WO2018159501A1 - Drive method of balloon with iabp drive device, and iabp drive device - Google Patents

Drive method of balloon with iabp drive device, and iabp drive device Download PDF

Info

Publication number
WO2018159501A1
WO2018159501A1 PCT/JP2018/006780 JP2018006780W WO2018159501A1 WO 2018159501 A1 WO2018159501 A1 WO 2018159501A1 JP 2018006780 W JP2018006780 W JP 2018006780W WO 2018159501 A1 WO2018159501 A1 WO 2018159501A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
driving
pressure
heart rate
iabp
Prior art date
Application number
PCT/JP2018/006780
Other languages
French (fr)
Japanese (ja)
Inventor
秀洋 黒木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019502964A priority Critical patent/JP6958612B2/en
Publication of WO2018159501A1 publication Critical patent/WO2018159501A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/497Details relating to driving for balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • A61M60/139Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/295Balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/562Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow
    • A61M60/569Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow synchronous with the native heart beat

Definitions

  • the present invention relates to a balloon driving method by an IABP driving device used in an IABP (intra-aortic balloon pumping) method and an IABP driving device.
  • the driving device that drives the balloon of the balloon catheter in the IABP method a signal related to the heartbeat of the patient acquired by an electrocardiograph or a sphygmomanometer is input, and the balloon is expanded and contracted based on the signal. That is, in the IABP driving device, the number of repetitions per unit time of the operation of expanding and contracting the balloon increases as the patient's heart rate increases, and decreases as the patient's heart rate decreases (see Patent Document 1). .
  • the balloon is expanded and contracted by alternately applying a positive pressure and a negative pressure to the piping system that transmits the pressure to the balloon.
  • the positive pressure and the negative pressure applied to the piping system are formed by a pump, and the positive pressure and the negative pressure generated by the pump are maintained at substantially constant pressures in the positive pressure tank and the negative pressure tank, respectively. That is, the pressure in each positive pressure / negative pressure tank is temporarily reduced or increased by applying a positive pressure or negative pressure to the piping system that transmits the pressure to the balloon, but is pressurized or reduced by the pump. The pressure before the pressure is transmitted to the balloon is returned to.
  • the balloon cannot be completely expanded even when it is inflated, so that a thrombus is easily formed on the surface of the balloon.
  • the balloon is often driven in synchronization with a heart rate with a high heart rate. It is desirable to avoid.
  • the present invention is made in view of such a situation, and relates to a balloon driving method and an IABP driving device by an IABP driving device that can prevent formation of a thrombus on the balloon surface.
  • a balloon driving method comprises: A balloon driving method using an IABP driving device for attaching a balloon catheter to which a balloon is connected and expanding and contracting the balloon,
  • a balloon driving method using an IABP driving device for attaching a balloon catheter to which a balloon is connected and expanding and contracting the balloon,
  • high-speed continuous driving for driving the balloon in continuous synchronization with a heart rate having a heart rate of 120 bpm or more
  • a predetermined number of heartbeats are generated.
  • the high-speed continuous driving is performed again.
  • the balloon driving method detects a state in which a high-speed continuous drive in which the balloon may not be fully expanded continues for a predetermined time, and when this is detected, after performing a pause operation, the high-speed continuous drive is performed again. carry out.
  • a pressure similar to that during low-speed driving can be transmitted to the balloon, so that the balloon can be fully expanded or can be expanded to a state closer to full expansion compared to the previous expansion. Therefore, according to such a balloon driving method, the problem that thrombus is formed on the surface of the balloon can be prevented by preventing the time during which the balloon cannot be fully expanded from continuing beyond a predetermined time.
  • the resting operation may be performed at a rate of once during the heartbeat being performed 60 to 180 times.
  • a higher cardiac function assisting effect can be achieved as compared with, for example, a balloon driving method in which the assist ratio is 1: 2.
  • the IABP driving device is A balloon driving unit that attaches a balloon catheter to which a balloon is connected and drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits pressure to the balloon;
  • a heartbeat signal that is a signal related to a heartbeat, and a controller that controls the balloon driving unit so that the balloon expands and contracts in synchronization with the heartbeat, and
  • the controller controls the predetermined number of heartbeats.
  • the balloon driving unit is controlled so as to drive the balloon in synchronization with a heartbeat again.
  • the control unit of the IABP drive device when the balloon is driven for a predetermined time of 30 seconds or more under the condition that the balloon may not be fully expanded, makes a predetermined number of heartbeats with respect to the balloon drive unit.
  • a resting operation for maintaining the balloon in a deflated state is performed.
  • the same pressure as that in the case of synchronizing with a slower heart rate can be transmitted to the balloon. Therefore, even if the balloon has not been fully expanded in the previous driving, the resting can be performed.
  • One time immediately after the beat it can be said that the balloon can be fully expanded or expanded to a state closer to complete expansion. Therefore, according to the IABP driving device having such a control unit, it is possible to prevent a thrombus from being formed on the surface of the balloon by preventing the time during which the balloon cannot be fully expanded from continuing beyond a predetermined time. Can be prevented.
  • FIG. 1 is an overall external view of an IABP driving apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic structure of the IABP driving device shown in FIG.
  • FIG. 3 is an external view of the monitor unit viewed from the front.
  • FIG. 4 is a graph showing an example of the relationship between the balloon expansion capacity after 10 seconds of synchronous driving by the IABP driving apparatus shown in FIG. 1 and the synchronized heart rate.
  • FIG. 5 is a graph showing an example of an internal pressure waveform of the balloon by the IABP driving device shown in FIG.
  • FIG. 6 is a flowchart showing an example of a balloon driving method performed by the IABP driving apparatus shown in FIG.
  • FIG. 7 is a flowchart showing another example of a balloon driving method performed by the IABP driving apparatus shown in FIG.
  • FIG. 1 is an overall external view of an IABP driving apparatus 10 according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a schematic structure of the IABP driving apparatus 10.
  • the IABP driving device 10 is a driving device used for attaching and deflating the balloon 92 by attaching an IABP balloon catheter 90 to which the balloon 92 is connected.
  • the balloon catheter 90 is used by being attached to the apparatus main body 20 of the IABP driving apparatus 10 shown in FIG.
  • a balloon 92 connected to the tip of the balloon catheter 90 is used by being placed in the descending aorta.
  • the IABP driving device 10 can assist the blood circulation function of the heart by expanding and contracting the balloon 92 in accordance with the heartbeat.
  • the IABP driving device 10 includes a device main body 20 and a monitor unit 60. Inside the apparatus main body 20 are accommodated a balloon driving unit 20a for expanding and contracting the balloon 92, a power source unit (not shown) for supplying power to the expansion / contraction unit, and the like. A caster 49 is attached to the lower part of the apparatus main body 20, and the IABP driving apparatus 10 can be easily moved in a hospital or the like.
  • the monitor unit 60 is attached to the apparatus main body 20 via a monitor installation unit 48 provided on the upper surface of the apparatus main body 20.
  • the monitor unit 60 is detachable from the apparatus main body 20.
  • the monitor unit 60 is connected to the apparatus main body 20 via a cable or the like (not shown), and receives power supply from the apparatus main body 20, exchanges data with the apparatus main body 20, I / O can be performed.
  • a balloon driving unit 20a for expanding and contracting the balloon 92 is accommodated inside the apparatus main body 20.
  • the balloon driving unit 20a includes a secondary piping system 21b that communicates with the balloon catheter 90 and a primary piping system 21a that communicates with a pump 30 as a primary pressure generating unit.
  • the primary piping system 21a and the secondary piping system 21b are separated by a pressure partition device 25 (isolator).
  • the pressure partition device 25 has a diaphragm 26 that transmits the pressure of the primary piping system 21a to the secondary piping system 21b.
  • the fluids inside the primary piping system 21a and the secondary piping system 21b cannot move, but the diaphragm 26 moves to move the pressure (volume) of the primary piping system 21a. Change) is transmitted to the secondary piping system 21b.
  • the balloon drive unit 20a that arranges the primary piping system 21a and the secondary piping system 21b with the pressure bulkhead device 25 interposed therebetween has a constant capacity (chemical equivalent) of shuttle gas sealed in the secondary piping system 21b. It has the advantage that it is easy to control, and the consumption of the shuttle gas used in the secondary piping system 21b can be suppressed.
  • air can be used as the internal fluid of the primary piping system 21a
  • helium gas can be used as the internal fluid (shuttle gas) of the secondary piping system 21b.
  • a pump 30 is disposed in the primary piping system 21a.
  • a positive pressure tank 31 is connected to the positive pressure output port of the pump 30, and a negative pressure tank 35 is connected to the negative pressure generation port of the pump 30.
  • the pump 30 used in the present embodiment shown in FIG. 2 generates a positive pressure and a negative pressure simultaneously by driving.
  • a pump such as a compressor
  • a pump that generates a positive pressure and a pump that generates a negative pressure such as a compressor
  • You may comprise separately from a vacuum pump etc.).
  • the positive pressure tank 31 and the negative pressure tank 35 include a positive pressure adjustment valve 32 and a negative pressure adjustment valve 36 for selectively opening and closing communication between the inside of each tank 31 and 35 and the outside (atmosphere), and each tank.
  • the positive pressure tank 31 and the negative pressure tank 35 are controlled so as to have a substantially constant internal pressure even while the balloon 92 is being driven.
  • the internal pressures of the positive pressure tank 31 and the negative pressure tank 35 are not particularly limited.
  • the pressure PT1 of the positive pressure tank 31 is maintained at 300 mmHg (gauge pressure)
  • the pressure PT2 of the negative pressure tank 35 is maintained at ⁇ 150 mmHg (gauge pressure). Controlled.
  • the positive pressure tank 31 and the negative pressure tank 35 are connected to the input end of the pressure bulkhead device 25 via a positive pressure side solenoid valve 28 and a negative pressure side solenoid valve 29 that are controlled to open and close independently.
  • the balloon driving unit 20a can expand and contract the balloon 92 by switching the open / close state of the positive pressure side solenoid valve 28 and the negative pressure side solenoid valve 29.
  • the secondary piping system 21b connected to the balloon catheter 90 is filled with a shuttle gas that circulates in the balloon catheter 90 and expands and contracts the balloon 92.
  • the secondary piping system 21b is provided with a measuring unit 22 that measures the balloon internal pressure, which is the internal pressure of the balloon 92, and an adjusting unit 24 that adjusts the balloon internal pressure.
  • the measurement unit 22 includes a pressure sensor or the like, and measures the pressure inside the balloon catheter 90 that is filled with the shuttle gas.
  • An internal pressure signal that is a signal related to the balloon internal pressure measured by the measurement unit 22 is output to the control unit 62 of the monitor unit 60.
  • the adjusting unit 24 adjusts the amount of shuttle gas flowing through the secondary piping system 21b and the balloon catheter 90 in order to expand the balloon 92, thereby adjusting the balloon internal pressure.
  • the adjusting unit 24 increases the reference pressure that is the balloon internal pressure when the balloon 92 is deflated by supplying the shuttle gas to the secondary piping system 21b or discharging the shuttle gas from the secondary piping system 21b.
  • the balloon internal pressure is adjusted by lowering.
  • the monitor unit 60 includes a control unit 62, a display unit 64, an operation signal input unit 68, a pilot lamp 70, and a heart rate signal input unit 69.
  • the display unit 64 is disposed in a region on the upper half of the front surface of the monitor unit 60 and is configured by a display display such as a liquid crystal display or an organic EL display.
  • the control unit 62 is configured by a microprocessor or the like, and controls various configurations of the balloon driving unit 20a, the display unit 64, and the like included in the IABP driving device 10 by performing various arithmetic processes.
  • the pilot lamp 70 informs the operator of the driving state of the IABP driving device 10 including abnormality occurring in the IABP driving device 10 by changing the lighting color or lighting / flashing.
  • the lighting state of the pilot lamp 70 is controlled by the control unit 62.
  • the display unit 64 includes a waveform display unit 64a and a blood pressure / heart rate display unit 64b.
  • the waveform display unit 64a is disposed at the center of the display unit 64, and the waveform display unit 64a displays three waveforms side by side in the order of an electrocardiogram waveform 82, a blood pressure waveform 84, and an internal pressure waveform 86.
  • the electrocardiogram waveform 82 displays an electrocardiogram signal representing the electrical activity of the patient's heart.
  • the electrocardiogram signal is acquired by an electrocardiograph through an electrode pad attached to the patient, and is input to the monitor unit 60 through a heartbeat signal input unit 69 shown in FIG.
  • the control unit 62 of the monitor unit 60 displays the electrocardiogram signal input via the heartbeat signal input unit 69 on the waveform display unit 64 a as an electrocardiogram waveform 82.
  • the electrocardiogram signal may be directly acquired by the IABP driving apparatus 10 itself by incorporating the electrocardiograph in the IABP driving apparatus 10 or via an electrocardiograph (polygraph, bedside monitor, etc.) outside the IABP driving apparatus 10. May be acquired indirectly.
  • the blood pressure waveform 84 displays a blood pressure signal representing the blood pressure of the patient.
  • the blood pressure signal is measured using a pressure transducer or the like attached to the balloon catheter 90 or another catheter connected to the artery, and is input to the monitor unit 60 via the heartbeat signal input unit 69 shown in FIG. .
  • the control unit 62 of the monitor unit 60 displays the blood pressure signal input via the heartbeat signal input unit 69 as a blood pressure waveform 84 on the waveform display unit 64a.
  • the internal pressure waveform 86 displays an internal pressure signal representing the balloon internal pressure that is the internal pressure of the balloon 92. As shown in FIG. 2, the internal pressure signal is output from the measurement unit 22 provided in the secondary piping system 21 b in the apparatus main body 20 and is input to the monitor unit 60.
  • a blood pressure / heart rate display unit 64b for displaying the blood pressure and heart rate numerically is arranged on the right side of the display unit 64.
  • the heart rate, systolic pressure, diastolic pressure, average pressure, and augmentation pressure are displayed in this order from the upper side of the blood pressure / heart rate display unit 64b.
  • the heart rate is calculated based on the electrocardiogram signal, and the systolic pressure, diastolic pressure, average pressure, and augmentation pressure are calculated by the control unit 62 based on the blood pressure signal.
  • the operation signal input unit 68 is disposed below the front surface of the monitor unit 60.
  • the operator of the IABP driving device 10 can input various signals related to driving of the IABP driving device 10 such as the driving conditions of the balloon 92 and the display conditions of the monitor unit 60 via the operation signal input unit 68.
  • the operation signal input unit 68 has an adjustment input unit 68a for inputting a signal for adjusting the internal pressure of the balloon 92, and the operator of the IABP driving device 10 presses a push button of the adjustment input unit 68a. Then, an operation signal for adjusting the balloon internal pressure is input to the monitor unit 60.
  • the control unit 62 of the monitor unit 60 controls the adjustment unit 24 of the apparatus main body 20, and shuttle gas that circulates in the secondary piping system 21 b and the balloon catheter 90. Increase or decrease the amount (chemical equivalent of helium gas) and adjust the balloon internal pressure.
  • FIG. 4 shows the synchronized heart rate when the balloon 92 having a volume (nominal volume) of 40 ml is expanded and contracted in synchronization with the heart rate of the patient by the IABP driving device 10 shown in FIGS. It is a graph showing the relationship with the actual expansion volume of the balloon 92 after driving the balloon 92 synchronizing with the heart rate for 10 seconds. From FIG. 4, it can be understood that in the IABP driving device 10, the expansion volume is constant regardless of the heart rate as long as the heart rate is below 120 bpm. That is, as shown by the internal pressure waveform 86 in FIG. 3, when the heart rate is lower than 120 bpm (80 bpm in the display of the blood pressure / heart rate display unit 64b), the positive pressure side electromagnetic valve 28 shown in FIG. The period in which the diaphragm 26 of the pressure partition device 25 is moved by the pressure of the positive pressure tank 31 is longer than that when the heart rate is higher (for example, the heart rate is 120 bpm or more).
  • the pump 30 shown in FIG. 2 can recover the pressure PT1 of the positive pressure tank 31 that has been lowered by moving the diaphragm 26 to the set value until the positive pressure side electromagnetic valve 28 is next opened. it can.
  • the pressure in the positive pressure tank 31 at the time of switching the positive pressure side solenoid valve 28 from the closed state to the open state is constant regardless of the heart rate.
  • the expansion volume is constant as shown in FIG.
  • the volume (chemical equivalent) of the shuttle gas filled in the secondary piping system 21b and the balloon catheter 90 of the IABP driving device 10 is normally set to an amount that allows the balloon 92 to be completely expanded. Therefore, in the region where the heart rate is less than 120 bpm, the balloon 92 connected to the IABP driving device 10 is completely expanded every time it is expanded, and therefore, the state in which the surface of the balloon 92 is uneven may be maintained for a long time. In other words, it can be said that there is no problem in that a thrombus is formed due to the accumulation of blood in the unevenness.
  • the state in which the balloon 92 is fully expanded means that the balloon 92 is expanded to a predetermined volume and the surface of the balloon 92 is substantially free of irregularities.
  • the volume of the balloon 92 is determined by selecting the size of the balloon 92 to be used in advance according to the physique of the patient, and is selected in the range of, for example, 30 to 45 ml.
  • FIG. 5 shows an internal pressure waveform 88 in a state where the IABP driving apparatus 10 performs high-speed continuous driving 93 that drives the balloon 92 in synchronization with a heart rate of 120 bpm or more. It represents.
  • the high-speed continuous drive 93 the positive pressure side solenoid valve 28 shown in FIG. 2 is opened, and the cycle of moving the diaphragm 26 of the pressure partition device 25 by the pressure of the positive pressure tank 31 is when the heart rate is less than 120 bpm (FIG. 3). Shorter than the internal pressure waveform 86).
  • the pump 30 shown in FIG. 2 can recover the pressure PT1 of the positive pressure tank 31 that has been lowered by moving the diaphragm 26 to the set value until the positive pressure side electromagnetic valve 28 is next opened. Can not.
  • the pressure of the positive pressure tank 31 at the time of switching the positive pressure side electromagnetic valve 28 from the closed state to the open state is the time spent for recovery of the pressure of the positive pressure tank 31; That is, it depends on the heart rate that determines the time.
  • the expansion volume of the balloon 92 decreases and the balloon 92 cannot be fully expanded.
  • the membrane of the balloon 92 will always have a slack, and a state in which a dent has occurred in a part of the surface of the balloon 92 may be maintained. If such a state continues for a long time, blood accumulates in the dent and a problem that a thrombus is easily formed occurs.
  • IABP driving The device 10 can generate a certain cardiac function assisting effect by driving the balloon 92.
  • the controller 62 shown in FIG. 2 performs the high-speed continuous drive 93 that continuously drives the balloon 92 in synchronization with the heart rate having a heart rate of 120 bpm or more, the high-speed continuous drive 93 continues for one minute or more. Then, after the pause operation 94 shown in FIG. 5 is performed, the high-speed continuous drive 95 is performed again. In the resting operation 94, the control unit 62 controls the balloon driving unit 20a shown in FIG. 2 so as to maintain the balloon 92 in a deflated state for a predetermined number of heartbeats.
  • the pump 30 shown in FIG. 2 uses the pressure PT1 of the positive pressure tank 31 that is lowered by moving the diaphragm 26, and the heart rate is low. Similarly to the case, the set value can be recovered. Therefore, as shown in FIG. 5, in the expansion performed immediately after the resting operation 94, the pressure of the positive pressure tank 31 at the time of switching the positive pressure side solenoid valve 28 from the closed state to the open state is higher than that before the resting. As a result, the balloon 92 can be fully expanded, or can be expanded to a state close to full expansion as compared to the previous expansion.
  • Such an IABP driving device 10 prevents the time when the balloon 92 cannot be fully expanded from continuing beyond a predetermined time, and can prevent the problem that blood clots are easily formed on the surface of the balloon 92. Further, the IABP driving device 10 prevents the problem that blood clots are easily formed on the surface of the balloon 92, so that the blood clots that are formed on the surface of the balloon 92 and then peeled off from the balloon 92 clog the peripheral blood vessels. Can be prevented.
  • FIG. 6 is an example of a control method in which the control unit 62 shown in FIG. 2 controls the balloon driving unit 20a, and is a flowchart showing an example of a method of driving the balloon 92 by the IABP driving device 10.
  • the control unit 62 of the IABP driving device 10 causes the balloon driving unit 20a to start driving the balloon 92.
  • the control unit 62 controls the balloon driving unit 20a to expand and contract the balloon 92 in synchronization with the heartbeat, and the cardiac function assisting operation by the IABP driving device 10 is started.
  • the control unit 62 starts a detection timer that measures the duration of the high-speed continuous driving. It is assumed that the assist ratio representing the ratio between the number of heartbeats and the number of cardiac function assisting operations by expansion / contraction of the balloon 92 is set to 1: 1.
  • step S002 the control unit 62 determines whether or not the heart rate is 120 bpm or more.
  • the heart rate is calculated by the control unit 62 based on a signal (heart rate signal) selected from either an electrocardiogram signal or a blood pressure signal. If the heart rate falls below 120 bpm, the process proceeds to step S005 to reset the high-speed continuous drive detection timer (restarted from 0 seconds), and then the process returns to step S002.
  • step S002 when the heart rate is 120 bpm or more, the process proceeds to step S003.
  • the control unit 62 detects whether or not the balloon driving unit 20a is driving the balloon 92 in synchronization with the heart rate of 120 bpm or more determined in step S002 continuously for one minute or more. . More specifically, the control unit 62 performs the determination in step S003 depending on whether or not the value of the detection timer for the high-speed continuous drive started at the start of driving is 1 minute or more. In step S003, if the value of the detection timer indicating the duration of the high-speed continuous drive is 1 minute or more, the process proceeds to step S004, and if the value of the detection timer is less than 1 minute, the process returns to step S002.
  • step S004 the control unit 62 causes the resting operation 94 to maintain the balloon 92 in a deflated state for one heartbeat.
  • the balloon driving unit 20a performs a resting operation 94 for one heartbeat after the high-speed continuous driving 93, and then drives the balloon 92 again in synchronization with the heartbeat again.
  • High-speed continuous drive 95 is performed.
  • step S004 the control unit 62 proceeds to step S005, resets the high-speed continuous drive detection timer (restarted from 0 seconds), and then returns to the operation of step S002.
  • the control unit 62 drives the balloon.
  • the unit 20a By controlling the unit 20a to perform the resting operation 94 for one heartbeat, the high-speed continuous drive 93 can be prevented from continuing for a long time.
  • the resting operation 94 as shown in FIG. 5, the expansion volume when the balloon 92 is expanded temporarily increases, and the balloon 92 can be fully expanded. Can be prevented from being easily formed.
  • the control unit 62 causes the balloon driving unit 20 a to perform a pause operation 94 when the high-speed continuous drive 93 continues for one minute or longer.
  • the duration of the high-speed continuous drive for performing the above-mentioned process may be a time of 30 seconds or more, and it is preferable that the duration be selected appropriately from the range of 1 to 3 minutes. If the timing at which the rest operation 94 is performed is too early, the frequency of the rest operation 94 becomes too high, and the cardiac function assisting effect by driving the balloon 92 may be weakened. Moreover, if the timing for performing the resting operation 94 is too late, there is a possibility that formation of a thrombus on the surface of the balloon 92 cannot be prevented appropriately.
  • the resting operation 94 (performed during a predetermined number of heartbeats) for a predetermined number of heartbeats is counted as one resting operation, and the frequency at which the resting operation is performed is 60 to 180 for heartbeats. It is preferable to carry out at a rate of once during the round. If the rate of the resting action 94 is too large, the cardiac function assisting effect by driving the balloon 92 may be weakened. If the rate of the resting action 94 is too small, the formation of a thrombus on the surface of the balloon 92 can be appropriately prevented. There is a risk of disappearing.
  • the control unit 62 determines that high-speed continuous driving that requires a resting operation 94 occurs.
  • the threshold regarding the heart rate (whether the heart rate is determined in step S002) as to whether or not the resting operation 94 is necessary is not limited to 120 bpm, and any heart rate that may cause the balloon 92 to be not fully dilated. Can be a number.
  • the threshold relating to the heart rate as to whether or not the resting operation 94 is necessary can be changed according to the capability of the pump 30 shown in FIG. 2, and can be selected in the range of 100 to 140 bpm, for example. .
  • the period during which the balloon 92 is maintained in the deflated state (the number of heartbeats performed while the balloon 92 is maintained in the deflated state) is not limited to one, and the capacity of the pump 30 and the like Accordingly, it may be set in a period necessary for recovering the pressure, and for example, a period of 1 to 3 heartbeats is preferable. However, since the cardiac function assisting effect by driving the balloon 92 may be weakened if the period of the resting action 94 is too long, the period of one heartbeat is most preferable.
  • FIG. 7 is a flowchart showing another example of the method for driving the balloon 92 by the control unit 62 shown in FIG.
  • the control unit 62 performs different control on the balloon drive unit 20 a according to the heart rate when the balloon 92 is driven.
  • the control unit 62 that has started driving the balloon 92 in step S101 in FIG. 7 determines whether or not the heart rate is 120 bpm or more in step S102. When the heart rate falls below 120 bpm, the process proceeds to step S104, and the control unit 62 controls the balloon driving unit 20a to perform “assist ratio 1: 1 driving”. When the heart rate is 120 bpm or more, the balloon driving unit 20a can continue to fully expand the balloon 92 even if the balloon 92 is driven in synchronization with the heartbeat continuously (see FIG. 5).
  • step S104 where the heart rate falls below 120 bpm, the control unit 62 and the balloon drive unit 20a drive the balloon 92 so as to continuously synchronize with the heartbeat (assist ratio 1: 1), and rest. Operation 94 is not performed.
  • step S102 When the heart rate is 120 bpm or more in step S102, the process proceeds to step S103, and the control unit 62 determines whether or not the heart rate is 180 bpm or more. When the heart rate is 120 bpm or more and falls below 180 bpm, the process proceeds to step S105, and the control unit 62 controls the balloon driving unit 20a so as to perform “high-speed continuous driving + resting operation”.
  • the balloon drive unit 20a cannot continue to fully expand the balloon 92 when performing the high-speed continuous drive 93 as shown in FIG. 5 (see FIG. 4). Therefore, in the control of step S105 in which the heart rate is 120 bpm or more and falls below 180 bpm, the control unit 62 and the balloon drive unit 20a perform once after the high-speed continuous drive 93 for a predetermined time, as described in the flowchart of FIG. The balloon 92 is driven so as to perform the resting operation 94.
  • the IABP driving device 10 prevents the problem that thrombus is formed on the surface of the balloon 92, and drives the balloon 92 in a state where the assist ratio is very close to 1: 1, so that an effective cardiac function is achieved.
  • An auxiliary operation can be performed.
  • step S103 when the heart rate is 180 bpm or more in step S103, the process proceeds to step S106, and the control unit 62 controls the balloon driving unit 20a to perform “assist ratio 1: 2 driving”. .
  • step S106 when the heart rate is 180 bpm or more, the control unit 62 and the balloon driving unit 20a perform a cardiac function assisting operation for expanding and deflating the balloon 92 and a resting period for maintaining the balloon 92 in a deflated state.
  • “Assist ratio 1: 2 drive” is performed in which the operation is alternately performed for each heartbeat.
  • the IABP driving apparatus 10 can perform an effective cardiac function assisting operation while preventing the problem that a thrombus is formed on the surface of the balloon 92.
  • the IABP driving device 10 effectively assists the cardiac function according to the heart rate of the patient, and the state where the balloon 92 is not fully expanded continues for a predetermined time or more. This can prevent the problem that blood clots are likely to be formed on the surface of the balloon 92.
  • the IABP driving device 10 and the method for driving the balloon 92 using the IABP driving device 10 have been described with reference to the embodiments and specific operations using the embodiments.
  • the present invention is limited only to the above-described embodiments. It is not a thing.
  • the configuration of the balloon driving unit 20a is not limited to that shown in FIG. 2, and the balloon 92 can be expanded and contracted by alternately applying a positive pressure and a negative pressure to the piping system. Any configuration may be used.
  • the secondary piping system 21b shown in FIG. 2 apart from the pump 30 connected to the primary piping system 21a, the shuttle gas is discharged to the secondary piping system 21b, or the shuttle gas is sucked from the secondary piping system 21b.
  • An auxiliary pressure generating means that can be connected may be connected.
  • Control part 64 Display unit 64a Waveform display unit 64b Blood pressure / heart rate display unit 68 Operation signal input unit 68a Adjustment input unit 69 Heart rate signal input unit 70 Pilot lamp 82 Electrocardiogram waveform 84 Blood pressure waveform 86, 88 Internal pressure Waveform 90 ... Balloon catheter 92 ... Balloon 93, 95 ... High-speed continuous drive 94 ... Resting motion

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • External Artificial Organs (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

[Problem] To provide a balloon drive method that uses an IABP drive device that can prevent the formation of thrombi on the balloon surface. [Solution] In this method of driving a balloon with an IABP drive device which is mounted with a balloon catheter with a balloon connected thereto and which expands and contracts the balloon. When driving a balloon continuously at high speed synchronized continuously to a heartbeat that is greater than or equal to 120 bpm, if this high-speed continuous driving continues for a prescribed time interval of at least 30 seconds, then, after a rest operation for maintaining the balloon in a contracted state for a prescribed number of heartbeats, the high-speed continued driving is continued again.

Description

IABP駆動装置によるバルーンの駆動方法及びIABP駆動装置Balloon driving method by IABP driving device and IABP driving device
 本発明は、IABP(大動脈内バルーンポンピング)法で用いられるIABP駆動装置によるバルーンの駆動方法及びIABP駆動装置に関する。 The present invention relates to a balloon driving method by an IABP driving device used in an IABP (intra-aortic balloon pumping) method and an IABP driving device.
 IABP法において、十分な補助(心臓の負担軽減)効果を得るためには、患者の心臓の拍動に対して適切なタイミングで大動脈内に留置したバルーンを拡張及び収縮させる必要がある。そこで、IABP法においてバルーンカテーテルのバルーンを駆動する駆動装置では、心電計や血圧計によって取得された患者の心拍に関する信号が入力され、その信号に基づき、バルーンを拡張及び収縮する。すなわち、IABP駆動装置において、バルーンを拡張及び収縮させる動作の単位時間当たりの繰り返し回数は、患者の心拍数が高くなれば多くなり、患者の心拍数が低くなれば少なくなる(特許文献1参照)。 In the IABP method, in order to obtain a sufficient assisting effect (reducing the burden on the heart), it is necessary to expand and contract the balloon placed in the aorta at an appropriate timing with respect to the heartbeat of the patient. Therefore, in the driving device that drives the balloon of the balloon catheter in the IABP method, a signal related to the heartbeat of the patient acquired by an electrocardiograph or a sphygmomanometer is input, and the balloon is expanded and contracted based on the signal. That is, in the IABP driving device, the number of repetitions per unit time of the operation of expanding and contracting the balloon increases as the patient's heart rate increases, and decreases as the patient's heart rate decreases (see Patent Document 1). .
 また、IABP駆動装置では、バルーンへ圧力を伝達する配管系に対して、陽圧と陰圧とを交互に印加することにより、バルーンを拡張・収縮させる。ここで、配管系に印加する陽圧及び陰圧はポンプによって形成され、そのポンプによって形成された陽圧及び陰圧は陽圧タンク及び陰圧タンクにおいてそれぞれ略一定の圧力に維持される。すなわち、各陽圧・陰圧タンクの圧力は、バルーンへ圧力を伝達する配管系に対して陽圧又は陰圧を印加することにより一次的に低下又は上昇するものの、ポンプにより加圧又は減圧され、バルーンへ圧力を伝達する前の圧力に戻される。 Also, in the IABP drive device, the balloon is expanded and contracted by alternately applying a positive pressure and a negative pressure to the piping system that transmits the pressure to the balloon. Here, the positive pressure and the negative pressure applied to the piping system are formed by a pump, and the positive pressure and the negative pressure generated by the pump are maintained at substantially constant pressures in the positive pressure tank and the negative pressure tank, respectively. That is, the pressure in each positive pressure / negative pressure tank is temporarily reduced or increased by applying a positive pressure or negative pressure to the piping system that transmits the pressure to the balloon, but is pressurized or reduced by the pump. The pressure before the pressure is transmitted to the balloon is returned to.
 しかしながら、患者の心拍数が高くなると、ポンプによる加圧/減圧能力が追い付かなくなり、各陽圧・陰圧タンクの圧力が本来到達すべき圧力まで復帰する前に、次の周期が開始される場合がある。このような状態になると、本来は心拍数が変化しても一定に保たれるべきバルーンの内圧及び拡張・収縮時におけるバルーンの状態が、心拍数の影響を受けてしまうという問題が生じる。ただし、心拍数の増加に伴い、配管系に印加する陽圧と陰圧との間の圧力差が小さくなったとしても、その圧力差が一定以上であれば、バルーンの駆動により、一定の心機能補助効果を発生させることは可能である。 However, if the patient's heart rate increases, the pressurizing / depressurizing ability of the pump cannot catch up, and the next cycle starts before the pressure in each positive / negative pressure tank returns to the pressure that should be reached There is. In such a state, there is a problem that the internal pressure of the balloon that should be kept constant even when the heart rate changes, and the state of the balloon at the time of dilation / deflation are affected by the heart rate. However, even if the pressure difference between the positive pressure and negative pressure applied to the piping system decreases as the heart rate increases, if the pressure difference is greater than or equal to a certain level, driving the balloon causes a constant heart rate. It is possible to generate a function assist effect.
国際公開第2011/114779号International Publication No. 2011/111479
 しかしながら、心拍数の増加に伴い、IABP駆動装置によってバルーンに印加される圧力が低下した場合、拡張時であってもバルーンが完全拡張できなくなり、これにより、バルーンの表面に血栓が形成されやすい状態になるおそれがある。たとえば、拡張時においてもバルーンが完全拡張せず、バルーン膜が常に弛んだ状態となると、バルーン表面に凹凸が生じた状態が持続されてしまい、凹みの部分に血液が長時間滞留して、血栓が形成されやすくなる問題が生じる。IABP法が適用される心機能が低下した患者には、頻脈や不整脈が多くみられることから、バルーンはしばしば心拍数の高い心拍に同期して駆動されるので、このような血栓形成のリスクは避けることが望ましいといえる。 However, when the pressure applied to the balloon by the IABP driving device decreases as the heart rate increases, the balloon cannot be completely expanded even when it is inflated, so that a thrombus is easily formed on the surface of the balloon. There is a risk of becoming. For example, if the balloon does not fully expand even during expansion and the balloon membrane is always in a loose state, the balloon surface will remain uneven, and blood will stay in the dent for a long time, causing thrombus. There arises a problem that is easily formed. In patients with reduced cardiac function to which the IABP method is applied, since tachycardia and arrhythmia are common, the balloon is often driven in synchronization with a heart rate with a high heart rate. It is desirable to avoid.
 本発明は、このような実状に鑑みてなされ、バルーン表面における血栓の形成を防止し得るIABP駆動装置によるバルーンの駆動方法及びIABP駆動装置に関する。 The present invention is made in view of such a situation, and relates to a balloon driving method and an IABP driving device by an IABP driving device that can prevent formation of a thrombus on the balloon surface.
 上記目的を達成するために、本発明に係るバルーンの駆動方法は、
 バルーンが接続されたバルーンカテーテルを取り付け、前記バルーンを拡張及び収縮させるIABP駆動装置によるバルーンの駆動方法であって、
 心拍数が120bpm以上である心拍に対して連続的に同期して、前記バルーンを駆動する高速連続駆動を行う際、前記高速連続駆動が30秒間以上の所定時間続くと、所定の回数の心拍に対して前記バルーンを収縮状態に維持する休拍動作を行った後、再び前記高速連続駆動を行う。
In order to achieve the above object, a balloon driving method according to the present invention comprises:
A balloon driving method using an IABP driving device for attaching a balloon catheter to which a balloon is connected and expanding and contracting the balloon,
When performing high-speed continuous driving for driving the balloon in continuous synchronization with a heart rate having a heart rate of 120 bpm or more, if the high-speed continuous driving continues for a predetermined time of 30 seconds or more, a predetermined number of heartbeats are generated. On the other hand, after performing a resting operation for maintaining the balloon in a deflated state, the high-speed continuous driving is performed again.
 本発明によるバルーンの駆動方法は、バルーンが完全拡張できない可能性がある高速連続駆動が所定時間連続する状態を検知し、これを検知した場合は休拍動作を行った後、再び高速連続駆動を実施する。休拍動作の直後に行われる拡張では、バルーンに対して低速駆動時と同様の圧力を伝えられるため、バルーンが完全拡張できるか、又は直前の拡張時に比べて完全拡張に近い状態まで拡張できる。したがって、このようなバルーンの駆動方法によれば、バルーンが完全拡張できない時間が、所定の時間を超えて継続することを防止することにより、バルーンの表面に血栓が形成される問題を防止できる。 The balloon driving method according to the present invention detects a state in which a high-speed continuous drive in which the balloon may not be fully expanded continues for a predetermined time, and when this is detected, after performing a pause operation, the high-speed continuous drive is performed again. carry out. In the expansion performed immediately after the resting operation, a pressure similar to that during low-speed driving can be transmitted to the balloon, so that the balloon can be fully expanded or can be expanded to a state closer to full expansion compared to the previous expansion. Therefore, according to such a balloon driving method, the problem that thrombus is formed on the surface of the balloon can be prevented by preventing the time during which the balloon cannot be fully expanded from continuing beyond a predetermined time.
 また、たとえば、前記休拍動作は、前記心拍が60~180回行われる間に1回の割合で行われてもよい。 Also, for example, the resting operation may be performed at a rate of once during the heartbeat being performed 60 to 180 times.
 このような駆動方法によれば、たとえばアシスト比を1:2にするようなバルーン駆動方法に比べて、高い心機能補助効果を奏することができる。 According to such a driving method, a higher cardiac function assisting effect can be achieved as compared with, for example, a balloon driving method in which the assist ratio is 1: 2.
 また、本発明に係るIABP駆動装置は、
 バルーンが接続されたバルーンカテーテルを取り付け、前記バルーンへ圧力を伝達する配管系に陽圧と陰圧とを交互に印加して前記バルーンを駆動するバルーン駆動部と、
 心拍に関する信号である心拍信号が入力され、心拍に同期して前記バルーンが拡張及び収縮するように、前記バルーン駆動部を制御する制御部と、を有し、
 前記制御部は、心拍数が120bpm以上である間において前記バルーン駆動部が30秒間以上の所定時間心拍に対して連続的に同期して前記バルーンを駆動したとき、所定の回数の心拍に対して前記バルーンを収縮状態に維持する休拍動作を行った後、再び心拍に対して連続的に同期して前記バルーンを駆動するように、前記バルーン駆動部を制御する。
Moreover, the IABP driving device according to the present invention is
A balloon driving unit that attaches a balloon catheter to which a balloon is connected and drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits pressure to the balloon;
A heartbeat signal that is a signal related to a heartbeat, and a controller that controls the balloon driving unit so that the balloon expands and contracts in synchronization with the heartbeat, and
When the balloon driving unit continuously drives the balloon in synchronism with the heartbeat for a predetermined time of 30 seconds or more while the heart rate is 120 bpm or more, the controller controls the predetermined number of heartbeats. After performing a resting operation for maintaining the balloon in a deflated state, the balloon driving unit is controlled so as to drive the balloon in synchronization with a heartbeat again.
 本発明に係るIABP駆動装置の制御部は、バルーンが完全拡張できない可能性のある条件において、30秒間以上の所定時間バルーンが駆動された場合、バルーン駆動部に対して、所定の回数の心拍に対してバルーンを収縮状態に維持する休拍動作を行わせる。休拍動作の直後に行われる拡張では、バルーンに対して、より遅い心拍数に同期する場合と同様の圧力を伝えられるため、仮に直前の駆動においてバルーンが完全拡張できていなかったとしても、休拍直後の1回は、バルーンが完全拡張できるか、又はより完全拡張に近い状態まで拡張するといえる。したがって、このような制御部を有するIABP駆動装置によれば、バルーンが完全拡張できない時間が、所定の時間を超えて継続することを防止することにより、バルーンの表面に血栓が形成される問題を防止できる。 The control unit of the IABP drive device according to the present invention, when the balloon is driven for a predetermined time of 30 seconds or more under the condition that the balloon may not be fully expanded, makes a predetermined number of heartbeats with respect to the balloon drive unit. On the other hand, a resting operation for maintaining the balloon in a deflated state is performed. In the expansion performed immediately after the resting operation, the same pressure as that in the case of synchronizing with a slower heart rate can be transmitted to the balloon. Therefore, even if the balloon has not been fully expanded in the previous driving, the resting can be performed. One time immediately after the beat, it can be said that the balloon can be fully expanded or expanded to a state closer to complete expansion. Therefore, according to the IABP driving device having such a control unit, it is possible to prevent a thrombus from being formed on the surface of the balloon by preventing the time during which the balloon cannot be fully expanded from continuing beyond a predetermined time. Can be prevented.
図1は、本発明の一実施形態に係るIABP駆動装置の全体外観図である。FIG. 1 is an overall external view of an IABP driving apparatus according to an embodiment of the present invention. 図2は、図1に示すIABP駆動装置の概略構造を表すブロック図である。FIG. 2 is a block diagram showing a schematic structure of the IABP driving device shown in FIG. 図3は、モニタ部を正面から見た外観図である。FIG. 3 is an external view of the monitor unit viewed from the front. 図4は、図1に示すIABP駆動装置による10秒間同期駆動後のバルーンの拡張容量と、同期させた心拍数の関係の一例を表すグラフである。FIG. 4 is a graph showing an example of the relationship between the balloon expansion capacity after 10 seconds of synchronous driving by the IABP driving apparatus shown in FIG. 1 and the synchronized heart rate. 図5は、図1に示すIABP駆動装置によるバルーンの内圧波形の一例を表すグラフである。FIG. 5 is a graph showing an example of an internal pressure waveform of the balloon by the IABP driving device shown in FIG. 図6は、図1に示すIABP駆動装置で行われるバルーンの駆動方法の一例を表すフローチャートである。FIG. 6 is a flowchart showing an example of a balloon driving method performed by the IABP driving apparatus shown in FIG. 図7は、図1に示すIABP駆動装置で行われるバルーンの駆動方法の他の一例を表すフローチャートである。FIG. 7 is a flowchart showing another example of a balloon driving method performed by the IABP driving apparatus shown in FIG.
 以下、本発明に係るIABP駆動装置を、図面に示す実施形態に基づき、詳細に説明する。 Hereinafter, an IABP driving device according to the present invention will be described in detail based on an embodiment shown in the drawings.
 図1は、本発明の一実施形態に係るIABP駆動装置10の全体外観図であり、図2はIABP駆動装置10の概略構造を表すブロック図である。IABP駆動装置10は、図2に示すように、バルーン92が接続されたIABP用バルーンカテーテル90を取り付けて、バルーン92を拡張及び収縮させるために用いられる駆動装置である。バルーンカテーテル90は、図1に示すIABP駆動装置10の装置本体20に取り付けて使用される。バルーンカテーテル90の先端に接続されたバルーン92は、下行大動脈内に留置されて使用される。IABP駆動装置10は、心臓の拍動に合わせてバルーン92を拡張及び収縮させることにより、心臓の血液循環機能を補助することができる。 FIG. 1 is an overall external view of an IABP driving apparatus 10 according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a schematic structure of the IABP driving apparatus 10. As shown in FIG. 2, the IABP driving device 10 is a driving device used for attaching and deflating the balloon 92 by attaching an IABP balloon catheter 90 to which the balloon 92 is connected. The balloon catheter 90 is used by being attached to the apparatus main body 20 of the IABP driving apparatus 10 shown in FIG. A balloon 92 connected to the tip of the balloon catheter 90 is used by being placed in the descending aorta. The IABP driving device 10 can assist the blood circulation function of the heart by expanding and contracting the balloon 92 in accordance with the heartbeat.
 図1に示すように、IABP駆動装置10は、装置本体20とモニタ部60とを有する。装置本体20の内部には、バルーン92を拡張及び収縮させるためのバルーン駆動部20aや拡張・収縮手段に電力を供給するための電源手段(不図示)等が収容されている。装置本体20の下部には、キャスター49が取り付けられており、IABP駆動装置10は、病院内等において、容易に移動させることが可能になっている。 As shown in FIG. 1, the IABP driving device 10 includes a device main body 20 and a monitor unit 60. Inside the apparatus main body 20 are accommodated a balloon driving unit 20a for expanding and contracting the balloon 92, a power source unit (not shown) for supplying power to the expansion / contraction unit, and the like. A caster 49 is attached to the lower part of the apparatus main body 20, and the IABP driving apparatus 10 can be easily moved in a hospital or the like.
 モニタ部60は、装置本体20の上面に設けられたモニタ設置部48を介して、装置本体20に取り付けられている。モニタ部60は、装置本体20に対して着脱自在である。ただし、モニタ部60は、図示しないケーブル等を介して装置本体20に接続されており、装置本体20から電力の供給を受けたり、装置本体20との間でデータの受け渡しを行ったり、信号の入出力を行ったりすることができる。 The monitor unit 60 is attached to the apparatus main body 20 via a monitor installation unit 48 provided on the upper surface of the apparatus main body 20. The monitor unit 60 is detachable from the apparatus main body 20. However, the monitor unit 60 is connected to the apparatus main body 20 via a cable or the like (not shown), and receives power supply from the apparatus main body 20, exchanges data with the apparatus main body 20, I / O can be performed.
 図2に示すように、装置本体20の内部には、バルーン92を拡張・収縮するためのバルーン駆動部20aが収納されている。バルーン駆動部20aは、バルーンカテーテル90内に連通する二次配管系21bと、一次側圧力発生手段としてのポンプ30に連通する一次配管系21aとを有している。一次配管系21aと二次配管系21bとは、圧力隔壁装置25(アイソレータ)によって分離されている。圧力隔壁装置25は、一次配管系21aの圧力を二次配管系21bに伝えるダイヤフラム26を有している。バルーン駆動部20aにおいては、一次配管系21aと二次配管系21bとの間をそれぞれの内部の流体が移動することはできないが、ダイヤフラム26が移動することにより、一次配管系21aの圧力(容積変化)が、二次配管系21bへ伝えられる。 As shown in FIG. 2, a balloon driving unit 20a for expanding and contracting the balloon 92 is accommodated inside the apparatus main body 20. The balloon driving unit 20a includes a secondary piping system 21b that communicates with the balloon catheter 90 and a primary piping system 21a that communicates with a pump 30 as a primary pressure generating unit. The primary piping system 21a and the secondary piping system 21b are separated by a pressure partition device 25 (isolator). The pressure partition device 25 has a diaphragm 26 that transmits the pressure of the primary piping system 21a to the secondary piping system 21b. In the balloon driving unit 20a, the fluids inside the primary piping system 21a and the secondary piping system 21b cannot move, but the diaphragm 26 moves to move the pressure (volume) of the primary piping system 21a. Change) is transmitted to the secondary piping system 21b.
 このように、一次配管系21aと二次配管系21bとを圧力隔壁装置25を挟んで配置するバルーン駆動部20aは、二次配管系21bに封入されるシャトルガスの容量(化学当量)を一定に制御し易いという利点や、二次配管系21bに使用されるシャトルガスの消費量を抑制することができるという利点を有する。 As described above, the balloon drive unit 20a that arranges the primary piping system 21a and the secondary piping system 21b with the pressure bulkhead device 25 interposed therebetween has a constant capacity (chemical equivalent) of shuttle gas sealed in the secondary piping system 21b. It has the advantage that it is easy to control, and the consumption of the shuttle gas used in the secondary piping system 21b can be suppressed.
 一次配管系21aの内部流体としては、たとえば空気を用いることができ、二次配管系21bの内部流体(シャトルガス)としては、たとえばヘリウムガスを用いることができる。二次配管系21bの内部流体を、粘性及び質量が小さいヘリウムガスとすることにより、バルーン92の拡張・収縮の応答性を高めることができる。 For example, air can be used as the internal fluid of the primary piping system 21a, and helium gas can be used as the internal fluid (shuttle gas) of the secondary piping system 21b. By making the internal fluid of the secondary piping system 21b helium gas having a small viscosity and mass, the response of expansion / contraction of the balloon 92 can be enhanced.
 図2に示すように、一次配管系21aには、ポンプ30が配置してある。このポンプ30の陽圧出力口には、陽圧タンク31が接続してあり、ポンプ30の陰圧発生口には、陰圧タンク35が接続してある。なお、図2に示す本実施形態で用いるポンプ30は、駆動により陽圧と陰圧とを同時に発生させるものであるが、陽圧を発生させるポンプ(コンプレッサ等)と陰圧を発生させるポンプ(真空ポンプ等)とを別個のものとして構成してもよい。 As shown in FIG. 2, a pump 30 is disposed in the primary piping system 21a. A positive pressure tank 31 is connected to the positive pressure output port of the pump 30, and a negative pressure tank 35 is connected to the negative pressure generation port of the pump 30. The pump 30 used in the present embodiment shown in FIG. 2 generates a positive pressure and a negative pressure simultaneously by driving. However, a pump (such as a compressor) that generates a positive pressure and a pump that generates a negative pressure (such as a compressor) You may comprise separately from a vacuum pump etc.).
 陽圧タンク31及び陰圧タンク35には、各タンク31、35の内部と外部(大気)との連通を選択的に開閉するための陽圧調整弁32及び陰圧調整弁36と、各タンク31、35の内部圧力を測定する圧力センサとが設けられており、陽圧タンク31及び陰圧タンク35は、バルーン92の駆動中においても、略一定の内圧になるように制御される。陽圧タンク31及び陰圧タンク35の内圧は、特に限定されないが、たとえば陽圧タンク31の圧力PT1を300mmHg(ゲージ圧)、陰圧タンク35の圧力PT2を-150mmHg(ゲージ圧)に保つように制御される。 The positive pressure tank 31 and the negative pressure tank 35 include a positive pressure adjustment valve 32 and a negative pressure adjustment valve 36 for selectively opening and closing communication between the inside of each tank 31 and 35 and the outside (atmosphere), and each tank. The positive pressure tank 31 and the negative pressure tank 35 are controlled so as to have a substantially constant internal pressure even while the balloon 92 is being driven. The internal pressures of the positive pressure tank 31 and the negative pressure tank 35 are not particularly limited. For example, the pressure PT1 of the positive pressure tank 31 is maintained at 300 mmHg (gauge pressure), and the pressure PT2 of the negative pressure tank 35 is maintained at −150 mmHg (gauge pressure). Controlled.
 陽圧タンク31と陰圧タンク35とは、それぞれ独立して開閉制御される陽圧側電磁弁28と陰圧側電磁弁29を介して、圧力隔壁装置25の入力端に接続してある。バルーン駆動部20aは、陽圧側電磁弁28と陰圧側電磁弁29の開閉状態を切り換えることにより、バルーン92を拡張・収縮させることができる。 The positive pressure tank 31 and the negative pressure tank 35 are connected to the input end of the pressure bulkhead device 25 via a positive pressure side solenoid valve 28 and a negative pressure side solenoid valve 29 that are controlled to open and close independently. The balloon driving unit 20a can expand and contract the balloon 92 by switching the open / close state of the positive pressure side solenoid valve 28 and the negative pressure side solenoid valve 29.
 一方、バルーンカテーテル90に接続する二次配管系21bには、バルーンカテーテル90内を流通してバルーン92を拡張・収縮させるシャトルガスが充填されている。二次配管系21bには、バルーン92の内圧であるバルーン内圧を測定する測定部22と、バルーン内圧を調整する調整部24が設けられている。測定部22は、圧力センサ等で構成されており、シャトルガスで満たされるバルーンカテーテル90の内部の圧力を測定する。測定部22によって測定されたバルーン内圧に関する信号である内圧信号は、モニタ部60の制御部62に出力される。 On the other hand, the secondary piping system 21b connected to the balloon catheter 90 is filled with a shuttle gas that circulates in the balloon catheter 90 and expands and contracts the balloon 92. The secondary piping system 21b is provided with a measuring unit 22 that measures the balloon internal pressure, which is the internal pressure of the balloon 92, and an adjusting unit 24 that adjusts the balloon internal pressure. The measurement unit 22 includes a pressure sensor or the like, and measures the pressure inside the balloon catheter 90 that is filled with the shuttle gas. An internal pressure signal that is a signal related to the balloon internal pressure measured by the measurement unit 22 is output to the control unit 62 of the monitor unit 60.
 調整部24は、バルーン92を拡張させるために二次配管系21b及びバルーンカテーテル90内に流通するシャトルガス量を調整し、バルーン内圧を調整する。たとえば、調整部24は、二次配管系21bにシャトルガスを供給するか、又は二次配管系21bからシャトルガスを排出することで、バルーン92が収縮したときのバルーン内圧である基準圧を上昇又は下降させることにより、バルーン内圧を調整する。 The adjusting unit 24 adjusts the amount of shuttle gas flowing through the secondary piping system 21b and the balloon catheter 90 in order to expand the balloon 92, thereby adjusting the balloon internal pressure. For example, the adjusting unit 24 increases the reference pressure that is the balloon internal pressure when the balloon 92 is deflated by supplying the shuttle gas to the secondary piping system 21b or discharging the shuttle gas from the secondary piping system 21b. Alternatively, the balloon internal pressure is adjusted by lowering.
 図2に示すように、モニタ部60は、制御部62と、表示部64と、操作信号入力部68と、パイロットランプ70と、心拍信号入力部69とを有する。図3に示すように、表示部64は、モニタ部60の前面上半分程度の領域に配置されており、たとえば液晶ディスプレイや有機ELディスプレイのような表示ディスプレイで構成される。 As shown in FIG. 2, the monitor unit 60 includes a control unit 62, a display unit 64, an operation signal input unit 68, a pilot lamp 70, and a heart rate signal input unit 69. As shown in FIG. 3, the display unit 64 is disposed in a region on the upper half of the front surface of the monitor unit 60 and is configured by a display display such as a liquid crystal display or an organic EL display.
 制御部62は、マイクロプロセッサ等で構成され、各種の演算処理を実施することにより、IABP駆動装置10に含まれるバルーン駆動部20aや表示部64その他の構成を制御する。パイロットランプ70は、IABP駆動装置10に発生した異常などを含むIABP駆動装置10の駆動状態を、点灯色や点灯・点滅の変化により操作者に知らせる。パイロットランプ70の点灯状態は、制御部62によって制御される。 The control unit 62 is configured by a microprocessor or the like, and controls various configurations of the balloon driving unit 20a, the display unit 64, and the like included in the IABP driving device 10 by performing various arithmetic processes. The pilot lamp 70 informs the operator of the driving state of the IABP driving device 10 including abnormality occurring in the IABP driving device 10 by changing the lighting color or lighting / flashing. The lighting state of the pilot lamp 70 is controlled by the control unit 62.
 図2及び図3に示すように、表示部64は、波形表示部64aと、血圧・心拍数表示部64bとを有している。波形表示部64aは、表示部64の中央に配置されており、波形表示部64aには、心電図波形82、血圧波形84、内圧波形86の順に、3つの波形が並んで表示される。心電図波形82は、患者の心臓の電気的な活動を表す心電図信号を表示したものである。心電図信号は、患者に取り付けられた電極パッドを介して心電計により取得され、図2に示す心拍信号入力部69を介してモニタ部60に入力される。モニタ部60の制御部62は、心拍信号入力部69を介して入力された心電図信号を、心電図波形82として波形表示部64aに表示する。なお、心電図信号は、IABP駆動装置10に心電計を内蔵させてIABP駆動装置10自体に直接取得させてもよく、IABP駆動装置10外の心電計(ポリグラフやベッドサイドモニタ等)を介して間接的に取得されてもよい。 2 and 3, the display unit 64 includes a waveform display unit 64a and a blood pressure / heart rate display unit 64b. The waveform display unit 64a is disposed at the center of the display unit 64, and the waveform display unit 64a displays three waveforms side by side in the order of an electrocardiogram waveform 82, a blood pressure waveform 84, and an internal pressure waveform 86. The electrocardiogram waveform 82 displays an electrocardiogram signal representing the electrical activity of the patient's heart. The electrocardiogram signal is acquired by an electrocardiograph through an electrode pad attached to the patient, and is input to the monitor unit 60 through a heartbeat signal input unit 69 shown in FIG. The control unit 62 of the monitor unit 60 displays the electrocardiogram signal input via the heartbeat signal input unit 69 on the waveform display unit 64 a as an electrocardiogram waveform 82. The electrocardiogram signal may be directly acquired by the IABP driving apparatus 10 itself by incorporating the electrocardiograph in the IABP driving apparatus 10 or via an electrocardiograph (polygraph, bedside monitor, etc.) outside the IABP driving apparatus 10. May be acquired indirectly.
 血圧波形84は、患者の血圧を表す血圧信号を表示したものである。血圧信号は、バルーンカテーテル90又は動脈に接続された他のカテーテルに対して取り付けられた圧力トランスデューサ等を用いて測定され、図2に示す心拍信号入力部69を介してモニタ部60に入力される。モニタ部60の制御部62は、心拍信号入力部69を介して入力された血圧信号を、血圧波形84として波形表示部64aに表示する。 The blood pressure waveform 84 displays a blood pressure signal representing the blood pressure of the patient. The blood pressure signal is measured using a pressure transducer or the like attached to the balloon catheter 90 or another catheter connected to the artery, and is input to the monitor unit 60 via the heartbeat signal input unit 69 shown in FIG. . The control unit 62 of the monitor unit 60 displays the blood pressure signal input via the heartbeat signal input unit 69 as a blood pressure waveform 84 on the waveform display unit 64a.
 内圧波形86は、バルーン92の内圧であるバルーン内圧を表す内圧信号を表示したものである。内圧信号は、図2に示すように、装置本体20における二次配管系21bに設けられた測定部22が出力し、モニタ部60に入力される。 The internal pressure waveform 86 displays an internal pressure signal representing the balloon internal pressure that is the internal pressure of the balloon 92. As shown in FIG. 2, the internal pressure signal is output from the measurement unit 22 provided in the secondary piping system 21 b in the apparatus main body 20 and is input to the monitor unit 60.
 図3に示すように、表示部64の右側には、血圧及び心拍数を数値表示する血圧・心拍数表示部64bが配置されている。図3に示す例では、血圧・心拍数表示部64bの上方から、心拍数、収縮期圧、拡張期圧、平均圧、オーグメンテーション圧の順に表示されている。心拍数は心電図信号に基づき、収縮期圧、拡張期圧、平均圧及びオーグメンテーション圧については血圧信号に基づき、それぞれ制御部62で算出される。 As shown in FIG. 3, on the right side of the display unit 64, a blood pressure / heart rate display unit 64b for displaying the blood pressure and heart rate numerically is arranged. In the example shown in FIG. 3, the heart rate, systolic pressure, diastolic pressure, average pressure, and augmentation pressure are displayed in this order from the upper side of the blood pressure / heart rate display unit 64b. The heart rate is calculated based on the electrocardiogram signal, and the systolic pressure, diastolic pressure, average pressure, and augmentation pressure are calculated by the control unit 62 based on the blood pressure signal.
 図3に示すように、操作信号入力部68は、モニタ部60の前面下方に配置されている。IABP駆動装置10の操作者は、操作信号入力部68を介して、バルーン92の駆動条件や、モニタ部60の表示条件など、IABP駆動装置10の駆動に関する様々な信号を入力することができる。 As shown in FIG. 3, the operation signal input unit 68 is disposed below the front surface of the monitor unit 60. The operator of the IABP driving device 10 can input various signals related to driving of the IABP driving device 10 such as the driving conditions of the balloon 92 and the display conditions of the monitor unit 60 via the operation signal input unit 68.
 操作信号入力部68は、バルーン92の内圧を調整するための信号を入力するための調整入力部68aを有しており、IABP駆動装置10の操作者が、調整入力部68aの押ボタンを押すと、バルーン内圧を調整するための操作信号がモニタ部60に入力される。バルーン内圧を調整するための操作信号が入力された場合、モニタ部60の制御部62は、装置本体20の調整部24を制御し、二次配管系21b及びバルーンカテーテル90内に流通するシャトルガス量(ヘリウムガスの化学当量)を増加又は減少させ、バルーン内圧を調整する。 The operation signal input unit 68 has an adjustment input unit 68a for inputting a signal for adjusting the internal pressure of the balloon 92, and the operator of the IABP driving device 10 presses a push button of the adjustment input unit 68a. Then, an operation signal for adjusting the balloon internal pressure is input to the monitor unit 60. When an operation signal for adjusting the balloon internal pressure is input, the control unit 62 of the monitor unit 60 controls the adjustment unit 24 of the apparatus main body 20, and shuttle gas that circulates in the secondary piping system 21 b and the balloon catheter 90. Increase or decrease the amount (chemical equivalent of helium gas) and adjust the balloon internal pressure.
 図4は、図1~図3に示すIABP駆動装置10によって容積(呼び容積)が40mlであるバルーン92を患者の心拍に同期させて拡張・収縮させたときにおける、同期させた心拍数と、その心拍数に対して10秒間同期させてバルーン92の駆動を行った後のバルーン92の実際の拡張容積との関係を表すグラフである。図4からは、IABP駆動装置10においては、心拍数が120bpmを下回る領域であれば、拡張容積は心拍数に関わらず一定であることが理解できる。すなわち、図3の内圧波形86で示されるように、心拍数が120bpmを下回る状態(血圧・心拍数表示部64bの表示では80bpm)である場合、図2に示す陽圧側電磁弁28を開き、陽圧タンク31の圧力によって圧力隔壁装置25のダイヤフラム26を移動させる周期は、これより心拍数が高い(たとえば心拍数が120bpm以上である)場合より長い。 FIG. 4 shows the synchronized heart rate when the balloon 92 having a volume (nominal volume) of 40 ml is expanded and contracted in synchronization with the heart rate of the patient by the IABP driving device 10 shown in FIGS. It is a graph showing the relationship with the actual expansion volume of the balloon 92 after driving the balloon 92 synchronizing with the heart rate for 10 seconds. From FIG. 4, it can be understood that in the IABP driving device 10, the expansion volume is constant regardless of the heart rate as long as the heart rate is below 120 bpm. That is, as shown by the internal pressure waveform 86 in FIG. 3, when the heart rate is lower than 120 bpm (80 bpm in the display of the blood pressure / heart rate display unit 64b), the positive pressure side electromagnetic valve 28 shown in FIG. The period in which the diaphragm 26 of the pressure partition device 25 is moved by the pressure of the positive pressure tank 31 is longer than that when the heart rate is higher (for example, the heart rate is 120 bpm or more).
 したがって、図2に示すポンプ30は、ダイヤフラム26を移動させることにより低下した陽圧タンク31の圧力PT1を、次に陽圧側電磁弁28が開けられるまでの間に、設定値まで回復させることができる。言い換えると、心拍数が120bpmを下回る領域であれば、陽圧側電磁弁28を閉状態から開状態へ切り替える時点における陽圧タンク31の圧力は、心拍数によらず一定であるため、バルーン92の拡張容積は、図4に示すように一定である。 Therefore, the pump 30 shown in FIG. 2 can recover the pressure PT1 of the positive pressure tank 31 that has been lowered by moving the diaphragm 26 to the set value until the positive pressure side electromagnetic valve 28 is next opened. it can. In other words, if the heart rate is below 120 bpm, the pressure in the positive pressure tank 31 at the time of switching the positive pressure side solenoid valve 28 from the closed state to the open state is constant regardless of the heart rate. The expansion volume is constant as shown in FIG.
 また、IABP駆動装置10の二次配管系21b及びバルーンカテーテル90内に充填されるシャトルガスの容積(化学当量)は、通常バルーン92を完全拡張させることができる量に設定される。したがって、心拍数が120bpmを下回る領域では、IABP駆動装置10に接続されたバルーン92は、拡張するたびに完全拡張するため、バルーン92の表面に凹凸が生じた状態が長時間持続されることがなく、その凹凸に血液が滞留することに起因して血栓が形成される問題は生じないといえる。なお、バルーン92が完全拡張した状態とは、バルーン92が所定の容積まで拡張して、バルーン92の表面に実質的に凹凸がなくなった状態であることを意味する。バルーン92の容積は、患者の体格などに応じて予め用いるバルーン92の大きさを選択することによって定められ、たとえば30~45mlの範囲で選択される。 Further, the volume (chemical equivalent) of the shuttle gas filled in the secondary piping system 21b and the balloon catheter 90 of the IABP driving device 10 is normally set to an amount that allows the balloon 92 to be completely expanded. Therefore, in the region where the heart rate is less than 120 bpm, the balloon 92 connected to the IABP driving device 10 is completely expanded every time it is expanded, and therefore, the state in which the surface of the balloon 92 is uneven may be maintained for a long time. In other words, it can be said that there is no problem in that a thrombus is formed due to the accumulation of blood in the unevenness. The state in which the balloon 92 is fully expanded means that the balloon 92 is expanded to a predetermined volume and the surface of the balloon 92 is substantially free of irregularities. The volume of the balloon 92 is determined by selecting the size of the balloon 92 to be used in advance according to the physique of the patient, and is selected in the range of, for example, 30 to 45 ml.
 これに対して、心拍数が120bpm以上である領域になると、図4に示すように、バルーン92の拡張容積は心拍数の上昇に伴い減少し、バルーン92が完全拡張できていないことが理解できる。図5の左側の部分は、IABP駆動装置10において、心拍数が120bpm以上である心拍に対して、連続して同期してバルーン92を駆動する高速連続駆動93を行っている状態における内圧波形88を表したものである。高速連続駆動93においては、図2に示す陽圧側電磁弁28を開き、陽圧タンク31の圧力によって圧力隔壁装置25のダイヤフラム26を移動させる周期は、心拍数が120bpmを下回る場合(図3の内圧波形86参照)より短い。 On the other hand, in the region where the heart rate is 120 bpm or more, as shown in FIG. 4, the expansion volume of the balloon 92 decreases as the heart rate increases, and it can be understood that the balloon 92 cannot be fully expanded. . The left part of FIG. 5 shows an internal pressure waveform 88 in a state where the IABP driving apparatus 10 performs high-speed continuous driving 93 that drives the balloon 92 in synchronization with a heart rate of 120 bpm or more. It represents. In the high-speed continuous drive 93, the positive pressure side solenoid valve 28 shown in FIG. 2 is opened, and the cycle of moving the diaphragm 26 of the pressure partition device 25 by the pressure of the positive pressure tank 31 is when the heart rate is less than 120 bpm (FIG. 3). Shorter than the internal pressure waveform 86).
 したがって、図2に示すポンプ30は、ダイヤフラム26を移動させることにより低下した陽圧タンク31の圧力PT1を、次に陽圧側電磁弁28が開けられるまでの間に、設定値まで回復させることができない。言い換えると、心拍数が120bpm以上の領域では、陽圧側電磁弁28を閉状態から開状態へ切り替える時点における陽圧タンク31の圧力は、陽圧タンク31の圧力の回復に費やされた時間、すなわちその時間を決める心拍数に依存する。 Therefore, the pump 30 shown in FIG. 2 can recover the pressure PT1 of the positive pressure tank 31 that has been lowered by moving the diaphragm 26 to the set value until the positive pressure side electromagnetic valve 28 is next opened. Can not. In other words, in the region where the heart rate is 120 bpm or more, the pressure of the positive pressure tank 31 at the time of switching the positive pressure side electromagnetic valve 28 from the closed state to the open state is the time spent for recovery of the pressure of the positive pressure tank 31; That is, it depends on the heart rate that determines the time.
 したがって、図4に示すように、心拍数が上昇し、陽圧タンク31の圧力の回復に費やされる時間が少なくなるほど、バルーン92の拡張容積は減少し、バルーン92は完全拡張することができない。バルーン92が完全拡張できない場合、バルーン92の膜は常に弛みを有することとなり、バルーン92の表面におけるある部分に、凹みが生じた状態が持続される場合がある。このような状態が長時間続くと、その凹みに血液が滞留して、血栓が形成されやすくなる問題が生じる。 Therefore, as shown in FIG. 4, as the heart rate rises and the time spent recovering the pressure in the positive pressure tank 31 decreases, the expansion volume of the balloon 92 decreases and the balloon 92 cannot be fully expanded. When the balloon 92 cannot be fully expanded, the membrane of the balloon 92 will always have a slack, and a state in which a dent has occurred in a part of the surface of the balloon 92 may be maintained. If such a state continues for a long time, blood accumulates in the dent and a problem that a thrombus is easily formed occurs.
 ただし、バルーン92が完全拡張できていなかったとしても、拡張時のバルーン内圧が収縮期圧以上であるなど、拡張時と収縮時のバルーン内圧に所定の圧力差を生じさせることができれば、IABP駆動装置10は、バルーン92の駆動により、一定の心機能補助効果を発生させることは可能である。 However, even if the balloon 92 has not been fully expanded, if a predetermined pressure difference can be generated between the balloon internal pressure during expansion and deflation, such as when the balloon internal pressure during expansion is greater than the systolic pressure, IABP driving The device 10 can generate a certain cardiac function assisting effect by driving the balloon 92.
 そこで、図2に示す制御部62は、心拍数が120bpm以上である心拍に対して連続的に同期してバルーン92を駆動する高速連続駆動93を行う際、高速連続駆動93が1分間以上続くと、図5に示す休拍動作94を行った後、再び高速連続駆動95を行う。休拍動作94において、制御部62は、所定の回数の心拍に対してバルーン92を収縮状態に維持するように、図2に示すバルーン駆動部20aを制御する。 Therefore, when the controller 62 shown in FIG. 2 performs the high-speed continuous drive 93 that continuously drives the balloon 92 in synchronization with the heart rate having a heart rate of 120 bpm or more, the high-speed continuous drive 93 continues for one minute or more. Then, after the pause operation 94 shown in FIG. 5 is performed, the high-speed continuous drive 95 is performed again. In the resting operation 94, the control unit 62 controls the balloon driving unit 20a shown in FIG. 2 so as to maintain the balloon 92 in a deflated state for a predetermined number of heartbeats.
 図5に示すように、バルーン駆動部20aが休拍動作94を行うと、図2に示すポンプ30は、ダイヤフラム26を移動させることにより低下した陽圧タンク31の圧力PT1を、心拍数が低い場合と同様に設定値まで回復させることができる。したがって、図5に示すように、休拍動作94の直後に行われる拡張では、陽圧側電磁弁28を閉状態から開状態へ切り替える時点における陽圧タンク31の圧力が、休拍前におけるそれより高くなっており、これにより、バルーン92は完全拡張できるか、又は直前の拡張時に比べて、完全拡張に近い状態まで拡張できる。 As shown in FIG. 5, when the balloon driving unit 20a performs the resting operation 94, the pump 30 shown in FIG. 2 uses the pressure PT1 of the positive pressure tank 31 that is lowered by moving the diaphragm 26, and the heart rate is low. Similarly to the case, the set value can be recovered. Therefore, as shown in FIG. 5, in the expansion performed immediately after the resting operation 94, the pressure of the positive pressure tank 31 at the time of switching the positive pressure side solenoid valve 28 from the closed state to the open state is higher than that before the resting. As a result, the balloon 92 can be fully expanded, or can be expanded to a state close to full expansion as compared to the previous expansion.
 このようなIABP駆動装置10によれば、バルーン92が完全拡張できない時間が、所定の時間を超えて継続することが防止され、バルーン92の表面に血栓が形成されやすくなる問題を防止できる。また、IABP駆動装置10は、バルーン92の表面に血栓が形成されやすくなる問題を防止することにより、バルーン92の表面で形成されたのちバルーン92から剥がれた血栓が、末梢血管等を詰まらせる問題を防止できる。 Such an IABP driving device 10 prevents the time when the balloon 92 cannot be fully expanded from continuing beyond a predetermined time, and can prevent the problem that blood clots are easily formed on the surface of the balloon 92. Further, the IABP driving device 10 prevents the problem that blood clots are easily formed on the surface of the balloon 92, so that the blood clots that are formed on the surface of the balloon 92 and then peeled off from the balloon 92 clog the peripheral blood vessels. Can be prevented.
 図6は、図2に示す制御部62がバルーン駆動部20aを制御する制御方法の一例であり、IABP駆動装置10によるバルーン92の駆動方法の一例を表すフローチャートである。図6に示すステップS001では、IABP駆動装置10の制御部62は、バルーン駆動部20aに対して、バルーン92の駆動を開始させる。制御部62は、バルーン駆動部20aが心拍に同期してバルーン92を拡張・収縮させるように制御し、IABP駆動装置10による心機能補助動作が開始される。また、制御部62は、バルーン92の駆動を開始した際に、高速連続駆動の継続時間を測る検出タイマーをスタートさせる。なお、心拍の回数とバルーン92の拡張・収縮による心機能補助動作の回数との比を表すアシスト比は、1:1に設定されているものとする。 FIG. 6 is an example of a control method in which the control unit 62 shown in FIG. 2 controls the balloon driving unit 20a, and is a flowchart showing an example of a method of driving the balloon 92 by the IABP driving device 10. In step S001 shown in FIG. 6, the control unit 62 of the IABP driving device 10 causes the balloon driving unit 20a to start driving the balloon 92. The control unit 62 controls the balloon driving unit 20a to expand and contract the balloon 92 in synchronization with the heartbeat, and the cardiac function assisting operation by the IABP driving device 10 is started. In addition, when the driving of the balloon 92 is started, the control unit 62 starts a detection timer that measures the duration of the high-speed continuous driving. It is assumed that the assist ratio representing the ratio between the number of heartbeats and the number of cardiac function assisting operations by expansion / contraction of the balloon 92 is set to 1: 1.
 ステップS002では、制御部62は、心拍数が120bpm以上であるか否かを判断する。なお、心拍数は、心電図信号及び血圧信号のいずれかから選択される信号(心拍信号)に基づき、制御部62で算出される。心拍数が120bpmを下回る場合、ステップS005へ進んで高速連続駆動の検出タイマーをリセットした(0秒から再スタートさせた)後、ステップS002の動作へ戻る。 In step S002, the control unit 62 determines whether or not the heart rate is 120 bpm or more. The heart rate is calculated by the control unit 62 based on a signal (heart rate signal) selected from either an electrocardiogram signal or a blood pressure signal. If the heart rate falls below 120 bpm, the process proceeds to step S005 to reset the high-speed continuous drive detection timer (restarted from 0 seconds), and then the process returns to step S002.
 ステップS002において、心拍数が120bpm以上であった場合、ステップS003へ進む。ステップS003において、制御部62は、バルーン駆動部20aが、ステップS002で判断した120bpm以上である心拍に対して、1分間以上連続的に同期してバルーン92を駆動しているか否かを検出する。より具体的には、制御部62は、駆動開始時にスタートさせた高速連続駆動の検出タイマーの値が1分以上であるか否かにより、ステップS003の判断を行う。ステップS003において、高速連続駆動の継続時間を表す検出タイマーの値が1分以上であればステップS004へ進み、検出タイマーの値が1分を下回る場合はステップS002へ戻る。 In step S002, when the heart rate is 120 bpm or more, the process proceeds to step S003. In step S003, the control unit 62 detects whether or not the balloon driving unit 20a is driving the balloon 92 in synchronization with the heart rate of 120 bpm or more determined in step S002 continuously for one minute or more. . More specifically, the control unit 62 performs the determination in step S003 depending on whether or not the value of the detection timer for the high-speed continuous drive started at the start of driving is 1 minute or more. In step S003, if the value of the detection timer indicating the duration of the high-speed continuous drive is 1 minute or more, the process proceeds to step S004, and if the value of the detection timer is less than 1 minute, the process returns to step S002.
 ステップS004では、制御部62が、1回の心拍に対してバルーン92を収縮状態に維持する休拍動作94を行わせる。その結果、図5に示すように、バルーン駆動部20aは、高速連続駆動93後に、1心拍分の休拍動作94を行った後、再び心拍に対して連続的に同期してバルーン92を駆動する高速連続駆動95を行う。 In step S004, the control unit 62 causes the resting operation 94 to maintain the balloon 92 in a deflated state for one heartbeat. As a result, as shown in FIG. 5, the balloon driving unit 20a performs a resting operation 94 for one heartbeat after the high-speed continuous driving 93, and then drives the balloon 92 again in synchronization with the heartbeat again. High-speed continuous drive 95 is performed.
 ステップS004の後は、制御部62は、ステップS005へ進んで高速連続駆動の検出タイマーをリセットした(0秒から再スタートさせた)後、ステップS002の動作へ戻る。このように、図6に示す駆動方法では、バルーン駆動部20aが120bpm以上である心拍に対して1分間以上連続的に同期してバルーン92を駆動している場合に、制御部62がバルーン駆動部20aに対して、1心拍分の休拍動作94を行うように制御することにより、高速連続駆動93が長時間連続することを防止できる。また、休拍動作94を行うことにより、図5に示すように、バルーン92の拡張時における拡張容積が一時的に増加し、バルーン92を完全拡張させることができるため、バルーン92の表面に血栓が形成されやすくなる問題を防止できる。 After step S004, the control unit 62 proceeds to step S005, resets the high-speed continuous drive detection timer (restarted from 0 seconds), and then returns to the operation of step S002. As described above, in the driving method shown in FIG. 6, when the balloon driving unit 20a continuously drives the balloon 92 in synchronism with a heartbeat of 120 bpm or more for one minute or more, the control unit 62 drives the balloon. By controlling the unit 20a to perform the resting operation 94 for one heartbeat, the high-speed continuous drive 93 can be prevented from continuing for a long time. Further, by performing the resting operation 94, as shown in FIG. 5, the expansion volume when the balloon 92 is expanded temporarily increases, and the balloon 92 can be fully expanded. Can be prevented from being easily formed.
 図6に示す例では、ステップS003に示すように、制御部62は、高速連続駆動93が1分間以上続く場合にバルーン駆動部20aに対して休拍動作94を行わせるが、休拍動作94を行わせる高速連続駆動の継続時間は30秒間以上の時間であればよく、なかでも1~3分間の範囲から適宜選択して定めておくことが好ましい。休拍動作94を行わせるタイミングがこれより早すぎると、休拍動作94の頻度が高くなりすぎて、バルーン92の駆動による心機能補助効果が弱まるおそれがある。また、休拍動作94を行わせるタイミングが遅すぎると、バルーン92の表面における血栓の形成を適切に防止できなくなるおそれがある。 In the example illustrated in FIG. 6, as illustrated in step S <b> 003, the control unit 62 causes the balloon driving unit 20 a to perform a pause operation 94 when the high-speed continuous drive 93 continues for one minute or longer. The duration of the high-speed continuous drive for performing the above-mentioned process may be a time of 30 seconds or more, and it is preferable that the duration be selected appropriately from the range of 1 to 3 minutes. If the timing at which the rest operation 94 is performed is too early, the frequency of the rest operation 94 becomes too high, and the cardiac function assisting effect by driving the balloon 92 may be weakened. Moreover, if the timing for performing the resting operation 94 is too late, there is a possibility that formation of a thrombus on the surface of the balloon 92 cannot be prevented appropriately.
 所定の回数の心拍に対する(所定の回数の心拍の期間に行われる)休拍動作94を1回の休拍動作であるとカウントし、その休拍動作が行われる頻度は、心拍が60~180回行われる間に1回の割合で行うことが好ましい。休拍動作94の割合が多すぎると、バルーン92の駆動による心機能補助効果が弱まるおそれがあり、休拍動作94の割合が少なすぎると、バルーン92の表面における血栓の形成を適切に防止できなくなるおそれがある。 The resting operation 94 (performed during a predetermined number of heartbeats) for a predetermined number of heartbeats is counted as one resting operation, and the frequency at which the resting operation is performed is 60 to 180 for heartbeats. It is preferable to carry out at a rate of once during the round. If the rate of the resting action 94 is too large, the cardiac function assisting effect by driving the balloon 92 may be weakened. If the rate of the resting action 94 is too small, the formation of a thrombus on the surface of the balloon 92 can be appropriately prevented. There is a risk of disappearing.
 また、図6に示す例では、ステップS002に示すように、制御部62は、心拍数が120bpm以上である場合に、休拍動作94が必要となる高速連続駆動が生じると判断する。ただし、休拍動作94が必要となるか否かの心拍数に関する閾値(ステップS002で判断される心拍数の値)は、120bpmに限定されず、バルーン92が完全拡張できないおそれのある任意の心拍数とすることができる。休拍動作94が必要となるか否かの心拍数に関する閾値は、図2に示すポンプ30の能力等に応じて変更することが可能であり、たとえば100~140bpmの範囲で選択することができる。さらに、休拍動作94において、バルーン92を収縮状態に維持する期間(バルーン92を収縮状態に維持している間に行われる心拍の回数)は、1回に限定されず、ポンプ30の能力等に応じて圧力を回復させるために必要な期間で設定すればよく、たとえば心拍1~3回の期間であることが好ましい。ただし、休拍動作94の期間が長すぎると、バルーン92の駆動による心機能補助効果が弱まるおそれがあることから、心拍1回の期間であることが最も好ましい。 In the example shown in FIG. 6, as shown in step S002, when the heart rate is 120 bpm or more, the control unit 62 determines that high-speed continuous driving that requires a resting operation 94 occurs. However, the threshold regarding the heart rate (whether the heart rate is determined in step S002) as to whether or not the resting operation 94 is necessary is not limited to 120 bpm, and any heart rate that may cause the balloon 92 to be not fully dilated. Can be a number. The threshold relating to the heart rate as to whether or not the resting operation 94 is necessary can be changed according to the capability of the pump 30 shown in FIG. 2, and can be selected in the range of 100 to 140 bpm, for example. . Further, in the resting operation 94, the period during which the balloon 92 is maintained in the deflated state (the number of heartbeats performed while the balloon 92 is maintained in the deflated state) is not limited to one, and the capacity of the pump 30 and the like Accordingly, it may be set in a period necessary for recovering the pressure, and for example, a period of 1 to 3 heartbeats is preferable. However, since the cardiac function assisting effect by driving the balloon 92 may be weakened if the period of the resting action 94 is too long, the period of one heartbeat is most preferable.
 図7は、図2に示す制御部62によるバルーン92の駆動方法の他の一例を表すフローチャートである。図7に示す例においては、制御部62は、バルーン92の駆動時における心拍数に応じて、バルーン駆動部20aに対して異なる制御を行う。 FIG. 7 is a flowchart showing another example of the method for driving the balloon 92 by the control unit 62 shown in FIG. In the example illustrated in FIG. 7, the control unit 62 performs different control on the balloon drive unit 20 a according to the heart rate when the balloon 92 is driven.
 図7のステップS101でバルーン92の駆動を開始した制御部62は、ステップS102において、心拍数が120bpm以上であるか否かを判断する。心拍数が120bpmを下回る場合、ステップS104へ進み、制御部62は、「アシスト比1:1駆動」を行うように、バルーン駆動部20aを制御する。心拍数が120bpm以上の場合、バルーン駆動部20aは、心拍に対して連続的に同期してバルーン92を駆動したとしても、バルーン92を完全拡張させ続けることが可能である(図5参照)。したがって、心拍数が120bpmを下回るステップS104の制御では、制御部62及びバルーン駆動部20aは、心拍に対して連続的に同期するようにバルーン92を駆動し(アシスト比1:1)、休拍動作94は行わない。 The control unit 62 that has started driving the balloon 92 in step S101 in FIG. 7 determines whether or not the heart rate is 120 bpm or more in step S102. When the heart rate falls below 120 bpm, the process proceeds to step S104, and the control unit 62 controls the balloon driving unit 20a to perform “assist ratio 1: 1 driving”. When the heart rate is 120 bpm or more, the balloon driving unit 20a can continue to fully expand the balloon 92 even if the balloon 92 is driven in synchronization with the heartbeat continuously (see FIG. 5). Therefore, in the control of step S104 where the heart rate falls below 120 bpm, the control unit 62 and the balloon drive unit 20a drive the balloon 92 so as to continuously synchronize with the heartbeat (assist ratio 1: 1), and rest. Operation 94 is not performed.
 ステップS102で心拍数が120bpm以上であった場合、ステップS103へ進み
、制御部62は、心拍数が180bpm以上であるか否かを判断する。心拍数が120bpm以上であって180bpmを下回る場合、ステップS105へ進み、制御部62は、「高速連続駆動+休拍動作」を行うように、バルーン駆動部20aを制御する。
When the heart rate is 120 bpm or more in step S102, the process proceeds to step S103, and the control unit 62 determines whether or not the heart rate is 180 bpm or more. When the heart rate is 120 bpm or more and falls below 180 bpm, the process proceeds to step S105, and the control unit 62 controls the balloon driving unit 20a so as to perform “high-speed continuous driving + resting operation”.
 心拍数が120bpm以上であって180bpmを下回る場合、バルーン駆動部20aは、図5に示すような高速連続駆動93を行うと、バルーン92を完全拡張させ続けることができない(図4参照)。そこで、心拍数が120bpm以上であって180bpmを下回るステップS105の制御では、制御部62及びバルーン駆動部20aは、図7のフローチャートで説明したように、所定時間の高速連続駆動93の後に1回の休拍動作94を行うように、バルーン92を駆動する。このような駆動により、IABP駆動装置10は、バルーン92の表面に血栓が形成される問題を防止するとともに、アシスト比が1:1に極めて近い状態でバルーン92を駆動し、効果的な心機能補助動作を行うことができる。 When the heart rate is 120 bpm or more and lower than 180 bpm, the balloon drive unit 20a cannot continue to fully expand the balloon 92 when performing the high-speed continuous drive 93 as shown in FIG. 5 (see FIG. 4). Therefore, in the control of step S105 in which the heart rate is 120 bpm or more and falls below 180 bpm, the control unit 62 and the balloon drive unit 20a perform once after the high-speed continuous drive 93 for a predetermined time, as described in the flowchart of FIG. The balloon 92 is driven so as to perform the resting operation 94. By such driving, the IABP driving device 10 prevents the problem that thrombus is formed on the surface of the balloon 92, and drives the balloon 92 in a state where the assist ratio is very close to 1: 1, so that an effective cardiac function is achieved. An auxiliary operation can be performed.
 図7に示すように、ステップS103で心拍数が180bpm以上であった場合、ステップS106へ進み、制御部62は、「アシスト比1:2駆動」を行うように、バルーン駆動部20aを制御する。 As shown in FIG. 7, when the heart rate is 180 bpm or more in step S103, the process proceeds to step S106, and the control unit 62 controls the balloon driving unit 20a to perform “assist ratio 1: 2 driving”. .
 図4に示すように、バルーン駆動部20aは、心拍数が180bpm以上である心拍に対して連続的に同期するようにバルーン92を駆動しようとすると、バルーン92の拡張容積が、完全拡張における拡張容積に対して大幅に減少してしまう。そこで、心拍数が180bpm以上である場合におけるステップS106の制御では、制御部62及びバルーン駆動部20aは、バルーン92を拡張・収縮させる心機能補助動作と、バルーン92を収縮状態に維持する休拍動作とを、1心拍ごとに交互に行う「アシスト比1:2駆動」を行う。これにより、バルーン92による心機能補助動作の回数は減少するものの、拡張時におけるバルーン92の拡張容積が増加し、バルーン92は完全拡張できるようになる。したがって、IABP駆動装置10は、バルーン92の表面に血栓が形成される問題を防止するとともに、有効な心機能補助動作を行うことができる。 As shown in FIG. 4, when the balloon driving unit 20a tries to drive the balloon 92 so as to continuously synchronize with a heart rate having a heart rate of 180 bpm or more, the expansion volume of the balloon 92 is expanded in full expansion. It will decrease significantly with respect to volume. Therefore, in the control of step S106 when the heart rate is 180 bpm or more, the control unit 62 and the balloon driving unit 20a perform a cardiac function assisting operation for expanding and deflating the balloon 92 and a resting period for maintaining the balloon 92 in a deflated state. “Assist ratio 1: 2 drive” is performed in which the operation is alternately performed for each heartbeat. Thereby, although the number of cardiac function assisting operations by the balloon 92 decreases, the expansion volume of the balloon 92 at the time of expansion increases, and the balloon 92 can be fully expanded. Therefore, the IABP driving apparatus 10 can perform an effective cardiac function assisting operation while preventing the problem that a thrombus is formed on the surface of the balloon 92.
 図7に示すような制御を行うことにより、IABP駆動装置10は、患者の心拍数に応じて効果的に心機能を補助しつつ、かつ、バルーン92が完全拡張しない状態が所定時間以上連続することを防止し、バルーン92の表面に血栓が形成されやすくなる問題を防止することができる。 By performing the control as shown in FIG. 7, the IABP driving device 10 effectively assists the cardiac function according to the heart rate of the patient, and the state where the balloon 92 is not fully expanded continues for a predetermined time or more. This can prevent the problem that blood clots are likely to be formed on the surface of the balloon 92.
 以上のように、IABP駆動装置10及びこれによるバルーン92の駆動方法について、実施形態及びそれを用いた具体的な動作を挙げて説明したが、本発明は、上述した実施形態のみに限定されるものではない。たとえば、IABP駆動装置10において、バルーン駆動部20aの構成は、図2に示すものに限定されず、陽圧と陰圧を交互に配管系に印加して、バルーン92を拡張・収縮できるものであれば、どのような構成であってもよい。図2に示す二次配管系21bには、一次配管系21aに接続するポンプ30とは別に、二次配管系21bにシャトルガスを放出したり、二次配管系21bからシャトルガスを吸引したりすることが可能な、補助的な圧力発生手段が接続されていてもよい。 As described above, the IABP driving device 10 and the method for driving the balloon 92 using the IABP driving device 10 have been described with reference to the embodiments and specific operations using the embodiments. However, the present invention is limited only to the above-described embodiments. It is not a thing. For example, in the IABP driving device 10, the configuration of the balloon driving unit 20a is not limited to that shown in FIG. 2, and the balloon 92 can be expanded and contracted by alternately applying a positive pressure and a negative pressure to the piping system. Any configuration may be used. In the secondary piping system 21b shown in FIG. 2, apart from the pump 30 connected to the primary piping system 21a, the shuttle gas is discharged to the secondary piping system 21b, or the shuttle gas is sucked from the secondary piping system 21b. An auxiliary pressure generating means that can be connected may be connected.
 10…IABP駆動装置
 20…装置本体
 20a…バルーン駆動部
 21a…一次配管系
 21b…二次配管系
 22…測定部
 24…調整部
 25…圧力隔壁装置
 26…ダイヤフラム
 28…陽圧側電磁弁
 29…陰圧側電磁弁
 30…ポンプ
 31…陽圧タンク
 32…陽圧調整弁
 35…陰圧タンク
 36…陰圧調整弁
 PT1、PT2…圧力
 48…モニタ設置部
 49…キャスター
 60…モニタ部
 62…制御部
 64…表示部
 64a…波形表示部
 64b…血圧・心拍数表示部
 68…操作信号入力部
 68a…調整入力部
 69…心拍信号入力部
 70…パイロットランプ
 82…心電図波形
 84…血圧波形
 86、88…内圧波形
 90…バルーンカテーテル
 92…バルーン
 93、95…高速連続駆動
 94…休拍動作
DESCRIPTION OF SYMBOLS 10 ... IABP drive device 20 ... Apparatus main body 20a ... Balloon drive part 21a ... Primary piping system 21b ... Secondary piping system 22 ... Measurement part 24 ... Adjustment part 25 ... Pressure partition apparatus 26 ... Diaphragm 28 ... Positive pressure side solenoid valve 29 ... Yin Pressure side solenoid valve 30 ... Pump 31 ... Positive pressure tank 32 ... Positive pressure adjustment valve 35 ... Negative pressure tank 36 ... Negative pressure adjustment valve PT1, PT2 ... Pressure 48 ... Monitor installation part 49 ... Caster 60 ... Monitor part 62 ... Control part 64 Display unit 64a Waveform display unit 64b Blood pressure / heart rate display unit 68 Operation signal input unit 68a Adjustment input unit 69 Heart rate signal input unit 70 Pilot lamp 82 Electrocardiogram waveform 84 Blood pressure waveform 86, 88 Internal pressure Waveform 90 ... Balloon catheter 92 ... Balloon 93, 95 ... High-speed continuous drive 94 ... Resting motion

Claims (3)

  1.  バルーンが接続されたバルーンカテーテルを取り付け、前記バルーンを拡張及び収縮させるIABP駆動装置によるバルーンの駆動方法であって、
     心拍数が120bpm以上である心拍に対して連続的に同期して、前記バルーンを駆動する高速連続駆動を行う際、前記高速連続駆動が30秒間以上の所定時間続くと、所定の回数の心拍に対して前記バルーンを収縮状態に維持する休拍動作を行った後、再び前記高速連続駆動を行うことを特徴とするバルーンの駆動方法。
    A balloon driving method using an IABP driving device for attaching a balloon catheter to which a balloon is connected and expanding and contracting the balloon,
    When performing high-speed continuous driving for driving the balloon in continuous synchronization with a heart rate having a heart rate of 120 bpm or more, if the high-speed continuous driving continues for a predetermined time of 30 seconds or more, a predetermined number of heartbeats are generated. On the other hand, after performing a resting operation for maintaining the balloon in a deflated state, the high-speed continuous driving is performed again.
  2.  請求項1に記載されたバルーンの駆動方法であって、
     前記休拍動作は、前記心拍が60~180回行われる間に1回の割合で行われることを特徴とするバルーンの駆動方法。
    A balloon driving method according to claim 1, comprising:
    The method of driving a balloon, wherein the resting operation is performed at a rate of once during 60 to 180 heartbeats.
  3.  バルーンが接続されたバルーンカテーテルを取り付け、前記バルーンへ圧力を伝達する配管系に陽圧と陰圧とを交互に印加して前記バルーンを駆動するバルーン駆動部と、
     心拍に関する信号である心拍信号が入力され、心拍に同期して前記バルーンが拡張及び収縮するように、前記バルーン駆動部を制御する制御部と、を有し、
     前記制御部は、心拍数が120bpm以上である間において前記バルーン駆動部が30秒間以上の所定時間心拍に対して連続的に同期して前記バルーンを駆動したとき、所定の回数の心拍に対して前記バルーンを収縮状態に維持する休拍動作を行った後、再び心拍に対して連続的に同期して前記バルーンを駆動するように、前記バルーン駆動部を制御するIABP駆動装置。
    A balloon driving unit that attaches a balloon catheter to which a balloon is connected and drives the balloon by alternately applying a positive pressure and a negative pressure to a piping system that transmits pressure to the balloon;
    A heartbeat signal that is a signal related to a heartbeat, and a controller that controls the balloon driving unit so that the balloon expands and contracts in synchronization with the heartbeat, and
    When the balloon driving unit continuously drives the balloon in synchronism with the heartbeat for a predetermined time of 30 seconds or more while the heart rate is 120 bpm or more, the controller controls the predetermined number of heartbeats. An IABP driving device that controls the balloon driving unit so as to drive the balloon in synchronization with a heartbeat again after performing a resting operation for maintaining the balloon in a deflated state.
PCT/JP2018/006780 2017-03-01 2018-02-23 Drive method of balloon with iabp drive device, and iabp drive device WO2018159501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502964A JP6958612B2 (en) 2017-03-01 2018-02-23 Balloon driving method by IABP driving device and IABP driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038736 2017-03-01
JP2017-038736 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018159501A1 true WO2018159501A1 (en) 2018-09-07

Family

ID=63370720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006780 WO2018159501A1 (en) 2017-03-01 2018-02-23 Drive method of balloon with iabp drive device, and iabp drive device

Country Status (2)

Country Link
JP (1) JP6958612B2 (en)
WO (1) WO2018159501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024204027A1 (en) * 2023-03-31 2024-10-03 日本ゼオン株式会社 Iabp driving device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276397A (en) * 1996-04-11 1997-10-28 Nippon Zeon Co Ltd Medical expansion/contraction driving system
WO2011114779A1 (en) * 2010-03-17 2011-09-22 日本ゼオン株式会社 Medical inflation/deflation drive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276397A (en) * 1996-04-11 1997-10-28 Nippon Zeon Co Ltd Medical expansion/contraction driving system
WO2011114779A1 (en) * 2010-03-17 2011-09-22 日本ゼオン株式会社 Medical inflation/deflation drive device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IABP, vol. 66, no. 10, 1996, pages 619 - 620 *
PAPAIOANNOU, THEODOROS G ET AL.: "Basic Principles of the Intraaortic Balloon Pump and Mechanisms Affecting Its Performance", ASAIO JOURNAL, vol. 51, no. 3, 2005, pages 296 - 300, XP055538127 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024204027A1 (en) * 2023-03-31 2024-10-03 日本ゼオン株式会社 Iabp driving device

Also Published As

Publication number Publication date
JPWO2018159501A1 (en) 2019-12-19
JP6958612B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JPH0330774A (en) Series type left ventricular assist device and control method thereof
US9610213B2 (en) Automatic devices for remote ischemic preconditioning
US20110196189A1 (en) Extra-cardiac differential ventricular actuation by inertial and baric partitioning
JPH04503167A (en) Cardiopulmonary emergency resuscitation and its circulation system
JPS586502B2 (en) Gaiatsujiyunkanenjiyosouchi
JPS5822221B2 (en) External pressure circulation support device
CN104540478B (en) System and method for erectile dysfunction situation
JP2021142409A (en) Iabp driving device
WO2018159501A1 (en) Drive method of balloon with iabp drive device, and iabp drive device
JP6749387B2 (en) A device for controlling biomechanical ventricular-aortic matching
JP7346939B2 (en) Medical inflation/deflation drive device
JPH03112563A (en) Auxiliary circulating device and its driving method
WO2024204027A1 (en) Iabp driving device
JP7103339B2 (en) IABP drive
CN107158549A (en) For regulating and controlling left ventricle capacity to improve the servicing unit of Cardial pump function
CN209005003U (en) For regulating and controlling left ventricle capacity to improve the auxiliary device of Cardial pump function
JP6828649B2 (en) IABP drive
EP3566741A1 (en) Intra-aortic dual balloon pump catheter device
EP4327857A1 (en) Intra-aortic dual balloon driving pump catheter device
JP2023122675A (en) Novel intraaortic balloon block device
JPH03242150A (en) Driving device of blood pump equipment
JP2023031938A (en) Medical expansion and contraction drive device
JPH03118073A (en) Medical pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502964

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761216

Country of ref document: EP

Kind code of ref document: A1