WO2022228263A1 - 一种基于片上回音壁模式光学微腔的相干伊辛机 - Google Patents

一种基于片上回音壁模式光学微腔的相干伊辛机 Download PDF

Info

Publication number
WO2022228263A1
WO2022228263A1 PCT/CN2022/088132 CN2022088132W WO2022228263A1 WO 2022228263 A1 WO2022228263 A1 WO 2022228263A1 CN 2022088132 W CN2022088132 W CN 2022088132W WO 2022228263 A1 WO2022228263 A1 WO 2022228263A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulsed laser
laser light
optical microcavity
ising machine
coherent ising
Prior art date
Application number
PCT/CN2022/088132
Other languages
English (en)
French (fr)
Inventor
文凯
马寅
Original Assignee
北京玻色量子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京玻色量子科技有限公司 filed Critical 北京玻色量子科技有限公司
Priority to EP22794734.8A priority Critical patent/EP4329114A1/en
Priority to JP2023579423A priority patent/JP2024517996A/ja
Priority to US18/557,083 priority patent/US20240222926A1/en
Publication of WO2022228263A1 publication Critical patent/WO2022228263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1042Optical microcavities, e.g. cavity dimensions comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0604Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising a non-linear region, e.g. generating harmonics of the laser frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06246Controlling other output parameters than intensity or frequency controlling the phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • H01S5/1075Disk lasers with special modes, e.g. whispering gallery lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the invention relates to the technical field of integrated design, and more particularly, to a coherent Ising machine based on an on-chip whispering gallery mode optical microcavity.
  • Non-deterministic Polynomial complete problem is one of the seven major mathematical problems in the world, also known as non-deterministic problems of polynomial complexity; the so-called non-determinism means that a certain number of operations can be used to solve polynomial time. Problems that can be solved.
  • the present invention provides a coherent Ising machine based on an on-chip whispering gallery mode optical microcavity, and the technical solution is as follows:
  • a coherent Ising machine based on an on-chip whispering gallery mode optical microcavity comprising:
  • a laser transmitter which is used for emitting a first pulsed laser light of a first wavelength
  • the first laser processing device is used to convert the first pulsed laser light into a second pulsed laser light of a second wavelength
  • An optical microcavity wherein a second laser processing device is integrated into the optical microcavity, and the second laser processing device is used to convert the second pulsed laser light injected into the optical microcavity into the first wavelength of the first laser.
  • the homodyne frequency measurement device is used to obtain the phase of the third pulsed laser light according to the first pulsed laser light and the third pulsed laser light;
  • a feedback device used for adjusting the amplitude and phase of the first pulsed laser light according to the phase of the third pulsed laser light, and injecting it into the optical microcavity at a set time to enhance the third pulsed laser light pulsed laser.
  • the feedback device includes: an intensity modulator, a phase modulator and an FPGA device;
  • the FPGA device is configured to control the working states of the intensity modulator and the phase modulator according to the output result of the homodyne frequency measurement device, so as to adjust the amplitude and phase of the first pulsed laser light;
  • the intensity modulator is used to adjust the amplitude of the first pulsed laser light
  • the phase modulator is used to adjust the phase of the first pulsed laser light.
  • the coherent Ising machine further includes:
  • a first coupler for injecting the second pulsed laser light into the optical microcavity.
  • an add-on waveguide is integrated in the optical microcavity
  • the first coupler is used for injecting the second pulsed laser into the optical microcavity through the add-on waveguide.
  • the first coupler is also used for injecting the first pulse signal processed by the feedback device into the optical microcavity through the add-on waveguide.
  • a drop waveguide is integrated in the optical microcavity
  • the first pulse signal processed by the feedback device is injected into the optical microcavity through the drop waveguide.
  • the coherent Ising machine further includes:
  • the second coupler is used to divide the first pulsed laser into two pulsed lasers
  • One of the pulse lasers is sent to the first laser processing device; the other pulsed laser is sent to the feedback device and the homodyne frequency measurement device respectively.
  • the coherent Ising machine further includes:
  • an amplifier where the amplifier is used for amplifying the first pulsed laser light emitted by the laser transmitter.
  • the coherent Ising machine further includes: a third coupler, an optoelectronic converter and an oscilloscope;
  • the third coupler is used to divide the third pulsed laser output from the optical microcavity into two pulsed lasers
  • One of the pulse lasers is sent to the homodyne frequency measurement device;
  • Another channel of pulsed laser is sent to the photoelectric converter
  • the photoelectric converter is used for photoelectric conversion of pulsed laser light
  • the oscilloscope is used to monitor the photoelectrically converted signal.
  • the optical microcavity has a resonant cavity with a rotationally symmetric structure.
  • a coherent Ising machine based on an on-chip whispering gallery mode optical microcavity includes: a laser transmitter, the laser transmitter is used to emit a first pulsed laser with a first wavelength; a first laser processing device, the first laser a laser processing device for converting the first pulsed laser into a second pulsed laser with a second wavelength; an optical microcavity, in which a second laser processing device is integrated, and the second laser processing device uses for converting the second pulsed laser light injected into the optical microcavity into a third pulsed laser light of the first wavelength; a homodyne frequency measurement device, the homodyne frequency measurement device is used for measuring according to the first pulsed laser light and the third pulsed laser light to obtain the phase of the third pulsed laser light; a feedback device, the feedback device is used to adjust the amplitude and phase of the first pulsed laser light according to the phase of the third pulsed laser light, Injected into the optical microcavity at a set time to enhance the third pulsed laser
  • the coherent Ising machine mainly uses an optical microcavity integrated with a second laser processing device (non-linear crystal) to realize an on-chip structure. Compared with the fiber ring structure in the prior art, its integration degree is improved. Greatly optimized.
  • FIG. 1 is a schematic structural diagram of a coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another kind of coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the principle structure of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of the principle of yet another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the inventor found that the existing coherent Ising machine utilizes the optical fiber ring structure to inject optical pulses into the optical fiber ring for cyclic resonance; during calculation, the pulse is derived for measurement feedback, Control the injection to construct the coherent Ising machine and complete the calculation.
  • the existing coherent Ising machine uses the parametric oscillation in nonlinear optics to generate optical frequency pulses, which are then injected into the fiber ring, and then use the feedback injection mechanism to realize the mutual interaction between the optical pulses. function, so as to complete the calculation of problems such as the maximum cut.
  • the present invention provides a coherent Ising machine based on an on-chip whispering gallery mode optical microcavity, which greatly improves the integration degree of the coherent Ising machine and has extremely beneficial market effects.
  • FIG. 1 is a schematic structural schematic diagram of a coherent Ising machine based on an on-chip whispering gallery mode optical microcavity according to an embodiment of the present invention.
  • the coherent Ising machine includes:
  • a laser transmitter 11 the laser transmitter 11 is used for emitting a first pulsed laser light of a first wavelength.
  • a first laser processing device 12 the first laser processing device 12 is used for converting the first pulsed laser light into a second pulsed laser light of a second wavelength.
  • the optical microcavity 13 is integrated with a second laser processing device 14, and the second laser processing device 14 is used to convert the second pulsed laser light injected into the optical microcavity 13 into the optical microcavity 13.
  • a third pulsed laser of the first wavelength is integrated with a second laser processing device 14, and the second laser processing device 14 is used to convert the second pulsed laser light injected into the optical microcavity 13 into the optical microcavity 13.
  • the homodyne frequency measuring device 15 the homodyne frequency measuring device 15 is used to obtain the phase of the third pulsed laser light according to the first pulsed laser light and the third pulsed laser light.
  • a feedback device 16 the feedback device 16 is used to adjust the amplitude and phase of the first pulsed laser according to the phase of the third pulsed laser, and inject it into the optical microcavity 13 at a set time to enhance the the third pulsed laser.
  • the optical microcavity 13 is a whispering gallery mode optical microcavity, which has a resonant cavity with a rotationally symmetrical structure, and the optical field can be totally reflected on its inner surface, thereby forming a resonance-enhanced standing wave. field effect.
  • the first laser processing device 12 is a periodically polarized lithium niobate (Periodically Poled Lithium Niobate, PPLN for short), which is a grating structure.
  • PPLN Periodically Poled Lithium Niobate
  • the second laser processing device 14 is a periodically polarized lithium niobate (Periodically Poled Lithium Niobate, PPLN for short), which is a grating structure.
  • a periodically polarized lithium niobate Periodically Poled Lithium Niobate, PPLN for short
  • the laser transmitter 11 is used for emitting a first pulsed laser light with a first wavelength, for example, the laser transmitter 11 is used for emitting a first pulsed laser light with a wavelength of 1560 nm.
  • the periodically polarized lithium niobate crystal is pumped by the first pulsed laser, and a second-harmonic process is used to generate a pulsed laser with a wavelength of 780 nanometers, that is, a second pulsed laser with a second wavelength.
  • the second pulsed laser light coupled into the optical microcavity 13 can generate an optical parametric oscillation process at the periodically polarized lithium niobate crystal grating (ie, the second laser processing device 14 ) at the coupling end of the optical microcavity 13 ,
  • a parametric oscillation pulse with a wavelength of 1560 nanometers is generated, that is, the third pulsed laser light of the first wavelength.
  • the phase of the interim pulse signal here takes 0 or ⁇ at the same time.
  • the optical pulses circulate in the optical microcavity 13 to form a stable pulse sequence; when a coherent Ising network needs to be constructed, the pulses are coupled to the detector end of the optical microcavity 13, and the homodyne frequency measurement is performed.
  • the device 15 performs balanced homodyne frequency measurement, and reads the phase information of each pulse, that is, the homodyne frequency measurement device 15 is used to obtain the third pulse laser based on the first pulse laser and the third pulse laser Phase of the pulsed laser.
  • the read phase information is fed back to the feedback device 16.
  • the feedback device 16 adjusts the amplitude and phase of the branched first pulsed laser according to the phase of the third pulsed laser, and injects it at a set time. into the optical microcavity 13 to interact with the original third pulsed laser light to enhance the third pulsed laser light, thereby constructing an optical pulse network with interaction.
  • the optical pulse network refers to that within a certain time interval, each pulse of the multiple optical pulses generated acts as a node of the network, and through the feedback injection mechanism, each pulse interacts with other pulses, thereby connecting It becomes a network of pulses, which is an optical pulse network with adjustable pulse timing, controllable network nodes, and programmable.
  • FIG. 2 is a schematic structural diagram of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the feedback device 16 includes: an intensity modulator IM (Intensity Modulator), a phase modulator PM (Phase Modulator) and an FPGA (Field Programmable Gate Array, Field Programmable Gate Array) device 161.
  • intensity modulator IM Intensity Modulator
  • phase modulator PM Phase Modulator
  • FPGA Field Programmable Gate Array, Field Programmable Gate Array
  • the FPGA device 161 is configured to control the working states of the intensity modulator IM and the phase modulator PM according to the output result of the homodyne frequency measurement device 15 to adjust the amplitude of the first pulsed laser light and phase.
  • the intensity modulator IM is used to adjust the amplitude of the first pulsed laser light.
  • the phase modulator PM is used to adjust the phase of the first pulsed laser light.
  • the signal receiving end of the FPGA device 161 is used to receive the output result signal of the homodyne frequency measurement device 15, that is, the phase information of each pulse read by the homodyne frequency measurement device 15; the FPGA device 161
  • the control terminal respectively controls the working states of the intensity modulator IM and the phase modulator PM, performs amplitude and phase modulation on each pulse of the first pulsed laser that is branched out, and controls the modulation
  • the pulses are injected into the optical microcavity 13 at a set time to interact with the original third pulsed laser light to enhance the third pulsed laser light, thereby constructing an optical pulse network with interaction.
  • FIG. 3 is a schematic structural diagram of the principle structure of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the coherent Ising machine further includes:
  • the first coupler 17 is used for injecting the second pulsed laser light into the optical microcavity 13 .
  • the laser transmitter 11 is used for emitting a first pulsed laser light with a first wavelength, for example, the laser transmitter 11 is used for emitting a first pulsed laser light with a wavelength of 1560 nm.
  • the periodically polarized lithium niobate crystal is pumped by the first pulsed laser, and a second-harmonic process is used to generate a pulsed laser with a wavelength of 780 nanometers, that is, a second pulsed laser with a second wavelength.
  • the pulse signal intensity of the second pulsed laser light injected into the optical microcavity 13 can be improved.
  • FIG. 4 is a schematic structural diagram of the principle and structure of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • An add-on waveguide 18 is integrated in the optical microcavity 13;
  • the first coupler 17 is used for injecting the second pulsed laser light into the optical microcavity 13 through the upstream waveguide 18 .
  • the laser transmitter 11 is used for emitting a first pulsed laser light with a first wavelength, for example, the laser transmitter 11 is used for emitting a first pulsed laser light with a wavelength of 1560 nm.
  • the periodically polarized lithium niobate crystal is pumped by the first pulsed laser, and a second-harmonic process is used to generate a pulsed laser with a wavelength of 780 nanometers, that is, a second pulsed laser with a second wavelength.
  • the second pulsed laser is coupled and injected into the optical microcavity 13 through the first coupler 17 and the upper waveguide 18 , so that the pulse signal intensity of the second pulsed laser injected into the optical microcavity 13 can be improved.
  • FIG. 5 is a schematic structural diagram of the principle and structure of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the first coupler 17 is also used for injecting the first pulse signal processed by the feedback device 16 into the optical microcavity 13 through the upstream waveguide 18 .
  • an implementation manner of injecting the modulated first pulsed laser light into the optical microcavity 13 is provided.
  • FIG. 6 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the coherent Ising machine further includes:
  • the second coupler 19 is used for dividing the first pulsed laser into two pulsed lasers.
  • One of the pulse lasers is sent to the first laser processing device 12 ; the other pulsed laser is sent to the feedback device 16 and the homodyne frequency measurement device 15 respectively.
  • the second coupler 19 acts as a laser pulse splitter, one of which is used to pump a periodically polarized lithium niobate crystal, and uses the second harmonic process to generate a pulse with a wavelength of 780 nanometers Laser, that is, the second pulsed laser of the second wavelength.
  • the other pulsed laser includes but is not limited to being sent to the feedback device 16 and the homodyne frequency measurement device 15 respectively through a beam splitter.
  • the pulsed laser light processed by the feedback device 16 includes but is not limited to being fed back to the first coupler 17 through a beam splitter again.
  • FIG. 7 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the coherent Ising machine further includes:
  • the amplifier 20 is used for amplifying the first pulsed laser light emitted by the laser transmitter 11 .
  • the amplifier 20 is disposed between the second coupler 19 and the laser transmitter 11 for amplifying the first pulsed laser light emitted by the laser transmitter 11 .
  • the amplifier 20 includes, but is not limited to, EDFA (Erbium-doped Optical Fiber Amplifier, that is, an erbium-doped fiber amplifier), which is an active optical device that amplifies signal light.
  • EDFA Erbium-doped Optical Fiber Amplifier, that is, an erbium-doped fiber amplifier
  • FIG. 8 is a schematic structural diagram of a principle structure of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the coherent Ising machine further includes: a third coupler 21, a photoelectric converter 22 and an oscilloscope 23;
  • the third coupler 21 is used to divide the third pulsed laser output from the optical microcavity 13 into two pulsed lasers;
  • One of the pulsed lasers is sent to the homodyne frequency measuring device 15;
  • Another pulsed laser is sent to the photoelectric converter 22;
  • the photoelectric converter 22 is used for photoelectric conversion of the pulsed laser light
  • the oscilloscope 23 is used to monitor the photoelectrically converted signal.
  • the optical pulse injected into the optical microcavity 13 circulates in the optical microcavity 13 to form a stable pulse sequence;
  • the third coupler 21 couples the pulses to the detector end of the optical microcavity 13 and performs branch processing.
  • the homodyne frequency measurement device 15 is sent to the homodyne frequency measurement device 15, and the homodyne frequency measurement device 15 is used to perform balanced homodyne frequency measurement, and the phase information of each pulse is read, that is, the homodyne frequency measurement device 15 is used to measure according to the the first pulsed laser light and the third pulsed laser light to obtain the phase of the third pulsed laser light.
  • the other is processed by the photoelectric converter 22 , and then monitored by the oscilloscope 23 .
  • FIG. 9 is another optical microcavity based on the on-chip whispering gallery mode provided by the embodiment of the present invention. Schematic diagram of the principle structure of the coherent Ising machine.
  • a drop waveguide 24 is integrated in the optical microcavity 13;
  • the first pulse signal processed by the feedback device 16 is injected into the optical microcavity 13 through the downstream waveguide 24 .
  • FIG. 10 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the coherent Ising machine further includes:
  • the second coupler 19 is used for dividing the first pulsed laser into two pulsed lasers.
  • One of the pulse lasers is sent to the first laser processing device 12 ; the other pulsed laser is sent to the feedback device 16 and the homodyne frequency measurement device 15 respectively.
  • the second coupler 19 acts as a laser pulse splitter, one of which is used to pump a periodically polarized lithium niobate crystal, and uses the second harmonic process to generate a pulse with a wavelength of 780 nanometers Laser, that is, the second pulsed laser of the second wavelength.
  • the other pulsed laser includes but is not limited to being sent to the feedback device 16 and the homodyne frequency measurement device 15 respectively through a beam splitter.
  • FIG. 11 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the coherent Ising machine further includes:
  • the amplifier 20 is used for amplifying the first pulsed laser light emitted by the laser transmitter 11 .
  • the amplifier 20 is disposed between the second coupler 19 and the laser transmitter 11 for amplifying the first pulsed laser light emitted by the laser transmitter 11 .
  • the amplifier 20 includes, but is not limited to, EDFA (Erbium-doped Optical Fiber Amplifier, that is, an erbium-doped fiber amplifier), which is an active optical device that amplifies signal light.
  • EDFA Erbium-doped Optical Fiber Amplifier, that is, an erbium-doped fiber amplifier
  • FIG. 12 is a schematic structural diagram of the principle of another coherent Ising machine based on an on-chip whispering gallery mode optical microcavity provided by an embodiment of the present invention.
  • the coherent Ising machine further includes: a third coupler 21, a photoelectric converter 22 and an oscilloscope 23;
  • the third coupler 21 is used to divide the third pulsed laser output from the optical microcavity 13 into two pulsed lasers;
  • One of the pulsed lasers is sent to the homodyne frequency measuring device 15;
  • Another pulsed laser is sent to the photoelectric converter 22;
  • the photoelectric converter 22 is used for photoelectric conversion of the pulsed laser light
  • the oscilloscope 23 is used to monitor the photoelectrically converted signal.
  • the optical pulse injected into the optical microcavity 13 circulates in the optical microcavity 13 to form a stable pulse sequence;
  • the third coupler 21 couples the pulses to the detector end of the optical microcavity 13 and performs branch processing.
  • the homodyne frequency measurement device 15 is sent to the homodyne frequency measurement device 15, and the homodyne frequency measurement device 15 is used to perform balanced homodyne frequency measurement, and the phase information of each pulse is read, that is, the homodyne frequency measurement device 15 is used to measure according to the the first pulsed laser light and the third pulsed laser light to obtain the phase of the third pulsed laser light.
  • the other is processed by the photoelectric converter 22 , and then monitored by the oscilloscope 23 .
  • both nonlinear optical processes can be realized by periodically polarized lithium niobate crystal integrated in the optical microcavity. Complete, even if the indirect optical parametric oscillation process and the detour of the light pulse are carried out simultaneously in the integrated optical microcavity.
  • the optical microcavity of the whispering gallery mode is adopted, which greatly improves the integration degree compared with the optical fiber ring structure in the prior art.
  • the nonlinear crystal is integrated, so that the whole system realizes a chip structure and solves the problem of the CIM system. Chip issue.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Plasma & Fusion (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Operations Research (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

本发明提供了一种基于片上回音壁模式光学微腔的相干伊辛机,该相干伊辛机主要利用了集成有第二激光处理装置(非线性晶体)的光学微腔,实现了一种芯片上的结构,相比较现有技术中的光纤环结构,其集成度得到了极大程度的优化。

Description

一种基于片上回音壁模式光学微腔的相干伊辛机
本申请要求于2021年04月25日提交中国专利局、申请号为202110447214.3、发明名称为“一种基于片上回音壁模式光学微腔的相干伊辛机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及集成设计技术领域,更具体地说,涉及一种基于片上回音壁模式光学微腔的相干伊辛机。
背景技术
NP(英文全称为:Non-deterministic Polynomial)完全问题,是世界七大数学难题之一,也称多项式复杂程度的非确定性问题;所谓非确定性是指可用一定数量的运算去解决多项式时间内可以解决的问题。
基于此,目前计算机领域中NP完全问题受制于计算力,无法在有效时间内取得精确结果,而利用相干伊辛机设计的算法可以解决最大切割等问题。
但是,目前相干伊辛机的集成度低。
发明内容
有鉴于此,为解决上述问题,本发明提供一种基于片上回音壁模式光学微腔的相干伊辛机,技术方案如下:
一种基于片上回音壁模式光学微腔的相干伊辛机,所述相干伊辛机包括:
激光发射器,所述激光发射器用于发射第一波长的第一脉冲激光;
第一激光处理装置,所述第一激光处理装置用于将所述第一脉冲激光转换为第二波长的第二脉冲激光;
光学微腔,所述光学微腔中集成有第二激光处理装置,所述第二激光处理 装置用于将注入到所述光学微腔中的第二脉冲激光转换为所述第一波长的第三脉冲激光;
零差频测量装置,所述零差频测量装置用于依据所述第一脉冲激光和所述第三脉冲激光,以获得所述第三脉冲激光的相位;
反馈装置,所述反馈装置用于依据所述第三脉冲激光的相位,调节所述第一脉冲激光的幅度和相位,在设定时间注入到所述光学微腔中,以增强所述第三脉冲激光。
优选的,在上述相干伊辛机中,所述反馈装置包括:强度调制器、相位调制器和FPGA装置;
其中,所述FPGA装置用于依据所述零差频测量装置的输出结果,控制所述强度调制器和所述相位调制器的工作状态,以调节所述第一脉冲激光的幅度和相位;
所述强度调制器用于调节所述第一脉冲激光的幅度;
所述相位调制器用于调节所述第一脉冲激光的相位。
优选的,在上述相干伊辛机中,所述相干伊辛机还包括:
第一耦合器,所述第一耦合器用于将所述第二脉冲激光注入到所述光学微腔中。
优选的,在上述相干伊辛机中,所述光学微腔中集成有上路波导;
其中,所述第一耦合器用于将所述第二脉冲激光通过所述上路波导注入到所述光学微腔中。
优选的,在上述相干伊辛机中,
所述第一耦合器还用于将被所述反馈装置处理后的第一脉冲信号通过所述上路波导注入到所述光学微腔中。
优选的,在上述相干伊辛机中,所述光学微腔中集成有下路波导;
其中,被所述反馈装置处理后的第一脉冲信号通过所述下路波导注入到所述光学微腔中。
优选的,在上述相干伊辛机中,所述相干伊辛机还包括:
第二耦合器,所述第二耦合器用于将所述第一脉冲激光分为两路脉冲激光;
其中一路脉冲激光输送至所述第一激光处理装置;另一路脉冲激光分别输送至所述反馈装置和所述零差频测量装置。
优选的,在上述相干伊辛机中,所述相干伊辛机还包括:
放大器,所述放大器用于对所述激光发射器发出的所述第一脉冲激光进行放大处理。
优选的,在上述相干伊辛机中,所述相干伊辛机还包括:第三耦合器、光电转换器以及示波器;
其中,所述第三耦合器用于将所述光学微腔输出的所述第三脉冲激光分为两路脉冲激光;
其中一路脉冲激光输送至所述零差频测量装置;
另一路脉冲激光输送至所述光电转换器;
所述光电转换器用于对脉冲激光进行光电转换;
所述示波器用于对光电转换后的信号进行监测。
优选的,在上述相干伊辛机中,所述光学微腔具有旋转对称性结构的谐振腔。
相较于现有技术,本发明实现的有益效果为:
本发明提供的一种基于片上回音壁模式光学微腔的相干伊辛机包括:激光发射器,所述激光发射器用于发射第一波长的第一脉冲激光;第一激光处理装置,所述第一激光处理装置用于将所述第一脉冲激光转换为第二波长的第二脉冲激光;光学微腔,所述光学微腔中集成有第二激光处理装置,所述第二激光 处理装置用于将注入到所述光学微腔中的第二脉冲激光转换为所述第一波长的第三脉冲激光;零差频测量装置,所述零差频测量装置用于依据所述第一脉冲激光和所述第三脉冲激光,以获得所述第三脉冲激光的相位;反馈装置,所述反馈装置用于依据所述第三脉冲激光的相位,调节所述第一脉冲激光的幅度和相位,在设定时间注入到所述光学微腔中,以增强所述第三脉冲激光。
该相干伊辛机主要利用了集成有第二激光处理装置(非线性晶体)的光学微腔,实现了一种芯片上的结构,相比较现有技术中的光纤环结构,其集成度得到了极大程度的优化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图2为本发明实施例提供的另一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图3为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图4为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图5为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图6为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图7为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图8为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊 辛机的原理结构示意图;
图9为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图10为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图11为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图;
图12为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的发明创造过程中,发明人发现,目前已有的相干伊辛机是利用光纤环结构,将光脉冲注入到光纤环中进行循环共振;在计算时,通过导出脉冲进行测量反馈,控制注入以此构建相干伊辛机,并完成计算。
也就是说,目前已有的相干伊辛机是利用非线性光学中的间并参量震荡来产生光频的脉冲,然后注入到光纤环中,再利用反馈注入的机制实现光脉冲之间的相互作用,从而完成诸如最大切割等问题的计算。
但是,发明人发现,这一相干伊辛机的系统集成度很低,需要集成数公里的光纤环,以及利用独立的非线性晶体进行泵浦。
基于此,本发明提供了一种基于片上回音壁模式光学微腔的相干伊辛机,极大程度的提高了相干伊辛机的集成度,具有极为有益的市场效果。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参考图1,图1为本发明实施例提供的一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述相干伊辛机包括:
激光发射器11,所述激光发射器11用于发射第一波长的第一脉冲激光。
第一激光处理装置12,所述第一激光处理装置12用于将所述第一脉冲激光转换为第二波长的第二脉冲激光。
光学微腔13,所述光学微腔13中集成有第二激光处理装置14,所述第二激光处理装置14用于将注入到所述光学微腔13中的第二脉冲激光转换为所述第一波长的第三脉冲激光。
零差频测量装置15,所述零差频测量装置15用于依据所述第一脉冲激光和所述第三脉冲激光,以获得所述第三脉冲激光的相位。
反馈装置16,所述反馈装置16用于依据所述第三脉冲激光的相位,调节所述第一脉冲激光的幅度和相位,在设定时间注入到所述光学微腔13中,以增强所述第三脉冲激光。
在该实施例中,所述光学微腔13为回音壁模式的光学微腔,其具有旋转对称性结构的谐振腔,光场能够在其内表面进行全反射,从而可以形成共振增强的驻波场效果。
可选的,所述第一激光器处理装置12为周期极化的铌酸锂晶体(Periodically Poled Lithium Niobate,简称PPLN),是一种光栅结构。
可选的,所述第二激光器处理装置14为周期极化的铌酸锂晶体(Periodically Poled Lithium Niobate,简称PPLN),是一种光栅结构。
所述激光发射器11用于发射出第一波长的第一脉冲激光,例如,所述激 光发射器11用于发射出1560纳米的第一脉冲激光。
通过所述第一脉冲激光泵浦周期极化的铌酸锂晶体,利用二次谐波过程产生波长为780纳米的脉冲激光,即第二波长的第二脉冲激光。
耦合注入到所述光学微腔13中的第二脉冲激光,能够在光学微腔13的耦合端的周期极化的铌酸锂晶体光栅(即第二激光处理装置14)处发生光学参量振荡过程,从而又产生波长在1560纳米的参量振荡脉冲,即第一波长的第三脉冲激光。
其中,这里的间并脉冲信号的相位同时取0或π。
此时,光脉冲在所述光学微腔13中循环,形成稳定的脉冲序列;当需要构建相干伊辛网络时,将脉冲耦合到所述光学微腔13的探测器端,通过零差频测量装置15进行平衡零差频测量,读取每个脉冲的相位信息,即所述零差频测量装置15用于依据所述第一脉冲激光和所述第三脉冲激光,以获得所述第三脉冲激光的相位。
同时将读取的相位信息,反馈给反馈装置16,所述反馈装置16依据所述第三脉冲激光的相位,调节分路出来的所述第一脉冲激光的幅度和相位,在设定时间注入到所述光学微腔13中,使其跟原有的第三脉冲激光发生相互作用,以增强所述第三脉冲激光,从而构造出具有相互作用的光学脉冲网络。
需要说明的是,该光学脉冲网络是指一定时间间隔内,产生的多个光脉冲中每个脉冲作为网络的节点,通过反馈注入机制,使得每个脉冲与其它脉冲发生了相互作用,从而连接成了脉冲的网络,这是一个脉冲时序可调、网络节点可控、可编程的光学脉冲网络。
可选的,在本发明另一实施例中,参考图2,图2为本发明实施例提供的另一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述反馈装置16包括:强度调制器IM(Intensity Modulator)、相位调制器PM(Phase Modulator)和FPGA(Field Programmable Gate Array,现场可 编程门阵列)装置161。
其中,所述FPGA装置161用于依据所述零差频测量装置15的输出结果,控制所述强度调制器IM和所述相位调制器PM的工作状态,以调节所述第一脉冲激光的幅度和相位。
所述强度调制器IM用于调节所述第一脉冲激光的幅度。
所述相位调制器PM用于调节所述第一脉冲激光的相位。
在该实施例中,所述FPGA装置161的信号接收端,用于接收零差频测量装置15的输出结果信号,即零差频测量装置15读取的每个脉冲的相位信息;FPGA装置161的控制端,分别控制所述强度调制器IM和所述相位调制器PM的工作状态,对于分路出来的所述第一脉冲激光的每个脉冲分别进行幅度和相位调制,并且控制调制之后的脉冲在设定时间注入到所述光学微腔13中,使其跟原有的第三脉冲激光发生相互作用,以增强所述第三脉冲激光,从而构造出具有相互作用的光学脉冲网络。
可选的,在本发明另一实施例中,参考图3,图3为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述相干伊辛机还包括:
第一耦合器17,所述第一耦合器17用于将所述第二脉冲激光注入到所述光学微腔13中。
在该实施例中,所述激光发射器11用于发射出第一波长的第一脉冲激光,例如,所述激光发射器11用于发射出1560纳米的第一脉冲激光。
通过所述第一脉冲激光泵浦周期极化的铌酸锂晶体,利用二次谐波过程产生波长为780纳米的脉冲激光,即第二波长的第二脉冲激光。
通过所述第一耦合器17将所述第二脉冲激光耦合注入到所述光学微腔13中,可提高第二脉冲激光注入到光学微腔13中的脉冲信号强度。
可选的,在本发明另一实施例中,参考图4,图4为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述光学微腔13中集成有上路波导18;
其中,所述第一耦合器17用于将所述第二脉冲激光通过所述上路波导18注入到所述光学微腔13中。
在该实施例中,所述激光发射器11用于发射出第一波长的第一脉冲激光,例如,所述激光发射器11用于发射出1560纳米的第一脉冲激光。
通过所述第一脉冲激光泵浦周期极化的铌酸锂晶体,利用二次谐波过程产生波长为780纳米的脉冲激光,即第二波长的第二脉冲激光。
通过所述第一耦合器17以及所述上路波导18将所述第二脉冲激光耦合注入到所述光学微腔13中,可提高第二脉冲激光注入到光学微腔13中的脉冲信号强度。
可选的,在本发明另一实施例中,参考图5,图5为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述第一耦合器17还用于将被所述反馈装置16处理后的第一脉冲信号通过所述上路波导18注入到所述光学微腔13中。
在该实施例中,提供了调制后第一脉冲激光注入到光学微腔13中的一种实现方式。
基于该实现方式,参考图6,图6为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述相干伊辛机还包括:
第二耦合器19,所述第二耦合器19用于将所述第一脉冲激光分为两路脉冲激光。
其中一路脉冲激光输送至所述第一激光处理装置12;另一路脉冲激光分别输送至所述反馈装置16和所述零差频测量装置15。
在该实施例中,所述第二耦合器19起到激光脉冲分路的作用,其中一路用于泵浦周期极化的铌酸锂晶体,利用二次谐波过程产生波长为780纳米的脉冲激光,即第二波长的第二脉冲激光。
另一路脉冲激光包括但不限定于通过分束器分别输送至所述反馈装置16和所述零差频测量装置15。
需要说明的是,经过所述反馈装置16处理后的脉冲激光,包括但不限定于再次通过分束器反馈至所述第一耦合器17。
基于该实现方式,参考图7,图7为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述相干伊辛机还包括:
放大器20,所述放大器20用于对所述激光发射器11发出的所述第一脉冲激光进行放大处理。
在该实施例中,所述放大器20设置在所述第二耦合器19和所述激光发射器11之间,用于对所述激光发射器11发出的所述第一脉冲激光进行放大处理。
所述放大器20包括但不限定于EDFA(Erbium-doped Optical Fiber Amplifier,即掺饵光纤放大器),是一种对信号光放大的有源光器件。
基于该实现方式,参考图8,图8为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述相干伊辛机还包括:第三耦合器21、光电转换器22以及示波器23;
其中,所述第三耦合器21用于将所述光学微腔13输出的所述第三脉冲激光分为两路脉冲激光;
其中一路脉冲激光输送至所述零差频测量装置15;
另一路脉冲激光输送至所述光电转换器22;
所述光电转换器22用于对脉冲激光进行光电转换;
所述示波器23用于对光电转换后的信号进行监测。
在该实施例中,注入到光学微腔13中的光脉冲在所述光学微腔13中循环,形成稳定的脉冲序列;当需要构建相干伊辛网络时,通过所述上路波导18和所述第三耦合器21将脉冲耦合到所述光学微腔13的探测器端,并进行分路处理。
其中一路输送至所述零差频测量装置15,通过零差频测量装置15进行平衡零差频测量,读取每个脉冲的相位信息,即所述零差频测量装置15用于依据所述第一脉冲激光和所述第三脉冲激光,以获得所述第三脉冲激光的相位。
另一种通过光电转换器22进行处理,再通过示波器23进行信号监测。
可选的,在本发明另一实施例中,在图4所示相干伊辛机的基础上,参考图9,图9为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述光学微腔13中集成有下路波导24;
其中,被所述反馈装置16处理后的第一脉冲信号通过所述下路波导24注入到所述光学微腔13中。
在该实施例中,提供了调制后第一脉冲激光注入到光学微腔13中的另一种实现方式。
基于该实现方式,参考图10,图10为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述相干伊辛机还包括:
第二耦合器19,所述第二耦合器19用于将所述第一脉冲激光分为两路脉冲激光。
其中一路脉冲激光输送至所述第一激光处理装置12;另一路脉冲激光分 别输送至所述反馈装置16和所述零差频测量装置15。
在该实施例中,所述第二耦合器19起到激光脉冲分路的作用,其中一路用于泵浦周期极化的铌酸锂晶体,利用二次谐波过程产生波长为780纳米的脉冲激光,即第二波长的第二脉冲激光。
另一路脉冲激光包括但不限定于通过分束器分别输送至所述反馈装置16和所述零差频测量装置15。
基于该实现方式,参考图11,图11为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述相干伊辛机还包括:
放大器20,所述放大器20用于对所述激光发射器11发出的所述第一脉冲激光进行放大处理。
在该实施例中,所述放大器20设置在所述第二耦合器19和所述激光发射器11之间,用于对所述激光发射器11发出的所述第一脉冲激光进行放大处理。
所述放大器20包括但不限定于EDFA(Erbium-doped Optical Fiber Amplifier,即掺饵光纤放大器),是一种对信号光放大的有源光器件。
基于该实现方式,参考图12,图12为本发明实施例提供的又一种基于片上回音壁模式光学微腔的相干伊辛机的原理结构示意图。
所述相干伊辛机还包括:第三耦合器21、光电转换器22以及示波器23;
其中,所述第三耦合器21用于将所述光学微腔13输出的所述第三脉冲激光分为两路脉冲激光;
其中一路脉冲激光输送至所述零差频测量装置15;
另一路脉冲激光输送至所述光电转换器22;
所述光电转换器22用于对脉冲激光进行光电转换;
所述示波器23用于对光电转换后的信号进行监测。
在该实施例中,注入到光学微腔13中的光脉冲在所述光学微腔13中循环,形成稳定的脉冲序列;当需要构建相干伊辛网络时,通过所述上路波导18和所述第三耦合器21将脉冲耦合到所述光学微腔13的探测器端,并进行分路处理。
其中一路输送至所述零差频测量装置15,通过零差频测量装置15进行平衡零差频测量,读取每个脉冲的相位信息,即所述零差频测量装置15用于依据所述第一脉冲激光和所述第三脉冲激光,以获得所述第三脉冲激光的相位。
另一种通过光电转换器22进行处理,再通过示波器23进行信号监测。
通过上述描述可知,本发明实施例提供的基于片上回音壁模式光学微腔的相干伊辛机,两次非线性光学过程都可以通过集成在光学微腔中的周期极化的铌酸锂晶体来完成,即使间并的光学参量振荡过程以及光脉冲的绕行同时在集成的光学微腔中进行。
并且,采用回音壁模式光学微腔,相比较现有技术中的光纤环结构,极大程度的提高了集成度,同时集成非线性晶体,使整个系统实现了一种芯片结构,解决了CIM系统芯片化的问题。
以上对本发明所提供的一种基于片上回音壁模式光学微腔的相干伊辛机进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素,或者是还包括为这些过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种基于片上回音壁模式光学微腔的相干伊辛机,其特征在于,所述相干伊辛机包括:
    激光发射器,所述激光发射器用于发射第一波长的第一脉冲激光;
    第一激光处理装置,所述第一激光处理装置用于将所述第一脉冲激光转换为第二波长的第二脉冲激光;
    光学微腔,所述光学微腔中集成有第二激光处理装置,所述第二激光处理装置用于将注入到所述光学微腔中的第二脉冲激光转换为所述第一波长的第三脉冲激光;
    零差频测量装置,所述零差频测量装置用于依据所述第一脉冲激光和所述第三脉冲激光,以获得所述第三脉冲激光的相位;
    反馈装置,所述反馈装置用于依据所述第三脉冲激光的相位,调节所述第一脉冲激光的幅度和相位,在设定时间注入到所述光学微腔中,以增强所述第三脉冲激光。
  2. 根据权利要求1所述的相干伊辛机,其特征在于,所述反馈装置包括:强度调制器、相位调制器和FPGA装置;
    其中,所述FPGA装置用于依据所述零差频测量装置的输出结果,控制所述强度调制器和所述相位调制器的工作状态,以调节所述第一脉冲激光的幅度和相位;
    所述强度调制器用于调节所述第一脉冲激光的幅度;
    所述相位调制器用于调节所述第一脉冲激光的相位。
  3. 根据权利要求2所述的相干伊辛机,其特征在于,所述相干伊辛机还包括:
    第一耦合器,所述第一耦合器用于将所述第二脉冲激光注入到所述光学微腔中。
  4. 根据权利要求3所述的相干伊辛机,其特征在于,所述光学微腔中集成有上路波导;
    其中,所述第一耦合器用于将所述第二脉冲激光通过所述上路波导注入到所述光学微腔中。
  5. 根据权利要求4所述的相干伊辛机,其特征在于,
    所述第一耦合器还用于将被所述反馈装置处理后的第一脉冲信号通过所述上路波导注入到所述光学微腔中。
  6. 根据权利要求3所述的相干伊辛机,其特征在于,所述光学微腔中集成有下路波导;
    其中,被所述反馈装置处理后的第一脉冲信号通过所述下路波导注入到所述光学微腔中。
  7. 根据权利要求1所述的相干伊辛机,其特征在于,所述相干伊辛机还包括:
    第二耦合器,所述第二耦合器用于将所述第一脉冲激光分为两路脉冲激光;
    其中一路脉冲激光输送至所述第一激光处理装置;另一路脉冲激光分别输送至所述反馈装置和所述零差频测量装置。
  8. 根据权利要求1所述的相干伊辛机,其特征在于,所述相干伊辛机还包括:
    放大器,所述放大器用于对所述激光发射器发出的所述第一脉冲激光进行放大处理。
  9. 根据权利要求1所述的相干伊辛机,其特征在于,所述相干伊辛机还包括:第三耦合器、光电转换器以及示波器;
    其中,所述第三耦合器用于将所述光学微腔输出的所述第三脉冲激光分为两路脉冲激光;
    其中一路脉冲激光输送至所述零差频测量装置;
    另一路脉冲激光输送至所述光电转换器;
    所述光电转换器用于对脉冲激光进行光电转换;
    所述示波器用于对光电转换后的信号进行监测。
  10. 根据权利要求1所述的相干伊辛机,其特征在于,所述光学微腔具有旋转对称性结构的谐振腔。
PCT/CN2022/088132 2021-04-25 2022-04-21 一种基于片上回音壁模式光学微腔的相干伊辛机 WO2022228263A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22794734.8A EP4329114A1 (en) 2021-04-25 2022-04-21 Coherent ising machine based on on-chip optical microcavity in whispering gallery mode
JP2023579423A JP2024517996A (ja) 2021-04-25 2022-04-21 オンチップのウィスパリングギャラリーモードの光マイクロキャビティに基づくコヒーレントイジングマシン
US18/557,083 US20240222926A1 (en) 2021-04-25 2022-04-21 Coherent ising machine based on on-chip optical microcavity in whispering gallery mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110447214.3A CN113178775B (zh) 2021-04-25 2021-04-25 一种基于片上回音壁模式光学微腔的相干伊辛机
CN202110447214.3 2021-04-25

Publications (1)

Publication Number Publication Date
WO2022228263A1 true WO2022228263A1 (zh) 2022-11-03

Family

ID=76925089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088132 WO2022228263A1 (zh) 2021-04-25 2022-04-21 一种基于片上回音壁模式光学微腔的相干伊辛机

Country Status (5)

Country Link
US (1) US20240222926A1 (zh)
EP (1) EP4329114A1 (zh)
JP (1) JP2024517996A (zh)
CN (1) CN113178775B (zh)
WO (1) WO2022228263A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178775B (zh) * 2021-04-25 2022-04-12 北京玻色量子科技有限公司 一种基于片上回音壁模式光学微腔的相干伊辛机
CN114579348B (zh) * 2022-05-06 2022-07-12 北京玻色量子科技有限公司 一种用于光学相干计算装置的纠错方法
CN115470455B (zh) * 2022-08-16 2023-03-17 北京玻色量子科技有限公司 一种光学相干计算装置及其纠错方法
CN116052802B (zh) * 2023-03-31 2023-07-07 北京玻色量子科技有限公司 一种相干伊辛机、基于其的多肽设计方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163922A (ja) * 2014-02-28 2015-09-10 日本電信電話株式会社 光パラメトリック発振器とそれを用いたランダム信号発生装置及びイジングモデル計算装置
CN105896235A (zh) * 2016-06-08 2016-08-24 中国科学技术大学 基于多层膜回音壁模式光学微腔的光电振荡器
CN107508140A (zh) * 2017-09-25 2017-12-22 北京大学 一种片上集成的宽带耦合光学微腔系统及其耦合方法
JP2018147228A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
CN113178775A (zh) * 2021-04-25 2021-07-27 北京玻色量子科技有限公司 一种基于片上回音壁模式光学微腔的相干伊辛机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457155B (zh) * 2013-07-26 2016-09-21 马亚男 混合集成复合腔波长可调谐激光发射器
CN103838055A (zh) * 2014-03-03 2014-06-04 北京航空航天大学 一种基于梳齿反馈调控的光学微腔光频梳产生系统
WO2019014345A1 (en) * 2017-07-11 2019-01-17 Massachusetts Institute Of Technology OPTICAL ISING MACHINES AND OPTICAL CONVOLUTIVE NEURAL NETWORKS
JP6996457B2 (ja) * 2018-09-04 2022-01-17 日本電信電話株式会社 スパイキングニューロン装置および組合せ最適化問題計算装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163922A (ja) * 2014-02-28 2015-09-10 日本電信電話株式会社 光パラメトリック発振器とそれを用いたランダム信号発生装置及びイジングモデル計算装置
CN105896235A (zh) * 2016-06-08 2016-08-24 中国科学技术大学 基于多层膜回音壁模式光学微腔的光电振荡器
JP2018147228A (ja) * 2017-03-06 2018-09-20 日本電信電話株式会社 イジングモデルの計算装置
CN107508140A (zh) * 2017-09-25 2017-12-22 北京大学 一种片上集成的宽带耦合光学微腔系统及其耦合方法
CN113178775A (zh) * 2021-04-25 2021-07-27 北京玻色量子科技有限公司 一种基于片上回音壁模式光学微腔的相干伊辛机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HORI MASAKI, AGHAI-KHOZANI HOSSEIN, SÓTÉR ANNA, BARNA DANIEL, DAX ANDREAS, HAYANO RYUGO, KOBAYASHI TAKUMI, MURAKAMI YOHEI, TODOROK: "Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio", SCIENCE, vol. 354, no. 6312, 4 November 2016 (2016-11-04), US , pages 610 - 614, XP055982637, ISSN: 0036-8075, DOI: 10.1126/science.aaf6702 *

Also Published As

Publication number Publication date
CN113178775B (zh) 2022-04-12
US20240222926A1 (en) 2024-07-04
JP2024517996A (ja) 2024-04-23
EP4329114A1 (en) 2024-02-28
CN113178775A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2022228263A1 (zh) 一种基于片上回音壁模式光学微腔的相干伊辛机
Stefszky et al. Waveguide cavity resonator as a source of optical squeezing
US20190356103A1 (en) Optical frequency comb generator with carrier envelope offset frequency detection
Jiang et al. MHz, 58fs highly coherent Tm fiber soliton laser
CN109596148B (zh) 一种提高压缩光探测装置干涉效率的方法
Bowers Integrated microwave photonics
JP2016018124A (ja) 光周波数コム発生装置
Quirce et al. Chaos synchronization in mutually coupled 1550-nm vertical-cavity surface-emitting lasers with parallel polarizations and long delay time
Wei et al. Self-injection locked CW single-frequency tunable Ti: sapphire laser
CN206515569U (zh) 激光脉冲整形装置及激光脉冲整形系统
Hou et al. Experimental generation of optical non-classical states of light with 1.34 μ m wavelength
US11822207B2 (en) Method and apparatus for generating optical frequency comb
Tuo et al. Regeneratively mode-locked optoelectronic oscillator
Donati et al. Self-mixing displacement measured by a two-color laser in 66-nm steps
Martinelli et al. Classical and quantum properties of optical parametric oscillators
CN114899688A (zh) 一种偏振复用双光频梳的产生装置及产生方法
CN103326221B (zh) 利用环型光纤有源腔共振增强倍频光效率的方法
CN111262122B (zh) 一种光学频率梳的产生系统
US11169428B2 (en) Squeezed light generator and method for generating squeezed light
JP2604479B2 (ja) モード同期レーザ装置
CN214204259U (zh) 光泵自旋vcsel周期振荡毫米波信号产生装置
Poulin et al. Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using/sup 87/Rb D/sub 2/-line and second harmonic generation
CN211377170U (zh) 基于内腔相位调制器的非线性环形镜锁模光纤激光器
Biaggio et al. Intracavity frequency doubling of a diode pumped nd: Yag laser using a knbo3 crystal
CN114498273B (zh) 一种微波信号处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023579423

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022794734

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18557083

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022794734

Country of ref document: EP

Effective date: 20231121