WO2018159156A1 - Evaporation pressure regulating valve - Google Patents

Evaporation pressure regulating valve Download PDF

Info

Publication number
WO2018159156A1
WO2018159156A1 PCT/JP2018/001882 JP2018001882W WO2018159156A1 WO 2018159156 A1 WO2018159156 A1 WO 2018159156A1 JP 2018001882 W JP2018001882 W JP 2018001882W WO 2018159156 A1 WO2018159156 A1 WO 2018159156A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
evaporation pressure
diameter portion
chamber
Prior art date
Application number
PCT/JP2018/001882
Other languages
French (fr)
Japanese (ja)
Inventor
本田 伸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018159156A1 publication Critical patent/WO2018159156A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded

Definitions

  • This disclosure relates to an evaporation pressure adjusting valve used in a refrigeration cycle.
  • the evaporation pressure regulating valve is disposed between the evaporator and the compressor in the vapor compression refrigeration cycle, and suppresses frost formation in the evaporator.
  • the evaporating pressure adjusting valve is configured to increase the valve opening (that is, the refrigerant passage area) as the flow rate of the refrigerant flowing through the evaporator increases. ) At a predetermined reference evaporation pressure (reference evaporation temperature) or higher.
  • Patent Documents 1 and 2 are known as techniques relating to such an evaporation pressure adjusting valve.
  • Patent Document 1 describes a so-called bellows type evaporation pressure adjusting valve.
  • the evaporating pressure adjusting valve of Patent Document 1 includes a valve body that adjusts the opening degree in the refrigerant flow path inside the body, a bellows in which a reference gas is sealed, and a spring disposed inside the bellows. Has been.
  • Patent Document 2 describes a so-called diaphragm type evaporation pressure regulating valve.
  • the evaporation pressure regulating valve described in Patent Document 2 includes a valve body that adjusts the opening degree in the refrigerant flow path inside the body, a diaphragm that partitions between the cladding tube into which the reference gas is introduced and the refrigerant flow path, And a spring disposed inside the cladding tube.
  • JP 2015-17774 A Japanese Patent Publication No. 55-51154
  • the valve body is displaced by a balance between the refrigerant pressure on the evaporator side, the pressure of the reference gas, and the resultant force of the bellows itself and the elastic force of the spring. Then, the opening degree of the evaporation pressure adjusting valve is determined.
  • Patent Document 1 when the displacement amount of the valve body increases, not only the elastic force of the spring but also the elastic force of the bellows itself and the pressure of the reference gas increase. Therefore, evaporation at the maximum flow rate and the minimum flow rate The difference in the refrigerant evaporation pressure of the vessel became large.
  • the diaphragm type evaporation pressure regulating valve as in Patent Document 2, atmospheric pressure is used as the reference pressure, and the reference pressure shows a constant value regardless of the displacement of the valve body. For this reason, in patent document 2, if the displacement amount of a valve body increases, only the elastic force of a spring will increase. Therefore, the diaphragm-type evaporation pressure regulating valve described in Patent Document 2 can reduce the difference in the refrigerant evaporation pressure of the evaporator at the maximum flow rate and the minimum flow rate as compared with the case of Patent Document 1.
  • the diaphragm as in Patent Document 2 is made of a rubber material and has refrigerant permeability due to its molecular composition. Furthermore, in this configuration, it is necessary to fold the thin film portion of the diaphragm in order to ensure the amount of displacement of the valve body. As a result, since the permeation area of the refrigerant through the diaphragm is increased, the refrigerant permeation amount through the diaphragm is increased, and the function as an evaporation pressure adjusting valve due to the refrigerant permeation and the surrounding environment are affected.
  • This disclosure is intended to provide an evaporation pressure adjusting valve that can reduce the difference in the refrigerant evaporation pressure of the evaporator between the maximum flow rate and the minimum flow rate while suppressing refrigerant permeation.
  • an evaporation pressure adjusting valve that is disposed between the evaporator and the compressor in the refrigeration cycle and adjusts the refrigerant evaporation pressure in the evaporator to be equal to or higher than a predetermined reference evaporation pressure
  • An opening adjustment chamber An elastic member disposed inside the opening adjustment chamber and energizing the small diameter portion of the valve body in the closing direction to reduce the opening of the refrigerant flow path; And a sealing member that blocks the flow of the refrigerant through the insertion hole between the valve chamber and the opening adjustment chamber.
  • the evaporating pressure adjusting valve is configured in this manner, so that the refrigerant is obtained by the pressure difference between the refrigerant pressure on the refrigerant inflow path applied to the small diameter portion of the valve body and the reference pressure in the opening adjustment chamber, and the elastic force of the elastic member.
  • the refrigerant evaporating pressure in the evaporator can be adjusted by determining the opening degree of the flow path.
  • the small-diameter part of the valve body is formed in a sufficiently smaller area than the large-diameter part, and no other external force is required to determine the opening, so the refrigerant evaporating pressure at the maximum and minimum refrigerant flow rates in the evaporator This difference can be made sufficiently small.
  • the refrigerant may be transmitted to the outside of the refrigeration cycle through the insertion hole and the small diameter portion.
  • the seal member blocks the flow of the refrigerant through the insertion hole between the valve chamber and the opening degree regulating chamber, thereby suppressing the refrigerant permeation outside the refrigeration cycle. can do.
  • the evaporation pressure regulating valve 19 according to the first embodiment is used as one of the components in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1.
  • the vehicle air conditioner 1 is mounted on a hybrid vehicle that obtains driving force for vehicle travel from an internal combustion engine and a travel motor.
  • the refrigerating cycle apparatus 10 fulfill
  • the evaporation pressure regulating valve 19 is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10, and suppresses frost formation in the indoor evaporator 18. Yes.
  • the refrigeration cycle apparatus 10 is configured to be capable of switching between a heating mode refrigerant circuit, a dehumidifying heating mode refrigerant circuit, and a cooling mode refrigerant circuit.
  • the heating mode is an operation mode in which the blown air is heated and blown out into the passenger compartment.
  • the dehumidifying and heating mode is an operation mode in which the blown air that has been cooled and dehumidified is reheated and blown out into the passenger compartment.
  • the cooling mode is an operation mode in which the blown air is cooled and blown out into the passenger compartment.
  • the refrigerant flow in the refrigerant circuit in the heating mode is indicated by black arrows
  • the refrigerant flow in the refrigerant circuit in the dehumidifying heating mode is indicated by hatched arrows.
  • the flow of the refrigerant in the cooling mode refrigerant circuit is indicated by white arrows.
  • the refrigeration cycle apparatus 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. is doing.
  • an HFO refrigerant for example, R1234yf
  • a natural refrigerant for example, R744
  • the refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the refrigeration cycle apparatus 10 includes a compressor 11, a first expansion valve 15a, a second expansion valve 15b, an outdoor heat exchanger 16, a check valve 17, an indoor evaporator 18, and an evaporation pressure adjusting valve 19. And an accumulator 20, a first on-off valve 21, and a second on-off valve 22.
  • the compressor 11 sucks the refrigerant in the refrigeration cycle apparatus 10 and compresses and discharges the refrigerant.
  • the compressor 11 is disposed in the vehicle bonnet.
  • the compressor 11 is configured as an electric compressor that drives a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor.
  • the compressor 11 functions as a compressor in the present disclosure.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed.
  • the operation (rotation speed) of the electric motor constituting the compressor 11 is controlled by a control signal output from an air conditioning control device (not shown).
  • an air conditioning control device not shown.
  • this electric motor either an AC motor or a DC motor may be adopted.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11.
  • the indoor condenser 12 functions as a heat exchanger for heating in the heating mode and the dehumidifying heating mode. That is, in the heating mode and the dehumidifying heating mode, the indoor condenser 12 exchanges heat between the high-temperature and high-pressure discharged refrigerant discharged from the compressor 11 and the blown air that has passed through the indoor evaporator 18 to be described later. Heat.
  • the indoor condenser 12 is arrange
  • the refrigerant outlet of the indoor condenser 12 is connected to one inflow / outlet side of the first three-way joint 13a.
  • a three-way joint such as the first three-way joint 13a functions as a branching part or a joining part in the refrigeration cycle apparatus 10.
  • the first three-way joint 13a in the dehumidifying and heating mode functions as a branching portion that branches the flow of the refrigerant flowing in from one inflow port and outflows from the two outflow ports.
  • These three-way joints may be formed by joining a plurality of pipes, or may be formed by providing a plurality of refrigerant passages in a metal block or a resin block.
  • the refrigeration cycle apparatus 10 includes a second three-way joint 13b to a fourth three-way joint 13d, as will be described later.
  • the basic configuration of the second three-way joint 13b to the fourth three-way joint 13d is the same as that of the first three-way joint 13a.
  • the fourth three-way joint 13d in the dehumidifying and heating mode two of the three inlets and outlets are used as inlets, and the remaining one is used as an outlet.
  • the fourth three-way joint 13d in the dehumidifying and heating mode functions as a joining portion that joins the refrigerant that has flowed in from the two inlets and flows out from the one outlet.
  • the first refrigerant passage 14a is connected to another inflow / outlet of the first three-way joint 13a.
  • the first refrigerant passage 14 a guides the refrigerant flowing out from the indoor condenser 12 to the refrigerant inlet side of the outdoor heat exchanger 16.
  • the second refrigerant passage 14b is connected to still another inflow / outlet of the first three-way joint 13a.
  • the second refrigerant passage 14b allows the refrigerant flowing out from the indoor condenser 12 to flow into the inlet side of the second expansion valve 15b (specifically, one of the third three-way joints 13c) disposed in the third refrigerant passage 14c described later. Inlet / outlet).
  • a first expansion valve 15a is disposed in the first refrigerant passage 14a.
  • the first expansion valve 15a decompresses the refrigerant that has flowed out of the indoor condenser 12 during the heating mode and the dehumidifying heating mode.
  • the first expansion valve 15a functions as a pressure reducing device.
  • the first expansion valve 15a is a variable throttle mechanism having a valve body configured to be able to change the throttle opening degree and an electric actuator composed of a stepping motor that changes the throttle opening degree of the valve body.
  • the first expansion valve 15a is configured as a variable throttle mechanism with a fully open function that functions as a simple refrigerant passage with almost no refrigerant decompression effect by fully opening the throttle opening.
  • the operation of the first expansion valve 15a is controlled by a control signal (control pulse) output from an air conditioning control device (not shown).
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet side of the first expansion valve 15a, and is arranged on the vehicle front side in the vehicle bonnet.
  • the outdoor heat exchanger 16 exchanges heat between the refrigerant that has flowed out of the first expansion valve 15a and the outside air (outside air) blown from a blower fan (not shown).
  • the blower fan is an electric blower whose number of rotations (blowing capacity) is controlled by a control voltage output from an air conditioning control device (not shown).
  • the outdoor heat exchanger 16 functions as a heat absorber that absorbs heat from the outside air in the heating mode. In the cooling mode and the dehumidifying and heating mode, the outdoor heat exchanger 16 functions as a radiator that radiates heat to the outside air.
  • One inflow / outlet of the second three-way joint 13b is connected to the refrigerant outlet side of the outdoor heat exchanger 16.
  • a third refrigerant passage 14c is connected to another inflow / outlet of the second three-way joint 13b.
  • the third refrigerant passage 14 c guides the refrigerant that has flowed out of the outdoor heat exchanger 16 to the refrigerant inlet side of the indoor evaporator 18.
  • a fourth refrigerant passage 14d is connected to another inflow / outlet of the second three-way joint 13b.
  • the fourth refrigerant passage 14d guides the refrigerant that has flowed out of the outdoor heat exchanger 16 to the inlet side of the accumulator 20, which will be described later (specifically, one inlet / outlet of the fourth three-way joint 13d).
  • a check valve 17, a third three-way joint 13c, and a second expansion valve 15b are arranged in this order with respect to the refrigerant flow.
  • the check valve 17 only allows the refrigerant to flow from the second three-way joint 13b side to the indoor evaporator 18 side.
  • the second refrigerant passage 14b described above is connected to the third three-way joint 13c.
  • the second expansion valve 15b depressurizes the refrigerant that flows out of the outdoor heat exchanger 16 and flows into the indoor evaporator 18. That is, the second expansion valve 15b functions as a pressure reducing device.
  • the basic configuration of the second expansion valve 15b is the same as that of the first expansion valve 15a. Further, the second expansion valve 15b is constituted by a variable throttle mechanism with a fully-closed function that closes the refrigerant passage when the throttle opening is fully closed.
  • the refrigerant circuit can be switched by fully closing the second expansion valve 15b and closing the third refrigerant passage 14c.
  • the second expansion valve 15b functions as a refrigerant decompression device and also has a function as a refrigerant circuit switching device that switches a refrigerant circuit of the refrigerant circulating in the cycle.
  • the indoor evaporator 18 functions as a cooling heat exchanger in the cooling mode and the dehumidifying heating mode. That is, the indoor evaporator 18 exchanges heat between the refrigerant flowing out of the second expansion valve 15b and the blown air before passing through the indoor condenser 12 in the cooling mode and the dehumidifying heating mode, and functions as an evaporator in the present disclosure. .
  • the blown air is cooled by evaporating the refrigerant decompressed by the second expansion valve 15 b and exerting an endothermic action.
  • the indoor evaporator 18 is arranged in the casing 31 of the indoor air conditioning unit 30 on the upstream side of the air flow of the indoor condenser 12.
  • the inlet side of the evaporation pressure adjusting valve 19 is connected to the refrigerant outlet of the indoor evaporator 18.
  • the evaporation pressure adjusting valve 19 has a function of adjusting the refrigerant evaporation pressure (that is, the low-pressure side refrigerant pressure) in the indoor evaporator 18 to be equal to or higher than the frosting suppression pressure in order to suppress frost formation (frost) of the indoor evaporator 18. Fulfill.
  • the evaporation pressure adjusting valve 19 functions to adjust the refrigerant evaporation temperature in the indoor evaporator 18 to a predetermined frosting suppression temperature or higher.
  • the specific configuration of the evaporation pressure adjusting valve 19 will be described in detail later with reference to the drawings.
  • a fourth three-way joint 13 d is connected to the outlet side of the evaporation pressure adjusting valve 19.
  • the fourth refrigerant passage 14d is connected to the other inlet / outlet of the fourth three-way joint 13d.
  • the inlet side of the accumulator 20 is connected to another inflow / outlet of the fourth three-way joint 13d.
  • the accumulator 20 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 20. Therefore, the accumulator 20 functions to prevent liquid phase refrigerant from being sucked into the compressor 11 and prevent liquid compression in the compressor 11.
  • the first on-off valve 21 is disposed in the fourth refrigerant passage 14d that connects the second three-way joint 13b and the fourth three-way joint 13d.
  • the first on-off valve 21 is constituted by an electromagnetic valve.
  • the first on-off valve 21 functions as a refrigerant circuit switching device that switches the refrigerant circuit by opening and closing the fourth refrigerant passage 14d.
  • the operation of the first on-off valve 21 is controlled by a control signal output from an air conditioning control device (not shown).
  • a second on-off valve 22 is disposed in the second refrigerant passage 14b connecting the first three-way joint 13a and the third three-way joint 13c. Similar to the first on-off valve 21, the second on-off valve 22 is configured by an electromagnetic valve.
  • the second on-off valve 22 functions as a refrigerant circuit switching device that switches the refrigerant circuit by opening and closing the second refrigerant passage 14b.
  • the indoor air conditioning unit 30 that constitutes the vehicle air conditioner 1 together with the refrigeration cycle apparatus 10 will be described.
  • the indoor air conditioning unit 30 blows out the blown air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior.
  • the indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
  • the indoor air conditioning unit 30 houses a blower 32, an indoor evaporator 18, an indoor condenser 12, and the like in a casing 31 that forms an outer shell thereof.
  • the casing 31 forms an air passage for blown air that is blown into the vehicle interior.
  • the casing 31 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • the inside / outside air switching device 33 is arranged on the most upstream side of the blast air flow in the casing 31.
  • the inside / outside air switching device 33 switches and introduces inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door,
  • the air volume ratio between the air volume and the outside air volume can be continuously changed.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door.
  • the operation of the electric actuator is controlled by a control signal output from an air conditioning control device (not shown).
  • a blower 32 is disposed on the downstream side of the blown air flow of the inside / outside air switching device 33.
  • the blower 32 blows air sucked through the inside / outside air switching device 33 toward the vehicle interior.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor.
  • the number of rotations of the centrifugal multiblade fan in the blower 32 (air flow rate) is controlled by a control voltage output from an air conditioning control device (not shown).
  • the indoor evaporator 18 and the indoor condenser 12 are arranged in this order with respect to the blown air flow.
  • the indoor evaporator 18 is disposed on the upstream side of the blown air flow with respect to the indoor condenser 12.
  • a cold air bypass passage 35 is formed in the casing 31.
  • the cold air bypass passage 35 is a passage for allowing the blown air that has passed through the indoor evaporator 18 to flow downstream by bypassing the indoor condenser 12.
  • An air mix door 34 is disposed on the downstream side of the blower air flow of the indoor evaporator 18 and on the upstream side of the blower air flow of the indoor condenser 12.
  • the air mix door 34 is used when adjusting the ratio of the amount of air passing through the indoor condenser 12 in the blown air after passing through the indoor evaporator 18. Therefore, the vehicle air conditioner 1 sets the cold air bypass passage 35 to a fully open position, and fully closes the flow path of the blown air toward the indoor condenser 12 by the air mix door 34, whereby the heat exchange amount in the indoor condenser 12 is reached. Can be minimized.
  • a mixing space is provided on the downstream side of the blower air flow of the indoor condenser 12.
  • the blown air heated by the indoor condenser 12 and the blown air that has passed through the cold air bypass passage 35 and is not heated by the indoor condenser 12 are mixed.
  • a plurality of opening holes are arranged in the most downstream portion of the blown air flow of the casing 31. The blown air (air conditioned air) mixed in the mixing space is blown out into the vehicle interior, which is the air conditioning target space, through these opening holes.
  • opening holes are specifically provided with a face opening hole, a foot opening hole, and a defroster opening hole (all not shown).
  • the face opening hole is an opening hole for blowing air conditioned air toward the upper body of the passenger in the passenger compartment.
  • the foot opening hole is an opening hole for blowing air-conditioned air toward the passenger's feet.
  • the defroster opening hole is an opening hole for blowing conditioned air toward the inner side surface of the vehicle front window glass.
  • the air flow downstream of the face opening hole, the foot opening hole, and the defroster opening hole is respectively connected to the face air outlet, the foot air outlet, and the defroster air outlet ( Neither is shown). Therefore, the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the cold air bypass passage 35, thereby adjusting the temperature of the conditioned air mixed in the mixing space. The temperature of the conditioned air blown from each outlet into the passenger compartment is adjusted.
  • the air mix door 34 functions as a temperature adjusting unit that adjusts the temperature of the conditioned air blown into the vehicle interior.
  • the air mix door 34 is driven by an electric actuator for driving the air mix door.
  • the operation of the electric actuator is controlled by a control signal output from an air conditioning control device (not shown).
  • a face door for adjusting the opening area of the face opening hole a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively.
  • a defroster door (both not shown) for adjusting the opening area of the hole is disposed.
  • These face doors, foot doors, and defroster doors constitute an outlet mode switching door that switches the outlet mode.
  • the face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other.
  • the operation of this electric actuator is also controlled by a control signal output from an air conditioning control device (not shown).
  • outlet mode switched by the outlet mode switching door examples include a face mode, a bi-level mode, and a foot mode.
  • the face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passengers in the passenger compartment.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is an air outlet mode in which the foot air outlet is fully opened and blown air is blown from the foot air outlet toward the feet of the passengers in the passenger compartment.
  • the defroster mode can be set by manually operating the blow mode switching switch provided on the operation panel.
  • the defroster mode is a blowout port mode in which the defroster blowout port is fully opened and air is blown from the defroster blowout port to the inner surface of the vehicle front window glass.
  • the vehicle air conditioner 1 can switch the operation mode to the cooling operation, the heating operation, and the dehumidifying heating operation.
  • the specific operation and control for each operation mode is described in, for example, Japanese Patent Application Laid-Open No. 2012-225637. Therefore, the description about these points is omitted.
  • the evaporation pressure regulating valve 19 is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10.
  • the evaporating pressure adjusting valve 19 is constituted by a pure mechanical mechanism, and adjusts so that the refrigerant evaporating pressure P1 in the indoor evaporator 18 becomes equal to or higher than a predetermined reference evaporating pressure (that is, frosting suppression pressure APe). Fulfills the function.
  • the evaporation pressure adjusting valve 19 has a body 40 configured by combining a plurality of metal members made of aluminum alloy or the like, and a valve on a refrigerant passage formed inside the body 40.
  • the valve body 55 is slidably accommodated in the chamber 51.
  • the body 40 forms an outer shell of the evaporation pressure adjusting valve 19 and includes a main body 41, a cylinder 45, and a cover 52. As shown in FIG. 1, the valve chamber 51 is formed between the main body portion 41 and the cylinder portion 45, and the opening adjustment chamber 53 is formed between the cylinder portion 45 and the cover 52. Accordingly, the valve chamber 51 and the opening adjustment chamber 53 are formed inside the body 40.
  • the main body 41 has a refrigerant inflow path 42, a refrigerant outflow path 43, and a connection space 44 formed inside the main body 41.
  • the refrigerant inflow path 42 is formed so as to extend linearly from one side surface of the main body 41 and is a flow path into which the refrigerant from the indoor evaporator 18 flows.
  • the refrigerant outflow passage 43 is formed so as to extend linearly in a direction substantially orthogonal to the refrigerant inflow passage 42, and is a passage through which the refrigerant flows out toward the suction port side of the compressor 11 via the accumulator 20. is there.
  • connection space 44 is formed so as to be connected to both the refrigerant inflow path 42 and the refrigerant outflow path 43 inside the main body 41. Accordingly, the refrigerant flowing in from the refrigerant inflow passage 42 flows out from the refrigerant outflow passage 43 toward the compressor 11 through the connection space 44.
  • the connection space 44 is formed by opening a surface facing the side surface of the main body 41 where the refrigerant inflow passage 42 is formed.
  • the cylinder part 45 is disposed in the connection space part 44 from the opposite side of the main body part 41 from the surface where the refrigerant inflow passage 42 is formed, and has a cylindrical part 46 formed in a substantially cylindrical shape.
  • the cylinder portion 45 is disposed in the connection space portion 44 by being crimped so that the tip end portion of the cylindrical portion 46 is in close contact with the inner wall surface on the refrigerant inflow path 42 side.
  • a plurality of communication holes 47 are formed in the tubular portion 46. Each communication hole 47 opens so as to penetrate the tubular portion 46 in the thickness direction, and communicates the internal space of the tubular portion 46 with the space outside the tubular portion 46 in the connection space portion 44. Yes.
  • a cylindrical space formed inside the cylindrical portion 46 of the cylinder portion 45 functions as the valve chamber 51 in the connection space portion 44.
  • a concave portion 49 is formed on the cylinder portion 45 on the opposite side to the cylindrical portion 46.
  • the concave portion 49 is recessed toward the refrigerant inflow path 42 side, and forms a cylindrical space inside thereof.
  • the concave portion 49 is formed coaxially with the central axis of the cylindrical portion 46 having a cylindrical shape.
  • an insertion hole 48 is formed in the recess 49.
  • the insertion hole 48 connects the space inside the cylindrical portion 46 and the space inside the concave portion 49 in the cylinder portion 45, and extends linearly along the central axis of the cylindrical portion 46 and the concave portion 49. Is formed. As shown in FIG. 1, a small diameter portion 60 of a valve body 55 described later is inserted through the insertion hole 48.
  • a packing 50 is disposed on the outer peripheral surface of the cylinder portion 45.
  • the packing 50 is located between the inner wall surface of the connection space portion 44 of the main body portion 41 and the outer peripheral surface of the cylinder portion 45 and prevents leakage of the refrigerant.
  • valve chamber 51 of the evaporation pressure regulating valve 19 is formed by an internal space in the cylindrical portion 46 of the cylinder portion 45 in the connection space portion 44 of the main body portion 41. That is, the valve chamber 51 is formed in the body 40 by the main body portion 41 and the cylinder portion 45.
  • the cover 52 is disposed so as to cover the concave portion 49 of the cylinder portion 45.
  • an opening adjustment chamber 53 for adjusting the opening of the evaporation pressure adjusting valve 19 is formed by arranging a cover 52 so as to cover the concave portion 49 of the cylinder portion 45.
  • the opening adjusting chamber 53 includes a part of the recess 49, the opening adjusting chamber 53 communicates with the valve chamber 51 through the insertion hole 48.
  • the opening adjustment chamber 53 is adjacent to the valve chamber 51 through the cylinder portion 45 and has the insertion hole 48.
  • the cover 52 is formed with an air introduction hole 54 and communicates the outside of the evaporating pressure adjusting valve 19 and the inside of the opening adjusting chamber 53. Therefore, the atmosphere introduction hole 54 functions to introduce the atmosphere outside the evaporation pressure adjustment valve 19 into the opening degree adjustment chamber 53.
  • the atmosphere introduced into the opening adjustment chamber 53 functions as a reference gas for determining the opening of the refrigerant flow path in the evaporation pressure adjustment valve 19 and generates a reference pressure in the opening adjustment chamber 53. Therefore, the reference pressure in the evaporation pressure adjusting valve 19 is atmospheric pressure.
  • the valve body 55 receives the refrigerant pressure on the refrigerant inflow path 42 side (that is, the refrigerant evaporation pressure P ⁇ b> 1 of the indoor evaporator 18), and slides in the direction along the central axis of the cylindrical portion 46 and the like. It is arranged to be movable. As shown in FIG. 1, the valve body 55 has a large-diameter portion 56 capable of closing the plurality of communication holes 47 in the tubular portion 46, and an axial small-diameter portion 60 extending from the large-diameter portion 56. It is formed in a so-called spool valve shape.
  • the large-diameter portion 56 is formed of a bottomed cylindrical (cup-shaped) metal member and has a peripheral wall portion 57.
  • the peripheral wall portion 57 is disposed along the inner wall surface of the tubular portion 46 inside the valve chamber 51.
  • the outer diameter dimension of the large-diameter portion 56 has a dimensional relationship of the clearance fit with respect to the inner diameter dimension of the cylindrical portion 46 in the cylinder portion 45.
  • valve chamber 51 when the large diameter portion 56 of the valve body 55 is located closest to the refrigerant inflow passage 42 side, the opening area of each communication hole 47 of the cylindrical portion 46 is reduced by the peripheral wall portion 57, The flow of refrigerant from the refrigerant inflow path 42 toward the refrigerant outflow path 43 can be reduced.
  • the evaporation pressure adjusting valve 19 can adjust the opening degree of the refrigerant flow path by sliding the valve body 55 in the valve chamber 51 in the direction along the central axis of the cylindrical portion 46 and the like. it can.
  • a pressure equalizing hole 58 is formed in the large-diameter portion 56, and the inside of the large-diameter portion 56 formed in a bottomed cylindrical shape and other portions in the valve chamber 51 (that is, the opening adjustment chamber 53). Side space).
  • the pressure equalizing hole 58 makes the pressure of the refrigerant in the valve chamber 51 uniform.
  • An oil return hole 59 is formed in the peripheral wall portion 57 corresponding to the refrigerant outflow passage 43 side. A part of the refrigerating machine oil contained in the refrigerant is returned to the upstream side of the refrigerant flow through the oil return hole 59.
  • the small diameter portion 60 is formed in a shaft shape extending from the bottom surface portion of the bottomed cylindrical large diameter portion 56 toward the opening adjustment chamber 53 side.
  • the small-diameter portion 60 is formed in a columnar shape extending along the central axis of the cylindrical portion 46 and the like, and is disposed through the insertion hole 48.
  • the outer diameter dimension of the small-diameter portion 60 has a dimensional relationship with the clearance fit with respect to the inner diameter dimension of the insertion hole 48.
  • the cross sectional area of the small diameter portion 60 is formed smaller than the cross sectional area of the large diameter portion 56 (that is, the cross sectional area corresponding to the bottom of the bottomed cylindrical shape).
  • An O-ring 71 is disposed on the outer peripheral surface of the small diameter portion 60.
  • the O-ring 71 is formed of nitrile rubber, ethylene propylene rubber, or the like, and is disposed so as to block between the outer peripheral surface of the small diameter portion 60 and the inner wall surface of the insertion hole 48. Therefore, the O-ring 71 can block the flow of the refrigerant from the valve chamber 51 through the insertion hole 48, and can suppress the leakage of the refrigerant from the valve chamber 51 to the opening degree adjustment chamber 53.
  • the O-ring 71 is disposed between the outer peripheral surface of the small diameter portion 60 and the inner wall surface of the insertion hole 48 so as to come into contact with the refrigerant. Therefore, according to the evaporation pressure adjusting valve 19, the refrigerant permeation area in the O-ring 71 can be sufficiently reduced, and the refrigerant permeation amount, which is a problem specific to rubber, can be suppressed to a low level. That is, the O-ring 71 functions as a seal member in the present disclosure.
  • the coil spring 61 is a cylindrical coil spring extending in the displacement direction of the valve body 55 and is made of stainless steel.
  • One end of the coil spring 61 is attached to the tip of a small diameter portion 60 that is inserted through the insertion hole 48 and protrudes into the opening adjustment chamber 53.
  • the other end of the coil spring 61 is attached to the tip of an adjustment screw 62 disposed at a position facing the insertion hole 48 in the opening adjustment chamber 53.
  • the coil spring 61 applies a load that biases the valve body 55 in the valve closing direction (that is, the direction in which the valve body 55 is displaced toward the refrigerant inflow path 42), and functions as an elastic member in the present disclosure. Note that the load by which the coil spring 61 urges the valve body 55 can be adjusted by the adjusting screw 62 including the initial load.
  • the valve body 55 is displaced in the closing direction corresponding to one side in the axial direction (that is, the refrigerant inflow passage 42 side) and the tip of the peripheral wall portion 57 is brought to the inner wall surface of the valve chamber 51.
  • the communication hole 47 is closed by the peripheral wall of the valve body 55. Therefore, in this case, the communication between the refrigerant inflow path 42 and the refrigerant outflow path 43 is blocked.
  • the valve body 55 is displaced in the valve chamber 51, thereby changing the refrigerant passage area in the evaporation pressure adjusting valve 19 and flowing through the indoor evaporator 18.
  • the refrigerant flow rate and the refrigerant evaporation pressure P1 are adjusted.
  • the displacement of the valve body 55 in the valve chamber 51 of the evaporation pressure adjusting valve 19 is determined by the force acting on the valve body 55.
  • the valve body 55 includes a refrigerant pressure on the refrigerant inflow path 42 side (that is, a refrigerant evaporation pressure P ⁇ b> 1 in the indoor evaporator 18) and a refrigerant pressure on the refrigerant outflow path 43 side (that is, the compressor 11).
  • the suction side refrigerant pressure), the load by the coil spring 61, and the pressure of the reference gas in the opening adjustment chamber 53 ie, atmospheric pressure).
  • the refrigerant pressure on the refrigerant outflow passage 43 side acts in a direction orthogonal to the axial direction of the valve body 55 and therefore does not contribute to the displacement of the valve body 55 in the axial direction.
  • the valve body 55 is displaced to a position where these loads acting in the axial direction with respect to the valve body 55 are balanced, and the refrigerant passage in the evaporation pressure adjusting valve 19 The area is adjusted. More specifically, the balance of the load that the valve body 55 receives in the axial direction can be expressed by the following formula F1.
  • P1 ⁇ As Ks ⁇ L + F0 + P0 ⁇ As (F1)
  • P1 is the refrigerant pressure on the refrigerant inflow path 42 side (that is, the refrigerant evaporation pressure P1 in the indoor evaporator 18)
  • P0 is the pressure of the reference gas (that is, atmospheric pressure) in the opening adjustment chamber 53
  • Ks is a spring constant of the coil spring 61
  • L is a displacement amount of the valve body 55
  • F0 is an initial load of the coil spring 61 adjusted by the adjusting screw 62.
  • the evaporating pressure adjusting valve 19 is configured so that the refrigerant pressure on the refrigerant inflow path 42 side increases as the refrigerant flow rate flowing through the indoor evaporator 18 (the refrigerant flow rate flowing through the evaporating pressure adjusting valve 19) increases.
  • the refrigerant evaporating pressure P1 is increased. That is, the evaporation pressure adjusting valve 19 increases the displacement amount L of the valve body 55 in proportion to the increase in the refrigerant pressure on the refrigerant inflow passage 42 side, and adjusts the evaporation pressure as the refrigerant pressure in the refrigerant inflow passage 42 increases.
  • the refrigerant passage area in the valve 19 is increased.
  • the pressure receiving area of the small diameter portion 60 can be within a range that does not hinder the pressure control in the evaporation pressure adjusting valve 19 with respect to the pressure receiving area of the large diameter portion 56. It is set as small as possible. Specifically, the pressure receiving area of the small diameter portion 60 is set to about 0.15 to 0.2 times the pressure receiving area of the large diameter portion 56. By setting in this way, the load by the coil spring 61 can be made smaller than before while realizing stable pressure control by the evaporation pressure regulating valve 19.
  • the pressure receiving area of the large diameter portion 56 that receives the refrigerant pressure on the refrigerant inflow path 42 side is set to be larger than 1.3 times the flow area of the refrigerant inflow path 42.
  • P1 has shown the relationship between the refrigerant
  • Pa indicates the relationship between the refrigerant evaporation pressure and the refrigerant flow rate by the bellows type evaporation pressure adjustment valve
  • Pb indicates the relationship between the refrigerant evaporation pressure and the refrigerant flow rate by the diaphragm type evaporation pressure adjustment valve.
  • the frosting suppression pressure APe corresponds to the reference evaporation pressure in the present disclosure.
  • a bellows type evaporation pressure adjusting valve in this comparative example includes a valve body that adjusts the opening degree in the refrigerant flow path inside the body, a bellows in which a reference gas is sealed, and a spring disposed inside the bellows.
  • a valve body that adjusts the opening degree in the refrigerant flow path inside the body
  • a bellows in which a reference gas is sealed a bellows in which a reference gas is sealed
  • a spring disposed inside the bellows for example, it is assumed that it has substantially the same configuration as the evaporation pressure adjusting valve described in Japanese Patent Application Laid-Open No. 2015-17764.
  • the valve body is formed by a balance between the refrigerant pressure on the inlet path side from the evaporator side, the pressure of the reference gas, the elastic force of the bellows itself, and the elastic force of the spring. Displacement is performed, and the opening degree of the evaporation pressure adjusting valve is determined.
  • the balance of the load on the valve body of the bellows type evaporation pressure regulating valve is expressed by the following formula F3 when the pressure receiving area of the valve body is equal to the pressure receiving area of the bellows.
  • P1 ⁇ Av Ksa ⁇ L + Kbw ⁇ L + F0 + Fr (F3)
  • P1 is the refrigerant pressure on the inflow path side
  • Av is the pressure receiving area of the valve body
  • Ksa is the spring constant of the spring
  • Kbw is the spring constant of the bellows itself
  • L is the amount of displacement of the valve body
  • F0 is the initial value of the spring
  • the load Fr is a load due to the pressure of the reference gas enclosed in the bellows.
  • the pressure gradient of the bellows type evaporation pressure regulating valve is influenced by the combined spring constant of the spring and the bellows itself. Since the pressure receiving area of the small-diameter portion 60 in the evaporation pressure regulating valve 19 is sufficiently small with respect to the pressure receiving area of the valve body, the difference between the refrigerant evaporation pressure of the evaporator at the maximum flow rate and the minimum flow rate becomes large. End up. That is, as shown in FIG. 3, the pressure gradient of the bellows type evaporation pressure adjusting valve is larger than the pressure gradient of the evaporation pressure adjusting valve 19.
  • the reference gas is sealed inside the bellows.
  • the volume inside the bellows decreases, so the pressure of the reference gas increases with the displacement of the valve body. That is, also from this point, the pressure gradient of the bellows type evaporation pressure adjusting valve is larger than that of the evaporation pressure adjusting valve 19.
  • the bellophram-type evaporation pressure adjusting valve includes a valve body that adjusts an opening degree in a refrigerant flow path inside a body, a diaphragm that partitions between a cladding pipe into which a reference gas is introduced and the refrigerant flow path, and the cladding pipe
  • a valve body that adjusts an opening degree in a refrigerant flow path inside a body
  • a diaphragm that partitions between a cladding pipe into which a reference gas is introduced and the refrigerant flow path
  • the cladding pipe For example, and has substantially the same configuration as the evaporation pressure adjusting valve described in Japanese Patent Publication No. 55-51154.
  • the valve body In the diaphragm type evaporation pressure regulating valve, the valve body is displaced by a balance between the refrigerant pressure on the inflow passage side from the evaporator side, the pressure of the reference gas introduced into the cladding tube, and the elastic force of the spring, The opening degree of the evaporation pressure adjusting valve is determined.
  • the balance of the load on the valve body of the diaphragm type evaporation pressure regulating valve is expressed by the following formula F5 when the pressure receiving area of the valve body and the pressure receiving area of the bellows are equal.
  • P1 ⁇ Abf Ksb ⁇ L + F0 + P0 ⁇ Abf (F5)
  • P1 is the refrigerant pressure on the inflow passage side
  • Abf is the pressure receiving area of the diaphragm
  • P0 is the pressure of the reference gas (that is, atmospheric pressure) in the cladding tube
  • Ksb is the spring constant of the spring
  • L is the amount of displacement of the valve body.
  • F0 is an initial load such as a spring.
  • the pressure gradient of the diaphragm evaporation pressure regulating valve is influenced by the spring constant of the spring and the pressure receiving area of the diaphragm. That is, in the diaphragm type, only the spring constant of the spring is affected, and in the bellows type, the combined spring constant of the spring and the bellows is affected.
  • the difference between the refrigerant evaporation pressure of the evaporator at the maximum flow rate and the minimum flow rate of the evaporator is smaller than that of the bellows type evaporation pressure adjusting valve. That is, as shown in FIG. 3, the pressure gradient of the diaphragm type evaporation pressure adjusting valve is smaller than the pressure gradient of the bellows type evaporation pressure adjusting valve.
  • the pressure gradient of the evaporating pressure adjusting valve 19 and the pressure gradient of the diaphragm evaporating pressure adjusting valve are both obtained by dividing the spring constant of the spring energizing the valve body by the pressure receiving area receiving the refrigerant pressure on the inflow passage side. Expressed.
  • the spring constant of the coil spring 61 in the evaporation pressure regulating valve 19 is formed small by making the pressure receiving area of the small diameter portion 60 of the valve body 55 sufficiently smaller than the pressure receiving area of the large diameter portion 56. Accordingly, the spring constant of the coil spring 61 is smaller than the spring constant of the spring in the diaphragm type evaporation pressure adjusting valve.
  • the rubber diaphragm needs to have a configuration in which the thin film portion is folded in order to ensure the displacement amount of the valve body. Due to this configuration, the pressure receiving area of the diaphragm is formed larger than the flow path area of the inflow channel. Therefore, compared with the pressure receiving area of the small diameter portion 60, the pressure receiving area of the diaphragm is much larger.
  • the difference between the refrigerant evaporation pressure of the evaporator at the maximum flow rate and the minimum flow rate is smaller than that of the diaphragm type evaporation pressure adjustment valve. That is, as shown in FIG. 3, the pressure gradient of the evaporation pressure adjusting valve 19 is smaller than the pressure gradient of the bellows type evaporation pressure adjusting valve and the pressure gradient of the diaphragm type evaporation pressure adjusting valve.
  • the evaporation pressure regulating valve according to the first embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and the refrigerant in the indoor evaporator 18.
  • the evaporating pressure P1 is adjusted to be equal to or higher than the frosting suppression pressure Ape.
  • the evaporating pressure adjusting valve 19 accommodates a valve body 55 having a small diameter portion 60 and a large diameter portion 56 in a valve chamber 51 in the body 40 so as to be displaceable, from the refrigerant inflow passage 42 to the refrigerant outflow passage 43.
  • the area of the refrigerant flow path of the refrigerant is adjusted by the displacement of the valve body 55.
  • the small-diameter portion 60 formed in a shaft shape extends to the opening adjustment chamber 53 adjacent to the valve chamber 51 through the insertion hole 48, and the elastic force of the coil spring 61 disposed in the opening adjustment chamber 53. And the pressure of the atmosphere as a reference gas introduced into the opening adjustment chamber 53 is received.
  • the evaporation pressure adjusting valve 19 is based on the refrigerant pressure on the refrigerant inflow passage 42 side applied to the small diameter portion 60 of the valve body 55, the pressure difference between the reference gas in the opening adjustment chamber 53, and the elastic force of the coil spring 61.
  • the refrigerant evaporating pressure P1 in the indoor evaporator 18 can be adjusted by determining the opening degree of the refrigerant flow path.
  • the small-diameter portion 60 of the valve body 55 is formed to have a pressure receiving area sufficiently smaller than that of the large-diameter portion 56, and no other external force is required to determine the opening degree.
  • the difference in refrigerant evaporation pressure P1 between the maximum flow rate and the minimum flow rate can be made sufficiently small.
  • the refrigerant permeation to the outside of the refrigerant circuit of the refrigeration cycle apparatus 10 may occur between the inner peripheral surface of the insertion hole 48 and the outer peripheral surface of the small diameter portion 60. is there. For this reason, according to the evaporation pressure adjusting valve 19, the refrigerant flow through the insertion hole 48 between the valve chamber 51 and the opening adjusting chamber 53 is blocked by arranging the O-ring 71 as a seal member. Therefore, refrigerant permeation to the outside of the refrigerant circuit of the refrigeration cycle apparatus 10 can be suppressed.
  • the O-ring 71 is made of nitrile rubber, ethylene propylene rubber, or the like, and is disposed so as to block between the outer peripheral surface of the small diameter portion 60 and the inner wall surface of the insertion hole 48. Therefore, since the refrigerant permeation area in the O-ring 71 is in a very small range of the gap between the small diameter portion 60 and the insertion hole 48, the evaporating pressure adjusting valve 19 has the refrigerant flow from the valve chamber 51 through the insertion hole 48. Leakage can be minimized.
  • the evaporation pressure adjusting valve 19 is configured to introduce the atmosphere as a reference gas into the opening degree adjusting chamber 53 via the atmosphere introducing hole 54. Therefore, according to the evaporation pressure adjusting valve 19, the pressure of the reference gas can be maintained when the valve body 55 is displaced, and the influence of the reference pressure on the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate is eliminated. Can do.
  • the evaporation pressure regulating valve 19 according to the second embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and functions as a seal member in the present disclosure. Except for the configuration and arrangement, the configuration is basically the same as that of the first embodiment. Accordingly, in the following description, the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description is referred to.
  • the evaporation pressure regulating valve 19 according to the second embodiment is adjusted in the refrigeration cycle apparatus 10 so that the refrigerant evaporation pressure P1 in the indoor evaporator 18 is equal to or higher than the frosting suppression pressure APe, as in the first embodiment. Yes.
  • the evaporation pressure regulating valve 19 accommodates a valve body 55 having a small diameter portion 60 and a large diameter portion 56 in a valve chamber 51 in a body 40 so as to be displaceable.
  • the refrigerant flow area of the refrigerant from the refrigerant inflow path 42 to the refrigerant outflow path 43 is adjusted by the displacement of the valve body 55.
  • the small diameter portion 60 is formed in an axial shape extending from the large diameter portion 56 and is inserted into the insertion hole 48.
  • the tip of the small diameter portion 60 protrudes into the opening degree adjusting chamber 53 adjacent to the valve chamber 51 through the insertion hole 48.
  • a coil spring 61 is arranged inside the opening adjustment chamber 53, and the atmosphere as a reference gas is introduced through the atmosphere introduction hole 54.
  • the evaporating pressure adjusting valve 19 includes the refrigerant pressure on the refrigerant inflow path 42 side applied to the small diameter portion 60 of the valve body 55 and the pressure difference between the reference gas in the opening adjustment chamber 53 and the coil spring 61.
  • the degree of opening of the refrigerant flow path can be determined by the elastic force, and the refrigerant evaporation pressure P1 in the indoor evaporator 18 can be adjusted.
  • a metal bellows 72 is disposed inside the opening degree regulating chamber 53.
  • the bellows 72 is a bottomed cylindrical member formed to be extendable in the displacement direction of the valve body 55 (the axial direction of the body), and is arranged coaxially with the cylindrical portion 46 and the small diameter portion 60.
  • the peripheral surface of the bellows 72 is formed in a bellows shape, and the bellows-like peripheral surface realizes the stretchability of the bellows 72.
  • the bellows 72 is arranged so that the inner space of the bellows 72 formed in a bottomed cylindrical shape is connected to the valve chamber 51 through the insertion hole 48. Therefore, the end portion of the small diameter portion 60 inserted through the insertion hole 48 is disposed inside the bottomed cylindrical bellows 72. And the bottom part of the bellows 72 is arrange
  • the end portion of the bellows 72 positioned on the insertion hole 48 side is joined to the concave portion 49 in the cylinder portion 45 in which the insertion hole 48 is formed.
  • the bellows 72 is arranged so that the opening edge of the bellows 72 is located radially outside the opening edge of the insertion hole 48 and is connected over the entire circumference of the opening edge.
  • the bellows 72 functions as a seal member in the present disclosure.
  • the evaporation pressure regulating valve 19 is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and is provided in the indoor evaporator 18.
  • the refrigerant evaporating pressure P1 is adjusted to be equal to or higher than the frosting suppression pressure Ape.
  • the evaporating pressure adjusting valve 19 is configured in the same manner as in the first embodiment except for a member used as a sealing member. Therefore, also in the second embodiment, the small diameter portion 60 of the valve body 55 is formed so as to have a pressure receiving area sufficiently smaller than that of the large diameter portion 56, and no other external force is required to determine the opening degree.
  • the evaporation pressure adjusting valve 19 according to the second embodiment exhibits the same effect as that of the first embodiment, and the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate in the indoor evaporator 18 is obtained. It can be made sufficiently small.
  • a metal bellows 72 formed in a bottomed cylindrical shape has its internal space connected to the valve chamber 51 through the insertion hole 48. And is joined to the recess 49. Therefore, the bellows 72 according to the second embodiment can keep the refrigerant from the valve chamber 51 to the opening adjustment chamber 53 through the insertion hole 48 inside the bellows 72, and functions as a seal member in the present disclosure. .
  • the evaporation pressure regulating valve 19 is also configured to introduce the atmosphere as the reference gas into the opening degree adjusting chamber 53 through the atmosphere introducing hole 54. Therefore, also in the second embodiment, the pressure of the reference gas can be maintained when the valve body 55 is displaced, and the influence of the reference pressure on the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate can be eliminated.
  • the evaporation pressure regulating valve 19 according to the third embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and functions as a seal member in the present disclosure. Except for the configuration and arrangement, the configuration is basically the same as that of the above-described embodiment. Accordingly, also in the description of the third embodiment, the same reference numerals as those in the above-described embodiment indicate the same configuration, and the preceding description is referred to.
  • the evaporation pressure adjusting valve 19 according to the third embodiment is adjusted in the refrigeration cycle apparatus 10 so that the refrigerant evaporation pressure P1 in the indoor evaporator 18 is equal to or higher than the frosting suppression pressure APe in the same manner as in the above-described embodiment. Yes.
  • the evaporation pressure regulating valve 19 accommodates a valve body 55 having a small diameter portion 60 and a large diameter portion 56 in a valve chamber 51 in a body 40 so as to be displaceable.
  • the refrigerant flow area of the refrigerant from the refrigerant inflow path 42 to the refrigerant outflow path 43 is adjusted by the displacement of the valve body 55.
  • the small diameter portion 60 is formed in an axial shape extending from the large diameter portion 56 and is inserted into the insertion hole 48.
  • the tip of the small diameter portion 60 protrudes into the opening degree adjusting chamber 53 adjacent to the valve chamber 51 through the insertion hole 48.
  • a coil spring 61 is arranged inside the opening adjustment chamber 53, and the atmosphere as a reference gas is introduced through the atmosphere introduction hole 54.
  • the evaporating pressure adjusting valve 19 includes a difference between the refrigerant pressure on the refrigerant inflow path 42 side applied to the small diameter portion 60 of the valve body 55 and the pressure difference between the reference gas in the opening adjustment chamber 53 and the coil spring 61.
  • the degree of opening of the refrigerant flow path can be determined by the elastic force, and the refrigerant evaporation pressure P1 in the indoor evaporator 18 can be adjusted.
  • a metal diaphragm 73 is disposed inside the opening adjustment chamber 53 of the evaporation pressure adjustment valve 19 according to the third embodiment.
  • the diaphragm 73 has a stretchable film portion 73 a formed in an accordion shape, and partitions the inside of the opening adjustment chamber 53 through a space between the small diameter portion 60 inserted through the insertion hole 48 and the coil spring 61. Are arranged to be. The expansion and contraction of the stretchable film portion 73a allows the displacement of the valve body 55 via the small diameter portion 60.
  • the diaphragm 73 divides the inside of the opening adjustment chamber 53 into two, and the outer edge of the stretchable film portion 73 a in the diaphragm 73 is all around the inner wall surface of the opening adjustment chamber 53. Are joined.
  • the diaphragm 73 can keep the refrigerant from the valve chamber 51 through the insertion hole 48 in the space on the insertion hole 48 side in the opening adjustment chamber 53 partitioned by the diaphragm 73, and the evaporation pressure adjustment valve 19 Leakage of refrigerant to the outside can be prevented. That is, the diaphragm 73 functions as a seal member in the present disclosure.
  • the evaporation pressure regulating valve according to the third embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and the refrigerant in the indoor evaporator 18.
  • the evaporating pressure P1 is adjusted to be equal to or higher than the frosting suppression pressure Ape.
  • the evaporating pressure adjusting valve 19 is configured in the same manner as the above-described embodiment except for a member used as a sealing member. Therefore, also in the third embodiment, the small diameter portion 60 of the valve body 55 is formed to have a pressure receiving area sufficiently smaller than that of the large diameter portion 56, and no other external force is required for determining the opening degree.
  • the evaporation pressure adjusting valve 19 according to the third embodiment exhibits the same effect as that of the above-described embodiment, and the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate in the indoor evaporator 18 is obtained. It can be made sufficiently small.
  • a metal diaphragm 73 is interposed between the small diameter portion 60 inserted through the insertion hole 48 and the coil spring 61 and the opening adjustment chamber 53. It is arranged so as to partition the inside.
  • the evaporating pressure adjusting valve 19 uses the diaphragm 73 as a seal member, so that the refrigerant from the valve chamber 51 is separated from the valve chamber 51 through the insertion hole 48 and the opening adjusting chamber 53 partitioned by the diaphragm 73. It is possible to prevent the refrigerant from leaking to the outside of the evaporating pressure adjusting valve 19.
  • the evaporating pressure regulating valve 19 is also configured to introduce the atmosphere as the reference gas into the opening degree adjusting chamber 53 through the atmosphere introducing hole 54. Therefore, also in the third embodiment, the pressure of the reference gas can be maintained when the valve body 55 is displaced, and the influence of the reference pressure on the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate can be eliminated.
  • the evaporation pressure adjusting valve 19 is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1. It is not limited to. What is necessary is just to arrange
  • the atmosphere introduced through the atmosphere introduction hole 54 is used as the reference gas in the opening degree adjustment chamber 53.
  • the present invention is not limited to this mode.
  • a configuration in which a reference gas is sealed in the opening adjustment chamber 53 is also possible. Even in this configuration, since the pressure receiving area of the small-diameter portion is sufficiently small, the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate by the evaporation pressure adjusting valve 19 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Safety Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is an evaporation pressure regulating valve, which is disposed between an evaporator (18) and a compressor (11) in a refrigeration cycle (10), and which regulates a refrigerant evaporation pressure in the evaporator to be equal to or higher than a predetermined reference evaporation pressure. The evaporation pressure regulating valve comprises: a refrigerant inflow channel (42); a valve chest (51); a body (40) in which a refrigerant outflow channel (43) is formed; a valve element (55); an opening degree adjustment chamber (53); an elastic member (61); and a sealing member (71, 72, 73). The valve element includes a large-diameter portion (56) and a small-diameter portion (60). The opening degree adjustment chamber has an insertion hole (48), through which the small-diameter portion is inserted, and has therein reference gas for generating reference pressure. The elastic member is disposed in the opening degree adjustment chamber, and biases the small-diameter portion of the valve element in the closing direction. The sealing member blocks the flow of refrigerant through the insertion hole between the valve chest and the opening degree adjustment chamber.

Description

蒸発圧力調整弁Evaporation pressure adjustment valve 関連出願の相互参照Cross-reference of related applications
 本出願は、2017年3月3日に出願された日本特許出願2017-40013号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-40013 filed on Mar. 3, 2017, the contents of which are incorporated herein by reference.
 本開示は、冷凍サイクルに用いられる蒸発圧力調整弁に関する。 This disclosure relates to an evaporation pressure adjusting valve used in a refrigeration cycle.
 従来、蒸発圧力調整弁は、蒸気圧縮式の冷凍サイクルにおいて、蒸発器と圧縮機の間に配置されており、蒸発器における着霜を抑制している。当該蒸発圧力調整弁は、蒸発器を流通する冷媒流量の増加に伴って、弁開度(即ち、冷媒通路面積)を増加させるように構成されており、蒸発器における冷媒蒸発圧力(冷媒蒸発温度)を予め定めた基準蒸発圧力(基準蒸発温度)以上に維持する機能を有している。 Conventionally, the evaporation pressure regulating valve is disposed between the evaporator and the compressor in the vapor compression refrigeration cycle, and suppresses frost formation in the evaporator. The evaporating pressure adjusting valve is configured to increase the valve opening (that is, the refrigerant passage area) as the flow rate of the refrigerant flowing through the evaporator increases. ) At a predetermined reference evaporation pressure (reference evaporation temperature) or higher.
 このような蒸発圧力調整弁に関する技術として、特許文献1、2が知られている。特許文献1には、いわゆるベローズ式の蒸発圧力調整弁が記載されている。特許文献1の蒸発圧力調整弁は、ボディ内部の冷媒流路における開度を調整する弁体と、内部に参照気体が封入されたベローズと、ベローズ内部に配置されたスプリングとを有して構成されている。 Patent Documents 1 and 2 are known as techniques relating to such an evaporation pressure adjusting valve. Patent Document 1 describes a so-called bellows type evaporation pressure adjusting valve. The evaporating pressure adjusting valve of Patent Document 1 includes a valve body that adjusts the opening degree in the refrigerant flow path inside the body, a bellows in which a reference gas is sealed, and a spring disposed inside the bellows. Has been.
 一方、特許文献2には、いわゆるダイアフラム式の蒸発圧力調整弁が記載されている。特許文献2に記載された蒸発圧力調整弁は、ボディ内部の冷媒流路における開度を調整する弁体と、参照気体が導入される被覆管と冷媒流路との間を区画するダイアフラムと、前記被覆管の内部に配置されたスプリングとを有して構成されている。 On the other hand, Patent Document 2 describes a so-called diaphragm type evaporation pressure regulating valve. The evaporation pressure regulating valve described in Patent Document 2 includes a valve body that adjusts the opening degree in the refrigerant flow path inside the body, a diaphragm that partitions between the cladding tube into which the reference gas is introduced and the refrigerant flow path, And a spring disposed inside the cladding tube.
特開2015-17764号公報JP 2015-17774 A 特公昭55-51154号公報Japanese Patent Publication No. 55-51154
 上述した特許文献1のようなベローズ式の蒸発圧力調整弁においては、弁体は、蒸発器側の冷媒圧力と、参照気体の圧力及び、ベローズ自身及びスプリングの弾性力の合力とのつり合いによって変位し、蒸発圧力調整弁における弁開度が決定される。ここで、特許文献1では、弁体の変位量が増加した場合、スプリングの弾性力のみならず、ベローズ自身の弾性力及び参照気体の圧力も増大する為、最大流量時と最小流量時における蒸発器の冷媒蒸発圧力の差が大きくなってしまっていた。 In the bellows-type evaporation pressure regulating valve as described in Patent Document 1, the valve body is displaced by a balance between the refrigerant pressure on the evaporator side, the pressure of the reference gas, and the resultant force of the bellows itself and the elastic force of the spring. Then, the opening degree of the evaporation pressure adjusting valve is determined. Here, in Patent Document 1, when the displacement amount of the valve body increases, not only the elastic force of the spring but also the elastic force of the bellows itself and the pressure of the reference gas increase. Therefore, evaporation at the maximum flow rate and the minimum flow rate The difference in the refrigerant evaporation pressure of the vessel became large.
 又、特許文献2のようなダイアフラム式の蒸発圧力調整弁においては、参照圧として大気圧が用いられており、当該参照圧は弁体の変位に関わらず一定の値を示す。この為、特許文献2においては、弁体の変位量が増加すると、スプリングの弾性力のみが増大する。従って、特許文献2に記載されたダイアフラム式の蒸発圧力調整弁は、最大流量時と最小流量時における蒸発器の冷媒蒸発圧力の差を、特許文献1の場合と比べて小さくすることができる。 Moreover, in the diaphragm type evaporation pressure regulating valve as in Patent Document 2, atmospheric pressure is used as the reference pressure, and the reference pressure shows a constant value regardless of the displacement of the valve body. For this reason, in patent document 2, if the displacement amount of a valve body increases, only the elastic force of a spring will increase. Therefore, the diaphragm-type evaporation pressure regulating valve described in Patent Document 2 can reduce the difference in the refrigerant evaporation pressure of the evaporator at the maximum flow rate and the minimum flow rate as compared with the case of Patent Document 1.
 しかしながら、特許文献2のようなダイアフラムは、ゴム材で構成されており、その分子組成の関係上、冷媒透過性を有してしまう。更に、この構成においては、弁体の変位量を確保するために、ダイアフラムの薄膜部分を折り畳んだ構成にする必要がある。この結果、ダイアフラムにおける冷媒の透過面積が大きくなってしまう為、ダイアフラムによる冷媒透過量が増大し、冷媒透過による蒸発圧力調整弁としての機能や周辺環境に影響を及ぼしてしまう。 However, the diaphragm as in Patent Document 2 is made of a rubber material and has refrigerant permeability due to its molecular composition. Furthermore, in this configuration, it is necessary to fold the thin film portion of the diaphragm in order to ensure the amount of displacement of the valve body. As a result, since the permeation area of the refrigerant through the diaphragm is increased, the refrigerant permeation amount through the diaphragm is increased, and the function as an evaporation pressure adjusting valve due to the refrigerant permeation and the surrounding environment are affected.
 本開示は、冷媒透過を抑制しつつ、最大流量時と最小流量時における蒸発器の冷媒蒸発圧力の差を小さくすることができる蒸発圧力調整弁を提供することを目的とする。 This disclosure is intended to provide an evaporation pressure adjusting valve that can reduce the difference in the refrigerant evaporation pressure of the evaporator between the maximum flow rate and the minimum flow rate while suppressing refrigerant permeation.
 本開示の一態様において、冷凍サイクルにおける蒸発器と圧縮機の間に配置され、蒸発器における冷媒蒸発圧力が予め定めた基準蒸発圧力以上となるように調整する蒸発圧力調整弁は、
 内部に弁室が形成されたボディと、
 ボディに設けられ、蒸発器から弁室へ冷媒が流入する冷媒流入路と、
 ボディに設けられ、弁室から圧縮機へと冷媒が流出する冷媒流出路と、
 弁室内にて冷媒流入路側の圧力を受けて所定方向に摺動可能に配置され、冷媒流出路へ流れる冷媒流路の開度を変更する大径部及び、大径部よりも小さな面積で大径部から所定方向へ伸びる軸状の小径部を含む弁体と、
 弁室の所定方向に隣接して配置され、弁体の小径部によって挿通される挿通穴を有すると共に、冷媒流路の開度を決定する際に参照される参照圧を発生させる参照気体を内部に有する開度調整室と、
 開度調整室の内部に配置され、冷媒流路の開度を小さくする閉方向へ弁体の小径部を付勢する弾性部材と、
 弁室と開度調整室の間における挿通穴を介した冷媒の流れを遮断するシール部材と、を有する。
In one aspect of the present disclosure, an evaporation pressure adjusting valve that is disposed between the evaporator and the compressor in the refrigeration cycle and adjusts the refrigerant evaporation pressure in the evaporator to be equal to or higher than a predetermined reference evaporation pressure,
A body with a valve chamber formed inside,
A refrigerant inflow path provided in the body and through which refrigerant flows from the evaporator into the valve chamber;
A refrigerant outflow path provided in the body and through which refrigerant flows out from the valve chamber to the compressor;
A large-diameter portion that is slidable in a predetermined direction in response to the pressure on the refrigerant inflow passage side in the valve chamber, and that has a smaller area than that of the large-diameter portion A valve body including an axial small diameter portion extending in a predetermined direction from the diameter portion;
A reference gas that is arranged adjacent to the valve chamber in a predetermined direction and has an insertion hole that is inserted by a small diameter portion of the valve body and generates a reference pressure that is referred to when determining the opening of the refrigerant flow path. An opening adjustment chamber,
An elastic member disposed inside the opening adjustment chamber and energizing the small diameter portion of the valve body in the closing direction to reduce the opening of the refrigerant flow path;
And a sealing member that blocks the flow of the refrigerant through the insertion hole between the valve chamber and the opening adjustment chamber.
 当該蒸発圧力調整弁は、このように構成されることで、弁体の小径部にかかる冷媒流入路側の冷媒圧力と開度調整室内における参照圧の圧力差と、弾性部材の弾性力によって、冷媒流路の開度を決定して、蒸発器における冷媒蒸発圧力を調整することができる。弁体の小径部は大径部よりも十分に小さな面積に形成されており、開度の決定に他の外力を要しない為、蒸発器における冷媒の最大流量時と最小流量時の冷媒蒸発圧力の差を充分に小さくすることができる。 The evaporating pressure adjusting valve is configured in this manner, so that the refrigerant is obtained by the pressure difference between the refrigerant pressure on the refrigerant inflow path applied to the small diameter portion of the valve body and the reference pressure in the opening adjustment chamber, and the elastic force of the elastic member. The refrigerant evaporating pressure in the evaporator can be adjusted by determining the opening degree of the flow path. The small-diameter part of the valve body is formed in a sufficiently smaller area than the large-diameter part, and no other external force is required to determine the opening, so the refrigerant evaporating pressure at the maximum and minimum refrigerant flow rates in the evaporator This difference can be made sufficiently small.
 又、当該蒸発圧力調整弁において、冷凍サイクル外への冷媒の透過は、挿通穴と小径部の間を介して発生する可能性がある。この為、当該蒸発圧力調整弁によれば、シール部材によって、弁室と開度調整室の間における挿通穴を介した冷媒の流れを遮断している為、冷凍サイクル外への冷媒透過を抑制することができる。 Further, in the evaporating pressure regulating valve, the refrigerant may be transmitted to the outside of the refrigeration cycle through the insertion hole and the small diameter portion. For this reason, according to the evaporation pressure regulating valve, the seal member blocks the flow of the refrigerant through the insertion hole between the valve chamber and the opening degree regulating chamber, thereby suppressing the refrigerant permeation outside the refrigeration cycle. can do.
第1実施形態に係る蒸発圧力調整弁の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the evaporation pressure control valve which concerns on 1st Embodiment. 第1実施形態に係る車両用空調装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the vehicle air conditioner which concerns on 1st Embodiment. 第1実施形態に係る蒸発圧力調整弁と従来構成の圧力勾配を比較する為のグラフである。It is a graph for comparing the pressure gradient of the evaporation pressure regulating valve which concerns on 1st Embodiment, and a conventional structure. 第2実施形態に係る蒸発圧力調整弁の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the evaporation pressure control valve which concerns on 2nd Embodiment. 第2実施形態における開度調整室周辺の拡大図である。It is an enlarged view of the opening degree adjustment chamber periphery in 2nd Embodiment. 第3実施形態に係る蒸発圧力調整弁の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the evaporation pressure control valve which concerns on 3rd Embodiment. 第3実施形態における開度調整室周辺の拡大図である。It is an enlarged view of the opening degree adjustment chamber periphery in 3rd Embodiment.
 以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 第1実施形態に係る蒸発圧力調整弁19は、車両用空調装置1の冷凍サイクル装置10における構成機器の一つとして用いられている。この車両用空調装置1は、内燃機関および走行用電動機から車両走行用の駆動力を得るハイブリッド車両に搭載されている。そして、冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される車室内送風空気を冷却或いは加熱する機能を果たす。
(First embodiment)
The evaporation pressure regulating valve 19 according to the first embodiment is used as one of the components in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1. The vehicle air conditioner 1 is mounted on a hybrid vehicle that obtains driving force for vehicle travel from an internal combustion engine and a travel motor. And the refrigerating cycle apparatus 10 fulfill | performs the function which cools or heats the vehicle interior ventilation air ventilated in the vehicle interior which is air-conditioning object space in the vehicle air conditioner 1. FIG.
 そして、当該蒸発圧力調整弁19は、図2に示すように、冷凍サイクル装置10において、室内蒸発器18と圧縮機11の間に配置されており、室内蒸発器18における着霜を抑制している。 As shown in FIG. 2, the evaporation pressure regulating valve 19 is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10, and suppresses frost formation in the indoor evaporator 18. Yes.
 先ず、蒸発圧力調整弁19を含む車両用空調装置1及び冷凍サイクル装置10の構成について、図2を参照しつつ説明する。第1実施形態に係る冷凍サイクル装置10は、暖房モードの冷媒回路、除湿暖房モードの冷媒回路及び冷房モードの冷媒回路を切り替え可能に構成されている。 First, the configuration of the vehicle air conditioner 1 and the refrigeration cycle apparatus 10 including the evaporation pressure adjusting valve 19 will be described with reference to FIG. The refrigeration cycle apparatus 10 according to the first embodiment is configured to be capable of switching between a heating mode refrigerant circuit, a dehumidifying heating mode refrigerant circuit, and a cooling mode refrigerant circuit.
 ここで、車両用空調装置1において、暖房モードは、送風空気を加熱して車室内へ吹き出す運転モードである。除湿暖房モードは、冷却されて除湿された送風空気を再加熱して車室内へ吹き出す運転モードである。又、冷房モードは、送風空気を冷却して車室内へ吹き出す運転モードである。 Here, in the vehicle air conditioner 1, the heating mode is an operation mode in which the blown air is heated and blown out into the passenger compartment. The dehumidifying and heating mode is an operation mode in which the blown air that has been cooled and dehumidified is reheated and blown out into the passenger compartment. The cooling mode is an operation mode in which the blown air is cooled and blown out into the passenger compartment.
 尚、図2では、暖房モードの冷媒回路における冷媒の流れを黒塗り矢印で示し、除湿暖房モードの冷媒回路における冷媒の流れを斜線ハッチング付き矢印で示している。又、冷房モードの冷媒回路における冷媒の流れを白抜き矢印で示している。 In FIG. 2, the refrigerant flow in the refrigerant circuit in the heating mode is indicated by black arrows, and the refrigerant flow in the refrigerant circuit in the dehumidifying heating mode is indicated by hatched arrows. Further, the flow of the refrigerant in the cooling mode refrigerant circuit is indicated by white arrows.
 そして、当該冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(例えば、R1234yf)や自然冷媒(例えば、R744)等を採用してもよい。更に、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 The refrigeration cycle apparatus 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. is doing. Of course, an HFO refrigerant (for example, R1234yf), a natural refrigerant (for example, R744), or the like may be employed as the refrigerant. Furthermore, the refrigerating machine oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 図2に示すように、冷凍サイクル装置10は、圧縮機11、第1膨張弁15a、第2膨張弁15b、室外熱交換器16、逆止弁17、室内蒸発器18、蒸発圧力調整弁19、アキュムレータ20、第1開閉弁21、第2開閉弁22を有している。 As shown in FIG. 2, the refrigeration cycle apparatus 10 includes a compressor 11, a first expansion valve 15a, a second expansion valve 15b, an outdoor heat exchanger 16, a check valve 17, an indoor evaporator 18, and an evaporation pressure adjusting valve 19. And an accumulator 20, a first on-off valve 21, and a second on-off valve 22.
 圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出するものであり、車両ボンネット内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機として構成されている。当該圧縮機11は、本開示における圧縮機として機能する。 The compressor 11 sucks the refrigerant in the refrigeration cycle apparatus 10 and compresses and discharges the refrigerant. The compressor 11 is disposed in the vehicle bonnet. The compressor 11 is configured as an electric compressor that drives a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor. The compressor 11 functions as a compressor in the present disclosure.
 そして、圧縮機11の圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。又、圧縮機11を構成する電動モータは、図示しない空調制御装置から出力される制御信号によって、その作動(回転数)が制御される。この電動モータとしては、交流モータ、直流モータの何れの形式を採用してもよい。 As the compression mechanism of the compressor 11, various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed. The operation (rotation speed) of the electric motor constituting the compressor 11 is controlled by a control signal output from an air conditioning control device (not shown). As this electric motor, either an AC motor or a DC motor may be adopted.
 圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、暖房モード時及び除湿暖房モード時に、加熱用熱交換器として機能する。即ち、室内凝縮器12は、暖房モード時及び除湿暖房モード時に、圧縮機11から吐出された高温高圧の吐出冷媒と後述する室内蒸発器18を通過した送風空気とを熱交換させて送風空気を加熱する。室内凝縮器12は、後述する室内空調ユニット30のケーシング31内に配置されている。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11. The indoor condenser 12 functions as a heat exchanger for heating in the heating mode and the dehumidifying heating mode. That is, in the heating mode and the dehumidifying heating mode, the indoor condenser 12 exchanges heat between the high-temperature and high-pressure discharged refrigerant discharged from the compressor 11 and the blown air that has passed through the indoor evaporator 18 to be described later. Heat. The indoor condenser 12 is arrange | positioned in the casing 31 of the indoor air conditioning unit 30 mentioned later.
 室内凝縮器12の冷媒出口には、第1三方継手13aの1つの流入出口側が接続されている。第1三方継手13aのような三方継手は、冷凍サイクル装置10において、分岐部あるいは合流部としての機能を果たす。 The refrigerant outlet of the indoor condenser 12 is connected to one inflow / outlet side of the first three-way joint 13a. A three-way joint such as the first three-way joint 13a functions as a branching part or a joining part in the refrigeration cycle apparatus 10.
 例えば、除湿暖房モード時の第1三方継手13aでは、3つの流入出口のうち1つが流入口として用いられ、残りの2つが流出口として用いられる。従って、除湿暖房モード時の第1三方継手13aは、1つの流入口から流入した冷媒の流れを分岐して2つの流出口から流出させる分岐部としての機能を果たす。これらの三方継手は、複数の配管を接合して形成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けて形成してもよい。 For example, in the first three-way joint 13a in the dehumidifying and heating mode, one of the three inlets and outlets is used as an inlet and the remaining two are used as outlets. Therefore, the first three-way joint 13a in the dehumidifying and heating mode functions as a branching portion that branches the flow of the refrigerant flowing in from one inflow port and outflows from the two outflow ports. These three-way joints may be formed by joining a plurality of pipes, or may be formed by providing a plurality of refrigerant passages in a metal block or a resin block.
 更に、冷凍サイクル装置10は、後述するように、第2三方継手13b~第4三方継手13dを備えている。第2三方継手13b~第4三方継手13dの基本的構成は、第1三方継手13aと同様である。例えば、除湿暖房モード時の第4三方継手13dでは、3つの流入出口のうち2つが流入口として用いられ、残りの1つが流出口として用いられる。従って、除湿暖房モード時の第4三方継手13dは、2つの流入口から流入した冷媒を合流させて1つの流出口から流出させる合流部としての機能を果たす。 Furthermore, the refrigeration cycle apparatus 10 includes a second three-way joint 13b to a fourth three-way joint 13d, as will be described later. The basic configuration of the second three-way joint 13b to the fourth three-way joint 13d is the same as that of the first three-way joint 13a. For example, in the fourth three-way joint 13d in the dehumidifying and heating mode, two of the three inlets and outlets are used as inlets, and the remaining one is used as an outlet. Accordingly, the fourth three-way joint 13d in the dehumidifying and heating mode functions as a joining portion that joins the refrigerant that has flowed in from the two inlets and flows out from the one outlet.
 そして、第1三方継手13aの別の流入出口には、第1冷媒通路14aが接続されている。第1冷媒通路14aは、室内凝縮器12から流出した冷媒を、室外熱交換器16の冷媒入口側へ導く。 The first refrigerant passage 14a is connected to another inflow / outlet of the first three-way joint 13a. The first refrigerant passage 14 a guides the refrigerant flowing out from the indoor condenser 12 to the refrigerant inlet side of the outdoor heat exchanger 16.
 又、第1三方継手13aのさらに別の流入出口には、第2冷媒通路14bが接続されている。第2冷媒通路14bは、室内凝縮器12から流出した冷媒を、後述する第3冷媒通路14cに配置された第2膨張弁15bの入口側(具体的には、第3三方継手13cの1つの流入出口)へ導く。 The second refrigerant passage 14b is connected to still another inflow / outlet of the first three-way joint 13a. The second refrigerant passage 14b allows the refrigerant flowing out from the indoor condenser 12 to flow into the inlet side of the second expansion valve 15b (specifically, one of the third three-way joints 13c) disposed in the third refrigerant passage 14c described later. Inlet / outlet).
 第1冷媒通路14aには、第1膨張弁15aが配置されている。第1膨張弁15aは、暖房モード時、及び除湿暖房モード時に、室内凝縮器12から流出した冷媒を減圧させる。第1膨張弁15aは、減圧装置として機能する。第1膨張弁15aは、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有する可変絞り機構である。 A first expansion valve 15a is disposed in the first refrigerant passage 14a. The first expansion valve 15a decompresses the refrigerant that has flowed out of the indoor condenser 12 during the heating mode and the dehumidifying heating mode. The first expansion valve 15a functions as a pressure reducing device. The first expansion valve 15a is a variable throttle mechanism having a valve body configured to be able to change the throttle opening degree and an electric actuator composed of a stepping motor that changes the throttle opening degree of the valve body.
 更に、第1膨張弁15aは、絞り開度を全開にすることによって、冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能付きの可変絞り機構として構成されている。第1膨張弁15aは、図示しない空調制御装置から出力される制御信号(制御パルス)によって、その作動が制御される。 Furthermore, the first expansion valve 15a is configured as a variable throttle mechanism with a fully open function that functions as a simple refrigerant passage with almost no refrigerant decompression effect by fully opening the throttle opening. The operation of the first expansion valve 15a is controlled by a control signal (control pulse) output from an air conditioning control device (not shown).
 第1膨張弁15aの出口側には、室外熱交換器16の冷媒入口側が接続されており、車両ボンネット内の車両前方側に配置されている。室外熱交換器16は、第1膨張弁15aから流出した冷媒と図示しない送風ファンから送風された車室外空気(外気)とを熱交換させるものである。送風ファンは、図示しない空調制御装置から出力される制御電圧によって回転数(送風能力)が制御される電動送風機である。 The refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet side of the first expansion valve 15a, and is arranged on the vehicle front side in the vehicle bonnet. The outdoor heat exchanger 16 exchanges heat between the refrigerant that has flowed out of the first expansion valve 15a and the outside air (outside air) blown from a blower fan (not shown). The blower fan is an electric blower whose number of rotations (blowing capacity) is controlled by a control voltage output from an air conditioning control device (not shown).
 具体的には、室外熱交換器16は、暖房モード時においては、外気から吸熱する吸熱器として機能する。冷房モード時及び除湿暖房モード時においては、室外熱交換器16は、外気へ放熱する放熱器として機能する。 Specifically, the outdoor heat exchanger 16 functions as a heat absorber that absorbs heat from the outside air in the heating mode. In the cooling mode and the dehumidifying and heating mode, the outdoor heat exchanger 16 functions as a radiator that radiates heat to the outside air.
 室外熱交換器16の冷媒出口側には、第2三方継手13bの1つの流入出口が接続されている。第2三方継手13bの別の流入出口には、第3冷媒通路14cが接続されている。第3冷媒通路14cは、室外熱交換器16から流出した冷媒を、室内蒸発器18の冷媒入口側へ導く。 One inflow / outlet of the second three-way joint 13b is connected to the refrigerant outlet side of the outdoor heat exchanger 16. A third refrigerant passage 14c is connected to another inflow / outlet of the second three-way joint 13b. The third refrigerant passage 14 c guides the refrigerant that has flowed out of the outdoor heat exchanger 16 to the refrigerant inlet side of the indoor evaporator 18.
 又、第2三方継手13bのさらに別の流入出口には、第4冷媒通路14dが接続されている。第4冷媒通路14dは、室外熱交換器16から流出した冷媒を、後述するアキュムレータ20の入口側(具体的には、第4三方継手13dの1つの流入出口)へ導く。 Further, a fourth refrigerant passage 14d is connected to another inflow / outlet of the second three-way joint 13b. The fourth refrigerant passage 14d guides the refrigerant that has flowed out of the outdoor heat exchanger 16 to the inlet side of the accumulator 20, which will be described later (specifically, one inlet / outlet of the fourth three-way joint 13d).
 第3冷媒通路14cには、逆止弁17、第3三方継手13c、並びに、第2膨張弁15bが、冷媒流れに対してこの順に配置されている。逆止弁17は、冷媒が第2三方継手13b側から室内蒸発器18側へ流れることのみを許容するものである。第3三方継手13cには、前述した第2冷媒通路14bが接続されている。 In the third refrigerant passage 14c, a check valve 17, a third three-way joint 13c, and a second expansion valve 15b are arranged in this order with respect to the refrigerant flow. The check valve 17 only allows the refrigerant to flow from the second three-way joint 13b side to the indoor evaporator 18 side. The second refrigerant passage 14b described above is connected to the third three-way joint 13c.
 第2膨張弁15bは、室外熱交換器16から流出して室内蒸発器18へ流入する冷媒を減圧させる。即ち、第2膨張弁15bは減圧装置として機能する。第2膨張弁15bの基本的構成は、第1膨張弁15aと同様である。更に、当該第2膨張弁15bは、絞り開度を全閉した際にこの冷媒通路を閉塞する全閉機能付きの可変絞り機構で構成されている。 The second expansion valve 15b depressurizes the refrigerant that flows out of the outdoor heat exchanger 16 and flows into the indoor evaporator 18. That is, the second expansion valve 15b functions as a pressure reducing device. The basic configuration of the second expansion valve 15b is the same as that of the first expansion valve 15a. Further, the second expansion valve 15b is constituted by a variable throttle mechanism with a fully-closed function that closes the refrigerant passage when the throttle opening is fully closed.
 従って、第1実施形態に係る冷凍サイクル装置10では、第2膨張弁15bを全閉として第3冷媒通路14cを閉じることによって、冷媒回路を切り替えることができる。換言すると、第2膨張弁15bは、冷媒減圧装置としての機能を果たすとともに、サイクルを循環する冷媒の冷媒回路を切り替える冷媒回路切替装置としての機能を兼ね備えている。 Therefore, in the refrigeration cycle apparatus 10 according to the first embodiment, the refrigerant circuit can be switched by fully closing the second expansion valve 15b and closing the third refrigerant passage 14c. In other words, the second expansion valve 15b functions as a refrigerant decompression device and also has a function as a refrigerant circuit switching device that switches a refrigerant circuit of the refrigerant circulating in the cycle.
 室内蒸発器18は、冷房モード時及び除湿暖房モード時に、冷却用熱交換器として機能する。即ち、室内蒸発器18は、冷房モード時及び除湿暖房モード時に、第2膨張弁15bから流出した冷媒と室内凝縮器12通過前の送風空気とを熱交換させ、本開示における蒸発器として機能する。室内蒸発器18では、第2膨張弁15bにて減圧された冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する。室内蒸発器18は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12の送風空気流れ上流側に配置されている。 The indoor evaporator 18 functions as a cooling heat exchanger in the cooling mode and the dehumidifying heating mode. That is, the indoor evaporator 18 exchanges heat between the refrigerant flowing out of the second expansion valve 15b and the blown air before passing through the indoor condenser 12 in the cooling mode and the dehumidifying heating mode, and functions as an evaporator in the present disclosure. . In the indoor evaporator 18, the blown air is cooled by evaporating the refrigerant decompressed by the second expansion valve 15 b and exerting an endothermic action. The indoor evaporator 18 is arranged in the casing 31 of the indoor air conditioning unit 30 on the upstream side of the air flow of the indoor condenser 12.
 室内蒸発器18の冷媒出口には、蒸発圧力調整弁19の流入口側が接続されている。蒸発圧力調整弁19は、室内蒸発器18の着霜(フロスト)を抑制するために、室内蒸発器18における冷媒蒸発圧力(即ち、低圧側冷媒圧力)を着霜抑制圧力以上に調整する機能を果たす。換言すると、蒸発圧力調整弁19は、室内蒸発器18における冷媒蒸発温度を予め定められた着霜抑制温度以上に調整する機能を果たす。当該蒸発圧力調整弁19の具体的構成については、後に図面を参照しつつ詳細に説明する。 The inlet side of the evaporation pressure adjusting valve 19 is connected to the refrigerant outlet of the indoor evaporator 18. The evaporation pressure adjusting valve 19 has a function of adjusting the refrigerant evaporation pressure (that is, the low-pressure side refrigerant pressure) in the indoor evaporator 18 to be equal to or higher than the frosting suppression pressure in order to suppress frost formation (frost) of the indoor evaporator 18. Fulfill. In other words, the evaporation pressure adjusting valve 19 functions to adjust the refrigerant evaporation temperature in the indoor evaporator 18 to a predetermined frosting suppression temperature or higher. The specific configuration of the evaporation pressure adjusting valve 19 will be described in detail later with reference to the drawings.
 図2に示すように、蒸発圧力調整弁19の出口側には、第4三方継手13dが接続されている。又、前述したように、第4三方継手13dにおける他の流入出口には、第4冷媒通路14dが接続されている。そして、第4三方継手13dのさらに別の流入出口には、アキュムレータ20の入口側が接続されている。 As shown in FIG. 2, a fourth three-way joint 13 d is connected to the outlet side of the evaporation pressure adjusting valve 19. As described above, the fourth refrigerant passage 14d is connected to the other inlet / outlet of the fourth three-way joint 13d. And the inlet side of the accumulator 20 is connected to another inflow / outlet of the fourth three-way joint 13d.
 アキュムレータ20は、内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。アキュムレータ20の気相冷媒出口には、圧縮機11の吸入口側が接続されている。従って、アキュムレータ20は、圧縮機11に液相冷媒が吸入されることを抑制し、圧縮機11における液圧縮を防止する機能を果たす。 The accumulator 20 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 20. Therefore, the accumulator 20 functions to prevent liquid phase refrigerant from being sucked into the compressor 11 and prevent liquid compression in the compressor 11.
 又、第2三方継手13bと第4三方継手13dとを接続する第4冷媒通路14dには、第1開閉弁21が配置されている。第1開閉弁21は、電磁弁によって構成されている。そして、第1開閉弁21は、第4冷媒通路14dを開閉することによって冷媒回路を切り替える冷媒回路切替装置として機能する。第1開閉弁21は、図示しない空調制御装置から出力される制御信号によって、その作動が制御される。 Further, the first on-off valve 21 is disposed in the fourth refrigerant passage 14d that connects the second three-way joint 13b and the fourth three-way joint 13d. The first on-off valve 21 is constituted by an electromagnetic valve. The first on-off valve 21 functions as a refrigerant circuit switching device that switches the refrigerant circuit by opening and closing the fourth refrigerant passage 14d. The operation of the first on-off valve 21 is controlled by a control signal output from an air conditioning control device (not shown).
 同様に、第1三方継手13aと第3三方継手13cとを接続する第2冷媒通路14bには、第2開閉弁22が配置されている。第2開閉弁22は、第1開閉弁21と同様に、電磁弁によって構成されている。第2開閉弁22は、第2冷媒通路14bを開閉することによって冷媒回路を切り替える冷媒回路切替装置として機能する。 Similarly, a second on-off valve 22 is disposed in the second refrigerant passage 14b connecting the first three-way joint 13a and the third three-way joint 13c. Similar to the first on-off valve 21, the second on-off valve 22 is configured by an electromagnetic valve. The second on-off valve 22 functions as a refrigerant circuit switching device that switches the refrigerant circuit by opening and closing the second refrigerant passage 14b.
 次に、冷凍サイクル装置10と共に車両用空調装置1を構成する室内空調ユニット30について説明する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出す。この室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。 Next, the indoor air conditioning unit 30 that constitutes the vehicle air conditioner 1 together with the refrigeration cycle apparatus 10 will be described. The indoor air conditioning unit 30 blows out the blown air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior. The indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
 図2に示すように、室内空調ユニット30は、その外殻を形成するケーシング31内に送風機32、室内蒸発器18、室内凝縮器12等を収容する。ケーシング31は、車室内に送風される送風空気の空気通路を形成する。ケーシング31は、或る程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 As shown in FIG. 2, the indoor air conditioning unit 30 houses a blower 32, an indoor evaporator 18, an indoor condenser 12, and the like in a casing 31 that forms an outer shell thereof. The casing 31 forms an air passage for blown air that is blown into the vehicle interior. The casing 31 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
 ケーシング31内の送風空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する。 The inside / outside air switching device 33 is arranged on the most upstream side of the blast air flow in the casing 31. The inside / outside air switching device 33 switches and introduces inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31.
 具体的には、内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口及び外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させることができる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、図示しない空調制御装置から出力される制御信号によって、その作動が制御される。 Specifically, the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the casing 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, The air volume ratio between the air volume and the outside air volume can be continuously changed. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The operation of the electric actuator is controlled by a control signal output from an air conditioning control device (not shown).
 そして、内外気切替装置33の送風空気流れ下流側には、送風機(ブロワ)32が配置されている。この送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機である。送風機32における遠心多翼ファンの回転数(送風量)は、図示しない空調制御装置から出力される制御電圧によって制御される。 A blower 32 is disposed on the downstream side of the blown air flow of the inside / outside air switching device 33. The blower 32 blows air sucked through the inside / outside air switching device 33 toward the vehicle interior. The blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor. The number of rotations of the centrifugal multiblade fan in the blower 32 (air flow rate) is controlled by a control voltage output from an air conditioning control device (not shown).
 送風機32の送風空気流れ下流側には、室内蒸発器18及び室内凝縮器12が、送風空気流れに対して、この順に配置されている。換言すると、室内蒸発器18は、室内凝縮器12よりも送風空気流れ上流側に配置されている。 On the downstream side of the blower air flow of the blower 32, the indoor evaporator 18 and the indoor condenser 12 are arranged in this order with respect to the blown air flow. In other words, the indoor evaporator 18 is disposed on the upstream side of the blown air flow with respect to the indoor condenser 12.
 又、ケーシング31内には、冷風バイパス通路35が形成されている。冷風バイパス通路35は、室内蒸発器18を通過した送風空気を、室内凝縮器12を迂回させて下流側へ流す為の通路である。 Further, a cold air bypass passage 35 is formed in the casing 31. The cold air bypass passage 35 is a passage for allowing the blown air that has passed through the indoor evaporator 18 to flow downstream by bypassing the indoor condenser 12.
 室内蒸発器18の送風空気流れ下流側であって、且つ、室内凝縮器12の送風空気流れ上流側には、エアミックスドア34が配置されている。エアミックスドア34は、室内蒸発器18通過後の送風空気のうち室内凝縮器12を通過させる風量割合を調整する際に用いられる。従って、車両用空調装置1は、冷風バイパス通路35を全開開度とし、エアミックスドア34により室内凝縮器12へ向かう送風空気の流路を全閉することで、室内凝縮器12における熱交換量を最小値にすることができる。 An air mix door 34 is disposed on the downstream side of the blower air flow of the indoor evaporator 18 and on the upstream side of the blower air flow of the indoor condenser 12. The air mix door 34 is used when adjusting the ratio of the amount of air passing through the indoor condenser 12 in the blown air after passing through the indoor evaporator 18. Therefore, the vehicle air conditioner 1 sets the cold air bypass passage 35 to a fully open position, and fully closes the flow path of the blown air toward the indoor condenser 12 by the air mix door 34, whereby the heat exchange amount in the indoor condenser 12 is reached. Can be minimized.
 又、室内凝縮器12の送風空気流れ下流側には、混合空間が設けられている。混合空間では、室内凝縮器12にて加熱された送風空気と、冷風バイパス通路35を通過して室内凝縮器12にて加熱されていない送風空気とが混合される。更に、ケーシング31の送風空気流れ最下流部には、複数の開口穴が配置されている。混合空間にて混合された送風空気(空調風)は、これらの開口穴を介して、空調対象空間である車室内へ吹き出される。 In addition, a mixing space is provided on the downstream side of the blower air flow of the indoor condenser 12. In the mixing space, the blown air heated by the indoor condenser 12 and the blown air that has passed through the cold air bypass passage 35 and is not heated by the indoor condenser 12 are mixed. Further, a plurality of opening holes are arranged in the most downstream portion of the blown air flow of the casing 31. The blown air (air conditioned air) mixed in the mixing space is blown out into the vehicle interior, which is the air conditioning target space, through these opening holes.
 これらの開口穴としては、具体的に、フェイス開口穴、フット開口穴、デフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出す為の開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出す為の開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出す為の開口穴である。 These opening holes are specifically provided with a face opening hole, a foot opening hole, and a defroster opening hole (all not shown). The face opening hole is an opening hole for blowing air conditioned air toward the upper body of the passenger in the passenger compartment. The foot opening hole is an opening hole for blowing air-conditioned air toward the passenger's feet. The defroster opening hole is an opening hole for blowing conditioned air toward the inner side surface of the vehicle front window glass.
 更に、フェイス開口穴、フット開口穴及びデフロスタ開口穴の送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口及びデフロスタ吹出口(いずれも図示せず)に接続されている。従って、エアミックスドア34が、室内凝縮器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整されて、各吹出口から車室内へ吹き出される空調風の温度が調整される。 Further, the air flow downstream of the face opening hole, the foot opening hole, and the defroster opening hole is respectively connected to the face air outlet, the foot air outlet, and the defroster air outlet ( Neither is shown). Therefore, the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the cold air bypass passage 35, thereby adjusting the temperature of the conditioned air mixed in the mixing space. The temperature of the conditioned air blown from each outlet into the passenger compartment is adjusted.
 つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整部としての機能を果たす。エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動される。この電動アクチュエータは、図示しない空調制御装置から出力される制御信号によって、その作動が制御される。 That is, the air mix door 34 functions as a temperature adjusting unit that adjusts the temperature of the conditioned air blown into the vehicle interior. The air mix door 34 is driven by an electric actuator for driving the air mix door. The operation of the electric actuator is controlled by a control signal output from an air conditioning control device (not shown).
 又、フェイス開口穴、フット開口穴、及びデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。 Further, on the upstream side of the air flow of the face opening hole, foot opening hole, and defroster opening hole, a face door for adjusting the opening area of the face opening hole, a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively. A defroster door (both not shown) for adjusting the opening area of the hole is disposed.
 これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替ドアを構成する。フェイスドア、フットドア、デフロスタドアは、それぞれリンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されており、連動して回転操作される。この電動アクチュエータも、図示しない空調制御装置から出力される制御信号によって、その作動が制御される。 These face doors, foot doors, and defroster doors constitute an outlet mode switching door that switches the outlet mode. The face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other. The operation of this electric actuator is also controlled by a control signal output from an air conditioning control device (not shown).
 吹出口モード切替ドアによって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 Specific examples of the outlet mode switched by the outlet mode switching door include a face mode, a bi-level mode, and a foot mode.
 フェイスモードは、フェイス吹出口を全開にしてフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開にしてフット吹出口から車室内乗員の足元に向けて送風空気を吹き出す吹出口モードである。 The face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passengers in the passenger compartment. The bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment. The foot mode is an air outlet mode in which the foot air outlet is fully opened and blown air is blown from the foot air outlet toward the feet of the passengers in the passenger compartment.
 更に、乗員が操作パネルに設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタモードとすることもできる。デフロスタモードは、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出す吹出口モードである。 Further, the defroster mode can be set by manually operating the blow mode switching switch provided on the operation panel. The defroster mode is a blowout port mode in which the defroster blowout port is fully opened and air is blown from the defroster blowout port to the inner surface of the vehicle front window glass.
 車両用空調装置1は、上述したように、冷房運転、暖房運転、除湿暖房運転に、その運転態様を切り替えることができる。この運転モード毎の具体的な作動や制御については、例えば、特開2012-225637号公報等に記載されている。従って、これらの点についての説明を省略する。 As described above, the vehicle air conditioner 1 can switch the operation mode to the cooling operation, the heating operation, and the dehumidifying heating operation. The specific operation and control for each operation mode is described in, for example, Japanese Patent Application Laid-Open No. 2012-225637. Therefore, the description about these points is omitted.
 次に、当該車両用空調装置1及び冷凍サイクル装置10に配置されている蒸発圧力調整弁19の具体的構成について、図面を参照しつつ詳細に説明する。 Next, a specific configuration of the evaporation pressure adjusting valve 19 disposed in the vehicle air conditioner 1 and the refrigeration cycle apparatus 10 will be described in detail with reference to the drawings.
 上述したように、第1実施形態に係る蒸発圧力調整弁19は、冷凍サイクル装置10における室内蒸発器18と圧縮機11の間に配置されている。当該蒸発圧力調整弁19は、純機械的機構で構成されており、室内蒸発器18における冷媒蒸発圧力P1が予め定めた基準蒸発圧力(即ち、着霜抑制圧力APe)以上となるように調整する機能を果たす。 As described above, the evaporation pressure regulating valve 19 according to the first embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10. The evaporating pressure adjusting valve 19 is constituted by a pure mechanical mechanism, and adjusts so that the refrigerant evaporating pressure P1 in the indoor evaporator 18 becomes equal to or higher than a predetermined reference evaporating pressure (that is, frosting suppression pressure APe). Fulfills the function.
 具体的には、蒸発圧力調整弁19は、アルミ合金等からなる複数の金属部材を組み合わせることによって構成されたボディ40を有しており、このボディ40の内部に形成された冷媒通路上の弁室51に、弁体55を摺動可能に収容して構成されている。 Specifically, the evaporation pressure adjusting valve 19 has a body 40 configured by combining a plurality of metal members made of aluminum alloy or the like, and a valve on a refrigerant passage formed inside the body 40. The valve body 55 is slidably accommodated in the chamber 51.
 当該ボディ40は、蒸発圧力調整弁19の外殻を形成するものであり、本体部41と、シリンダ部45と、カバー52とを有している。図1に示すように、弁室51は、本体部41とシリンダ部45の間に形成されており、開度調整室53は、シリンダ部45とカバー52の間に形成されている。従って、弁室51及び開度調整室53は、ボディ40内部に形成されている。 The body 40 forms an outer shell of the evaporation pressure adjusting valve 19 and includes a main body 41, a cylinder 45, and a cover 52. As shown in FIG. 1, the valve chamber 51 is formed between the main body portion 41 and the cylinder portion 45, and the opening adjustment chamber 53 is formed between the cylinder portion 45 and the cover 52. Accordingly, the valve chamber 51 and the opening adjustment chamber 53 are formed inside the body 40.
 図1に示すように、本体部41には、冷媒流入路42と、冷媒流出路43と、接続空間部44が本体部41内部に形成されている。冷媒流入路42は、当該本体部41の一側面から直線状に伸びるように形成されており、室内蒸発器18からの冷媒が流入する流路である。 As shown in FIG. 1, the main body 41 has a refrigerant inflow path 42, a refrigerant outflow path 43, and a connection space 44 formed inside the main body 41. The refrigerant inflow path 42 is formed so as to extend linearly from one side surface of the main body 41 and is a flow path into which the refrigerant from the indoor evaporator 18 flows.
 冷媒流出路43は、冷媒流入路42と略直交する方向へ直線状に伸びるように形成されており、アキュムレータ20を介して、圧縮機11の吸入口側へ向かって冷媒が流出する流路である。 The refrigerant outflow passage 43 is formed so as to extend linearly in a direction substantially orthogonal to the refrigerant inflow passage 42, and is a passage through which the refrigerant flows out toward the suction port side of the compressor 11 via the accumulator 20. is there.
 そして、接続空間部44は、当該本体部41の内部において、冷媒流入路42と冷媒流出路43の両方に接続するように形成されている。従って、冷媒流入路42から流入した冷媒は、接続空間部44を介して、冷媒流出路43から圧縮機11へ向かって流出する。当該接続空間部44は、冷媒流入路42が形成された本体部41の側面と対向する面を開放して形成されている。 The connection space 44 is formed so as to be connected to both the refrigerant inflow path 42 and the refrigerant outflow path 43 inside the main body 41. Accordingly, the refrigerant flowing in from the refrigerant inflow passage 42 flows out from the refrigerant outflow passage 43 toward the compressor 11 through the connection space 44. The connection space 44 is formed by opening a surface facing the side surface of the main body 41 where the refrigerant inflow passage 42 is formed.
 シリンダ部45は、本体部41における冷媒流入路42形成面と逆側から接続空間部44内に配置されており、略円筒形状に形成された筒状部46を有している。シリンダ部45は、接続空間部44内部において、筒状部46の先端部が冷媒流入路42側の内壁面に密着するようにカシメ付けられて配置される。 The cylinder part 45 is disposed in the connection space part 44 from the opposite side of the main body part 41 from the surface where the refrigerant inflow passage 42 is formed, and has a cylindrical part 46 formed in a substantially cylindrical shape. The cylinder portion 45 is disposed in the connection space portion 44 by being crimped so that the tip end portion of the cylindrical portion 46 is in close contact with the inner wall surface on the refrigerant inflow path 42 side.
 そして、筒状部46には、複数の連通穴47が形成されている。各連通穴47は、筒状部46を厚み方向に貫通するように開口しており、筒状部46の内部空間と、接続空間部44内における筒状部46外部の空間とを連通している。 A plurality of communication holes 47 are formed in the tubular portion 46. Each communication hole 47 opens so as to penetrate the tubular portion 46 in the thickness direction, and communicates the internal space of the tubular portion 46 with the space outside the tubular portion 46 in the connection space portion 44. Yes.
 従って、冷媒流入路42から筒状部46の内部空間に流入した冷媒は、複数の連通穴47を介して、冷媒流出路43へ流出する。当該蒸発圧力調整弁19では、接続空間部44において、シリンダ部45の筒状部46内部に形成される円柱状の空間が弁室51として機能する。 Therefore, the refrigerant that has flowed into the internal space of the cylindrical portion 46 from the refrigerant inflow path 42 flows out to the refrigerant outflow path 43 through the plurality of communication holes 47. In the evaporation pressure adjusting valve 19, a cylindrical space formed inside the cylindrical portion 46 of the cylinder portion 45 functions as the valve chamber 51 in the connection space portion 44.
 シリンダ部45における筒状部46と逆側には、凹部49が形成されている。当該凹部49は、冷媒流入路42側に向かって窪んでおり、その内部に円柱状の空間を形成する。当該凹部49は、円筒形状をなす筒状部46の中心軸と同軸上に形成されている。 A concave portion 49 is formed on the cylinder portion 45 on the opposite side to the cylindrical portion 46. The concave portion 49 is recessed toward the refrigerant inflow path 42 side, and forms a cylindrical space inside thereof. The concave portion 49 is formed coaxially with the central axis of the cylindrical portion 46 having a cylindrical shape.
 又、凹部49の内部には、挿通穴48が形成されている。当該挿通穴48は、シリンダ部45において、筒状部46内側の空間と凹部49内側の空間とを接続しており、筒状部46及び凹部49の中心軸に沿って直線状に伸びるように形成されている。図1に示すように、当該挿通穴48には、後述する弁体55の小径部60が挿通される。 Further, an insertion hole 48 is formed in the recess 49. The insertion hole 48 connects the space inside the cylindrical portion 46 and the space inside the concave portion 49 in the cylinder portion 45, and extends linearly along the central axis of the cylindrical portion 46 and the concave portion 49. Is formed. As shown in FIG. 1, a small diameter portion 60 of a valve body 55 described later is inserted through the insertion hole 48.
 又、シリンダ部45の外周面には、パッキン50が配置されている。当該パッキン50は、本体部41の接続空間部44内壁面とシリンダ部45の外周面との間に位置し、冷媒の漏出を防止している。 A packing 50 is disposed on the outer peripheral surface of the cylinder portion 45. The packing 50 is located between the inner wall surface of the connection space portion 44 of the main body portion 41 and the outer peripheral surface of the cylinder portion 45 and prevents leakage of the refrigerant.
 図1に示すように、当該蒸発圧力調整弁19の弁室51は、本体部41の接続空間部44において、シリンダ部45の筒状部46における内部空間によって形成される。即ち、弁室51は、本体部41とシリンダ部45によってボディ40内部に形成される。 As shown in FIG. 1, the valve chamber 51 of the evaporation pressure regulating valve 19 is formed by an internal space in the cylindrical portion 46 of the cylinder portion 45 in the connection space portion 44 of the main body portion 41. That is, the valve chamber 51 is formed in the body 40 by the main body portion 41 and the cylinder portion 45.
 そして、カバー52は、シリンダ部45の凹部49を覆うように配置されている。当該蒸発圧力調整弁19においては、シリンダ部45の凹部49を覆うようにカバー52を配置することによって、蒸発圧力調整弁19の開度を調整する為の開度調整室53が形成される。 The cover 52 is disposed so as to cover the concave portion 49 of the cylinder portion 45. In the evaporation pressure adjusting valve 19, an opening adjustment chamber 53 for adjusting the opening of the evaporation pressure adjusting valve 19 is formed by arranging a cover 52 so as to cover the concave portion 49 of the cylinder portion 45.
 当該開度調整室53は凹部49の一部を含んでいる為、挿通穴48を介して、弁室51と連通している。換言すると、開度調整室53は、シリンダ部45を介して、弁室51に対して隣接しており、挿通穴48を有している。 Since the opening adjusting chamber 53 includes a part of the recess 49, the opening adjusting chamber 53 communicates with the valve chamber 51 through the insertion hole 48. In other words, the opening adjustment chamber 53 is adjacent to the valve chamber 51 through the cylinder portion 45 and has the insertion hole 48.
 カバー52には、大気導入孔54が形成されており、蒸発圧力調整弁19外部と開度調整室53内部とを連通している。従って、当該大気導入孔54は、蒸発圧力調整弁19外部の大気を開度調整室53内部に導入する機能を果たす。 The cover 52 is formed with an air introduction hole 54 and communicates the outside of the evaporating pressure adjusting valve 19 and the inside of the opening adjusting chamber 53. Therefore, the atmosphere introduction hole 54 functions to introduce the atmosphere outside the evaporation pressure adjustment valve 19 into the opening degree adjustment chamber 53.
 開度調整室53内に導入された大気は、前記蒸発圧力調整弁19における冷媒流路の開度を決定する為の参照気体として機能し、開度調整室53内に参照圧を発生させる。従って、当該蒸発圧力調整弁19における参照圧は大気圧である。 The atmosphere introduced into the opening adjustment chamber 53 functions as a reference gas for determining the opening of the refrigerant flow path in the evaporation pressure adjustment valve 19 and generates a reference pressure in the opening adjustment chamber 53. Therefore, the reference pressure in the evaporation pressure adjusting valve 19 is atmospheric pressure.
 弁体55は、弁室51内部において、冷媒流入路42側の冷媒圧力(即ち、室内蒸発器18の冷媒蒸発圧力P1)を受けて、筒状部46等の中心軸に沿った方向に摺動可能に配置されている。図1に示すように、当該弁体55は、筒状部46における複数の連通穴47を閉塞可能な大径部56と、当該大径部56から伸びる軸状の小径部60とを有しており、いわゆるスプール弁状に形成されている。 In the valve chamber 51, the valve body 55 receives the refrigerant pressure on the refrigerant inflow path 42 side (that is, the refrigerant evaporation pressure P <b> 1 of the indoor evaporator 18), and slides in the direction along the central axis of the cylindrical portion 46 and the like. It is arranged to be movable. As shown in FIG. 1, the valve body 55 has a large-diameter portion 56 capable of closing the plurality of communication holes 47 in the tubular portion 46, and an axial small-diameter portion 60 extending from the large-diameter portion 56. It is formed in a so-called spool valve shape.
 大径部56は、有底円筒状(カップ状)の金属部材で形成されており、周壁部57を有している。当該周壁部57は、弁室51内部において、筒状部46の内壁面に沿って配置される。そして、当該大径部56の外径寸法は、シリンダ部45における筒状部46の内径寸法に対して隙間バメの寸法関係となっている。 The large-diameter portion 56 is formed of a bottomed cylindrical (cup-shaped) metal member and has a peripheral wall portion 57. The peripheral wall portion 57 is disposed along the inner wall surface of the tubular portion 46 inside the valve chamber 51. The outer diameter dimension of the large-diameter portion 56 has a dimensional relationship of the clearance fit with respect to the inner diameter dimension of the cylindrical portion 46 in the cylinder portion 45.
 従って、弁室51内部において、弁体55の大径部56が最も冷媒流入路42側に位置する場合に、周壁部57によって筒状部46の各連通穴47の開口面積を小さくして、冷媒流入路42から冷媒流出路43へ向かう冷媒の流れを少なくすることができる。 Therefore, in the valve chamber 51, when the large diameter portion 56 of the valve body 55 is located closest to the refrigerant inflow passage 42 side, the opening area of each communication hole 47 of the cylindrical portion 46 is reduced by the peripheral wall portion 57, The flow of refrigerant from the refrigerant inflow path 42 toward the refrigerant outflow path 43 can be reduced.
 又、弁室51内部において、弁体55の大径部56が最も開度調整室53側に位置する場合には、周壁部57によって筒状部46の各連通穴47の開口面積を大きくして、冷媒流入路42から冷媒流出路43へ向かう冷媒の流れを多くすることができる。即ち、当該蒸発圧力調整弁19は、弁室51内において、筒状部46等の中心軸に沿った方向へ弁体55を摺動させることで、冷媒流路の開度を調整することができる。 Further, in the valve chamber 51, when the large diameter portion 56 of the valve body 55 is located closest to the opening adjustment chamber 53 side, the opening area of each communication hole 47 of the cylindrical portion 46 is increased by the peripheral wall portion 57. Thus, the refrigerant flow from the refrigerant inflow path 42 to the refrigerant outflow path 43 can be increased. That is, the evaporation pressure adjusting valve 19 can adjust the opening degree of the refrigerant flow path by sliding the valve body 55 in the valve chamber 51 in the direction along the central axis of the cylindrical portion 46 and the like. it can.
 そして、大径部56には、均圧孔58が形成されており、有底円筒状に形成された大径部56の内部と、弁室51における他の部分(即ち、開度調整室53側の空間)とを連通している。当該均圧孔58は、弁室51内部における冷媒の圧力を均一にしている。冷媒流出路43側にあたる周壁部57には、オイル戻し穴59が形成されている。冷媒に含まれている冷凍機油の一部は、このオイル戻し穴59を介して冷媒流れ上流側に戻される。 A pressure equalizing hole 58 is formed in the large-diameter portion 56, and the inside of the large-diameter portion 56 formed in a bottomed cylindrical shape and other portions in the valve chamber 51 (that is, the opening adjustment chamber 53). Side space). The pressure equalizing hole 58 makes the pressure of the refrigerant in the valve chamber 51 uniform. An oil return hole 59 is formed in the peripheral wall portion 57 corresponding to the refrigerant outflow passage 43 side. A part of the refrigerating machine oil contained in the refrigerant is returned to the upstream side of the refrigerant flow through the oil return hole 59.
 そして、小径部60は、有底円筒状の大径部56における底面部分から開度調整室53側に向かって伸びる軸状に形成されている。当該小径部60は、筒状部46等の中心軸に沿って伸びる円柱状に形成されており、挿通穴48を挿通して配置される。 The small diameter portion 60 is formed in a shaft shape extending from the bottom surface portion of the bottomed cylindrical large diameter portion 56 toward the opening adjustment chamber 53 side. The small-diameter portion 60 is formed in a columnar shape extending along the central axis of the cylindrical portion 46 and the like, and is disposed through the insertion hole 48.
 小径部60の外径寸法は、挿通穴48の内径寸法に対して隙間バメの寸法関係となっている。小径部60等の中心軸に鉛直な断面に関して、小径部60の断面積は、大径部56の断面積(即ち、有底筒状の底部にあたる断面積)よりも小さく形成されている。 The outer diameter dimension of the small-diameter portion 60 has a dimensional relationship with the clearance fit with respect to the inner diameter dimension of the insertion hole 48. Regarding the cross section perpendicular to the central axis of the small diameter portion 60 or the like, the cross sectional area of the small diameter portion 60 is formed smaller than the cross sectional area of the large diameter portion 56 (that is, the cross sectional area corresponding to the bottom of the bottomed cylindrical shape).
 この小径部60の外周面には、Oリング71が配置されている。Oリング71は、ニトリルゴムやエチレンプロピレンゴム等によって形成されており、小径部60の外周面と挿通穴48の内壁面との間を閉塞するように配置される。従って、Oリング71は、挿通穴48を介した弁室51内からの冷媒の流れを遮断することができ、弁室51から開度調整室53への冷媒の漏出を抑制することができる。 An O-ring 71 is disposed on the outer peripheral surface of the small diameter portion 60. The O-ring 71 is formed of nitrile rubber, ethylene propylene rubber, or the like, and is disposed so as to block between the outer peripheral surface of the small diameter portion 60 and the inner wall surface of the insertion hole 48. Therefore, the O-ring 71 can block the flow of the refrigerant from the valve chamber 51 through the insertion hole 48, and can suppress the leakage of the refrigerant from the valve chamber 51 to the opening degree adjustment chamber 53.
 又、Oリング71は、小径部60の外周面と挿通穴48の内壁面との間において、冷媒と接触するように配置される。従って、当該蒸発圧力調整弁19によれば、Oリング71における冷媒透過面積を充分に小さくすることができ、ゴム特有の問題である冷媒透過量を低く抑えることができる。即ち、Oリング71は、本開示におけるシール部材として機能する。 Further, the O-ring 71 is disposed between the outer peripheral surface of the small diameter portion 60 and the inner wall surface of the insertion hole 48 so as to come into contact with the refrigerant. Therefore, according to the evaporation pressure adjusting valve 19, the refrigerant permeation area in the O-ring 71 can be sufficiently reduced, and the refrigerant permeation amount, which is a problem specific to rubber, can be suppressed to a low level. That is, the O-ring 71 functions as a seal member in the present disclosure.
 そして、開度調整室53の内部には、コイルスプリング61が配置されている。コイルスプリング61は、弁体55の変位方向に延びる円筒コイルバネであり、ステンレス鋼によって構成されている。 Further, a coil spring 61 is disposed inside the opening adjustment chamber 53. The coil spring 61 is a cylindrical coil spring extending in the displacement direction of the valve body 55 and is made of stainless steel.
 このコイルスプリング61の一端部は、挿通穴48を挿通して開度調整室53内に突出した小径部60の先端に取り付けられている。一方、コイルスプリング61の他端部は、開度調整室53において挿通穴48と対向する位置に配置された調整ネジ62の先端に取り付けられている。 One end of the coil spring 61 is attached to the tip of a small diameter portion 60 that is inserted through the insertion hole 48 and protrudes into the opening adjustment chamber 53. On the other hand, the other end of the coil spring 61 is attached to the tip of an adjustment screw 62 disposed at a position facing the insertion hole 48 in the opening adjustment chamber 53.
 従って、当該コイルスプリング61は、弁体55を閉弁方向(即ち、冷媒流入路42側に変位する方向)に付勢する荷重をかけており、本開示における弾性部材として機能している。尚、コイルスプリング61が弁体55を付勢する荷重は、初期荷重を含めて調整ネジ62によって調整することができる。 Therefore, the coil spring 61 applies a load that biases the valve body 55 in the valve closing direction (that is, the direction in which the valve body 55 is displaced toward the refrigerant inflow path 42), and functions as an elastic member in the present disclosure. Note that the load by which the coil spring 61 urges the valve body 55 can be adjusted by the adjusting screw 62 including the initial load.
 次に、このように構成された蒸発圧力調整弁19の作動について図面を参照しつつ説明する。図1に示すように、弁室51内において、弁体55が軸方向一方側(即ち、冷媒流入路42側)にあたる閉方向へ変位して周壁部57の先端が弁室51の内壁面に当接している状態では、連通穴47が弁体55の周壁によって閉塞される。従って、この場合、冷媒流入路42と冷媒流出路43の連通が遮断される。 Next, the operation of the evaporation pressure adjusting valve 19 configured as described above will be described with reference to the drawings. As shown in FIG. 1, in the valve chamber 51, the valve body 55 is displaced in the closing direction corresponding to one side in the axial direction (that is, the refrigerant inflow passage 42 side) and the tip of the peripheral wall portion 57 is brought to the inner wall surface of the valve chamber 51. In the contact state, the communication hole 47 is closed by the peripheral wall of the valve body 55. Therefore, in this case, the communication between the refrigerant inflow path 42 and the refrigerant outflow path 43 is blocked.
 この図1に示す状態から、弁体55が軸方向他方側(即ち、開度調整室53側)にあたる開方向に変位して変位量Lが増加すると、連通穴47が弁体55の周壁部57から露出していく。これにより、当該蒸発圧力調整弁19では、冷媒流入路42側と冷媒流出路43側が連通穴47を介して連通し、冷媒流入路42側から冷媒流出路43側へ向かう冷媒の流れが生じる。 From the state shown in FIG. 1, when the valve body 55 is displaced in the opening direction corresponding to the other side in the axial direction (that is, the opening adjustment chamber 53 side) and the displacement amount L increases, the communication hole 47 becomes the peripheral wall portion of the valve body 55. It will be exposed from 57. Thereby, in the evaporating pressure adjusting valve 19, the refrigerant inflow path 42 side and the refrigerant outflow path 43 side communicate with each other through the communication hole 47, and the refrigerant flows from the refrigerant inflow path 42 side to the refrigerant outflow path 43 side.
 そして、弁室51内部における弁体55の変位量Lが増加していくと、連通穴47のうち周壁部57から露出する部分の面積が増加していく。第1実施形態に係る蒸発圧力調整弁19においては、弁室51内にて弁体55を変位させることによって、当該蒸発圧力調整弁19内における冷媒通路面積を変化させ、室内蒸発器18を流通する冷媒流量及び冷媒蒸発圧力P1を調整している。 Then, as the displacement amount L of the valve body 55 inside the valve chamber 51 increases, the area of the portion exposed from the peripheral wall portion 57 in the communication hole 47 increases. In the evaporation pressure adjusting valve 19 according to the first embodiment, the valve body 55 is displaced in the valve chamber 51, thereby changing the refrigerant passage area in the evaporation pressure adjusting valve 19 and flowing through the indoor evaporator 18. The refrigerant flow rate and the refrigerant evaporation pressure P1 are adjusted.
 ここで、蒸発圧力調整弁19の弁室51内における弁体55の変位は、弁体55に作用する力によって決定される。当該蒸発圧力調整弁19において、弁体55は、冷媒流入路42側の冷媒圧力(即ち、室内蒸発器18における冷媒蒸発圧力P1)と、冷媒流出路43側の冷媒圧力(即ち、圧縮機11の吸入側冷媒圧力)と、コイルスプリング61による荷重と、開度調整室53内の参照気体の圧力(即ち、大気圧)を受けている。この内、冷媒流出路43側の冷媒圧力は、弁体55の軸方向と直交する方向に作用している為、弁体55の軸方向への変位に寄与していない。 Here, the displacement of the valve body 55 in the valve chamber 51 of the evaporation pressure adjusting valve 19 is determined by the force acting on the valve body 55. In the evaporation pressure regulating valve 19, the valve body 55 includes a refrigerant pressure on the refrigerant inflow path 42 side (that is, a refrigerant evaporation pressure P <b> 1 in the indoor evaporator 18) and a refrigerant pressure on the refrigerant outflow path 43 side (that is, the compressor 11). The suction side refrigerant pressure), the load by the coil spring 61, and the pressure of the reference gas in the opening adjustment chamber 53 (ie, atmospheric pressure). Among these, the refrigerant pressure on the refrigerant outflow passage 43 side acts in a direction orthogonal to the axial direction of the valve body 55 and therefore does not contribute to the displacement of the valve body 55 in the axial direction.
 即ち、第1実施形態に係る蒸発圧力調整弁19において、弁体55は、弁体55に対して軸方向へ作用するこれらの荷重が釣り合う位置に変位し、蒸発圧力調整弁19内の冷媒通路面積が調整される。より具体的には、弁体55が軸方向に受ける荷重の釣り合いは、以下数式F1で表現することができる。
P1×As=Ks×L+F0+P0×As…(F1)
 ここで、P1は冷媒流入路42側の冷媒圧力(即ち、室内蒸発器18における冷媒蒸発圧力P1)であり、P0は開度調整室53内における参照気体の圧力(即ち、大気圧)、Asは弁体55の小径部60の受圧面積、Ksはコイルスプリング61のバネ定数、Lは弁体55の変位量、F0は調整ネジ62によって調整されたコイルスプリング61の初期荷重である。
That is, in the evaporation pressure adjusting valve 19 according to the first embodiment, the valve body 55 is displaced to a position where these loads acting in the axial direction with respect to the valve body 55 are balanced, and the refrigerant passage in the evaporation pressure adjusting valve 19 The area is adjusted. More specifically, the balance of the load that the valve body 55 receives in the axial direction can be expressed by the following formula F1.
P1 × As = Ks × L + F0 + P0 × As (F1)
Here, P1 is the refrigerant pressure on the refrigerant inflow path 42 side (that is, the refrigerant evaporation pressure P1 in the indoor evaporator 18), P0 is the pressure of the reference gas (that is, atmospheric pressure) in the opening adjustment chamber 53, and As. Is a pressure receiving area of the small diameter portion 60 of the valve body 55, Ks is a spring constant of the coil spring 61, L is a displacement amount of the valve body 55, and F0 is an initial load of the coil spring 61 adjusted by the adjusting screw 62.
 この数式F1を変形すると、以下数式F2のように表現することができる。
P1=Ks/As×L+F0/As+P0…(F2)
 この数式F2によれば、冷媒流入路42側の冷媒圧力(即ち、冷媒蒸発圧力P1)は、変位量Lの増加に伴って増加することが判る。又、上述したように、変位量Lの増加に伴って蒸発圧力調整弁19内の冷媒通路面積が増加する為、室内蒸発器18を流通する冷媒流量も増加する。
By transforming the formula F1, it can be expressed as the following formula F2.
P1 = Ks / As × L + F0 / As + P0 (F2)
According to this formula F2, it can be seen that the refrigerant pressure on the refrigerant inflow path 42 side (that is, the refrigerant evaporation pressure P1) increases as the displacement amount L increases. Further, as described above, as the displacement amount L increases, the refrigerant passage area in the evaporation pressure adjusting valve 19 increases, so the flow rate of refrigerant flowing through the indoor evaporator 18 also increases.
 従って、第1実施形態に係る蒸発圧力調整弁19は、室内蒸発器18を流通する冷媒流量(蒸発圧力調整弁19を流通する冷媒流量)の増加に伴って、冷媒流入路42側の冷媒圧力(即ち、冷媒蒸発圧力P1)を上昇させる構成になっている。つまり、当該蒸発圧力調整弁19は、冷媒流入路42側の冷媒圧力の上昇に比例して弁体55の変位量Lが増加し、冷媒流入路42の冷媒圧力の上昇に伴って蒸発圧力調整弁19内の冷媒通路面積が増加する構成になっている。 Therefore, the evaporating pressure adjusting valve 19 according to the first embodiment is configured so that the refrigerant pressure on the refrigerant inflow path 42 side increases as the refrigerant flow rate flowing through the indoor evaporator 18 (the refrigerant flow rate flowing through the evaporating pressure adjusting valve 19) increases. In other words, the refrigerant evaporating pressure P1 is increased. That is, the evaporation pressure adjusting valve 19 increases the displacement amount L of the valve body 55 in proportion to the increase in the refrigerant pressure on the refrigerant inflow passage 42 side, and adjusts the evaporation pressure as the refrigerant pressure in the refrigerant inflow passage 42 increases. The refrigerant passage area in the valve 19 is increased.
 尚、当該蒸発圧力調整弁19の弁体55においては、小径部60の受圧面積は、大径部56の受圧面積に対して、蒸発圧力調整弁19における圧力制御に支障のない範囲で可能な限り小さく設定されている。具体的には、小径部60の受圧面積を、大径部56の受圧面積の0.15倍~0.2倍程度に設定している。このように設定することによって、蒸発圧力調整弁19による安定した圧力制御を実現しつつ、コイルスプリング61による荷重を従来よりも小さくすることができる。 In the valve body 55 of the evaporation pressure adjusting valve 19, the pressure receiving area of the small diameter portion 60 can be within a range that does not hinder the pressure control in the evaporation pressure adjusting valve 19 with respect to the pressure receiving area of the large diameter portion 56. It is set as small as possible. Specifically, the pressure receiving area of the small diameter portion 60 is set to about 0.15 to 0.2 times the pressure receiving area of the large diameter portion 56. By setting in this way, the load by the coil spring 61 can be made smaller than before while realizing stable pressure control by the evaporation pressure regulating valve 19.
 又、当該蒸発圧力調整弁19では、冷媒流入路42側の冷媒圧力を受ける大径部56の受圧面積は、冷媒流入路42の流路面積の1.3倍よりも大きく設定されている。このように設定することで、蒸発圧力調整弁19は、弁体55の変位量Lを低減して、弁体55の変位に伴うOリング71の摩耗を抑制することができる。 Further, in the evaporation pressure regulating valve 19, the pressure receiving area of the large diameter portion 56 that receives the refrigerant pressure on the refrigerant inflow path 42 side is set to be larger than 1.3 times the flow area of the refrigerant inflow path 42. By setting in this way, the evaporation pressure adjusting valve 19 can reduce the displacement amount L of the valve body 55 and suppress the wear of the O-ring 71 due to the displacement of the valve body 55.
 続いて、このように構成された蒸発圧力調整弁19における冷媒蒸発圧力P1の制御特性と、他の方式の蒸発圧力調整弁における制御特性との比較例を、図3を参照しつつ説明する。 Subsequently, a comparative example of the control characteristic of the refrigerant evaporation pressure P1 in the evaporation pressure adjusting valve 19 configured as described above and the control characteristic of another type of evaporation pressure adjusting valve will be described with reference to FIG.
 尚、図3に示すグラフにおいて、P1は、第1実施形態に係る蒸発圧力調整弁19における冷媒蒸発圧力P1と冷媒流量との関係を示している。そして、Paは、ベローズ式の蒸発圧力調整弁による冷媒蒸発圧力と冷媒流量との関係を示し、Pbは、ダイアフラム式の蒸発圧力調整弁による冷媒蒸発圧力と冷媒流量との関係を示している。 In addition, in the graph shown in FIG. 3, P1 has shown the relationship between the refrigerant | coolant evaporation pressure P1 and the refrigerant | coolant flow volume in the evaporation pressure regulating valve 19 which concerns on 1st Embodiment. Pa indicates the relationship between the refrigerant evaporation pressure and the refrigerant flow rate by the bellows type evaporation pressure adjustment valve, and Pb indicates the relationship between the refrigerant evaporation pressure and the refrigerant flow rate by the diaphragm type evaporation pressure adjustment valve.
 そして、図3における着霜抑制圧力APeは、最小流量時において、蒸発器における冷媒蒸発温度が0℃となる場合の冷媒蒸発圧力を示す。即ち、着霜抑制圧力APeは、本開示における基準蒸発圧力に相当する。 3 indicates the refrigerant evaporation pressure when the refrigerant evaporation temperature in the evaporator is 0 ° C. at the minimum flow rate. That is, the frosting suppression pressure APe corresponds to the reference evaporation pressure in the present disclosure.
 先ず、この比較例におけるベローズ式の蒸発圧力調整弁は、ボディ内部の冷媒流路における開度を調整する弁体と、内部に参照気体が封入されたベローズと、ベローズ内部に配置されたスプリングとを有して構成されており、例えば、特開2015-17764号公報に記載された蒸発圧力調整弁と略同様の構成を有しているものとする。 First, a bellows type evaporation pressure adjusting valve in this comparative example includes a valve body that adjusts the opening degree in the refrigerant flow path inside the body, a bellows in which a reference gas is sealed, and a spring disposed inside the bellows. For example, it is assumed that it has substantially the same configuration as the evaporation pressure adjusting valve described in Japanese Patent Application Laid-Open No. 2015-17764.
 当該ベローズ式の蒸発圧力調整弁において、弁体は、蒸発器側からの流入路側の冷媒圧力と、参照気体の圧力と、ベローズ自身の弾性力と、スプリングの弾性力との合力とのつり合いによって変位し、蒸発圧力調整弁における弁開度が決定される。このベローズ式の蒸発圧力調整弁の弁体における荷重の釣り合いは、弁体の受圧面積とベローズの受圧面積が等しいとすると、以下数式F3で表される。
P1×Av=Ksa×L+Kbw×L+F0+Fr…(F3)
 ここで、P1は流入路側の冷媒圧力であり、Avは弁体の受圧面積、Ksaはスプリングのバネ定数、Kbwはベローズ自身のバネ定数、Lは弁体の変位量、F0はスプリング等の初期荷重、Frはベローズ内に封入されている参照気体の圧力による荷重である。
In the bellows-type evaporation pressure regulating valve, the valve body is formed by a balance between the refrigerant pressure on the inlet path side from the evaporator side, the pressure of the reference gas, the elastic force of the bellows itself, and the elastic force of the spring. Displacement is performed, and the opening degree of the evaporation pressure adjusting valve is determined. The balance of the load on the valve body of the bellows type evaporation pressure regulating valve is expressed by the following formula F3 when the pressure receiving area of the valve body is equal to the pressure receiving area of the bellows.
P1 × Av = Ksa × L + Kbw × L + F0 + Fr (F3)
Here, P1 is the refrigerant pressure on the inflow path side, Av is the pressure receiving area of the valve body, Ksa is the spring constant of the spring, Kbw is the spring constant of the bellows itself, L is the amount of displacement of the valve body, F0 is the initial value of the spring, etc. The load Fr is a load due to the pressure of the reference gas enclosed in the bellows.
 この数式F3を変形すると、以下数式F4のように表現することができる。
P1=(Ksa+Kbw)/Av×L+F0/Av+Fr/Av…(F4)
この数式F4によれば、ベローズ式の蒸発圧力調整弁において、流入路側の冷媒圧力は、変位量Lの増加に伴って増加する。
By transforming the formula F3, it can be expressed as the following formula F4.
P1 = (Ksa + Kbw) / Av × L + F0 / Av + Fr / Av (F4)
According to Formula F4, in the bellows-type evaporation pressure adjusting valve, the refrigerant pressure on the inflow path side increases as the displacement amount L increases.
 ここで、数式F2と数式F4に関し、変位量Lに対する係数(即ち、圧力勾配)について着目すると、ベローズ式の蒸発圧力調整弁の圧力勾配は、スプリングとベローズ自身の合成バネ定数が影響すること、弁体の受圧面積に対して、蒸発圧力調整弁19における小径部60の受圧面積が十分に小さいことから、冷媒の最大流量時と最小流量時における蒸発器の冷媒蒸発圧力の差が大きくなってしまう。即ち、図3に示すように、ベローズ式の蒸発圧力調整弁の圧力勾配は、蒸発圧力調整弁19の圧力勾配よりも大きくなる。 Here, regarding the formula F2 and the formula F4, when focusing on the coefficient (that is, the pressure gradient) with respect to the displacement L, the pressure gradient of the bellows type evaporation pressure regulating valve is influenced by the combined spring constant of the spring and the bellows itself. Since the pressure receiving area of the small-diameter portion 60 in the evaporation pressure regulating valve 19 is sufficiently small with respect to the pressure receiving area of the valve body, the difference between the refrigerant evaporation pressure of the evaporator at the maximum flow rate and the minimum flow rate becomes large. End up. That is, as shown in FIG. 3, the pressure gradient of the bellows type evaporation pressure adjusting valve is larger than the pressure gradient of the evaporation pressure adjusting valve 19.
 又、ベローズ式の蒸発圧力調整弁の場合、参照気体はベローズ内部に封入されている。そして、ベローズの変位量の増大に伴って、ベローズ内部の容積は小さくなる為、参照気体の圧力は弁体の変位に伴って増大することになる。即ち、この点からも、ベローズ式の蒸発圧力調整弁の圧力勾配は、蒸発圧力調整弁19よりも大きくなる。 Further, in the case of a bellows type evaporation pressure adjusting valve, the reference gas is sealed inside the bellows. As the displacement amount of the bellows increases, the volume inside the bellows decreases, so the pressure of the reference gas increases with the displacement of the valve body. That is, also from this point, the pressure gradient of the bellows type evaporation pressure adjusting valve is larger than that of the evaporation pressure adjusting valve 19.
 次に、この比較例におけるベロフラム式の蒸発圧力調整弁について説明する。当該ベロフラム式の蒸発圧力調整弁は、ボディ内部の冷媒流路における開度を調整する弁体と、参照気体が導入される被覆管と冷媒流路との間を区画するダイアフラムと、前記被覆管の内部に配置されたスプリングとを有して構成されており、例えば、特公昭55-51154号公報に記載された蒸発圧力調整弁と略同様の構成を有している。 Next, the Bellofram type evaporation pressure regulating valve in this comparative example will be described. The bellophram-type evaporation pressure adjusting valve includes a valve body that adjusts an opening degree in a refrigerant flow path inside a body, a diaphragm that partitions between a cladding pipe into which a reference gas is introduced and the refrigerant flow path, and the cladding pipe For example, and has substantially the same configuration as the evaporation pressure adjusting valve described in Japanese Patent Publication No. 55-51154.
 当該ダイアフラム式の蒸発圧力調整弁において、弁体は、蒸発器側からの流入路側の冷媒圧力と、被覆管内に導入されている参照気体の圧力と、スプリングの弾性力とのつり合いによって変位し、蒸発圧力調整弁における弁開度が決定される。このダイアフラム式の蒸発圧力調整弁の弁体における荷重の釣り合いは、弁体の受圧面積とベローズの受圧面積が等しいとすると、以下数式F5で表される。
P1×Abf=Ksb×L+F0+P0×Abf…(F5)
 ここで、P1は流入路側の冷媒圧力であり、Abfはダイアフラムの受圧面積、P0は被覆管内における参照気体の圧力(即ち、大気圧)、Ksbはスプリングのバネ定数、Lは弁体の変位量、F0はスプリング等の初期荷重である。
In the diaphragm type evaporation pressure regulating valve, the valve body is displaced by a balance between the refrigerant pressure on the inflow passage side from the evaporator side, the pressure of the reference gas introduced into the cladding tube, and the elastic force of the spring, The opening degree of the evaporation pressure adjusting valve is determined. The balance of the load on the valve body of the diaphragm type evaporation pressure regulating valve is expressed by the following formula F5 when the pressure receiving area of the valve body and the pressure receiving area of the bellows are equal.
P1 × Abf = Ksb × L + F0 + P0 × Abf (F5)
Here, P1 is the refrigerant pressure on the inflow passage side, Abf is the pressure receiving area of the diaphragm, P0 is the pressure of the reference gas (that is, atmospheric pressure) in the cladding tube, Ksb is the spring constant of the spring, and L is the amount of displacement of the valve body. , F0 is an initial load such as a spring.
 この数式F5を変形すると、以下数式F6のように表現することができる。
P1=Ksb/Abf×L+F0/Abf+P0…(F6)
 この数式F6によれば、ダイアフラム式の蒸発圧力調整弁においても、流入路側の冷媒圧力は、変位量Lの増加に伴って増加する。又、ダイアフラム式の蒸発圧力調整弁においては、参照圧として大気圧が用いられており、数式F6に示すように、当該参照圧は弁体の変位に関わらず一定の値を示す。
By transforming the formula F5, it can be expressed as the following formula F6.
P1 = Ksb / Abf × L + F0 / Abf + P0 (F6)
According to the mathematical formula F6, the refrigerant pressure on the inflow path side increases as the displacement amount L increases even in the diaphragm evaporation pressure regulating valve. In the diaphragm type evaporation pressure regulating valve, atmospheric pressure is used as a reference pressure, and the reference pressure shows a constant value regardless of the displacement of the valve body as shown in Formula F6.
 ここで、数式F4と数式F6に関し、変位量Lに対する係数(即ち、圧力勾配)について着目すると、ダイアフラム式の蒸発圧力調整弁の圧力勾配は、スプリングのバネ定数とダイアフラムの受圧面積が影響する。即ち、ダイアフラム式では、スプリングのバネ定数のみが影響し、ベローズ式では、スプリング及びベローズの合成バネ定数が影響する。 Here, regarding Formula F4 and Formula F6, focusing on the coefficient (ie, pressure gradient) with respect to the displacement L, the pressure gradient of the diaphragm evaporation pressure regulating valve is influenced by the spring constant of the spring and the pressure receiving area of the diaphragm. That is, in the diaphragm type, only the spring constant of the spring is affected, and in the bellows type, the combined spring constant of the spring and the bellows is affected.
 この為、ダイアフラム式の蒸発圧力調整弁では、冷媒の最大流量時と最小流量時における蒸発器の冷媒蒸発圧力の差は、ベローズ式の蒸発圧力調整弁よりも小さくなる。即ち、図3に示すように、ダイアフラム式の蒸発圧力調整弁の圧力勾配は、ベローズ式の蒸発圧力調整弁の圧力勾配よりも小さくなる。 Therefore, in the diaphragm type evaporation pressure adjusting valve, the difference between the refrigerant evaporation pressure of the evaporator at the maximum flow rate and the minimum flow rate of the evaporator is smaller than that of the bellows type evaporation pressure adjusting valve. That is, as shown in FIG. 3, the pressure gradient of the diaphragm type evaporation pressure adjusting valve is smaller than the pressure gradient of the bellows type evaporation pressure adjusting valve.
 上述した数式F2と数式F6とに基づいて、蒸発圧力調整弁19における圧力勾配と、ダイアフラム式の蒸発圧力調整弁の圧力勾配について考察する。蒸発圧力調整弁19の圧力勾配と、ダイアフラム式の蒸発圧力調整弁の圧力勾配は、何れも、弁体を付勢するスプリングのバネ定数を流入路側の冷媒圧力を受ける受圧面積で除算した形で表現される。 Considering the pressure gradient in the evaporating pressure adjusting valve 19 and the pressure gradient of the diaphragm evaporating pressure adjusting valve based on the above-described equations F2 and F6. The pressure gradient of the evaporating pressure adjusting valve 19 and the pressure gradient of the diaphragm evaporating pressure adjusting valve are both obtained by dividing the spring constant of the spring energizing the valve body by the pressure receiving area receiving the refrigerant pressure on the inflow passage side. Expressed.
 ここで、蒸発圧力調整弁19におけるコイルスプリング61のバネ定数は、弁体55の小径部60の受圧面積を大径部56の受圧面積よりも十分に小さくすることで、小さく形成されている。従って、コイルスプリング61のバネ定数は、ダイアフラム式の蒸発圧力調整弁におけるスプリングのバネ定数よりも小さな値を示す。 Here, the spring constant of the coil spring 61 in the evaporation pressure regulating valve 19 is formed small by making the pressure receiving area of the small diameter portion 60 of the valve body 55 sufficiently smaller than the pressure receiving area of the large diameter portion 56. Accordingly, the spring constant of the coil spring 61 is smaller than the spring constant of the spring in the diaphragm type evaporation pressure adjusting valve.
 一方、ダイアフラム式の蒸発圧力調整弁において、ゴム製のダイアフラムは、弁体の変位量を確保するために、その薄膜部分を折り畳んだ構成にする必要がある。この構成上、当該ダイアフラムの受圧面積は、流入路の流路面積よりも大きく形成される。従って、小径部60の受圧面積と比較すると、ダイアフラムの受圧面積よりも非常に大きくなる。 On the other hand, in the diaphragm type evaporation pressure regulating valve, the rubber diaphragm needs to have a configuration in which the thin film portion is folded in order to ensure the displacement amount of the valve body. Due to this configuration, the pressure receiving area of the diaphragm is formed larger than the flow path area of the inflow channel. Therefore, compared with the pressure receiving area of the small diameter portion 60, the pressure receiving area of the diaphragm is much larger.
 このような関係性から、蒸発圧力調整弁19では、冷媒の最大流量時と最小流量時における蒸発器の冷媒蒸発圧力の差は、ダイアフラム式の蒸発圧力調整弁よりも小さくなる。即ち、図3に示すように、蒸発圧力調整弁19の圧力勾配は、ベローズ式の蒸発圧力調整弁の圧力勾配及びダイアフラム式の蒸発圧力調整弁の圧力勾配よりも小さくなる。 Because of this relationship, in the evaporation pressure adjustment valve 19, the difference between the refrigerant evaporation pressure of the evaporator at the maximum flow rate and the minimum flow rate is smaller than that of the diaphragm type evaporation pressure adjustment valve. That is, as shown in FIG. 3, the pressure gradient of the evaporation pressure adjusting valve 19 is smaller than the pressure gradient of the bellows type evaporation pressure adjusting valve and the pressure gradient of the diaphragm type evaporation pressure adjusting valve.
 以上説明したように、第1実施形態に係る蒸発圧力調整弁は、車両用空調装置1の冷凍サイクル装置10において、室内蒸発器18と圧縮機11の間に配置され、室内蒸発器18における冷媒蒸発圧力P1が着霜抑制圧力APe以上となるように調整している。 As described above, the evaporation pressure regulating valve according to the first embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and the refrigerant in the indoor evaporator 18. The evaporating pressure P1 is adjusted to be equal to or higher than the frosting suppression pressure Ape.
 当該蒸発圧力調整弁19は、ボディ40内の弁室51内部に、小径部60及び大径部56を有する弁体55を変位可能に収容しており、冷媒流入路42から冷媒流出路43へむかう冷媒の冷媒流路面積を、弁体55の変位によって調整している。 The evaporating pressure adjusting valve 19 accommodates a valve body 55 having a small diameter portion 60 and a large diameter portion 56 in a valve chamber 51 in the body 40 so as to be displaceable, from the refrigerant inflow passage 42 to the refrigerant outflow passage 43. The area of the refrigerant flow path of the refrigerant is adjusted by the displacement of the valve body 55.
 軸状に形成された小径部60は、挿通穴48を介して、弁室51に隣接する開度調整室53へ伸びており、開度調整室53内に配置されたコイルスプリング61の弾性力及び、開度調整室53に導入された参照気体としての大気の圧力を受けている。 The small-diameter portion 60 formed in a shaft shape extends to the opening adjustment chamber 53 adjacent to the valve chamber 51 through the insertion hole 48, and the elastic force of the coil spring 61 disposed in the opening adjustment chamber 53. And the pressure of the atmosphere as a reference gas introduced into the opening adjustment chamber 53 is received.
 即ち、当該蒸発圧力調整弁19は、弁体55の小径部60にかかる冷媒流入路42側の冷媒圧力と開度調整室53内における参照気体の圧力差と、コイルスプリング61の弾性力によって、冷媒流路の開度を決定して、室内蒸発器18における冷媒蒸発圧力P1を調整することができる。 That is, the evaporation pressure adjusting valve 19 is based on the refrigerant pressure on the refrigerant inflow passage 42 side applied to the small diameter portion 60 of the valve body 55, the pressure difference between the reference gas in the opening adjustment chamber 53, and the elastic force of the coil spring 61. The refrigerant evaporating pressure P1 in the indoor evaporator 18 can be adjusted by determining the opening degree of the refrigerant flow path.
 ここで、弁体55の小径部60は大径部56よりも十分に小さな受圧面積となるように形成されており、開度の決定に他の外力を要しない為、室内蒸発器18における冷媒の最大流量時と最小流量時の冷媒蒸発圧力P1の差を充分に小さくすることができる。 Here, the small-diameter portion 60 of the valve body 55 is formed to have a pressure receiving area sufficiently smaller than that of the large-diameter portion 56, and no other external force is required to determine the opening degree. The difference in refrigerant evaporation pressure P1 between the maximum flow rate and the minimum flow rate can be made sufficiently small.
 又、当該蒸発圧力調整弁19において、冷凍サイクル装置10の冷媒回路外部への冷媒の透過は、挿通穴48の内周面と小径部60の外周面との間を介して発生する可能性がある。この為、当該蒸発圧力調整弁19によれば、シール部材としてのOリング71を配置することによって、弁室51と開度調整室53の間における挿通穴48を介した冷媒の流れを遮断している為、冷凍サイクル装置10の冷媒回路外への冷媒透過を抑制することができる。 Further, in the evaporating pressure adjusting valve 19, the refrigerant permeation to the outside of the refrigerant circuit of the refrigeration cycle apparatus 10 may occur between the inner peripheral surface of the insertion hole 48 and the outer peripheral surface of the small diameter portion 60. is there. For this reason, according to the evaporation pressure adjusting valve 19, the refrigerant flow through the insertion hole 48 between the valve chamber 51 and the opening adjusting chamber 53 is blocked by arranging the O-ring 71 as a seal member. Therefore, refrigerant permeation to the outside of the refrigerant circuit of the refrigeration cycle apparatus 10 can be suppressed.
 このOリング71は、ニトリルゴムやエチレンプロピレンゴム等によって形成されており、小径部60の外周面と挿通穴48の内壁面との間を閉塞するように配置される。従って、Oリング71における冷媒透過面積は、小径部60と挿通穴48の隙間という微小な範囲となる為、当該蒸発圧力調整弁19は、挿通穴48を介した弁室51内からの冷媒の漏出を少なく抑えることができる。 The O-ring 71 is made of nitrile rubber, ethylene propylene rubber, or the like, and is disposed so as to block between the outer peripheral surface of the small diameter portion 60 and the inner wall surface of the insertion hole 48. Therefore, since the refrigerant permeation area in the O-ring 71 is in a very small range of the gap between the small diameter portion 60 and the insertion hole 48, the evaporating pressure adjusting valve 19 has the refrigerant flow from the valve chamber 51 through the insertion hole 48. Leakage can be minimized.
 更に、当該蒸発圧力調整弁19において、開度調整室53には、大気導入孔54を介して、参照気体としての大気を導入するように構成されている。従って、当該蒸発圧力調整弁19によれば、弁体55の変位に際して参照気体の圧力を保つことができ、最大流量時と最小流量時の冷媒蒸発圧力P1の差に対する参照圧の影響をなくすことができる。 Furthermore, the evaporation pressure adjusting valve 19 is configured to introduce the atmosphere as a reference gas into the opening degree adjusting chamber 53 via the atmosphere introducing hole 54. Therefore, according to the evaporation pressure adjusting valve 19, the pressure of the reference gas can be maintained when the valve body 55 is displaced, and the influence of the reference pressure on the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate is eliminated. Can do.
 (第2実施形態)
 続いて、上述した第1実施形態とは異なる第2実施形態について、図4、図5を参照しつつ説明する。第2実施形態に係る蒸発圧力調整弁19は、車両用空調装置1の冷凍サイクル装置10において、室内蒸発器18と圧縮機11の間に配置されており、本開示におけるシール部材として機能する部材の構成及び配置を除いて、基本的に第1実施形態と同様の構成である。従って、以下の説明において、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
(Second Embodiment)
Next, a second embodiment different from the first embodiment described above will be described with reference to FIGS. 4 and 5. The evaporation pressure regulating valve 19 according to the second embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and functions as a seal member in the present disclosure. Except for the configuration and arrangement, the configuration is basically the same as that of the first embodiment. Accordingly, in the following description, the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description is referred to.
 第2実施形態に係る蒸発圧力調整弁19は、冷凍サイクル装置10において、第1実施形態と同様に、室内蒸発器18における冷媒蒸発圧力P1が着霜抑制圧力APe以上となるように調整している。 The evaporation pressure regulating valve 19 according to the second embodiment is adjusted in the refrigeration cycle apparatus 10 so that the refrigerant evaporation pressure P1 in the indoor evaporator 18 is equal to or higher than the frosting suppression pressure APe, as in the first embodiment. Yes.
 図4に示すように、第2実施形態に係る蒸発圧力調整弁19は、ボディ40内の弁室51内部に、小径部60及び大径部56を有する弁体55を変位可能に収容しており、冷媒流入路42から冷媒流出路43へ向かう冷媒の冷媒流路面積を、弁体55の変位によって調整している。 As shown in FIG. 4, the evaporation pressure regulating valve 19 according to the second embodiment accommodates a valve body 55 having a small diameter portion 60 and a large diameter portion 56 in a valve chamber 51 in a body 40 so as to be displaceable. The refrigerant flow area of the refrigerant from the refrigerant inflow path 42 to the refrigerant outflow path 43 is adjusted by the displacement of the valve body 55.
 第2実施形態においても、小径部60は大径部56から伸びる軸状に形成されており、挿通穴48に対して挿通されている。当該小径部60の先端は、挿通穴48を介して、弁室51に隣接する開度調整室53内部へ突出している。開度調整室53内部には、コイルスプリング61が配置されており、大気導入孔54を介して、参照気体としての大気が導入されている。 Also in the second embodiment, the small diameter portion 60 is formed in an axial shape extending from the large diameter portion 56 and is inserted into the insertion hole 48. The tip of the small diameter portion 60 protrudes into the opening degree adjusting chamber 53 adjacent to the valve chamber 51 through the insertion hole 48. A coil spring 61 is arranged inside the opening adjustment chamber 53, and the atmosphere as a reference gas is introduced through the atmosphere introduction hole 54.
 従って、第2実施形態に係る蒸発圧力調整弁19は、弁体55の小径部60にかかる冷媒流入路42側の冷媒圧力と開度調整室53内における参照気体の圧力差と、コイルスプリング61の弾性力によって、冷媒流路の開度を決定して、室内蒸発器18における冷媒蒸発圧力P1を調整することができる。 Therefore, the evaporating pressure adjusting valve 19 according to the second embodiment includes the refrigerant pressure on the refrigerant inflow path 42 side applied to the small diameter portion 60 of the valve body 55 and the pressure difference between the reference gas in the opening adjustment chamber 53 and the coil spring 61. The degree of opening of the refrigerant flow path can be determined by the elastic force, and the refrigerant evaporation pressure P1 in the indoor evaporator 18 can be adjusted.
 図4、図5に示すように、第2実施形態に係る蒸発圧力調整弁19において、開度調整室53内部には、金属製のベローズ72が配置されている。当該ベローズ72は、弁体55の変位方向(ボディの軸方向)に伸縮自在に形成された有底筒状の部材であり、筒状部46や小径部60と同軸上に配置されている。このベローズ72の周面は蛇腹状に形成されており、この蛇腹状の周面によって、ベローズ72の伸縮性を実現している。 As shown in FIGS. 4 and 5, in the evaporation pressure regulating valve 19 according to the second embodiment, a metal bellows 72 is disposed inside the opening degree regulating chamber 53. The bellows 72 is a bottomed cylindrical member formed to be extendable in the displacement direction of the valve body 55 (the axial direction of the body), and is arranged coaxially with the cylindrical portion 46 and the small diameter portion 60. The peripheral surface of the bellows 72 is formed in a bellows shape, and the bellows-like peripheral surface realizes the stretchability of the bellows 72.
 そして、ベローズ72は、有底筒状に形成されたベローズ72の内部空間が挿通穴48を介して、弁室51と接続されるように配置されている。従って、挿通穴48を挿通した小径部60の端部は、有底筒状のベローズ72内部に配置される。そして、ベローズ72の底部は、小径部60の先端部と、開度調整室53内に配置されたコイルスプリング61の一端部の間に配置される。 The bellows 72 is arranged so that the inner space of the bellows 72 formed in a bottomed cylindrical shape is connected to the valve chamber 51 through the insertion hole 48. Therefore, the end portion of the small diameter portion 60 inserted through the insertion hole 48 is disposed inside the bottomed cylindrical bellows 72. And the bottom part of the bellows 72 is arrange | positioned between the front-end | tip part of the small diameter part 60, and the one end part of the coil spring 61 arrange | positioned in the opening degree adjustment chamber 53. FIG.
 図5に示すように、挿通穴48側に位置するベローズ72の端部は、挿通穴48が形成されているシリンダ部45における凹部49に対して接合されている。ベローズ72は、当該ベローズ72の開口端縁が挿通穴48の開口縁よりも径方向外側に位置するように配置されており、当該開口端縁の全周にわたって接続されている。 As shown in FIG. 5, the end portion of the bellows 72 positioned on the insertion hole 48 side is joined to the concave portion 49 in the cylinder portion 45 in which the insertion hole 48 is formed. The bellows 72 is arranged so that the opening edge of the bellows 72 is located radially outside the opening edge of the insertion hole 48 and is connected over the entire circumference of the opening edge.
 第2実施形態に係る蒸発圧力調整弁19において、ベローズ72をこのように配置することによって、挿通穴48を介して弁室51から開度調整室53へ向かう冷媒を、ベローズ72の内部に留めている。即ち、ベローズ72は、本開示におけるシール部材として機能する。 In the evaporation pressure regulating valve 19 according to the second embodiment, by arranging the bellows 72 in this way, the refrigerant traveling from the valve chamber 51 to the opening adjusting chamber 53 through the insertion hole 48 is retained in the bellows 72. ing. That is, the bellows 72 functions as a seal member in the present disclosure.
 以上説明したように、第2実施形態に係る蒸発圧力調整弁19は、車両用空調装置1の冷凍サイクル装置10において、室内蒸発器18と圧縮機11の間に配置され、室内蒸発器18における冷媒蒸発圧力P1が着霜抑制圧力APe以上となるように調整している。 As described above, the evaporation pressure regulating valve 19 according to the second embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and is provided in the indoor evaporator 18. The refrigerant evaporating pressure P1 is adjusted to be equal to or higher than the frosting suppression pressure Ape.
 当該蒸発圧力調整弁19は、シール部材として用いられている部材を除いて、第1実施形態と同様に構成されている。従って、第2実施形態においても、弁体55の小径部60は大径部56よりも十分に小さな受圧面積となるように形成されており、開度の決定に他の外力を要しない。 The evaporating pressure adjusting valve 19 is configured in the same manner as in the first embodiment except for a member used as a sealing member. Therefore, also in the second embodiment, the small diameter portion 60 of the valve body 55 is formed so as to have a pressure receiving area sufficiently smaller than that of the large diameter portion 56, and no other external force is required to determine the opening degree.
 即ち、第2実施形態に係る蒸発圧力調整弁19は、第1実施形態と同様の効果を発揮して、室内蒸発器18における冷媒の最大流量時と最小流量時の冷媒蒸発圧力P1の差を充分に小さくすることができる。 That is, the evaporation pressure adjusting valve 19 according to the second embodiment exhibits the same effect as that of the first embodiment, and the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate in the indoor evaporator 18 is obtained. It can be made sufficiently small.
 又、第2実施形態における開度調整室53の内部においては、有底筒状に形成された金属製のベローズ72が、その内部空間が挿通穴48を介して弁室51に接続された状態で凹部49に接合されている。従って、第2実施形態に係るベローズ72は、挿通穴48を介して弁室51から開度調整室53へ向かう冷媒を、ベローズ72の内部に留めることができ、本開示におけるシール部材として機能する。 Further, in the opening adjustment chamber 53 in the second embodiment, a metal bellows 72 formed in a bottomed cylindrical shape has its internal space connected to the valve chamber 51 through the insertion hole 48. And is joined to the recess 49. Therefore, the bellows 72 according to the second embodiment can keep the refrigerant from the valve chamber 51 to the opening adjustment chamber 53 through the insertion hole 48 inside the bellows 72, and functions as a seal member in the present disclosure. .
 そして、第2実施形態に係る蒸発圧力調整弁19によれば、シール部材としてのベローズ72を配置することによって、弁室51と開度調整室53の間における挿通穴48を介した冷媒の流れを遮断している為、冷凍サイクル装置10の冷媒回路外への冷媒透過を抑制することができる。 And according to the evaporation pressure regulating valve 19 according to the second embodiment, the flow of the refrigerant through the insertion hole 48 between the valve chamber 51 and the opening degree regulating chamber 53 by disposing the bellows 72 as the seal member. Therefore, the permeation of the refrigerant to the outside of the refrigerant circuit of the refrigeration cycle apparatus 10 can be suppressed.
 更に、第2実施形態に係る蒸発圧力調整弁19においても、開度調整室53には、大気導入孔54を介して、参照気体としての大気を導入するように構成されている。従って、第2実施形態においても、弁体55の変位に際して参照気体の圧力を保つことができ、最大流量時と最小流量時の冷媒蒸発圧力P1の差に対する参照圧の影響をなくすことができる。 Furthermore, the evaporation pressure regulating valve 19 according to the second embodiment is also configured to introduce the atmosphere as the reference gas into the opening degree adjusting chamber 53 through the atmosphere introducing hole 54. Therefore, also in the second embodiment, the pressure of the reference gas can be maintained when the valve body 55 is displaced, and the influence of the reference pressure on the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate can be eliminated.
 (第3実施形態)
 続いて、上述した各実施形態とは異なる第3実施形態について、図6、図7を参照しつつ説明する。第3実施形態に係る蒸発圧力調整弁19は、車両用空調装置1の冷凍サイクル装置10において、室内蒸発器18と圧縮機11の間に配置されており、本開示におけるシール部材として機能する部材の構成及び配置を除いて、基本的に上述した実施形態と同様の構成である。従って、第3実施形態の説明においても、上述した実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
(Third embodiment)
Next, a third embodiment different from the above-described embodiments will be described with reference to FIGS. The evaporation pressure regulating valve 19 according to the third embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and functions as a seal member in the present disclosure. Except for the configuration and arrangement, the configuration is basically the same as that of the above-described embodiment. Accordingly, also in the description of the third embodiment, the same reference numerals as those in the above-described embodiment indicate the same configuration, and the preceding description is referred to.
 第3実施形態に係る蒸発圧力調整弁19は、冷凍サイクル装置10において、上述した実施形態と同様に、室内蒸発器18における冷媒蒸発圧力P1が着霜抑制圧力APe以上となるように調整している。 The evaporation pressure adjusting valve 19 according to the third embodiment is adjusted in the refrigeration cycle apparatus 10 so that the refrigerant evaporation pressure P1 in the indoor evaporator 18 is equal to or higher than the frosting suppression pressure APe in the same manner as in the above-described embodiment. Yes.
 図6に示すように、第3実施形態に係る蒸発圧力調整弁19は、ボディ40内の弁室51内部に、小径部60及び大径部56を有する弁体55を変位可能に収容しており、冷媒流入路42から冷媒流出路43へ向かう冷媒の冷媒流路面積を、弁体55の変位によって調整している。 As shown in FIG. 6, the evaporation pressure regulating valve 19 according to the third embodiment accommodates a valve body 55 having a small diameter portion 60 and a large diameter portion 56 in a valve chamber 51 in a body 40 so as to be displaceable. The refrigerant flow area of the refrigerant from the refrigerant inflow path 42 to the refrigerant outflow path 43 is adjusted by the displacement of the valve body 55.
 第3実施形態においても、小径部60は大径部56から伸びる軸状に形成されており、挿通穴48に対して挿通されている。当該小径部60の先端は、挿通穴48を介して、弁室51に隣接する開度調整室53内部へ突出している。開度調整室53内部には、コイルスプリング61が配置されており、大気導入孔54を介して、参照気体としての大気が導入されている。 Also in the third embodiment, the small diameter portion 60 is formed in an axial shape extending from the large diameter portion 56 and is inserted into the insertion hole 48. The tip of the small diameter portion 60 protrudes into the opening degree adjusting chamber 53 adjacent to the valve chamber 51 through the insertion hole 48. A coil spring 61 is arranged inside the opening adjustment chamber 53, and the atmosphere as a reference gas is introduced through the atmosphere introduction hole 54.
 従って、第3実施形態に係る蒸発圧力調整弁19は、弁体55の小径部60にかかる冷媒流入路42側の冷媒圧力と開度調整室53内における参照気体の圧力差と、コイルスプリング61の弾性力によって、冷媒流路の開度を決定して、室内蒸発器18における冷媒蒸発圧力P1を調整することができる。 Accordingly, the evaporating pressure adjusting valve 19 according to the third embodiment includes a difference between the refrigerant pressure on the refrigerant inflow path 42 side applied to the small diameter portion 60 of the valve body 55 and the pressure difference between the reference gas in the opening adjustment chamber 53 and the coil spring 61. The degree of opening of the refrigerant flow path can be determined by the elastic force, and the refrigerant evaporation pressure P1 in the indoor evaporator 18 can be adjusted.
 図6、図7に示すように、第3実施形態に係る蒸発圧力調整弁19の開度調整室53内部には、金属製のダイアフラム73が配置されている。当該ダイアフラム73は、蛇腹状に形成された伸縮膜部73aを有しており、挿通穴48を挿通した小径部60と、コイルスプリング61との間を介して、開度調整室53内部を区画するように配置されている。この伸縮膜部73aの伸縮によって、小径部60を介した弁体55の変位が許容される。 As shown in FIGS. 6 and 7, a metal diaphragm 73 is disposed inside the opening adjustment chamber 53 of the evaporation pressure adjustment valve 19 according to the third embodiment. The diaphragm 73 has a stretchable film portion 73 a formed in an accordion shape, and partitions the inside of the opening adjustment chamber 53 through a space between the small diameter portion 60 inserted through the insertion hole 48 and the coil spring 61. Are arranged to be. The expansion and contraction of the stretchable film portion 73a allows the displacement of the valve body 55 via the small diameter portion 60.
 図7に示すように、ダイアフラム73は、開度調整室53内部を2つに区画しており、ダイアフラム73における伸縮膜部73aの外縁は、開度調整室53の内壁面に対して全周にわたって接合されている。 As shown in FIG. 7, the diaphragm 73 divides the inside of the opening adjustment chamber 53 into two, and the outer edge of the stretchable film portion 73 a in the diaphragm 73 is all around the inner wall surface of the opening adjustment chamber 53. Are joined.
 これにより、当該ダイアフラム73は、挿通穴48を介して弁室51からの冷媒を、ダイアフラム73によって区画された開度調整室53における挿通穴48側の空間に留めることができ、蒸発圧力調整弁19外部への冷媒の漏出を防止することができる。即ち、ダイアフラム73は、本開示におけるシール部材として機能する。 Accordingly, the diaphragm 73 can keep the refrigerant from the valve chamber 51 through the insertion hole 48 in the space on the insertion hole 48 side in the opening adjustment chamber 53 partitioned by the diaphragm 73, and the evaporation pressure adjustment valve 19 Leakage of refrigerant to the outside can be prevented. That is, the diaphragm 73 functions as a seal member in the present disclosure.
 以上説明したように、第3実施形態に係る蒸発圧力調整弁は、車両用空調装置1の冷凍サイクル装置10において、室内蒸発器18と圧縮機11の間に配置され、室内蒸発器18における冷媒蒸発圧力P1が着霜抑制圧力APe以上となるように調整している。 As described above, the evaporation pressure regulating valve according to the third embodiment is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1, and the refrigerant in the indoor evaporator 18. The evaporating pressure P1 is adjusted to be equal to or higher than the frosting suppression pressure Ape.
 当該蒸発圧力調整弁19は、シール部材として用いられている部材を除いて、上述した実施形態と同様に構成されている。従って、第3実施形態においても、弁体55の小径部60は大径部56よりも十分に小さな受圧面積となるように形成されており、開度の決定に他の外力を要しない。 The evaporating pressure adjusting valve 19 is configured in the same manner as the above-described embodiment except for a member used as a sealing member. Therefore, also in the third embodiment, the small diameter portion 60 of the valve body 55 is formed to have a pressure receiving area sufficiently smaller than that of the large diameter portion 56, and no other external force is required for determining the opening degree.
 即ち、第3実施形態に係る蒸発圧力調整弁19は、上述した実施形態と同様の効果を発揮して、室内蒸発器18における冷媒の最大流量時と最小流量時の冷媒蒸発圧力P1の差を充分に小さくすることができる。 That is, the evaporation pressure adjusting valve 19 according to the third embodiment exhibits the same effect as that of the above-described embodiment, and the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate in the indoor evaporator 18 is obtained. It can be made sufficiently small.
 又、第3実施形態における開度調整室53の内部においては、金属製のダイアフラム73が、挿通穴48を挿通した小径部60と、コイルスプリング61との間を介して、開度調整室53内部を区画するように配置されている。 In addition, inside the opening adjustment chamber 53 in the third embodiment, a metal diaphragm 73 is interposed between the small diameter portion 60 inserted through the insertion hole 48 and the coil spring 61 and the opening adjustment chamber 53. It is arranged so as to partition the inside.
 従って、第3実施形態に係る蒸発圧力調整弁19は、シール部材としてダイアフラム73を用いることで、挿通穴48を介して弁室51からの冷媒を、ダイアフラム73によって区画された開度調整室53における挿通穴48側の空間に留めることができ、蒸発圧力調整弁19外部への冷媒の漏出を防止することができる。 Therefore, the evaporating pressure adjusting valve 19 according to the third embodiment uses the diaphragm 73 as a seal member, so that the refrigerant from the valve chamber 51 is separated from the valve chamber 51 through the insertion hole 48 and the opening adjusting chamber 53 partitioned by the diaphragm 73. It is possible to prevent the refrigerant from leaking to the outside of the evaporating pressure adjusting valve 19.
 更に、第3実施形態に係る蒸発圧力調整弁19においても、開度調整室53には、大気導入孔54を介して、参照気体としての大気を導入するように構成されている。従って、第3実施形態においても、弁体55の変位に際して参照気体の圧力を保つことができ、最大流量時と最小流量時の冷媒蒸発圧力P1の差に対する参照圧の影響をなくすことができる。 Furthermore, the evaporating pressure regulating valve 19 according to the third embodiment is also configured to introduce the atmosphere as the reference gas into the opening degree adjusting chamber 53 through the atmosphere introducing hole 54. Therefore, also in the third embodiment, the pressure of the reference gas can be maintained when the valve body 55 is displaced, and the influence of the reference pressure on the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate can be eliminated.
 (他の実施形態)
 以上、実施形態を説明したが、本発明は上述した実施形態に何ら限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、上述した各実施形態を適宜組み合わせても良いし、上述した実施形態を種々変形することも可能である。
(Other embodiments)
Although the embodiment has been described above, the present invention is not limited to the embodiment described above. That is, various improvements and modifications can be made without departing from the spirit of the present invention. For example, the above-described embodiments may be combined as appropriate, and the above-described embodiments may be variously modified.
 (1)上述した実施形態においては、ゴム製のOリング71、金属製のベローズ72、ダイアフラム73を用いて、挿通穴48を介して弁室51から開度調整室53へ向かう冷媒の流れを遮断していたが、本開示におけるシール部材は、この態様に限定されるものではない。本開示におけるシール部材としては、挿通穴48を介して弁室51から蒸発圧力調整弁19外部への冷媒の漏出を低減することができれば、その構成材料や形状等を適宜変更することができる。 (1) In the embodiment described above, the flow of the refrigerant from the valve chamber 51 toward the opening adjustment chamber 53 through the insertion hole 48 using the rubber O-ring 71, the metal bellows 72, and the diaphragm 73. Although it interrupted | blocked, the sealing member in this indication is not limited to this mode. If the leakage of the refrigerant from the valve chamber 51 to the outside of the evaporation pressure regulating valve 19 can be reduced via the insertion hole 48 as the seal member in the present disclosure, the constituent material, shape, and the like can be appropriately changed.
 (2)そして、上述した実施形態においては、蒸発圧力調整弁19は、車両用空調装置1の冷凍サイクル装置10において、室内蒸発器18と圧縮機11の間に配置されていたが、この態様に限定されるものではない。蒸気圧縮式の冷凍サイクルにおける蒸発器と圧縮機の間に配置されていればよく、その冷凍サイクルとしての用途は、車両用空調装置に限定されるものではない。 (2) In the above-described embodiment, the evaporation pressure adjusting valve 19 is disposed between the indoor evaporator 18 and the compressor 11 in the refrigeration cycle apparatus 10 of the vehicle air conditioner 1. It is not limited to. What is necessary is just to arrange | position between the evaporator and compressor in a vapor compression refrigeration cycle, and the use as the refrigeration cycle is not limited to a vehicle air conditioner.
 (3)又、上述した実施形態においては、開度調整室53内の参照気体として、大気導入孔54により導入される大気を用いていたが、この態様に限定されるものではない。例えば、開度調整室53内に参照気体を封入した構成にすることも可能である。この構成であっても、小径部の受圧面積が十分に小さい為、蒸発圧力調整弁19による最大流量時と最小流量時の冷媒蒸発圧力P1の差を小さくすることができる。

 
(3) In the above-described embodiment, the atmosphere introduced through the atmosphere introduction hole 54 is used as the reference gas in the opening degree adjustment chamber 53. However, the present invention is not limited to this mode. For example, a configuration in which a reference gas is sealed in the opening adjustment chamber 53 is also possible. Even in this configuration, since the pressure receiving area of the small-diameter portion is sufficiently small, the difference between the refrigerant evaporation pressure P1 at the maximum flow rate and the minimum flow rate by the evaporation pressure adjusting valve 19 can be reduced.

Claims (5)

  1.  冷凍サイクル(10)における蒸発器(18)と圧縮機(11)の間に配置され、前記蒸発器における冷媒蒸発圧力が予め定めた基準蒸発圧力以上となるように調整する蒸発圧力調整弁(19)であって、
     内部に弁室(51)が形成されたボディ(40)と、
     前記ボディに設けられ、前記蒸発器から前記弁室へ冷媒が流入する冷媒流入路(42)と、
     前記ボディに設けられ、前記弁室から前記圧縮機へと冷媒が流出する冷媒流出路(43)と、
     前記弁室内にて前記冷媒流入路側の圧力を受けて所定方向に摺動可能に配置され、前記冷媒流出路へ流れる冷媒流路の開度を変更する大径部(56)及び、前記大径部よりも小さな面積で前記大径部から前記所定方向へ伸びる軸状の小径部(60)を含む弁体(55)と、
     前記弁室の前記所定方向に隣接して配置され、前記弁体の前記小径部によって挿通される挿通穴(48)を有すると共に、前記冷媒流路の開度を決定する際に参照される参照圧を発生させる参照気体を内部に有する開度調整室(53)と、
     前記開度調整室の内部に配置され、前記冷媒流路の開度を小さくする閉方向へ前記弁体の前記小径部を付勢する弾性部材(61)と、
     前記弁室と前記開度調整室の間における前記挿通穴を介した冷媒の流れを遮断するシール部材(71、72、73)と、を有する蒸発圧力調整弁。
    An evaporation pressure adjusting valve (19) which is disposed between the evaporator (18) and the compressor (11) in the refrigeration cycle (10) and adjusts the refrigerant evaporation pressure in the evaporator to be equal to or higher than a predetermined reference evaporation pressure. ) And
    A body (40) having a valve chamber (51) formed therein;
    A refrigerant inflow path (42) provided in the body and into which the refrigerant flows from the evaporator into the valve chamber;
    A refrigerant outflow path (43) provided in the body and through which refrigerant flows out from the valve chamber to the compressor;
    A large-diameter portion (56) that is slidably disposed in a predetermined direction in response to the pressure on the refrigerant inflow passage side in the valve chamber, and changes the opening of the refrigerant flow passage that flows to the refrigerant outflow passage, and the large diameter A valve body (55) including a shaft-like small diameter portion (60) extending in the predetermined direction from the large diameter portion with an area smaller than the portion;
    A reference that is disposed adjacent to the valve chamber in the predetermined direction and has an insertion hole (48) that is inserted through the small diameter portion of the valve body, and that is referred to when determining the opening of the refrigerant flow path. An opening adjustment chamber (53) having a reference gas for generating pressure therein;
    An elastic member (61) disposed inside the opening adjustment chamber and biasing the small diameter portion of the valve body in a closing direction to reduce the opening of the refrigerant flow path;
    An evaporating pressure adjusting valve comprising: a seal member (71, 72, 73) that blocks the flow of the refrigerant through the insertion hole between the valve chamber and the opening degree adjusting chamber.
  2.  前記シール部材は、前記小径部の外周面と前記挿通穴の内周面との間を遮断するように配置されたOリング(71)によって構成されている請求項1に記載の蒸発圧力調整弁。 2. The evaporation pressure regulating valve according to claim 1, wherein the seal member is configured by an O-ring (71) disposed so as to block between an outer peripheral surface of the small diameter portion and an inner peripheral surface of the insertion hole. .
  3.  前記シール部材は、有底筒状に形成されると共に、周面が蛇腹状に形成された金属製のベローズ(72)により構成されており、
     前記シール部材の内部には、前記挿通穴を挿通した前記小径部の端部が収容され、
     前記シール部材における開口端は、前記開度調整室の内部において、前記挿通穴に対して接合されている請求項1に記載の蒸発圧力調整弁。
    The seal member is formed of a metal bellows (72) having a cylindrical shape with a bottom and a peripheral surface formed in a bellows shape,
    Inside the seal member, an end portion of the small diameter portion inserted through the insertion hole is accommodated,
    The evaporation pressure regulating valve according to claim 1, wherein an opening end of the seal member is joined to the insertion hole inside the opening degree adjusting chamber.
  4.  前記シール部材は、前記開度調整室の内部において、前記挿通穴を挿通した前記小径部と、前記弾性部材との間を介して区画するように配置された金属製のダイアフラム(73)によって構成されている請求項1に記載の蒸発圧力調整弁。 The seal member is configured by a metal diaphragm (73) arranged so as to be partitioned between the small diameter portion inserted through the insertion hole and the elastic member in the opening degree adjusting chamber. The evaporation pressure regulating valve according to claim 1.
  5.  前記開度調整室は、当該開度調整室の内部と前記ボディの外部とを連通する大気導入孔(54)を有しており、
     前記大気導入孔を介して導入された大気を、前記参照気体として内部に有している請求項1ないし4の何れか1つに記載の蒸発圧力調整弁。

     
    The opening adjustment chamber has an air introduction hole (54) that communicates the inside of the opening adjustment chamber and the outside of the body,
    The evaporation pressure regulating valve according to any one of claims 1 to 4, wherein the atmosphere introduced through the atmosphere introduction hole has inside as the reference gas.

PCT/JP2018/001882 2017-03-03 2018-01-23 Evaporation pressure regulating valve WO2018159156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-040013 2017-03-03
JP2017040013A JP2018145999A (en) 2017-03-03 2017-03-03 Evaporation pressure regulation valve

Publications (1)

Publication Number Publication Date
WO2018159156A1 true WO2018159156A1 (en) 2018-09-07

Family

ID=63370279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001882 WO2018159156A1 (en) 2017-03-03 2018-01-23 Evaporation pressure regulating valve

Country Status (2)

Country Link
JP (1) JP2018145999A (en)
WO (1) WO2018159156A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461195B2 (en) * 2020-03-30 2024-04-03 株式会社鷺宮製作所 pressure regulating valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172755A (en) * 1974-12-21 1976-06-23 Diesel Kiki Co Reibosochino johatsuatsuryokuseigyoben
JP2005265223A (en) * 2004-03-16 2005-09-29 Denso Corp Refrigerating cycle device and refrigerating cycle
JP2007040422A (en) * 2005-08-03 2007-02-15 Noritz Corp Actuating valve for fluid
JP2008196518A (en) * 2007-02-08 2008-08-28 Smc Corp Flow control valve
JP2015152137A (en) * 2014-02-18 2015-08-24 株式会社デンソー Evaporative pressure regulation valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172755A (en) * 1974-12-21 1976-06-23 Diesel Kiki Co Reibosochino johatsuatsuryokuseigyoben
JP2005265223A (en) * 2004-03-16 2005-09-29 Denso Corp Refrigerating cycle device and refrigerating cycle
JP2007040422A (en) * 2005-08-03 2007-02-15 Noritz Corp Actuating valve for fluid
JP2008196518A (en) * 2007-02-08 2008-08-28 Smc Corp Flow control valve
JP2015152137A (en) * 2014-02-18 2015-08-24 株式会社デンソー Evaporative pressure regulation valve

Also Published As

Publication number Publication date
JP2018145999A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6201434B2 (en) Refrigeration cycle equipment
WO2017217099A1 (en) Refrigeration cycle apparatus
CN109642756B (en) Refrigeration cycle device
US11940057B2 (en) Valve device and fluid circulation circuit
JP6361830B2 (en) Heat pump cycle
US11391499B2 (en) Heat pump cycle device and valve device
WO2014057607A1 (en) Refrigeration cycle device
WO2016075897A1 (en) Refrigeration cycle device
WO2014002441A1 (en) Heat pump cycle
WO2018110131A1 (en) Refrigeration cycle device
WO2019026487A1 (en) Integrated valve device
WO2015111379A1 (en) Freeze cycling device
WO2019031221A1 (en) Refrigeration cycle device
US20200292218A1 (en) Refrigeration cycle device
JP6572695B2 (en) Integrated valve
JP6390431B2 (en) Refrigeration cycle equipment
WO2018159156A1 (en) Evaporation pressure regulating valve
JP2011133168A (en) Decompression device
CN114846285B (en) Refrigeration cycle device
JP6572829B2 (en) Integrated valve
JP6699460B2 (en) Refrigeration cycle equipment
WO2023276627A1 (en) Evaporation pressure regulating valve
JP2016008792A (en) Heat pump cycle device
JP2020008203A (en) Integrated valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760968

Country of ref document: EP

Kind code of ref document: A1