WO2018157799A1 - 一种光脉冲信号的生成方法及装置、计算机存储介质 - Google Patents

一种光脉冲信号的生成方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2018157799A1
WO2018157799A1 PCT/CN2018/077449 CN2018077449W WO2018157799A1 WO 2018157799 A1 WO2018157799 A1 WO 2018157799A1 CN 2018077449 W CN2018077449 W CN 2018077449W WO 2018157799 A1 WO2018157799 A1 WO 2018157799A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
locked laser
optical pulse
mode
order harmonic
Prior art date
Application number
PCT/CN2018/077449
Other languages
English (en)
French (fr)
Inventor
宗柏青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18761451.6A priority Critical patent/EP3537550A4/en
Publication of WO2018157799A1 publication Critical patent/WO2018157799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking

Definitions

  • the present application relates to an optical comb technology, and in particular, to a method and device for generating a high-frequency ultra-low noise high-speed optical pulse signal, and a computer storage medium.
  • An optical comb is a light source that is spectrally discrete and has equal spacing between different components.
  • the optical comb can generate a femtosecond pulse sequence with very small timing jitter.
  • Optical comb is a very useful tool that links reference RF signals to optical frequencies and is therefore widely used in a variety of applications, such as high-speed and high-resolution optical analog-to-digital conversion, photoelectric neural computing, and frequency measurement. , timing distribution, high-speed optical communication and optical clocks.
  • the time jitter can be controlled to the sub-five seconds or even the asecond level, which is more than three orders of magnitude smaller than the time jitter of the electronic pulse.
  • the microwave source generated by the photoelectric (Detector) is detected by the photoelectric (PD), and the jitter of the microwave source generated by the electric method is several orders of magnitude smaller.
  • the pulse width of the mode-locking comb is also very short, reaching the order of sub-picoseconds and tens of femtoseconds.
  • Research based on optical frequency comb has attracted the attention of many scientific research groups in the world, and its research and technical improvement are also widely carried out. It is a promising direction for realizing high-speed signal analog-to-digital conversion.
  • the mode-locked lasers that generate optical combs are divided into active mode-locked lasers and passive mode-locked lasers.
  • Active mode-locking uses amplitude modulation or phase modulation to achieve mode-locking.
  • Passive mode-locking uses light intensity and nonlinearity in fiber. The change in effect is used to modulate the loss in the cavity to achieve the purpose of mode locking.
  • the active mode-locked laser can achieve a high repetition rate of up to 10 GHz.
  • the optical pulse of a passive mode-locked laser has the advantage of high stability, and the timing jitter can be on the order of sub-five seconds or less.
  • Passive mode-locked lasers can produce ultra-low noise pulse signals, but the repetition frequency is limited by the cavity length, while the phase noise of active mode-locked lasers is easily limited by RF (Radio Frequency) sources.
  • RF Radio Frequency
  • the embodiment of the present application provides a method and device for generating an optical pulse signal, and a computer storage medium.
  • the high-order harmonic signal is input to an electro-optic modulator (EOM, EO Modulator) to adjust the active mode-locked laser;
  • EOM electro-optic modulator
  • a high speed optical pulse signal is generated by the active mode-locked laser.
  • the method further includes:
  • the second signal is used to detect the signal and measure the phase noise.
  • the method further includes:
  • the method further includes:
  • the extracting the high-order harmonic signal from the high-frequency microwave signal includes:
  • a first generating unit configured to generate a high frequency microwave signal by a passive mode-locked laser, and extract a high-order harmonic signal from the high-frequency microwave signal
  • a transmission unit configured to input the high-order harmonic signal into the EOM to adjust the active mode-locked laser
  • a second generating unit configured to generate a high speed optical pulse signal by the active mode-locked laser.
  • the method further includes:
  • a dividing unit configured to divide the high-speed optical pulse signal into a first signal and a second signal according to a preset ratio, wherein a power of the first signal is higher than a power of the second signal, and the first signal is used to form a cavity Internal oscillation, the second signal is used to detect signals and measure phase noise.
  • the device further includes:
  • the device further includes:
  • the first generating unit is further configured to extract a high-order harmonic signal from the high-frequency microwave signal, and filter and amplify the high-order harmonic signal.
  • the computer storage medium provided by the embodiment of the present application stores a computer program configured to execute the method for generating the optical pulse signal.
  • a high frequency microwave signal is generated by a passive mode-locked laser, and a high-order harmonic signal is extracted from the high-frequency microwave signal; and the high-order harmonic signal is input into the EOM to the active type.
  • the mode-locked laser is adjusted; a high-speed optical pulse signal is generated by the active mode-locked laser.
  • the technical solution of the embodiment of the present application has two advantages of high repetition rate and low noise, and the frequency can reach 10 GHz, and the phase noise at 1 MHz can reach -158 dBc/Hz.
  • FIG. 1 is a schematic flowchart 1 of a method for generating an optical pulse signal according to an embodiment of the present application
  • FIG. 2 is a second schematic flowchart of a method for generating an optical pulse signal according to an embodiment of the present application
  • FIG. 3 is a hardware entity diagram of an apparatus for generating an optical pulse signal according to an embodiment of the present application
  • FIG. 4 is a structural diagram of a device for generating an optical pulse signal according to an embodiment of the present application.
  • the embodiment of the present application provides a method and a device for generating a high-frequency ultra-low noise high-speed optical pulse signal, which is implemented by a nonlinear polarization rotation (NPR) mode-locking method to generate a high-frequency microwave signal from a passive laser. Then extracting its higher harmonics into an EOM to adjust the active mode-locked laser to generate a high-speed optical comb sequence (ie, a high-speed optical pulse signal).
  • NPR nonlinear polarization rotation
  • FIG. 1 is a schematic flowchart 1 of a method for generating an optical pulse signal according to an embodiment of the present application. As shown in FIG. 1, the method for generating an optical pulse signal includes the following steps:
  • Step 101 Generate a high frequency microwave signal by a passive mode-locked laser, and extract a high-order harmonic signal from the high-frequency microwave signal.
  • the passive mode-locked laser has a repetition rate of 74.5 MHz and a cavity length of 2.68 m.
  • the active mode-locked laser has a fundamental mode of 4.0 MHz and a cavity length of 49.8 m.
  • the extracting the high-order harmonic signal from the high-frequency microwave signal includes:
  • Step 102 Input the high-order harmonic signal into the EOM to adjust the active mode-locked laser.
  • Step 103 Generate a high speed optical pulse signal by the active mode-locked laser.
  • the high-speed optical pulse signal is divided into a first signal and a second signal according to a preset ratio, wherein a power of the first signal is higher than a power of the second signal, and the first signal is used to form Intracavity oscillation, the second signal is used to detect signals and measure phase noise.
  • the preset ratio is 9:1, wherein the first signal accounts for 90% of the entire high-speed optical pulse signal, and the second signal accounts for 10% of the entire high-speed optical pulse signal.
  • the technical solution of the embodiment of the present application has two advantages of high repetition rate and low noise, the frequency can reach 10 GHz, the phase noise is very low, and the phase noise at 1 MHz can be lower than -158 dBc/Hz.
  • FIG. 2 is a schematic flowchart 2 of a method for generating an optical pulse signal according to an embodiment of the present application. As shown in FIG. 2, the method for generating the optical pulse signal includes the following steps:
  • Step 201 Construct a passive mode-locked laser.
  • the passive mode-locked laser is PMLL.
  • the passive mode-locked laser has a repetition rate of 74.5 MHz and a cavity length of 2.68 m.
  • Step 202 Construct an active mode-locked laser.
  • the active mode-locked laser is AMLL.
  • the active mode-locked laser has a cavity length fundamental mode of 4.0 MHz and a cavity length of 49.8 m.
  • Step 203 Input a signal generated by the passive mode-locked laser into the EOM to adjust the active mode-locked laser to generate a high-speed optical pulse signal.
  • the higher harmonics of the passive mode-locked laser are selected, and the signal injected into the active mode-locked laser is about 5 dB.
  • the high-speed optical pulse signal has the characteristics of high repetition frequency and ultra-low noise.
  • the embodiment of the present application adjusts the active mode-locked laser by a passive mode-locked laser.
  • Step 204 The pulse train signal generated by the active mode-locked laser is divided into two parts, the relatively high power part is used to form the intracavity oscillation, and the relatively low power part is detected by the PD for signal detection and phase noise. Measurement.
  • the pulse train signal generated by the active mode-locked laser is divided into two parts according to a ratio of 9:1, wherein 90% of the higher power is used to form intracavity oscillation, and 10% of the power is used. Approximately 2.15 dBm is detected by the PD for signal detection and phase noise measurements.
  • the optical pulse signal acquisition method provided by the present application has two advantages of high repetition rate and low noise, and the frequency can reach 10 GHz, and the phase noise at 1 MHz can reach -158 dBc/Hz.
  • the apparatus includes a laser pump source (parameter 980 nm) and a pump laser coupler (WDM) (parameters are optional). 980nm/1550nm), piezoelectric ceramic device (PZT), doped fiber for amplification, fiber collimator, 1/4 zero-order wave plate (parameter optional 1550nm), 1/2 zero-order wave plate (parameter optional 1550nm ), polarization beam splitter (PBS), fiber optic isolators, photodetectors, filters, electrical amplifiers, electro-optic modulators (EOM), fiber optic couplers. among them:
  • Passive mode-locked laser uses NPR mode to complete the mode-locking. It can control the mode-locked laser pump current, adjust the laser PZT to change the cavity length, and adopt PID self-adjusting phase-locked loop to stabilize the frequency of the optical comb on a frequency standard. , to obtain a light comb with high frequency accuracy.
  • the optical comb produced by the passive mode-locked laser is more stable than the active mode-locked laser, its optical comb still has phase noise, which is mainly divided into the cavity problem and the external environment. In order to further reduce the phase noise of the passive mode-locked laser, the intracavity dispersion should be reduced.
  • the PBS divides the light into two parts, one serving as an output and the other returning to the cavity to form a stable oscillation.
  • a 74.5 MHz
  • L 1 2.68 m
  • light entering the PBS is about 3 dBm.
  • the optical power of the higher harmonic signal is about -12 dBm, and the signal is filtered and amplified to 5 dBm and then injected into the active mode-locked laser.
  • b 4.0 MHz
  • L 2 49.8 m
  • the maximum optical power of the laser is 600 mW
  • the EOM selected in the embodiment of the present application has a 10 G bandwidth.
  • the isolators in the system are used to ensure one-way transmission of light, and three PCs can be used to control the polarization of the laser entering the cavity.
  • the burst signal generated by AMLL is divided into two parts according to a certain ratio, wherein the higher power part is used to form intracavity oscillation, and the other part with lower power can be detected by PD2 for signal detection and phase noise measurement.
  • the AMLL generated burst signal is divided into two parts according to a ratio of 9:1, wherein a higher power 90% portion is used to form intracavity oscillation, and a 10% low power portion is about 2.15 dBm. It can be detected by PD2 for signal detection and phase noise measurement.
  • the embodiment of the present application can generate a pulse signal with high stability and high repetition rate and low phase noise.
  • FIG. 4 is a structural composition diagram of an apparatus for generating an optical pulse signal according to an embodiment of the present application. As shown in FIG. 4, the apparatus includes:
  • the first generating unit 41 is configured to generate a high frequency microwave signal by using a passive mode-locked laser, and extract a high-order harmonic signal from the high-frequency microwave signal;
  • the devices in the upper half of the dotted line frame of FIG. 3 are integrated into the first generating unit 41.
  • the transmitting unit 42 is configured to input the high-order harmonic signal into the EOM to adjust the active mode-locked laser;
  • a high-order harmonic signal is input into the EOM by the LNA.
  • the LNA is an electric amplifier.
  • the second generating unit 43 is configured to generate a high speed optical pulse signal by the active mode-locked laser.
  • the devices in the lower half of the dotted line frame of FIG. 3 are integrated into the second generating unit 43.
  • the method further includes:
  • the dividing unit 44 is configured to divide the high-speed optical pulse signal into a first signal and a second signal according to a preset ratio, wherein a power of the first signal is higher than a power of the second signal, and the first signal is used to form Intracavity oscillation, the second signal is used to detect signals and measure phase noise.
  • the dividing unit 44 is implemented by a Coupler.
  • the device further includes:
  • the device further includes:
  • the first generating unit 41 is further configured to extract a high-order harmonic signal from the high-frequency microwave signal, and filter and amplify the high-order harmonic signal.
  • filtering is implemented by a filter (BPF), and amplification is implemented by an LNA.
  • each unit in the generating device of the optical pulse signal may be implemented by a central processing unit (CPU) or a microprocessor (MPU) located in the generating device of the optical pulse signal.
  • CPU central processing unit
  • MPU microprocessor
  • Micro Processor Unit Micro Processor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • embodiments of the present application can be provided as a method, system, or computer program product. Accordingly, the application can take the form of a hardware embodiment, a software embodiment, or an embodiment in combination with software and hardware. Moreover, the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • an embodiment of the present invention further provides a computer storage medium, wherein a computer program is configured, and the computer program is configured to execute a method for generating an optical pulse signal according to an embodiment of the present invention.
  • a high frequency microwave signal is generated by a passive mode-locked laser, and a high-order harmonic signal is extracted from the high-frequency microwave signal; and the high-order harmonic signal is input into an EOM to an active lock.
  • the mode laser is adjusted; the high-speed optical pulse signal is generated by the active mode-locked laser, thereby achieving two advantages of high repetition rate and low noise, the frequency of which can reach 10 GHz, and the phase noise at 1 MHz can reach -158 dBc/Hz.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光脉冲信号的生成方法,包括:通过被动式锁模激光器生成高频微波信号,从高频微波信号中提取高次谐频信号,将高次谐频信号输入至电光调制器EOM中对主动式锁模激光器进行调节,通过主动式锁模激光器生成高速光脉冲信号。还公开了一种光脉冲信号的生成装置、计算机存储介质。

Description

一种光脉冲信号的生成方法及装置、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201710117695.5、申请日为2017年03月01日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光梳技术,尤其涉及一种高频超低噪声的高速光脉冲信号的生成方法及装置、计算机存储介质。
背景技术
近几年,高重复频率的超低噪声的光梳脉冲生成吸引了相当多人的关注。光梳是一种光谱离散的,且不同分量之间间隔相等的光源。光梳可以生成定时抖动很小的飞秒级的脉冲序列。光梳是一个非常有用的工具,它可以使基准射频信号与光频联系起来,因此正被广泛地应用于各种领域,例如,高速和高分辨率光学模拟数字转换,光电神经计算,频率测量,时序分布,高速光通信和光学时钟等。
利用锁模激光器产生的光梳,其时间抖动可以控制到亚飞秒量级甚至阿秒量级,比电子脉冲的时间抖动小三个量级以上。通过光电(PD,Photoelectric Detector)探测其生成的微波源,相比电方法产生的微波源,其抖动小了几个量级。同时锁模光梳的脉宽也很短,能达到亚皮秒和几十飞秒的量级。基于光学频率梳的研究已经吸引了世界上很多科研小组的关注,对其研究和技术改进也在广泛展开,是一个很有前景的实现高速信号模数转换的方向。
产生光梳的锁模激光器分为主动式锁模激光器和被动式锁模激光器,主动锁模利用调制器产生振幅调制或相位调制来实现锁模,被动锁模则是利用光强与光纤内非线性效应的变化关系来调制腔内损耗,以达到锁模的目的。主动式锁模激光器能达到的重复频率较高,可达到10GHz以上,被动式锁模激光器的光脉冲则具有稳定度高的优点,定时抖动可在亚飞秒量级甚至以下。被动式锁模激光器可以产生超低噪声的脉冲信号,但是重复频率受到腔长的限制,而主动式锁模激光器的相位噪声容易受到射频(RF,Radio Frequency)源的限制。
发明内容
为解决上述技术问题,本申请实施例提供了一种光脉冲信号的生成方法及装置、计算机存储介质。
本申请实施例提供的光脉冲信号的生成方法,包括:
通过被动式锁模激光器生成高频微波信号,从所述高频微波信号中提取高次谐频信号;
将所述高次谐频信号输入至电光调制器(EOM,EO Modulator)中对主动式锁模激光器进行调节;
通过所述主动式锁模激光器生成高速光脉冲信号。
本申请实施例中,所述方法还包括:
将所述高速光脉冲信号按照预设比例分为第一信号和第二信号,其中,第一信号的功率高于第二信号的功率,所述第一信号用于形成腔内振荡,所述第二信号用于检测信号和测量相噪。
本申请实施例中,所述方法还包括:
构建被动式锁模激光器,其中,所述被动式锁模激光器的重复频率为a、腔长为L 1=c/2a,其中,a>0,c为光速。
本申请实施例中,所述方法还包括:
构建主动式锁模激光器,其中,所述主动式锁模激光器的基模为b,腔长为L 2=c/2b,其中,b>0,c为光速。
本申请实施例中,所述从所述高频微波信号中提取高次谐频信号,包括:
从所述高频微波信号中提取高次谐频信号,将所述高次谐频信号进行滤波并放大。
本申请实施例提供的光脉冲信号的生成装置,包括:
第一生成单元,配置为通过被动式锁模激光器生成高频微波信号,从所述高频微波信号中提取高次谐频信号;
传输单元,配置为将所述高次谐频信号输入至EOM中对主动式锁模激光器进行调节;
第二生成单元,配置为通过所述主动式锁模激光器生成高速光脉冲信号。
本申请实施例中,所述方法还包括:
分割单元,配置为将所述高速光脉冲信号按照预设比例分为第一信号和第二信号,其中,第一信号的功率高于第二信号的功率,所述第一信号用于形成腔内振荡,所述第二信号用于检测信号和测量相噪。
本申请实施例中,所述装置还包括:
构建单元,配置为构建被动式锁模激光器,其中,所述被动式锁模激光器的重复频率为a、腔长为L 1=c/2a,其中,a>0,c为光速。
本申请实施例中,所述装置还包括:
构建单元,配置为构建主动式锁模激光器,其中,所述主动式锁模激光器的基模为b,腔长为L 2=c/2b,其中,b>0,c为光速。
本申请实施例中,所述第一生成单元,还配置为从所述高频微波信号中提取高次谐频信号,将所述高次谐频信号进行滤波并放大。
本申请实施例提供的计算机存储介质存储有计算机程序,该计算机程序配置为执行上述光脉冲信号的生成方法。
本申请实施例的技术方案中,通过被动式锁模激光器生成高频微波信号,从所述高频微波信号中提取高次谐频信号;将所述高次谐频信号输入至EOM中对主动式锁模激光器进行调节;通过所述主动式锁模激光器生成高速光脉冲信号。本申请实施例的技术方案具有高重复率和低噪两个优点,其频率可达到10GHz,在1MHz下的相位噪声可到达-158dBc/Hz。
附图说明
附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本申请实施例的光脉冲信号的生成方法的流程示意图一;
图2为本申请实施例的光脉冲信号的生成方法的流程示意图二;
图3为本申请实施例的光脉冲信号的生成装置的硬件实体图;
图4为本申请实施例的光脉冲信号的生成装置的结构组成图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
本申请实施例提供一种高频超低噪声的高速光脉冲信号的生成方法及装置,通过非线性偏振旋转(NPR,Nonlinear Polarization Rotation)锁模方式实现被动式激光器的锁模并由其生成高频微波信号,然后提取其高次谐波注入一个EOM中对主动式锁模激光器进行调节,从而生成高速光梳序列(也即高速光脉冲信号)。这个方案将被动式锁模激光器的超低噪声特点和主动式锁模激光器的高重复频率特点结合起来,不使用外部的RF源就可以得到一个低成本、超低噪声、高频的光脉冲序列。
图1为本申请实施例的光脉冲信号的生成方法的流程示意图一,如图1所示,所述光脉冲信号的生成方法包括以下步骤:
步骤101:通过被动式锁模激光器生成高频微波信号,从所述高频微波信号中提取高次谐频信号。
本申请实施例中,所述方法还包括:构建被动式锁模激光器,其中,所述被动式锁模激光器的重复频率为a、腔长为L 1=c/2a,其中,a>0,c为光速。
在一具体实施例中,所述被动式锁模激光器的重复频率为74.5MHz、腔长为2.68m。
本申请实施例中,所述方法还包括:构建主动式锁模激光器,其中,所述主动式锁模激光器的基模为b,腔长为L 2=c/2b,其中,b>0,c为光速。
在一具体实施例中,所述主动式锁模激光器的基模为4.0MHz,腔长为49.8m。
本申请实施例中,所述从所述高频微波信号中提取高次谐频信号,包括:
从所述高频微波信号中提取高次谐频信号,将所述高次谐频信号进行滤波并放大,得到信噪比为5dB的高次谐频信号。
步骤102:将所述高次谐频信号输入至EOM中对主动式锁模激光器进行调节。
步骤103:通过所述主动式锁模激光器生成高速光脉冲信号。
本申请实施例中,将所述高速光脉冲信号按照预设比例分为第一信号和第二信号,其中,第一信号的功率高于第二信号的功率,所述第一信号用于形成腔内振荡,所述第二信号用于检测信号和测量相噪。
例如:所述预设比例为9∶1,其中,所述第一信号占整个高速光脉冲信 号的90%,所述第二信号占整个高速光脉冲信号的10%。
本申请实施例的技术方案具有高重复率和低噪两个优点,其频率可达到10GHz,相位噪声非常低,在1MHz下的相位噪声可低于-158dBc/Hz。
图2为本申请实施例的光脉冲信号的生成方法的流程示意图二,如图2所示,所述光脉冲信号的生成方法包括以下步骤:
步骤201:构建被动式锁模激光器。
这里,被动式锁模激光器为PMLL。所述被动式锁模激光器的重复频率为a、腔长为L 1=c/2a,其中,a>0,c为光速。在本申请的一个实施例中,被动式锁模激光器的重复频率为74.5MHz,腔长2.68m。
步骤202:构建主动式锁模激光器。
这里,主动式锁模激光器为AMLL。所述主动式锁模激光器的基模为b,腔长为L 2=c/2b,其中,b>0,c为光速。在本申请的一个实施例中,主动式锁模激光器的腔长基模为4.0MHz,腔长为49.8m。
步骤203:将被动式锁模激光器产生的信号输入EOM以调节主动式锁模激光器,从而生成高速光脉冲信号。
在本申请的一个实施例中,选择被动式锁模激光器的高次谐波,注入主动式锁模激光器的信号约为5dB。
这里,高速光脉冲信号具有高重复频率、超低噪声的特点。
本申请实施例通过被动式锁模激光器来调节主动式锁模激光器。
步骤204:将主动式锁模激光器产生的脉冲串信号分为两部分,功率相对较高的部分用来形成腔内振荡,功率相对较低的部分通过PD探测出来用于信号的探测和相噪的测量。
在本申请的一个实施例中,将主动式锁模激光器产生的脉冲串信号按照9∶1的比例分为两部分,其中功率较高的90%部分用来形成腔内振荡,10%的功率约为2.15dBm部分通过PD探测出来用于信号探测和相噪的测量。
本申请提供的光脉冲信号的获取方法具有高重复率和低噪两个优点,其频率可达到10GHz,在1MHz下的相位噪声可到达-158dBc/Hz。
图3为本申请实施例的光脉冲信号的生成装置的硬件实体图,如图3所示,装置包括激光泵浦源(参数可选980nm)、泵浦激光耦合器(WDM)(参数可选980nm/1550nm)、压电陶瓷器件(PZT)、放大用掺杂光纤、光纤准直器、1/4零级波片(参数可选1550nm)、1/2零级波片(参数可选1550nm)、偏振分光镜(PBS)、光纤隔离器、光电探测器、滤波器、电放大器、电光调制器(EOM)、光纤耦合器。其中:
1)被动式锁模激光器利用NPR方式完成锁模,可通过控制锁模激光器泵浦电流、调节激光器PZT改变腔长、采用PID自调节锁相环等方法将光梳的频率稳定在一个频率标准上,获得频率精度高的光梳。虽然被动式锁模激光器产生的光梳相对主动式锁模激光器来说更加稳定,但其光梳仍会有相位噪声,主要分为腔内问题和外部环境的影响。为了进一步降低被动式锁模激光器的相位噪声,应当减小腔内色散。本申请实施例采用的被动式锁模激光器的重复频率为a,对应腔长约为L 1=c/2a。PBS将光分为两部分,一部分作为输出,另一部分返回腔内形成稳定震荡。在一具体实施方式中,a=74.5MHz,L 1=2.68m,进入PBS的光约为3dBm。
2)观测PMLL信号频谱可看出高次谐波信号功率较高且稳定,因此选择PMLL的高次谐波,高次谐波信号经过滤波放大后注入主动式锁模激光器。在一具体实施方式中,高次谐波信号的光功率约为-12dBm,信号被滤波放大为5dBm后注入主动式锁模激光器。
3)主动式锁模激光器的基模为b,对应腔长约为L 2=c/2b,泵浦激光器最大光功率高达数百毫瓦。在一具体实施方式中,b=4.0MHz,L 2=49.8m,激光器最大光功率为600mW,通过980nm/1550nm的泵浦耦合器模块进入EOM,本申请实施例选用的EOM有10G带宽。此外,系统中的隔离器用 来保证光的单向传输,三个PC可用来控制进入腔内的激光的偏振态。
4)AMLL产生的脉冲串信号按照一定比例分为两部分,其中功率较高的部分用来形成腔内振荡,功率较低的另一部分可通过PD2探测出来用于信号探测和相噪的测量。在一具体实施方式中,AMLL产生的脉冲串信号按照9∶1的比例分为两部分,其中功率较高的90%部分用来形成腔内振荡,10%的低功率部分约为2.15dBm,可通过PD2探测出来用于信号探测和相噪的测量。
本申请实施例通过设计上述被动式锁模激光器和主动式锁模激光器结合系统,既可产生高稳定高重复频率的脉冲信号,又具有低相位噪声。
图4为本申请实施例的光脉冲信号的生成装置的结构组成图,如图4所示,所述装置包括:
第一生成单元41,配置为通过被动式锁模激光器生成高频微波信号,从所述高频微波信号中提取高次谐频信号;
具体地,参照图3,图3上半部分虚线框内的器件集成为第一生成单元41。
传输单元42,配置为将所述高次谐频信号输入至EOM中对主动式锁模激光器进行调节;
具体地,参照图3,由LNA将高次谐频信号输入EOM中。这里,LNA为电放大器。
第二生成单元43,配置为通过所述主动式锁模激光器生成高速光脉冲信号。
具体地,参照图3,图3下半部分虚线框内的器件集成为第二生成单元43。
本申请实施例中,所述方法还包括:
分割单元44,配置为将所述高速光脉冲信号按照预设比例分为第一信 号和第二信号,其中,第一信号的功率高于第二信号的功率,所述第一信号用于形成腔内振荡,所述第二信号用于检测信号和测量相噪。
具体地,参照图3,分割单元44通过Coupler来实现。
本申请实施例中,所述装置还包括:
构建单元45,配置为构建被动式锁模激光器,其中,所述被动式锁模激光器的重复频率为a、腔长为L 1=c/2a,其中,a>0,c为光速。
本申请实施例中,所述装置还包括:
构建单元45,配置为构建主动式锁模激光器,其中,所述主动式锁模激光器的基模为b,腔长为L 2=c/2b,其中,b>0,c为光速。
本申请实施例中,所述第一生成单元41,还配置为从所述高频微波信号中提取高次谐频信号,将所述高次谐频信号进行滤波并放大。
具体地,参照图3,滤波通过滤波器(BPF)来实现,放大通过LNA来实现。
本领域技术人员应当理解,图4所示的光脉冲信号的生成装置中的各单元的实现功能可参照前述光脉冲信号的生成方法的相关描述而理解。
在实际应用中,所述光脉冲信号的生成装置中的各个单元所实现的功能,均可由位于光脉冲信号的生成装置中的中央处理器(CPU,Central Processing Unit)、或微处理器(MPU,Micro Processor Unit)、或数字信号处理器(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序配置为执行本发明实施例的光脉冲信号的生成方法。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例的技术方案,通过被动式锁模激光器生成高频微波信号,从所述高频微波信号中提取高次谐频信号;将所述高次谐频信号输入至EOM中对主动式锁模激光器进行调节;通过所述主动式锁模激光器生成高 速光脉冲信号,从而实现高重复率和低噪两个优点,其频率可达到10GHz,在1MHz下的相位噪声可到达-158dBc/Hz。

Claims (11)

  1. 一种光脉冲信号的生成方法,所述方法包括:
    通过被动式锁模激光器生成高频微波信号,从所述高频微波信号中提取高次谐频信号;
    将所述高次谐频信号输入至电光调制器EOM中对主动式锁模激光器进行调节;
    通过所述主动式锁模激光器生成高速光脉冲信号。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    将所述高速光脉冲信号按照预设比例分为第一信号和第二信号,其中,第一信号的功率高于第二信号的功率,所述第一信号用于形成腔内振荡,所述第二信号用于检测信号和测量相噪。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    构建被动式锁模激光器,其中,所述被动式锁模激光器的重复频率为a、腔长为L 1=c/2a,其中,a>0,c为光速。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    构建主动式锁模激光器,其中,所述主动式锁模激光器的基模为b,腔长为L 2=c/2b,其中,b>0,c为光速。
  5. 根据权利要求1所述的方法,其中,所述从所述高频微波信号中提取高次谐频信号,包括:
    从所述高频微波信号中提取高次谐频信号,将所述高次谐频信号进行滤波并放大。
  6. 一种光脉冲信号的生成装置,所述装置包括:
    第一生成单元,配置为通过被动式锁模激光器生成高频微波信号,从所述高频微波信号中提取高次谐频信号;
    传输单元,配置为将所述高次谐频信号输入至EOM中对主动式锁模 激光器进行调节;
    第二生成单元,配置为通过所述主动式锁模激光器生成高速光脉冲信号。
  7. 根据权利要求6所述的装置,其中,所述方法还包括:
    分割单元,配置为将所述高速光脉冲信号按照预设比例分为第一信号和第二信号,其中,第一信号的功率高于第二信号的功率,所述第一信号用于形成腔内振荡,所述第二信号用于检测信号和测量相噪。
  8. 根据权利要求6所述的装置,其中,所述装置还包括:
    构建单元,配置为构建被动式锁模激光器,其中,所述被动式锁模激光器的重复频率为a、腔长为L 1=c/2a,其中,a>0,c为光速。
  9. 根据权利要求6所述的装置,其中,所述装置还包括:
    构建单元,配置为构建主动式锁模激光器,其中,所述主动式锁模激光器的基模为b,腔长为L 2=c/2b,其中,b>0,c为光速。
  10. 根据权利要求6所述的装置,其中,所述第一生成单元,还配置为从所述高频微波信号中提取高次谐频信号,将所述高次谐频信号进行滤波并放大。
  11. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-5任一项所述的光脉冲信号的生成方法。
PCT/CN2018/077449 2017-03-01 2018-02-27 一种光脉冲信号的生成方法及装置、计算机存储介质 WO2018157799A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18761451.6A EP3537550A4 (en) 2017-03-01 2018-02-27 OPTICAL PULSE SIGNAL GENERATION METHOD AND APPARATUS, AND COMPUTER STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710117695.5A CN108539570A (zh) 2017-03-01 2017-03-01 一种光脉冲信号的生成方法及装置
CN201710117695.5 2017-03-01

Publications (1)

Publication Number Publication Date
WO2018157799A1 true WO2018157799A1 (zh) 2018-09-07

Family

ID=63369822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077449 WO2018157799A1 (zh) 2017-03-01 2018-02-27 一种光脉冲信号的生成方法及装置、计算机存储介质

Country Status (3)

Country Link
EP (1) EP3537550A4 (zh)
CN (1) CN108539570A (zh)
WO (1) WO2018157799A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343029A (zh) * 2001-09-26 2002-04-03 天津大学 波长锁定器稳定腔长偏振不敏感主动锁模光纤环形激光器
CN1392639A (zh) * 2001-06-14 2003-01-22 楼宪法 在主动锁模掺铒光纤环形激光器中产生高阶锁模脉冲的方法
CN104103997A (zh) * 2014-07-23 2014-10-15 上海交通大学 利用锁模激光高重复频率脉冲产生微波信号的装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650682B1 (en) * 1999-04-30 2003-11-18 University Of New Mexico Bi-directional short pulse ring laser
US7492795B1 (en) * 2004-01-06 2009-02-17 University Of Central Florida Research Foundation, Inc. Ultralow noise mode-locked laser and RF sinewave source
JP5306684B2 (ja) * 2008-03-28 2013-10-02 古河電気工業株式会社 光ファイバー型モードロックレーザー及び光ファイバー型モードロックレーザーのモードロック制御方法
EP2333914A3 (en) * 2009-12-09 2017-12-13 Canon Kabushiki Kaisha Light source apparatus and image pickup apparatus using the same
US20120162662A1 (en) * 2010-12-27 2012-06-28 Axsun Technologies, Inc. Actively Mode Locked Laser Swept Source for OCT Medical Imaging
CN106169690B (zh) * 2016-09-22 2019-11-22 电子科技大学 一种高重频锁模光纤激光器产生高重频脉冲的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392639A (zh) * 2001-06-14 2003-01-22 楼宪法 在主动锁模掺铒光纤环形激光器中产生高阶锁模脉冲的方法
CN1343029A (zh) * 2001-09-26 2002-04-03 天津大学 波长锁定器稳定腔长偏振不敏感主动锁模光纤环形激光器
CN104103997A (zh) * 2014-07-23 2014-10-15 上海交通大学 利用锁模激光高重复频率脉冲产生微波信号的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537550A4 *

Also Published As

Publication number Publication date
EP3537550A1 (en) 2019-09-11
EP3537550A4 (en) 2019-12-25
CN108539570A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
US10824047B2 (en) Optical comb carrier envelope-offset frequency control using intensity modulation
US9354485B2 (en) Optical frequency ruler
CN107706701B (zh) 一种低相位噪声光频梳产生方法及系统、微波生成方法及系统
JP2017528925A (ja) 低キャリア位相ノイズファイバ発振器
Jiang et al. MHz, 58fs highly coherent Tm fiber soliton laser
CN103941515A (zh) 梳齿频率间隔可扫频的光频梳产生装置及产生方法
CN103838055A (zh) 一种基于梳齿反馈调控的光学微腔光频梳产生系统
WO2022228263A1 (zh) 一种基于片上回音壁模式光学微腔的相干伊辛机
CN106025779A (zh) 一种基于谐波锁模光纤激光器的天文学光学频率梳系统
CN103825171A (zh) 一种基于光子晶体光纤的傅里域锁模光纤激光器
CN109787081A (zh) 中红外超短脉冲激光光源
CN106356703B (zh) 高抗微扰的基于单偏振传输光纤的激光种子源系统
JP2013120202A (ja) パルス光発生装置および方法
Wang et al. Talbot laser with tunable GHz repetition rate using an electro-optic frequency shifter
JP6580554B2 (ja) 赤外領域及び可視領域における少なくとも3つのコヒーレントなレーザビームのための発生器
WO2018157799A1 (zh) 一种光脉冲信号的生成方法及装置、计算机存储介质
CN107508127B (zh) 一种带有幅度均衡效果的微波光子信号倍频方法及装置
CN104518416A (zh) 一种基于瑞利背向散射的可调谐光纤光学参量振荡器
KR101170271B1 (ko) 밀리미터 및 테라헤르쯔파 대역의 발진 신호 생성 방법 및 장치 방법
Li et al. Long-term carrier-envelope-phase stabilized fiber-bulk hybrid laser with millihertz linewidth and 50 W average power
Hsiang et al. Laser dynamics of a 10 GHz 0.55 ps asynchronously harmonic modelocked Er-doped fiber soliton laser
CN102664342A (zh) 光学参量啁啾脉冲放大器
Gray et al. Using a passive fiber ring cavity to generate shot-noise-limited laser light for low-power quantum optics applications
Hong et al. Oscillation power of opto-electronic oscillator limited by nonlinearities of Mach-Zehnder modulator and microwave amplifier
Liao et al. Active f-to-2f interferometer for carrier-envelope phase locking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018761451

Country of ref document: EP

Effective date: 20190605

NENP Non-entry into the national phase

Ref country code: DE