WO2018157402A1 - ZnO/MWCNTs复合材料的制备方法 - Google Patents

ZnO/MWCNTs复合材料的制备方法 Download PDF

Info

Publication number
WO2018157402A1
WO2018157402A1 PCT/CN2017/075650 CN2017075650W WO2018157402A1 WO 2018157402 A1 WO2018157402 A1 WO 2018157402A1 CN 2017075650 W CN2017075650 W CN 2017075650W WO 2018157402 A1 WO2018157402 A1 WO 2018157402A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
mwcnts
composite material
beaker
putting
Prior art date
Application number
PCT/CN2017/075650
Other languages
English (en)
French (fr)
Inventor
钟玲珑
Original Assignee
深圳市佩成科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市佩成科技有限责任公司 filed Critical 深圳市佩成科技有限责任公司
Priority to PCT/CN2017/075650 priority Critical patent/WO2018157402A1/zh
Publication of WO2018157402A1 publication Critical patent/WO2018157402A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Definitions

  • the present invention relates to a method for preparing a ZnO/MWCNTs composite material, and belongs to the field of nano material preparation.
  • Zinc Oxide is a wide band gap semiconductor with a band gap of 3.37 eV at room temperature. Due to its unique optical, electrical, dielectric and piezoelectric properties, good thermal stability and thermal conduction. Sex, etc., are widely used in solar cells, electromagnetic shielding, capacitors and other fields.
  • the object of the present invention is to overcome the deficiencies of materials prepared by conventional preparation methods, and to provide a preparation method of ZnO/M WCNTs composite materials.
  • the present invention adopts the following technical solutions.
  • the present invention provides a method for preparing a ZnO/MWCNTs composite, comprising the following steps:
  • Step one lgCNT and 100ml of acid into a 400ml beaker, sonicated for 3 hours, suction filtration, washed with a large amount of deionized water, until the filtrate is near neutral, the filtered sample is placed into 60 After drying in an oven at °C for 24 hours to constant weight, the functionalized carbon nanotubes are obtained;
  • Step 2 0.04g of functionalized carbon nanotubes, 0.92g of Zn(CH3COO)2*2H20 and 200ml of DMF were ultrasonicated for 1 hour, then placed in an oil bath at 95 ° C, and the reaction was in a beaker. Cover the plastic wrap, leave a small mouth, stir magnetically for 5 hours, wash with deionized water and absolute ethanol several times until the filtrate is neutral. The reacted powder was baked in an oven at 80 ° C for 24 hours to obtain ZnO/MWCNTs powder;
  • Step 3 weigh 0.02g ZnO / MWCNTs and 0.08g paraffin into a 100ml beaker, add 20ml of ether ultrasonic dispersion, after the ether is evaporated, cool to room temperature, the sample is loaded into the mold, pressed into Cylinder.
  • the acid solution in the above step 1 is nitric acid having a mass fraction of 30%.
  • the outer diameter of the cylinder in the above step 2 is 7.03 mm
  • the inner diameter is 3.0 mm
  • the height is l-2 mm.
  • the ZnO/MWCNTs composite prepared in the above step 3 has a mass fraction of 20 ⁇ 3 ⁇ 4.
  • the preparation method of the ZnO/MWCNTs composite material provided by the invention is simple and convenient, and the prepared ZnO/MWCNTs composite material has strong stability and good interface bonding state between the carbon nanotubes and the zinc oxide. , The dielectric loss is small, the absorbing performance is good, and the maximum reflectivity loss is small.
  • FIG. 1 is a schematic view showing a preparation method of a ZnO/MWCNTs composite material according to the present invention
  • FIG. 2 is an X-ray diffraction analysis diagram of a ZnO/MWCNTs heterostructure according to the present invention
  • 3 is a composite dielectric constant diagram of a ZnO/MWCNTs composite material of the present invention.
  • the present invention provides a method for preparing a ZnO/MWCNTs composite material.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the present embodiment includes functionalization of MWCNTs, preparation of a heterostructure of ZnO/MWCNTs, and preparation of a ZnO/MWCNTs composite.
  • MWCNTs wherein the functionalization process of MWCNTs is as follows: [0021] lgCNT and 100ml of 30% nitric acid solution were placed in a 400ml beaker, sonicated for 3 hours, filtered, washed with a large amount of deionized water until the filtrate was near neutral, and the filtered sample was placed. Functionalized carbon nanotubes were obtained by baking in an oven at 60 ° C for 24 hours to constant weight.
  • a ZnO/MWCNTs composite with a mass fraction of 20% is prepared by using a paraffin wax with good wave permeability as a matrix to study its dielectric.
  • microwave absorption breeding the preparation process is shown in Figure 1.
  • FIG. 3 shows a plot of the composite dielectric constant of ZnO/MWCNTs composites as a function of frequency in the range of 2- 18 GHz. As can be seen from the figure, ⁇ ' and ⁇ "
  • FIG. 4 shows the dielectric loss tangent of a ZnO/MWCNTs composite.
  • the dielectric loss is a decreasing trend with increasing frequency, with a slight change.
  • 12.2GHz There are three peaks at 15 GHz, of which the peak at 12.2 GHz is large and is caused by resonance loss.
  • the dielectric loss is mainly derived from the conductance loss caused by the carbon nanotubes and zinc oxide particles.
  • the turning polarization of the surface groups of the carbon nanotubes, the interface between the carbon nanotubes and the zinc oxide particles Charge polarization, defects in carbon nanotubes and zinc oxide itself can also cause uneven distribution of space charge, resulting in space charge polarization, which will lead to loss of composite materials.
  • the preparation method of the ZnO/MWCNTs composite material provided by the invention is simple and convenient, the prepared ZnO/MWCNTs composite material has strong stability, and the interface state between the carbon nanotubes and the zinc oxide is good. , The dielectric loss is small, the absorbing performance is good, and the maximum reflectivity loss is small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种ZnO/MWCNTs复合材料的制备方法,包括将CNT和酸液放入烧杯中,超声抽滤,用大量的去离子水清洗,直至滤液接近中性,将过滤出的样品放入烘箱中烘,即得到官能化的碳纳米管;将官能化的碳纳米管、Zn(CH 3COO) 2·2H 2O和DMF超声,然后放入油浴锅中加热,反应中在烧杯口覆盖保鲜膜,留一个小口,磁力搅拌,用去离子水和无水乙醇清洗数次,直至滤液为中性,反应后的粉末放入烘箱中烘,即得到ZnO/MWCNTs粉末;称取ZnO/MWCNTs和石蜡放入烧杯中,加入乙醚超声分散,待乙醚蒸发完毕后,冷却至室温,将样品装入模具中,压成圆柱体。通过该方法制备得到的ZnO/MWCNTs复合材料稳定性强、碳纳米管与氧化锌之间界面结合状态良好。

Description

ZnO/MWCNTs复合材料的制备方法
技术领域
[0001] 本发明涉及一种 ZnO/MWCNTs复合材料的制备方法, 属于纳米材料制备领域
背景技术
[0002] 氧化锌 (ZnO)是一种直接带隙的宽禁带半导体, 室温下禁带宽度 3.37eV, 由于 其独特的光学、 电学、 介电及压电性能, 良好的热稳定性、 热传导性等, 被大 量应用于太阳能电池、 电磁屏蔽、 电容器等领域。
技术问题
[0003] 目前, 已有相关文献报道了 ZnO/CNTs异质结构的的制备、 光性能、 电化学性 能等, 但是关于其微波吸收性能的报道却较少, 即使有相关报道, 其微波吸收 性能不是和好, 在复合材料中的比重较大, 吸波频带不够宽。 。
问题的解决方案
技术解决方案
[0004] 鉴于上述现有技术的不足之处, 本发明的目的在于提供一种 ZnO/MWCNTs复 合材料的制备方法。
[0005] 本发明的目的是为了克服传统制备方法制备的材料的不足, 提供了一种 ZnO/M WCNTs复合材料的制备方法。 为了达到上述目的, 本发明采取了以下技术方案
[0006] 本发明提供了一种 ZnO/MWCNTs复合材料的制备方法, 包括以下步骤:
[0007] 步骤一、 将 lgCNT和 100ml的酸液放入 400ml的烧杯中, 超声 3小吋, 抽滤, 用 大量的去离子水清洗, 直至滤液接近中性, 将过滤出的样品放入 60 °C的烘箱中 烘 24小吋至恒重, 即得到官能化的碳纳米管;
[0008] 步骤二、 将 0.04g官能化的碳纳米管、 0.92g Zn(CH3COO)2*2H20和 200ml DMF 超声 1小吋, 然后放入 95°C的油浴锅中加热, 反应中在烧杯口覆盖保鲜膜, 留一 个小口, 磁力搅拌 5小吋, 用去离子水和无水乙醇清洗数次, 直至滤液为中性, 反应后的粉末放入 80°C的烘箱中烘 24小吋, 即得到 ZnO/MWCNTs粉末;
[0009] 步骤三、 称取 0.02g ZnO/MWCNTs和 0.08g石蜡放入 100ml的烧杯中, 加入 20ml 的乙醚超声分散, 待乙醚蒸发完毕后, 冷却至室温, 将样品装入模具中, 压成 圆柱体。
[0010] 优选的, 上述步骤一中的酸液为质量分数为 30%的硝酸。
[0011] 优选的, 上述步骤二中的圆柱体外径为 7.03mm内径为 3.0mm, 高度为 l-2mm。
[0012] 优选的, 上述步骤三制备出的 ZnO/MWCNTs复合材料, 质量分数为 20<¾。
发明的有益效果
有益效果
[0013] 相比现有技术, 本发明提供的 ZnO/MWCNTs复合材料的制备方法, 工艺简单 方便, 制备出来的 ZnO/MWCNTs复合材料稳定性强、 碳纳米管与氧化锌之间界 面结合状态良好, 介电损耗小, 吸波性能好, 最大的反射率损失较小。
对附图的简要说明
附图说明
[0014] 图 1为本发明 ZnO/MWCNTs复合材料的制备方法示意图;
[0015] 图 2为本发明 ZnO/MWCNTs异质结构的 X射线衍射分析图;
[0016] 图 3为本发明 ZnO/MWCNTs复合材料的复合介电常数图;
[0017] 图 4为本发明 ZnO/MWCNTs复合材料的介电损耗图。
本发明的实施方式
[0018] 本发明提供一种 ZnO/MWCNTs复合材料的制备方法, 为使本发明的目的、 技 术方案及效果更加清楚、 明确, 以下参照附图并举实施例对本发明进一步详细 说明。 应当理解, 此处所描述的具体实施例仅用以解释本发明, 并不用于限定 本发明。
[0019] 如图 1所示, 在实施例中, 本实施例包括 MWCNTs的官能化、 ZnO/MWCNTs异 质结构的制备以及 ZnO/MWCNTs复合材料的制备。
[0020] 其中, MWCNTs的官能化过程如下: [0021] lgCNT和 100ml质量分数为 30%的硝酸溶液放入 400ml的烧杯中, 超声 3小吋, 抽滤, 用大量的去离子水清洗, 直至滤液接近中性, 将过滤出的样品放入 60 °C 的烘箱中烘 24小吋至恒重, 即得到官能化的碳纳米管。
[0022] ZnO/MWCNTs异质结构的制备过程如下:
[0023] 将 0.04g官能化的碳纳米管、 0.92g Zn(CH3COO)2*2H20和 200ml DMF超声 1小 吋, 然后放入 95°C的油浴锅中加热, 在本实施例的反应中在烧杯口覆盖保鲜膜, 稍微留一个小口, 磁力搅拌 5小吋, 用去离子水和无水乙醇清洗数次, 直至滤液 为中性, 反应后的粉末放入 80°C的烘箱中烘 24小吋, 即得到 ZnO/MWCNTs粉末
[0024] ZnO/MWCNTs复合材料的制备的过程如下:
[0025] 纯的粉体的介电常数是很难进行测量的, 本实施例以透波性很好的石蜡为基体 , 制备质量分数为 20%的 ZnO/MWCNTs复合材料, 来研究其介电及微波吸收性 育 , 其制备工艺如图 1所示。 称取 0.02g ZnO/MWCNTs和 0.08g石蜡放入 100ml的 烧杯中, 加入 20ml的乙醚超声分散, 待乙醚蒸发完毕后, 冷却至室温, 将样品 装入模具中, 压成外径为 7.03mm内径为 3.0mm的圆柱体, 高度为 l-2mm。
[0026] 如图 2给出的是 ZnO/MWCNTs异质结构的 X射线衍射分析图, 2Θ=26.5°对应的 碳纳米管的特征衍射峰, 从图中可以看出, 碳纳米管在处理前后结晶性能保持 不变, 晶格结构并没被破坏。 26=31.8° , 34.4°, 36.3°,
47.5。, 56.6。, 62.9。, 66.4°, 67.9。, 69.1。, 72.6。, 76.9°处的衍射峰对应的晶面 分别是 (100), (002), (101), (102), (110), (103) , (200), (112), (201), (004), (202)晶面, 由此可以得出 ZnO/MWCNTs异质结构中的 ZnO为六方纤锌矿氧化锌
[0027] 图 3给出了 ZnO/MWCNTs复合材料的复合介电常数在 2- 18GHz范围内随频率变 化的曲线。 从图中可以看出, ε'和 ε"
随频率的增加有逐渐下降的趋势, 在 12-16GHZ范围内都出现了共振峰, 这些峰 是由于碳纳米管与氧化锌之间的界面与电磁波作用产生的共振峰。
[0028] 图 4给出了 ZnO/MWCNTs复合材料的介电损耗角正切值。 总体来说, 介电损耗 随着频率的增加是一个下降的趋势, 略有小幅度的变化。 在 4.2GHz, 12.2GHz, 15GHz有三个峰值, 其中, 12.2GHz处的峰值较大, 是由共振损耗引起的。 在这 种复合材料中, 介电损耗主要来源于由碳纳米管和氧化锌颗粒引起的电导损耗 , 此外, 碳纳米管表面基团的转向极化, 碳纳米管与氧化锌颗粒之间存在界面 电荷极化, 碳纳米管和氧化锌本身的缺陷也会引起空间电荷分布不均, 造成空 间电荷极化, 这些极化都会导致复合材料产生损耗。
[0029] 相比现有技术, 本发明提供的 ZnO/MWCNTs复合材料的制备方法, 工艺简单 方便, 制备出来的 ZnO/MWCNTs复合材料稳定性强、 碳纳米管与氧化锌之间界 面结合状态良好, 介电损耗小, 吸波性能好, 最大的反射率损失较小。
[0030]
[0031] 可以理解的是, 对本领域普通技术人员来说, 可以根据本发明的技术方案及其 发明构思加以等同替换或改变, 而所有这些改变或替换都应属于本发明所附的 权利要求的保护范围。

Claims

权利要求书
[权利要求 1] 一种 ZnO/MWCNTs复合材料的制备方法, 其特征在于: 所述制备方 法包括以下步骤:
步骤一、 将 lgCNT和 100ml的酸液放入 400ml的烧杯中, 超声 3小吋, 抽滤, 用大量的去离子水清洗, 直至滤液接近中性, 将过滤出的样品 放入 60 °C的烘箱中烘 24小吋至恒重, 即得到官能化的碳纳米管; 步骤二、 将 0.04g官能化的碳纳米管、 0.92g
Zn(CH3COO)2*2H20和 200ml DMF超声 1小吋, 然后放入 95°C的油浴 锅中加热, 反应中在烧杯口覆盖保鲜膜, 留一个小口, 磁力搅拌 5小 吋, 用去离子水和无水乙醇清洗数次, 直至滤液为中性, 反应后的粉 末放入 80°C的烘箱中烘 24小吋, 即得到 ZnO/MWCNTs粉末; 步骤三、 称取 0.02g ZnO/MWCNTs和 0.08g石蜡放入 100ml的烧杯中, 加入 20ml的乙醚超声分散, 待乙醚蒸发完毕后, 冷却至室温, 将样品 装入模具中, 压成圆柱体。
[权利要求 2] 如权利要求 1所述的 ZnO/MWCNTs复合材料的制备方法, 其特征在于
: 所述步骤一中的酸液为质量分数为 30%的硝酸。
[权利要求 3] 如权利要求 1所述的 ZnO/MWCNTs复合材料的制备方法, 其特征在于
: 所述步骤二中的圆柱体外径为 7.03mm内径为 3.0mm, 高度为 l-2mm
[权利要求 4] 如权利要求 1或 3所述的 ZnO/MWCNTs复合材料的制备方法, 其特征 在于: 所述步骤三制备出的 ZnO/MWCNTs复合材料, 质量分数为 20
%。
PCT/CN2017/075650 2017-03-03 2017-03-03 ZnO/MWCNTs复合材料的制备方法 WO2018157402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075650 WO2018157402A1 (zh) 2017-03-03 2017-03-03 ZnO/MWCNTs复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075650 WO2018157402A1 (zh) 2017-03-03 2017-03-03 ZnO/MWCNTs复合材料的制备方法

Publications (1)

Publication Number Publication Date
WO2018157402A1 true WO2018157402A1 (zh) 2018-09-07

Family

ID=63369665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075650 WO2018157402A1 (zh) 2017-03-03 2017-03-03 ZnO/MWCNTs复合材料的制备方法

Country Status (1)

Country Link
WO (1) WO2018157402A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040869A1 (en) * 2008-08-12 2010-02-18 Industrial Technology Research Institute Transparent conductive film and method for manufacturing the same
CN102044319A (zh) * 2009-10-23 2011-05-04 中国科学院物理研究所 复合吸波材料及其制备方法
CN102157358A (zh) * 2010-12-30 2011-08-17 北京理工大学 水热法合成碳纳米管和氧化锌异质结构的方法
CN102205238A (zh) * 2011-04-11 2011-10-05 东华大学 一种MWCNTs/ZnO纳米复合材料的制备方法
CN104479626A (zh) * 2014-12-05 2015-04-01 吉林大学 一种石墨化多壁碳纳米管/纳米粒子复合吸波剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100040869A1 (en) * 2008-08-12 2010-02-18 Industrial Technology Research Institute Transparent conductive film and method for manufacturing the same
CN102044319A (zh) * 2009-10-23 2011-05-04 中国科学院物理研究所 复合吸波材料及其制备方法
CN102157358A (zh) * 2010-12-30 2011-08-17 北京理工大学 水热法合成碳纳米管和氧化锌异质结构的方法
CN102205238A (zh) * 2011-04-11 2011-10-05 东华大学 一种MWCNTs/ZnO纳米复合材料的制备方法
CN104479626A (zh) * 2014-12-05 2015-04-01 吉林大学 一种石墨化多壁碳纳米管/纳米粒子复合吸波剂及其制备方法

Similar Documents

Publication Publication Date Title
Qi et al. Lightweight Fe 3 C@ Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness
Zhou et al. Dielectric behavior of Fe3N@ C composites with green synthesis and their remarkable electromagnetic wave absorption performance
Liang et al. Controllable fabricating dielectric–dielectric SiC@ C core–shell nanowires for high-performance electromagnetic wave attenuation
Zhang et al. High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures
Su et al. Enhancement of the Cyclability of a Si/Graphite@ Graphene composite as anode for Lithium-ion batteries
Kong et al. Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption
Pang et al. MnFe2O4-coated carbon nanotubes with enhanced microwave absorption: Effect of CNT content and hydrothermal reaction time
CN108003364B (zh) 一种柔性石墨烯基复合膜及其制备方法和作为电磁屏蔽材料的应用
WO2017054670A1 (zh) 一种改性超疏水材料包覆的锂离子电池高镍正极材料及其制备方法
CN102515284B (zh) 一种Fe3O4/石墨烯复合粉体的制备方法
Sun et al. Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method
CN110079271B (zh) 一种蛋白基碳/磁性Fe Co纳米粒子复合吸波剂及其制备方法和应用
Wu et al. Electromagnetic and microwave-absorbing properties of highly ordered mesoporous carbon supported by gold nanoparticles
Wang et al. NiO nanosheets on pine pollen-derived porous carbon: construction of interface to enhance microwave absorption
CN106571460B (zh) 一种无粘结剂、自支撑结构的硒正极材料及其制备方法
CN111171787B (zh) 一种BiFeO3/RGO复合吸波材料及制备方法
Wang et al. Facile preparation of carbon nanosheet frameworks/magnetic nanohybrids with heterogeneous interface as an excellent microwave absorber
Liu et al. Simple preparation and excellent microwave attenuation property of Fe3O4-and FeS2-decorated graphene nanosheets by liquid-phase exfoliation
CN104282913A (zh) 片状多孔碳包覆ZnO纳米复合材料及其制备方法与应用
Fan et al. Cobalt phosphide decorated on reduced graphene oxide with enhanced microwave absorption performance
CN109003827B (zh) 一种海绵状石墨烯/镍钴硫化物复合材料的制备方法和应用
Yi et al. Enhanced electromagnetic wave absorption of magnetite-spinach derived carbon composite
CN110699039A (zh) 一种多孔Co/Nb2O5/碳纤维气凝胶复合吸波材料及其制备方法
CN110125428A (zh) MOF衍生的分层蛋黄-壳ZnO-Ni@CNT微球的制备及应用
Gao et al. Highly Performant Electromagnetic Absorption at the X Band Based on Co@ NCS/Ti3C2T x Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17898912

Country of ref document: EP

Kind code of ref document: A1