WO2018157513A1 - 一种用于规则三维对象体积测量的方法和系统 - Google Patents

一种用于规则三维对象体积测量的方法和系统 Download PDF

Info

Publication number
WO2018157513A1
WO2018157513A1 PCT/CN2017/089543 CN2017089543W WO2018157513A1 WO 2018157513 A1 WO2018157513 A1 WO 2018157513A1 CN 2017089543 W CN2017089543 W CN 2017089543W WO 2018157513 A1 WO2018157513 A1 WO 2018157513A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional object
regular
image
measurement
scale
Prior art date
Application number
PCT/CN2017/089543
Other languages
English (en)
French (fr)
Inventor
杨宇彤
王聪
Original Assignee
成都中科创达软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都中科创达软件有限公司 filed Critical 成都中科创达软件有限公司
Publication of WO2018157513A1 publication Critical patent/WO2018157513A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present invention relates to the field of electronic measurement technology, and more particularly to a method and system for regular three-dimensional object measurement.
  • the utility model patent of CN205138424U discloses a package volume measuring device for the logistics industry, which comprises a base, a bracket, an image sensor and a height measuring component.
  • the base is provided with a tray, and the tray surface is provided with a plurality of Uniformly distributed identification points, the base is provided with a control main board and a transmission component for driving the height measuring component to move up and down on the bracket.
  • the measuring device still requires complex components such as base and height measurement, which are complicated in structure and high in cost; and the measuring range is limited by the size of the tray and the height of the bracket, and the range is small; since the height measurement depends on the machine
  • the height measuring component and the transmission component moving up and down result in slow measurement speed; at the same time, it is not convenient to move and measure the package placed at any time. Instead, the package needs to be transported to its tray and aligned with the marking point before the measurement can be started, which further reduces the measurement. Measurement speed and measurement flexibility.
  • At least one of the objects of the present invention is to provide a method and system for regular three-dimensional object volume measurement that can perform various sizes flexibly and portablely in view of the problems of the prior art described above.
  • the measurement of the package not only has a high measurement speed but also a low measurement cost.
  • an embodiment of the present invention provides a method for regular three-dimensional object measurement, comprising:
  • Step A acquiring a first image including the rule three-dimensional object and a reference ruler, the reference ruler being disposed on at least one contour line of the regular three-dimensional object;
  • Step B performing a visual visual analysis process on the first image to obtain an image length of the contour line of the regular three-dimensional object and the contour line of the reference ruler.
  • Step A setting the reference ruler on at least one contour line of the regular three-dimensional object
  • Step B acquiring a first image including the rule three-dimensional object and a reference ruler
  • Step C performing a visual visual analysis process on the first image, and acquiring an image length of the contour line of the regular three-dimensional object and the contour line of the reference ruler;
  • Step D Acquire a volume of the regular three-dimensional object based on a preset actual length of the reference scale, an image length of a contour of the reference scale, and an image length of the contour of the three-dimensional object.
  • the regular three-dimensional object comprises: a cube, a cuboid, a cylinder, a cone, a pyramid, a parallelepiped, a trapezoid, or a truncated cone.
  • the method further comprises repeatedly performing steps A and B to obtain two or more of the first images;
  • step A when step A is repeated, the scale arms of the reference scale are disposed on different contour lines; or, the number of the reference scales is greater than one. That is to say, the outline portions of the scale arms of the reference scale are different or all different.
  • the method further comprises displaying the auxiliary prompt information setting the reference scale in real time during the measurement.
  • the method further comprises displaying the measurement data and/or the measurement results in real time during the measurement.
  • the method further includes acquiring, according to the preset actual length of the reference scale, the image length of the contour of the reference scale, and the image length of the contour of the three-dimensional object, the volume of the regular three-dimensional object.
  • an embodiment of the present invention further provides a system for regular three-dimensional object measurement, comprising a portable electronic device and a reference scale;
  • the portable electronic device includes a camera, an image processing unit, and a human-computer interaction interface unit;
  • reference scale is configured to be closely attached to at least one contour line of the regular three-dimensional object
  • the camera is configured to acquire a first image including the regular three-dimensional object and a reference scale
  • the image processing unit is configured to perform a graphic visual analysis process on the first image, and acquire an image length of the outline of the regular three-dimensional object and an outline of the reference ruler;
  • the human-machine interaction interface unit is configured to receive a measurement instruction input by a user, and display the acquired measurement result.
  • the system further comprises a control calculation unit for determining a preset actual length based on the reference scale, an image length of a contour of the reference scale, and an image length of the contour of the three-dimensional object , obtaining the volume of the regular three-dimensional object.
  • a control calculation unit for determining a preset actual length based on the reference scale, an image length of a contour of the reference scale, and an image length of the contour of the three-dimensional object , obtaining the volume of the regular three-dimensional object.
  • the reference scale comprises at least two scale arms foldably and unfoldably connected to the fold.
  • the lengths of the scale arms of the reference scale are equal.
  • the scale arms of the reference scale have the same or different colors and are different from the color of the regular three-dimensional object.
  • an embodiment of the present invention further provides an electronic device, where the electronic device includes:
  • At least one processor and,
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform any of the first aspect or the first aspect of the foregoing A method of measurement of an implementation.
  • an embodiment of the present invention further provides a non-transitory computer readable storage medium storing computer instructions for causing the computer to perform the foregoing first aspect or A method of measurement in any of the implementations of the first aspect.
  • an embodiment of the present invention further provides a computer program product, the computer program product comprising a computing program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instruction is When executed, the computer is caused to perform the volume measurement method of any of the foregoing first aspect or the first aspect.
  • the present invention has at least the following beneficial effects:
  • the volume calculation is performed from the acquired image of the regular three-dimensional object, which simplifies the process that the traditional measurement method needs to move the measurement object, can effectively improve the measurement speed; and is not affected by the environment of the measurement object.
  • the space limitation enables flexible and portable measurement of the volume of various sizes of the package; in addition, the structure is simple, the manufacturing cost can be greatly reduced, and the measurement process is simple, and the measurement knowledge training of the measurer is not required, and the measurement is reduced. Labor costs.
  • FIG. 1 is a flow chart of a method for regular three-dimensional object volume measurement, in accordance with an embodiment of the present invention
  • FIG. 2 is an acquisition method for a method for measuring a volume of a three-dimensional object according to another embodiment of the present invention. a flow chart of the image length of the outline;
  • FIG. 3 is a schematic structural diagram of a system for regular three-dimensional object volume measurement according to an embodiment of the invention.
  • FIG. 4 is a schematic diagram of a measurement scale set on a cylindrical measurement object in a system for regular three-dimensional object volume measurement according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a human-machine interaction interface in a system for regular three-dimensional object volume measurement according to still another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a reference scale in a system for measuring a volume of a three-dimensional object according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an electronic device for regular three-dimensional object volume measurement according to an embodiment of the invention.
  • Step 101 Set a reference ruler
  • the reference scale can be placed close to the top corner of the package when the measurement is made, so that the three movable scale arms of the reference ruler are respectively attached to the three intersecting the vertex.
  • the lengths of the three movable scale arms may be the same or different, but the actual lengths thereof have been previously acquired or stored by other means (for example, the marker arm manufactured according to the preset length or the reference two-dimensional gauge is used to measure the reference scale) length).
  • setting the reference ruler on the contour line of the object comprises: aligning the ruler on the contour line, setting the ruler parallel to the contour line, or other setting manners for causing the corresponding position relationship between the ruler and the contour line.
  • Step 102 Acquire a first image
  • the first image including the package box and the reference scale can be acquired by the camera at a certain distance from the package according to the measure of the measurer (for example, clicking the start measurement button through the user interface menu).
  • the measurer can take the camera to shoot the package without excessive special adjustment angle, so that the obtained image is clearly displayed.
  • the movable ruler arms of the box and the reference ruler can be used to quickly and easily acquire images, shorten measurement time and reduce unnecessary cargo handling.
  • the acquired first image may be stored on a local storage device, or may be sent to the remote storage device through a wired or wireless network.
  • the above steps can be repeated by respectively affixing the scale arm of the reference scale to different parts of the measurement object (for example, three ribs corresponding to different vertices of the cube), thereby obtaining two or more
  • the first image is displayed; or two or more first images may be acquired by setting two or more reference scales separately. More accurate measurement data can be obtained by multiple first images.
  • Step 103 Acquire an image length of the contour
  • the acquired first image may be subjected to graphic visual analysis processing by an electronic device having an image processor to obtain an outline of the package (for example, an edge of a cube or a rectangular body provided with an active scale arm) and a contour of the reference ruler.
  • the image length of the line refers to the distance between two points in an image expressed in units of pixels in a computer system.
  • the display can be further displayed by different colors on the display screen. Determine the outline of the package and the outline of the reference ruler.
  • Step 104 Obtain the volume of the regular three-dimensional object
  • control calculation unit may calculate a deformation ratio of the object at a perspective angle of the first image based on a preset actual length of the reference scale and an image length of a contour line of the reference scale. Since the deformation ratio of the objects in the same image acquired at the same perspective angle is the same, the actual rib length of the package can be further obtained based on the deformation ratio and the image length of the outline of the rib of the package. Further, according to the product of the three rib lengths of the package, the exact volume of the package can be obtained.
  • the volume calculation is performed from the acquired image of the regular three-dimensional object by the cooperation of the camera and the reference scale, which simplifies the process that the traditional measurement method needs to move the measurement object, can effectively improve the measurement speed; and is not subject to measurement.
  • the space limitation of the environment in which the object is located enables flexible and portable measurement of the volume of various sizes of the package; in addition, the measurement process is simple, and it is not necessary to perform complex measurement knowledge training for the measurer, thereby reducing the labor cost of the measurement.
  • the step of acquiring the image length of the contour line may further include the following steps.
  • Step 201 Obtain a bitmap image
  • the first image file captured by the camera can be converted into a bitmap Bitmap file by digital image processing technology, so that unnecessary redundant image information data can be removed.
  • the first image file may be subjected to mean filtering processing in advance to remove common noise and interference.
  • Step 202 Perform image processing through neural network and deep learning, or obtain grayscale image
  • the acquired bitmap file may be subjected to binarization gradation processing by an image processing software or an algorithm to obtain a grayscale image.
  • the acquired bitmap image is processed using neural networks and deep learning data.
  • step 202 can be used by the user when performing the measurement.
  • the user interaction interface selection can also be automatically selected by the control computing unit according to the computing resources of the portable device.
  • step 202 in the preferred embodiment may merge or fuse the process of step 203 to identify the contour lines and vertices of the regular three-dimensional object in the image through the neural network and the deep learning data, thereby directly obtaining the corresponding image size data, and then directly obtaining the corresponding image size data, and then Proceed to step 204.
  • Step 203 contour edge recognition
  • the gray object can be further denoised by the Canny edge detection algorithm, and then the finite difference of the first-order partial derivative is used to calculate the magnitude and direction of the gradient, and the gradient amplitude is non-maximum suppressed, and then used.
  • a double threshold algorithm detects and joins edges to obtain contour edges of different graphics in a grayscale image.
  • Step 204 Color recognition
  • the movable scale arm of the package on the reference scale can be set to a different color, for example, having a large color contrast
  • the difference in the average color value at the corresponding position of the graphic range on the first image determines whether the shape range on the grayscale image corresponds to the active scale arm of the package or the reference scale.
  • processing steps 205 and 206 of the reference scale branch and the measurement object branch may be performed separately and/or simultaneously, respectively, according to the color recognition result of the step, the image shape corresponding to the active scale arm of the reference scale, and the measurement object (ie, the rule)
  • a three-dimensional object such as a cube, a shape of an image of a corresponding region after a digital image processing on a captured image.
  • Step 205 Perform line detection
  • an LSD (Line Segment Detector) line inspection is performed on the shape range corresponding to the movable scale arm of the package and the reference scale determined in step 204, for example, the geometry having the same feature can be performed by the Hough transform. Shapes (eg, lines, circles, curves, etc.) are separated from the grayscale image.
  • Step 206 Convergence of straight line segments
  • an outline representing the ridgeline of the package for example, each side of the plurality of tangent parallelograms
  • an image length thereof for example, each side of the plurality of tangent parallelograms
  • an active scale arm representing the reference scale
  • Step 207 Calculate the volume of the regular three-dimensional object
  • the outline includes 9 straight segments, and the calculation volume only needs to be used.
  • the object to be measured obtained by step 206 respectively represents an image length of three contour lines of length, width and height as Di(Xi, Yi, Zi), and an image length of the scale arm Dh (Xh, Yh, Zh).
  • the outline includes two straight lines representing a high line and an arc representing the bottom surface of the cylinder or oval.
  • a scale arm of the reference scale can be placed vertically on the side of the cylinder.
  • a level gauge or the like may be provided on the scale arm to assist in placing the movable scale arm.
  • the reference scale may have only two movable scale arms, and may be disposed to be perpendicular to each other.
  • a certain arc can be placed at a position where one of the scale arms is in close contact with the side of the cylinder, so that the extension of the other scale arm can pass more accurately through the center of the bottom surface of the cylinder.
  • step 206 the image lengths of the height and the bottom surface diameter of the cylinder are respectively obtained as Di(Xi, Yi), and the image length Dh(Xh, Yh) of the scale arm is obtained, because the images of the two scale arm respectively correspond to the scale arm
  • the actual length is known as Da(Xa, Ya)
  • the principle that the object deformation ratio is the same according to the same perspective angle, that is, the actual size D of the object to be tested satisfies: D/Da Di/Dh.
  • FIG. 3 is a schematic structural diagram of a system for measuring a volume of a regular three-dimensional object according to an embodiment of the present invention.
  • the system comprises a portable electronic device 1 and a reference scale 2; the portable electronic device 1 comprises a camera 11, an image processing unit (not shown), a control computing unit (not shown), and a human-machine interface unit 12 (eg Can include touch screen, keyboard, speaker, microphone, etc.).
  • the portable electronic device 1 comprises a camera 11, an image processing unit (not shown), a control computing unit (not shown), and a human-machine interface unit 12 (eg Can include touch screen, keyboard, speaker, microphone, etc.).
  • a human-machine interface unit 12 eg Can include touch screen, keyboard, speaker, microphone, etc.
  • the reference scale 2 is configured to be closely attached to at least one contour line of a regular three-dimensional object (for example, the rectangular parallelepiped shown in FIG. 3).
  • the camera 11 is configured to acquire a first image including the regular three-dimensional object and a reference scale, which may be a monocular, binocular or trinocular camera.
  • a reference scale which may be a monocular, binocular or trinocular camera.
  • the present invention can complete volume measurement using only a monocular camera, thereby reducing the hardware cost of the measurement system.
  • the image processing unit is configured to perform a graphic visual analysis process on the first image, and acquire an image length of the contour line of the regular three-dimensional object and the contour line of the reference ruler.
  • the image processing unit can be a stand-alone graphics image processor or integrated in a central processing unit.
  • the control calculation unit is configured to acquire a volume of the regular three-dimensional object based on a preset actual length of the reference scale, an image length of a contour of the reference scale, and an image length of the contour of the three-dimensional object.
  • the control calculation unit may perform volume measurement by executing a set of instructions (for example, a logistics package volume measurement APP application) stored in advance in an internal or external storage device and a command input by a user.
  • the human-machine interaction interface unit 11 is configured to receive a measurement instruction input by a user, and display the acquired measurement. result.
  • the system may further include a communication interface (for example, a wired communication interface such as RJ45, USB, coaxial cable, or a wireless communication interface such as WIFI, GPRS, 3G/4G mobile wireless communication network, Bluetooth, etc.) .
  • a communication interface for example, a wired communication interface such as RJ45, USB, coaxial cable, or a wireless communication interface such as WIFI, GPRS, 3G/4G mobile wireless communication network, Bluetooth, etc.
  • the acquired measurement result may be sent to other electronic devices through a communication interface, or receive measurement instructions or measurement applications from other electronic devices; on the other hand, the camera 11 may not be integrated in the electronic device 1 And being an independent device (for example, the camera 11 shown in FIG. 5), which transmits the acquired first image to the electronic device 1 through a communication interface.
  • the electronic device 1 may further include a volatile memory or a non-volatile memory (eg, a hard disk, a flash memory, etc.) to receive images transmitted by a camera or other device, and further may be used to save the measured results. And the data generated by the measurement process.
  • a volatile memory or a non-volatile memory eg, a hard disk, a flash memory, etc.
  • FIG. 5 is a schematic diagram of a human-machine interaction interface in a system for measuring a volume of a three-dimensional object according to an embodiment of the present invention.
  • the measurement operation can be started by clicking the start button on the touch display screen 13. Subsequently, the control calculation unit activates the camera 11 to start photographing the measurement object. Accordingly, the first information area 131 and the second information area 132 are displayed on the display screen 13. At the beginning of the measurement, the auxiliary information line or point of the reference scale can be displayed in real time through the first information area 132 so that the user can more accurately set at the corresponding position of the target to be tested. After the reference scale is placed, the image processing unit performs a graphic visual analysis process on the first image captured by the camera, and displays the acquired outline of the target to be tested and the contour of the reference scale through the first information area 132.
  • different (eg, larger contrast) colors may be used to separately display the contour of the object to be tested and the image contour of the reference scale.
  • different colors may be further used to separately display different scale arms of the reference scale and contours of different positions of the target to be tested. For example, red, yellow and blue are respectively used to indicate three ribs on which a reference scale is placed on a rectangular parallelepiped. And, you can further based on the image The length of the corresponding line or the position of the cube is used to indicate its length, width, and height in different colors.
  • the second information area 132 may be set to display the length of the outline of the object to be tested and the calculated volume data information.
  • a corresponding operation button may be further included, for example, sharing, transmitting or saving measurement result data to a specified location, so that the processing speed of the logistics billing can be improved.
  • FIG. 6 is a schematic structural diagram of a reference scale in a system for measuring a volume of a three-dimensional object according to an embodiment of the present invention.
  • the reference scale includes at least two scale arms 22 that are foldably and expandably coupled to the fold 21.
  • the three scale arms 22 shown in Figure 6 have the same length, but in other embodiments, the various scale arms of the reference scale may have different lengths and may also have different colors, respectively.
  • the scale arm may be provided with a scale to facilitate more accurate correction of the calculation result during digital image processing, and it is convenient to directly use the contour length reading of the smaller package.
  • the scale arm of the reference scale can be a rigid part made of metal, plastic or other material.
  • the cross section of the end of the scale arm principle folding portion 21 may be L-shaped or curved so as to be closely attached to the rib of the rectangular parallelepiped or the cube; or curved so as to be in close contact with the side of the cylinder .
  • the scale arm of the reference scale can also be provided as a deformable member, such as a foil that can be bent into an L-shape or an arc.
  • an embodiment of the present invention further provides an electronic device 30.
  • the electronic device 30 may include at least one processor 301, a memory 302, an input/output interface 303, a radio frequency circuit 304, an audio circuit 305, and a camera assembly 306.
  • the radio frequency circuit 304 receives signals through the antenna 3041; the audio circuit 305 is connected to the speaker 3051 and the microphone 3052, respectively; the camera assembly 306 is used to acquire a regular three-dimensional object and a reference scale image, and the camera assembly 306 can be the camera 11 shown in FIG. ,can also be Other types of devices having camera functions; images are stored in memory 302.
  • the at least one processor 301 is communicatively coupled to a memory 302, the memory 302 storing instructions executable by the at least one processor, the instructions being executed by the at least one processor 301 to cause the at least one
  • the processor is capable of performing an embodiment of any of the foregoing measurement methods.
  • the electronic device exists as a separate image recognition device and can also be used as an accessory for other devices.
  • the electronic device can exist in a variety of forms including, but not limited to:
  • Mobile communication devices These devices are characterized by mobile communication functions and are mainly aimed at providing voice and data communication.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has computing and processing functions, and generally has mobile Internet access.
  • Such terminals include: PDAs, MIDs, and UMPC devices, such as the iPad.
  • Portable entertainment devices These devices can display and play multimedia content. Such devices include: audio, video players (such as iPod), handheld game consoles, e-books, and smart toys and portable car navigation devices.
  • the server consists of a processor, a hard disk, a memory, a system bus, etc.
  • the server is similar to a general-purpose computer architecture, but is capable of processing and is stable due to the need to provide highly reliable services. Sex, reliability, security, scalability, manageability, etc. are highly demanding.
  • the present invention also provides a non-transitory computer readable medium comprising instructions compiled thereon for performing an embodiment of any of the foregoing measurement methods.
  • the computer readable medium can include any medium that can be read by a signal processing device to execute code stored thereon, such as a floppy disk, optical disk, magnetic tape, or hard disk drive.
  • code can contain object code, source code, and/or binary code.
  • the code is generally digital and is typically used for processing by conventional digital data processors (such as microprocessors, microcontrollers or logic circuits such as programmable gate arrays, programmable logic circuits/devices or application specific integrated circuits [ASIC]). .
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be divided into only one logical function.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the components shown or discussed are coupled to each other, or straight
  • the coupling, or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical, or other form.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units; they may be located in one place or distributed on multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • units for example, functional units, processors, memories, and the like in various embodiments of the present invention may be integrated into one unit, or each unit may be separately used as one unit, or two or two units.
  • the above units are integrated in one unit; the above integrated units can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the integrated unit of the present invention When the above-described integrated unit of the present invention is implemented in the form of a software functional unit and sold or used as a stand-alone product, it can also be stored in a computer readable storage medium. Based on such understanding, the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

一种用于规则三维对象测量的方法和系统,其能够灵活便携地完成各种尺寸包装箱的测量,不仅测量速度高,且测量成本低。将参考标尺紧贴设置在规则三维对象的至少一条轮廓线上(101);获取包括规则三维对象和参考标尺的第一图像(102);对第一图像进行图形视觉分析处理,获取规则三维对象的轮廓线和参考标尺的轮廓线的图像长度(103)。还可以基于参考标尺的预设实际长度、参考标尺的轮廓线的图像长度、以及三维对象的轮廓线的图像长度,获取规则三维对象的体积(104)。

Description

[根据细则26改正02.08.2017] 一种用于规则三维对象体积测量的方法和系统 技术领域
本发明涉及电子测量技术领域,尤其涉及一种用于规则三维对象测量的方法和系统。
背景技术
随着全球网络购物的快速增长,物流行业迅速发展,物流包裹的吞吐量与日俱增。其中,对物流包裹体积的准确、快速、方便地测量是不可缺少的一个重要环节,对物流企业的揽件收费处理速度有着决定性的影响。传统的通过人工测量包裹体积的方式,不仅需要投入大量的人力,而且测量速度慢、误差较大。部分物流企业开始使用自动化的测量设备,但是这些设备价格昂贵,安装复杂,不能方便灵活地大范围使用。
授权公告号为CN205138424U的中国实用新型专利,公开了一种用于物流行业的包裹体积测量装置,其包括底座、支架、图像传感器以及高度测量组件,底座上设有托盘,托盘表面设置有多个均匀分布的标识点,底座内设有控制主板以及用于带动高度测量组件在支架上上下移动的传动组件。然而,该测量装置仍然需要复杂的底座与高度测量等组件,其结构复杂、成本较高;并且其测量范围受限于托盘的大小和支架的高度,量程较小;由于其高度测量依赖于机械式上下移动的高度测量组件和传动组件,导致测量速度慢;同时其不能方便地移动测量任意摆放的包裹,反而需要将包裹搬运到其托盘上并对齐标识点之后才能开始测量,进一步降低了测量速度和测量灵活性。
发明内容
本发明的目的之一至少在于,针对上述现有技术存在的问题,提供一种用于规则三维对象体积测量的方法和系统,其能够能够灵活便携地完成各种尺寸 包装箱的测量,不仅测量速度高,且测量成本低。
第一方面,本发明的一个实施例提供了一种用于规则三维对象测量的方法,其包括:
步骤A:获取包括所述规则三维对象和参考标尺的第一图像,所述参考标尺设置在规则三维对象的至少一条轮廓线上;
步骤B:对所述第一图像进行图形视觉分析处理,获取所述规则三维对象的轮廓线和参考标尺的轮廓线的图像长度。
本发明与上述方法相似的实施例,其包括:
步骤A:将参考标尺设置在规则三维对象的至少一条轮廓线上;
步骤B:获取包括所述规则三维对象和参考标尺的第一图像;
步骤C:对所述第一图像进行图形视觉分析处理,获取所述规则三维对象的轮廓线和参考标尺的轮廓线的图像长度;
步骤D:基于所述参考标尺的预设实际长度、参考标尺的轮廓线的图像长度、以及所述三维对象的轮廓线的图像长度,获取所述规则三维对象的体积。
优选地,所述规则三维对象包括:立方体、长方体、圆柱体、圆锥体、棱锥体、平行六面体、梯形体、或圆台体。
优选地,所述方法进一步包括重复执行步骤A和步骤B,获取两幅以上所述第一图像;
其中,在重复步骤A时,所述参考标尺的标尺臂设置在不同的轮廓线上;或者,所述参考标尺的数量大于一。也就是说,所述参考标尺的标尺臂所设置的轮廓线部分不相同或者全部不相同。
优选地,所述方法进一步包括在测量过程中实时显示设置参考标尺的辅助提示信息。
优选地,所述方法进一步包括在测量过程中实时显示测量数据和/或测量结果。
优选的,在上述方法中还进一步包括基于所述参考标尺的预设实际长度、参考标尺的轮廓线的图像长度、以及所述三维对象的轮廓线的图像长度,获取所述规则三维对象的体积
第二方面,本发明的一实施例还提供了一种用于规则三维对象测量的系统,其包括便携式电子装置和参考标尺;所述便携式电子装置包括摄像头、图像处理单元、以及人机交互接口单元;
其中,所述参考标尺构造为可以紧贴设置在规则三维对象的至少一条轮廓线上;
所述摄像头用于获取包括所述规则三维对象和参考标尺的第一图像;
所述图像处理单元用于对所述第一图像进行图形视觉分析处理,获取所述规则三维对象的轮廓线和参考标尺的轮廓线的图像长度;
所述人机交互接口单元用于接收用户输入的测量指令,显示获取的测量结果。
优选的,所述系统还包括控制计算单元,所述控制计算单元用于基于所述参考标尺的预设实际长度、参考标尺的轮廓线的图像长度、以及所述三维对象的轮廓线的图像长度,获取所述规则三维对象的体积。
优选地,所述参考标尺包括至少两条可折叠和展开地连接在折叠部的标尺臂。
优选地,所述参考标尺的标尺臂的长度相等。
优选地,所述参考标尺的标尺臂的颜色相同或者不相同,并且均与所述规则三维对象的颜色不相同。
第三方面,本发明一实施例还提供了一种电子设备,其特征在于,所述电子设备包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行前述任第一方面或第一方面的任一实现方式的测量方法。
第四方面,本发明一实施例还提供了一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使该计算机执行前述第一方面或第一方面的任一实现方式中的测量方法。
第五方面,本发明实施例还提供了一种计算机程序产品,该计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,该计算机程序包括程序指令,当该程序指令被计算机执行时,使该计算机执行前述第一方面或第一方面的任一实现方式中的体积测量方法。
综上所述,由于采用了上述技术方案,本发明至少具有以下有益效果:
通过摄像头和参考标尺配合,从所获取的规则三维对象的图像来进行体积计算,其简化了传统测量方法需要移动测量对象的过程,能够有效地提高测量速度;并且不受测量对象所处环境的空间限制,能够灵活便携地完成各种尺寸包装箱体积的测量;此外,其结构简单,能够大幅减低制造成本,并且其测量过程简单,不需要对测量者进行复杂的测量知识培训,降低了测量的人力成本。
附图说明
图1是根据本发明一实施例的用于规则三维对象体积测量的方法的流程图;
图2是根据本发明另一实施例的用于规则三维对象体积测量的方法中获取 轮廓线的图像长度的流程图;
图3是根据本发明一实施例的用于规则三维对象体积测量的系统的结构示意图;
图4是根据本发明另一实施例的用于规则三维对象体积测量的系统中的测量标尺设置在圆柱形测量对象上的示意图;
图5是根据本发明又一实施例的用于规则三维对象体积测量的系统中的人机交互界面的示意图;
图6是根据本发明一实施例的用于规则三维对象体积测量的系统中参考标尺的结构示意图;
图7是根据本发明一实施例的用于规则三维对象体积测量的电子设备的结构示意图。
具体实施方式
下面结合附图及实施例,对本发明进行进一步详细说明,以使本发明的目的、技术方案及优点更加清楚明白。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
下文结合图1对本发明一实施例公开的用于规则三维对象体积测量的方法应用于快递物流现场测量包装箱尺寸体积的典型经验场景进行详细说明。
步骤101:设置参考标尺
以正方体或者长方体形状的包装箱或者包裹为例,在进行测量时,可以将参考标尺紧贴设置在包装箱的顶角上,使参考标尺的三条活动标尺臂分别紧贴相交于该顶点的三条棱上,其中三条活动标尺臂的长度可以相同或者不同,但其实际长度均已经预先通过其他方式获取或者存储(例如,按照预设的长度制造或者使用常规二维量具测量过参考标尺的标志臂的长度)。
其中,将参考标尺设置在对象的轮廓线上包括:将标尺紧贴在轮廓线上,标尺与轮廓线平行设置,或者其他使标尺与轮廓线产生对应位置关系的设置方式。
步骤102:获取第一图像
具体地,可以根据测量者的指令(例如,通过用户界面菜单点击开始测量按钮),通过摄像头在距离包装箱一定距离处进行拍摄,获取包括包装箱和参考标尺的第一图像。其中,在拍摄时,不需要移动或者搬运包装箱,在设置好参考标尺之后,可以由测量者持摄像头对包装箱进行拍摄,不需要过多的特别调整角度,使所获得的图像清楚地显示包装箱和参考标尺的各条活动标尺臂即可,从而可以快速、方便地获取图像,缩短测量时间,减少不必要的货物搬运。进一步地,所获取的第一图像可以存储在本地存储装置上,也可以通过有线或者无线网络发送给远端储存装置。
在优选的实施方式中,可以通过分别将参考标尺的标尺臂紧贴在测量对象的不同部位(例如,立方体的不同顶点所对应的三条棱),重复执行上述步骤,从而获取两幅或更多幅第一图像;或者,可以通过设置两个或者更多参考标尺,分别进行拍摄来获取两幅或者更多幅第一图像。通过多幅第一图像,可以获取更精确的测量数据。
步骤103:获取轮廓线的图像长度
其中,可以通过具有图像处理器的电子设备对所获取的第一图像进行图形视觉分析处理,获取包装箱的轮廓线(例如,立方体或长方体上设置有活动标尺臂的棱)和参考标尺的轮廓线的图像长度。其中,此处所指的长度是指计算机系统中以像素为单位表示的图像中两点之间的距离。
在优选的实施例中,可以进一步在显示屏上通过不同的颜色来分别显示所 确定的包装箱的轮廓线和参考标尺的轮廓线。
步骤104:获取规则三维对象的体积
具体地,控制计算单元可以基于所述参考标尺的预设实际长度与参考标尺的轮廓线的图像长度计算第一图像的透视角度下物体的形变比例。由于在相同透视角度下所获取的同一幅图像中物体的形变比例相同,因此,可以进一步基于该形变比例和包装箱的棱的轮廓线的图像长度获取包装箱实际棱长。进而根据包装箱的三条棱长之乘积,可以获取包装箱的准确体积。
上述实施例中,通过摄像头和参考标尺配合,从所获取的规则三维对象的图像来进行体积计算,其简化了传统测量方法需要移动测量对象的过程,能够有效地提高测量速度;并且不受测量对象所处环境的空间限制,能够灵活便携地完成各种尺寸包装箱体积的测量;此外,其测量过程简单,不需要对测量者进行复杂的测量知识培训,降低了测量的人力成本。
如图2所示,本发明一优选的实施方式中,上述获取轮廓线的图像长度的步骤进一步可以包括以下步骤。
步骤201:获取位图图像
其中,可以通过数字图像处理技术将通过摄像头拍摄的第一图像文件转化为位图Bitmap文件,从而可以去除不必要的冗余图像信息数据。在此步骤之前,还可以预先对第一图像文件进行均值滤波处理,去除常见噪声和干扰。
步骤202:通过神经网络和深度学习进行图像处理,或者获取灰度图像
具体地,可以通过图像处理软件或者算法对所获取的位图文件进行二值化灰度处理,获取灰度图像。或者,在优选的实施方式中,使用神经网络和深度学习数据对所获取的位图图像进行处理。
其中,步骤202中的两种图像处理方法可以在进行测量时由使用者通过用 户交互界面选择,也可以由控制计算单元根据便携设备的计算资源情况自动选择。并且优选的实施方式中的步骤202可以合并或者融合步骤203的过程,通过神经网络和深度学习数据对图像中的规则三维对象的轮廓线和顶点进行识别,从而直接获得相应的图像尺寸数据,然后继续执行步骤204。
步骤203:轮廓线边缘识别
具体地,可以通过Canny边缘检测算法对灰度对象进行进一步的去噪,然后用一阶偏导的有限差分来计算梯度的幅值和方向,对梯度幅值进行非极大值抑制,然后用双阈值算法检测和连接边缘,从而获取灰度图像中不同图形的轮廓线边缘。
步骤204:颜色识别
由于可以将包装箱于参考标尺的活动标尺臂设置为不同颜色,例如具有较大的颜色反差,因此,在通过步骤203中所获取的不同图形的轮廓线边缘确定不同的形状范围之后,可以根据第一图像上该图形范围对应位置处的平均颜色值的不同来确定灰度图像上该形状范围对应的是包装箱还是参考标尺的活动标尺臂。进而可以分别和/或同时进行参考标尺分支和测量对象分支的处理步骤205和步骤206,其分别根据本步骤的颜色识别结果针对参考标尺的活动标尺臂对应的图像形状,以及测量对象(即规则三维对象,例如立方体、长方体在所拍摄的图像上经过数字图像处理后对应区域的图像形状)。
步骤205:进行直线检测
具体地,分别对步骤204所确定的包装箱和参考标尺的活动标尺臂对应的形状范围进行LSD(Line Segment Detector,直线分割检测)直线检查,例如,可以通过霍夫变换将具有相同特征的几何形状(如,直线,圆,曲线等)从从灰度图像分离出来。
步骤206:趋同直线段拟合
进一步地,通过趋同直线段拟合,从而分别获取表示包装箱棱线的轮廓线(例如,多个相切的平行四边形的各条边)及其图像长度,以及表示参考标尺的活动标尺臂的轮廓线(例如,为相对较短的直线段),也即测量标志线或者活动标尺臂的图像长度。
步骤207:计算规则三维对象的体积
在如图3所示的本发明一实施例中,以图3中的规则三维对象为例(例如,长方体物流包装箱/盒),其轮廓线包括9条直线段,而计算体积只需要使用其中设置了参考标尺的三条边或棱。具体地,例如,通过步骤206所获取的待测对象分别表示其长宽高的三条轮廓线的图像长度为Di(Xi,Yi,Zi),标尺臂的图像长度Dh(Xh,Yh,Zh),由于三条标尺臂的图像各自对应的三条标尺臂的实际长度已知为Da(Xa,Ya,Za),根据相同透视角度的物体形变比例一致的原理,即待测对象的实际尺寸D满足:D/Da=Di/Dh。进一步地,可以确定D=(Di*Da)/Dh,因此可以获取待测对象的实际尺寸D(X,Y,Z),进而可以获得该长方体的体积V=X*Y*Z。
在如图4所示的本发明另一实施例中,以图4中的圆柱体物流包装盒/包裹为例,其轮廓线包括圆柱体的两条表示高的直线和表示底面的弧线或椭圆。在测量时,可以将参考标尺的一条标尺臂垂直地设置在圆柱体侧面上。具体地,例如,可以在标尺臂上设置有水平仪等装置,以辅助放置活动标尺臂。并且,在本实施例中,参考标尺可以仅具有两条活动标尺臂,且可以设置为相互垂直。在优选的实施方式中,可以在其中一条标尺臂紧贴圆柱侧面位置设置一定的弧度,从而可以使另一条标尺臂的延长线更准确地通过圆柱底面的圆心。
通过步骤206可以分别获取该圆柱体的高和底面直径的图像长度为Di(Xi, Yi),标尺臂的图像长度Dh(Xh,Yh),由于两条标尺臂的图像各自对应的标尺臂的实际长度已知为Da(Xa,Ya),根据相同透视角度的物体形变比例一致的原理,即待测对象的实际尺寸D满足:D/Da=Di/Dh。进一步地,可以确定D=(Di*Da)/Dh,因此可以获取该圆柱体的高和直径的实际尺寸D(X,Y),进而可以获得该圆柱体的体积V=π*(Y/2)2*X。
图3为本发明一实施例提供的一种用于规则三维对象体积测量的系统的结构示意图。所述系统包括便携式电子装置1和参考标尺2;所述便携式电子装置1包括摄像头11、图像处理单元(未示出)、控制计算单元(未示出)、以及人机交互接口单元12(例如,可以包括触摸显示屏、键盘、扬声器、麦克风等)。
其中,所述参考标尺2构造为可以紧贴设置在规则三维对象(例如,图3所示的长方体)的至少一条轮廓线上。
所述摄像头11用于获取包括所述规则三维对象和参考标尺的第一图像,其可以为单目、双目或三目摄像头。本发明可以仅使用单目摄像头即可完成体积测量,从而可以降低测量系统的硬件成本。
所述图像处理单元用于对所述第一图像进行图形视觉分析处理,获取所述规则三维对象的轮廓线和参考标尺的轮廓线的图像长度。图像处理单元可以为独立的图形图像处理器,也可以为集成在中央处理器中。
所述控制计算单元用于基于所述参考标尺的预设实际长度、参考标尺的轮廓线的图像长度、以及所述三维对象的轮廓线的图像长度,获取所述规则三维对象的体积。具体地,控制计算单元可以通过执行预先存储在内部或者外部存储装置中的指令集(例如,物流包裹体积测量APP应用程序)和使用者输入的命令来进行体积测量。
所述人机交互接口单元11用于接收用户输入的测量指令,显示获取的测量 结果。
在优选的实施例中,所述系统可以进一步包括通信接口(例如,诸如RJ45、USB、同轴电缆等有线通信接口,或者WIFI、GPRS、3G/4G移动无线通信网络、蓝牙等无线通信接口)。一方面,可以将所获取的测量结果通过通信接口发送给其他电子设备,或者从其他电子设备接收测量指令或者测量应用程序;另一方面,所述摄像头11可以不集成在所述电子装置1中,而为独立的装置(例如,如图5所示的摄像头11),其通过通信接口将所获取的第一图像发送给电子装置1。相应地,所述电子装置1可以进一步包括易失性存储器或者非易失性存储器(例如,硬盘、闪存等),以便接收摄像头或者其他装置发送的图像,并进一步可以用于保存所测量的结果以及测量过程所产生的数据。
图5示出了本发明一实施例提供的用于规则三维对象体积测量的系统中的人机交互界面示意图。
如图5所示,在测量过程中,可以通过点击触摸显示屏13上的开始按钮,开始测量操作。随后,控制计算单元启动摄像头11开始对测量对象进行拍摄。相应地,显示屏13上显示第一信息区域131和第二信息区域132。在测量开始时,可以通过第一信息区域132实时显示如何设置参考标尺的辅助提示线或者点,以便使用者更准确地设置在待测目标的相应位置处。待放置好参考标尺后,图像处理单元对摄像头拍摄的第一图像进行图形视觉分析处理,并通过第一信息区域132显示所获取的待测目标的轮廓线和参考标尺的轮廓线。在优选的实施方式中,可以使用不同的(例如,反差较大的)颜色来分别显示待测目标的轮廓和参考标尺的图像轮廓。并且,可以进一步地使用不同的颜色来分别显示参考标尺的不同标尺臂以及待测目标的不同位置的轮廓线。例如,分别使用红黄蓝来表示长方体上设置了参考标尺的三条棱。并且,还可以进一步根据图像 中对应线条的长度或者立方体摆放的位置来分别用不同的颜色表示其长、宽、高。
第二信息区域132可以设置用于显示待测目标的轮廓线的长度和所计算的体积数据信息。在优选的实施方式中,还可以进一步包括相应的操作按钮,例如,分享、发送或者保存测量结果数据到指定的位置,从而可以提高物流计费的处理速度。
图6示出了本发明一实施例提供的用于规则三维对象体积测量的系统中参考标尺的结构示意图。如图6所示,参考标尺包括至少两条可折叠和展开地连接在折叠部21的标尺臂22。图6所示的三个标尺臂22的长度相同,但是在其他实施方式中,参考标尺的各条标尺臂可以具有不同的长度,并且也可以分别具有不同的颜色。进一步地,所述标尺臂上还可以设置有刻度,以便于在数字图像处理过程中更准确地校正计算结果,并能够方便使用直接获取较小包裹的轮廓长度读数。
参考标尺的标尺臂可以是由金属、塑料或者其他材料制成刚性部件。在优选的实施方式中,标尺臂原理折叠部21一端的横截面可以为L形或弧形,从而可以紧贴设置在长方体或者立方体的棱上;或者为弧形,从而可以紧贴圆柱的侧面。在另一个实施例中,参考标尺的标尺臂也可以设置为可变形部件,例如可以弯折为L形或弧形的金属薄片。
参见图7,本发明实施例还提供了一种电子设备30,电子设备30可以包括:至少一个处理器301、存储器302、输入输出接口303、射频电路304、音频电路305和摄像组件306。其中,射频电路304通过天线3041接收信号;音频电路305分别与喇叭3051和麦克风3052连接;摄像组件306用于获取规则三维对象和参考标尺图像,摄像组件306可以是图3中示出的摄像头11,也可以是 其他类型的具有摄像功能的设备;图像存储在存储器302中。所述至少一个处理器301与存储器302通信连接,所述存储器302存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器301执行,以使所述至少一个处理器能够执行前述任一测量方法的实施例。
该电子设备作为一个单独的图像识别设备存在,也可以作为其他设备的一个配件。举例而言,该电子设备可以以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)特定服务器:提供计算服务的设备,服务器的构成包括处理器、硬盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
(5)具有手势识别功能无人机、机器人或类似产品。
(6)其他具有手势识别功能的电子设备。
实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列 要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明还提供非暂时性计算机可读介质,包括在其上编译的指令,所述指令用于执行前述任一测量方法的实施例。
计算机可读介质可包括任何媒介,可以通过信号处理装置读出中执行存储在其上的代码,如软盘、光盘、磁带或硬盘驱动器。这样的代码可以包含对象代码、源代码和/或二进制代码。该代码一般是数字的,一般是用于处理由传统的数字数据处理器(如微处理器、单片机或逻辑电路,如可编程门阵列,可编程逻辑电路/器件或专用集成电路[ASIC])。
应当理解,说明书通篇所提到的“一实施例”或“优选的实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在优选的实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,可以仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直 接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的单元(例如,各功能单元、处理器、存储器等)可以全部集成在一个单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
当本发明上述集成的单元以软件功能单元的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明具体实施方式的详细说明,而非对本发明的限制。 相关技术领域的技术人员在不脱离本发明的原则和范围的情况下,做出的各种替换、变型以及改进均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于规则三维对象测量的方法,其特征在于,所述方法包括:
    步骤A:获取包括所述规则三维对象和参考标尺的第一图像,所述参考标尺设置在规则三维对象的至少一条轮廓线上;
    步骤B:对所述第一图像进行图形视觉分析处理,获取所述规则三维对象的轮廓线和参考标尺的轮廓线的图像长度。
  2. 根据权利要求1所述的方法,其特征在于,所述规则三维对象包括下述对象中的一种:立方体、长方体、圆柱体、圆锥体、棱锥体、平行六面体、梯形体、或圆台体。
  3. 根据权利要求1所述的方法,其特征在于,所述方法进一步包括重复执行步骤A,获取两幅以上所述第一图像;
    其中,在重复步骤A时,所述参考标尺的标尺臂设置在不同的轮廓线上;或者,所述参考标尺的数量大于一。
  4. 根据权利要求1所述的方法,其特征在于,所述方法进一步包括在测量过程中实时显示测量数据和/或测量结果。
  5. 根据权利要求1或2或3或4所述的方法,其特征在于,所述方法进一步包括基于所述参考标尺的预设实际长度、参考标尺的轮廓线的图像长度、以及所述三维对象的轮廓线的图像长度,获取所述规则三维对象的体积。
  6. 一种用于规则三维对象测量的系统,其特征在于,所述系统包括电子装置和参考标尺;所述电子装置包括摄像头、图像处理单元、以及人机交互接口单元;
    其中,所述参考标尺构造为可以紧贴设置在规则三维对象的至少一条轮廓线上;
    所述摄像头用于获取包括所述规则三维对象和参考标尺的第一图像;
    所述图像处理单元用于对所述第一图像进行图形视觉分析处理,获取所述规则三维对象的轮廓线和参考标尺的轮廓线的图像长度;
    所述人机交互接口单元用于接收用户输入的测量指令,显示获取的测量结果。
  7. 根据权利要求6所述的系统,其特征在于,所述系统还包括控制计算单元,所述控制计算单元用于基于所述参考标尺的预设实际长度、参考标尺的轮廓线的图像长度、以及所述三维对象的轮廓线的图像长度,获取所述规则三维对象的体积;。
  8. 根据权利要求6所述的系统,其特征在于,所述参考标尺的标尺臂的长度相等。
  9. 根据权利要求6所述的系统,其特征在于,所述参考标尺的标尺臂的颜色相同或者不相同,并且均与所述规则三维对象的颜色不相同。
  10. 一种电子设备,其特征在于,所述电子设备包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行前述任一权利要求1-5所述的测量方法。
PCT/CN2017/089543 2017-02-28 2017-06-22 一种用于规则三维对象体积测量的方法和系统 WO2018157513A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017101110445 2017-02-28
CN201710111044.5A CN106643508A (zh) 2017-02-28 2017-02-28 一种用于规则三维对象体积测量的方法和系统

Publications (1)

Publication Number Publication Date
WO2018157513A1 true WO2018157513A1 (zh) 2018-09-07

Family

ID=58846543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089543 WO2018157513A1 (zh) 2017-02-28 2017-06-22 一种用于规则三维对象体积测量的方法和系统

Country Status (2)

Country Link
CN (1) CN106643508A (zh)
WO (1) WO2018157513A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10957177B2 (en) 2018-10-22 2021-03-23 Motive Drilling Technologies, Inc. Systems and methods for oilfield drilling operations using computer vision
US10954729B2 (en) 2015-08-31 2021-03-23 Helmerich & Payne Technologies, Llc System and method for estimating cutting volumes on shale shakers
US10958877B2 (en) 2014-11-12 2021-03-23 Helmerich & Payne Technologies, Llc System and method for inhibiting or causing automated actions based on person locations estimated from multiple video sources
US10982950B2 (en) 2014-11-12 2021-04-20 Helmerich & Payne Technologies, Llc Oil rig drill pipe and tubing tally system
US10997412B2 (en) 2014-11-12 2021-05-04 Helmerich & Payne Technologies, Llc System and method for estimating rig state using computer vision for time and motion studies
US11162356B2 (en) 2019-02-05 2021-11-02 Motive Drilling Technologies, Inc. Downhole display
US11408266B2 (en) 2014-11-12 2022-08-09 Helmerich & Payne Technologies, Llc System and method for measuring characteristics of cuttings from drilling operations with computer vision
US11580659B2 (en) * 2019-10-08 2023-02-14 National Applied Research Laboratories Method for size estimation by image recognition of specific target using given scale
US11850631B2 (en) 2015-08-31 2023-12-26 Helmerich & Payne Technologies, Llc System and method for estimating damage to a shaker table screen using computer vision
US12012809B2 (en) 2019-10-16 2024-06-18 Magnetic Variation Services LLC Drill pipe tally system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643508A (zh) * 2017-02-28 2017-05-10 成都中科创达软件有限公司 一种用于规则三维对象体积测量的方法和系统
CN107854112A (zh) * 2017-12-11 2018-03-30 上海交通大学医学院附属第九人民医院 一种基于图像处理技术的角膜直径测量装置
CN108507463A (zh) * 2018-03-02 2018-09-07 昆山世纪三友测量技术有限公司 一种非接触式影像检测仪
CN108519050A (zh) * 2018-03-02 2018-09-11 昆山世纪三友测量技术有限公司 一种非接触式影像测量仪的机械主体
CN108507464A (zh) * 2018-03-02 2018-09-07 昆山世纪三友测量技术有限公司 一种非接触式影像检测仪的检测方法
CN109559342B (zh) * 2018-03-05 2024-02-09 北京佳格天地科技有限公司 动物体长的测量方法和装置
CN109579752B (zh) * 2018-11-20 2021-07-23 维沃移动通信有限公司 一种测量方法及终端设备
CN109609041A (zh) * 2018-12-10 2019-04-12 顺丰科技有限公司 包装胶带、包装箱及包装箱的体积测量方法
CN109961468B (zh) * 2019-03-15 2021-08-13 北京清瞳时代科技有限公司 基于双目视觉的体积测量方法、装置及存储介质
CN111238369B (zh) * 2020-01-19 2021-07-06 广东工业大学 一种双长方物体体积测量方法、系统以及设备
CN111803070A (zh) * 2020-06-19 2020-10-23 浙江大华技术股份有限公司 身高测量方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510391A (zh) * 2002-12-25 2004-07-07 鸿富锦精密工业(深圳)有限公司 影像测量系统和方法
CN203132517U (zh) * 2012-12-25 2013-08-14 西安Tcl软件开发有限公司 包裹体积测量装置
CN103630074A (zh) * 2013-11-29 2014-03-12 北京京东尚科信息技术有限公司 一种测量物体最小包装体积的方法和装置
US20150184999A1 (en) * 2005-05-10 2015-07-02 Advanced Scientific Concepts Inc. Dimensioning system
CN104949617A (zh) * 2014-03-31 2015-09-30 大猩猩科技股份有限公司 用于对象包装的对象三维尺寸估测系统及方法
CN106643508A (zh) * 2017-02-28 2017-05-10 成都中科创达软件有限公司 一种用于规则三维对象体积测量的方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290641A (ja) * 1985-06-18 1986-12-20 Akashi Seisakusho Co Ltd 試料像のスケール目盛表示装置
CN201199148Y (zh) * 2008-05-14 2009-02-25 李洋 一种三维变换尺
CN105066878B (zh) * 2015-07-24 2018-08-24 百世物流科技(中国)有限公司 箱体体积测量方法
CN105894545A (zh) * 2016-03-31 2016-08-24 维沃移动通信有限公司 一种长度测量的方法和移动终端
CN105928598A (zh) * 2016-04-20 2016-09-07 上海斐讯数据通信技术有限公司 基于拍照测量物体质量的方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510391A (zh) * 2002-12-25 2004-07-07 鸿富锦精密工业(深圳)有限公司 影像测量系统和方法
US20150184999A1 (en) * 2005-05-10 2015-07-02 Advanced Scientific Concepts Inc. Dimensioning system
CN203132517U (zh) * 2012-12-25 2013-08-14 西安Tcl软件开发有限公司 包裹体积测量装置
CN103630074A (zh) * 2013-11-29 2014-03-12 北京京东尚科信息技术有限公司 一种测量物体最小包装体积的方法和装置
CN104949617A (zh) * 2014-03-31 2015-09-30 大猩猩科技股份有限公司 用于对象包装的对象三维尺寸估测系统及方法
CN106643508A (zh) * 2017-02-28 2017-05-10 成都中科创达软件有限公司 一种用于规则三维对象体积测量的方法和系统

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592282B2 (en) 2014-11-12 2023-02-28 Helmerich & Payne Technologies, Llc Oil rig drill pipe and tubing tally system
US11971247B2 (en) 2014-11-12 2024-04-30 Helmerich & Payne Technologies, Llc Oil rig drill pipe and tubing tally system
US10958877B2 (en) 2014-11-12 2021-03-23 Helmerich & Payne Technologies, Llc System and method for inhibiting or causing automated actions based on person locations estimated from multiple video sources
US10982950B2 (en) 2014-11-12 2021-04-20 Helmerich & Payne Technologies, Llc Oil rig drill pipe and tubing tally system
US10997412B2 (en) 2014-11-12 2021-05-04 Helmerich & Payne Technologies, Llc System and method for estimating rig state using computer vision for time and motion studies
US11917333B2 (en) 2014-11-12 2024-02-27 Helmerich & Payne Technologies, Llc Systems and methods for personnel location at a drilling site
US11906283B2 (en) 2014-11-12 2024-02-20 Helmerich & Payne Technologies, Llc System and method for locating, measuring, counting, and aiding in the handling of drill pipes
US11378387B2 (en) 2014-11-12 2022-07-05 Helmerich & Payne Technologies, Llc System and method for locating, measuring, counting, and aiding in the handling of drill pipes
US11408266B2 (en) 2014-11-12 2022-08-09 Helmerich & Payne Technologies, Llc System and method for measuring characteristics of cuttings from drilling operations with computer vision
US11859468B2 (en) 2014-11-12 2024-01-02 Helmerich & Payne Technologies, Llc Systems and methods for estimating rig state using computer vision
US11948322B2 (en) 2015-08-31 2024-04-02 Helmerich & Payne Technologies, Llc Systems for monitoring drilling cuttings
US11850631B2 (en) 2015-08-31 2023-12-26 Helmerich & Payne Technologies, Llc System and method for estimating damage to a shaker table screen using computer vision
US10954729B2 (en) 2015-08-31 2021-03-23 Helmerich & Payne Technologies, Llc System and method for estimating cutting volumes on shale shakers
US11361646B2 (en) 2018-10-22 2022-06-14 Motive Drilling Technologies, Inc. Systems and methods for oilfield drilling operations using computer vision
US10957177B2 (en) 2018-10-22 2021-03-23 Motive Drilling Technologies, Inc. Systems and methods for oilfield drilling operations using computer vision
US12014482B2 (en) 2018-10-22 2024-06-18 Motive Drilling Technologies, Inc. Systems and methods for oilfield drilling operations using computer vision
US11162356B2 (en) 2019-02-05 2021-11-02 Motive Drilling Technologies, Inc. Downhole display
US12006818B2 (en) 2019-02-05 2024-06-11 Motive Drilling Technologies, Inc. Downhole display
US11580659B2 (en) * 2019-10-08 2023-02-14 National Applied Research Laboratories Method for size estimation by image recognition of specific target using given scale
US12012809B2 (en) 2019-10-16 2024-06-18 Magnetic Variation Services LLC Drill pipe tally system

Also Published As

Publication number Publication date
CN106643508A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018157513A1 (zh) 一种用于规则三维对象体积测量的方法和系统
US9529945B2 (en) Robot simulation system which simulates takeout process of workpieces
CN111127422B (zh) 图像标注方法、装置、系统及主机
US20190130605A1 (en) Method and device for verification
US20180290300A1 (en) Information processing apparatus, information processing method, storage medium, system, and article manufacturing method
CN109544629A (zh) 摄像头位姿确定方法和装置以及电子设备
EP3742113A1 (en) Systems and methods for marking images for three-dimensional image generation
US20150112470A1 (en) Computing device and method for image measurement
EP3944194B1 (en) Fisheye camera calibration system, method and apparatus, and electronic device and storage medium
CN109509200A (zh) 基于轮廓提取的棋盘格角点检测方法、装置以及计算机可读存储介质
CN110095089B (zh) 一种飞行器旋转角度的测量方法及系统
CN111102920A (zh) 一种基于增强现实的机械组件质检方法及系统
CN111476894A (zh) 三维语义地图构建方法、装置、存储介质及电子设备
CN108052869B (zh) 车道线识别方法、装置及计算机可读存储介质
JP2020027439A (ja) 情報処理装置、情報処理方法
WO2023193482A1 (zh) 显示方法、装置、电子设备和计算机可读存储介质
CN113168729A (zh) 一种基于局部参考坐标系的3d形状匹配方法及装置
CN113172636B (zh) 一种自动手眼标定方法、装置及存储介质
CN113554712B (zh) 自动驾驶车辆的配准方法、装置、电子设备和车辆
CN110736426B (zh) 物体尺寸获取方法、装置、计算机设备以及存储介质
CN112197708A (zh) 测量方法及装置、电子设备及存储介质
CN107734324B (zh) 一种闪光灯照度均匀性的测量方法、系统及终端设备
CN101344376A (zh) 基于单目视觉技术的空间圆几何参数的测量方法
CN111915666A (zh) 基于移动终端的体积测量方法及装置
US20220128347A1 (en) System and method to measure object dimension using stereo vision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17898686

Country of ref document: EP

Kind code of ref document: A1