方向の周波数が35Hz以上160Hz以下となるように制御する。
本発明者らは鋭意検討の結果、溶融金属の固有振動数は数十Hz程度であり、溶融池の固有振動数に合わせるようにワイヤの進退方向の周波数を適切な範囲に制御することにより、溶融池表面の振動が最適となり、溶融池表面の湯流れがスラグを巻き込むように変化し、スラグ凝集性を良好なものとすることができることを見出した。ワイヤの進退方向の周波数が35Hz未満では、ピーク電流期間での短絡が多発し、規則的な溶滴移行ができなくなり、溶融池の振動が乱れてしまい、良好なスラグ凝集性が得られないため、ワイヤの進退方向の周波数は35Hz以上とし、好ましくは45Hz以上とし、より好ましくは70Hz以上とする。他方、ワイヤの進退方向の周波数が160Hzを超えると、ピーク期間でのアークによる溶融池の押し下げ効果が低減し、十分な溶融池の振幅を得ることができなくなり、良好なスラグ凝集性が得られないため、ワイヤの進退方向の周波数は160Hz以下とし、好ましくは150Hz以下とし、より好ましくは130Hz以下とし、さらに好ましくは110Hz以下とする。 <Frequency of wire advance / retreat direction>
In the welding method according to the first embodiment, when controlling the feeding of the wire in the forward / backward direction, the frequency in the forward / backward direction of the wire is controlled to be 35 Hz or more and 160 Hz or less.
As a result of intensive studies, the present inventors have found that the natural frequency of the molten metal is about several tens of Hz, and by controlling the frequency in the advancing and retreating direction of the wire to an appropriate range so as to match the natural frequency of the molten pool, It has been found that the vibration of the molten pool surface becomes optimal, the hot water flow on the molten pool surface changes so as to involve slag, and the slag cohesiveness can be improved. If the frequency in the wire advance / retreat direction is less than 35 Hz, short circuit occurs frequently in the peak current period, regular droplet transfer cannot be performed, the molten pool vibration is disturbed, and good slag cohesiveness cannot be obtained. The frequency in the advancing / retreating direction of the wire is 35 Hz or more, preferably 45 Hz or more, more preferably 70 Hz or more. On the other hand, if the frequency in the wire advance / retreat direction exceeds 160 Hz, the effect of depressing the molten pool by the arc in the peak period is reduced, and sufficient molten pool amplitude cannot be obtained, and good slag cohesiveness is obtained. Therefore, the frequency in the advancing / retreating direction of the wire is 160 Hz or less, preferably 150 Hz or less, more preferably 130 Hz or less, and further preferably 110 Hz or less.
第1の実施形態に係る溶接方法においては、ワイヤの進退方向の送給を制御するにあたり、ワイヤの進退方向の周波数が35Hz以上160Hz以下となるように制御する。
本発明者らは鋭意検討の結果、溶融金属の固有振動数は数十Hz程度であり、溶融池の固有振動数に合わせるようにワイヤの進退方向の周波数を適切な範囲に制御することにより、溶融池表面の振動が最適となり、溶融池表面の湯流れがスラグを巻き込むように変化し、スラグ凝集性を良好なものとすることができることを見出した。ワイヤの進退方向の周波数が35Hz未満では、ピーク電流期間での短絡が多発し、規則的な溶滴移行ができなくなり、溶融池の振動が乱れてしまい、良好なスラグ凝集性が得られないため、ワイヤの進退方向の周波数は35Hz以上とし、好ましくは45Hz以上とし、より好ましくは70Hz以上とする。他方、ワイヤの進退方向の周波数が160Hzを超えると、ピーク期間でのアークによる溶融池の押し下げ効果が低減し、十分な溶融池の振幅を得ることができなくなり、良好なスラグ凝集性が得られないため、ワイヤの進退方向の周波数は160Hz以下とし、好ましくは150Hz以下とし、より好ましくは130Hz以下とし、さらに好ましくは110Hz以下とする。 <Frequency of wire advance / retreat direction>
In the welding method according to the first embodiment, when controlling the feeding of the wire in the forward / backward direction, the frequency in the forward / backward direction of the wire is controlled to be 35 Hz or more and 160 Hz or less.
As a result of intensive studies, the present inventors have found that the natural frequency of the molten metal is about several tens of Hz, and by controlling the frequency in the advancing and retreating direction of the wire to an appropriate range so as to match the natural frequency of the molten pool, It has been found that the vibration of the molten pool surface becomes optimal, the hot water flow on the molten pool surface changes so as to involve slag, and the slag cohesiveness can be improved. If the frequency in the wire advance / retreat direction is less than 35 Hz, short circuit occurs frequently in the peak current period, regular droplet transfer cannot be performed, the molten pool vibration is disturbed, and good slag cohesiveness cannot be obtained. The frequency in the advancing / retreating direction of the wire is 35 Hz or more, preferably 45 Hz or more, more preferably 70 Hz or more. On the other hand, if the frequency in the wire advance / retreat direction exceeds 160 Hz, the effect of depressing the molten pool by the arc in the peak period is reduced, and sufficient molten pool amplitude cannot be obtained, and good slag cohesiveness is obtained. Therefore, the frequency in the advancing / retreating direction of the wire is 160 Hz or less, preferably 150 Hz or less, more preferably 130 Hz or less, and further preferably 110 Hz or less.
<母材>
第1の実施形態に係る溶接方法において溶接対象となる母材は、鋼板であればよく、鋼板の組成、板厚等については特に限定されないが、たとえば板厚0.6mm以上5.0mm以下の薄鋼板などにも適用可能である。また、鋼種としては、例えば軟鋼であってもよく、590MPa級までの高張力鋼などであってもよい。なお、母材の表面には亜鉛めっきやアルミめっき等の各種めっき処理が施されてもよい。また、後述の第2の実施形態においても同様である。 <Base material>
In the welding method according to the first embodiment, the base material to be welded may be a steel plate, and the composition and thickness of the steel plate are not particularly limited. For example, the thickness is 0.6 mm or more and 5.0 mm or less. It can also be applied to thin steel sheets. In addition, the steel type may be, for example, mild steel or high-tensile steel up to 590 MPa class. The surface of the base material may be subjected to various plating treatments such as galvanization and aluminum plating. The same applies to a second embodiment described later.
第1の実施形態に係る溶接方法において溶接対象となる母材は、鋼板であればよく、鋼板の組成、板厚等については特に限定されないが、たとえば板厚0.6mm以上5.0mm以下の薄鋼板などにも適用可能である。また、鋼種としては、例えば軟鋼であってもよく、590MPa級までの高張力鋼などであってもよい。なお、母材の表面には亜鉛めっきやアルミめっき等の各種めっき処理が施されてもよい。また、後述の第2の実施形態においても同様である。 <Base material>
In the welding method according to the first embodiment, the base material to be welded may be a steel plate, and the composition and thickness of the steel plate are not particularly limited. For example, the thickness is 0.6 mm or more and 5.0 mm or less. It can also be applied to thin steel sheets. In addition, the steel type may be, for example, mild steel or high-tensile steel up to 590 MPa class. The surface of the base material may be subjected to various plating treatments such as galvanization and aluminum plating. The same applies to a second embodiment described later.
<溶接条件>
また、第1の実施形態に係る溶接方法における、溶接電流、溶接電圧、溶接速度、溶接姿勢等の各溶接条件は特に限定されず、アーク溶接方法において適用し得る範囲で適宜調整すればよい。
ここで、溶接電流の平均値としては、例えば80A以上350A以下であり、好ましくは100A以上300A以下である。また、溶接速度としては、例えば60cm/min以上である。第1の実施形態に係る溶接方法によれば、これら溶接条件においても、良好なスラグ凝集性で溶接を実施できる。 <Welding conditions>
Moreover, each welding condition in the welding method according to the first embodiment, such as a welding current, a welding voltage, a welding speed, and a welding posture, is not particularly limited, and may be appropriately adjusted within a range applicable in the arc welding method.
Here, the average value of the welding current is, for example, 80 A or more and 350 A or less, and preferably 100 A or more and 300 A or less. Moreover, as a welding speed, it is 60 cm / min or more, for example. According to the welding method according to the first embodiment, welding can be performed with good slag cohesion even under these welding conditions.
また、第1の実施形態に係る溶接方法における、溶接電流、溶接電圧、溶接速度、溶接姿勢等の各溶接条件は特に限定されず、アーク溶接方法において適用し得る範囲で適宜調整すればよい。
ここで、溶接電流の平均値としては、例えば80A以上350A以下であり、好ましくは100A以上300A以下である。また、溶接速度としては、例えば60cm/min以上である。第1の実施形態に係る溶接方法によれば、これら溶接条件においても、良好なスラグ凝集性で溶接を実施できる。 <Welding conditions>
Moreover, each welding condition in the welding method according to the first embodiment, such as a welding current, a welding voltage, a welding speed, and a welding posture, is not particularly limited, and may be appropriately adjusted within a range applicable in the arc welding method.
Here, the average value of the welding current is, for example, 80 A or more and 350 A or less, and preferably 100 A or more and 300 A or less. Moreover, as a welding speed, it is 60 cm / min or more, for example. According to the welding method according to the first embodiment, welding can be performed with good slag cohesion even under these welding conditions.
[第2の実施形態]
本発明の第2の実施形態に係るアーク溶接方法(以下、第2の実施形態に係る溶接方法ともいう)は、鋼板をパルス制御方式でアーク溶接するアーク溶接方法であって、Cを含有するとともに、質量%で、Si:0.2%以上1.1%以下、Mn:0.2%以上1.4%以下、及びS:0.010%以上0.050%以下を含有し、残部がFeおよび不可避的不純物からなる溶接ワイヤと、Arを含むガスと、を用いて、電圧パルス周波数を50Hz以上200Hz以下とし、電圧パルス幅を1.5ms以上10ms以下として溶接を行うアーク溶接方法である。 [Second Embodiment]
An arc welding method according to a second embodiment of the present invention (hereinafter also referred to as a welding method according to the second embodiment) is an arc welding method in which a steel plate is arc-welded by a pulse control method, and contains C. In addition, by mass%, Si: 0.2% to 1.1%, Mn: 0.2% to 1.4%, and S: 0.010% to 0.050%, the balance An arc welding method in which welding is performed using a welding wire made of Fe and inevitable impurities and a gas containing Ar, with a voltage pulse frequency of 50 Hz to 200 Hz and a voltage pulse width of 1.5 ms to 10 ms. is there.
本発明の第2の実施形態に係るアーク溶接方法(以下、第2の実施形態に係る溶接方法ともいう)は、鋼板をパルス制御方式でアーク溶接するアーク溶接方法であって、Cを含有するとともに、質量%で、Si:0.2%以上1.1%以下、Mn:0.2%以上1.4%以下、及びS:0.010%以上0.050%以下を含有し、残部がFeおよび不可避的不純物からなる溶接ワイヤと、Arを含むガスと、を用いて、電圧パルス周波数を50Hz以上200Hz以下とし、電圧パルス幅を1.5ms以上10ms以下として溶接を行うアーク溶接方法である。 [Second Embodiment]
An arc welding method according to a second embodiment of the present invention (hereinafter also referred to as a welding method according to the second embodiment) is an arc welding method in which a steel plate is arc-welded by a pulse control method, and contains C. In addition, by mass%, Si: 0.2% to 1.1%, Mn: 0.2% to 1.4%, and S: 0.010% to 0.050%, the balance An arc welding method in which welding is performed using a welding wire made of Fe and inevitable impurities and a gas containing Ar, with a voltage pulse frequency of 50 Hz to 200 Hz and a voltage pulse width of 1.5 ms to 10 ms. is there.
<溶接ワイヤ>
第2の実施形態に係る溶接方法に用いられる溶接ワイヤの各元素の含有量及びその好適範囲については、下記のとおりである。数値限定の理由は第1の実施形態と同様である。
(C)
下限:0%超、好ましくは0.02質量%以上、より好ましくは0.04質量%以上
上限:好ましくは0.15質量%以下、より好ましくは0.10質量%以下
(Si)
下限:0.2質量%以上、好ましくは0.3質量%以上、より好ましくは0.5質量%以上
上限:1.1質量%以下、好ましくは1.0質量%以下、より好ましくは0.9質量%以下
(Mn)
下限:0.2質量%以上、好ましくは0.3質量%以上、より好ましくは0.5質量%以上
上限:1.4質量%以下、好ましくは1.3質量%以下、より好ましくは1.1質量%以下
(S)
下限:0.010質量%以上、好ましくは0.020質量%以上
上限:0.050質量%以下、好ましくは0.040質量%以下 <Welding wire>
About the content of each element of the welding wire used for the welding method which concerns on 2nd Embodiment, and its suitable range, it is as follows. The reason for the numerical limitation is the same as in the first embodiment.
(C)
Lower limit: more than 0%, preferably 0.02% by mass or more, more preferably 0.04% by mass or more Upper limit: preferably 0.15% by mass or less, more preferably 0.10% by mass or less (Si)
Lower limit: 0.2% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more, upper limit: 1.1% by mass or less, preferably 1.0% by mass or less, more preferably 0.8% by mass. 9% by mass or less (Mn)
Lower limit: 0.2% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more, and upper limit: 1.4% by mass or less, preferably 1.3% by mass or less, more preferably 1. 1% by mass or less (S)
Lower limit: 0.010 mass% or more, preferably 0.020 mass% or more Upper limit: 0.050 mass% or less, preferably 0.040 mass% or less
第2の実施形態に係る溶接方法に用いられる溶接ワイヤの各元素の含有量及びその好適範囲については、下記のとおりである。数値限定の理由は第1の実施形態と同様である。
(C)
下限:0%超、好ましくは0.02質量%以上、より好ましくは0.04質量%以上
上限:好ましくは0.15質量%以下、より好ましくは0.10質量%以下
(Si)
下限:0.2質量%以上、好ましくは0.3質量%以上、より好ましくは0.5質量%以上
上限:1.1質量%以下、好ましくは1.0質量%以下、より好ましくは0.9質量%以下
(Mn)
下限:0.2質量%以上、好ましくは0.3質量%以上、より好ましくは0.5質量%以上
上限:1.4質量%以下、好ましくは1.3質量%以下、より好ましくは1.1質量%以下
(S)
下限:0.010質量%以上、好ましくは0.020質量%以上
上限:0.050質量%以下、好ましくは0.040質量%以下 <Welding wire>
About the content of each element of the welding wire used for the welding method which concerns on 2nd Embodiment, and its suitable range, it is as follows. The reason for the numerical limitation is the same as in the first embodiment.
(C)
Lower limit: more than 0%, preferably 0.02% by mass or more, more preferably 0.04% by mass or more Upper limit: preferably 0.15% by mass or less, more preferably 0.10% by mass or less (Si)
Lower limit: 0.2% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more, upper limit: 1.1% by mass or less, preferably 1.0% by mass or less, more preferably 0.8% by mass. 9% by mass or less (Mn)
Lower limit: 0.2% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more, and upper limit: 1.4% by mass or less, preferably 1.3% by mass or less, more preferably 1. 1% by mass or less (S)
Lower limit: 0.010 mass% or more, preferably 0.020 mass% or more Upper limit: 0.050 mass% or less, preferably 0.040 mass% or less
第2の実施形態に係るワイヤの残部は、Feおよび不可避的不純物からなり、当該不可避的不純物としては、Ti、P、Cr、Ni、N、O等が挙げられ、本発明の効果を妨げない範囲で含有することが許容される。
また、第2の実施形態に係るワイヤには、上記した化学成分に加えて、さらにAl、Mo、Cuのうちの少なくとも1つが添加されていてもよく、添加量の好適な範囲及びその理由については第1の実施形態と同様である。 The remainder of the wire according to the second embodiment is made of Fe and unavoidable impurities, and examples of the unavoidable impurities include Ti, P, Cr, Ni, N, O, and the like, and do not hinder the effects of the present invention. It is allowed to contain in a range.
Moreover, in addition to the above-described chemical components, at least one of Al, Mo, and Cu may be added to the wire according to the second embodiment. Is the same as in the first embodiment.
また、第2の実施形態に係るワイヤには、上記した化学成分に加えて、さらにAl、Mo、Cuのうちの少なくとも1つが添加されていてもよく、添加量の好適な範囲及びその理由については第1の実施形態と同様である。 The remainder of the wire according to the second embodiment is made of Fe and unavoidable impurities, and examples of the unavoidable impurities include Ti, P, Cr, Ni, N, O, and the like, and do not hinder the effects of the present invention. It is allowed to contain in a range.
Moreover, in addition to the above-described chemical components, at least one of Al, Mo, and Cu may be added to the wire according to the second embodiment. Is the same as in the first embodiment.
<パルス制御条件>
つづいて、第2の実施形態に係る溶接方法における、パルス制御条件について説明する。 <Pulse control conditions>
Next, pulse control conditions in the welding method according to the second embodiment will be described.
つづいて、第2の実施形態に係る溶接方法における、パルス制御条件について説明する。 <Pulse control conditions>
Next, pulse control conditions in the welding method according to the second embodiment will be described.
(電圧パルス周波数:50Hz以上200Hz以下)
(電圧パルス幅:1.5ms以上10ms以下)
第2の実施形態に係る溶接方法においては、パルス制御方式でアーク溶接するにあたり、電圧パルス周波数(以下、単にパルス周波数ともいう)が50Hz以上200Hz以下となり、かつ、電圧パルス幅(以下、単にパルス幅ともいう)が1.5ms以上10ms以下となるようにパルスを制御する。
本発明者らは、鋭意検討の結果、溶融金属の固有振動数は数十Hz程度であり、溶滴の固有振動数に合わせるようにパルスの周波数及び幅を適切な範囲に制御することにより、溶融池の振動が最適となり、溶融池表面の湯流れがスラグを巻き込むように変化し、スラグ凝集性を良好なものにすることが出来ることを見出した。
パルス周波数が200Hzを超え、及び/又は、パルス幅が1.5ms未満であると、ピーク期間でのアークによる溶融池の押し下げ効果が低減し、十分な溶融池の振幅を得ることができなくなり、良好なスラグ凝集性を得ることが困難となってしまう。したがって、パルス周波数は200Hz以下とし、パルス幅は1.5ms以上とする。パルス周波数は、好ましくは180Hz以下であり、より好ましくは150Hz以下である。また、パルス幅は、好ましくは3ms以上であり、より好ましくは5ms以上である。
他方、パルス周波数が50Hz未満であり、及び/又は、パルス幅が10msを超えると、ピーク期間が長くなり、溶滴の形成が過大となるため、溶滴移行が不安定となる結果、溶融池の振動が乱れてしまい、良好なスラグ凝集性を得ることが困難となってしまう。さらには、スパッタが発生しやすくなるとともに、ビード外観が悪化してしまう。したがって、パルス周波数は50Hz以上とし、パルス幅は10ms以下とする。パルス周波数は、好ましくは55Hz以上であり、より好ましくは60Hz以上である。また、パルス幅は、好ましくは9ms以下であり、より好ましくは8ms以下である。 (Voltage pulse frequency: 50Hz to 200Hz)
(Voltage pulse width: 1.5 ms to 10 ms)
In the welding method according to the second embodiment, when performing arc welding by the pulse control method, the voltage pulse frequency (hereinafter, also simply referred to as pulse frequency) is 50 Hz to 200 Hz, and the voltage pulse width (hereinafter simply referred to as pulse). The pulse is controlled so that the width is also 1.5 ms to 10 ms.
As a result of intensive studies, the inventors have found that the natural frequency of the molten metal is about several tens of Hz, and by controlling the frequency and width of the pulse within an appropriate range so as to match the natural frequency of the droplet, It has been found that the vibration of the molten pool becomes optimal, the hot water flow on the surface of the molten pool changes so as to involve slag, and the slag cohesiveness can be improved.
When the pulse frequency exceeds 200 Hz and / or the pulse width is less than 1.5 ms, the effect of depressing the molten pool by the arc in the peak period is reduced, and sufficient molten pool amplitude cannot be obtained. It will be difficult to obtain good slag cohesiveness. Therefore, the pulse frequency is 200 Hz or less and the pulse width is 1.5 ms or more. The pulse frequency is preferably 180 Hz or less, more preferably 150 Hz or less. The pulse width is preferably 3 ms or more, more preferably 5 ms or more.
On the other hand, if the pulse frequency is less than 50 Hz and / or the pulse width exceeds 10 ms, the peak period becomes longer and the formation of droplets becomes excessive, so that the droplet transfer becomes unstable. This disturbs the vibration of the slag and makes it difficult to obtain good slag cohesion. Furthermore, spattering is likely to occur and the bead appearance is deteriorated. Therefore, the pulse frequency is 50 Hz or more and the pulse width is 10 ms or less. The pulse frequency is preferably 55 Hz or more, more preferably 60 Hz or more. The pulse width is preferably 9 ms or less, more preferably 8 ms or less.
(電圧パルス幅:1.5ms以上10ms以下)
第2の実施形態に係る溶接方法においては、パルス制御方式でアーク溶接するにあたり、電圧パルス周波数(以下、単にパルス周波数ともいう)が50Hz以上200Hz以下となり、かつ、電圧パルス幅(以下、単にパルス幅ともいう)が1.5ms以上10ms以下となるようにパルスを制御する。
本発明者らは、鋭意検討の結果、溶融金属の固有振動数は数十Hz程度であり、溶滴の固有振動数に合わせるようにパルスの周波数及び幅を適切な範囲に制御することにより、溶融池の振動が最適となり、溶融池表面の湯流れがスラグを巻き込むように変化し、スラグ凝集性を良好なものにすることが出来ることを見出した。
パルス周波数が200Hzを超え、及び/又は、パルス幅が1.5ms未満であると、ピーク期間でのアークによる溶融池の押し下げ効果が低減し、十分な溶融池の振幅を得ることができなくなり、良好なスラグ凝集性を得ることが困難となってしまう。したがって、パルス周波数は200Hz以下とし、パルス幅は1.5ms以上とする。パルス周波数は、好ましくは180Hz以下であり、より好ましくは150Hz以下である。また、パルス幅は、好ましくは3ms以上であり、より好ましくは5ms以上である。
他方、パルス周波数が50Hz未満であり、及び/又は、パルス幅が10msを超えると、ピーク期間が長くなり、溶滴の形成が過大となるため、溶滴移行が不安定となる結果、溶融池の振動が乱れてしまい、良好なスラグ凝集性を得ることが困難となってしまう。さらには、スパッタが発生しやすくなるとともに、ビード外観が悪化してしまう。したがって、パルス周波数は50Hz以上とし、パルス幅は10ms以下とする。パルス周波数は、好ましくは55Hz以上であり、より好ましくは60Hz以上である。また、パルス幅は、好ましくは9ms以下であり、より好ましくは8ms以下である。 (Voltage pulse frequency: 50Hz to 200Hz)
(Voltage pulse width: 1.5 ms to 10 ms)
In the welding method according to the second embodiment, when performing arc welding by the pulse control method, the voltage pulse frequency (hereinafter, also simply referred to as pulse frequency) is 50 Hz to 200 Hz, and the voltage pulse width (hereinafter simply referred to as pulse). The pulse is controlled so that the width is also 1.5 ms to 10 ms.
As a result of intensive studies, the inventors have found that the natural frequency of the molten metal is about several tens of Hz, and by controlling the frequency and width of the pulse within an appropriate range so as to match the natural frequency of the droplet, It has been found that the vibration of the molten pool becomes optimal, the hot water flow on the surface of the molten pool changes so as to involve slag, and the slag cohesiveness can be improved.
When the pulse frequency exceeds 200 Hz and / or the pulse width is less than 1.5 ms, the effect of depressing the molten pool by the arc in the peak period is reduced, and sufficient molten pool amplitude cannot be obtained. It will be difficult to obtain good slag cohesiveness. Therefore, the pulse frequency is 200 Hz or less and the pulse width is 1.5 ms or more. The pulse frequency is preferably 180 Hz or less, more preferably 150 Hz or less. The pulse width is preferably 3 ms or more, more preferably 5 ms or more.
On the other hand, if the pulse frequency is less than 50 Hz and / or the pulse width exceeds 10 ms, the peak period becomes longer and the formation of droplets becomes excessive, so that the droplet transfer becomes unstable. This disturbs the vibration of the slag and makes it difficult to obtain good slag cohesion. Furthermore, spattering is likely to occur and the bead appearance is deteriorated. Therefore, the pulse frequency is 50 Hz or more and the pulse width is 10 ms or less. The pulse frequency is preferably 55 Hz or more, more preferably 60 Hz or more. The pulse width is preferably 9 ms or less, more preferably 8 ms or less.
また、第2の実施形態に係る溶接方法においては、溶接時のパルス電流を以下のように制御することが好ましい。
Also, in the welding method according to the second embodiment, it is preferable to control the pulse current during welding as follows.
(ピーク電流:380A以上490A以下)
ピーク電流期間では、溶滴が形成されると同時に、アーク力により溶融池が押し下げられる。ここで、第2の実施形態に係る溶接方法において、ピーク電流は特に限定されるものではないが、以下の観点からは、380A以上490A以下とすることが好ましい。すなわち、ピーク電流が380A未満では、溶融池を押し下げるのに十分なアーク力を得ることができなくなるおそれがある。したがって、ピーク電流は380A以上が好ましく、400A以上がより好ましく、410A以上がさらに好ましい。
他方、ピーク電流が490Aを超えると、溶滴の形成が過大となり、不規則に溶融池と短絡し、規則的に溶融池を振動させることが出来なくなるおそれがある。また、アーク力が過大となり、スラグを溶接進行方向に対して後方に押し下げる対流の流れが強くなりすぎるおそれがある。その結果、スラグの凝集が阻害されるおそれがある。したがって、ピーク電流は490A以下が好ましく、480A以下がより好ましく、460A以下がさらに好ましい。 (Peak current: 380A to 490A)
In the peak current period, droplets are formed and at the same time the molten pool is pushed down by the arc force. Here, in the welding method according to the second embodiment, the peak current is not particularly limited, but is preferably 380 A or more and 490 A or less from the following viewpoints. That is, if the peak current is less than 380 A, there is a possibility that an arc force sufficient to push down the molten pool cannot be obtained. Therefore, the peak current is preferably 380 A or more, more preferably 400 A or more, and further preferably 410 A or more.
On the other hand, when the peak current exceeds 490 A, the formation of droplets becomes excessive, and the molten pool is irregularly short-circuited, and the molten pool may not be vibrated regularly. Further, the arc force becomes excessive, and the convection flow that pushes the slag backward with respect to the welding progress direction may be too strong. As a result, slag aggregation may be hindered. Therefore, the peak current is preferably 490 A or less, more preferably 480 A or less, and even more preferably 460 A or less.
ピーク電流期間では、溶滴が形成されると同時に、アーク力により溶融池が押し下げられる。ここで、第2の実施形態に係る溶接方法において、ピーク電流は特に限定されるものではないが、以下の観点からは、380A以上490A以下とすることが好ましい。すなわち、ピーク電流が380A未満では、溶融池を押し下げるのに十分なアーク力を得ることができなくなるおそれがある。したがって、ピーク電流は380A以上が好ましく、400A以上がより好ましく、410A以上がさらに好ましい。
他方、ピーク電流が490Aを超えると、溶滴の形成が過大となり、不規則に溶融池と短絡し、規則的に溶融池を振動させることが出来なくなるおそれがある。また、アーク力が過大となり、スラグを溶接進行方向に対して後方に押し下げる対流の流れが強くなりすぎるおそれがある。その結果、スラグの凝集が阻害されるおそれがある。したがって、ピーク電流は490A以下が好ましく、480A以下がより好ましく、460A以下がさらに好ましい。 (Peak current: 380A to 490A)
In the peak current period, droplets are formed and at the same time the molten pool is pushed down by the arc force. Here, in the welding method according to the second embodiment, the peak current is not particularly limited, but is preferably 380 A or more and 490 A or less from the following viewpoints. That is, if the peak current is less than 380 A, there is a possibility that an arc force sufficient to push down the molten pool cannot be obtained. Therefore, the peak current is preferably 380 A or more, more preferably 400 A or more, and further preferably 410 A or more.
On the other hand, when the peak current exceeds 490 A, the formation of droplets becomes excessive, and the molten pool is irregularly short-circuited, and the molten pool may not be vibrated regularly. Further, the arc force becomes excessive, and the convection flow that pushes the slag backward with respect to the welding progress direction may be too strong. As a result, slag aggregation may be hindered. Therefore, the peak current is preferably 490 A or less, more preferably 480 A or less, and even more preferably 460 A or less.
(ベース電流:80A以上180A以下)
ベース電流期間では、アーク力を下げることで、ピーク電流で形成した溶滴を離脱させやすくする。ここで、第2の実施形態に係る溶接方法において、ベース電流は特に限定されるものではないが、以下の観点からは、80A以上180A以下とすることが好ましい。すなわち、ベース電流が80A未満では、実行電流の範囲が大きく制限されてしまうおそれがある。したがって、ベース電流は80A以上が好ましく、90A以上がより好ましく、100A以上がさらに好ましい。
他方、ベース電流が180Aを超えると、入熱量が過大となり、薄板を溶接する際に溶落ちが発生しやすくなるおそれがある。したがって、ベース電流は180A以下が好ましく、160A以下がより好ましく、150A以下がさらに好ましい。 (Base current: 80A to 180A)
During the base current period, the arc force is lowered to facilitate the detachment of droplets formed at the peak current. Here, in the welding method according to the second embodiment, the base current is not particularly limited, but is preferably 80 A or more and 180 A or less from the following viewpoints. That is, if the base current is less than 80 A, the range of the execution current may be greatly limited. Therefore, the base current is preferably 80 A or more, more preferably 90 A or more, and further preferably 100 A or more.
On the other hand, when the base current exceeds 180 A, the amount of heat input becomes excessive, and there is a possibility that the burnout is likely to occur when the thin plate is welded. Accordingly, the base current is preferably 180 A or less, more preferably 160 A or less, and even more preferably 150 A or less.
ベース電流期間では、アーク力を下げることで、ピーク電流で形成した溶滴を離脱させやすくする。ここで、第2の実施形態に係る溶接方法において、ベース電流は特に限定されるものではないが、以下の観点からは、80A以上180A以下とすることが好ましい。すなわち、ベース電流が80A未満では、実行電流の範囲が大きく制限されてしまうおそれがある。したがって、ベース電流は80A以上が好ましく、90A以上がより好ましく、100A以上がさらに好ましい。
他方、ベース電流が180Aを超えると、入熱量が過大となり、薄板を溶接する際に溶落ちが発生しやすくなるおそれがある。したがって、ベース電流は180A以下が好ましく、160A以下がより好ましく、150A以下がさらに好ましい。 (Base current: 80A to 180A)
During the base current period, the arc force is lowered to facilitate the detachment of droplets formed at the peak current. Here, in the welding method according to the second embodiment, the base current is not particularly limited, but is preferably 80 A or more and 180 A or less from the following viewpoints. That is, if the base current is less than 80 A, the range of the execution current may be greatly limited. Therefore, the base current is preferably 80 A or more, more preferably 90 A or more, and further preferably 100 A or more.
On the other hand, when the base current exceeds 180 A, the amount of heat input becomes excessive, and there is a possibility that the burnout is likely to occur when the thin plate is welded. Accordingly, the base current is preferably 180 A or less, more preferably 160 A or less, and even more preferably 150 A or less.
(Duty比:0.2~0.6)
また、第2の実施形態に係る溶接方法において、パルス電流のDuty比は特に限定されるものではないが、以下の観点からは、0.2~0.6であることが好ましい。すなわち、Duty比が0.2未満であると、ピーク電流期間がベース電流期間に比べて短くなりすぎ、アークによる溶融池の押し下げ効果が十分に得られず、溶融池を十分に振動させることが出来なくなる結果、スラグ凝集効果が低下するおそれがある。したがって、パルス電流のDuty比は0.2以上が好ましく、0.3以上がより好ましい。
他方、Duty比が0.6を超えると、ピーク電流期間に短絡が頻発し、スパッタが多発して、溶融池の振動が不規則になりやすくなる結果、スラグ凝集効果が低下するおそれがある。したがって、パルス電流のDuty比は0.6以下が好ましく、より好ましく0.5以下である。 (Duty ratio: 0.2-0.6)
In the welding method according to the second embodiment, the duty ratio of the pulse current is not particularly limited, but is preferably 0.2 to 0.6 from the following viewpoints. That is, when the duty ratio is less than 0.2, the peak current period becomes too short compared with the base current period, and the effect of pushing down the molten pool by the arc cannot be sufficiently obtained, and the molten pool can be sufficiently vibrated. As a result, the slag aggregation effect may be reduced. Therefore, the duty ratio of the pulse current is preferably 0.2 or more, and more preferably 0.3 or more.
On the other hand, when the duty ratio exceeds 0.6, short-circuits frequently occur during the peak current period, spattering frequently occurs, and the vibration of the molten pool tends to be irregular, which may reduce the slag aggregation effect. Therefore, the duty ratio of the pulse current is preferably 0.6 or less, more preferably 0.5 or less.
また、第2の実施形態に係る溶接方法において、パルス電流のDuty比は特に限定されるものではないが、以下の観点からは、0.2~0.6であることが好ましい。すなわち、Duty比が0.2未満であると、ピーク電流期間がベース電流期間に比べて短くなりすぎ、アークによる溶融池の押し下げ効果が十分に得られず、溶融池を十分に振動させることが出来なくなる結果、スラグ凝集効果が低下するおそれがある。したがって、パルス電流のDuty比は0.2以上が好ましく、0.3以上がより好ましい。
他方、Duty比が0.6を超えると、ピーク電流期間に短絡が頻発し、スパッタが多発して、溶融池の振動が不規則になりやすくなる結果、スラグ凝集効果が低下するおそれがある。したがって、パルス電流のDuty比は0.6以下が好ましく、より好ましく0.5以下である。 (Duty ratio: 0.2-0.6)
In the welding method according to the second embodiment, the duty ratio of the pulse current is not particularly limited, but is preferably 0.2 to 0.6 from the following viewpoints. That is, when the duty ratio is less than 0.2, the peak current period becomes too short compared with the base current period, and the effect of pushing down the molten pool by the arc cannot be sufficiently obtained, and the molten pool can be sufficiently vibrated. As a result, the slag aggregation effect may be reduced. Therefore, the duty ratio of the pulse current is preferably 0.2 or more, and more preferably 0.3 or more.
On the other hand, when the duty ratio exceeds 0.6, short-circuits frequently occur during the peak current period, spattering frequently occurs, and the vibration of the molten pool tends to be irregular, which may reduce the slag aggregation effect. Therefore, the duty ratio of the pulse current is preferably 0.6 or less, more preferably 0.5 or less.
なお、第2の実施形態に係る溶接方法においては、パルス電流の平均電流も特に限定されるものではなく、上述したピーク電流、ベース電流及びDuty比のそれぞれの好適な範囲などに応じて、適宜決定されればよい。パルス電流の平均電流としては、例えば250A以上350A以下である。
Note that, in the welding method according to the second embodiment, the average current of the pulse current is not particularly limited, and is appropriately determined according to the respective preferable ranges of the peak current, the base current, and the duty ratio described above. It only has to be decided. The average current of the pulse current is, for example, 250 A or more and 350 A or less.
<溶接条件>
また、第2の実施形態に係る溶接方法における、溶接速度、溶接姿勢等の各溶接条件は特に限定されず、アーク溶接方法において適用し得る範囲で適宜調整すればよい。
溶接速度としては、例えば70cm/min以上である。第2の実施形態に係る溶接方法によれば、溶接速度を速くしても、良好なスラグ凝集性で溶接を実施できる。 <Welding conditions>
Further, the welding conditions such as the welding speed and the welding posture in the welding method according to the second embodiment are not particularly limited, and may be appropriately adjusted within a range applicable in the arc welding method.
As a welding speed, it is 70 cm / min or more, for example. According to the welding method according to the second embodiment, welding can be performed with good slag cohesion even if the welding speed is increased.
また、第2の実施形態に係る溶接方法における、溶接速度、溶接姿勢等の各溶接条件は特に限定されず、アーク溶接方法において適用し得る範囲で適宜調整すればよい。
溶接速度としては、例えば70cm/min以上である。第2の実施形態に係る溶接方法によれば、溶接速度を速くしても、良好なスラグ凝集性で溶接を実施できる。 <Welding conditions>
Further, the welding conditions such as the welding speed and the welding posture in the welding method according to the second embodiment are not particularly limited, and may be appropriately adjusted within a range applicable in the arc welding method.
As a welding speed, it is 70 cm / min or more, for example. According to the welding method according to the second embodiment, welding can be performed with good slag cohesion even if the welding speed is increased.
以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples, and may be implemented with modifications within a range that can be adapted to the gist of the present invention. All of which are within the scope of the present invention.
以下において、第1の実施形態を実施例及び比較例により説明する。
表1及び表2に示す組成を有する直径1.2mmのワイヤを用いて、ワイヤの進退方向における周波数を表1及び表2に示される周波数に送給制御しながら、下記に示す条件で溶接を実施した。
(1)鋼板
縦200mm×横60mm×厚み3.2mmの鋼板を使用した。なお、鋼板の鋼種は、SPHC590である。
(2)溶接姿勢
水平重ねすみ肉溶溶接を実施した。
(3)シールドガス
表1の例1~28及び表2の例30~59においては、シールドガスとして、Ar+20体積%CO2を使用した。
また、表1の例29及び表2の例60においては、シールドガスとして100体積%CO2を使用した。
(4)溶接電流及び溶接電圧
溶接電流:240A、溶接電圧:18Vで溶接を実施した。
(5)溶接速度及び溶接長
溶接速度は100cm/minとした。また、溶接長:150mmまで溶接を実施した。 In the following, the first embodiment will be described with reference to examples and comparative examples.
Using a wire with a diameter of 1.2 mm having the composition shown in Tables 1 and 2, welding was performed under the conditions shown below while controlling the frequency of the wire in the forward / backward direction to the frequency shown in Tables 1 and 2. Carried out.
(1) Steel plate A steel plate having a length of 200 mm, a width of 60 mm, and a thickness of 3.2 mm was used. The steel type of the steel plate is SPHC590.
(2) Welding posture Horizontal overlap fillet welding was performed.
(3) Shielding Gas In Examples 1 to 28 in Table 1 and Examples 30 to 59 in Table 2, Ar + 20 vol% CO 2 was used as the shielding gas.
Further, in the example 29 and example 60 in Table 2 of Table 1, it was used 100 vol% CO 2 as a shielding gas.
(4) Welding current and welding voltage Welding was carried out at a welding current of 240 A and a welding voltage of 18 V.
(5) Welding speed and welding length The welding speed was 100 cm / min. Further, welding was performed up to a welding length of 150 mm.
表1及び表2に示す組成を有する直径1.2mmのワイヤを用いて、ワイヤの進退方向における周波数を表1及び表2に示される周波数に送給制御しながら、下記に示す条件で溶接を実施した。
(1)鋼板
縦200mm×横60mm×厚み3.2mmの鋼板を使用した。なお、鋼板の鋼種は、SPHC590である。
(2)溶接姿勢
水平重ねすみ肉溶溶接を実施した。
(3)シールドガス
表1の例1~28及び表2の例30~59においては、シールドガスとして、Ar+20体積%CO2を使用した。
また、表1の例29及び表2の例60においては、シールドガスとして100体積%CO2を使用した。
(4)溶接電流及び溶接電圧
溶接電流:240A、溶接電圧:18Vで溶接を実施した。
(5)溶接速度及び溶接長
溶接速度は100cm/minとした。また、溶接長:150mmまで溶接を実施した。 In the following, the first embodiment will be described with reference to examples and comparative examples.
Using a wire with a diameter of 1.2 mm having the composition shown in Tables 1 and 2, welding was performed under the conditions shown below while controlling the frequency of the wire in the forward / backward direction to the frequency shown in Tables 1 and 2. Carried out.
(1) Steel plate A steel plate having a length of 200 mm, a width of 60 mm, and a thickness of 3.2 mm was used. The steel type of the steel plate is SPHC590.
(2) Welding posture Horizontal overlap fillet welding was performed.
(3) Shielding Gas In Examples 1 to 28 in Table 1 and Examples 30 to 59 in Table 2, Ar + 20 vol% CO 2 was used as the shielding gas.
Further, in the example 29 and example 60 in Table 2 of Table 1, it was used 100 vol% CO 2 as a shielding gas.
(4) Welding current and welding voltage Welding was carried out at a welding current of 240 A and a welding voltage of 18 V.
(5) Welding speed and welding length The welding speed was 100 cm / min. Further, welding was performed up to a welding length of 150 mm.
なお、表1及び2、並びに後述の表3において、「ワイヤ成分(質量%)」とは、ワイヤ全質量あたりの各成分量(質量%)を表す。なお、「-」とは、含有量が検出限界未満であることを表す。また、表2及び3中に示されるCu含有量には、Cuめっき分が含まれる。また、残部はFe及び不可避的不純物である。
In Tables 1 and 2 and Table 3 described later, “wire component (mass%)” represents each component amount (mass%) per total mass of the wire. “-” Means that the content is less than the detection limit. Further, the Cu content shown in Tables 2 and 3 includes a Cu plating content. The balance is Fe and inevitable impurities.
(スラグ凝集性の評価)
溶接長150mmで、ビード表面のスラグを目視により観察し、表面のスラグを収集し、下記の基準で評価を行った。なお、◎及び○を合格とし、×を不合格とする。
◎:スラグ全量のうち90重量%以上のスラグがクレータ部近傍に存在(凝集)している。
○:スラグ全量のうち50重量%以上90重量%未満のスラグがクレータ部近傍に存在(凝集)している。
×:スラグ全量のうち50重量%未満のスラグのみがクレータ部近傍に存在(凝集)している。 (Evaluation of slag cohesiveness)
With a weld length of 150 mm, the slag on the bead surface was visually observed, and the slag on the surface was collected and evaluated according to the following criteria. In addition, (double-circle) and (circle) are set as pass, and x is set as disqualified.
A: 90% by weight or more of slag out of the total amount of slag is present (aggregated) in the vicinity of the crater portion.
○: 50% by weight or more and less than 90% by weight of slag is present (aggregated) in the vicinity of the crater part.
X: Only slag of less than 50% by weight of the total amount of slag is present (aggregated) in the vicinity of the crater portion.
溶接長150mmで、ビード表面のスラグを目視により観察し、表面のスラグを収集し、下記の基準で評価を行った。なお、◎及び○を合格とし、×を不合格とする。
◎:スラグ全量のうち90重量%以上のスラグがクレータ部近傍に存在(凝集)している。
○:スラグ全量のうち50重量%以上90重量%未満のスラグがクレータ部近傍に存在(凝集)している。
×:スラグ全量のうち50重量%未満のスラグのみがクレータ部近傍に存在(凝集)している。 (Evaluation of slag cohesiveness)
With a weld length of 150 mm, the slag on the bead surface was visually observed, and the slag on the surface was collected and evaluated according to the following criteria. In addition, (double-circle) and (circle) are set as pass, and x is set as disqualified.
A: 90% by weight or more of slag out of the total amount of slag is present (aggregated) in the vicinity of the crater portion.
○: 50% by weight or more and less than 90% by weight of slag is present (aggregated) in the vicinity of the crater part.
X: Only slag of less than 50% by weight of the total amount of slag is present (aggregated) in the vicinity of the crater portion.
例1~60のうち、例1~20及び例30~51が実施例であり、例21~29及び例52~60が比較例である。表1及び表2に示すように、例1~20及び例30~51では、良好なスラグ凝集性が得られた。
Of Examples 1 to 60, Examples 1 to 20 and Examples 30 to 51 are examples, and Examples 21 to 29 and Examples 52 to 60 are comparative examples. As shown in Tables 1 and 2, in Examples 1 to 20 and Examples 30 to 51, good slag cohesion was obtained.
例21及び例52では、ワイヤ中のS含有量が少なすぎたため、また、例22及び例53では、ワイヤ中のS含有量が多すぎたため、スラグ凝集性が劣化した。
例23及び例54では、ワイヤの進退方向の周波数が大きすぎたため、また、例24及び例55では、ワイヤの進退方向の周波数が小さすぎたため、スラグ凝集性が劣化した。
例25及び例56では、ワイヤ中のSi含有量が少なすぎたため、また、例26及び例57では、ワイヤ中のSi含有量が多すぎたため、スラグ凝集性が劣化した。
例27及び例58では、ワイヤ中のMn含有量が少なすぎたため、また、例28及び例59では、ワイヤ中のMn含有量が多すぎたため、スラグ凝集性が劣化した。
例29及び例60では、シールドガスとしてArを含有しない100%CO2ガスを用いたため、スラグ凝集性が劣化した。 In Examples 21 and 52, the S content in the wire was too low, and in Examples 22 and 53, the S content in the wire was too high, so the slag cohesiveness deteriorated.
In Example 23 and Example 54, the frequency in the wire advance / retreat direction was too large, and in Example 24 and Example 55, the frequency in the wire advance / retreat direction was too small, so the slag cohesiveness deteriorated.
In Examples 25 and 56, the Si content in the wire was too low, and in Examples 26 and 57, the Si content in the wire was too high, so the slag cohesiveness deteriorated.
In Examples 27 and 58, the Mn content in the wire was too low, and in Examples 28 and 59, the Mn content in the wire was too high, so the slag cohesiveness deteriorated.
In Example 29 and Example 60, 100% CO 2 gas containing no Ar was used as the shielding gas, so the slag cohesiveness deteriorated.
例23及び例54では、ワイヤの進退方向の周波数が大きすぎたため、また、例24及び例55では、ワイヤの進退方向の周波数が小さすぎたため、スラグ凝集性が劣化した。
例25及び例56では、ワイヤ中のSi含有量が少なすぎたため、また、例26及び例57では、ワイヤ中のSi含有量が多すぎたため、スラグ凝集性が劣化した。
例27及び例58では、ワイヤ中のMn含有量が少なすぎたため、また、例28及び例59では、ワイヤ中のMn含有量が多すぎたため、スラグ凝集性が劣化した。
例29及び例60では、シールドガスとしてArを含有しない100%CO2ガスを用いたため、スラグ凝集性が劣化した。 In Examples 21 and 52, the S content in the wire was too low, and in Examples 22 and 53, the S content in the wire was too high, so the slag cohesiveness deteriorated.
In Example 23 and Example 54, the frequency in the wire advance / retreat direction was too large, and in Example 24 and Example 55, the frequency in the wire advance / retreat direction was too small, so the slag cohesiveness deteriorated.
In Examples 25 and 56, the Si content in the wire was too low, and in Examples 26 and 57, the Si content in the wire was too high, so the slag cohesiveness deteriorated.
In Examples 27 and 58, the Mn content in the wire was too low, and in Examples 28 and 59, the Mn content in the wire was too high, so the slag cohesiveness deteriorated.
In Example 29 and Example 60, 100% CO 2 gas containing no Ar was used as the shielding gas, so the slag cohesiveness deteriorated.
次に、以下において、第2の実施形態を実施例及び比較例により説明する。
表3に示す組成を有する直径1.2mmのワイヤを用いて、下記に示す条件でパルス制御しながらアーク溶接を実施した。
(1)鋼板
縦200mm×横60mm×厚み3.2mmの鋼板を使用した。なお、鋼板の鋼種は、SPHC590である。
(2)溶接姿勢
水平重ねすみ肉溶溶接を実施した。
(3)シールドガス
表3の例61~90及び92~93においては、シールドガスとして、Ar+20体積%CO2を使用した。
また、表3の例91においては、シールドガスとして100体積%CO2を使用した。
(4)パルス制御条件
パルス周波数(Hz)、パルス幅(ms)、ピーク電流(A)、ベース電流(A)、Duty比を表3に示される条件に制御しながら、溶接を実施した。
(5)溶接速度及び溶接長
溶接速度は100cm/minとした。また、溶接長:150mmまで溶接を実施した。 Next, the second embodiment will be described below with reference to examples and comparative examples.
Using a wire having a diameter of 1.2 mm having the composition shown in Table 3, arc welding was performed under pulse control under the following conditions.
(1) Steel plate A steel plate having a length of 200 mm, a width of 60 mm, and a thickness of 3.2 mm was used. The steel type of the steel plate is SPHC590.
(2) Welding posture Horizontal overlap fillet welding was performed.
(3) Shielding Gas In Examples 61 to 90 and 92 to 93 in Table 3, Ar + 20 vol% CO 2 was used as the shielding gas.
Further, in the example 91 in Table 3, it was used 100 vol% CO 2 as a shielding gas.
(4) Pulse control conditions Welding was performed while controlling the pulse frequency (Hz), pulse width (ms), peak current (A), base current (A), and duty ratio to the conditions shown in Table 3.
(5) Welding speed and welding length The welding speed was 100 cm / min. Further, welding was performed up to a welding length of 150 mm.
表3に示す組成を有する直径1.2mmのワイヤを用いて、下記に示す条件でパルス制御しながらアーク溶接を実施した。
(1)鋼板
縦200mm×横60mm×厚み3.2mmの鋼板を使用した。なお、鋼板の鋼種は、SPHC590である。
(2)溶接姿勢
水平重ねすみ肉溶溶接を実施した。
(3)シールドガス
表3の例61~90及び92~93においては、シールドガスとして、Ar+20体積%CO2を使用した。
また、表3の例91においては、シールドガスとして100体積%CO2を使用した。
(4)パルス制御条件
パルス周波数(Hz)、パルス幅(ms)、ピーク電流(A)、ベース電流(A)、Duty比を表3に示される条件に制御しながら、溶接を実施した。
(5)溶接速度及び溶接長
溶接速度は100cm/minとした。また、溶接長:150mmまで溶接を実施した。 Next, the second embodiment will be described below with reference to examples and comparative examples.
Using a wire having a diameter of 1.2 mm having the composition shown in Table 3, arc welding was performed under pulse control under the following conditions.
(1) Steel plate A steel plate having a length of 200 mm, a width of 60 mm, and a thickness of 3.2 mm was used. The steel type of the steel plate is SPHC590.
(2) Welding posture Horizontal overlap fillet welding was performed.
(3) Shielding Gas In Examples 61 to 90 and 92 to 93 in Table 3, Ar + 20 vol% CO 2 was used as the shielding gas.
Further, in the example 91 in Table 3, it was used 100 vol% CO 2 as a shielding gas.
(4) Pulse control conditions Welding was performed while controlling the pulse frequency (Hz), pulse width (ms), peak current (A), base current (A), and duty ratio to the conditions shown in Table 3.
(5) Welding speed and welding length The welding speed was 100 cm / min. Further, welding was performed up to a welding length of 150 mm.
(スラグ凝集性の評価)
溶接長150mmで、ビード表面のスラグを目視により観察し、表面のスラグを収集し、スラグ全量のうち、クレータ部近傍に存在(凝集)しているスラグの割合(重量%)を求め、表3の「スラグ凝集割合(重量%)」の欄に記載した。ここで、クレータ部近傍に存在(凝集)しているスラグの割合が60重量%以上であれば、スラグ凝集性が良好であると評価できる。なお、クレータ部近傍に存在(凝集)しているスラグの割合が60重量%未満であり、スラグ凝集性が不良であった例については、表3の「スラグ凝集割合(重量%)」の欄において、結果を「×」と記載し、当該割合の記載は省略している。 (Evaluation of slag cohesiveness)
With a weld length of 150 mm, the slag on the bead surface was visually observed, the slag on the surface was collected, and the ratio (weight%) of slag existing (aggregated) in the vicinity of the crater portion out of the total amount of slag was obtained. In the column of “Slag aggregation ratio (% by weight)”. Here, if the ratio of slag existing (aggregated) in the vicinity of the crater portion is 60% by weight or more, it can be evaluated that the slag agglomeration is good. In addition, the column of “slag aggregation ratio (% by weight)” in Table 3 shows an example in which the ratio of slag existing (aggregated) in the vicinity of the crater portion was less than 60% by weight and the slag aggregation was poor. The result is described as “x” and the ratio is omitted.
溶接長150mmで、ビード表面のスラグを目視により観察し、表面のスラグを収集し、スラグ全量のうち、クレータ部近傍に存在(凝集)しているスラグの割合(重量%)を求め、表3の「スラグ凝集割合(重量%)」の欄に記載した。ここで、クレータ部近傍に存在(凝集)しているスラグの割合が60重量%以上であれば、スラグ凝集性が良好であると評価できる。なお、クレータ部近傍に存在(凝集)しているスラグの割合が60重量%未満であり、スラグ凝集性が不良であった例については、表3の「スラグ凝集割合(重量%)」の欄において、結果を「×」と記載し、当該割合の記載は省略している。 (Evaluation of slag cohesiveness)
With a weld length of 150 mm, the slag on the bead surface was visually observed, the slag on the surface was collected, and the ratio (weight%) of slag existing (aggregated) in the vicinity of the crater portion out of the total amount of slag was obtained. In the column of “Slag aggregation ratio (% by weight)”. Here, if the ratio of slag existing (aggregated) in the vicinity of the crater portion is 60% by weight or more, it can be evaluated that the slag agglomeration is good. In addition, the column of “slag aggregation ratio (% by weight)” in Table 3 shows an example in which the ratio of slag existing (aggregated) in the vicinity of the crater portion was less than 60% by weight and the slag aggregation was poor. The result is described as “x” and the ratio is omitted.
(ビード外観の評価)
また、各例で得られた溶接ビードの外観を、下記の基準で評価した。
◎:表面の凹凸が少なく、滑らかなビード外観である
○:アンダーカット等が発生せず、健全なビード外観である
×:ビード際の不整および表面の凹凸等が発生し、ビード外観が不良である (Evaluation of bead appearance)
Moreover, the external appearance of the weld bead obtained in each example was evaluated according to the following criteria.
◎: Smooth bead appearance with few surface irregularities ○: Sound bead appearance without undercuts, etc. ×: Irregularities at the bead and surface irregularities occur, resulting in poor bead appearance is there
また、各例で得られた溶接ビードの外観を、下記の基準で評価した。
◎:表面の凹凸が少なく、滑らかなビード外観である
○:アンダーカット等が発生せず、健全なビード外観である
×:ビード際の不整および表面の凹凸等が発生し、ビード外観が不良である (Evaluation of bead appearance)
Moreover, the external appearance of the weld bead obtained in each example was evaluated according to the following criteria.
◎: Smooth bead appearance with few surface irregularities ○: Sound bead appearance without undercuts, etc. ×: Irregularities at the bead and surface irregularities occur, resulting in poor bead appearance is there
例61~93のうち、例61~82が実施例であり、例83~93が比較例である。表3に示すように、例61~82では、良好なスラグ凝集性が得られた。また、ビード外観も良好であった。
Among Examples 61 to 93, Examples 61 to 82 are examples, and Examples 83 to 93 are comparative examples. As shown in Table 3, in Examples 61 to 82, good slag cohesion was obtained. The bead appearance was also good.
例83では、ワイヤ中のS含有量が少なすぎたため、また、例84では、ワイヤ中のS含有量が多すぎたため、スラグ凝集性が劣化した。
例85では、パルス周波数が大きすぎたため、スラグ凝集性が劣化した。また、例86では、パルス周波数が小さすぎたため、スラグ凝集性が劣化し、ビード外観も不良であった。
例87では、ワイヤ中のSi含有量が少なすぎたため、スラグ凝集性が劣化し、ビード外観も不良であった。また、例88では、ワイヤ中のSi含有量が多すぎたため、スラグ凝集性が劣化した。
例89では、ワイヤ中のMn含有量が少なすぎたため、また、例90では、ワイヤ中のMn含有量が多すぎたため、スラグ凝集性が劣化した。
例91では、シールドガスとしてArを含有しない100%CO2ガスを用いたため、スラグ凝集性が劣化した。
例92では、パルス幅が小さすぎたため、スラグ凝集性が劣化した。また、例93では、パルス幅が大きすぎ、また、ワイヤ中のMn含有量が多すぎたため、スラグ凝集性が劣化し、ビード外観も不良であった。 In Example 83, the S content in the wire was too low, and in Example 84, the S content in the wire was too high, so the slag cohesiveness deteriorated.
In Example 85, the slag cohesiveness deteriorated because the pulse frequency was too large. In Example 86, since the pulse frequency was too small, the slag cohesiveness deteriorated and the bead appearance was poor.
In Example 87, since the Si content in the wire was too small, the slag cohesiveness deteriorated and the bead appearance was poor. Moreover, in Example 88, since there was too much Si content in a wire, slag cohesiveness deteriorated.
In Example 89, the Mn content in the wire was too low, and in Example 90, the Mn content in the wire was too high, so the slag cohesiveness deteriorated.
In Example 91, since using 100% CO 2 gas not containing Ar as the shield gas, slag cohesiveness is deteriorated.
In Example 92, since the pulse width was too small, the slag aggregation was deteriorated. In Example 93, the pulse width was too large, and the Mn content in the wire was too large, so the slag cohesiveness deteriorated and the bead appearance was poor.
例85では、パルス周波数が大きすぎたため、スラグ凝集性が劣化した。また、例86では、パルス周波数が小さすぎたため、スラグ凝集性が劣化し、ビード外観も不良であった。
例87では、ワイヤ中のSi含有量が少なすぎたため、スラグ凝集性が劣化し、ビード外観も不良であった。また、例88では、ワイヤ中のSi含有量が多すぎたため、スラグ凝集性が劣化した。
例89では、ワイヤ中のMn含有量が少なすぎたため、また、例90では、ワイヤ中のMn含有量が多すぎたため、スラグ凝集性が劣化した。
例91では、シールドガスとしてArを含有しない100%CO2ガスを用いたため、スラグ凝集性が劣化した。
例92では、パルス幅が小さすぎたため、スラグ凝集性が劣化した。また、例93では、パルス幅が大きすぎ、また、ワイヤ中のMn含有量が多すぎたため、スラグ凝集性が劣化し、ビード外観も不良であった。 In Example 83, the S content in the wire was too low, and in Example 84, the S content in the wire was too high, so the slag cohesiveness deteriorated.
In Example 85, the slag cohesiveness deteriorated because the pulse frequency was too large. In Example 86, since the pulse frequency was too small, the slag cohesiveness deteriorated and the bead appearance was poor.
In Example 87, since the Si content in the wire was too small, the slag cohesiveness deteriorated and the bead appearance was poor. Moreover, in Example 88, since there was too much Si content in a wire, slag cohesiveness deteriorated.
In Example 89, the Mn content in the wire was too low, and in Example 90, the Mn content in the wire was too high, so the slag cohesiveness deteriorated.
In Example 91, since using 100% CO 2 gas not containing Ar as the shield gas, slag cohesiveness is deteriorated.
In Example 92, since the pulse width was too small, the slag aggregation was deteriorated. In Example 93, the pulse width was too large, and the Mn content in the wire was too large, so the slag cohesiveness deteriorated and the bead appearance was poor.
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2017年3月2日付けで出願された日本特許出願(特願2017-039845)、2017年3月28日付けで出願された日本特許出願(特願2017-063694)、及び2017年3月30日付けで出願された日本特許出願(特願2017-069238)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The present application includes a Japanese patent application filed on March 2, 2017 (Japanese Patent Application No. 2017-039845), a Japanese patent application filed on March 28, 2017 (Japanese Patent Application No. 2017-063694), Based on a Japanese patent application filed on March 30, 2017 (Japanese Patent Application No. 2017-069238), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
Claims (13)
- 溶接ワイヤを進退方向に送給制御しながら、鋼板を溶接するアーク溶接方法であって、
Cを含有するとともに、
質量%で、
Si:0.2%以上1.3%以下、
Mn:0.2%以上1.5%以下、及び
S: 0.01%以上0.05%以下を含有し、
残部がFeおよび不可避的不純物からなる溶接ワイヤと、
Arを含むガスと、を用いて、
前記溶接ワイヤの進退方向の周波数を35Hz以上160Hz以下として溶接を行うアーク溶接方法。 An arc welding method for welding a steel plate while controlling the feeding of the welding wire in the forward and backward direction,
Containing C,
% By mass
Si: 0.2% to 1.3%,
Mn: 0.2% or more and 1.5% or less, and S: 0.01% or more and 0.05% or less,
A welding wire with the balance being Fe and inevitable impurities;
Using a gas containing Ar,
An arc welding method in which welding is performed with a frequency in the advancing / retreating direction of the welding wire being set to 35 Hz to 160 Hz. - 前記溶接ワイヤが、質量%で、さらに
Al:0.1%以上0.5%以下、
Mo:0.1%以上2.0%以下、
Ti:0.3%以下、
Cu:0.4%以下、
のうち少なくとも一つを含有する、請求項1に記載のアーク溶接方法。 The welding wire is mass%, and Al: 0.1% or more and 0.5% or less,
Mo: 0.1% or more and 2.0% or less,
Ti: 0.3% or less,
Cu: 0.4% or less,
The arc welding method according to claim 1, wherein at least one of them is contained. - 前記溶接ワイヤにおけるS及びAlの含有量が、
0.3≦S×10+Al≦0.7
を満足する、請求項2に記載のアーク溶接方法。 S and Al content in the welding wire,
0.3 ≦ S × 10 + Al ≦ 0.7
The arc welding method according to claim 2, wherein: - 前記鋼板の板厚は、0.6mm以上5mm以下である、請求項1に記載のアーク溶接方法。 The arc welding method according to claim 1, wherein the steel plate has a thickness of 0.6 mm or more and 5 mm or less.
- 前記溶接ワイヤの進退方向の周波数を45Hz以上130Hz以下として溶接を行う、請求項1に記載のアーク溶接方法。 The arc welding method according to claim 1, wherein welding is performed with a frequency in the advancing / retreating direction of the welding wire being 45 Hz or more and 130 Hz or less.
- 前記溶接ワイヤの進退方向の周波数を70Hz以上110Hz以下として溶接を行う、請求項5に記載のアーク溶接方法。 The arc welding method according to claim 5, wherein welding is performed with a frequency in the advancing / retreating direction of the welding wire set to 70 Hz to 110 Hz.
- 溶接電流の平均値を80A以上350A以下、溶接速度を60cm/min以上として溶接を行う、請求項1~6のいずれか1項に記載のアーク溶接方法。 The arc welding method according to any one of claims 1 to 6, wherein welding is performed with an average value of a welding current of 80 A to 350 A and a welding speed of 60 cm / min or more.
- 鋼板をパルス制御方式でアーク溶接するアーク溶接方法であって、
Cを含有するとともに、
質量%で、
Si:0.2%以上1.1%以下、
Mn:0.2%以上1.4%以下、及び
S:0.010%以上0.050%以下を含有し、
残部がFeおよび不可避的不純物からなる溶接ワイヤと、
Arを含むガスと、を用いて、
電圧パルス周波数を50Hz以上200Hz以下とし、電圧パルス幅を1.5ms以上10ms以下として溶接を行うアーク溶接方法。 An arc welding method in which a steel plate is arc-welded by a pulse control method,
Containing C,
% By mass
Si: 0.2% to 1.1%,
Mn: 0.2% or more and 1.4% or less, and S: 0.010% or more and 0.050% or less,
A welding wire with the balance being Fe and inevitable impurities;
Using a gas containing Ar,
An arc welding method in which welding is performed with a voltage pulse frequency of 50 Hz to 200 Hz and a voltage pulse width of 1.5 ms to 10 ms. - 前記溶接ワイヤが、質量%で、さらに
Al:0.1%以上0.5%以下、
Mo:0.1%以上2.0%以下、
Cu:0.4%以下、
のうち少なくとも一つを含有する、請求項8に記載のアーク溶接方法。 The welding wire is mass%, and Al: 0.1% or more and 0.5% or less,
Mo: 0.1% or more and 2.0% or less,
Cu: 0.4% or less,
The arc welding method according to claim 8, comprising at least one of them. - ピーク電流を380A以上490A以下として溶接を行う、請求項8に記載のアーク溶接方法。 The arc welding method according to claim 8, wherein welding is performed at a peak current of 380A or more and 490A or less.
- ベース電流を80A以上180A以下として溶接を行う、請求項8に記載のアーク溶接方法。 The arc welding method according to claim 8, wherein welding is performed with a base current of 80A or more and 180A or less.
- パルス電流のDuty比を0.2以上0.6以下として溶接を行う、請求項8に記載のアーク溶接方法。 The arc welding method according to claim 8, wherein welding is performed with a duty ratio of the pulse current set to 0.2 or more and 0.6 or less.
- 前記鋼板の板厚は、0.6mm以上5mm以下である、請求項8~12のいずれか1項に記載のアーク溶接方法。 The arc welding method according to any one of claims 8 to 12, wherein a thickness of the steel sheet is 0.6 mm or more and 5 mm or less.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/489,371 US20190375038A1 (en) | 2017-03-02 | 2018-03-02 | Arc welding method |
CN201880014586.3A CN110402177B (en) | 2017-03-02 | 2018-03-02 | Arc welding method |
MX2019010305A MX2019010305A (en) | 2017-03-02 | 2018-03-02 | Arc welding method. |
US17/358,492 US20210316386A1 (en) | 2017-03-02 | 2021-06-25 | Arc welding method |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017039845 | 2017-03-02 | ||
JP2017-039845 | 2017-03-02 | ||
JP2017-063694 | 2017-03-28 | ||
JP2017063694A JP6892302B2 (en) | 2017-03-28 | 2017-03-28 | Arc welding method |
JP2017-069238 | 2017-03-30 | ||
JP2017069238A JP6892305B2 (en) | 2017-03-02 | 2017-03-30 | Arc welding method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/489,371 A-371-Of-International US20190375038A1 (en) | 2017-03-02 | 2018-03-02 | Arc welding method |
US17/358,492 Division US20210316386A1 (en) | 2017-03-02 | 2021-06-25 | Arc welding method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159844A1 true WO2018159844A1 (en) | 2018-09-07 |
Family
ID=63370426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008165 WO2018159844A1 (en) | 2017-03-02 | 2018-03-02 | Arc welding method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110402177B (en) |
WO (1) | WO2018159844A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7311473B2 (en) * | 2020-09-02 | 2023-07-19 | 株式会社神戸製鋼所 | arc welding method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0899175A (en) * | 1994-09-29 | 1996-04-16 | Daido Steel Co Ltd | Gas shield arc welding method |
JP2002239725A (en) * | 2001-02-13 | 2002-08-28 | Kawasaki Steel Corp | Gas-shielded arc welding for steel sheet |
WO2013132550A1 (en) * | 2012-03-07 | 2013-09-12 | パナソニック株式会社 | Welding method |
WO2014119082A1 (en) * | 2013-01-31 | 2014-08-07 | 新日鐵住金株式会社 | Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100553380B1 (en) * | 2002-01-31 | 2006-02-20 | 제이에프이 스틸 가부시키가이샤 | Steel wire for carbon dioxide shielded arc welding and welding process using the same |
JP4628027B2 (en) * | 2004-07-12 | 2011-02-09 | 株式会社神戸製鋼所 | Solid wire for gas shielded arc welding |
JP4755576B2 (en) * | 2006-12-13 | 2011-08-24 | 株式会社神戸製鋼所 | Gas shield arc welding method |
CN101808774B (en) * | 2007-10-05 | 2013-01-16 | 株式会社神户制钢所 | Welding solid wire |
-
2018
- 2018-03-02 WO PCT/JP2018/008165 patent/WO2018159844A1/en active Application Filing
- 2018-03-02 CN CN201880014586.3A patent/CN110402177B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0899175A (en) * | 1994-09-29 | 1996-04-16 | Daido Steel Co Ltd | Gas shield arc welding method |
JP2002239725A (en) * | 2001-02-13 | 2002-08-28 | Kawasaki Steel Corp | Gas-shielded arc welding for steel sheet |
WO2013132550A1 (en) * | 2012-03-07 | 2013-09-12 | パナソニック株式会社 | Welding method |
WO2014119082A1 (en) * | 2013-01-31 | 2014-08-07 | 新日鐵住金株式会社 | Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint |
Also Published As
Publication number | Publication date |
---|---|
CN110402177B (en) | 2021-12-21 |
CN110402177A (en) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101764519B1 (en) | Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint | |
US20060186103A1 (en) | Wire electrode with improved slag properties | |
JP6800770B2 (en) | Pulse MAG welding method for thin steel sheets | |
US9102013B2 (en) | Flux-cored welding wire for carbon steel and process for arc welding | |
JP2012081514A (en) | Fillet arc welding method of galvanized steel sheet | |
EP3330031B1 (en) | Method for welding zinc plated steel plate | |
JP7060159B2 (en) | MIG welding method | |
JP2002239725A (en) | Gas-shielded arc welding for steel sheet | |
CN115916446B (en) | Arc welding method | |
JP2007260684A (en) | Multiple electrode submerged arc welding method of thick steel plate | |
WO2018159844A1 (en) | Arc welding method | |
JP2005246479A (en) | Multilayer carbon dioxide gas shielded arc welding method for steel plate | |
JP6892305B2 (en) | Arc welding method | |
JP6892302B2 (en) | Arc welding method | |
JP6412817B2 (en) | Welding method of galvanized steel sheet | |
JP2005169414A (en) | Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same | |
JP6709177B2 (en) | Pulse MAG welding method for thin steel sheet | |
JP6676553B2 (en) | MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same | |
JP4529482B2 (en) | Fillet welding method | |
US20210316386A1 (en) | Arc welding method | |
JP2528341B2 (en) | Solid wire for gas shield arc welding | |
JP2001353592A (en) | Steel wire for co2 gas shielded arc welding | |
JP7541650B2 (en) | Positive polarity MAG welding wire and positive polarity MAG welding method using the same | |
JP6676552B2 (en) | MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same | |
JP6101724B2 (en) | Welding method of galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760591 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760591 Country of ref document: EP Kind code of ref document: A1 |